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Abstract: Oxytropis ochrocephala Bunge is an herbaceous perennial poisonous weed. It severely affects
the production of local animal husbandry and ecosystem stability in the source region of Yellow River
(SRYR), China. To date, however, the spatiotemporal distribution of O. ochrocephala is still unclear,
mainly due to lack of high-precision observation data and effective methods at a regional scale. In
this study, an efficient sampling method, based on unmanned aerial vehicle (UAV), was proposed
to supply basic sampling data for species distribution models (SDMs, BIOMOD in this study). A
total of 3232 aerial photographs were obtained, from 2018 to 2020, in SRYR, and the potential and
future distribution of O. ochrocephala were predicted by an ensemble model, consisting of six basic
models of BIOMOD. The results showed that: (1) O. ochrocephala mainly distributed in the southwest,
middle, and northeast of the SRYR, and the high suitable habitat of O. ochrocephala accounted for
3.19%; (2) annual precipitation and annual mean temperature were the two most important factors
that affect the distribution of O. ochrocephala, with a cumulative importance of 60.45%; and (3) the
distribution probability of O. ochrocephala tends to increase from now to the 2070s, while spatial
distribution ranges will remain in the southwest, middle, and northeast of the SRYR. This study
shows that UAVs can potentially be used to obtain the basic data for species distribution modeling;
the results are both beneficial to establishing reasonable management practices and animal husbandry
in alpine grassland systems.

Keywords: poisonous weed; UAV; FragMAP; SDMs; BIOMOD; ensemble model

1. Introduction

Global climate change has caused substantial changes to the natural environment [1]
and, therefore, became the dominant environmental factor affecting the geographical
distribution of species [2], especially in the high-altitude regions. The source region of the
Yellow River (SRYR), located in the northeast edge of the Qinghai–Tibetan Plateau (QTP,
China), is an important water conservation area and ecological security barrier [3], and
one of the most important animal husbandry industrial bases of China [4]. As the main
carrier of natural resources and ecological environment [5,6], alpine meadows account for
about 80% of the total area of the SRYR. Climate change, irrational human activities, and
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management are primarily responsible for the continuous deterioration of plant community
structure, including the fast spread of poisonous weeds [7]. It is found that the sustainable
development of the ecological environment and animal husbandry in the SRYR has been
seriously threatened by poisonous weeds [7,8]. One of the most important undesirable
species on QTP is Oxytropis ochrocephala Bunge, an herbaceous perennial poisonous weed
that is rich in indolizine alkaloid (swainsonine) [9]. It may cause livestock poisoning directly
and affect their growth, reproduction, and breed improvement indirectly, especially in
the areas suffering long-term overgrazing [10]. In addition, O. ochrocephala could induce
a strong allelopathy during the process of decomposition [11], which may inhibit forage
growth, reduce species diversity, aggravate grassland degradation, and even destroy
the ecological balance of grassland [12]. However, as a significant source of nitrogen in a
natural grassland, the nitrogen fixation of O. ochrocephala is beneficial to the alpine grassland
ecosystem development [13]; thus, it could play a positive role if reasonably managed.
To date, the distribution of O. ochrocephala, and its relationship to relevant geographical
environment variables, are poorly known. This study is the first attempt to depict the
spatiotemporal distribution of O. ochrocephala, especially, predicting its suitable habitat
distribution and response to climate change.

