
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Application of Internet technologies to
Customer Support Services
N J Ramsay 1997 - 1999

11. Errata

Page 30:

Page 37:

Replace "Define a simple constructor that this class in the RMI Registry" with
"Define a simple constructor that initialises this class in the RMI Registry."

Delete paragraph two of section 5.3.4

Table of contents

1. INTRODUCTION ... 5

2. BACKGROUND ... 6

2.1 IBMNEWZEALAND 6
2.2 INTEGRATED C USTOMER MANAGEMENT SYSTEM 6
2.3 INTERNET TECHNOLOGIES 7

3. NON-FUNCTIONAL REQUIREMENTS .. 8

3.1 PERFoRMANCE 8
3.1.1 Client Performance 8
3.1.2 Average time to displny 8

3.2 EASEOFUSE 13
3.2. 1 As simple as possible 13
3.2.2 Other advantages of a simple design include 13

3.3 CONFIGURABILITY 13

4. ARCHITECTURAL AL TERNATIVES ... 15

4.1 HYPERTEXT BASED SOLUTIONS 15
4. 1 .1 Client Architecture 15
5.1.1 Server Architecture 21
5.1.2 Examples 25

5.2 JAVABASEDFRONTEND 26
5.2.1 Two-tier model 27
5.2.2 Three-tier model 28
5.2.3 Communication 30

6. TOLL ESTIMATOR .. 33

6.1 BACKGROUND 33
6.2 INTENDED USE 33
6.3 SYSTEM ARCHITECTURE 34

6.3.1 Options 34
6.3.2 Minimising the startup time 34
6.3.3 Java security restrictions :36
6.3.4 Architecture model 37

6.4 CLIENT ARCHITECTURE 37
6.4. 1 Startup component37
6.4.2 User Interface component 38
6.4.3 Messaging component 39
6.4.4 Communication between components 40

6.5 MEsSAGE PASSING 41
6.6 MIDDLE TIER ARCHITECTURE42
6.7 SERVER ARCHITECTURE 42
6.8 FlJTuRE EXTENSIONS43

6.8.1 Data source 43
6.8.2 Create Java Beans 43

7. FIND CUSTOMER USE CASE ... 45

7 . 1 OPTIONS R)R TIIE COMMUNICATIONS ARCHITECTURE 45
7.1.1 Requirements 45
7.1.2 Three options 45
7.1.3 Sockets 46
7.1.4 Java RMI and Java JN/ based middleware46
7.1.5 COREA based middleware 47

7 .2 BUILDING Tiffi COt.WUNICATIONS ARCHJTECTURE48
7.2.1 Supplier 48
7.2.2 Defining the interface 48

7.2.3 Compiling an IDLfile 53
7.2.4 Issues that were addressed. 53

7.3 JAVACLIENT 54

7.3. / Requirements 54
7.3.2 lmplementation 54
7.3.3 Client Usage 58

7.4 C++ SERVER59

7.4./ COREA lntegration 60
7.5 PERFORMANCE 60

7.5.1 COREA 60
7.5.2 Java 60

7 .6 FuTuRE ENHANCEMENTS 61

7.6. 1 Split reassessment 61
7.6.2 Middle tier 61
7.6.3 Data structures 61
7.6.4 COREA services 62

7.7 CONCLUSIONS 62

8. CONCLUSIONS ... 63

8.1 USINGACURRENTDATASET 63

8.2 USING A CURRENT APPLICATION 63

8.3 THE USEOF!NTERNETBASEDTECHNOLOGIES 63

9. APPENDIX A - TOLL ESTWATOR DOCUMENTATION .. 65

9.1 PACKAGE COM.IBM.VOYAGER 65

9.1.1 Interface COM.ibmvoyager.Callable 65
9.1.2 Interface COM.ibm.voyager.Database 67
9.1.3 Class COM.ibmvoyager.Cal/Cost 69
9. 1.4 Class COM.ibm. voyager.Calllnfo 72
9.1.5 Class COM.ibm.voyager.Message 78
9.1.6 Class COM.ibm.voyager.Messenger 81
9.1 . 7 Class COM. ibm voyager. Tol/Estimator 85
9.1.8 Class COM.ibmvoyager.Tol/Frame 89

10. APPENDIX B - FIND CUSTOMER DOCUMENTATION OVERVIEW 93

10. 1 PACKAGEGUI12 93

10.1.1 Interfaces 93
10.1.2 Classes 93

10.2 PACKAGEFCl 2 93

10.2. l lnterfacess 93
10.2.2 Classes 93

10.3 PACKAGEPOCl 2 94

10.3.1 Interfaces 94
10.3.2 Classes 94

11. REFERENCES .. 95

Table of figures

• FIGURE l. Two-TIERED ARCHITECTURE 27

• FIGURE 2 . THREE-TIERED ARCHITECTURE 28

• FIGURE 3. ARCHITECTIJREOFTIIETOLLEsTIMATOR37

• FIGURE4. PROCEDURE FOR USEOFMESSENGER 41

• FIGURE 5 - CORBA ARCHITECTURE 47

• FIGURE 6 - FIND CUSTOMER INITIALISATION 0ID 49
• FIGURE 7 - FIND CUSTOMER - CLIENT TO SERVER 50

• FIGURE 8 - FIND C USTOMER - SERVER TO CLIENT51

• FIGURE9- USEOFTABBEDNOTEBOOKS 55
• FIGURE 10 - VISUAL PROGRAMMING56

• FIGURE 11 - IMPLEMENTATION OFT ABBED NOTEBOOK FUNCTIONALITY57

• FIGURE 12 - FIND CUSTOMER USAGE59

• FIGURE 13 - IDL COMPILING 60

1. Introduction

The topic of this thesis was first proposed by the management of IBM New

Zealand. One of the major products of IBM in New Zealand is called the

Integrated Customer Management System, or ICMS. This is a software package

that is sold to telecommunications companies worldwide.

The ICMS product is currently undergoing a major upgrade which would see it

converted from an RPG based application that is based on AS/400 type

computers, to a C++ based application that would run on RS/6000 type

computers (server) and Intel x86 computers (client).

What was proposed was a course of research that would study how Internet

based technologies could be applied in the future use of this newly upgraded

product.

2. Background

2.1 IBM New Zealand

IBM New Zealand is the sponsor of this thesis. Specifically, it is the Customer Care

and Billing Development and Support Centre (CC&B) who have sponsored this

research. The CC&B team in New Zealand comprises of about 600 people who are

working on the development of current and future versions of ICMS.

The New Zealand development is being undertaken in three locations - Auckland

central , Petone, and Christchurch. There is also development work being undertaken

in IBM labs in France, Canada, and USA.

2.2 Integrated Customer Management System

As the name suggests, ICMS is an integrated computer system for managing

customers. Customer SeNice Representatives (CSRs) of Telecommunications

Companies normally use this application to process customer requests. For example,

a CSR may use !CMS to order a new "call waiting" seNice, or to remove an erroneous

phone call from a bill.

The !CMS application runs on AS/400 computers. These are large high performance

computers that allow hundreds of simultaneous users to access it at any one time.

The interface to the AS/400 computer is via a text console. Hence, the ICMS

application is also accessed via the text console.

IBM is looking to upgrade the ICMS application to take advantage of modem

technologies such as graphical interfaces (such as the Windows GUI) and also

Internet Technologies. With these new technologies, the ICMS application will become

more user friendly, and hence easier to use.

2.3 Internet technologies

The Internet is the name for a large collection of computers that have been

networked together using a common standard for communications. It is used for

messaging, information retrieval , entertainment, and many other services.

There are many technologies that power the Internet. All of these technologies

have one thing in common - this is the use of the Internet Protocol. The Internet

Protocol (IP) is a format for sending messages between computers. The other

protocols that are in common use on the Internet build upon this protocol. For

example, electronic mail uses IP to send the message between the source and

the destination computer.

7

3. Non-functional requirements

Before dealing with the specifications or design of any software there are non­

functional requirements that must be met. Non-functional requirements can be

thought of as "how a task is achieved" rather than "what is the task". They can be

thought of as the characteristics of the system rather than the purpose of the

system.

In this chapter the desired characteristics, or non-functional requirements, of an

Internet based Customer Support System are discussed and specified.

3.1 Performance

There are two types of measures that can be thought of in relation to the

performance of a system - client performance and server performance.

3.1.1 Client Performance

There are three measures that have been identified as perfom,ance

characteristics on the client. These are:

• Average time to display

• Average time till availability

• Average response time

Average time to display

The average time to display is the time it takes for the user interface to display

some useful information (ie: content, not banners) after the user first presses the

connect button in their browser.

A small amount of testing was done to get a rough idea of current display times.

These results were obtained from a Pentium 166 running Netscape Navigator 4.0

connected to a LAN. The results are shown in Table 1.

8

• Table 1. Average time to display

Site name Time to display
content (sees)

LAN Modem
(56 kbps)

Java World 32 36
httQ://www.javaworld.com/

Javasoft 12 22
httQ://www.javasoft.com:8081 I

Eye-on-Objects 27 40
httQ://eye-on-objects.com/

Standard JDC 12 13
httQ://develoQer.javasoft.com/

HTML sites SE Using Java 17 23
httQ://www.mcQ.com/gue/et/se java2e/

7am News 12 10
httQ://www.7am.co.nz/

Aardvark Internet news 9 13
httQ ://www.aardvark.co. nz/

CNN Interactive 7 31
httQ://cnn .com/

ABC News 43 45
httQ://www.abcnews.com/

Map of T allin, Estonia 42 21
httQ://www.tallinn.ee/maQ/

Java applet SlovakiaMap 39 29
httQ://www.sanet.sk/

sites Bonn City map 30 36
httQ://ciQs02.Qhysik.uni-
bonn.de/-Qreusser/aQQlets/stadtQlan/Qlan
aQQlet d.html

Virtual Boston 38 44
httQ://www.Qmg.lcs.mit.edu/-na/MaQ/

Netscope 0-.. 42 n/a
httQ://www.merzcom.com/demos/netscaQe
/demo.html

The times for HTML only sites tended to be around the 10 to 40 seconds region.

The sites that took longer in loading tended to contain a larger number of

9

graphics. Although graphics files add to the visual display of the pages, sites such

as CNN and Aardvark showed that the use of different typefaces and colours can

also be effective.

The times for loading of Java based sites were significantly longer. The Map of

Tallinn site showed that simple interfaces can decrease the loading time. The

Netscape demo site showed a small "please wait" and information window half

way through loading.

The Customer Support System should aim to keep the content display time less

than 30 seconds so that it is comparable to similar Internet sites.

Average time till availability

The average time till availability is the time it takes for the user interface to

become available for use. This differs from the content display time since it is

possible for some content to be displayed, yet the application is not fully available.

For example, in the Map of Tallinn, the interface is loaded in 42 seconds, but the

map does not display for another 11 seconds.

As in the section above, testing was done to get a feel for the average time to

availability. The results are shown in Table 2.

