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Abstract 
Many low cost, wide angle lenses suffer from lens distortion, resulting from a radial variation in 

the lens magnification. As a result, straight lines, particularly those in the periphery, appear 

curved. The Hough transform is a commonly used linear feature detection technique within an 

image. In Hough transform space, straight lines and curved lines have different shapes of peaks. 

This thesis proposes a lens distortion correction method named SLDC based on analysing the 
shape of patterns in the Hough transform space. It works by reconstructing the distorted line 

from significant points on the smile-shaped Hough pattern. It then optimises the distortion 

parameter by mapping the reconstructed curved line into a straight line and minimising the 

RMSE. From both simulation and correcting real world images, the SLDC provides encouraging 

results.  

Keywords: Hough transform; barrel lens distortion correction; straight line; shape of peaks 
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Chapter 1 Introduction 
In image processing the camera records a digital representation of a scene or object. In many 

cases, it is important that it is an accurate representation. Unfortunately, a majority of cameras 

use lenses to collect light and most lenses introduce some form of distortion. Figure 1 shows 

an example of radial lens distortion.  

 
Figure 1: Real scene and what the camera saw with distortion. 

1.1. What is Lens Distortion? 

For most computer vision and image processing algorithms, the basic camera model for image 

formation is the pin-hole camera model. It assumes that each image point is generated as a 

direct projection of the real-world point through the optical centre of the lens. However, a pin-
hole camera model is usually invalid due to optical distortion (Bukhari & Dailey, 2010). Real 

cameras suffer from lens distortion, especially when using wide-angle or fish-eye lenses. In 

such cases the problem becomes more serious.  

There are generally two components of lens distortion: radial distortion and tangential distortion. 

Tsai (1987) has demonstrated that the effect of tangential distortion is insignificant in most 

cases, and can therefore be neglected. Therefore, in this research, we focus only on radial lens 

distortion. Radial lens distortion is the result of a different magnification in the centre of the 

image to that at the edges, causing ‘points in the image’ to deviate in a non-linear fashion from 
their ideal position of a pin-hole camera model. Barrel and pincushion distortion are two 

common instances of radial lens distortion. For barrel lens distortion, the image has a higher 

resolution in the centre of the image than at its periphery while pincushion distortion has the 

opposite effect. Figure 2 compares the effect of barrel and pincushion lens distortions. One 

significant feature of radial lens distortion is its symmetry about the centre of distortion and that 

it does not affect the image at the distortion centre. As the result of radial lens distortion, straight 

lines, especially those located near the edges of the image, appear curved. 
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Figure 2: Left: the original grid; Centre: the effect of barrel radial distortion; Right: the effect of 
pincushion distortion.  

In many cases, radial lens distortion can be generally neglected, and it can even be used as 

an artistic effect. However, for more rigorous image processing tasks or machine vision systems, 

where measurements are made from the image, lens distortion cannot be accepted. Not only 

does radial lens distortion make images captured by the camera less visually appealing to the 

human observer, it is also critical in many applications where shape recognition, localisation, 

classification and detection are essential (Cuccihiara et al, 2003).  

1.2. Camera Calibration 

To correct lens distortion, geometric camera calibration is needed. It aims to correct the lens 

distortion by mapping pixels in the image to those which would be captured using a simple 

pinhole camera model. The parameters which affect the mapping can be separated into two 

categories: 

External parameters describe the relationship between the camera frame and the world frame, 
including position and orientation. 

Internal parameters describe the characteristic of the camera, and include the lens focal length, 

pixel scale factors, and location of the optical centre within the image. The distortion parameters 

which describe the geometric nonlinearities of the camera also belong to this category. 

The internal and external parameters (apart from lens distortion) can be grouped into a single 

3 × 4 perspective transformation matrix (Xu, et al, 2006) . These parameters require accurate 

knowledge of 3D to 2D point correspondence to determine their values. The lens distortion 

parameters are simpler in that they are modelled entirely in 2D image space.  

There are three categories of geometric camera calibration methods based on the features 

used (Furukawa & Shinagawa, 2003) (Devernay & Faugeras, 1995). The first approach uses 

feature points, consisting of dots, circles or corners which can be easily extracted from an image 
of a calibration grid (Duane, 1971). After identifying the feature points, the calibration method 

finds the best camera-external and internal parameters that relate the position of the 3D points 
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to the measured feature points in the image (Frederic, et al, 2001). A disadvantage of this 

approach is that there is coupling between internal and external parameters, which can reduce 

the accuracy when computing the external and internal parameters at the same time.  

The second approach is linear feature based (Lee, et al, 2011) (Wang, et al, 2009) (Strand & 
Hayman, 2005) (Prescott & McLean, 1997), where the features are one or more straight lines 

or edges, either from a calibration grid or naturally occurring in the scene. This method assumes 

that linear features without distortion should be straight, thus, this principle can be used for 

camera calibration.  

There is also a third group of methods which do not need any kind of known calibration points. 

These are also called auto-calibration methods (Frederic, et al, 1995). They do not depend on 

the calibration reference object and are unrelated to the scene and camera movements, only 

making use of the self-constraints of camera internal parameters. Their main disadvantage, is 
that if all the camera parameters are unknown, they can be very unstable (Frederic, et al, 2001).  

The lens distortion correction method explored in this thesis is linear feature based. The linear 

approach requires some form of edge or line detection method. The next section reviews edge 

and line detection methods.  

1.3. Edge and Line Detection 

Since edge or line detection is the initial step for linear feature based lens distortion correction, 

the accuracy of estimating the lens distortion parameters highly relies on effectively detecting 

edges and lines. Edges are characterised by step changes in pixel value. Therefore, the most 

common method to detect edges is gradient based, locating the local extrema in the first 

derivative of the image.  

The Sobel filter (Rafael, et al, 2002) consists of a pair of 3 × 3 convolution kernels as shown in 

Figure 3. 

 

Figure 3: Convolution kernels used by the Sobel filter 

These two kernels are designed to respond maximally to vertical and horizontal edges, one 

kernel for each of the two perpendicular orientations. The outputs of the filter can be combined 
together to find the absolute magnitude of the gradient at each point and the orientation of that 

gradient.  
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The Prewitt filter (Maini & Aggarwal, 2009) has the kernels shown in Figure 4. These are similar 

to the Sobel filter kernels, and are used in a similar way.  

 

Figure 4: Convolution kernels used by the Prewitt filter 

A more powerful edge detection method is the Canny edge detection algorithm (Canny, 1987). 

Compared to the first two methods, it is more robust to with respect to noise. The Canny edge 
detector first smooths the image with a Gaussian filter to reduce noise. The next step is to 

determine edge strength and orientation by taking the gradient of the image using a Sobel filter. 

The edge is thinned by supressing the non-maximum gradients perpendicular to the edge. 

Edges are detected using hysteresis based thresholding to select strong edges, along with 

connected weaker edges. The Canny detector has improved signal to noise ratio and better 

detection accuracy especially in noise conditions than the simple Sobel or Prewitt filters on their 

own. However, it requires complex computation and is time-consuming.  

After edge detection the Hough transform is a reliable way to detect linear features (Bukhari & 
Dailey, 2010). The Hough transform works by converting the original image into a parameter 

space, referred to as the Hough space. Each point in Image space ‘votes’ in Hough transform 

space for the parameters of all lines consistent with that point. A line in image space results in 

multiple votes at the point in Hough transform space corresponding to the line’s parameters. 

By finding the local maxima (peaks) in parameter space, it is possible to locate the dominant 

lines in the original image. In the Hough transform space, straight lines and curved lines yield 

different shaped peaks.  

A straight line in the image gives a peak in the Hough transform space concentrated at a point. 

A curved line yields a more ‘spread out’ pattern because the curvature cannot be represented 

by a single set of line parameters. These are illustrated in Figure 5. In this research, we assume 

there is a relationship between the shape of the blurred peak and the lens distortion. 

Accordingly, a lens distortion correction method based on analysing the shape of peaks in 

Hough transform space is proposed.  
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Figure 5: Left: a straight line and that line curved by lens distortion; Right: the corresponding peaks in 
the Hough space. 

1.4. Research Goals 

To explore how the shape of the peaks in the Hough transform can be used to estimate lens 

distortion parameters. This requires analysing how lens distortion affects the peak shape, and 

identifying features of the peak pattern that can be used to calculate the distortion parameters. 

A second goal is to investigate the accuracy of the parameter estimation, and identify the factors 

that limit the accuracy.  

1.5. Overview 

This thesis is organised as follows. Chapter 2 reviews lens distortion models and the Hough 

transform. Chapter 3 analyses the shape of peaks in the Hough transform space and 

investigates the relationships between the distortion in image space and the shape of the 

Hough pattern. In Chapter 4 the basic steps of our method are presented. An accuracy study 

of the correction method is presented in Chapter 5. Discussions and examples of correcting 

real-world images are covered in Chapter 6. Chapter 7 provides the conclusion and suggestions 
for future research.  
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Chapter 2 Background 

2.1. Modelling Lens Distortion 

In digital image processing and computer vision, the most basic camera model is the pin-hole 
camera model (Tsai, 1987). It assumes that each image point is generated as a direct projection 

of a real-world point through the optical centre (Cucchiara et al., 2003). The pin-hole camera 

model maps a three-dimensional point 𝑃 whose coordinates in the camera-centred coordinate 

system are (𝑋, 𝑌, 𝑍) to an image point 𝑝 = (𝑥, 𝑦) on the image plane: 

 
𝑥 = 𝑓

𝑋
𝑍	

𝑦 = 𝑓
𝑌
𝑍 

(1) 

where 𝑓 is the effective focal length of the camera. 

However, due to the effects of lens distortion, real cameras rarely follow the pin-hole model. 
Therefore, the pin-hole model is not satisfactory for a real camera (Mohr & Triggs, 1996). Since 

lens distortion is predominantly radial, a general radial Taylor series model of distortion has 

been proposed (McGlone, et al, 1980). Given a ‘distorted’ image point 𝑝> = (𝑥>,𝑦>) , the 

‘undistorted’ image point	𝑝? = (𝑥?, 𝑦?) can be obtained as follows: 

 
𝑥? = 𝑐@ + (𝑥> − 𝑐@)(1 + 𝜅"𝑟>D + 𝜅D𝑟>E + ⋯)+… 

																	𝑝"[2(𝑥> − 𝑐@) + 𝑟>D] + 2𝑝D(𝑥> − 𝑐@)(𝑦> − 𝑐I) 
(2) 

 
𝑦? = 𝑐I + J𝑦> − 𝑐IK(1 + 𝜅"𝑟>D + 𝜅D𝑟>E + ⋯)+… 

																	𝑝"L2J𝑦> − 𝑐IK + 𝑟>DM + 2𝑝D(𝑥> − 𝑐@)(𝑦> − 𝑐I) 
(3) 

where J𝑐@, 𝑐IK	are the coordinates of the centre of distortion, and 𝑟> = N(𝑥> − 𝑐@)D + (𝑦> − 𝑐I)D, 

𝜅" and 𝜅D are the radial lens Taylor series coefficients, and 𝑝" ,	𝑝D  are the tangential Taylor 

series coefficients. Tsai (1987) noted that the tangential distortion can be neglected. This was 

demonstrated experimentally by Li & Lavest (1996), and in many cases, only one or two radial 
coefficients are sufficient.  