Species distribution modeling (SDMs) is essential to ensure the consistency of large-
scale studies of biodiversity [14,15], particularly in the fields of invasive, conservation and
evolutionary biology, and biogeography [16]. SDMs can fit very complex relationships
between species presence records and spatial predictors [17] and have been implemented
in the identification of critical habitats and potential effects of climate change [18]. Because
of the distinction of niche and habitat characteristics among different species, scientists
chose various kinds of SDMs for different scopes of application [19–22]. Hence, it is hard
to compare spatiotemporal distribution characteristics of different species (that are pre-
dicted by different SDMs), even within the same areas [19]. Meanwhile, in general, it is
difficult to determine the suitable habitat of a species accurately, only by a single subjec-
tively determined SDM [23]. Fortunately, BIOMOD (BIOdiversity MODelling) provides
10 different modeling methods that can be used to establish an ensemble model to im-
prove the validity of modeling [20–22]. Presence–absence data is the basis of accurately
predicting species spatiotemporal distribution based on SDMs [19]. Traditionally, there
are two methods employed to collect these data: (1) the on-the-ground census method,
which is time and labor-consuming and lacks resources; hence, it is difficult to achieve at
a large scale, especially in fragile regions, due to the destructive sampling [4,24]; and (2)
data collection from publications and specimen museums, which is much easier, despite its
unsystematic sampling method, with a lack of timeliness. On the other hand, the difficulty
of supplying the “absence” dataset is another drawback that may directly reduce the
accuracy of modeling [25]. Therefore, it is urgent to explore a new method to supply the
basic presence–absence data for SDMs. In recent years, unmanned aerial vehicle (UAV)
technology has developed rapidly, featured with timeliness, high resolution, low-cost,
and unified standards [26,27], and provides a new option to overcome the limitation of
traditional sampling methods. Especially, some applications are developed based on the
software development kit (SDK), which greatly improves sampling cooperatively and
efficiency at a regional scale, for example, the fragmentation monitoring and analysis, with
an aerial photography system (FragMAP, a route planning and controlling software) that
was developed by Yi [28].

In this study, an ensemble model based on BIOMOD was established to predict the
distribution of O. ochrocephala in SRYR. The basic presence–absence data of O. ochrocephala
were obtained by the FragMAP system. The specific objectives were to (1) examine the
feasibility of using UAV-based datasets for SDMs, (2) identify the habitat distribution of O.
ochrocephala and explore the dominant variables that affect its spatiotemporal distribution,
and (3) predict its spatial distribution under the scenarios of climate change.



Remote Sens. 2021, 13, 5129 3 of 16

2. Materials and Methods
2.1. Study Area

The SRYR (95◦50′–103◦30′E, 32◦30′–36◦10′N, mean altitude ~4000 m) lies in north-
eastern QTP (Figure 1); it is a critical ecological barrier on the QTP and one of the most
important freshwater resources in China [29]. The SRYR covers an area of approximately
105,190 km2, characterized by low annual temperatures, large diurnal temperature differ-
ences, seasonal precipitation extremes, intense evaporation, and strong solar radiation [4].
It is a fragile eco-environment that is sensitive to climate change. The annual average
precipitation decreases from the southeast to northwest, ranging from 200 to 700 mm, and
annual temperature is between −4 ◦C and 2 ◦C [30]. The degraded grassland accounts
for 36.5% of the available grassland in SRYR, of which 13.13% are poisonous weed-type
degraded grassland [31]. Poisonous weeds account for 50–70% of poisonous weed type
degraded grassland, which leads to a significant decline in grassland utilization [32]. The
soils are mainly alpine steppe soils and alpine frozen soils [33]. The dominant plants are
Sedge and Gramineae [34].
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absence in the source region of Yellow River.