• Table 2. Average time to availability

Site name Time to availability
(sees)

LAN Modem

JavaWorld 209 45
httg_://www.javaworld.com/

Javasoft 51 33
httg_://www.javasoft.com:8081 I

Eye-on-Objects 27 40
httg_://eY..e-on-objects.com/

Standard JDC 55 10
httg_://develog_er.javasoft.com/

10

HTML sites SE Using Java 20 29
httQ://www.mcQ.com/gue/et/se java2e/

7am News 44 14
httQ://www.7am.co.nz/

Aardvark Internet news 44 24
httQ://www.aardvark.co.nz/

CNN Interactive 48 30
httQ://cnn.com/

ABC News 76 48
httQ://www.abcnews.com/

Map of Tall in, Estonia 113 21
httQ://www.tallinn.ee/mag/

Java applet Slovakia Map 355 29
httQ://www.sanet.sk/

Sites Bonn City map 65 36
httQ://cigs02.ghysik.uni-
bonn. de/-Qreusser/aQQlets/stadtglan/Qlan
agQlet d.html

Virtual Boston 62 56
httQ://www.gmg.lcs.mit.edu/-na/MaQ/

Netscape 238 n/a
httQ://www.merzcom.com/demos/netscage
/demo.html

Apart from the Javaworld site, the times for HTML based sites tend to range from

20 seconds up to a minute. The Javaworld site spent more of its time loading

numerous advertising pictures.

The times for Java based sites take significantly longer to become available for

use. As shown above, these sites ranged widely from 21 seconds up to almost six

minutes. It is possible that poor network performance rather than an inefficient

design may have effected the Slovakia Map site.

The Customer Support System should aim to be available within one to two

minutes.

11

Average response time

The average response time is the time it takes for an application to respond to a

request for information. As in the above sections, testing was done to give a rough

comparison of similar applets on the Internet.

The results are shown in Table 3.

• Table 3. Average response times

Site name Average response
time(secs)

LAN Modem

Map of Tallin, Estonia 15 9
htt12://www.tallinn.ee/ma12/

Java applet Slovakia Map 60 40
httQ://www.sanet.sk/

Sites Bonn City map 40 18
httQ://ciQs02.Qhysik.uni-
bonn.de/-Qreusser/aQQlets/stadtQlan/Qlan
aQQlet d.html

Virtual Boston 35 9
httQ://www.Qmg.lcs.mit.edu/-na/MaQ/

As the above results show, the average response times are under a minute.

There are some reasons why some of the above values are higher than others.

The Slovakia Map applet had a long response time due to network lag to

Slovakia. The Bonn City map had a higher response time because it was

downloading a lot of data (ie: large bitmap graphics). The Map of Tai/in applet was

the fastest because it's map was a combination of bitmap and vector style, thus

improving performance.

The Customer Support System should aim to have a quick response time by

limiting the size of data that has to be transfered. A response time of less than 30

seconds would be adequate.

12

3.2 Ease of use

The kinds of people that the Customer Support System will be aimed are unlikely

to have experience with the systems that a Customer Services Representative

might have. Instead, they are likely to be everyday people who have a varying

range of computer skills.

According to Sunsoft Distinguished Engineer Jakob Nielson, "the Internet doubles

(in size) every year, and does done so ever since it was founded." Therefore, the

Internet will grow by approximately 6% per month. This infers that about 1 in 18

visitors to a site have been using the Internet for less than one month.

A likely location for the Customer Support System would be a kiosk in a shopping

centre. Potential users at this site would be even more unlikely to be experienced

users since the normal requirement to own a computer is removed.

The implication is that many users are still learning how to use their web browser.

Complex web based pages or applications are likely to overwhelm these less

experienced users.

3.2.1 As simple as possible

"All Things Web" is a site devoted to Web designers and authors. The authors of

the site state [1] that "simpler Web pages and simpler site designs are easier to

master ... especially for 'Net newbies'."

3.2.2 Other advantages of a simple design include

• More stable - less components for possible failure

• More compatible - less likely to use browser specific components

• Easier to maintain

3.3 Configurability

It is important that the Customer Support System be configurable. The intended

customers will want to be able to change many of the settings for their own

13

requirements. For example, a customer may want to apply their own corporate

style to the applet - ie: the use of specialised fonts and colours.

14

4. Architectural Alternatives

In this section, a number of architectural alternatives for delivering dynamic

information over a network will be covered.

The first option is to use a hypertext-based interface. This is the common interface

seen on today's web browsers such as Netscape Navigator and Microsoft Internet

Explorer. Aspects of both the clients interface and the web server and associated

technologies will be discussed.

A second option explores possibility of using a more advanced interface based on

the Java programming language. Java is a popular object-oriented language that

can run in many differing hardware environments.

4.1 Hypertext based solutions

Hypertext Markup Language (HTML) is a language to specify the structure of

documents for retrieval across the Internet using browser programs of the World

Wide Web.

This section will focus on the architecture needed to deliver HTML based

information to people using standard browser programs. A number of examples

will be given of current systems that deliver dynamic information via these means.

4.1.1 Client Architecture

The client side of a hypertext-based system is simply a web browser program.

This connects to a web server of some variety that downloads the hypertext files.

One of the problems that is likely to arise is selecting which features of HTML to

use. Because of the competitive nature of the browser industry, new versions are

released regularly with new and updated features. By using some or all of these

new features, a web designer can effectively shut out a large proportion of Internet

users who haven't upgraded to the latest new version.

15

There are two options to solving this problem. If a designer decides that the new

features are important enough, they can develop and maintain multiple versions of

their pages. Depending upon the amount of work required, this can be an

expensive exercise. For example, at the time of writing, Clear Communications

maintains three separate versions of their webpages - a Netscape version, an

Internet Explorer version, and a plain Vanilla version.

The alternative is to develop an interface that will be compatible with the majority

of web browsers. This seems to be the most used approach today.

Storing state information

A typical application of the Customer Support System might be requesting a new

telephone for a household. The process might involve a customer entering in their

customer number and possibly a password, selecting the phone they want, and

finally entering in payment details. This process would probably involve at least

three or four different screens.

The information that has been entered is known as state information. This needs

to be held somewhere while the transaction is taking place. Some of it may also

need to be sent to the server for each stage of the process. There are a number

of ways in which this can be done.

Embedded in web page

The state information can be embedded in the web page by the serving process

that created it. There are generally two different methods by which state

information is transferred as a transaction progresses.

The state information may be embedded in a GET method. This is basically done

by having a URL which has the state information stored in a similar manner to a

DOS command line parameter. An example URL that entered a user's login and

password might be:

16

http://www.news.eo.nz/page two?login=fred&password=bamey

In the above example, a user is requesting page two of a news service, and

passing login (fred) and password (barney) as state information.

State information can also be embedded in a form and sent via a POST method.

The information is also entered by the serving process that created the HTML

document. It is embedded into a form such as the one displayed below:

Source code:
<FORM METHOD::POST ACTl0N="http://www.news.eo.nz/page wo">
<INPUT TYPE=HIDDEN NAME=login V ALUE="fred">
<INPUT TYPE=HIDDEN NAME=password VALUE='bamey">
<INPUT TYPE=SUBMIT NAME:submtt VALUE="Page Two">
<!FORM>

Output:
Page Two

The fields with the name login and password are both of the hidden type. As

expected, they are not displayed. When the user presses the button that is

labelled "Page Two", the data in these fields is sent to the web server.

The above two examples show the use of entering logins and passwords with little

regard to security. If the above two examples were used in a real world example,

it would be easy for someone else to discover the user id and passwords.

There are two main ways to protect the state data that is embedded in a web

page. Firstly, this data should be scrambled or encrypted in some way. This will

prevent someone from peering over the user's shoulder and easily recognising

the login and password.

The state data must also be protected from a person who is browsing through the

disk cache files (looking for logins and passwords). It is possible to force the web

browser to not store a sensitive file in its cache by altering one of the fields in the

HTTP response header. This header is generated for every request sent to a web

17

server. The field that must be altered is the expires field, which states the date and

time at which the sent file will no longer be current. If this field is set to the current

date and time, then the file will not be stored in the cache. For example,

HTIP/1.0 200
Content-Length: 3495
Content-Type: text/html
Date: Tue, 15 Nov 1994 08:12:31 GMT
Expires: Tue, 15 Nov 1994 08:12:31 GMT
Server: CERN/3.0 libwww/2.17

Stored as a cookie

Persistent state information can be stored on the client using properties known as

cookies.

"Cookies are a general mechanism which server side connections (such as CGI

scripts) can use to both store and retrieve information on the client side of the

connection. [3]" The cookie information is a string which is stored in a text file on

the client.

There are two ways in which cookie information can be stored and retrieved.

Cookie information can be sent using HTTP headers, or using JavaScript

commands.

When a web client requests a file from a server, the serving process may set a

cookie in its HTIP response by adding an extra field to the header. The Set­

Cookie field is used to store information.

The information [4] that is stored consists of the following:

• A cookie label (name field)

• A cookie value (value field)

• An expiry date and time (expiry field)

• Name of the generating server's domain (domain field)

18

• Path attributes (path field}

The cookie label and value are self-explanatory. The expiry date and time indicate

the time at which the cookie information will no longer be stored or given out. The

domain field is used to identify generating server. The path attribute is used to

determine when cookie information should be sent.

An example HTIP header is shown below:

HTIP/1.0 200
Content-Length: 3495
Content-Type: textthtml
Date: Tue, 15 Nov 1994 08:12:31 GMT
Expires: Tue, 15 Nov 1994 08:12:31 GMT
Set-Cookie: login=fred; expireS=Mon, 16-Jun-1997 23:59:59 GMT;
path:/; domain=news.co.nz;

Set-Cookie: password=bamey; expireS=Mon, 16.Jun-1997
23:59:59 GMT; path:/; domain=news.co.nz; secure;

Server: CERN/3.0 libwww/2.17

The above example shows two cookies that set the login and the password of a

user. The cookie will be deleted after the expiry date shown. Since the path

attribute is set to the root directory, requests to any directory on the server will

have this cookie attached. The domain news.co.nz indicates that any server in

this domain will have this cookie information included in all requests. The

password cookie has the secure attribute specified. This means that this cookie

information will only be sent over a HTIPS (secure) channel.

Cookie information is automatically sent to a host whenever the domain entry and

the path of a cookie match the location of a requested file. The cookie is sent as a

field in the header of an HTIP request.

An HTIP request is shown below:

GET https://www.news.eo.nz/page two.html lfITP/1.0
If-Modified-Since: Mon, 16 Jun 1997 03:54:00 GMT
Referer: http://www.w3.orq'lwpertext/DataSources/0verview.htm1
Cookie: login::fred; password::bamey
User-Agent Mozilla/4.0 !en) (WmNT; I)

19

The above example shows the login and password being sent in an HTTP

request header. Since the connection is secure (https in GET line), the password

is sent.

JavaScript statements [5] can also be used to read and write cookie information.

All of the fields that are used in HTTP headers are also used in the JavaScript

statements.

Cookies are stored in JavaScript as a property of the document object. Setting

cookies in JavaScript is similar to using the HTTP method. The document.cookies

property is assigned a value of a new cookie. An example is shown below:

document.cookie = "login=fred";
document.cookie = "password=barney expireS=Mon, 16-Jun-1997
23:59:59 GMT; path=/; dornain=news.co.nz; secure;";

The above example shows the login and password being set for a user. Since

there are no properties specified for the login field, access would be set to the

calling page only, and it would expire at the end of the session. The password

property would be saved with all of the listed fields.

A JavaScript call to document.write(document.cookie) would produce the
following result:

login=fred; password=bamey

This shows the login and password of a user being accessed by a JavaScript call.

Accessing specific cookies (rather than a list of them) is normally done with a user

defined JavaScript function call. There are a number of books [5] that provide

information on ways to do this.

