Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

NMR STUDIES OF INTERNAL ROTATION

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University.

ALAN ROBERT FURNESS
1975

ACKNOWLEDGEMENTS

I would like to thank my Supervisors,

Dr K.W. Jolley and Dr I.D. Buckley, for their enthusiasm, assistance and encouragement during the course of the work summarised in this thesis.

I would also like to thank Dr D.N. Pinder for his work in collaboration with Dr F.D. Buckley on the density matrix program.

Finally I thank the University Grants

Committee for the award of a post-graduate

scholarship which enabled this study to be made.

ABSTRACT

Density matrix theory has been used to develop a computer program for the solution of a four-nuclear spin system. A description of the theory used to develop this program is given in Chapter Three.

This theory has been used to study a range of p-substituted nitrosobenzenes. The activation parameters have been determined and for N,N-dimethyl-p-nitrosoaniline, a comparison has been made with previous studies which have used more approximate methods.

The solvent dependency of the barrier to rotation has been investigated in the N,N-dialkyl-p-nitrosoanilines and no significant solvent dependence found.

In the early stages of this thesis, attempts were made to find a tetrahedral cobalt (II) complex involving ligand exchange, but no such complex suitable for a detailed NMR investigation was found. The investigation, though unsuccessful, has been briefly reported. These findings may aid further work in this area.

LIST OF CONTENTS

		Page numb
Acknowledgeme	ents	ii
Abstract		iii
List of Conte	ents	iv
List of Table	es	vii
List of Figur	res	viii
List of Symbo	ols	x
CHAPTER ONE:	AN INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE	
1.1	Nuclear Spin	1
1.2	Chemical Shifts	2
1.3	Spin-spin Coupling	3
1.4	The Spin Hamiltonian of the Multi-spin System	4
1.5	Relaxation	6
1.0	Saturation	9
CHAPTER TWO:	THE APPLICATION OF NMR TO KINETIC STUDIES INVOLVING INTRAMOLECULAR EXCHANGE	
2.1	Relaxation Mechanisms	11
2.2	Thermodynamic Parameters of Intramol- ecular exchange	14
2.2.1	Determination of Ea and A	16
2.2.2	Determination of ΔH^{\dagger} and ΔS^{\dagger}	16
2.3	Intramolecular Exchange	17
2.3.1	Chemical Exchange	
2.3.2	Uncoupled Two-site Case	17 18
2.3.3	Chemical Exchange Considering Coupling	20
2.4	The Use of Approximate Equations	22
2.5	"Approximate" Exchange Studies	25
2.5.1	Internal Rotation in N, N-dimethyl formamide	25
2.5.2	Ring Inversion of Cyclohexane	26
2.6	Experimental Problems in Exchange	29

		Page	number
CHAPTER THREE	THE DENSITY MATRIX METHOD APPLIED TO A FOUR-SPIN SYSTEM		
3 - 1	Line Shape Calculations By the Density Matrix Method		32
3.2	Density Matrix		33
3.3	Single Spin System		33
3.4	Usefulness of the Density Matrix Definition		35
3.5	Wave Function and the Density Matrix		37
3.6	Single Spin ½ Nucleus		39
3.7	Intramolecular Exchange		43
3.8	AB Spin System Undergoing Internal Rotation		44
3.9	Detailed Solution of the AB System: Intramolecular Exchange		48
3.10	Strongly-coupled Four-site Exchange System		52
CHAPTER FOUR:	INTRAMOLECULAR EXCHANGE IN THE p- SUBSTITUTED NITROSOBENZENES		
4.1	The N, N-dialkyl-p-nitrosoanilines		55
4.1.1	Properties of the N,N-dialkyl-p-nitroso-anilines		56
4.1.2	Preparation of Compounds		57
4.1.3	Preparation of the Samples		59
4.1.4	Solvents Used for the N,N-dialkyl-p-nitrosoanilines		62
4.1.5	Experimental Conditions		63
4.1.6	Measuring Frocedures		67
4.1.7	Temperature Effects on the NMR Spectra of the N,N-dialkyl-p-nitrosoanilines		68
4.1.8	Temperature Measurements		69
4.1.9	Frequency Measurements		70
4.1.10	Analyses of the Slow Exchange Spectra		71
4.1.11	The Exchange Rate		76
4.1.12	Experimental Matching of the Density Matrix Spectra		78
4.1.13	The Barrier to Rotation		86
4.1.14	Errors in the Activation Parameters		91
4.1.15	Summary		97