2.2. Field Aerial Photo Collection and Analysis

Field survey data of O. ochrocephala were collected by UAV during the peak growing
season (July to September), from 2018 to 2020 (Figure 1). FragMAP system (installed
and operated on Huawei M5, Shenzhen, China) was used to control the UAV, flying
automatically along Belt routes (one inbuilt fly modes of FragMAP). Briefly, a commercial
DJI MAVIC 2, equipped with a standard built-in 12-megapixel RGB camera (DJI Innovation
Company, Shenzhen, China), was used to take aerial photographs vertically. At the
sampling sites (the areas are representative and suitable for UAV flying), work points
were used to mark the sampling positions on the map of FragMAP, which would be
convenient for subsequent monitoring activities. Under each work point, we set one Belt
route (the coverage area of each Belt route was 40 m × 40 m) with 16 fixed waypoints
(monitoring points for the positions where the aerial photographs were taken) (Figure 2b).
The height was set as 2 m from ground (2.6 m × 3.5 m on the ground) [35,36], and the
ground sampling distance (GSD) was ~0.09 cm (Figure 2a). The pinnate compound leaves
of O. ochrocephala are 5–19 cm in length; therefore, it is feasible to identify O. ochrocephala
clearly on the aerial photographs (Figure 3). A total of 202 work points were set in SRYR,
and 3232 aerial photographs were obtained. At each work point (202 in total), the presence–
absence information was extracted visually by a software proposal classifier (Figure 3),
which was independently developed by the Institute of Fragile Eco-Environment, Nantong
University, based on Java [28]. Experimenters detect the objectives (O. ochrocephala in this
study) visually and mark them by black rectangle on the interactive interface, on which
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any position could be located, based on the location of the aerial photograph and relative
location (based on pixels) (Figure 3). In this study, once O. ochrocephala appeared in any
photograph of the work point (the Belt route, contains 16 photographs), the work point
would be recorded as a present sampling site; if no O. ochrocephala appeared in any aerial
photograph, the work point would be recorded as an absence sampling site. The information
could be exported by proposal classifier. A total of 48 presence records and 154 absence
records in the SRYR were obtained for constructing the models (Figure 1).
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the red lines and numbers are the marks generated automatically and used for making sure that all
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2.3. Environmental Variables

In order to work out the geographic distribution of a suitable habitat of a target species,
a set of characteristics about this species must be defined. In this study, 19 bioclimatic
variables were used, which were obtained from the WorldClim database (www.worldclim.
org/current (accessed on 13 December 2021)). The bioclimatic variables include annual
mean temperature, mean diurnal range of temperature, isothermality, temperature season-
ality, the max temperature of the warmest month, min temperature of the coldest month,
temperature annual range, mean temperature of the wettest quarter, mean temperature
of the driest quarter, mean temperature of the warmest quarter, mean temperature of the
coldest quarter, annual precipitation, precipitation of the wettest month, precipitation of

www.worldclim.org/current
www.worldclim.org/current
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the driest month, precipitation seasonality, precipitation of the wettest quarter, precipita-
tion of the driest quarter, precipitation of the warmest quarter, and precipitation of the
coldest quarter. These variables were generated using averaged interpolated climate data,
during the period from 1950 to 2010; the resolution was 30” (1 km × 1 km) and marked the
variables as climate 1 to 19 in turn (Table A1).

Besides, in order to improve the accuracy of the SDMs, 3 terrain variables and 8 soil
variables were introduced. Terrain variables were introduced from the Shuttle Radar
Topography Mission (SRTM) data (with a spatial resolution of 90 m × 90 m), derived
from the US Geological Survey Administrative (www.usgs.gov (accessed on 13 December
2021)). QGIS Desktop was used to extract slope and aspect, according to the surface
analysis of elevation data. A total of three terrain variables of elevation, aspect, and slope
were resampled to the spatial resolution of 1 km × 1 km and marked as DEM 1 to 3 in
turn (Table A1). Soil variables (spatial resolution of 1 km × 1 km) were obtained from
SoilGrids (www.soilgrids.org (accessed on 13 December 2021)). Eight soil variables, i.e.,
soil thickness, soil organic carbon storage at 0.3–0.6 m depth, soil bulk density, soil clay
content, soil coarse debris volume, soil silt content, soil sediment concentration, and soil
pH at 0.3 m depth, were marked as soil 1 to 8 in turn (Table A1).

The same bioclimatic variables were projected into the future. Potential values for
bioclimatic variables for future climate conditions in the 2050s and 2070s were derived
from two representative concentration pathways (RCPs) of the medium greenhouse gas
emission scenario (RCP4.5) and highest greenhouse gas emission scenario (RCP8.5), based
on the BCC-CSM 1.1 (Beijing Climate Center Climate System Model Version 1.1) climate
model [37,38].