As with state information embedded in web pages, cookies are also open to

security hazards. The cookie information is stored in a file called cookies.bet (or

MagicCookies on Macintosh based machines). This file is easily found, and able

20

to be viewed by any user. Therefore, sensitive information such as passwords or

personal data should be scrambled or encrypted.

Socket Encryption

In addition to the security measures that have been outlined for the storage of

state information on the client, efforts should be taken to ensure that the data is

not monitored while being transmitted to the host. Using an encrypted data stream

can easily do this. A standard exists called Secure Sockets Layer (SSL) which

encrypts the data sent between client and server. This will reduce the possibility of

sensitive state information being acquired by an unknown third party.

4.1.2 Server Architecture

The architecture of systems that supply hypertext falls between two main types.

One extreme is that the hypertext generator is implemented using a programming

language of some type, and consists of a number of executable files. The other

extreme is that the hypertext generator is created using a 3rd party visual tool ,

which generates the HTML according to the specified design.

Most common solutions available today fall somewhere between these two
extremes.

Server connection

There are currently two popular ways in which a standard hypertext server can

retrieve information from a 3rd party source. A connection can be made using

either the common gateway interface (CGI) or via a server defined application

programming interface (API) .

Common Gateway Interface

"The Common Gateway Interface (CGI) is a standard for interfacing external

applications with information servers. [6]"

21

There are two ways in which a CGI program is called. A user can make a POST

type call or a GET type call. The factor that differentiates these two methods is the

way in which the data is transferred from the server to the CGI application.

The POST type call extracts it's data from the standard input, while the GET type

call extracts it's data from command line parameters. The web server also

transmits information about the call through the use of environment variables.

Both calls then process the received data, and then generate HTIP and HTML

code that is sent to the standard output. The hypertext server receives this data,

and transfers it to the client.

A CGI type program can be written in almost any kind of language, since all it

needs to be able to do is read / write from the standard input / output, and access

environment variables and command line parameters.

Environments such as Pearl, and UNIX shells have been popular for CGI

programming. For developers interested in higher performance, CIC++ is used for

CGI programs. For even higher performance, developers must move from CGI

type programming to API based applications.

Application Programming Interface

API type programs offer faster response and better performance [7] than their CG I

counterparts. Hypertext servers that use CGI create a separate process for each

request received. The more concurrent requests there are, the more concurrent

processes created by the server. However, creating a process for every request is

time-consuming and requires large amounts of server RAM. In addition, this can

restrict the resources available for sharing from the server application itself,

slowing down performance, and increasing wait times.

One way to avoid this is to convert the CGI program into a shared library. The

server loads the library the first time a request is received. It then stays in

22

memory, ready to service other requests until the server decides it is no longer

needed.

Shared libraries are compiled into native machine code. The actual file produced

depends upon the platform. Windows based machines use DLL files, while UNIX

based operating systems use ".so" files.

These libraries must conform to the API that the hypertext server specifies. There

are two common types of API available at the time of writing. These are the

Netscape [9] Server Application Programming Interface (NSAPI) and the Internet

Server Application Programming Interface (ISAPI) from Microsoft [8].

Many of the server architectures outlined below offer the option of connecting to

the hypertext server via the API interface.

Custom solutions

Custom solutions allow the developer the most flexibility of any of the options

available. A developer may decide to develop their custom solution using a

standard development environment, or they choose one of a number of tools

designed specifically for this purpose.

A couple of example tools are outlined below. They attempt to reduce the

workload by simplifying many of the tasks common to Internet based applications.

Perl

Perl is a common tool used for creating custom solutions. According to Perl's

author Larry Wall, Perl "is intended to be practical (easy to use, efficient,

complete) rather than beautiful (tiny, elegant, minimal)." "Perl is an interpreted

language optimised for scanning arbitrary text files, extracting information from

those text files, and printing reports based on that information [10]."

Perl has been quite popular on UNIX based operating systems, and has been

ported to many other platforms.

23

Visua/Age WebRunner Server Works

WebRunner Server Works uses handlers and adaptors to transmit client requests

and manage communications with a server. It can connect to the hypertext server

via a number of methods, including NSAPI, ISAPI as well as CGI.

It reduces the burden of development by removing the developer's focus off the

technology, and back onto the problem at hand.

3rd party solutions

3rd party solutions attempt to reduce the complexity of web development by

introducing an extra layer(s) between the system and the developer.

The way in which this is achieved differs between applications. Examples of these

layers range from macro based solutions up to purely visual programming

models. Outlined below is a small sample of four different products that are

available today.

Net.data

Net.data is a 3rd party solution that integrates a macro-based language into the

HTML code. Although it targets databases, it is able to retrieve data from existing

business logic as well (support for Java, Perl, REXX, C++).

Net.data makes its connection to the hypertext server through NSAPI, or ISAPI for

high performance operation. It can also connect via CGI.

Livewire

Livewire is a tool provided by Netscape that uses server side JavaScript to

develop dynamic web applications. As with Net.data, this 3rd party tool targets

database access.

24

Livewire is specifically targeted at Netscape (Enterprise & Fastrack) servers, and

is tightly integrated. Hence, Livewire based applications tend to be high in

performance.

NetDynamics

NetDynamics is a visual tool for creating Internet based applications. This 3rd party

tool focuses on database access. It is also able to extract data from external

native applications.

NetDynamics also allows developers to write their own Java class files through

the use of a NetDynamics API.

NetDynamics makes it's connection to the hypertext server through NSAPI, or

ISAPI for high performance operation. It can also connect via CGI.

Lotus Domino. Connect

Domino.Connect is an add-on tool for Lotus Domino (hypertext server) that allows

access to databases and legacy systems. Domino.Connect is used in conjunction

with a scripting language called LotusScript.

Because Domino.Connect is an add-on for the Domino hypertext server, there is

no requirement to connect via CGI. This makes this 3rd party tool useful for high

performance applications.

4.1.3 Examples

The examples in this section outlines practical situations of organisations that are

using a hypertext based interface to supply dynamic applications on the Internet

(or their own Intranet).

25

Central Power, Palmerston North

Central Power is a Palmerston North based power company. They allow their

customers to query their own accounts. This ability is implemented using Perl and

this connects to an Intermix database.

State information is embedded in the HTML code using both GET and POST.

This information includes both customer ID number and PIN number. It is not

encrypted or scrambled in any way.

The pages that are sent to the client are not encrypted either. That is, the server

does not use SSL to create a secure channel between client and server. This

makes it possible for a 3rd party with the ability to monitor network traffic to pick the

sensitive details out of the byte stream.

The HTML pages that are sent to the client are not set to expire, and are therefore

stored in the local cache. It is therefore possible for a person to search the local

cache for the phrase "My Account," identify the file, and then read the customer

number and PIN number.

4.2 Java based frontend

Java is a modern programming language that was developed by Sun

Microsystems and first released in December of 1994 [1]. Code that was been

written in the Java code language is compiled and then run in what is known as

'The Java Virtual Machine (JVM).' The JVM has been ported to many different

platforms including such as Windows 32, Windows 3.1, OS/2, Macintosh, various

UNIX OS's, and many others.

A version of the JVM has been implemented in some of the more popular web

browsers such as Netscape Navigator, Microsoft Internet Explorer, and others.

This section will focus on the client implementation as well as the architecture

needed to support a Java based frontend.

26

4.2.1 Two-tier model

The two-tier architecture contains two computers - a client and a server. The -

system architecture is shown in Figure 1 below:

Database D
•

<CC C (c ((
C::::,c. C c

Client

• Figure 1. Two-tiered architecture

The three components of the application - the model, the view, and the controller

are divided among the two tiers. The view is implemented on the client. The

model is stored on the server, and the controller is split between the two tiers. The

bulk of the controller logic is stored on the client. A small portion of the controller

logic is implemented on the server. This includes functionality such as integrity

checks, querying, and database management. This is shown below in Table 4.

Server Client

Model ALL NONE

View NONE ALL

Controller Integrity checks Application logic

Querying

Database

management

• Table 4. Distribution of application on 2-tiered architecture

Requests to the server from the client would typically be done through the use of

the [11] Standard Query Language (SOL). SOL based queries are normally

packaged in a JDBC (Java Database Connectivity) call when using the Java

language.

4.2.2 Three-tier model

The three-tier model contains three computers - a client, a database server, and

an intermediary server. The system architecture is shown in Figure 2 below:

D
•

< < < < < < < <
~ <<<<<<<

Client

Database

• Figure 2. Three-tiered architecture

The three components of the application - the model, the view, and the controller

are divided among the three tiers. The view is implemented solely on the client,

while parts of the model and controller are distributed over all three tiers.

A small portion of the controller logic is implemented on both the client and the

database. The majority of the logic is implemented on the intermediary host. A

compromise has to be made to decide how much logic will be distributed between

the client and intermediary host. The balancing factors include:

28

• Minimising the number and size of class files required to be downloaded to the

''thin client."

• Minimising the amount of network traffic that must pass between client and

intermediary host.

So to solve the above issues, simple procedures such as manipulating displayed

data, or parsing input should be stored on the client. CPU intensive or larger

procedures should be stored on the intermediary server. An example of this would

be a procedure to retrieve data from the database.

Advantages

Calls made from the client to the intermediary server provide greater overall

flexibility than the SOL type queries made in a two-tier type architecture. This is

because the client simply passes the parameters needed for the request and

accepts the returned values specified in the call.

Unlike the two-tier implementation, the three-tiered client does not need to

understand SOL. This means that changes can be made to the underlying

database, or it's associated technologies, without any changes being made on the

client.

Having separate software entities allows the individual tiers of the system to be

developed in parallel.

Middle-tier class libraries may be re-used by other applications.

Disadvantages

The three-tier model brings an increased need for network traffic management,

server load balancing, and fault tolerance.

29

4.2.3 Communication

There are a number of ways in which external clients may communicated with the

middle tier. These range from a simple sockets based implementation to a

standards based systems like CORSA and RMI.

Remote Method Invocation

Remote Method Invocation (RMI} is a Java based standard that allows Java

based clients to make calls to remotely located Java based server applications.

RMI uses Internet Protocol as its transport mechanism.

Creating an appl ication that utilises RMI is a relatively simple process for a

competent Java developer. Outlined below are the steps needed to create an RMI

based application.

1) Define a Java interface that models the class on the server.

2) Build a class that provides an implementation of all of the methods listed in the

above definition. Define a simple constructor that this class in the RMI Registry.

3) Use a Java tool called rmic to automatically generate "stubs" and "skeletons" for

use on the client.

4) Create a client program that uses the new objects.

5) Start the Java RMI Registry, run the server, and start the client.

The RMI Registry is a program that manages connections to the server classes.

The advantage of using RMI is that it is built into the Java environment, and its

use is fairly straightforward. The disadvantage is that RMI is a Java only

technology, and hence it cannot be used to communicate with non-Java based

systems.

The Java RMI based communication middleware will be investigated and outlined

in a case study.

30

CORSA

Common Object Request Broker Architecture (CORBA) is a messaging system

that allows different hardware and software packages to interoperate. "Simply

stated, CORBA allows applications to communicate with one another no matter

where they are located or who has designed them" [13].

CORBA uses a language called IDL (Interface Definition Language) which is used

to define the interface of the application, or object that is available for use. For

example, if a C++ program had a class called "Customer" (see below).

class Customer {

String firstName;

String lastName;

intAge;

The above customer class has three attributes - the first and last name of the

customer, and his or her age. An IDL interface could be written to describe these

attributes.