 O
𝑥? = 𝑐@ + (𝑥> − 𝑐@)(1 + 𝜅"𝑟>D + 𝜅D𝑟>E +⋯)
𝑦? = 𝑐I + J𝑦> − 𝑐IK(1 + 𝜅"𝑟>D + 𝜅D𝑟>E +⋯) (4) 
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2.1.1. Polynomial Lens Distortion Models 

The standard model for radial lens distortion is an odd polynomial is 

 𝑟> = 𝑓(𝑟?) (5) 

where 𝑟>  is the radius of a point in the distorted image, and 𝑟?  is the distance of the 

corresponding point in the original undistorted image (both relative to the centre of distortion). 
Unlike (4), equation (5) is a forward model of the lens distortion correction, which maps points 

from the undistorted image to the distorted one.  

Odd Polynomial Model 

In image processing and computer vision tasks the most commonly used distortion model is 

the polynomial distortion model, based on a Taylor series expansion. Generally, an odd model 

can represent lens distortion while maintaining radial symmetry: 

 𝑟> = 𝑟? + 𝜅"𝑟?. + 𝜅D𝑟?P + 𝜅.𝑟?Q + ⋯ (6) 

where 𝜅R are the radial lens distortion coefficients (note these coefficients differ from those in 

(4)).  

The “perfect” approximation would be a polynomial of infinite degrees; however, this is not 
necessary. Researchers and measurements demonstrate that for typical camera lenses, a low 

order approximation is sufficient and more terms only cause numerical instability (Tsai,1980). 

According to Faugeras and Toscani (1987) the first order component corrects more than 90% 

of the radial distortion. Beyer (1992) also showed that using only the first-order radial distortion 

model could achieve an accuracy of about 0.1 pixels in image space using lenses exhibiting 

large distortion. 

A disadvantage of polynomial models is that they are hard to invert, and in general there is no 
analytic inverse. Therefore an approximation must be used. 

Mallon and Whelan (2004) presented an approximate inverse model of this polynomial model 

with (two distortion coefficients). 

 𝑟? = 𝑟> − 𝑟> S
𝜅"𝑟>D + 𝜅D𝑟>E + 𝜅"D𝑟>E + 𝜅DD𝑟>T + 2𝜅"𝜅D𝑟>U

1 + 4𝜅"𝑟>D + 6𝜅D𝑟>E
W (7) 

In this research only a first order distortion model was considered. We assume that this is a 

sufficient approximation for mild to moderate distortion. 

 𝑟> ≈ 𝑟? + 𝜅"𝑟?. = 𝑟?(1 + 𝜅"𝑟?D) (8) 
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The distorted coordinates are given by the formula: 

 
𝑥> = 𝑥?(1 + 𝜅"𝑟?D)	

𝑦> = 𝑦?(1 + 𝜅"𝑟?D) 
(9) 

Generally, for correction we want 𝑟> = 𝑓(𝑟?).	So that we can determine where each point in our 

corrected image (𝑥?,𝑦?) comes from the distorted image (𝑥>, 𝑦>). The simplified version of 

equation (7) for a first order distortion model is, given by setting 𝜅D = 0. 

 𝑟? ≈ 𝑟> − 𝑟> S
𝜅"𝑟>D + 𝜅"D𝑟>E

1 + 4𝜅"𝑟>D
W (10) 

This decreases the accuracy of this model. However, from simulation the approximate model 

(10) provides an acceptable accuracy. Figure 6 shows the error introduced after distortion using 

(8) and correction using (10), the RMS error was less than half pixel, even with serious distortion 

(In Figure 6 the RMSE in the highlight corner is higher than half pixel). Since the serious error 

only occur in the corners of the image ( 𝑟 > 0.85 ) for severe distortion (𝜅" > 0.06 ), the 

approximation model is sufficient for general lens distortion except for distortion from fish-eye 

lenses.  

 

Figure 6: Error of approximate inverse model as a function of distortion parameter 𝜅" and normalised 
radius from image centre. 
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The Division Model 

Fitzgibbon (2001) introduced the division model as it can more accurately represent severe 

distortion with fewer parameters.  

 
𝑟? =

𝑟>
1 + ∑ 𝜅\𝑟>D\]

\^"
 

																											=
𝑟>

1 + 𝜅"𝑟>D + ⋯+ 𝜅\𝑟>D\ +⋯
 

(11) 

Even though this model looks similar to the standard polynomial model it is not the inversion of 

it. The parameters in (11) are different from those in (6). The parameter for the first order version 

of this model can be determined by circle fitting (Barreto & Daniilidis, 2005).  

Modelling Fisheye Lens 

Unlike regular lenses, the fisheye and wide-angle lenses cannot be described adequately by a 

low order polynomial model. According to Shah and Aggarwal (1996) considerable distortion 

remains even with seventh order components. So in their model they used both odd and even 

components to describe the lens distortion of the fisheye lens. 

 𝑟> = _𝜅\𝑟?\ = 𝜅"𝑟?"
]

\^"

+⋯+ 𝜅\𝑟?\ +⋯ (12) 

A similar model which has the zero order component was given by Basu and Licardie (1995). 

 𝑟> = 𝜅$ + 𝜅"𝑟?" + ⋯+ 𝜅\𝑟?\ +⋯ (13) 

2.1.2. Non-Polynomial Models of Radial Distortion 

The polynomial lens distortion model suffers a common limitation: it is hard to invert. The most 

significant advantage of non-polynomial models is they are more readily inverted analytically 

(Hughes, et al, 2008). 

The Fish-Eye Transform 

Basu and Licardie (1995) proposed the fish-eye transform based on the observation that a fish-

eye image has higher resolution in the centre areas and the resolution decreases toward the 

edge of the image: 

 𝑟> = 𝑠	ln(1 + 𝜆𝑟?) (14) 

Where 𝑠 is a simple scalar and 𝜆 controls the level of distortion within the image. 
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The inverse of this model can be written as: 

 𝑟? =
𝑒
ef
g − 1
𝜆  (15) 

The Field View Model 

Devernay and Faugeras (2001) described the field-of-view model, based on a simple optical 

model of a fish-eye lens: 

 𝑟> =
1
𝜔 arctanm2𝑟?tan

𝜔
2n 

(16) 

Where 𝜔 is the angular field-of-view of the ideal fish-eye camera. 

The inverse of this model is: 

 𝑟> =
tan	(𝑟>𝜔)

2tan𝜔2 	
 (17) 

Perspective Model 

Another frequently used model for radial distortion is the perspective model (Ishii et al, 2003): 

 𝑟> = 𝑓arctano
𝑟?
𝑓
p (18) 

where 𝑓 is the apparent focal length of the fish-eye camera The inverse of this model is: 

 𝑟? = 𝑓tano
𝑟>
𝑓
p (19) 

Apart from being easier to analytically invert, and being better at modelling fisheye distortion, 

the non-polynomial models do not give a significant advantage for regular lenses.  

This section has reviewed both polynomial and non-polynomial models of lens distortion, 

including models of fish-eye and wide-angle lenses. However, there are many different models 

which are not mentioned in this review. This research is based on the first odder odd polynomial 

model, which is adequate for correcting standard lenses with low to moderate distortion.  

2.2. Hough Transform 

The Hough transform is a feature extraction technique used in image analysis, computer vision, 

and digital image processing. It has long been used to detect lines and other parameterised 

shapes within an image. The idea of the Hough transform is to transform the information within 

an image into a parameter space, and to analyse the parameter space instead of the original 
image. The original Hough transform was initially invented for machine analysis of bubble 
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chamber photographs by Hough in 1959. The original Hough transform (Hough, 1959) uses the 

slope and intercept of straight lines in original space to create the parameter space. In the pixel 

domain a straight line can be represented as: 

 𝑦 = 𝑚𝑥 + 𝑐 (20) 

We assume (𝑥", 𝑦") is a point on the straight line, and for this point in equation (20) 𝑚 and 𝑐 

(which are the slope and intercept) are parameters of the line. If we rewrite equation (20) as 

function of 𝑥" and 𝑦": 

 𝑐 = −𝑥"𝑚+ 𝑦" (21) 

Then this represents the relationship between the parameters for all lines that pass through  
(𝑥", 𝑦"). In the ‘𝑚𝑐’ parameter space, (21) appears as a straight line. Point (𝑥", 𝑦") votes for all 

points in parameter space according to (21). These votes represent sets of parameters that are 

compatible with (𝑥", 𝑦"). Another point within ‘𝑥𝑦’ image space (𝑥D, 𝑦D), creates another straight 

line in ‘𝑚𝑐’ space. Because these two points define a straight line, the parameter lines of these 

two points intersect in ‘𝑚𝑐’ space at the parameters corresponding to the slope and intercept 

of the line connecting these two points (see Figure 7).  

 
Figure 7: Original Hough transform 

Multiple collinear points in ‘𝑥𝑦’ space result in multiple votes for the line consistent with the data, 
and therefore produce a peak. By detecting the local maximum (the peak) we can find the 

parameters of the original straight line within ‘𝑥𝑦’ space. The Hough transform converts the 

problem of identifying line patterns in an image into its dual problem of detecting local maxima 

in Hough parameter space. However, a limitation of the original Hough transform, for equation 

(20) is that the slope and intercept become very large as the line approaches vertical. This 

problem can be solved by using two sets of parameter space (Hough, 1962), one for the 

horizontal lines and one for vertical lines. 

 
𝑐" = −𝑚"𝑥R + 𝑦R						(−1 ≤ 𝑚" ≤ 1) 

𝑐D = −𝑚D𝑦R + 𝑥R						(−1 ≤ 𝑚D ≤ 1) 
(22) 
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To overcome this limitation, Duda and Hart (1972) proposed the rho-theta parametrization of 

lines: 

 𝜌 = 𝑥 cos𝜃 + 𝑦 sin𝜃 (23) 

where 𝜌 is the distance from the origin to the closest point on the line and 𝜃 is the angle between 

the 𝑥 axis and the line connecting the origin with that closest point (see Figure 8). This has now 

become the standard Hough transform. 