2.4. Model Simulation
2.4.1. Environmental Variables Preprocessing

To reduce multicollinearity in the dataset for the environmental variables, the Pearson
correlation coefficients between each pair of variables were calculated. When the correlation
coefficients between two environmental variables are highly correlated (|r| > 0.8), one of
them will be eliminated. The average importance values of environmental variables were
calculated (n = 10, simulation times) and arranged in reverse order.

2.4.2. Model Construction and Evaluation

BIOMOD includes 10 SDMs: generalized linear model (GLM), generalized boosted
regression model (GBM), generalized additive model (GAM), classification tree analysis
(CTA), artificial neural networks (ANN), surface range envelope (SRE), flexible discriminant
analysis (FDA), multivariate adaptive regression splines (MARS), random forest (RF), and
maximum entropy model (MaxEnt) [39]. The applicability of different models can be
evaluated by calculating the model accuracy with different indexes to screen out the best
model.

To evaluate the quality of predictions, the input samples were randomly divided into
two subsets, 70% of the total samples were used as training samples, whereas the other
30% were used for evaluation [40].

To validate the robustness of the evaluation for the SDMs, threshold-independent
receiver operating characteristic (ROC) analysis was used. The area under the ROC curve
(AUC) was examined for additional precision analysis, and the AUC could be obtained by
calculating the area below the ROC curve. The value of AUC ranges between 0.5 and 1. A
higher AUC indicates more accurate results [41].

2.4.3. Construction of Ensemble Model

The construction of the ensemble model, followed with the method of Guo et al. [22].
Briefly, the range of simulation results were firstly adjusted from [0, 1000] to [0, 1], and then
the selected models (based on their accuracy scores) were integrated, through the weighted

www.usgs.gov
www.soilgrids.org
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average method. The model weight is the ratio of the AUC value of a single model to the
sum of the AUC values of the selected models. The calculation formula is as follows:

Wj =
rj

∑h
j=1 rj

(1)

where Wj represents the weight of the jth model, rj represents the AUC value of the jth
model, and h means the number of models in an ensemble model.

Finally, the normalized results of a single model were multiplied by the corresponding
weights in turn and then summed to build an ensemble model and calculate the potentially
suitable habitat distribution index of O. ochrocephala in the study area. The calculation
formula is as follows:

yi =
n

∑
j=1

wjxij (2)

where yi represents the comprehensive index [0, 1] of the potentially suitable habitat
distribution of O. ochrocephala in the grid (i); wj represents the weight of the model (j) and xij
is the value of the grid (i) in the model (j). A yi value closer to 1 means that the distribution
probability is higher in the grid (i), i.e., it is more suitable for the growth of O. ochrocephala.
In this study, habitat suitability was divided into four probability classes: 0–0.25, 0.26–0.50,
0.51–0.75, and 0.76–1.00, representing the unsuitable, low suitable, moderately suitable,
and high suitable habitats, respectively. The distribution probability and area percentage of
different suitable habitats of O. ochrocephala were calculated based on 10 simulation results.

2.4.4. Importance of Environmental Variables

To clarify the effects of environmental variables on the spatial distribution of O.
ochrocephala, the importance of each environmental variable was calculated to the prediction
results by using the factor importance calculation function of BIOMOD. Briefly, the dataset
containing all environmental variables were defined as “reference dataset”, while the
dataset from after eliminating one of the environmental variables randomly was defined as
“test dataset”. The two datasets were used to predict and calculate the simple correlation of
prediction results (Pearson correlation). The main affecting factors were ranked based on
the average values of explaining variables in the suitable models.

2.4.5. Response of Habitat Suitability to Environmental Variables

The distribution of O. ochrocephala is affected by various environmental variables, so
the relationship between its habitat suitability and a specific environmental variable is
not always linear. Therefore, an appropriate parametric measure should be implemented
when examining the response of habitat suitability of O. ochrocephala to environmental
variables. The GAM could be applied to better describe the nonlinear relationships between
explanatory variables and a response variable [42]. The package mgcv, in R language [43],
was used to establish the GAM. The model can be expressed as:

Y =
n

∑
i=1

fi(xi) + ε (3)

where Y is the distribution probability of O. ochrocephala, f i(xi) represents the single single-
variable function used to explain variable xi, and ε is the random variable.