Interface Customer {

attribute string firstName;

attribute string lastName;

attribute int Age;

As can be seen, the above IDL interface describes the C++ object called

Customer. This interface can now be "compiled" into any CORBA compliant

language that needs to access the C++ class.

31

For example, the above interface will be compiled into a Java "skeleton" as shown

below:

public interface Customer {

public String get_firstName();

public void setjirstName(String value);

public String get_lastName();

public void set_lastName(String value);

public String get_address();

public void set_address(String value);

This interface can now be called from a Java client.

To bind the different environments together, CORBA makes use of a middleware

program called an Object Request Broker (ORB). The ORB takes a request from

one environment, translates it into a common format, and passes it to another

ORB in the different environment. This ORB then makes the request, and passes

the results back in the same manner. In the example above, the ORB will allow

the Java client to make calls to the C++ server to access the data on a customer.

The CORBA communications middleware will be investigated and outlined in a

case study.

32

5. Toll Estimator case study

A Toil Estimator is a program that can be used to estimate the approximate cost of

an intended long-distance toll call. This would be a useful application for

customers of a telephone company, as they would be able to find out the price in

advance of making a call.

This application was chosen as a suitable case to study, as it would involve the

use of a combination of many Internet based technologies. For example, the

program is expected to be run on a customer's computer, but it will need to

communicate with a database that is located at the telephone company.

5.1 Background

The Tell Estimator was developed to investigate the use of Java based

technologies which could be used through a standard web browser. It was hoped

that the skills and knowledge that were gained through the development of such a

program could be used to develop future components of a possible Internet

solution for ICMS.

The functionality of toll estimation was chosen for this program because of the skill

set that was already in existence at IBM. Two separate Toll Estimation programs

had been written in the past. The first Toll Estimator was written in the Smalltalk

language, and this was then rewritten in the C++ language.

It was hoped that these skills could be called upon when needed during the

development of the Java version of the Toil Estimator.

5.2 Intended use

The Toil Estimator program was aimed at an everyday telephone user. It was

hoped that they might be able to connect to the Internet, and then start up their

web browser application. They would enter in the web address of their local

telephone company, and select an option that would then start up the Toil

Estimator program.

33

It is quite unlikely that a person would go to all this trouble to simply check on the

price of a call. The reason for the development of this program was not to produce

a useful tool, but to investigate the use of these technologies so that they could be

applied to develop a tool that consumers might find useful.

5.3 System Architecture

5.3.1 Options

There were basically two broad options that were possible for the architecture of

the Toll Estimator. These were either a two-tier or three-tier architecture.

A two-tier architecture would involve a "fat client'' connecting directly to a

database. A three-tier architecture would involve a 'ihin client'' that would connect

to a middle tier, which would then connect to the database.

The 3-tier architecture was chosen for the reasons outlined below.

5.3.2 Minimising the startup time

The Toll Estimator is aimed at domestic customers. These people tend to connect

to the Internet via slow speed connections. For example, the maximum possible

connection speed is 56 kbps, but the majority of people would use slower

connections such as 14.4 or 33.6 kbps.

The amount of data to be downloaded to make the applet run will increase the

startup time of the applet. The number and size of class files must be kept to a

minimum.

In a two-tier architecture, various components such as database drivers would

have to be downloaded. A potential user of the Toil Estimator may not have the

patience to wait for the entire program to download. The three-tier architecture

would leave the database drivers on the middle-tier. This would reduce the

amount of data that must be downloaded, and hence minimise the startup time of

the applet.

34

Packaging and compressing the files

Another way to reduce the startup time is to compress and package the files into a

single file. Personal experience has shown that the number of files to download

can often make more of a difference to the startup time than the file's size.

The files that are downloaded are often small in size. For example, a typical Java

class file would probably be no greater than 5 kB. Larger class files might reach

up to 20 kB, but this would be unlikely.

If the user were using an average modem, then the data could probably be

transferred in a couple of seconds. Because of the nature of the Internet, delays

normally occur when requesting files . This generally adds a couple of seconds

before the data starts to be received. Hence, this small 5 kB file might take around

four or five seconds to download.

Java class files tend to be downloaded in a sequential manner. This also adds to

the delay of downloading Java applets. If an applet has around 10 class files, then

a user could expect to wait for almost a minute for an applet to start up. On a day

of unusual congestion the delay would be even longer. Obviously this is not

acceptable for a simple Toll Estimator, although users may be willing to wait

longer for applets which provide a more useful service.

Packaging the Java classes into a single file can vastly reduce this delay. Popular

web browsers from Netscape and Microsoft both support this file packaging

method. The Netscape browser uses a compressed format known as a JAR file.

The Microsoft browsers also used a compressed file format- the cabinet (or CAB)

file .

The result would be a single file that now contains all of the Java class files. With

the addition of the file compression, the total volume of data to be downloaded is

now reduced. In the example above, the ten 5 kB class files might be compressed

into a 30 kB file. With a delay of around two seconds and a download time of

35

around 10 seconds, the total waiting time would be reduced to less than a quarter

of a minute. This is likely to be within the patience threshold of the average user.

5.3.3 Java security restrictions

The Java language has a number of features built into it that protect the

environment of the end user. These security features apply only to those Java

programs (applets) that run inside a web browser. This is necessary because

Java applets are often run without the prior knowledge of end users. If an applet

had unrestricted access to the environment in which it was run, then it could

possibly access or destroy sensitive data.

There are two main restrictions that apply to Java applets. The first restriction

involves access to data within the environment in which it is run. For example, an

applet may not read or write files stored on a user's disk drives. This would

prevent a hostile applet from wiping a user's hard disk.

The second restriction involves access to the network. Java applets may not

make connections to any other computers. An exception to this rule allows the

applet to connect to the host from where it was downloaded. This restriction stops

the applet from becoming a nuisance to other network users.

This second restriction could create a problem for the Toll Estimator if a two-tier

architecture was chosen. This is because the Toll Estimator needs to connect to a

third computer that contains the pricing information. A three-tier architecture would

be able to work within the rules Java security model, since the middle tier would

be located on the same computer as the web server. Since the middle tier would

be a Java application (ie: not an applet), it would have unrestricted network

access, and hence would be able to connect to the database for pricing

information.

36

5.3.4 Architecture model

The 3-tier architecture model is shown below in Figure 3. The Java applet runs

inside the web browser. The applet makes calls to a RMI based server located on

the middle tier. This makes Java methods available for client applets to call. These

methods make SQL type queries to the database.

The Java applet runs inside the web browser. The applet makes calls to a for

client applets to call. These methods make SQL type queries to the database.

Web \ HTTP server
Browser :\

I

' The /

'
/ /

Java Internet
Java based

Applet RMI server

Database

• Figure 3. Architecture of the Toll Estimator

SA Client Architecture

There are three major components to the client side architecture. Each

component runs in its own thread. These are the startup component, the user

interface component and the messaging component.

5.4.1 Startup component

The startup component is the simplest of the three client-side components. The

tasks that it performs are:

• Instantiate (create and initialise) the user interface and messaging

components.

• Extract applet parameters

37

• Start and stop component.

When the applet is first started, the user interface and messaging components are
instantiated.

The startup component will extract the parameters that the user defines in the

HTML page. The parameter extracted is the URL that points to the RMI server.

This URL is passed to the messaging component on instantiation.

The other task of the startup component is to start and stop the other two

components. The start and stop tasks are performed when the end user performs

actions such as minimising the window, or moving off the web page in which the

applet is stored. By stoping the components when the applet is not in use, the end

user's machine will not be task-loaded for no purpose.

5.4.2 User Interface component

The user interface (UI) component provides all the visual needs of the Toll
Estimator.

The U I was implemented using a class called Toll Frame (see section 8.1.8 for

documentation on this class). This class provides all the visual needs of the Toll

Estimator applet.

When the class is first instantiated, the on screen components are displayed.

Initially, these components do not display any data in them. When the class's start

method is called, these on-screen components are then filled.

After the user interface has been drawn, this component lies dormant. It waits for

events generated by the user. The three events that are monitored are "pressing

Calculate," "pressing Reset," and "pressing Close."

If the calculate button is pressed, then the values of the on-screen components

are parsed - checking for validity. If there are any problems, then an error is

displayed, otherwise the request is sent to the messenger component.

38

If the reset button is pressed, then all of the values displayed on the screen are

reset to their default values.

If the close button is pressed, then the window is hidden (it gets automatically
destroyed when the web browser moves to another page).

The U I also waits for responses from the messenger. The two responses that

occur are setCallCost and setlocations. These two messenger generated events

will be discussed in section 5.4.3.

5.4.3 Messaging component

The messaging component provides other objects with the facility to request data

from a remote server. The messaging component is implemented using a

Messenger class. This class is implemented in a separate thread so that it does

not halt other tasks while it makes remote calls.

The Messenger uses two public methods to supply information to external

classes. The information that the Messenger can supply is a list of calling

locations, and also call costing.

To achieve a threaded nature, the Messenger has a loop that is regularly

checking two vectors for new entries. One vector named callCostRequesters is

filled by calls to the requestCallCost method. The other vector named

locationsRequesters is filled by calls to the requestlocations method.

When the loop detects that a request has been made (1 or more items found in

the vector), it makes a call to executeCallCostRequest or

executelocationsRequest (according to which vector contains the items). These

methods extract the information from the vector, process the request, and send

the results back to the external class.

Processing the request is a simple task for the Messenger. When the Messenger

is first started, a Remote Method Invocation (RMI) connection is made to the

middle tier. This connection is then used by the executeCallCostRequest and

executelocationsRequest methods whenever a request is made.

39

5.4.4 Communication between components

External classes that want to use the facilities of the Messenger will do so through

call-back style requests. To allow this to take place, a Java interface was written.

This interface (see section 8.1.1) defines three methods - setCallCost,

setlocations, and setMessenger. These must be implemented by classes that

use this interface.

The setMessenger method is called by the startup method. This method gives the

external class a reference to the Messenger object that it will use.

The Messenger object calls the setlocations and setCallCost methods. These

two methods get called when the Messenger has information to deliver to the

external class.

The Messenger class has two public methods that are used to request

information. These are requestCallCost and requestlocations. An external class

will call these to make requests for information.

The procedure for making calls to the Messenger is outlined in Figure 4.

40

External and Messenger
class instantiated

Extemal .setMessenger
called by

Startup component

i i
External class wants External class wants a call

locations. It calls cost. It calls
Messenger.requestlocations Messenger.GetCallCost

l "
Messenger gathers Messenger calculates call
locations and calls ,--- cost and calls

External .setlocations External.setCallCost

• Figure 4. Procedure for use of Messenger

5.5 Message passing

The callback design makes the notification of errors more difficult, since any errors

that may occur will not happen during the actual call. This means that Exceptions

cannot be used to notify the external class of error conditions. To solve this

problem, a special class was developed to pass both data objects and error

messages.

The Message class is used for passing results between the middle-tier, the

Messenger, and the User Interface.

What makes this class special is that it also provides a way in which error

messages may be passed without throwing exceptions. This class was created to

solve the problem of indicating the presence of an error to a callback function.

Each message may contain one object and any number of error messages.

The class contains methods for testing for the presence of any errors that may

have occurred and extracting both the objects themselves and the errors.

41

5.6 Middle tier Architecture

The purpose of the middle tier is to provide objects that can be remotely accessed

by applets. This is achieved by binding an object called Oatabaselmpl to an RMI

registry.

