
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Multi-Step Look-Ahead
Adaptive Designs for the

Estimation of Sensory
Thresholds

A thesis presented in partial fulfilment of the requirements
for the degree of

Master of Applied Statistics

at Massey University, Albany, New Zealand

Mark William Wohlers

Student ID # 10148537
2013

ii

Abstract

The estimation of sensory thresholds is an important part of the psychophysics field.

The point at which a physical stimulus becomes detectable can vary from trial to trial

within as well as between subjects. Often the probability of detection is modelled over

a range of stimulus intensities using an assumed psychometric curve which has the

threshold as a parameter. To estimate the threshold with a reasonable accuracy often

requires careful placement of the stimulus levels when the total number of trials are

limited. There have been a number of design schemes proposed over the years to find

the optimum placement strategy to minimise a given loss function. Some of the most

successful have been Bayesian adaptive designs which select the next signal intensity

based on prior knowledge and the responses observed up until that point. A critical

step in the adaptive designs is the choice of threshold estimator and error term, also

known as the loss function, to be minimised by the design scheme. A sub-class of these

look-ahead a short number of trials to calculate the expected loss function given the

current posterior distribution. However sometimes it is not possible to adjust the

signal after every test. Olfactory sensory threshold tests, for example, can require a

large setup time. In this situation a number of sensory tests may be grouped into

sessions, with any design alterations occurring between these. However this would

require a look-ahead design with a number of steps equal to the number of samples in

a session.

Most of the look-ahead designs have been restricted to one or two steps due to the

little performance increase gained by increasing them and the computational

limitations at the time they were suggested. The first point is not relevant to situations

where the step size must be larger, and the second point may be less true today due to

advances in computer power. This investigation demonstrates that it is possible to

implement multi-step look-ahead adaptive designs in a computationally efficient

manner for sessions up to sizes of twelve samples. Based on Monte-Carlo simulations,

these multi-step look-ahead designs also provide encouraging results in terms of

performance in minimising a number of loss functions.

iii

Acknowledgements

It is a pleasure to have the opportunity to thank the many people who have helped me

along the way to completing this thesis. The New Zealand Institute for Plant and Food

Research Ltd was kind enough to allow me to continue to work full-time while

studying. Many of my co-workers also deserve a special mention. In particular I would

like to thank Nihal De Silva and the Biometrics team for their continued

encouragement to further my study and Sara Jaeger along with the rest of the sensory

team for being instrumental in inspiring my interest in the area.

My supervisor Barry McDonald has my thanks for his guidance and invaluable

suggestions while writing this.

Lastly I would like to give a special thanks to my wife Evelyn for her never ending

support and encouragement throughout this long journey. To her I dedicate this thesis.