3. Results
3.1. Model Accuracy Evaluation

RF, GBM, and GLM performed best and were followed by FDA, CTA, MARS, MaxEnt,
ANN, SRE, and GAM, respectively (p < 0.05) (Figure 4). Six models were selected, based on
their accuracy scores: RF, GBM, GLM, FDA, CTA, and MARS (AUC value > 0.75, Figure 4).
Based on the weighted average method, an ensemble model was built, according to the
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best results of the 6 SDMs, and the AUC maximum values were 0.921, 0.912, 0.924, 0.893,
0.919, and 0.897, respectively.
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The different letters on the bars indicate significant differences among the modes at the level of
p < 0.05.

3.2. Screening and Importance of Environmental Factors

The annual mean temperature, mean diurnal range of temperature, isothermality,
annual precipitation, precipitation of the driest period, elevation, aspect, slope, soil or-
ganic carbon storage, soil silt content, and soil pH were retained as environmental factors
(Figure 5). Among the 12 environmental variables used to establish the model, the im-
portance of annual precipitation (climate_12) and annual mean temperature (climate_1)
exhibited the highest weight. Soil pH at 0.3 m depth (soil_8), elevation (DEM_1) had
moderate importance, whereas the other variables, including soil organic carbon storage,
isothermality, etc., showed low weight and, thus, indicated limited influence on the suitable
habitat distribution of O. ochrocephala (Table 1).
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Table 1. Importance of the environment variables.

Code Environmental Variables Percent Importance (%)

climate_12 Annual precipitation 41.01
climate_1 Annual mean temperature 19.44

soil_8 Soil pH at 0.3 m depth 8.75
DEM_1 Elevation 7.97
soil_2 Soil organic carbon storage 6.40

climate_3 Isothermality 4.72
climate_2 Mean diurnal range of temperature 3.47
DEM_3 Slope 2.68
soil_5 Soil coarse debris volume at 0.3 m depth 2.33

DEM_2 Aspect 1.78
soil_6 Soil silt content at 0.3 m depth 0.91

climate_14 Precipitation of the driest period 0.54

3.3. Relationship between Habitat Suitability and Environmental Variables

Based on the relationships between habitat suitability of O. ochrocephala and environ-
mental variables (Figure 6), the highest suitability occurred when the annual precipitation
(climate_12) ranged from about 440 mm to 615 mm, as well as an annual mean temperature
(climate_1) from about −6 ◦C to −1 ◦C, soil pH at 0.3 m depth (soil_8) from about 6.8 to
7.5, and elevation (DEM_1) from about 2500 m to 4200 m.
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3.4. The Potential Distribution of O. ochrocephala

Overall, the potential distribution of the O. ochrocephala probability was 26.95%
(Figures 7 and 8). Furthermore, the distribution ranges, estimated by the six different
SDMs, were similar. O. ochrocephala are mainly distributed in the southwest, middle, and
northeast of the SRYR (Figures 7 and 8).
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Furthermore, according to the ensemble model, the suitable habitats of O. ochrocephala
are mainly distributed in the southwest, middle, and northeast of the SRYR (Figure 8). In
the SRYR, the high suitable habitat of O. ochrocephala only accounts for 2.65%, followed by
moderately suitable habitat (16.98%), low suitable habitat (24.99%), and unsuitable habitat
(55.38%) (Figure 8).

3.5. Prediction of O. ochrocephala Distribution under Climate Change Scenarios

Annual precipitation and annual mean temperature were used to predict the future
suitable distribution, for the reason that the two variables played a major role in the
potential distribution of O. ochrocephala. Moreover, it is hard to simulate the future soil and
DEM data. It was the same to the potential distribution prediction, six SDMs (RF, GBM,
GLM, FDA, CTA, and MARS) were selected to establish the ensemble model and predicted
the distribution of O. ochrocephala in the future (Figure 9).
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The distribution probability of O. ochrocephala was not significantly different between
the 2050s and 2070s, under the RCP4.5 or RCP8.5 scenario (Table 2). Meanwhile, it tended
to increase under RCP8.5 scenario in the 2050s and 2070s (Table 2).