		Page number
4.2	The Anion Derived From p-nitrosophenol	100
4.2.1	Purification of p-nitrosophenol	100
4.2.2	Preparation of NaCD	101
4.2.3	Preparation of Samples	101
4.2.4	Temperature Measurements	102
4.2.5	Frequency Measurements	104
4.2.6	Analysis of the Slow Exchange Spectra	104
4.2.7	The Exchange Rate	106
4.2.8	The Activation Parameters	108
4.2.9	Summary	109
4.3	Conclusions	113
CHAPTER FIVE	LIGAND EXCHANGE IN COBALT (II) TETRAHEDRAL COMPLEXES	
5.1	Phosphine Type Ligands	117
5.1.1	Preparation of dichlorobis(diphenyl-methylphosphine) Cobalt (II)	117
5.1.2	Discussion	117
5.2	The Ligand Trimethylarsine sulpnide	119
5.2.1	Preparation of Trimethylarsine sulphide	119
5.2.2	Preparation of dihalobistrimethylarsine sulphide Cobalt (II) Complexes	120
5.2.3	Discussion	120
5.3	Pyrazole Type Ligands	121
5.3.1	Preparation of 3,5-dimethyl pyrazole	121
5.2.2	Freparation of 1,5,5-trimethyl pyrazole	122
5.5.3	Preparation of 4-bromo-1,5,5-trimethyl pyrazole	124
5.3.4	Preparation of 3,5-dimethyl-1-phenyl pyrazole	124
5.3.5	Attempted preparation of 1,4-dimethyl pyrazole	125
5.3.6	Discussion	129
5.4	Conclusions	131
Appendix 1		133
Appendix 2		159
References		163

LIST OF TABLES

			Page	number
Table	1.1	Spin properties for a selection of nuclei		2
Table	2.1	Thermodynamic parameters of cyclohexane obtained by different techniques		26
Table	4.1	Solvents and solute solubility		61
Table	4.2	Chemical shifts and coupling constants for the ring protons of (1) and (2) in the slow exchange region		73
Table	4.3	Rotational rates as a function of temperature for compound (1) and compound (2) in acetone-d ₆		80
Table	4.4	Rotational rates as a function of temperature for compound (1) and compound (2) in chloroform-d ₁		82
Table	4.5	Rotational rates as a function of temperature for compound (2) in toluene-d ₈		84
Table	4.6	Activation parameters for (1) and (2)		89
Table	4.7	Temperature gradients in the sample tube in the JEOL JNM-C-60 HL probe at different temperatures for a gas flow pressure of 30 g cm ⁻²		93
Table	4.8	Chemical shifts and coupling constants for the ring protons of the anions of p-nitrosophenol in 1 M K_2CO_3 in the slow exchange region	1	105
Table	4.9	Rotational rates as a function of temperature for a 7% w/v solution of p-nitrosophenol	11	107
Table	4.10	Activation parameters for the anion of p-nitrosophenol in 1 M $K_2\text{CO}_3$	1	110

LIST OF FIGURES

			After page number
Figure	2.1	Relaxation mechanisms	11
Figure	2.2	Experimental data for the rotation about the C-N bond in neat dimethyl formamide (DMF). The numbers in square brackets are literature references.	24
Figure	4.1	The NMR spectrum of a sample of ethyl alcohol + TMS illustrating the use of field frequency sweep	66
Figure	4.2	NMR spectra of N,N-diethyl-p-nitroso- aniline as a 5% w/v solution in acetone-d ₆ , taken at various temp- eratures at 100 MHz	67
Figure	4.3	The spectrum of N,N-dimethyl-p-nitroso-aniline in the slow exchange region.	68
Figure	4.4	The slow exchange spectra of N,N-diethy, -p-nitrosoaniline in chloroform-d, (A), and toluene-d ₈ (B)	69
Figure	4.5	Examples of experimental and theoretical spectra for the H3,H5 nuclei of N,N-dimethyl-p-nitrosoaniline in acetone-d6	77
Figure	4.6	Examples of experimental and theoretical spectra for the H2, H6 nuclei of N, N-dimethyl-p-nitrosoaniline in acetone-d6	78
Figure	4.7	Examples of experimental and theoretical spectra for the H3,H5 nuclei of N,N-diethyl-p-nitrosoaniline in toluene-d ₈	85
Figure	4.8	Examples of experimental and theoretical spectra for the H2, H6 nuclei of N, N-diethyl-p-nitrosoaniline in toluene-d ₈	86