 
Figure 8: Standard Hough transform. 

The standard Hough transform represents every possible line that a point in the ‘𝑥𝑦’ space as 

a sinusoidal curve in ‘𝜌𝜃’ Hough space. Equation (23) therefore defines the set of votes cast by 

an edge point. In other words, an edge point in image space votes for combinations of 

parameters it is compatible with. If points in ‘𝑥𝑦 ’ space belong to a straight line, their 

corresponding curves in Hough space intersect in ‘𝜌𝜃’ space at the point corresponding to the 

parameters of that line (see Figure 8). Compared to other points in the parameter space, the 

number of sinusoidal traces which pass through the intersection is higher, resulting in more 

votes. Peaks in parameter space therefore indicate the parameters of lines which have 
significant support in the original image. As with the original Hough transform, if the line in 

image space is curved by radial lens distortion, in Hough space the peak corresponding to the 

line will be blurred. However, in this research, we choose to analyse the shape of the pattern 

around the peak using the original Hough transform, because straight lines are easier to 

analyse than sinusoidal traces. 

Although the Hough transform is a popular tool for line detection, it suffers from high 

computational cost. To solve this problem and make the Hough transform more suitable for real 

time applications, the gradient Hough transform was introduced. The gradient Hough transform 
measures the orientation of the edge and rather than voting for all possible lines through that 

point, it only votes for a small range of angles (or slopes in the original Hough transform) 

(Fernandes & Oliveira, 2008). In addition to reducing the computation, it is also makes locating 

the peaks easier because it reduces the background clutter from irrelevant votes. 
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2.3. Related Work 

Few works have investigated the use of the Hough transform for camera lens distortion 

correction. Cucchiara et al (2003) introduced a Hough transform based measurement tool to 

indicate line straightness. They adjusted the radial lens distortion parameter to maximise the 

votes in the Hough transform of the corrected image, at the parameters corresponding to a 

single straight line in image space. They apply the correction to the image and then take the 

Hough transform. Their method can be separated into two steps; first they extract the linear 

feature for analysis, and then estimate the distortion parameter. For the first step, the authors 

developed an automatic region of interest finding procedure. However, it only works with 
horizontal or vertical lines; for more general cases, the linear feature needs to be found 

manually. Once the linear feature is extracted from the image, the authors adjust the distortion 

parameter to maximize the maximal vote from the corrected image. This method can work with 

a single image which contains a curved line, or a video with multiple frames. However, the 

precision depends on the resolution within Hough space. In this work, the authors assume that 

the centre of the distortion is in the centre of the image. When estimating the lens distortion 

parameter only one curved line was used which limits the accuracy of this method.  

Flores et al (2014) presented a two steps correction method. First, they obtain an initial 
approximation of the distortion parameter by embedding the radial distortion parameter into the 

Hough parameter space. By maximizing the votes and the distance from line segment to the 

origin, the longest distorted line and the initial approximation distortion parameter can be 

optimized. Then, the lens distortion parameter is estimated by minimizing the average of the 

square of the distance from the corrected primitive points to a straight line. The distortion centre 

is assumed to be the centre of the image. 

Lee et al (2011) extended this by making the observation that concentrating the votes at a point 
in Hough space reduces the entropy. Therefore, by selecting the lens distortion parameter 

which minimises the entropy of the Hough transform, they were able to take into account all 

lines in the image. To avoid degeneracy of the entropy caused by the interaction in Hough 

space between multiple lines, each detected point only votes for a single Hough point based 

on the estimated image gradient. This method does not require manual selection of a curve 

and can estimate the distortion parameters independently of the particular distortion model 

used. Lee et al (2013) then developed this method by adding a focal length estimation approach 

which made this correction be effective to correct zoom lenses in real time applications. 

Edward & Rohan (2009) introduced a 1D Hough transform entropy based correction method. 

Like Cucchiara et al, they extract a single distorted line form the image. The line is parametrised 

by its orientation with the 1D Hough transform effectively reducing to an orientation histogram. 

A straight line appears with a single column in the Hough histogram, while a curve is more 

spread out. By optimizing the distortion parameter to minimize the entropy of the corresponding 

normalized histogram, the distortion parameter can be estimated. Kunina et al (2017) 
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developed this method by using the fast Hough transform, which enable this method to correct 

distortion from a sequence of video frames.  

These previous methods only use the Hough transform to determine if the line in the corrected 

image are straight. They do not derive the lens distortion parameter from the Hough transform.  

Detecting curved lines (distorted straight lines) is not trivial, especially in the case of large 

distortion. For this reason, many correction methods require locating the curves manually. 

Although the Hough transform is powerful for detecting straight lines, when the line is curved 

by lens distortion the Hough transform can fail to detect it, because the points on the curve do 

not vote for the same set of line parameters. Aleman-Flores et al (2014) proposed a line 

detection and lens distortion correction method, by introducing a third parameter to the Hough 

transform which represents the lens distortion. For each value of the distortion parameter (using 

a first order model), the edge pixels vote using a gradient Hough transform. The distortion 
parameter with the strongest votes provides an initial estimate of the distortion, and enables 

the curved line to be detected reliably. However, because of coarse quantisation, the distortion 

parameter estimated from Hough transform is not accurate enough to be used directly. A 

second order model is fitted using the detected curved lines, initialised using the estimate from 

the Hough transform.  

Cai and Miklavcic (2013) presented an automatic curve selection method in the context of lens 

distortion correction based on the Hough transform energy. The energy defines how concentred 

the peak is in Hough space. For a detected edge in the image space, if their corresponding 
points in the Hough space all located at a small range, this edge will be selected as a curved 

line. Then the distortion parameter (𝜅) can be estimated by adjusting 𝜅 to maximise the Hough 

energy. The authors realized the Hough pattern corresponding to a curved line is separated out 
compared to that of a straight line. However, they did not analyse the shape of the Hough 

pattern directly.  

In previous works, the authors all used the Hough transform to correct the lens distortion. 

However, none of them analysed the shape of peaks in the Hough space of the distorted image 

to estimate the distortion parameters. Furukawa and Shinagawa (2003) analysed the shape of 

the peak in the Hough space for accurate and robust line segment extraction. They used the 

shape of the peak patterns around the peak to identify the endpoints of the line segment in the 
image. Their work inspired us to use the shape of the peaks to directly estimate the lens 

distortion parameter.  

By analysing the shape of patterns around peaks within the parameter space, it should be 

possible to gather the information about the curved line. By using this information, it should be 

possible to correct the lens distortion and bring the original straight line back. In the next 

Chapter, the shape of the Hough pattern will be analysed, and based on the analysis a lens 

distortion correction method will be presented.   
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Chapter 3 Analysis of the Shape of Hough Patterns 
In this chapter, the shape of patterns in the Hough transform space is analysed as a function of 

the distortion of lines. We start our analysis with a simplified case, where the line in image 

space is symmetrical about the origin.  

3.1. Straight Line 

First, the shape of the pattern in the Hough domain corresponding to a straight line in the image 

domain will be analysed. This analysis is based on the original Hough transform (parameterised 

by 𝑦 = 𝑚𝑥 + 𝑐).  

 
Figure 9: Left: a straight line segment in the image domain; Right: the corresponding pattern in the 

Hough transform space. 

Figure 9 shows a straight line segment with end points 𝑃" and 𝑃D. We define this straight line 

as 𝑦 = 𝑦$, where 𝑦$ is the distance from that line to the origin. The line interests the 𝑦 axis at 

𝑃$. The pattern in the Hough transform space resulting from the voting process appears as 

shown in the right of Figure 9. For a straight line segment, its corresponding pattern of votes 

will be concentrated at a point (𝐻$) in the Hough domain. The number of votes received by point 

𝐻$ is equal to the number of detected pixels of the original line segment, which makes it 

significant compared with other nearby points. 𝐻$ should be at (0, 𝑃$) in (𝑚, 𝑐) coordinates, the 

‘𝑐’ value (intercept) of point 𝐻$ is equal to the length of 𝑂𝑃$yyyyy in the image space. The two dotted 

lines along the edges of the Hough pattern correspond to the locus of parameters voted for by 

the end points of the line segment.  

3.2. Curved Line 

When the line is curved (for example by lens distortion), the votes are no longer concentrated 

at a single point in the Hough transform space. Instead there will be a ‘blurred’ peak, because 
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the curved line cannot be represented by a single set of parameters. Figure 10 shows the 

curved line and the corresponding pattern in the Hough transform space (please note the 

dashed line of Figure 10 is not the same line as the solid line in Figure 9). 

 
Figure 10: Left: curved line; Right: the corresponding Hough pattern. 

3.2.1. The Shape of the ‘Blurred’ Peak 

In Figure 10, points 𝑃>" and 𝑃>D are the end points of the curved line segment. As with the 

straight segment, the locus of votes from the endpoints bound the pattern in Hough space. 

Their intersection 𝐻z , corresponds to the dotted straight line 𝑃>"𝑃>Dyyyyyyyyy. The curvature of the 

distorted line displaces the peak of the votes, and the changing orientation along the line (the 

tangent) spreads the peak out along the 𝑚 axis. Each tangent line receives multiple votes, 

giving a locus of significant points on the upper edge of the Hough pattern (the red curve). We 

name this locus of significant points as ‘smile’ because of its shape. The ‘smile’ ends where the 

locus becomes straight, in other words when the slope of the locus is equal to the slope of the 

straight Hough pattern edge corresponding to the tangents to the curve at the endpoints. 

On the ‘smile’ point 𝐻$ is the minimum point, and corresponds to the tangent the curved line at 

𝑥 = 0. When the original line segment is horizontal and symmetric about the centre of image, 

𝐻$ corresponds to the tangent at point 𝑃>$ in the left of Figure 10. 

The distance between 𝐻$ and 𝐻z is equal to ∆𝑐. In the image space, ∆𝑐 can be represented as: 

 ∆𝑐 = 𝑦>$ − 𝑦>z (24) 

From the forward lens distortion model: 

 𝑦>$ = 𝑦$(1− 𝜅𝑦$D) (25) 
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where 𝑦$ is the distance of the original straight from the origin, and: 

 𝑦>z = 𝑦$(1− 𝜅(𝑥?"D +𝑦$D)) (26) 

where 𝑥?" is the 𝑥 coordinate of one of the end points of the original line.  