Table 2. The distribution probability (±SE) of O. ochrocephala in the source region of the Yellow River,
under the current period, 2050s and 2070s, based on RCP4.5 and RCP8.5 scenarios.

Scenarios Time Probability Significance

Current current 0.2695 ± 0.0221 Ab
RCP4.5 50 s 0.2805 ± 0.0163 Ab

70 s 0.2918 ± 0.0102 Ab
RCP8.5 50 s 0.3087 ± 0.0104 Aa

70 s 0.3126 ± 0.0146 Aa
Different capital letters indicate the significance among times, and different lowercase letters indicate the signifi-
cance among scenarios.

The area ratio of suitable habitats of O. ochrocephala did not significantly change,
except, at the low suitable habitats (0.26–0.50), it could decrease in the future, both under
the RCP4.5 and RCP8.5 scenarios (Table 3).

Table 3. The area percentage (±SE) of different suitable habitats of O. ochrocephala in the source
region of the Yellow River, under the current period, 2050s and 2070s, based on RCP4.5 and RCP8.5
scenarios.

Suitability Scenarios Time Percentage (%) Significance

Unsuitable
habitat
0–0.25

Current current 55.38 ± 4.19 Aa

RCP4.5
50 s 57.84 ± 4.17 Aa
70 s 54.94 ± 2.13 Aa

RCP8.5
50 s 52.88 ± 0.86 Aa
70 s 53.85 ± 3.80 Aa

Low suitable
habitat

0.26–0.50

Current current 24.99 ± 1.86 Aa

RCP4.5
50 s 17.82 ± 3.57 Ab
70 s 20.13 ± 2.82 Ab

RCP8.5
50 s 18.57 ± 1.63 Ab
70 s 16.71 ± 3.72 Ab
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Table 3. Cont.

Suitability Scenarios Time Percentage (%) Significance

Moderately
suitable habitat

0.51–0.75

Current current 16.98 ± 3.47 Aa

RCP4.5
50 s 17.82 ± 3.57 Aa
70 s 19.51 ± 5.84 Aa

RCP8.5
50 s 22.11 ± 1.61 Aa
70 s 22.09 ± 4.72 Aa

High suitable
habitat

0.76–1.00

Current current 2.65 ± 0.90 Aa

RCP4.5
50 s 4.84 ± 5.08 Aa
70 s 5.7 ± 2.32 Aa

RCP8.5
50 s 6.44 ± 2.48 Aa
70 s 7.34 ± 5.59 Aa

Different capital letters indicate the significance among times, and different lowercase letters indicate the signifi-
cance among scenarios.

4. Discussion
4.1. Potential Distribution of O. ochrocephala and Main Influence Variables

Recently, researchers and managers have paid more attention to the role that O. ochro-
cephala plays in the stability mechanism of the alpine grassland ecosystem and sustainable
development of animal husbandry [44]. Previous studies illuminate that O. ochrocephala
is widely distributed in the Qinghai Province, mainly distributed around Qinghai Lake,
Huangnan, Guoluo, and Yushu Tibetan Autonomous Prefecture [45]. However, no research
focuses on its spatiotemporal distribution pattern, based on scientific assessment at a
reginal scale (e.g., in SRYR of this study). In this study, the areas that were clarified with
high distribution probability were mainly in the southwest, middle, and northeast of SRYR
(Figure 9), which is consistent with the previous research results.