One the object is bound, it can be easily access from remote clients such as
applets.

The two methods in the Oatabaselmpl object that are used are getlocations, and
getCallCost.

The getlocations method makes a connection to the database server and

extracts all of the call locations. These then get placed into a Vector and sent back

to the client. If there are any errors, then these get sent along too.

The getCallCost method takes call information parameters in its header, and uses

these to make a query to the database. The result is then used to calculate the

cost of the call. The costing information is then sent back to the client, along with

any errors that may have occurred.

5. 7 Server Architecture

The database server that is used is 082 for Windows NT. In a production version

of the Toll Estimator, 082 would be run on either AIX or AS/400.

The tables that were used in this prototype include:

CITIES - this table contains the location names and numbers. For example:

"Auckland", 1

"Middlemore" ~

"Papakura",3

"Pukekohe",4

CITYSTEPS - this table lists the charging step for calls between two locations. For
example:

1,2,"A"

42

1.3."8"
1,4,"C"

1,5,"D"

STEPPRICES - this table lists the cost per minute of the charging steps. For
example:

"A",.05

"B",0.09

'C",0.13

"0",0.15

The data in these tables is accessed using queries to a JDBC (Java database

connectivity) class. This makes a direct connection to the database to execute the

queries.

5.8 Future extensions

5.8.1 Data source

As described above, the data is obtained from a local DB2 database. An

extension to this project would be to add the capability to connect to a live

database. For example, the data could be obtained from the ICMS database on

the AS/400. This would add realism to the project.

5.8.2 Create Java Beans

A Java Bean is a set of one or more Java classes that is defined in a standard

manner so that other applications may easily use it. For example, a textfield bean

may have a property called contents. Being a Java bean, it would then have two

methods called setContents and getContents.

As well as properties, beans also have events and methods. An example of an

event that might occur could be "button pressed" or "e-mail received". An example

of a method might be "send Message" or "convertT oDollars".

43

The Toll Estimator could be converted into a Java Bean. This would allow it to be

used to build a part of a more complex Customer Services Java program.

44

6. Find Customer case study

The aim of this project was to build a Java based client application that would demonstrate practical

communication with an OS/2 based C++ server. The application should demonstrate the use of modem

Java technologies such as Java Beans and the new JDK 1.1 event model.

6.1 Options for the communications architecture

6.1.1 Requirements

The broad requirement for the communications architecture was to enable an application written in version

1.1 of the Java programming language, to make calls to C++ based objects residing on a remotely located

OS/2 workstation.

Other requirements included:

• Adequate performance - the overall application should perform at about the same speed as could be

expected from a similar application. For example, an Internet based search engine would be a similar

application.

• Scalability - the application should be based upon technologies that are able to scale to many numbers of

users, without significant performance drop-offs.

• Reliability- the application should be able to operate continuously for a long period without crashing.

• Ease of use - a potential user should be able to understand the application within a few minutes of using it.

The application should be based upon industry standards for user interface design.

• Development efficiency - the development of the application should be undertaken so that reuse of code is

maximised.

6.1.2 Three options

Based on the above requirements, there were three main options that were considered. These were:

• A "do it yourself" type sockets design

• Hybrid Java RMI and Java JNI

45

• CORSA

6.1.3 Sockets

The socket design was never really considered as a practical option. This was because it would basically be
"reinventing the wheel." Also, considering this project was to be a "proof of concept'', we didn't think we
would be proving anything that hadn't already been proved by anyone else.

It was also thought that it was important to keep to industry standards, and developing our own proprietary
design would not conform to this aim.

6.1.4 Java RMI and Java JNI based middleware

As described earlier, Remote Method Invocation (RMI) is a communications mechanism native to Java. It
enables communication between remotely located Java clients and Java servers. Unfortunately, it cannot
communicate with programs written in other languages.

Java Native Interface (JNI) enables Java based applications to make calls to software that has been written
in other programming languages. The client programs must reside on the same platform as the server.

The aim of the hybrid design was that the Java client would use RMI to communicate with a Java based
server located on the 08/2 workstation. This would pass the requests onto the C++ server (also on the
08/2 workstation) via the Java Native Interface.

The architecture diagram is shown below:

r------------1 r------------,
I I I I
I Java client 11---+---RMl---+---c: Java server I

: I :

Java Virtual Machine
(any platform)

'------1------
JNI

r _____ j ______ l
I I
: C++ server 1

I : L..------------
OS/2 Workstation

This design was not chosen, and there are a number of reasons why.

Inadequacies of JNI

One of the major reasons is due to the inadequacies of JNI. Features such as the lack of support for
multiple inheritance, exceptions, and templates would have made creating a work-around relatively difficult
and time consuming.

Performance of the Java server

Another factor in the decision was the question of performance. Java based applications are known to have
difficulty matching the performance of C++ applications. This is due to the interpreted nature of the language
(compared to C++ that is compiled) .

46

The number of simultaneous clients that could be supported by one server would be significantly less than a
pure C++ only based server.

The risk of failure would be higher since there would be one more new technology to become aquatinted
with. These were being both RMI and JNI, when compared with only CORSA.

We were also uncertain of the future of RMI. At the time, there were rumours in the industry that Microsoft
would not be supporting RMI in its upcoming version of Internet Explorer. Although the project had little to do
with web browser technologies at the time, one of the future extensions of the project would be to create a
web browser based version. As it turned out, the rumour was true.

Another rumour was that Sun Microsystems was speculating about the possibility of converting RMI so that
it would use the same communication protocol (IIOP) as CORSA. This seemed like another reason to
choose CORSA as the communications middleware.

6.1.5 CORSA based middleware

As described earlier, CORSA is a communications middleware standard defined by the Object
Management Group. The overall architecture model is similar in function to the hybrid design described
above, but has removed one of the layers on the server.

The architecture diagram is shown below:

Client
(Java)

• Figure 5 - CORSA architecture

Server
(C++)

As you can see in Figure 5, the two Object Request Brokers (ORBs) connect the Java client and the C++
server directly to each other.

Performance

The CORSA based architecture is expected to have an improved performance because of the removal of
the server-side Java layer. The ORB that has taken its place is a C++ library and is tightly integrated with
the C++ server.

Likewise, the ORB on the Java client consists of Java classes and is tightly integrated with the client.

The CORSA implementation has replaced the combination of both RMI and JNI. This means that there will
be one less technology to learn.

47

Functionality

CORBA is a large architecture that consists of many different services. These range from simple naming
services to more complex encryption and authentication services. Although the use of such services as
encryption and authentication were not in the objectives of the use case, their use was thought to be of
importance in the future.

Many of the limitations of the hybrid RMI and JNI were resolved in the CORBA architecture. For example,
exceptions generated by the C++ server would flow across to the Java client.

6.2 Building the communications architecture

A communications middleware based upon the CORBA 2.0 standard was chosen.

6.2.1 Supplier

Iona Technologies of Dublin, Ireland was chosen as the supplier of the CORBA implementation. lona's
Orbix is a CORBA compliant ORB with bindings for many different languages and platforms. At the time of
writing, Orbix was the only supplier that had an operating ORB with C++ bindings for OS/2.

The two products chosen were OrbixWeb (Java ORB) and Orbix for OS/2.

6.2.2 Defining the interface

The CORBA 2.0 standard defines IDL (Interface Definition Language), which is used to define the interface
between the two ORBs.

Creating an IDL file

To create the interface definitions files, we first had to analyse what would be included in the content. This
was done mainly with the help of Object Models and Object Interaction Diagrams (OID).

An Object Interaction Diagram is a drawing that outlines how messages and events are passed between
different objects in a computer system.

Because our task was to replicate the functionality of the C++ based Find Customer use case, we started
with the C++ OIDs. There were three OIDs for the C++ based use case.

These three OIDs were then converted to a Java style - for example, since the client was to be using Java
Beans, many of the C++ events styles were updated for the Java Event model. The first OID (see Figure 6)
outlines the initialisation of the client. The initiating event was the selection of a menu item called "Find
Customer". This then creates and initialises a new FindCustomerDirector object, which sets up the new
FindCustomerController and FindCustomerView objects. The view is then displayed.

48

Voyager Customer Object Interaction Diagram Use Case 003 : Find Customer

1. Usu Hlect, "Find
Customer" rntru option

,cticnPtrfonned im!M,Lttrn ~,tBu,L,.~,t~ i
(Actic.E,..nt,-__.+----- (t,..,uO.jtet,,._________ (tffnl ID, MC) I

I I
I handleflusnessRequest(EverU), MC) I
I I
I ~ili I
I
I
I
I
I

auttCont:oller (TCD, FlND_CUSTOMtR)

a u t,

c:rult I

i..., tdit,<i 15!09'97 17.00.11 J:\PUllLI"'""l\lht,~lp .. s\owdl03 . ..d

• Figure 6 - Find Customer Initialisation 010

49

Voyager Customer Object Interaction Diagram Use Case 003 : Find Customer - client to Server

2. Button elide on
·rind· button

t...t Edit .. !: 1 S/09197 17:00 11

d ~nonPuforma
(Acbo.Ennl

o.,.,.d ..tionPuj;
t----- (Actio.E nnt'

..,..,nP t.n'onNd
.r .. n1 ,_ ____ (Actlo

• Figure 7 -Find Customer -client to server

a,

-' ,~ ~f .::.i
e' 2~
!.

,u,,!P,.,sod
!V1nt0bject

I" u,dl'.., .. d
'[vu1.t0b~f•

fmdPnJ*
(EV<n10bit<t

V", ""'' Gtt d.t• : I

J:\PUBU~l\tho,i,\p,.,\oi.b:003 ..d

50

~

f~ ~~
If e ~·e
~i .H g~ ~ ~

~

R.q.»1t&.u1NssRaquit1t
(tvu,t !D, fCC) - f\

hal'deaimessRequest(Evenl D, MC)

.,. ...
pop,Wt(MO)

S.t d.i•

addP,o~
- Listtnu (FCC) ___...,

Voyager Customer Object Interaction Diagram Use Case 003 Find Customer - server to client

3. Serverupd.ltts model
object

upd,te

~
\

i...1 Edit .. i 15/09197 17:00:11 J:\PUBLICW..l\the,i,\pn,>oM21C003 .v>d

• Figure 8 - Find Customer - server to client

The spilt between client and server is between the controller objects and the director objects. In the above
diagram, there are three events that traverse the split. These are

1. A call to the Request Business Request method of the Main Director

2. A call to the create Controller method on the Main Controller

3. A call to the show method of the Find Customer Controller.

51

The first operational attempt at a CORSA interface is shown below in Table 5:

II **
II * IDL for Network Computing proof of concept*************
II ***** * **

II
II file: POC4.IDL
II First created: 29 September 1997

requestBusinessRequest

) ;

interface Customer

} ;

attribute string firstName;
attribute string lastName;
attribute string details;

typedef sequence<Customer> CustomerList;

interface FindCustomerSearchCriteria {
attribute string searchName;
attribute CustomerList searchResults;

} ;

interface FindCustomerViewControllerinterface {
oneway v oid populate (in FindCustornerSearchCriteria fcsc

void update (out FindCustomerSearchCriteria fcsc) ;
} ;

interface FindCustomerDirectorinterface {

} ;

oneway void requestBusinessRequest (in long e v entid,
in FindCustomerViewControllerinterface fc) ;

• Table 5 · First successful interiace

After using this interface successfully, we found that there were a number of problems with it. These are
described below. After a number of iterations, the final interface (see Table 6) was completed.