			After page number
Figure	4.9	Arrhenius plots for rotation about the Ar-NO bond of N,N-dimethyl-p-nitrosoaniline in chloroform-d ₁ and acetone-d ₆	87
Figure	4.10	Arrhenius plots for rotation about the Ar-NO bond of N,N-diethyl-p-nitrosoaniline in chloroform-d (1), acetone-d6 (2), and toluene-d8 (3)	90
Figure	4.11	A comparison of Korver et al's data with this investigation's data for rotation about the Ar-NO bond of N,N-dimethyl-p-nitrosoaniline in chloroform-d	91
Figure	4.12	The variation of temperature in a spinning NMR sample tube at 353 K	94
Figure	4.13	The spectrum of the anion of p-nitrosophenol, 7% w/v in D ₂ O containing excess K ₂ CO ₃ , in the slow exchange region	103
Figure	4.14	Examples of experimental and theoretical spectra for the H3, H5 nuclei of the anion of p-nitrosophenol in 1 mol 1-1 K2CO3 (in D2O)	108
Figure	4.15	Arrhenius plots for rotation about the Ar-NO bond of the anion of p-nitrosophenol in 1 M K2CO3 (1) and NaOD (2)	109
Figure	5.1	The observed chemical shift of the methyl protons versus the mole fraction of ligand for 0.05 mol l ⁻¹ dichlorobis(diphenylmethyl phosphine) Cobalt(II) in deuterochloroform at room temperature	
Figure	5.2	The observed chemical shift of the methyl protons versus the mole fraction of ligand for 0.05 mol 1 ⁻¹ dichlorobis(3,5-dimethyl pyrazole) Cobalt(II) in deuterochloroform at room temperature	e 129

List of Symbols

Во	external magnetic field in the + z direction
B ₁	radiofrequency magnetic field
ħ	Planck's constant divided by 27
⅓	Hamiltonian, or Spin Hamiltonian
I ⁺ , I ⁻	raising and lowering operators
I ⁺ , I ⁻ I _x , I _y , I _z	angular momentum operators in units of $h/2\pi$
i	√ -1
Jij	Isotropic spin-spin coupling constant between nuclei i and j in terms of linear frequency. It is related to J_{ij} by the following expression, $J_{ij} = \frac{2\pi J_{ij}}{\hbar}$
Tr	Trace
Tr α β	Trace spin functions
α β	spin functions
α β σ ρ	spin functions sheilding constant
α β σ	spin functions sheilding constant density matrix
α β σ ρ ρ τ,τ	spin functions sheilding constant density matrix the ijth element of the density matrix mean lifetime of the nucleus in a given environment in units of s rad-1
αβ σ ρ ^ρ ij	spin functions sheilding constant density matrix the ijth element of the density matrix mean lifetime of the nucleus in a given environment in units of s rad-1 and Hz-1 respectively. Transverse relaxation time in units
α β σ ρ ρ τ,τ	spin functions sheilding constant density matrix the ijth element of the density matrix mean lifetime of the nucleus in a given environment in units of s rad-1 and Hz-1 respectively. Transverse relaxation time in units of s rad-1 and Hz-1 respectively. Longitudinal relaxation time in units
α β σ ρ ρ ι ι τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	spin functions sheilding constant density matrix the ijth element of the density matrix mean lifetime of the nucleus in a given environment in units of s rad-1 and Hz-1 respectively. Transverse relaxation time in units of s rad-1 and Hz-1 respectively. Longitudinal relaxation time in units of s rad-1 and Hz-1 respectively.

Magnetogyric ratio

f $\gamma B_1/4\pi$

 $\omega_{\mathbf{r}}$ $\gamma_{\mathbf{B}_{1}}$

k_R Boltzmann constant

k specific rotational rate

K[‡] equilibrium constant

X transmission coefficient

angular frequency of proton at site A

angular frequency of proton at site B

 $\langle I_{vT} \rangle$ total angular momentum in the y

direction