iv

Contents
Table of Figures ... vi

Table of Tables ... vii

1 Background ... 1

2 Literature Review .. 3

2.1 Test Protocols: Yes-No and n-AFC Experiments .. 4

2.2 Methods for Estimating the Psychometric Curve ... 6

2.2.1 Method of Constant Stimuli .. 6

2.2.2 Method of Limits ... 7

2.2.3 Method of Adjustment ... 7

2.2.4 PEST ... 7

2.2.5 Staircase Procedures ... 8

2.2.6 Maximum Likelihood Adaptive Procedures .. 8

2.2.7 Bayesian Adaptive Procedures .. 9

2.2.8 ASTM method ... 15

2.3 Odour Detection Experiments at The New Zealand Institute for Plant and Food
Research .. 16

2.4 Difficulties Implementing Standard Adaptive Procedures with Olfactory and Taste
Threshold Estimation .. 17

2.5 Proposed Adaptive Threshold Estimation for Olfactory and Taste Experiments. 18

3 Methods .. 21

3.1 Software .. 21

3.1.1 Numpy and Scipy... 22

3.1.2 Matplotlib.. 22

3.1.3 PyMC ... 22

3.1.4 Playdoh .. 22

3.1.5 Numdifftools ... 22

3.1.6 Numexpr ... 22

3.1.7 ffnet ... 23

3.1.8 OpenOpt .. 23

3.2 ASTM method ... 23

3.3 Threshold Estimation using the Psychometric Function ... 25

v

3.3.1 Maximum Likelihood ... 25

3.3.2 Bayesian Fitting ... 28

3.3.3 Approximating the Loss Function by Simulation .. 41

3.4 Loss Function Minimisation .. 41

3.4.1 Minimisation with Continuous Stimulus Levels .. 42

3.4.2 Minimisation with Discrete Stimulus Levels ... 43

3.4.3 The Adaptive Procedure ... 44

3.4.4 Python code .. 46

4 Results ... 49

4.1 Fitting Bayesian Models through MCMC .. 49

4.1.1 Generating data for Neural Network Training .. 49

4.1.2 Training the Neural network ... 50

4.1.3 Neural Network Performance ... 51

4.1.4 Optimizing based on the Neural Network .. 55

4.2 D-Optimal Designs .. 57

4.3 Bayesian Optimal Design using Discrete Priors... 58

4.3.1 Comparison of Adaptive Schemes .. 59

4.3.2 Adaptive Schemes Under Misspecified Psychometric Curve 63

4.3.3 Comparing Look-Ahead Step Sizes: Minent8 vs. Minent1 68

4.4 ASTM Optimal Design ... 71

4.5 Discrete Signal Intensities ... 72

5 Discussion and Suggestions for Future research .. 74

6 Conclusion ... 79

7 Bibliography .. 81

Appendix A R Computer Code .. 86

Appendix B Python Computer Code ... 87

vi

Table of Figures
Figure 1 An example of a Gumbel psychometric curve .. 3
Figure 2 A visual summary of common sensory test protocols .. 5
Figure 3 Parameterisation and forms of psychometric functions .. 11
Figure 4 Effect of parameterisation of the logistic psychometric curve with standard
uniform prior distributions ... 13
Figure 5 Example of estimated detection probabilites for a psychometric curve at given
signal intensities. ... 24
Figure 6 Autocorrelation plots for Threshold parameter estimates. 32
Figure 7 Example of a Neural Network with 3 input, 6 hidden and one target neuron. 35
Figure 8 Example of how the inputs (x) are linked to the outputs (y) via the weights (w) and
activation function (g). .. 36
Figure 9 Example of a log-sigmoid activation function with 36
Figure 10 Scatter plots of the MCMC estimates based on 8 observations vs. the neural
network approximations ... 51
Figure 11 Scatter plots of the MCMC estimates based on 32 observations vs. the neural
network approximations ... 53
Figure 12 Posterior mean NN approximations versus MCMC means based on 8, 16, 24, and
32 samples. 54
Figure 13 Logistic Psychometric curves used to generate responses to assess the
performance of the NN based adaptive method. ... 56
Figure 14 Estimated RMSE for the NN Adaptive Design ... 57
Figure 15 Logistic Psychometric curves under discrete standard uniform priors 59
Figure 16 RMSE based on 100 samples generated by Logistic Psychometric curves 61
Figure 17 Mean Absolute Errors based on 100 samples generated by Logistic Psychometric
curves 62
Figure 18 Categorical Errors based on 100 samples generated by Logistic Psychometric
curves 63
Figure 19 Weibull Psychometric curves used to generate misspecified samples 64
Figure 20 RMSE based on 100 samples generated by Weibull Psychometric curves 65
Figure 21 Absolute errors based on 100 samples generated by Weibull Psychometric curves
 66
Figure 22 Categorical errors based on 100 samples generated by Weibull Psychometric
curves 67
Figure 23 Logistic Psychometric curves used to compare the MINENT1 and MINENT8 69
Figure 24 Comparison of the convergence of the MINENT8 (red) versus MINENT1 (black). . 70
Figures 25 Comparison of RMSE for the MINENT1 and MINENT8 procedures 70
Figure 26 ASTM Expected RMSE ... 72

vii

Table of Tables
Table 1 Example of BET estimates for two panellists. Ticks indicate correct detection at a
given concentration, and a cross an incorrect response. ... 16
Table 2 Variance, Bias, and MSE estimation for teh ASTM method. 24
Table 3 Regression Summary Statistics for Neural Network Approximation Based on samples
of Length 8 .. 52
Table 4 Summary statistics from regressing the MCMC point estimates on the NN
approximations based on 32 observations per sample. ... 53

1

1 Background
The investigation underpinning this document relates to a problem encountered

during the planning stage of a large consumer trial conducted at the New Zealand

Institute for Plant and Food Research (PFR).

This trial required a large number of individual sensory olfaction thresholds to be

calculated from a limited number of trials. The testing method was decided upon as

being the 3 Alternative Forced Choice (3-AFC) with thirty two such tests per subject. A

single 3-AFC test involves 3 samples being presented to the individual with one of

these containing the signal. The subject then samples each of the three in a set order

and records which is believed to contain the signal.