If the length of the original line segment is 𝐿 (𝐿 = 𝑥?D − 𝑥?", or for symmetrical lines 𝐿 = 2𝑥?D), 

Then substituting (25) and (26) into (24) gives: 

 ∆𝑐 = 𝜅𝑦$ o
𝐿
2
p
D

 (27) 

∆𝑐 represents how much the Hough pattern is spread out. From (27) there are three factors 

which influence the shape of the Hough patterns: the amount of lens distortion 𝜅, the distance 

of the line from the centre of distortion 𝑦$, and the length of the line 𝐿. For more general cases 

where the line segment is not aligned with the axis and not symmetrical about the origin, these 

three parameters still have a similar influence on the shape of the Hough pattern. The symmetry 

of the pattern is also affected by the symmetry of the line relative to the centre of distortion.  

Figure 11, illustrates the influence of these four factors on the shape of the Hough pattern. Each 

figure has one different feature compared to Figure 10.  

A smaller lens distortion parameter creates a curved line with less distortion, and results in a 
more compact Hough pattern (See figure 11(a)). The lens distortion parameter has only a slight 

influence on the slope of the edges of the Hough pattern. 

Similarly, when the line segment is closer to the image centre (smaller 𝑦$), the effect of lens 

distortion becomes less significant. Consequently, the Hough pattern appears contracted. 

However, the pattern shifts closer to the origin in Hough space corresponding to the change of 

𝑦$. Changing 𝑦$ has only a slight influence on the slope of the edges of the Hough pattern, 

because the influence on the endpoints of the curved line is insignificant. 

A shorter line segment brings the end points of the curved line closer to each other, making the 

slope of the edges of Hough pattern flatter. This flatter pattern is also narrower (the range of 

tangent slopes is less for a shorter line). 

An asymmetric original line segment creates an asymmetric Hough pattern with the curve 

endpoints giving different slopes for the pattern bounding lines depending on their 𝑥 

coordinates (𝑐 = 𝑦 −𝑚𝑥). This asymmetry also makes the ‘smile’ slanted. 
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Figure 11: Shape of Hough patterns with different factors relative to Figure 10, (a) has a smaller 𝜅, (b) 
the straight line is closer to the origin (smaller 𝑦$), in (c) the straight line is shorter (smaller 𝐿), and (d) 

the straight line is asymmetric about the origin 

3.2.2. The Slope of the ‘Smile’  

The curvature of the ‘smile’ is caused by the changing slope of the distorted line in the image 

domain. Therefore, the shape of the ‘smile’ is closely related to the shape of the distorted line, 

making it important for analysing distortion. Consider point 𝐻" on the smile (see figure 12).  

 

Figure 12: A point on the ‘smile’ in the Hough pattern 
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Since 𝑐" = 𝑦 − 𝑚"𝑥, this defines a line in image space, this can be constrained further by 

considering the slope of the smile at 𝐻": 

 𝑑𝑐
𝑑𝑚 = −𝑥 (28) 

For every point on the ‘smile’ if the parameters of the point and the slope of the ‘smile’ at that 

point are known, the coordinates of their corresponding point in the image domain can be 

estimated. For the two straight edges of the Hough pattern, their slope is equal to the 𝑥 

coordinate of the two end points of the original line. 

3.3. Distortion Correction 

Based on the shape of the Hough pattern and the relation between the shape and the distorted 

line, two approaches to lens distortion correction have been designed.  

3.3.1. Feature Points Based Method 

The first approach is based on locating key feature points of the Hough pattern. To calculate 

the lens distortion parameter, it is necessary to locate at least 3 points on the distorted curved 

line (Chang, et al, 2017).  

By measuring 𝐻z (the crossing point of the two pattern edges) and the slope of edges of the 

Hough pattern (dotted lines in Figure 10) at 𝐻z, the coordinates of points 𝑃>" and 𝑃>D in image 

space can be estimated. 𝐻$, which is the minimum of the smile in Hough space, gives the 

location where the curve crosses the 𝑦 axis in image space. By assuming that these three 

points without distortion are collinear, the distortion parameter can be estimated, as detailed in 

(Chang et al, 2017). However, this method has several limitations. First, points 𝐻z and 𝐻$ can 

be difficult to locate accurately in the Hough space. The number of votes received by 𝐻z is very 

low compared with the upper edge of the Hough pattern. When the image contains multiple 

segments, the Hough patterns associated with the lines can overlap making it difficult to locate 

point	𝐻z. Secondly, the low number of votes limits the accuracy with which 𝐻z and the slopes 

may be extracted, limiting the accuracy in locating the curve end points. Similarly, the 𝑦 value 

of the pixel associated with the 𝐻$ can only be measured to the nearest pixel. Finally, only three 

points may not be sufficient to recover the undistorted line accurately, especially if the accuracy 
of these three points is limited.   
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3.3.2. ‘Smile’ Based Method 

An alternative approach is to use the ‘smile’ to recover the curved line in image space and use 

the whole of this curve to estimate the distortion parameter and correct the lens distortion. By 

fitting a smooth curve to all the points on the ‘smile’, the slope can be estimated, enabling the 

curved line in image space to be reconstructed. Then by assuming that without distortion the 

points on the curve are collinear, the lens distortion parameter can be estimated. We name this 

method ‘smile’ based lens distortion correction (SLDC). In the next chapter the basic steps of 

this correction method will be described in more detail.  

Inherently, SLDC is more accurate than the feature point based method for three main reasons. 
First, the ‘smile’ receives many votes, making it easier to detect and locate. Second, by fitting 

a smooth curve to the smile, the effects of quantisation and noise can be significantly reduced. 

It also enables the slope to be calculated more accurately. Finally, by using a larger number of 

curve points to estimate the lens distortion parameter, the effects of noise (including 

quantisation) can be further reduced.  

By influencing the shape of the Hough pattern, the four features mentioned in the last section 

affect the accuracy of the correction method. In chapter 5, the influence of these features on 
the accuracy will be analysed and the worst case where the correction method is still effective 

will be discussed.  
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Chapter 4 Smile Based Lens Distortion Correction  
Based on the analysis in Chapter 3, a lens distortion correction method was designed. The 

main steps of this method are shown in Figure 13. 

 
Figure 13: Basic steps of the ‘smile’ based method 

4.1. Preprocessing 

The aim of the preprocessing steps is to prepare a suitable input for the Hough transform. The 

input for the Hough transform should be a binary image which contains edge features only. 

Therefore, if the input is a colour image it needs to be converted into grey scale. A Canny edge 

detection filter is applied to the distorted image in order to extract the most significant line 

segments and arcs in the scene. To suit the original Hough transform, the edges should be 

detected for the horizontal and vertical directions separately.  

 
Figure 14: The original image (left) and the input for the Hough transform (horizontal and vertical). 

4.2. Hough Transform 

In this step, the detected edges are transformed into the Hough space. Unlike the standard 

Hough transform, the original Hough transform needs two mapping for horizontal and vertical 

directions separately, 

 
𝑐" = −𝑚"𝑥R + 𝑦R				(−1 ≤ 𝑚" ≤ 1)	

𝑐D = −𝑚D𝑦R + 𝑥R				(−1 ≤ 𝑚D ≤ 1) 
(29) 

Distorted Image PreprocessIng Hough 
Transform

Pattern
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Parabola FittingReconstructing 
the Curved Line
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A gradient based Hough transform is used. Most of the lines in manmade scenes tend to be 

either horizontal or vertical. By limiting the slopes which were measured the gradient Hough 

transform can reduce computation cost and also reduce the clutter within Hough space making 

it easier to detect the Hough pattern.  

4.3. Selecting the Hough Pattern for Analysis  

For real world images, after edge detection there will be not only one edge within the image, 

thus there will be several patterns in the Hough space. Therefore, selecting the best pattern for 

analysis becomes an issue. The aim of this selection is to find the Hough pattern corresponding 

to the most distorted line which would tend to give the most accurate results. We select the 

Hough patterns by giving them scores. There are two factors have been taken into account that 

is the length of the line segment (𝐿); the distance from the line segment to the centre (𝑦$). The 

𝐿 is measured by adding the number of votes within the pattern from the intercept column which 

contains the maximum vote. The 𝑦$ is measure by the intercept of the Hough pattern. From the 

results of Chapter 3, a good pattern should correspond to the edge which have large 𝑦$ and 𝐿.  

Figure 15 (a) and (b) show two examples of the Hough pattern and the scores, a higher score 

means the corresponding pattern is more suitable to be chosen as the reference to correction 

distortion. 

 
(a) 

 
(b) 

Figure 15: Left: distorted image; Centre: Hough patterns and the scores  
Right: detected edges and the scores 

Another issue when selecting the Hough pattern is if the edges are too close to each other, 

their corresponding patterns will be overlapped. An overlapped Hough pattern will bring noise 

when detecting significant points (picking up points from the other ‘smile’). Therefore, when the 
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pattern is overlapped by another, it will be excluded as a good reference. This is measured by 

counting the number of votes, if the votes received for measuring the length of the line is over 

the size of image, we assume that the corresponding pattern is overlapped by another.  

Once the pattern is selected, the most significant point (with the maximum votes) for each slope 

needs to be detected. We collect both the ‘𝑚’ (slope) and ‘𝑐’ (intercept) of each significant point 

for the next step. 

4.4. Parabola Fitting 

To measure the slope of the ‘smile’, the data extracted needs to be smoothed. We choose to 

fit a parabola to the data because the shape of the ‘smile’ is similar to a parabola (see Figure 

16). The general expression for a parabola is: 

 𝑐 = 𝑃"𝑚D + 𝑃D𝑚 + 𝑃. (30) 

Where 𝑃", 𝑃D and 𝑃. are determined by minimising the squared residuals. The squared error 

is: 

 𝐸D =_(𝑃"𝑚R
D + 𝑃D𝑚R + 𝑃. − 𝑐R)D

R

 (31) 

Where (𝑚R, 𝑐R) are the coordinates of a point on the ‘smile’. To minimise 𝐸D in (31) we take the 

partial derivatives with respect to 𝑃", 𝑃D and 𝑃., and equate these to 0. This gives: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡_𝑚R

E

R

_𝑚R
.

R

_𝑚R
D

R

_𝑚R
.

R

_𝑚R
D

R

_𝑚R
"

R

_𝑚R
D

R

_𝑚R
R

1
⎦
⎥
⎥
⎥
⎥
⎥
⎤

× �
𝑃"
𝑃D
𝑃.
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡_𝑐R𝑚R

D

R

_𝑐R𝑚R
R

_𝑐R
R ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (32) 

By solving the matrix equation we can determine the parameters of the parabola. 