II ****** * **************** * **********************************
II * IDL for Network Computing proo f of concept*************
II **

II
II file: POCll.IDL
II First created: 29 September 1997

Enum Events {
FindCustomerByName,
FindCustomerByAddress,
FindCustomerByCity };

struct Customer {
string firstName;
string lastName;
string city;

} ;

typedef sequence<Customer> CustomerSequence;

interface FindCustomerDirector {

52

long requestBusinessRequest
in Events Eventid,
in string searchName,
inout CustomerSequence results) ;

} ;

• Table 6 - Final interface

6.2.3 Compiling an IDL file

Once the interface has been finalised, and has been defined in an IDL file, it must then be compiled. The
IDL compiler is different on each platform and implementation. On the Java platform, using Ort>ixWeb, the
IDL compiler is simply called IDL.

When an IDL file is compiled, it produces two different types of files. The first type of file is what is known as
a skeleton file. Skeleton files are essentially just what their name describes - skeletons which need bodies.
For example, a method called populate was defined on the client, which was given a blank model object,
and was expected to fill it with data. The IDL compiler took the IDL definition and produced a Java class that
required implementing. I took this Java class, and filled in the relevant methods to produce the desired
outcome of a fully populated model object.

6.2A Issues that were addressed

Deadlock

In the standard use of CORSA based applications, transactions are fulfilled in a synchronous nature. A
client makes a call to the server. The server then performs its function , and returns a result to the client.

The model that we were required to wor1< with was of an asynchronous nature. This means that when the
transaction is completed the server must call the client. In our case the update method of the View
Controller object on the client is called from the server.

Method calls on the server can be made asynchronous by using the oneway modifier. This can only be
used when there are no values to be returned from the server. Callback type methods can be used to
bypass this feature.

To ensure that deadlock did not occur, we used a combination of making asynchronous calls to the server,
with a multi-threaded architecture on the client. This result was a client that could handle the requirements of
the asynchronous architecture.

Too many calls to the server

Our initial implementation resulted in a large amount of networ1< traffic. We found that this was due to the
fact that CORSA does not use a "pass by value" mechanism, but instead just passes a reference to that
object. Apparently, the "pass by value" mechanism may be defined in the future.

As an example, the following piece of code produced four separate networ1< events for each iteration of the
loop:

for (int i; i<list.length; i++)

getList().getCustomer(i).getCustomerName().getLastName();

Each method resulted in a call to a remote object!

To reduce the amount of networ1< activity, we had to redesign the interfaces. We found that objects

containing only basic data types could be redefined as "structs". A struct is a data container that can hold

53

different basic data types. When the client requests a struct, all of the data is copied across the network,

rather than just a reference being passed.

We also found that a "sequence" data type could be used to hold multiple "structs". A sequence in similar in

nature to the common array, except that it's length is dynamic in nature (it can be altered at runtime).

The Customer object was converted into a struct. The Customerlist then became a sequence of these
Customer structs. By doing this, we were able to significantly reduce the number of calls across the network
to a single call and response. Further access to the list would occur locally, since the data now resided on
the client.

6.3 Java client

6.3.1 Requirements

The goal of the client application was to wrap the above functionality with a user-friendly interface. The

interface should resemble the current C++ version of the "Find Customer" panel.

The components of the interface should be Java beans.

6.3.2 Implementation

Tabbed Notebook

When the interface was first designed, many of today's common user interface packages were not

available. The components that we have to work with included the basic AWT objects, and a multicolumn

listbox that came with the Visual Age for Java development environment.

One of problems was that there was no tabbed notebook UI component. A tabbed notebook such as the

one shown in Figure 9, is a good example of what was needed for client of Find Customer. When a user

clicks on one of the three tabs along the top, the screen below the tabs changes.

54

i1 Find: All Files Rei £1
file Edit Yiew .Q.Ptions !::!.elp

Name g. Location I Date I Advanced I

Named:

,!;;ontaining text:

.::1

ocalharddrives C: ,D:.E ,F.,G·,H· .:1
P" Include ;utfo!ders ftrowse... I

• · rmd: All Files . · · Rlil £1
file f.dit Yiew Qptions .!:!elp ----·------- --------------1

Name g. Location Date I Advanced I
r.' ~II file~
(" Find all files ! Mod,tied .:J

F;,d Now· I.·
Sto.Q 1 ·

(" ,between I 8 /1 2/B"'l _:J and J 8 /03/98 .:] Ne.!{:t S~arch :I
(" during the previ001_J1 ~ month(sj

(" _during the previ~s. I 1 iJ day{s)

i1 Find: All Files . . : · .· , · 1100£1
file ~dit Yiew Qptlons Help

Name & Location I Date ! Adv~:iceJJI

Of n,pe:

~ize is:

I All Files and F ciders

.:11

• Figure 9 • Use of tabbed Notebooks

:J KB .:J

.::1
I FJrfdNpW' I

Si0.Q. ·-1.
.:Ne.!tts·e~I,.

To realise the function of a tabbed notebook I used a combination of three Java AWT buttons along the top

of the panel. Below these buttons, I added another panel with its layout manager set to Cardlayout. The

card layout manager allows the designer to place a number of different sets of objects on each "card". A

55

current card can be selected, and the objects associated with it are then displayed. I used this functionality

in combination with the buttons to simulate a tabbed notebook.

The implementation of the tabbed notebook functionality was completed with the help of the Visual Builder

of Visual Age for Java. This tool allows you to create both user interfaces, as well as some of the

functionality behind them. Figure 10 shows how Visual Programming is used - a card layout object is shown

at the top of the diagram. This represents the layout property of the panel in the bottom of the diagram.

When changes are made to this object, they are reflected in the actual layout object in the panel.

The buttons generate events when they are pressed. The arrows indicate the actions that are performed

when these events occur. In the example in Figure 10, a method is called on the Cardlayout object that

changes the current "card" in the view. The result is that when one of the buttons is pressed, the display

below it changes to reflect the new panel.

by Name

Name Format

r First r Last C Alternate

Name

1-···-·-·--··-···· .. ·-···-····--··········--·····----·-···-····---Fi_n_d __

• Figure 10 - Visual programming

The above design was then compiled, and added to a simple test program. The results are shown below in

Figure 11 . Pressing the relevant button can access each of the different panels.

56

~Test frame · l!llill.!1
lf6y'f{~-m·e·11 by Address I by Postal Code l
byName

Name Format

r First I Last

Name

by Name j j 1 by Address JI by Postal Code j
by Address

Street

Number Name Subtitle

I L ,, , .. I_ ____ ,
BJ.Ji/ding

Apa rtment Name Floor

I I I --

by Name j by Address I H.~.Y .. e9~-~-~-! . .9.9..~.~il
by Postal Code

Postal Code

r Alternate

• Figure 11 - Implementation of Tabbed Notebook functionality

UI Components are Java Beans

Fir\d ~ I

Advan~~~ --l
Fjnd .. <·~ '~

Advar;iced :> I
· .:Fin_d ;· :_ .. '~-,:_j

All of the UI components were converted into Java Beans. This is a good practice to follow, since it

promotes code reuse, and forces the developer to closely follow data abstraction rules. The Java Beans can

be (and were) easily added to the component palette. They can now be easily added to other applications

through a simple "drag and drop" process.

57

Multiple thread design

The NC client was designed in a way so that each of the major components would run in it's own thread.

There were three main components that were run as separate threads. These were:

• The main application

• Each FindCustomer use case dialog box

• The CORBA communication monitor

This resulted in an application that would not suffer from deadlock.

6.3.3 Client Usage

When the program is first started, the user is presented with a plain screen with a number of menu options.

Most of the options are "greyed out'', and a designed to be implemented in further releases of the project.

One of the options is to search for customers.

When the user selects the "Find Customer'' option, a window is displayed. The user then enters the desired

search criteria, and presses the find button. The results are then displayed in a list box below. See Figure 12

for an example.

58

Name Format

.(e First/ Last

• Figure 12 - Find Customer usage

6.4 C++ server

The C++ server was based on the Voyager client. The Voyager client is a program that is used to perform

everyday customer requests by a Customer Service Representative at a Telephone company. For example,

service requests, billing information, etc.

One of the integral parts of the application is the ability to identify the "customer" who is calling. As has

already been shown, this can be done in a number of ways - for example, "by name" or "by address". The

functionality of searching for customers had already been implemented. What needed to be done was to

integrate this current code with a CORSA interface.

59

6.4.1 CORBA Integration

The starting point to the CORSA integration was to take the IDL interfaces that were now already written,

and to compile the C++ version of them. The result was similar to the Java version, except that we now had

skeletons in the C++ language.

-
i nterta ce. i di

• Figure 13 - IDL compiling

These skeletons were then used to derive concrete classes from.

6.5 Performance

6.5.1 CORBA

--~--
Java --.....

We looked at how we could measure the performance of a CORSA implementation.

We found example software that would test a wide range of data types and allow selection of the buffer size.

We had no problem making the software work and could quickly produce a range of statistics if these were

required (testing many simultaneous clients would be more of a challenge).

6.5.2 Java

The apparent performance of the Java client was excellent. All operations other than large CORSA based

requests resulted in sub-second performance. Many of the earlier performance issues that may have

caused concern in the Java community appear to have been solved (or at least reduced) by the use of JIT

Oust in time) compilers.

Performance can only be expected to increase with the impending release of Sun's "High Performance

Java." With the advent of specialised Java microchips, this too will be surpassed.

60

Massey University Computing Services

RLRamsay
Name:
Printed from:

RL Ramsay
cc-stb2-36
PRIVATE Environment:

Printed in: UG Computing Laboratory
student User:

Host:
Date:

cc-stb2-36
Tue Feb 29 12:41:17 2000

You have been allocated a resource budget of $44.41 for PRIVATE,
before this print job started you had $5.21 remaining.

RULES OF THE LAB

* NO ID, No entry
* NO smoking eating or drinking
* NO playing games
* No dirty shoes or gumboots
* NOISE to be kept to a minimum
* NO copying of software
* NO visitors
* NO removing, tampering or otherwise interfering with computer equipment
* REPORT faults to supervisors
* PUT unwanted printing in recycle bins

6.6 Future enhancements

6.6.1 Split reassessment

The split between the client and server should be reassessed. One of the reasons the split was made

between the controller and director classes was because of the possible performance difficulties of Java. It

has been shown that the performance was adequate, and with further developments of Java performance

in the future it may be possible to move a more significant of the overall code base onto the Java client.

6.6.2 Middle tier

In this project, there were actually four tiers - the client, the CORSA server, the real server, and the

database. We believe that this is one too many. The CORSA server should be moved to the "real" server. If

the split between client and server moves from the controller / director to the director / service, then that is

even more reason to make the move. This is because the service objects currently reside on the "real"

server.

Removing this unnecessary tier would have a number of tangible benefits:

6) Hardware costs would be reduced, as this extra tier would be eliminated. The work that it originally did would be moved

to the Java client.

7) Performance would increase. By eliminating one of the tiers, we reduce the number of steps, and hence time that is

required to run a transaction.

8) Increased stability. If the OS/2 tier were to fail, the whole system would currently halt. By removing of the tiers, we

remove a potential point where the system could fall over.