The problem was to now make adjustments to data collection and handling as to

ensure high quality threshold estimates were produced. One such adjustment is the

choice of how to estimate the threshold given the data. While this is an important

choice as certain estimators may be more efficient than others, and it will be

discussed, it is not the focus of this investigation.

Another alteration that can be made is the selection of the stimulus intensities used at

the testing stage. If all the tests are administered at concentrations reasonably greater

than the threshold then the subjects will always (or nearly always if the subject lapses),

detect the signal resulting in little information to base a reliable threshold estimate on.

Conversely if the testing is carried out at undetectable levels then the responses are all

random guesses and the same is true. While these are extreme examples as most

subjects should see a range of intensities from non-detectable through to always

detectable, they do demonstrate that the choice of signal intensities presented can

have an impact on precision of the threshold estimates.

This problem is not new and is an active area of research. There have been numerous

methods proposed such as general guidelines on where to set the levels as with the

American Society for the Testing of Materials (ASTM) method through to fully adaptive

methods which base the next test on the previous results. While some of these

2

adaptive methods could in theory work there are additional problems relating to the

PFR experiment setup which means they are impractical. The main difficultly is setup

time. With vision or hearing tests it can be relatively quick to increase or decrease the

signal level for the next test. However in the case of the PFR experiments the olfactory

tests required a carefully measured volume of the compound of interest to be diluted

in water. This would take too much time between tests to decide upon the next

concentration and getting the sample ready especially if multiple panellists are being

tested at the same time. Using sniffing sticks (Hummel, Sekinger, Wolf, Pauli, & Kobal,

1997) could allow for rapid change in signal intensity, however as this method is

generally conducted one on one it would be prohibitive in terms of staffing for the

large study proposed.

Therefore the investigation should focus on methods which allow for changes in

concentrations to be made between blocks of samples rather than after each

individual test. For example the concentrations used for the following day could be

based on the previous results. It may also be simpler for the experimenter to have the

same concentrations presented to all panellists and even the same across days. These

additional restrictions will be looked at also.

Taking the above limitations into account the problem is that given a set or distribution

of psychometric curves and a threshold estimation method what is the optimal set of

concentrations to test to minimise a given error measure? The relationship between

the design and the expected error is often referred to as the loss function. One could

try and minimise the loss function analytically or if that proves too difficult, obtain an

approximate solution through simulation.

3

2 Literature Review
Relating the intensity level of a stimulus to a subject’s ability to detect or discriminate

is an important area of Psychophysics, which is itself the more general study of

connecting physical stimuli to subjective responses(Kuss, Jäkel, & Wichmann, 2005).

The subject’s performance in detection or discrimination tasks should improve as the

stimulus level intensifies. While it is possible that a subject may suddenly jump from no

detection to perfect detection after a small increase in the stimulus level, often,

however, it is a more subtle change-over. The probability of detection (or

discrimination) increases in a sigmoid curve shape rather than a simple step function.

This monotonic curve relating a subject’s performance to a physical stimulus is

commonly referred to as the psychometric function F(x). An example of a Gumbel

psychometric curve is shown in Figure 1.

Figure 1 An example of a Gumbel psychometric curve modelling the relationship between Stimulus and
Detection probability

4

2.1 Test Protocols: Yes-No and n-AFC Experiments

In order to approximate the underlying psychometric function or estimate a point

thereon, a testing protocol for determining the response at a given stimulus intensity

must first be decided upon.

Two of the most common protocols are the yes-no and n-Alternative Forced Choice

(AFC) methods. The yes-no method involves the panellists being presented with either

the signal or a blank sample at the given concentration, to which they respond yes or

no depending on whether or not the signal was perceived. For the n-AFC procedure

the subject receives n samples of which one has the signal and remaining are blanks.

After sampling the n alternatives in a given order the subject indicates which one they

believe contains the signal. A number of popular test procedures can be visualised in

Figure 2.

5

Figure 2 A visual summary of common sensory test protocols The figure is based on a similar one presentation at
the 10th Sensometrics Conference (Lee, 2010). The original red wine glass scalable vector graphic (svg) file was
downloaded from www.openclipart.org and modified for this figure.