 𝑃 = 𝑀�"𝐶 (33) 

These three parameters define the parabola that best fits the significant points. Figure 16 shows 

the most significant points and the parabola. It is clear that a parabola provides a reasonable 

fit to the significant points. A detailed analysis of the accuracy of fitting will be discussed in the 

next chapter.  
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Figure 16: The most significant points and the fitted parabola 

4.5. Curved line Reconstruction 

As described in the last chapter, the coordinates of a point in the image domain can be 

calculated from a point on the ‘smile’ and its slope. From equation (30), the 𝑥 coordinate in 

image space is given from the slope of the ‘smile’:  

 𝑥R = −𝑠𝑙𝑜𝑝𝑒 = −2𝑃"𝑚R − 𝑃D. (34) 

The corresponding 𝑦 coordinate is: 

 𝑦R = 𝑐R +𝑚R × 𝑥R = 𝑃"𝑚R
D + 𝑃D𝑚R + 𝑃. − 2𝑃"𝑚R

D − 𝑃D𝑚R = 𝑃. − 𝑃"𝑚R
D. (35) 

Substituting (34) into (35) and eliminating 𝑚R gives a parabola in image space: 

 𝑦R = 𝑃. −
(𝑥R + 𝑃D)D

2𝑃"
. (36) 
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Figure 17: The reconstructed curved line and the original curved line. 

In Figure 17 the red arc is the original curved line and the blue arc is the reconstructed curve. 
The RMS error between the reconstructed curved line and the original curved line is less than 

1 pixel and a detailed analysis will be presented in the next chapter. 

4.6. Estimating the Lens Distortion Parameter 

The reconstructed curved line should be straight without distortion. By mapping points on the 
reconstructed curved line by an inverse distortion model and measuring the straightness of the 

mapped points the distortion parameter can be estimated. 

From the approximate inverse distortion model (10), we have: 

 𝑟? = 𝑟> − 𝑟> S
𝜅𝑟>D + 𝜅D𝑟>E

1 + 4𝜅𝑟>D
W (37) 

the 𝑥	and 𝑦 coordinate of the point on the undistorted straight line can be represented as: 

 

⎩
⎪
⎨

⎪
⎧𝑥? = 𝑥> �1 − S

𝜅𝑟>D + 𝜅D𝑟>E

1 + 4𝜅𝑟>D
W�

𝑦? = 𝑦> �1 − S
𝜅𝑟>D + 𝜅D𝑟>E

1 + 4𝜅𝑟>D
W�

 (38) 
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From (38) 𝑦> can be represented as a function of 𝑥>, if we assume the equation of the original 

straight line is 𝑦 = 𝐴𝑥 + 𝐵, Then the distance from (𝑥?, 𝑦?) to the original straight line can be 

represented as: 

 𝐷 =
|𝐴𝑥? − 𝑦? + 𝐵|

√1+ 𝐴D
 (39) 

For all the point the least squares equation can be written as: 

 𝑆 =_
(𝐴𝑥? − 𝑦? + 𝐵)D

1 + 𝐴D
R

 (40) 

Since we have the equation of the parabola, (40) can be represented continuously as: 

 𝑆 = �
(𝐴𝑥? − 𝑦? + 𝐵)D

1 + 𝐴D
@f�

@f�
𝑑𝑥> (41) 

where 𝑥>"	 and	𝑥>D are the 𝑥	coordinates of the endpoints of the reconstructed curved line. 

When substituting (38) into (41) there are three unknowns, namely 𝐴, 𝐵 and 𝜅 . When the 

original line segment is horizontal or vertical, ‘𝐴’ can be set to 0. To minimise 𝑆 in (41) we take 

the partial derivatives with respect to 𝐴, 𝐵 and 𝜅	and equate these to 0. By solving the resulting 

set of equations numerically the lens distortion parameter can be estimated. Once the distortion 

parameter is estimated, the lens distortion can be corrected by reverse mapping based on the 

distortion model.  
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Chapter 5 Accuracy Analysis 

5.0. Overview of the Accuracy Analysis 

 
Figure 18: Basic Steps of the ‘Smile’ based method and the errors introduced by this method 
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Figure 18 identifies the basic steps of the SLDC and the error introduced by each step. The 

four blue blocks in the first row represent features of the original line segment. As identified in 

Chapter 3 these four factors have a strong influence on the features of the ‘smile’, and therefore 

have a significant influence on accuracy. By analysing these four factors the worst case where 
the SLDC still valid can be investigated.  

The grey blocks in the centre column represent how the information of the distorted line is 

transformed in this method. The transformation starts with a curved line and ends with the 

reconstructed curved line which is used to estimate the distortion parameter. In ideal cases 

(without quantisation and noise), this reconstruction should introduce no error, the 

reconstructed line should be the same as the original one.  

The light green blocks (left) in the right column represent the basic steps involved in this 

correction method. After each step the information of the curved line will be transformed into a 
different form. However, because of quantisation, noise and modelling error, some steps 

introduce error. The error introduced by each step is indicated by the yellow blocks (right 

column). Combining the errors together gives the overall error introduced by the SLDC.  

In this chapter, an accuracy analysis is applied to the SLDC. Both ideal and general cases will 

be covered. The aim of this analysis is to identify the systematic and random error introduced 

by the SLDC, and investigate the worst cases where it is still valid. Factors which influence the 

accuracy of this method will be discussed. Attempts to increase the accuracy will be presented. 

This analysis starts with identifying the relation between the error in the estimated lens distortion 
parameter and the position error of pixels within the image.  

5.1. Error in the estimated lens distortion parameter and the RMSE of the 

image  

The ‘smile’ based lens distortion correction method works by estimating the lens distortion 

parameter (𝜅). However, the error in 𝜅 cannot represent the position error of pixels directly. One 

metric of the position error is the root-mean-square error (RMSE) between each pixel in the 

corrected image with its undistorted position. When there is no error in the estimated lens 

distortion parameter, the RMSE should only result from the approximation of distortion model. 

In the simulation, the original line segment is distorted with a given distortion parameter. When 

correcting we add an error to the distortion parameter (𝜅�). Figure 19, 20 and 21 show the 

relationship between the error in lens distortion parameter (𝜅) and the RMSE of the corrected 

line segment. We analyse this combination with the factors which influence the shape of the 

line segment (𝜅, 𝐿 and 𝑦$). The radius of the corrected point is represented as (42), 

 𝑟? ≈ 𝑟> − 𝑟> S
(𝜅 + 𝜅�)𝑟>D + (𝜅 + 𝜅�)D𝑟>E

1 + 4(𝜅 + 𝜅�)𝑟>D
W (42) 
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the 𝑟> is equal to	m	�
E

D
+ 𝑦$Dn

�
�, the error in 𝜅 is 𝜅�. This analysis is based on an 800 × 800 image, 

with the centre of this distortion is in the centre of the image. The line segment within the image 

is symmetric about the distortion centre. All quantities are normalised, such that the radius of 

the image is 1 (i.e. 𝑟 = 1 corresponds to 400 pixels). 

Figure 19 shows the relation between the RMSE and the error in the estimated 𝜅  with a 

changing distortion parameter. The RMSE increases with the increase of the error in 𝜅. When 

the distortion is serious, same error in the estimated 𝜅 results with a higher RMSE. When the 

error in estimated 𝜅 is less than 2.5 × 10�., the RMSE is less than 1 pixel.  

 

Figure 19: RMSE with varying 𝜅 and error in the estimated 𝜅, when	𝐿 = 1	and 𝑦$ = 1. 

 
Figure 20: RMSE with varying 𝐿	and error in the estimated 𝜅, when	𝜅 = 0.05	and 𝑦$ = 1. 

In Figure 20 shows the effects of the length of the line segment (𝐿) on error. The RMSE 

increases with the increase of the length of the line segment. This is because points further 
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from the centre suffer from more distortion. Therefore, error in estimating the distortion 

parameter will have more effect near the edge of the image. A longer line segment has more 

points which are near the edge of the image and these will result in a larger RMSE even with 

the same error in 𝜅.  

 

Figure 21: RMSE with varying 𝑦$	and error in the estimated 𝜅, when	𝜅 = 0.05	and 𝐿 = 1. 

Figure 21 shows the relation between the effect of line segment position relative to the centre 

of the image (𝑦$). The RMSE is higher when 𝑦$	is larger, because the line is near to the edge 

of the image.  

In Figure 19, 20 and 21, when the error in estimated lens distortion parameter is less than 

2.5 × 10�.  the RMSE is less than 1 pixels. Figure 22 compares a real-world image before 

distortion and the corrected image with a 2.5 × 10�.  error in the distortion parameter. The 

difference is hard to identify through human vision. So, in this research we assume an error 

less than 2.5 × 10�. in the estimated lens distortion parameter is acceptable.  

 

Figure 22: Left: The undistorted image; Right: the corrected image with 2.5 × 10�. error in 𝜅. 
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5.2. Error when Using Continuous Data to Correct Distortion 

As shown in Figure 18, one of the key contributions to the error in this correction method comes 

from quantisation. To demonstrate the accuracy what this method can achieve without 

quantisation, a simulation with continuous data was performed. The accuracy was measured 

by the RMSE between the corrected line segment and the undistorted line segment (ground 

truth). For simplicity, we assume the centre of the image is the centre of the distortion, and the 

line segment is symmetric about the distortion centre. This simulation starts with a line segment 

y = 𝑦$, then it is distorted by a given lens distortion parameter. Instead of detecting the ‘smile’ 

in the Hough transform space, it was calculated analytically from the tangential line through a 

point on the distorted curve. Therefore, there will be no influence from quantisation in this 

simulation. The smile was given by the following equations:  

 
𝑚R = 𝑠𝑙𝑜𝑝𝑒 = 	−

2𝜅𝑦$𝑥?R
3𝜅𝑥?RD + 𝜅𝑦$D + 1

	

𝑐R = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝑦$ +𝑚R𝑥?R	 

(43) 

Where (𝑥?R, 𝑦$) are the coordinates of a point on the undistorted line segment and (𝑚R, 𝑐R) are 

the coordinates of a point on the ‘smile’ in the Hough transform space.  

Three factors (𝜅, 𝐿 and 𝑦$) which influence the shape of the original distorted line are taken into 

account in this simulation. The influences on accuracy of these three factors are shown in 

Figure 23. In all three plots, the error is higher where the distortion is more significant, it is the 

result of the approximation reverse model. However, the highest error is less than 0.14 pixels 

which is insignificant.  

 

(a) the RMSE with varying 𝜅 and 𝐿 (𝑦$ = 1). 
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(b) the RMSE with varying 𝜅 and	𝑦$ (𝐿 = 1). 

 

(c) the RMSE with varying 𝐿 and 𝑦$ (𝜅=0.05). 

Figure 23: Different parameters and the accuracy of the estimated lens distortion parameter. 