9) Decreased risk - as was stated earlier in this chapter, there were very few CORBA solutions available for the OS/2

platform. If the company which manufactures the CORBA solution was to collapse, then the project would be at risk as

there would be no further development or support of the CORSA line. The server platform that is AIX currently has many

different solutions available for it.

6.6.3 Data stnactures

The data structures that were used in this project were all based upon the struct data type. This is because

we had difficulty in getting more complex data structures to be passed across the interface between client

61

and server. Further investigation needs to be done to determine why these difficulties were experienced,

. and how a work-around could be achieved.

6.6.4 CORBA services

CORBA has a number of services than can assist this project. Further research should be made into how

services such as "Naming" and "Security" can be used. The security service could be used to allow this

project to be extended to the Internet to allow online transactions.

6. 7 Conclusions

It has been shown that CORBA can be used to bind two different platforms and two different programming

languages together. The Java language and the C++ language match each other well.

Modem Java technologies such as Java Beans and the use of the JDK1 .1 event model were demonstrated.

Performance was shown to be excellent.

A number of future topics of research have been given. A reassessment of the split position between client

and server should be made. Removal of the middle tier may lead to many improvements. Assessment and

extension of current data structures may lead to other benefits. Finally, research into other CORBA services

should be conducted.

All of the aims of this project have been satisfied.

62

7. Conclusions

It has been shown through use of two practical projects that the Internet can be

used to add value to current data sets and existing applications.

7.1 Using a current data set

The first project (Toll Estimator) involved simulating the use of records from a

telephone company. Rating data that resided in a DB2 database was used to

provide an application that allowed a customer to find out the cost of a potential

phone call. Internet technologies such as Java and its communications

component called Remote Method Invocation (RMI) were used to create this

application. This "applet'' which can run inside a standard web browser was easy

to run and use. All the customer had to do was go to a certain web page, and the

program would start automatically.

7.2 Using a current application

The second project (Find Customer) involved taking an existing application, and

adding a Java based front-end to part of its functionality. The application used was

C++ based, and was part of an application used to answer customer's queries.

The functionality that was extended was a subsystem that provided search

capabilities for finding customers matching certain criteria.

This existing functionality was wrapped with a CORBA interface, and made

available with an Object Request Broker. A Java based client was then written

which made a connection to the defined CORBA interface, made a call to that

subsystem, passing a defined search criteria. The results were then received

back, and displayed in the Java application.

7.3 The use of Internet based technologies

Internet based technologies were used in the two projects mentioned above. One of

the reasons for the success of these projects was because of the use of industry

63

based standards. These standards allow different applications from different

manufacturers to operate with each other.

It was shown how a DB2 database developed by IBM was used in conjunction with a

Java (Sun Microsystems) program which ran inside a web browser from Netscape

Communications. It was also shown how an existing C++ based application

developed by IBM New Zealand could be linked using a CORSA system developed

by Orbix, to a Java (Sun Microsystems) based application.

By using these common standards, programs can interoperate without too much

difficulty. The Internet has further strengthened the use of these standards with the

availability of web browsers and their embedded Java Virtual Machines.

With the increasing popularity of the Internet, and the growth of Internet based

applications, it would seem likely that there will be more opportunity tor existing

applications and data sets to be extended to either the Internet itself, or internal

corporate use.

64

8. Appendix A- Toll Estimator documentation

8.1 Package COM.ibm.voyager

111terftJce /11tlex.

• Callable

• Database

C/tJSB I 11tlex.

• CaJICost

• Calllnfo

• Message

• Messenger

• ToJIEstimator

• TollFrame

8.1.1 Interface COM.ibm.voyager.Callable

public interface Callable

The Callable interface provides a mechanism for making callbacks from a messenger

that executes in a separate thread.

Version:

1.1.1

Author:

65

Nigel Ramsay

See Also:

Message, Messenger

Metltotl /11tlex.

setCal/Cost(Message)

Called by a messenger to respond to a request for the cost of a call The CallCost

object that is contained in the contents of the message is filled with the details about

the cost of the call.

setLocations(Message)

Called by a messenger to respond to a request for the list of locations.

setMessenger(Messenger)

Called by a messenger to respond to inform the implemented version of this abstract

class of the messenging object that it will use for making requests for information.

Metltotls

setCal/Cost

public abstract void setCallCost(Message arg)

Called by a messenger to respond to a request for the cost of a call The CallCost

object that is contained in the contents of the message is filled with the details about

the cost of the call. The implemented version of this abstract method is called in

response to a request made to the messenger by calling

myMessenger.requestCallCost(this, myCalllnfo);

Parameters:

arg - Message containing CallCost object (and possible error strings)

See Also:

66

Messenger, CallCost

setLocations

public abstract void setLocations(Message arg)

Called by a messenger to respond to a request for the list of locations. The Vector

object which is contained in the contents of the message is filled with strings of each of

the different locations. If any errors have occured then the message will contain them.

The implemented version of this abstract method is called in response to a request

made to the messenger by calling myMessenger.requestlocations(this);

Parameters:

arg - Message whose contents are a vector

See Also:

Messenger, Vector

setMessenger

public abstract void setMessenger(Messenger arg)

Called by a messenger to respond to inform the implemented version of this abstract

class of the messenging object that it will use for making requests for information. The

creator of the implemented version of this abstract class must be aware that they can

not make any calls of the messenger until this method has been called. The checking

could be done as follows:

while(mess e nger==null) {
t r y {

Thr e a d. s leep(lOO) ;
} ca t ch (Excep tion e)

System .out .pr intln ("error message goes here");

Parameters:

arg - The messenger object that will respond to request for information

8.1.2 Interface COM.ibm.voyager.Database

public interface Database

67

extends Remote

The Database remote interface provides a mechanism for making specific calls to a

database.

Version:

1.1.1

Author:

Nigel Ramsay

See Also:

Databaselmpl

Metkod l1ttlex.

getCal/Cost(Cal/Info)

This abstract method makes a query to a database for the cost of an intended

telephone call.

getLocations()

This abstract method makes a query to a database for a list of the different

locations from where users can make telephone calls to or from.

Metltods

getCal/Cost

public abstract Message getCal1Cost(Cal1Info arg)
throws RemoteException

This abstract method makes a query to a database for the cost of an intended

telephone call. The methods extracts the data from the Calllnfo object, which it uses

for the database query. The results are then packaged up into a Message object. The

results stored inside the Message object are packaged inside a CallCost object. If any

68

errors occur while attempting to access to retrieve data from the database, these will

also be stored inside the Message object.

See Also:

Message, Databaselmpl, CallCost

getLocations

pub lic abs tract Message g e tLocations() thr ows
RemoteExc eption

This abstract method makes a query to a database for a list of the different locations

from where users can make telephone calls to or from. The results are packaged up

into a Message object. The results stored inside the Message object are packaged

inside a Vector which contains a number of strings. If any errors occur while

attempting to access to retrieve data from the database, these will also be stored

inside the Message object.

See Also:

Message, Databaselmpl, Vector

8.1.3 Class COM.ibm.voyager.CallCost

java . lang.Object

I
+--- -COM.ibm.voyage r . CallCost

public class CallCost

extends Object

implements Serializable

The CallCost class is used for holding call cost data

Version:

1.1.1

Author:

69

Nigel Ramsay

See Also:

CallCost, Calllnfo

Cal/Cost()

Constructs a CallCost object with variables initialised to 0

Cal/Cost(float, float)

Constructs a new CallCost object with variables set to the supplied parameters.

Metltod l11t/ex.

getBaseRate()

Returns the base rate of the call.

getTota/Cost()

Returns the total cost of the call.

setBaseRate(f/oat)

Sets the base rate of the call.

setTota/Cost(f/oat)

Sets the total cost of the call.

co11s tr11e Fors

Cal/Cost

public CallCost()

Constructs a CallCost object with variables initialised to 0

Cal/Cost

public CallCost(float newBaseRate, float newTotalCost)

70

Constructs a new CallCost object with variables set to the supplied parameters.

Parameters:

newBaseRate - The base rate of the call. Units = dollars per minute.

newTotalCost - The total cost of a call. Units= dollars.

Metltods

getBaseRate

public float getBaseRate()

Returns the base rate of the call.

Returns:

the base rate.

getTota/Cost

public float getTotalCost()

Returns the total cost of the call.

Returns:

the total cost.

setBaseRate

public void setBaseRate (float arg)

Sets the base rate of the call.

Parameters:

arg - The base rate.

setTota/Cost

public void setTota lCos t(floa t a rg)

Sets the total cost of the call.

Parameters:

71

arg - The total cost

8.1.4 Class COM.ibm.voyager.Calllnfo

java.lang.Object

I
+----COM.ibm.voyager.Cal1Info

public class Calllnfo

extends Object

implements Serializable

The Calllnfo class is used for holding the details of a proposed telephone call

Version:

1.1 .1

Author:

Nigel Ramsay

See Also:

CallCost

Cal/Info()

Constructs the Call Info object.

Calllnfo(String, String, String, int, int, String, int)

Constructs the Call Info object with variables set to the supplied parameters.

Metlfod l11tlex.

getAmPm()

72

Returns a string indicating if the indended call is either before or after

noon

getDay()

Returns a string containg the day name of an intended call

getFrom()

Returns a string containing the location from which an intended call is

to be made

getHour()

Returns an integer containg the hour of an intended call.

getLength()

Returns an integer containg the length of an intended call.

getMinute()

Returns an integer containg the minute of an intended call.

getTo()

Returns a string containing the location to which an intended call is to

be made

setAmPm(String)

Sets the call time as either AM or PM to indicate if the indended call is

either before or after noon

setDay(String)

Sets the day name of an intended call

setFrom(String)

Sets the location from which an intended call is to be made

setHour(int)

73

Sets the hour of an intended call.

setLength(int)

Sets the hour of an intended call.

setMinute(int)

Sets the minute of an intended call.

setTo(String)

Sets the location to which an intended call is to be made

co11str11ctors

Cal/Info

public Cal1Info()

Constructs the Call Info object. The variables are initialised to

From = 11 11
;

To = II";

Day= 11 .. ;

Hour= 12;
Minute= O;
Length= O;
AmPm = " am" ;

Cal/Info

public Cal1Info (String newFrorn,
String newTo ,
String newDay,
int newHour,
int newMinute,
String newAmPrn,
int newLength)

Constructs the Call Info object with variables set to the supplied parameters.

Parameters:

newFrom - String containing the From location.

newTo - String containing the To location.

newDay - String containing name of the day on which the intended call is to be made.

74

newHour - Hour on which the intended call is to be made, where the value is between

1 and 12

newMinute - Minute on which the intended call is to be made

newAmPm - String containing in lowercase either

am
or

pm

newlength - Length of the call in minutes

Metltods

getAmPm

public String ge tAmPm()

Returns a string indicating if the indended call is either before or after noon

Returns:

Either "am" or "pm"

getDay

public String getDay()

Returns a string containg the day name of an intended call

Returns:

Day name. eg: "Monday"

getFrom

public String getFrom()

Returns a string containing the location from which an intended call is to be made

Returns:

From location name. eg: "Petone"

75

getHour

public int g e t Hour ()

Returns an integer containg the hour of an intended call.

Returns:

Hour. The value will be between 1 and 12. eg: 10

getLength

public i nt ge t Length ()

Returns an integer containg the length of an intended call. The value will be between 0

and java. Integer.MAX_ VALUE

Returns:

Call length. eg: 120

getMinute

pub lic int getMinute()

Returns an integer containg the minute of an intended cal l. The value will be between

0 and 59.