Klein, 2001 points out that 2-AFC has been more popular than the yes-no method,

which may be due to the assumption that it removes response bias. However it does

have problems. The response error in the yes-no method occurs when a subject falsely

believes that they can detect the signal when in fact they do not. It is also possible for

the opposite to occur, that is the panellist detects the signal but believes that they

have not. While the n-AFC method does remove this type of response bias it does

introduce the possibility of what Klein calls interval bias. Here the subject has a

preference for selecting certain positions as having the signal over others. For a 2-AFC

task this may mean a higher chance of detecting the signal at a given intensity if it was

sampled first in the set than if it was sampled second or vice-versa. Klein goes on to

discuss methods to correct for these types of bias based on signal detection theory

6

(Green & Swets, 1966). Nevertheless the original experiment on which this

investigation is based used a 3-AFC testing protocol for detection and therefore the

methods discussed herein relate to this. It is possible to easily adjust them to suit any

n-AFC experiment, and with a little more work to a yes-no task.

2.2 Methods for Estimating the Psychometric Curve

Once the testing protocol has been set, the focus now shifts to the estimation method.

Often the parameter of interest is a specific stimulus level which results in a given

detection probability on the psychometric curve. That is the parameter , where

, for a given probability . Common choices for are 50% (Kelareva,

Mewing, Turpin, & Wirth, 2010) or when minimises the so called sweat factor

(Taylor, 1971). Minimizing the sweat factor should theoretically also minimise the

variance of the point on the psychometric curve however this may not hold, especially

when the underlying psychometric curve does not match the form of the fitted model

(Garcia-Perez & Alcala-Quintana, 2007). For the purposes of this document we will

define the sensory threshold as , where .

Various methods have been employed to estimate F(x) itself or individual points

thereon such as the intensity relating to 50% probability of detection. The sensory

threshold T is often defined as this intensity, that is F(T)=0.5 (Alcalá-Quintana & García-

Pérez, 2004). Three of the more traditional estimation methods are the method of

Constant Stimuli , the Method of limits, and the Method of Adjustment.

2.2.1 Method of Constant Stimuli
This method requires a set of concentrations to be repeatedly tested by the subject.

Each concentration is presented in a random order with equal frequency. The

proportion of correct tests is then plotted against the concentrations and a parametric

curve is fit allowing for interpolation between the set concentrations. This method is

generally thought to produce the most accurate threshold and psychometric curve

estimates, and a modified version of it has been referred to as the “gold standard”

(Wise, Bien, & Wysocki, 2008). It has the advantage of completely estimating F(x)

although it often needs a large number of tests to make this possible. Due to this it

may be unsuitable for many odour or taste threshold estimation experiments where

set up time can be significant.

7

2.2.2 Method of Limits
The method of limits starts at an initial concentration with subsequent concentrations

either always increasing or decreasing until a change over in response occurs. For

ascending method of limits tasks the initial value is set at an undetectable level. The

concentrations increase until the signal is detected. Similarly descending runs start at a

clearly detectable level with concentrations decreasing until the signal is not detected.

Averages of multiple runs ascending, descending or a mixture of the two, for a given

subject can be used to improve threshold estimation. This method can introduce bias

however, in the form of habituation and expectation. Habituation is the tendency for

the subject to give the same response as was given previously (Amerine, Pangborn, &

Roessler, 1965). Expectation on the other hand is when the subject anticipates the

changeover and changes their response prematurely (Heymann & Lawless, 1999). To

account for these potential biases various modifications have been used such as using

an n-AFC testing method in place of a yes-no procedure.

2.2.3 Method of Adjustment
This method requires the subject to modify the signal intensity until it is barely

detectable to them. This process is repeated a number of times to get an estimate with

the results being aggregated. Allowing for subject to set the magnitude may or may

not be feasible within the experimental setting.

In an effort to improve efficiency of threshold prediction, adaptive methods have also

been used. It can be a major problem to acquire reasonably robust threshold estimates

when the number of trials available is limited. An adaptive method bases the current

testing level on the results of previous tests. Leek (2001)provides an overview of three

such adaptive methods: Parameter Estimation by Sequential Testing (PEST), Staircase,

and Maximum Likelihood.

2.2.4 PEST
The PEST procedure (Taylor & Creelman, 1967) begins at a set concentration, with a

given step size and performance level to be achieved. The panellist is tested at the

initial concentration multiple times until the observed proportion is deemed to provide

evidence that the level is either too high or too low. This decision is made using a

statistical test and it is carried out after each trial. The concentration is then adjusted

8

by the given step size in the appropriate direction. Using a PEST rule the step size is

then adjusted and the process repeated until the step size reaches a desired level. At

this point the process is terminated and the final signal magnitude is taken as the

estimated concentration which results in the performance level of interest. Hall (1981)

suggested using all of the collected responses to fit a psychometric curve instead of

solely relying on the final test level. This also allowed for the estimation of a slope

parameter and removed some of the original PEST method’s sensitivity to the initial

concentration and step sizes.