5.3. Systematic and Random Error of the SLDC 

In this section, the systematic error and the random error of the ‘smile’ based method will be 

investigated. From the previous analysis, when the data is continuous and without quantisation 

the RMSE of this method is less than 0.15 pixels, this error can then be neglected for most 

applications. However, the Hough transform data is quantised by the voting process, which 
introduces error into the measurement. The accuracy when fitting a parabola to the ‘smile’ is 
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also essential to the error introduced by this method. Other aspects which will bring error to the 

SLDC will also be discussed in this section.  

5.3.1. The ‘Smile’ and the True Value 

As analysed in Chapter 3, a point on the curved line and its tangent in image space correspond 

to a point in Hough transform space, located at the curved edge of the Hough pattern. 

Therefore, the edge of the Hough pattern corresponds to the ‘true value’ of the curved line. 

However, we detect the ‘smile’ from the most significant point (most votes) for each slope. The 

most significant point is offset from the edge of the Hough pattern by the voting process.  

In the Hough transform space, for each slope (‘𝑚’ value) the received votes changes with the 

intercept (‘c’ value). When the intercept is closer to the curved edge of the Hough pattern the 

votes became higher, see Figure 24 (right). If the data is continuous the votes can be 

represented by their density.  

 

Figure 24: ∆𝑐 and ∆𝑥 in the image space for 𝑚 = 0. 

Take the case where the original line segment in image is horizontal as an example, in Figure 

24 it is represented as 𝑦 = 𝑦$. The dotted line 𝑦 = 𝑦>$ corresponds to the minimum point of the 

upper edge of the Hough pattern when 𝑚 = 0. Here, we define the horizontal axis of the density 

plot,	𝑐> , as the distance from a point to the upper edge, see in Figure 24 (right). And that 

distance is equal to the vertical distance between the dotted line 𝑦>� to a point on the curve 𝑦>. 

We assume the coordinate of a point on that curve is (𝑥>, 𝑦>). So 𝑐> can be represented as:  

 𝑐> = 𝑦>� − 𝑦> (44) 

From the lens distortion model we have: 

  𝑦> = 𝑦$(1− 𝜅(𝑥D+𝑦$D))
𝑥> = 𝑥(1 − 𝜅(𝑥D+𝑦$D))

 (45) 
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where the 𝑥 is the parameter of the original straight line. When the line is horizontal the density 

can be represented as: 

 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
∆𝑥>
∆𝑦 	=

(𝑥 + ∆𝑥) m1 − 𝜅J((𝑥 + ∆𝑥)D) + 𝑦$DKn − 𝑥(1 − 𝜅(𝑥D + 𝑦$D))

m𝑦>� − 𝑦$J1− 𝜅((𝑥 + ∆@)D+𝑦$
D)Kn− m𝑦>� − 𝑦$J1− 𝜅(𝑥D+𝑦$

D)Kn
 (46) 

After simplifying and ignoring the high order components of Δ𝑥, we have: 

 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≈ 	
1 − 3𝜅𝑥D − 𝜅𝑦$D

2𝜅𝑦$𝑥
 (47) 

From equation (44): 

 𝑐> = 𝑦$ − 𝑦> = 𝑦$(1− 𝜅𝑦$D) − 𝑦$(1− (𝑥D + 𝑦$D)) = 𝑦$𝜅𝑥D (48) 

Rearranging to get 𝑥 gives: 

 𝑥 = ¢
𝑐>
𝜅𝑦$

 (49) 

Now the density can be represented as: 

 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
1 − 3𝑦$

�"D(𝜅𝑐>)
"
D − 𝜅𝑦$D

2(𝜅𝑦$)
"
D𝑐

"
D

	

																															=
1

2(𝜅𝑦$)
"
D𝑐>

"
D
−

3𝑐
"
D

2𝜅
"
D𝑦$

.
D
−
(𝜅𝑦$)

"
D

𝑐>
"
D

 

(50) 

Figure 25 shows the density plot based on equation (47). It is clear that the highest density is 

close to the upper edge of the Hough pattern.  

When the original segment is not horizontal, the vote density has a similar result. However, 

because of quantisation in the Hough transform space, the most significant points may not be 

located at the edge of the Hough pattern. If we define the ‘smile’ by the most significant points, 

it may not relate to the true value of the curve in the image space. The influence of quantisation 

will be discussed in the following section. 
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Figure 25: Relation between density and intercept. 

5.3.2. Error from Quantisation 

The last section analysed the density of votes based on continuous data. However, neither the 

image domain nor the Hough domain are continuous in this application. The pixel is the smallest 

addressable element in the image domain, and the Hough domain is quantised into bins. The 
coordinates of each bin in the original Hough domain are addressed by the slope and intercept.  

From the density analysis, when the data is continuous the edge of the Hough pattern (true 

value) is very close to the highest density. However, in the Hough domain the intercept values 

are quantised into integers. Therefore, the intercept with the highest votes only approximate 

the position of the highest density. The distance between the highest vote and the highest 

density is less than one pixel, because the intercept is quantized into an integer, usually of the 

resolution of one pixel in the image domain. Figure 26 shows two possible situations of the 
highest vote and density.  

In Figure 26 (a) and (b) the blue line is the plot of the continuous density, and the dots represent 

votes in Hough domain. The zero offset of the ‘𝑐’ value is the edge of the Hough pattern. In 

Figure 26 (a) the edge of the Hough pattern received the highest votes, in Figure 26 (b) the 

highest vote is located at the second intercept bin. However, for both situations the distance 

from the highest vote to the highest density is less than one pixel. Although we can control the 

resolution of the Hough space, there will still be influences from quantisation.  
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(a) 

 

(b) 

Figure 26: The effect of quantisation on the density of votes for two different values of the lens distortion 
parameter. 

When the line segment is not horizontal, the relation between the intercept bin of highest vote 

and density is the same. The difference between the intercept bin of the highest vote and the 

intercept bin of the highest density is less than one pixel. So, in the Hough domain, defining the 
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‘smile’ by the set of points with the highest vote, the detected ‘smile’ will be different from the 

true value. For each slope value the error of the detected intercept is less than one pixel. Figure 

27 shows the detected ‘smile’ and the true value.  

 

Figure 27: The most significant points and the true value. 

In Figure 27, the blue dots are the points with the highest vote for each slope value, and the 
green curve represents the continuous data. (Note that the detected maxima are biased on one 

side of the true curve, resulting from the tail of the density curve). 

5.3.3. Error from Fitting 

To smooth the data collected in the last step, we fit a parabola to the ‘smile’. The reason for 
choosing a parabola is because the shape of the ‘smile’ is similar to it. Figure 28 compares the 

significant points and the fitted parabola and the true value. It is clear the fitted parabola (red) 

is closer to the true value. The fitting can also reduce the error introduced by quantisation noise 

and make it easier to measure the slope of the ‘smile’. 

As can be seen in Figure 28, the fitted parabola follows the trace of the true value and the error 

from the fitted parabola to the true value is less than one pixel. However, there is a consistent 

bias, which is more noticeable in the centre of the smile. As a result, there is also small error in 

the slope, which is used to determine the points on the distorted line segment in the image.  
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Figure 28: Smoothed detected smile (red) compared to the true smile (blue). 

Additionally, we also considered high order polynomial for fitting the ‘smile’. Table 1 compares 

the RSME from fitting a parabola and a 4£¤ order polynomial. The accuracy increases by fitting 

the data into a high order polynomial is insignificant. Taking the calculation requirement into 

account in this study we assume a parabola is sufficient to show the trace of the significant 

points.  

Lens distortion parameter 0.041 0.042 0.043 0.044 0.045 0.046 0.047 0.048 0.049 

RMSE 2nd order 0.26 0.38 0.30 0.28 0.34 0.29 0.33 0.26 0.33 

RMSE 4th order 0.26 0.30 0.29 0.27 0.35 0.27 0.34 0.26 0.29 

Table 1: The RMSE of the parabola and the 4th polynomial with different 𝜅. 

Another issue is to determine where to stop fitting. From Chapter 3, the ‘smile’ stops when the 

edge of Hough pattern become straight. However, it is hard to measure the slope of the ‘smile’ 

from quantised data. Instead, we use the number of votes for each slope (‘𝑚’) to determine 

where to stop fitting. On the ‘smile’ the points with higher votes locate near the centre, and the 

number of votes decreases away from the centre. However, only using the data near the centre 

cannot provide an accurate fit, because determining the parabola parameters needs more data 
away from the centre. However, for points which away from the centre, with the decrease of 

votes, the data is likely to be more affected by noise. To find the threshold to stop fitting, a 

simulation has been done. In this simulation we use the number of votes of the point on the 

‘smile’ as the reference to define the threshold of stopping the fit. The number of votes is divided 

by the maximum vote on the ‘smile’ and compared to a threshold level. A group of data with 

different distortion levels have been tested, with the result is shown in Figure 29. When the 

threshold is 0.47 of the maximum vote on the ‘smile’, the error in the calculated distortion 
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parameter is the minimum. Therefore, we took 0.47 as the threshold to stop fitting in this 

method. 

 

Figure 29: The effect of fitting threshold on estimated lens distortion parameter. 

5.3.4. Error in Reconstructing the Curved Line 

There is a point to point mapping from the ‘smile’ parabola to the distorted line and there is no 

quantization between this mapping. Therefore, the mapping from the parabola to the 

reconstructed curve will introduce no error. Figure 30 shows the error of the reconstructed 

curved line relative to the original curved line. The reconstruction error is less than one pixel.  

 

Figure 30: Reconstruction error of the vertical position of the reconstructed line. 
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5.3.5. Error from Noise 

Unlike quantisation, the influence of noise is more random. To investigate the effect of noise 

on accuracy a simulation has been designed. This simulation tests the influence of noise in the 

original curved line to the reconstructed curved line. In this simulation the size of the image is 

800 × 800, the length of the line is the length of the image. We added noise to the vertical 

position of the edge. Figure 31 compares the original curved line without and with noise.  

 

Figure 31: left: the curved line without noise; right: curved line with random noise added. 

When detecting the curved edge, we chose to use a Sobel filter, because in Canny edge 
detection algorithm the edge is smoothed with a Gaussian filter. Then the detected edge is 

transformed into Hough space and then reconstructed as a curved line. Table 2 shows the 

RMSE between the original curved line and the reconstructed line; the noise level increase from 

0 to 1 pixel in this simulation. The RMSE increases as the noise level increases. However, 

when the noise is 1 pixel, the RMSE increased only 0.2 pixel which is insignificant. This is 

because the Hough transform is robust to noise.  