Rainfall and temperature are of the most important factors shaping the function
and structure of plants [46,47]. Similarly, in this study, annual precipitation (climate_12)
and annual mean temperature (climate_1) were the two most important environmental
variables in the establishment of the SDMs, and the accumulated effects exceeded 60%
(Table 1). Based on the fitting curves of habitat suitability and environmental variables,
the highest suitability of O. ochrocephala occurred when annual precipitation (climate_12)
ranged from about 440 mm to 615 mm, annual mean temperature (climate_1) ranged from
about −6 ◦C to −1 ◦C, soil pH ranged from about 6.8 to 7.5, and elevation ranged from
about 2500 m to 4200 m. Our results agree with the conclusion of Huang [48], that is O.
ochrocephala mainly grows in river beach grassland, arid desert grassland, and saline-alkali
beach land at low altitude with low rainfall and strong light. This also agrees with the
previous suggestion that O. ochrocephala is a plant adapted to the ecological environments
with an altitude of about 2800 m, precipitation of 350 mm to 500 mm, and average annual
temperature of −3 ◦C to −0 ◦C [49].

In this study, only environmental variables, such as climate, terrain, and soil, were
focused. However, the intraspecific and interspecific relationships of the species and
potential human disturbance were not determined. For instance, the migration ability
of species, interaction between species, livestock grazing, and land-use change [50] may
also influence the distribution of O. ochrocephala. It may be another potential reason for
the low AUC values of SDMs. Future research could explore the appropriate datasets of
microhabitat and human activities factors to improve the accuracy of prediction.

4.2. Changes in Distribution of O. ochrocephala in the Future

Several studies have tended to predict the species suitable habitat under climate
change using the ensemble model [23,51,52]. Global warming promotes vegetation growth,
and it has been revealed that temperature has a positive effect on alpine steppe, by acceler-
ating the process of alpine phenology and prolonging the growing season on the QTP [53].
The RCP4.5 scenario indicates that the greenhouse gas emissions are moderately stable. It
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is assumed that the global annual greenhouse gas emissions (calculated as CO2) will peak
around 2040 and then decrease. The RCP8.5 scenario indicates that the greenhouse gas
emissions are large, and the ecological environment has little improvement. By 2100, the
concentration of CO2 will be 3–4 times higher than that of before the industrial revolution,
and some species with weak diffusion and migration capacity will face the risk of reducing
(or even the extinction of) suitable habitats [54]. In this study, the distribution range of O.
ochrocephala will not change significantly in the future, as they will still mainly distribute
in the southwest, middle, and northeast of the SRYR, under the RCP4.5 and RCP8.5 sce-
narios (Figure 9). However, the distribution probability of O. ochrocephala in the SRYR will
increase continuously, especially under RCP8.5 scenario (Table 2, p < 0.05 under RCP8.5
scenario). The results indicate that the continuous warming could result in the extension
of O. ochrocephala. These results are different from that of the former studies, which focus
on the spatiotemporal distribution of Stipa purpurea Griseb (fine forage) and reveals that
a continuous rise in temperature could have a negative effect on vegetation [55,56]. Our
results could play an important role in controlling and utilizing O. ochrocephala reasonably
in the SRYR. For instance, removing O. ochrocephala effectively, based on the distribution
pattern, could promote the production of livestock-liked silage [57]. Therefore, predicting
the distribution of poisonous weed (e.g., O. ochrocephala) accurately, on a broad scale, is
beneficial to both establishing reasonable management practices and animal husbandry in
alpine grassland systems.