2.2.5 Staircase Procedures
Staircase procedures are similar to the PEST method except they remove a lot of the

complexity of the decision rules to change the sample intensity. Depending on the

point of interest on the psychometric curve a simple rule is used to adjust the signal

level. The simplest staircase rule of one down – one up targets the 50% chance of

detection. Here an initial concentration is presented, if the panellist correctly detects

the signal then the next sample is of lower intensity if they do not then the level is

increased. The step size and termination rules are also simplified resulting in easy to

calculate signal adjustments.

2.2.6 Maximum Likelihood Adaptive Procedures
Leek (2001) defines this category as being “characterized by stimulus placement on

each trial, driven by consulting the current best estimate of the entire underlying

psychometric function after every stimulus-response trial.” One of the earliest methods

to use this process was QUEST(Watson & Pelli, 1983). This method uses prior

information expressed as a probability distribution of the threshold to fit the

psychometric function. The function takes a predetermined form such as the

cumulative density function (cdf) of the Weibull distribution, with the slope parameter

fixed at a constant value prior to model fitting. After each sample the data is combined

with the prior information using Bayes’ theorem resulting in a threshold estimate

which maximises the posterior distribution. This estimate is then taken as the

concentration used in the subsequent dose-response test. Depending on the

termination criteria, this process is repeated until a predetermined number of trials

are reached or the confidence interval about the threshold is sufficiently narrow. The

9

final threshold estimate ignores the prior information and is the common maximum

likelihood estimate.

2.2.7 Bayesian Adaptive Procedures
While the final estimate of the Quest method is the maximum likelihood estimate,

much of the approach relies on Bayesian methods. Indeed Bayesian techniques have

become increasingly popular in adaptive psychophysical methods(Garcia-Perez &

Alcala-Quintana, 2007; Kelareva et al., 2010; King-Smith, Grigsby, Vingrys, Benes, &

Supowit, 1994; Kontsevich & Tyler, 1999; Kuss et al., 2005). One distinction between a

Bayesian technique and other methods is the incorporation of ‘prior’ knowledge

specified as a distribution, into the model. Using both the prior information and the

observed data, one or more ‘posterior’ distributions are constructed which allows for

inferences about the parameter of interest to be drawn. The constructions of the

posterior distributions are not always trivial and often a Monte Carlo Markov Chain

(MCMC) method is used to approximate these distributions. More details regarding

MCMC methods are provided in the Methods section. As with the other adaptive

methods the Bayesian techniques must address three main concerns: “estimation of

the psychometric parameters (threshold and slope), the termination rule, and

placement of the next trial” (Kontsevich & Tyler, 1999).

2.2.7.1 Estimation of the Psychometric Parameters
The Bayesian adaptive procedure generally links the probability of detection to the

sample intensity through the relationship

 (1)

Where is the probability of guessing the correct response when the stimulus is

undetectable to the subject and is the probability of lapsing and giving an incorrect

response when in fact the signal is detected. In n-AFC experiments is often set to

. Setting makes the assumption that the subject always answers correctly when

the signal is detected. Both and can be sensitive to violations of this

assumption(Prins, 2012; Wichmann & Hill, 2001). Possible explanations for lapsing

include blinking during a vision related detection task or incorrectly recalling the

10

position of the signal in an n-AFC task. This may be less of an issue with odour

detection tasks where the number of samples is generally small and the subject has a

reasonable amount of time to respond. is a function which models the

underlying process linking signal intensity to the probability of detection, usually with

two parameters and although there may be more depending on the family of

curve being fitted. While it is convenient to assume that is invariant to

whichever testing methodology is being used this so called ‘high threshold model’ has

proven to be false(Klein, 2001). For example an estimated based on the 2-

AFC method may differ from that produced using a 3-AFC on the same subjects. One

measure that should be comparable amongst different testing protocols is the point on

the full response curve relating to d’=1. Sometime referred to as the sensitivity index,

d’ is a measure of how far apart the signal and noise, as represented by standard

normal distributions, are. A d’=1 corresponds to a signal level for an n-AFC experiment

which elicits a probability of detection/discrimination equal to

For a 2-AFC experiment, taking note that this can be calculated as the

For a n-AFC where n is greater than 2 this can be more difficult to calculate but can be

obtained from the literature such as d’=1 for a 3-AFC occurs at 0.633(Peng, Jaeger, &

Hautus, 2012). It is also reasonably straightforward to use simulation methods to find

the approximate detection proportion relating to a d’=1. Custom R code, which can be

found in the appendix, can produce an approximate proportion relating to d’=1 for an

n-AFC design based on 100,000 simulations.