Noise 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

RMSE 0.07 0.08 0.08 0.09 0.12 0.17 0.19 0.21 0.24 0.24 0.28 

Table 2: The noise level and the RMSE of the line segment. 

5.3.6. Error of the Estimated Lens Distortion Parameter 

The lens distortion is estimated by minimising the squared error residuals when fitting the points 

on the reconstructed curve into a straight line. There are two aspects which bring error in this 

step, the error introduced by the least square fitting and the error introduced by the approximate 

reverse lens distortion model. In simulation when correcting an 800 × 800 image with significant 

distortion, the absolute error in the estimated distortion parameter is less than 2.5 × 10�.. The 

error mainly comes from the quantisation from the bins in parameter space when accumulating 
the Hough transform. In the following part of this chapter, more general cases will be analysed, 

and attempts to increase the accuracy will be discussed.  
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5.4. Accuracy of General Cases 

5.4.1. Three Factors of the Line Segment 

In this section the factors which influence the shape of the Hough pattern will be analysed and 

the worst case where this method can still work will be discussed. There are three parameters 

which influence the shape of the Hough pattern as described in previous sections, that is:  

1. The length of the straight line (𝐿). 

2. The distance from the straight line to the origin (𝑦$). 

3. The lens distortion parameter (𝜅). 

Since the errors in this correction method are from quantisation and we do not have an 

expression to represent this error, we chose to use a Monte Carlo simulation to analyse the 

influence of these three factors. The factors were analysed two by two, and the following plots 

show the results. In each simulation one factor is fixed and the other two factors are varied. For 

the Monte Carlo simulation, all three factors are perturbed by a small random amount to reduce 

local effect from quantisation. The detailed description will be given with each plot. The 

simulation is applied to an 800 × 800  image and the parameters of the plot are given as 

normalized data. The error is measured by RMSE between the corrected line and the given line 

segment within the image. If the RMSE is higher than 1 pixel then the method is considered to 
have failed to correct the distortion.  

 

Figure 32: Influence of 𝑦$ and 𝐿 on error when 𝜅 = 0.05 
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Figure 32 analyses the influence of 𝐿 and 𝑦$, in simulation these two factors varied from 0.5 to 

1. The distortion parameter in this simulation is 0.05 and with a ±5% random factor. It is clear 

that when 𝐿 less than 0.75, the error is more likely higher than 1 pixel especially for smaller 

values of 𝑦$. This is because when the line is close to the centre and with a short length, it 

appears with very slight distortion. The Hough pattern is close to a concentrated point which is 

hard to fit a parabola to. Therefore, for a short curve with sight lens distortion, it is not a valuable 

reference to correct the distortion. 

As can be seen in Figure 32 the RMSE has an underlying pattern. This results from quantisation 

in Hough transform. Figure 33 compares ∆𝑐 (the distance between the minimum of the ‘smile’ 

to the intersection of the Hough pattern edges) from continuous data and quantised data. With 

the change of the 	𝐿  and 𝑦$  the size of the Hough pattern changes. It is clear without 

randomization, the plot of the quantized data appears with a pattern, and it is the reason why 

the plot of RMSE appear with patterns.  

 

(a) 
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(b) 

Figure 33: (a): delta c from continuous data; (b): delta c from quantized data. 

To reduce the influence of quantization and make the plot smooth instead of structured, the 𝐿 

and 𝑦$ are also randomized (±5	pixels) during the simulation. The change of ∆𝑐 can be used 

to represent the change of the shape of Hough pattern, it is clear that when 𝐿 and 𝑦$ are small, 

the Hough pattern is more compact, making it difficult to analyse, and results with high errors.  

 

Figure 34: Influence from 𝑦$ and 𝜅 on error when 𝐿 is equal to 1. 
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In Figure 34 the length of the line segment is set to 1 and with a randomization of ±5 pixels. 

When the distortion is significant the SLDC works acceptably and the error is less than 1 pixel. 

However, when the distortion parameter is small and the line segment is close to the origin the 

RMSE is higher. The pattern in Figure 34 is also the result of quantisation.  

 

Figure 35: Influence from 𝐿 and 𝜅 on the error when 𝑦$	is equal to 1. 

Figure 35 shows the influence for the accuracy from the length of the straight line or the 

distortion parameter, 𝑦$ is equal to 1 in this simulation and with a randomization of ±5 pixels. 

The high error locates at the corner where both 𝐿 and 𝜅 are small. It is clear that when the 

length of the straight line is shorter than 0.75, the correction method is incapable of correctly 

estimating the distortion unless the distortion is very serious.  

Combing the results of these three plots, the influence from 𝑦$ and 𝜅 is similar; when 𝑦$ and 𝜅 

is small the line will be distorted slightly. The corresponding Hough pattern of a slightly distorted 

line is hard to analyse, therefore, the error introduced by the correction method is higher. The 

influence from the length of the line is different from the previous two factors. One reason is 

from Chapter 3, ∆c = 	𝜅𝑦$(𝐿/2)D, so the size of the Hough pattern is influenced by the square 

of length which made it significant compared with those two. Another reason is in the Hough 

space, points with higher votes correspond to points in image space which are near the 

symmetry axis of the line segment. The points near the end of the line segment are not taken 

into account in some cases. Unless the line is very short there will be very slight influence from 

the length of the line on the accuracy.  

From the previous analysis we make following conclusion: for an 800 × 800 image, the worst 

case where our method can still work is when the length of the line is equal to 0.75, distortion 
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parameter is equal to 0.02, and the distance from the line to the origin is equal to 0.75. In other 

words, our method is more suitable to correct distorted lines located at the edge of the image 

and the length of that line should be close to the size of the image. In addition, the analysis so 

far assumes that the original straight line is symmetric about the origin. The analysis of cases 
where the line is asymmetric will be covered in next section.  

5.4.2. Straight Line is Asymmetric about the Origin 

In Figure 36, the original straight line in the image space is asymmetric about the distortion 

centre, and its corresponding pattern in Hough space is unbalanced. The set of the significant 

points (smile) is also asymmetric (see the red arc) which influences the accuracy of parabola 
fitting. Because one significant feature of a parabola is its symmetry, without this feature it is 

hard to provide an accurate fit. 

 

Figure 36: left: the original straight line; right: its corresponding Hough pattern. 

The accuracy is also influenced by how much the original straight line is unbalanced. When it 

is just unbalanced slightly there is a very slight influence on the result. This is because the fit 

method focuses on points with higher votes, which are located near the symmetric axis. 

However, when the line segment is not across the symmetric axis or is very short on one side, 

our method fails to correct the distortion. Attempts to locate the extremum of the parabola have 

been tried, however, it is impossible to locate the extremum when the original straight line is 

not across the symmetry axis. Therefore, we conclude that our method is invalid when the 
original straight line is not approximately asymmetric about the perpendicular line through the 

image centre.  

5.4.3. Line Segment is Tilted 

In this section the cases when the original line segment is neither horizontal nor vertical is 
discussed. In Figure 37, when the line is slightly tilted the corresponding Hough pattern is 

shifted from its horizontal position. The shifted Hough pattern not influence being able to fit a 

parabola to it, and not influence estimating the lens distortion parameter, because it not 
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changes the distortion level within the image. However, this solution only works when the line 

is tilted slightly, it is because the resolution of the 𝑚  axis of the original Hough transform 

changes with slope. This requires further investigation in future works.  

 

Figure 37: left: a horizontal curved line and a tilted curved line; right: Hough patterns  
(the blue line represents slope = 0). 

5.4.4 Moved Lens Distortion Centre 

In the previous analysis we assume the centre of the distortion is the centre of the image. 

However, for real-world images the influence of moving the lens distortion centre cannot be 

simply ignored. In Figure 38, the left image is a distortion grid and the centre of the distortion is 

(50,50), the centre image is the corrected image without estimating the lens distortion centre, 

it is clear that estimating the lens distortion centre is essential for an accurate correction. 

 

Figure 38: left: the distortion grid with a moved distortion centre; centre: the corrected image without 
estimating the distortion centre; right: the corrected image with estimated distortion centre. 

However, from our experience it is impossible to estimate the lens distortion centre by analysing 

a single Hough pattern. Instead we provide a way to estimate the distortion centre from a set 

of parallel lines, which require the image contains a grid or a checkboard. As outlined in Chapter 
3, the shape of Hough pattern is influenced by the distance from the original line to the distortion 

centre (𝑦$). Any line through the distortion centre remains straight, and its corresponding 

Hough pattern appears with a single significant point. The ‘vote’ received by this point is equal 
to the length of the line. However, when the line segment is away from the distortion centre, 

there is more distortion and the corresponding Hough pattern is blurred. If we detected the most 
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significant point in the Hough pattern (the point which highest vote), it receives fewer votes 

compared with the same length line near the centre. In other works, the votes received by the 

most significant point in a Hough pattern decreases when the pattern is away from the centre. 

Therefore, for a group of parallel lines, by locating the most significant point of each Hough 
pattern and analysing the ‘vote’ received by each most significant point it is possible to estimate 

the lens distortion centre. The vertical and horizontal centre should be estimated separately. 

Figure 39 shows an example of estimating the horizontal lens distortion centre. In the left of 

Figure 39 are the detected significant points from a grid. We collect both the number of votes 

and the distance from the image centre of each point. Then a Gaussian plot is fitted to the 

significant points from each pattern, the coordinate of the horizontal centre should be located 

at the peak of the Gaussian plot. The vertical lens distortion centre can be estimated by the 

same process. When the distortion centre is estimated, a more accurate correction can be 
provided, see the right image in Figure 39.  

 

Figure 39: left: a group of Hough patterns and detected most significant points; right: the fitted Gaussian 
curve. 

However, this distortion centre estimation method requires the image to contain a group of 

straight lines. A more general robust method will be proposed in future works. 

5.5. High-Resolution Hough Transform 

As described earlier, the error of the SLDC mainly comes from the quantisation during the 

Hough transform. A higher resolution Hough domain can limit the influence of rounding. In the 

previous section, the bin resolution in Hough domain was 1131 × 628, corresponding to an 

intercept resolution of 1 pixel and a slope resolution of 0.05. To test the effect of a high-

resolution Hough domain, we double the bin resolution to 2262 × 1256 . A higher slope 

resolution can provide more data points for parabola fitting. And for the intercept, in the high-
resolution Hough domain has 0.5 pixels per bin. From the density analysis, the high intercept 

resolution limits the error to 0.5 pixels for each slope. Table 3 compares the results from the 
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normal resolution Hough transform and the high-resolution transform when correcting the same 

distorted line.  

Lens distortion parameter 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Error in 𝜅 × 10�. 
(Normal) 1.34 0.93 0.21 0.52 0.87 1.73 1.21 2.14 1.01 

Error in 𝜅 × 10�. 