Returns:

Minute. eg: 45

getTo

public String getTo()

Returns a string containing the location to which an intended call is to be made

Returns:

To location name. eg: "Petone"

setAmPm

p u b lic void se tAmPrn(String a r g)

Sets the call time as either AM or PM to indicate if the indended call is either before or

afternoon

76

Parameters:

arg - Either am or pm

setDay

public void setDay(String arg)

Sets the day name of an intended call

Parameters:

arg - Day name. eg: "Monday"

setFrom

public void setFrom(String arg)

Sets the location from which an intended call is to be made

Parameters:

arg - Location name. eg: "Petone"

setHour

public void setHour(int arg)

Sets the hour of an intended call.

Parameters:

arg - Hour. The value must be between 1 and 12. eg: 10

set Length

public void setLength(int arg)

Sets the hour of an intended call.

Parameters:

arg - Call length. The value must be between O and java.lang.lnteger.MAX_ VALUE.

eg: 10

setMinute

public void setMinute(int arg)

n

Sets the minute of an intended call.

Parameters:

arg - Minute. The value must be between O and 59. eg: 10

setTo

public void setTo(String arg)

Sets the location to which an intended call is to be made

Parameters:

arg - Location name. eg: "Petone"

8.1.5 Class COM.ibm.voyager.Message

java.lang.Object

I
+----COM .ibm.voyager . Message

public class Message

extends Object

implements Serializable

The Message class provides a container for holding an object for sending between

both threads and remote objects. What makes this class special is that it also provides

a way in which error messages may be passed which having to cause exceptions to

occur. This class was created to solve the problem of indicating the presence of an

error to a callback function. Each message may contain one object and any number of

error messages.

Version:

1.1.1

Author:

Nigel Ramsay

78

Message()

Metltod /11tlex.

addError(String)

The addError method takes a string and adds it to the list of strings that may have

already been added.

getContents()

The getContents method returns contents of the Message

getError()

The getError method returns an error message.

isContents()

The isContents method tests to see if an object has been added to this message

using the setContents method.

isError()

The isError method tests to see if an error has been added to this message using the

addError method.

setContents(Object)

The setContents method takes any object and adds it to the message.

co11str11etors

Message

public Message {)

Metllotls

addError

public void addError{String arg)

79

The addError method takes a string and adds it to the list of strings that may have

already been added.

Parameters:

arg - The error message

getContents

public Object getContents()

The getContents method returns contents of the Message

Returns:

The object that was stored with the setContents method. If the setContents method

was not called, then this method will return null

See Also:

setContents

getError

public String getError()

The getError method returns an error message. Example code:

while(arg.isError()) {

statusString = arg.getError();

statusString= statusString.concat(arg.getError());

statusString = statusString.concat("; ");

}

Returns:

A single error message. The act of getting this error will also remove it from the list.

You can also check to see if an error exists by calling the isError method. Errors are

removed from the Message in the opposite order to which they were added (ie: it is an

error stack). If no error exists, then this method returns an empty string.

See Also:

80

setContents

isContents

public boolean isContents()

The isContents method tests to see if an object has been added to this message

using the setContents method.

Returns:

True if this message contains an object. Otherwise, false.

See Also:

setContents

isError

public boolean isError()

The isError method tests to see if an error has been added to this message using the

addError method.

Returns:

True if this message contains at least one error. Otherwise, false.

See Also:

addError

setContents

public void setContents(Obj ec t arg)

The setContents method takes any object and adds it to the message.

Parameters:

arg - Any object

8.1.6 Class COM.ibm.voyager.Messenger

java.lang.Ob ject

I
+----COM.ibrn.voyager.Messenger

81

req uestCallCost(Callable, Calll nfo)

This method is called by external classes to make a request for the

cost of a specific call.

requestlocations(Callable)

This method is called by external classes to make a request for the list

of locations.

run()

This method monitors for calls to the request type methods, and if any

calls are made, it in turns makes a call to the corresponding execute

type methods.

start()

This method starts the Messenger thread.

stop()

This method stops the Messenger thread.

Coifs tr11e Fors

Messenger

public Messenger(String arg)

Contructs a new Messenger object. Because the messenger is run as a seperate

thread, the start method must be called before any transactions will be processed.

Parameters:

83

arg - The URL of the remote server. The example:

Messenger messenger= new
Messenger ("rrni: // java.ibrn.corn:2001 / rnyMessenger");

See Also:

start

Metltotls

requestCal/Cost

public v oid requestCallCost(Callable caller, Cal1Info
info)

This method is called by external classes to make a request for the cost of a specific

call. This method notes the request, and then returns control to the calling class. After

the request has been processed by this thread, a call is made to the setCallCost()

method of the calling class with the results of the request.

Parameters:

caller - A reference to the calling class

info - A class containing all the info about the inteded call

See Also:

setCallCost

requestLocations

public void requestLocations(Callable arg)

This method is called by external classes to make a request for the list of locations.

This method notes the request, and then returns control to the calling class. After the

request has been processed by this thread, a call is made to the setlocations()

method of the calling class with the results of the request.

Parameters:

caller - A reference to the calling class

84

run

See Also:

setlocations

public void run()

This method monitors for calls to the request type methods, and if any calls are made,

it in turns makes a call to the corresponding execute type methods. This method also

makes the connection to the RMI server.

See Also:

executeCallCostRequest, executelocationsRequest, requestCallCost,

requestlocations

start

public void start()

This method starts the Messenger thread.

stop

public void stop()

This method stops the Messenger thread.

8.1.7 Class COM.ibm.voyager.TollEstimator

java . lang.Object

i
+-- --java .awt.Component

I
+---- java. a wt .Con t a iner

I
+----java.awt . Panel

I
+-- --j av a.app let.Applet

I
+--- -

COM . i bm .voy age r.To llEst imator

public class TollEstimator

extends Applet

implements Runnable

85

This class is an applet that provides toll call estimation facilities to web users.

Version:

1.1.1

Author:

Nigel Ramsay

co11str11etor f 11tlex.

Toil Estimator()

Mat/tot/ /11tl1x.

destroy()

Handle the Applet destroy method.

getAppletlnfo()

Information about this applet.

getParameterlnfo()

This method returns information about the parameters that need to be supplied to

make the applet work correctly.

init()

This method initialises the applet, and instantiates the Messenger and TollFrame

classes

paint(Graphics)

This method currently does nothing.

86

run()

This method does nothing but continuely look

start()

This method starts up the TollFrame and Messenger classes

stop()

This method stops the TollFrame and Messenger classes.

Coifs tr11ef ora

Toi/Estimator

public TollEs timator()

Metlfotls

destroy

public void destroy()

Handle the Applet destroy method.

Overrides: "

destroy in class Applet

getAppletlnfo

public String getAppl etinfo()

Information about this applet.

Returns:

The title of the applet

Overrides:

getAppletlnfo in class Applet

public v oid start()

This method starts up the TollFrame and Messenger classes

Overrides:

start in class Applet

stop

public void stop()

This method stops the TollFrame and Messenger classes.

Overrides:

stop in class Applet

8.1.8 Class COM.ibm.voyager.TollFrame

java.lang.Object

I
+----java.awt . Component

I
+----java.awt . Container

I
+---- java.awt.Window

I
+----java.awt.Frame

I
+----

COM.ibm.voyager.TollFrame

public class TollFrame

extends Frame

implements Callable, Actionlistener, Runnable

This class provides all of the visual needs of the Toil Estimator applet. Most of the

visual components were developed using the Visual Age I Java visual builder. This

class implements the Callable interface which lets it make requests of Messenger

class for information from the database. This class also implements the Runnable

interface, and is threaded.

89

Constructor

Returns:

java.awt.Frame

Metltotls

action Performed

public void actionPer fo r med(ActionEvent e)

Method to handle events for the Action listener interface.

Parameters:

e - java.awt.event.ActionEvent

hand/eEvent

public boolean handleEvent(Event evt)

Method to handle old AWT events

Parameters:

evt - java.awt.Event

Returns:

boolean

Overrides:

run

handleEvent in class Component

public v o id run()

TollFrame.run method comment.

setCal/Cost

pub lic void s etCa llCost(Message arg)

TollFrame.setCallCost method comment.

91

9. Appendix B - Find Customer documentation overview

9.1 Package gui12

9.1.1 Interfaces

• MainViewlistener

9.1.2 Classes

• EventProcessor

• MainController

• MainView

• MainViewlistenerEventMulticaster

• Voyager

9.2 Package fc12

9.2.1 lnterfacess

• ByAddressPanellistener

• ByNamePanellistener

• ByPostalCodePanellistener

• FindCustomerPanellistener

9.2.2 Classes

• ByAddressPanel

• ByAddressPanellistenerEventMulticaster

• ByNamePanel

• ByNamePanellistenerEventMulticaster

93

• ByPostalCodePanel

• ByPostalCodePanellistenerEventMulticaster

• FindCustomerPanel

• FindCustomerPanellistenerEventMulticaster

• FindCustomerView

• FindCustomerViewController

• SearchPanel

9.3 Package poc12

9.3.1 Interfaces

FindCustomerDirectorRef

9.3.2 Classes

Customer

CustomerSequence

Events

FindCustomerDirector

_FindCustomerDirectorHolder

_sequence_Customer

94

10. References

1. Terry Sullivan, "As Simple as Possible", The Usable Web, April 1997
(http://www.pantos.org/atw/35504.html).

2. T. Berners-Lee, "Hypertext Transfer Protocol -- HTIP/1.0'', RFC 1945,
May 1996 (http://www.w3.org/pubM/WW /Protocols/rfc1945/rfc1945).

3. Netscape Communications Corporation, "PERSISTENT CLIENT STATE
HTTP COOKIES", June 1997 (http://home.netscape.com/newsref/std/
cookie_spec.html)

4. David Whalen, "The Unofficial Netscape Cookie FAQ", Cookie Central,
May 1997 (http://www.cookiecentral.com/unofficial_cookie_faq.htm).

5. Arman Danesh, Teach Yourself JavaScript in a week, Sams Publishing,
1996.

6. National Center for Supercomputing Applications, ''The Common
Gateway Interface", December 1995 (http://hoohoo.ncsa.uiuc.edu/cgi/).

7. Kaveh Basiri, "Programming with the NSAPI", Proc. of Netscape
Developers' Conference, March 1996 (http://home.netscape.com/misc/
developer/conference/proceedings/s5/index.html).

8. Microsoft Corporation, "Internet Server API Documentation", July 1996
(http://www.microsoft.com/win32dev/apiext/isalega1.htm).

9. Netscape Communications Corporation, "Enterprise Server
Programmer's Guide", June 1997
(http://developer.netscape.com/library/documentation
/enterprise/nt/index.html, http://developer.netscape.com/library
/documentation/enterprise/unix/index.html).

10. Larry Wall, 'What is Perl?", June 1996 (http://www.perl.com/perl/info
/synopsis.html) .

11. Yahoo, "SOL", June 1997 (http://www.yahoo.com/Computers_and_
lnternet/Programming_Languages/SQL/).

12. Sun Microsystems, Inc, "JDBC Guide: Getting Started", 1997
(ftp://ftp.javasoft.com/docs/jdk1 .1 fidbc.pdf) .

13. Object Management Group, 'What is CORSA?", 1999
(http://www.omg.com/corba/whatiscorba.html)

95