Theoretically the signal level on the 2-AFC response curve corresponding to a 76%

detection rate should equate to the same signal level which relates to 63.3% rate for

the 3-AFC response curve and so on. The advantage of the d’ based estimates is that it

is possible to make comparisons across studies. However if cross protocol comparisons

are not required, then defining the threshold as the 50% detection level on the

psychometric curve may be advantageous. Indeed Kuss et al., 2005 provides

11

alternative parameterisations of many of the common psychometric curves which

include this threshold itself as a parameter.

The forms used by Kuss et al. (2005) explicitly treat both the threshold, defined as m=F-

1(0.5), and either w, the width of the interval F-1(α) to F-1(1-α) for some small α, or the

slope s, at threshold as parameters. That is F is parameterised in terms of either

 or . By restricting w and s to being greater than 0 the resulting

curves are also restricted to being monotonically increasing functions.

The forms themselves as presented by Kuss et al. (2005). are listed below and

presented in Figure 3:

Figure 3 Parameterisation and forms of psychometric functionsas presented by Kuss et al., 2005. The curves
have been rescaled with all having threshold parameter m=0.5. For the logistic, Gaussian, and Gumbel forms the
scale parameter w=0.5. The Weibull curves have slope at threshold parameters s=5.

Logistic. This is the standard logistic regression model found used in Generalized Linear

Models (GLMs) re-parameterised as a function of m and w instead of the intercept and

slope. This function is symmetric around the threshold, with .

 (2)

Gaussian. Similar to the standard probit model used for GLMs, but again re-parameterised to

be a function of m and w.

 (3)

12

Note that here with defined as the cumulative density

function (cdf) of the standard normal distribution and its inverse.

Gumbel & Reverse Gumbel. This function is a re-parameterized version of the log-log GLM,

which results in an asymmetric curve. The probability of detection increases slowly over low

stimulus levels but converges to 1 more rapidly as the levels increase. The asymmetry can be

reversed resulting in the reverse Gumbel function.

 (4)

 (5)

Where .

Weibull & Reverse Weibull. As with the Gumbel the Weibull produces an asymmetric

curve. It cannot be parameterised in terms of w and instead is defined by m and s

where .

 (6)

 (7)

Interestingly this function is only defined for x>0, both and

 as . This can be a desirable characteristic for a psychometric

curve (Kuss et al., 2005).

13

These parameterisations have two advantages. Firstly as stated above, the threshold

itself is a parameter and does not need to be calculated as a function of say slope and

intercept estimates. Secondly, and more importantly, using the alternative

parameterisation allows for the explicit specification of the prior distribution of the

threshold and width. An example of this can be seen in Figure 4 where the more

standard logistic regression parameterization together with a standard uniform prior

on the slope strongly favours flat psychometric functions. The alternative more readily

allows for a greater range of slopes, with the flatness of the prior translated into the

function space. Kuss et al. (2005) provided a similar figure, with uniform priors over

the range [-1000,1000] instead of [0,1] as used here. This had the effect of favouring

steep rather than flat psychometric curve for the standard logistic regression

parameterisation. However the point remains that using the threshold and width

parameters simplify the specification of prior distributions.

Figure 4 Effect of parameterisation of the logistic psychometric curve with standard uniform prior distributions
for the parameters. The standard logistic parameterisation (left) strongly favours flat response curves, whereas
the parameterisation from (2) allows for a wide range of curves.

2.2.7.2 Termination Rules
The termination rule can often be dictated by the experimental setting. One popular

method is to continue until some pre-defined level of accuracy in the threshold

estimate is reached. This could be a sufficiently narrow confidence interval (Watson &

Pelli, 1983) or variance of the posterior distribution. This may be appropriate when a

large number of queries are possible; however in the clinical setting the number of

samples possible can be restricted to a low level. (Kelareva et al., 2010). In this case is

can be more appropriate to stop after a set number of trials. As the original

experiment, on which this investigation is based, used a small fixed number of

samples, this will be assumed as the termination rule.

14

2.2.7.3 Signal Intensity of the Next Sample
There have been a number of schemes based on adaptive Bayesian methods

presented in the literature to select signal intensities. Some common choices are to

estimate the mean of the posterior distribution of the threshold based on the

observed data up until that point and then set the next signal level equal to that mean

(King-Smith et al., 1994). The median or mode have also been used in place of the

posterior mean (Watson & Pelli, 1983) to place the next sample. We refer to these as is

consistent with Kelareva et al., 2010, that is the MEAN, MEDIAN, and MODE query

schemes respectively. How similar the results from these schemes are depends on how

symmetric the posterior distribution is. A highly skewed posterior could lead to quite

different designs.