(High) 
0.48 0.96 1.33 0.53 1.15 1.64 0.21 1.5 1.84 

(a) 

Lens distortion parameter  0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 

Error in 	𝜅 × 10�. 

(Normal) 
4.43 5.75 1.58 5.04 1.12 0.29 0.43 0.21 0.18 

Error in 	𝜅 × 10�. 

(High) 
0.63 1.10 0.91 0.11 0.15 0.33 0.15 0.71 0.55 

(b) 

Table 3: Accuracy between the normal and high-resolution Hough space. 

When the distortion is significant both methods achieve similar accuracy. In Table 3 (b), when 

the lens distortion becomes slight, the normal resolution method fails to correct it, while the 

High-resolution method remains acceptable. Therefore, it is possible to increase the accuracy 

by mapping the original image into a higher resolution Hough domain when the lens distortion 

is slight.  

This chapter has demonstrated that the bin quantization while calculating the Hough transform 

brings the most error in the SLDC. By analysing the length and position of the line segment and 
the distortion level, the SLDC is suitable to correct distorted images with a long reference line 

segment located at the edge of the image. In the next chapter example of correcting real-world 

images will be presented.  
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Chapter 6 Results and Discussion 

6.1. Real World Image 

In order to show how the SLDC works with real world images, a group of distorted images have 

been tested; those images are from the Internet. Images are processed based on the steps 

described in Chapter 4, and the original image (left) and corrected image (right) are shown in 
Figure 40. Edges used as the reference to correct distortion have been highlighted in red. The 

original distortion parameter and the ‘true’ position of the edge are unknown, therefore we 

chose to analyse the accuracy by assessing the straightness of corrected edges. The 

straightness is measured by fitting a straight line to the chosen edge (those edges also have 

been highlighted) and calculating the residual RMSE. The RMSEs are shown in Table 4. When 

correcting, the distortion centre is assumed to be the centre of the image. We also compared 

the correction accuracy of the SLDC with our previous method (Chang, et al, 2017), the result 

also shown in Table 4.  

 

(a) (https://www.pinterest.nz/imtiazudes/south-american-food-brazilian-cuisines/?lp=true) 

 

(b) (https://ivanero123.wordpress.com/2014/04/13/canon-ef-s-18-55mm-f3-5-5-6-is-stm-lens-review/) 
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(c) (https://www.practicalphotography.com/camera-advice/questions-and-answers/what-is-lens-

distortion) 

 

(d) (http://www.real-me.net/ddyer/photo/wideangle.html) 

 

(e) (https://www.epaperpress.com/ptlens/distortion.html) 

 

(f) (https://www.bdcuniversity.com/art-and-science-rendering-visualization-sells-architecture) 
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(g) (https://www.epaperpress.com/ptlens/lensCorrect.html) 

 

(h) (https://forum.dji.com/thread-15690-1-1.html) 

 

(i) (https://www.dpreview.com/forums/post/54638813) 

 
(j) (https://havecamerawilltravel.com/photographer/olympus-tough-fisheye-lens/) 

Figure 40: left: distorted images; right: corrected images. The edge which was used as the reference to 
correct the distortion and measure the straightness is highlighted. 
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Image a b c d e f g h i j 

RMSE of SLDC 0.67 0.49 0.32 0.51 0.54 0.13 0.89 0.59 0.65 1.89 

RMSE of previous method 0.66 0.59 0.51 0.65 1.35 0.53 2.18 0.70 0.66 1.78 

Table 4: The RMSE when fitting a straight line to the corrected edges. 

In Figure 40 (a-i), the distortion has been removed effectively and the RMSE when fitting a 
straight line to the corrected edge is low. Spatial quantisation in image space makes the edge 

appear with a series of pixel steps, which increases the RMSE. With uniform quantisation error, 

the expected RMSE of a perfectly straight line is ¨ "
"D
= 0.29. Our method shows encouraging 

results when correcting images with moderate distortion.  

In Figure 40 (j), the reference is the edge of the upper wall, which is slanted. Even from 

subjective perspective, most of the distortion has been removed from the image (j) although 

the corrected edge is waved rather than straight. As a result, the RMSE of the reference edge 

is higher than other images. The reason is the distortion centre of this image not locates at the 

centre of the image, instead it is offset to the right side. Using an incorrect centre of distortion 
made the corrected edge appear waved.  

 

(http://www.joeraasch.com/lens-distortion-workflow-in-nuke/) 
Figure 41: Correcting image with serious distortion 

On the left of Figure 41 the image is seriously distorted by the wide angle lens. We used the 

right window edge as the reference to correct the distortion. On the right of Figure 41, the centre 

of the image is over corrected, while the distortion parameter is insufficient to correct the 

distortion at the edge of the image. The serious distortion caused by wide angle lens or fisheye 

lens cannot be accurately modelled by a simple fist order model. Only using one edge as 
reference also limits the number of parameters which can be estimated.  

6.2. Accuracy Comparison with the Previous Method 

In previous research we proposed a feature point-based method (described in chapter 3). This 

section compares the accuracy between the SLDC and the previous method. First an 
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800 × 800  undistorted original grid is distorted by given 𝜅, then the distortion is corrected by 

these two methods, the error is measured by the RMSE. Table 5 compares the RMSE of these 

two methods with different distortion parameters. Figure 42, shows grids before and after 

correction when 𝜅 = 0.01. 

 

Figure 42: (a) is the undistorted grid; (b) is the distorted grid; (c) is the correction result of the previous 
method; (d) is the correction result of the SLDC. 

Kappa 0.01 0.02 0.03 0.04 0.05 0.06 

RMSE of previous method 5.06 8.50 1.07 2.08 1.14 0.47 

RMSE of SLDC 0.53 0.85 0.65 0.49 0.29 0.18 

Table 5: Comparison the accuracy between the previous method and the ‘smile’ based method 

It is clear that the SLDC shows a higher accuracy than the previous feature point based method, 

especially when the distortion is slight. In Table 4, (e) and (g) the higher RMSE of the previous 

method are the result of over correction with inaccurately estimated distortion parameter. 

Compare with the other images, the distortion within (e) and (g) is slight, therefore we make 

this conclusion that the SLDC is better than the previous method especially when the distortion 

is slight.  

Inherently, the ‘smile’ based approach is more accurate than the feature point based method 
for three main reasons.  

I. The ‘smile’ receives many votes, making it easier to detect and locate. 

II. By fitting a smooth curve to the smile, the effects of quantisation and noise can be 

significantly reduced. It also enables the slope to be calculated more accurately. 

III. By using a larger number of curve points to estimate the lens distortion parameter, the effects 

of noise (including quantisation) can be further reduced. 
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6.3. Discussion 

6.3.1. The advantage of the SLDC 

The first advantage of the ‘smile’ based correction method is that it only needs some line 

segment detectable in the image scene, which frees it from needing a calibration grid. Any 

straight edge within the scene can be used to estimate the distortion. Second, this method is 
independent of distortion model, since the Hough transform and curved line reconstruction are 

all actually independent of the distortion model. When the curved line is reconstructed any 

distortion model could be used. In this thesis, we chose an approximation forward model to 

make the analysis be consistent, but when correcting the distortion a reverse model is also 

suitable.  

6.3.2. Contribution to Other Correction Method  

Besides lens distortion correction, by analysing the ‘smile’ within Hough space, the SLDC 

provides a curve detection method. Unlike other curve detection methods which locate the 

curve in image space, the SLDC works by rebuilding the curve from Hough space potentially 

gaining the advantage of the noise immunity inherent in the Hough transform. Once the curve 

line is detected, it can be used as an initial step for many correction methods. Bailey (2002) 

developed a distortion correction method by fitting a parabola to the curved line. Assuming the 

expression of the parabola is 𝑦 = 𝑎𝑥D + 𝑏𝑥 + 𝑐, the first order lens distortion coefficient was 

derived as: 

 𝜅 =
−𝑎

𝑐(3𝑎𝑐 + 3𝑏D + 1) (51) 

 

Figure 43: Left: distorted image; Right: corrected image by Bailey’s method with our reconstructed 
curved line. 

Figure 43 shows the corrected image by using the reconstructed curve as the reference and 

estimating the distortion parameter from equation (51). Most of the distortion has been removed 
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and the RMSE when fitting a straight line to the corrected edge of the bookcase is 0.4425. In 

this experiment the ‘smile’ detection method has successfully been the initial curve detection 

method.  
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Chapter 7 Conclusion and Future Works 

7.1. Conclusion 

This thesis proposed a lens distortion correction method (SLDC) based on analysing the shape 

of patterns in the Hough transform space. Different from existing line-based lens distortion 

correction methods which require line detection as an initial step, the SLDC works by 

reconstructing the distorted line from the significant points on the Hough pattern, then estimates 

the distortion parameter by fitting the reconstructed curved line into a straight line and 
minimising the RMSE. The SLDC only requires some linear features to be visible in image 

space. Except for this, the SLDC requires no assumptions such as need for a calibration grid. 

The SLDC is also independent of distortion model, since the Hough transform and curved line 

reconstruction are all actually independent of the distortion model. When the curved line is 

reconstructed any distortion model could be used. From both simulation and correcting real 

world images, the SLDC provides encouraging results, the RMSE when fitting a straight line to 

the corrected edge is less than 1 pixel. The SLDC also provides a curve detection method for 
other applications by reconstructing the curved line. 

7.2. Suggestions for Future Work 

7.2.1. Analyse Multiple Hough Patterns 

In this research we demonstrate that the distortion parameters can be estimated by analysing 

only one Hough ‘smile’ pattern. This limits the number of parameters which can be estimated, 

and furthermore limits the distortion model which can be used. Analysing multiple Hough 

patterns gives more independent data that can be used to increase the order of polynomial 

model which can be measured. This will increase the accuracy when correcting complex and 

serious distortion like the distortion caused by fish-eye lenses. Measuring multiple Hough 
pattern also provides an opportunity to increase the accuracy when estimating the distortion 

coefficient by effectively averaging the results from multiple ‘smiles’. Besides, measuring 

multiple Hough pattern also provides an opportunity to estimate the distortion centre.  

7.2.2. Using the standard Hough Transform  

Unlike the original Hough transform, in the standard Hough transform space the angle 

resolution is uniform. It can bring convenience to the correction when the line segment is not 

horizontal or vertical. The standard Hough transform also has advantage that it does not require 

measuring horizontal or vertical edges separately. Therefore, it is necessary to investigate the 
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effects that the sinusoidal traces of the standard Hough transform would have on the smile 

pattern, and how these can be used to reconstruct the curved line.  
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