4.3. UAV Provides Basic Driving Data for a Niche Model

Complete and accurate data of species distribution is the premise of species distri-
bution simulation [58]. However, traditional on-the-ground survey methods feature low
efficiency, inconsistent standards, high labor cost, and a small observation range [59].
Moreover, due to the short growing season and fragile habitats of plants on QTP, it is
difficult to complete large-scale investigation and sampling work in a limited time [17,52].
Virtual herbarium and literature search is another commonly used way to obtain basic
drive data [60], while it is generally lacking timeliness and accurate geographic location
information. Moreover, it is a kind of passively acquire data, and the datasets are often fea-
tured with insufficient and limited representativeness. An efficient, accurate, and suitable
method for long-term and fixed-point monitoring is essential to accurately simulate and
predict the spatiotemporal distribution of species. In this study, the UAV-based method
is time and labor-saving, high-efficiency, low-cost, and non-destructive, overcoming the
shortages of traditional methods. Therefore, it is suitable for large-scale investigations with
few limitations. The data acquisition process, based on the FragMAP system, could be
divided into two components, i.e., field sampling and indoor information extraction [38,61].
On the one hand, this method significantly improved the efficiency of field sampling (aerial
photographs) and reduced the spatiotemporal constraints and operators’ activities. Mean-
while, it avoided unnecessary damage to the sampling area. On the other hand, FragMAP
provides standardized, long-term, and fixed-point basic data for establishing SDMs. It not
only ensures the accuracy and standard of basic drive data but also provides the foundation
for model verification. Moreover, the species information collected indoors has several
advantages, e.g., flexible time, standardization, and cooperation, which is beneficial to the
efficiency and accuracy of species information.

In this study, visual species recognition was mainly used to extract the presence–
absence information, and the efficiency is relatively low. Therefore, in a further study, a
large number of obtained training samples (for example, O. ochrocephala selected manually
can be automatically extracted and saved by proposal classifier, Figure 3) will play a key
role in the subsequent automatic object identification [61,62]. Then, machine learning
algorithms, such as convolution neural network and random forest, will identify target
species automatically [63].
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5. Conclusions

This study explored the feasibility of using UAV-based datasets for SDMs, identified
the habitat distribution of O. ochrocephala and predicted its spatial distribution, under two
scenarios of climate change. Meanwhile, the dominant variables that affect its spatiotempo-
ral distribution of O. ochrocephala were explored. The results show that O. ochrocephala is
mainly distributed in the southwest, middle, and northeast of the SRYR, and the distribu-
tion probability will increase under the scenario of RCP8.5. This study provides a reference
for controlling and utilizing O. ochrocephala in the SRYR, which is beneficial for monitoring
and predicting the spatiotemporal distribution of poisonous weeds on a large scale. It could
also provide a necessary theoretical and practical basis for the sustainable development of
the alpine grassland ecosystem and animal husbandry. Based on innovative UAV-based
method, a large number of basic sampling data of O. ochrocephala could be used as the
initial driving data. Nevertheless, the spatiotemporal distribution of the samples is usually
heterogeneous. Hence, the distribution prediction of O. ochrocephala could potentially be
affected to some extent. In future studies, it would be beneficial to improve the accuracy of
plant spatiotemporal distribution prediction by improving the uniformity of field samples
and making them evenly distributed in the study area.
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Appendix A

Table A1. Code of the environment variables.

Code Environmental Variables

climate_1 Annual mean temperature
climate_2 Mean diurnal range of temperature
climate_3 Isothermality
climate_4 Temperature seasonality
climate_5 Max temperature of the warmest month
climate_6 Min temperature of the coldest month
climate_7 Temperature annual range

www.worldclim.org/current
www.usgs.gov
www.soilgrids.org
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Table A1. Cont.

Code Environmental Variables

climate_8 Mean temperature of the wettest quarter
climate_9 Mean temperature of the driest quarter
climate_10 Mean temperature of the warmest quarter
climate_11 Mean temperature of the coldest quarter
climate_12 Annual precipitation
climate_13 Precipitation of the wettest month
climate_14 Precipitation of the driest month
climate_15 Precipitation seasonality
climate_16 Precipitation of the wettest quarter
climate_17 Precipitation of the driest quarter
climate_18 Precipitation of the warmest quarter
climate_19 Precipitation of the coldest quarter

DEM_1 Elevation
DEM_2 Aspect
DEM_3 Slope
soil_1 Soil thickness
soil_2 Soil organic carbon storage at 0.3–0.6 m depth
soil_3 Soil bulk density at 0.3 m depth
soil_4 Soil clay content at 0.3 m depth
soil_5 Soil coarse debris volume at 0.3 m depth
soil_6 Soil silt content at 0.3 m depth
soil_7 Soil sediment concentration at 0.3 m depth
soil_8 Soil pH at 0.3 m depth
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