Other schemes involve choosing the signal level which, based on the current estimate

of the psychometric curve, minimises a characteristic of the threshold posterior

distribution such as its entropy (Kontsevich & Tyler, 1999) or its variance (King-Smith et

al., 1994). These are referred to as the MINENT and MINVAR procedures respectively.

Kelareva et al. provide an interesting hybrid whereby for a set number of samples n,

the first n-k samples follow the MINENT procedure, with the remaining k samples and

final estimate are selected using one of the MEAN, MEDIAN, or MODE methods, based

on a certain loss function to be minimised.

2.2.7.4 Loss Function

Kelareva et al. give a summary of some common loss functions used to evaluate the

performance of the technique used to estimate the threshold T. The three loss

functions used in that paper are referred to as ABSERR, SQERR, and CATERR and are

outlined below.

ABSERR. This strategy involves minimising the mean absolute error, that is ,

where T is the true threshold and t is the estimated threshold. This method can allow

small numbers of large errors if the overall mean is still low.

SQERR. Here the aim is to minimise the mean of the square errors, i.e. . While

this is similar to the ABSERR method, it is more sensitive to large errors and thus it is

appropriate when the goal is to reduce large, even if infrequent, errors.

15

CATERR. The categorical error is the proportion of estimated thresholds which are not

equal the true threshold exactly. More formally, as defined by Kalereva, we want to

minimise the mean of L(T,t), where

Clearly CATERR only makes sense when the threshold can only take discrete values.

Therefore this loss function is confined to problems where the prior distribution of the

threshold is discrete.

2.2.8 ASTM method
To estimate this threshold one could employ a non-parametric approach such as the

ASTM last reversal method (ASTM International, 2011). While it is known to be biased

(ASTM International, 2011) it should result in an estimate not far from stimulus level

required to give 50% detection. The method works by presenting a run consisting of a

number of 3-AFC tests with the stimulus level increasing each time by a constant

multiplicative factor. The geometric mean of the concentration at which the last

incorrect choice was observed and the next concentration is then calculated for each

run to give a Best-Estimate Threshold (BET). It is also assumed that if the subject had

been presented with the next step down from the lowest observed sample they would

have answered incorrectly. This allows for a BET to be calculated when the subject

correctly detects the signal in all samples. Similarly the next step up from the highest

observed concentration is treated as being detected to account for cases where the

highest concentration was not detected. An example of calculating the mean BET for

two panellists is presented in Table 1. A similar table was presented in ASTM

International, 2011, but was based on group rather than individual threshold

estimates.

16

Table 1 Example of BET estimates for two panellists. Ticks indicate correct detection at a given concentration,
and a cross an incorrect response.

Panellist
ID

Concentrations (often in Log10 units) Best
Estimate

Threshold
(BET) 1 2 3 4 5 6 7 8

1 x x 3.5
1 0.5
1 x 3.5
1 x x x 3.5
 Mean 2.75

2 X 9.5
2 x x x 5.5
2 x x 3.5
2 x x x 4.5
 Mean 5.75

2.3 Odour Detection Experiments at The New Zealand Institute for

Plant and Food Research

As was previously stated the basis for this investigation is tied to experiments

conducted at the New Zealand institute for Plant and Food Research (PFR). A more

detailed outline of the experiments can be found in Peng et al. (2012) with a brief

summary provided here. One hundred judges were divided into ten cohorts of size ten.

For every cohort three odorants were tested with each odorant being presented in

four repetitions of a series of eight 3-AFC trials. The series included eight

concentrations which were presented in an increasing order with constant dilution

factor. Filtered water was used as the solvent with the two blanks presented in each 3-

AFC trial containing the solvent only. All target and blank solutions were placed in

separate covered wine glasses and left for approximately one hour before being

sampled. Only two sessions of differing odours, with a break in between were

conducted per day in order to reduce the influence of fatigue on the panellists’

detection ability. In addition the testing was conducted under green light with a 75

second delay between the three sample sets within the same series.

Threshold estimates were estimated for each series using the ASTM method, and the

geometric mean of the thresholds over the four runs taken as the final threshold

17

estimate for the respective odour. The reason for taking the geometric means is that

the concentrations with a constant dilution factor were represented on the logarithmic

base 10 scale, resulting in log concentrations equally spaced. Taking arithmetic means

on the log scale and then back-transforming onto the original scale is equivalent to

taking the geometric mean of the un-transformed values.

The starting concentration and dilution factor for the three odours were adjusted

when necessary after the completion of each cohort to ensure that the range of

concentrations used for the current cohort encapsulated most of the subjects’

threshold values.

2.4 Difficulties Implementing Standard Adaptive Procedures with

Olfactory and Taste Threshold Estimation

In Leek's (2001) review of adaptive procedures they state that “Most of the

development of these procedures has occurred in the context of vision or auditory

research”. While they go on to mention that Linschoten, Harvey, Eller, & Jafek, (2001)

have used maximum likelihood adaptive procedures for both taste and smell studies, it

still remains relatively uncommon. A major problem implementing these schemes

relates to the logistics of rapidly altering the concentration levels after each response.

In the experiment outlined above the samples were prepared an hour before being

sampled to allow formation of the headspace. If the signal intensity needs to be

changed rapidly, as with many of the methods previously mentioned, this would

require a large number of samples to be prepared beforehand and/or large wait times

between samples as the headspace reformed for repeated intensities.

One possible solution would be to use ‘sniffin sticks’ (Hummel et al., 1997), where the

odour is administered by felt tip pens filled with the odorant rather than the

compound diluted in water and placed in a wine glass. This would allow for the rapid

altering of the odour intensities. However it requires one staff member to be present

during the entire testing process to record the response and select the next odour

level. When a large number of subjects are required this may become cost and time

prohibitive.

18

For an adaptive method to be appropriate for experiments such as those used by PFR

it may have to address a number of restrictions. These are:

 Any altering of the signal intensities cannot occur between samples within the

same series. Due to logistical problems they must instead be altered after the

end of the series or between cohorts.

 The number of tests within a series run and in total may be limited to low levels

due to issues of fatigue and cost.

 It may be necessary for all subjects within a cohort to receive the same signal

intensities

2.5 Proposed Adaptive Threshold Estimation for Olfactory and Taste

Experiments.

Given the numerous models and points of interest on the psychometric curve it would

be greatly advantageous to develop a flexible method which can easily alternate

between the various psychometric and loss functions available to produce near

optimal concentrations for the next series of tests. The increasingly popular Bayesian

framework would be well suited to this problem. The proposed method is as follows:

1. Select a psychometric function such as Logistic, Weibull, Gaussian, etc. to

model and a loss function to minimise

2. Generate a large number of psychometric functions from the prior distributions

or even the posterior distributions based on previous trials.

3. Select signal intensities for a series of tests.

4. Generate responses based on and the chosen psychometric function.

5. Estimate the psychometric curve using MCMC methods and/or the properties

of its posterior distribution.

6. Calculate the approximate loss given the estimated psychometric curve and a

given loss function, e.g. MSE

7. Estimate the expected loss by averaging the losses over all simulated samples.

8. Alter the signal intensities and repeat steps 4 through 7 until the expected loss

is approximately minimised.

19

This process does present a number of difficulties. One major issue is the expense in

terms of time taken to approximate the loss function. Fitting a large number of

psychometric curves based on simulated data could be very time consuming especially

with MCMC methods which themselves require large numbers of iterations to

approximate the posterior distributions. One possible solution would be to

approximate the MCMC solution by means of a neural network. This could itself be

time consuming as a large number of samples would be needed to train, validate and

test the neural network. However once the network is trained it allows for rapid

function approximation to be calculated.

Another option is to define priors with discrete distributions as this would allow for the

posterior distributions to be calculated exactly. As long as the number of levels and/or

the number of points in the design are not too large then the expected loss should

be estimable in a reasonable time frame.

Adjusting the concentrations to minimise the loss function is also not trivial. Even by

simplifying the problem to finite sets of possible concentrations the complexity quickly

increases with the number of design points needed. Methods such as MINENT only

look one concentration ahead. It is reasonably straightforward to evaluate a single

intensity at a time from a set and select the ‘best’ choice. However when setting the

concentrations for session of k samples from n possible concentration levels we have a

k-combinations with repetition. The order of the sequence is ignored, which is

reasonable since the sequence is increasing in the PFR setup. More explicitly the

number of possible concentration levels for the next run is

For example if n=20 and k=8, there would be 2,220,075 possible concentrations to

evaluate, whereas with MINENT there would be 20. Depending on the size of n and k it

may be unfeasible to evaluate every possible combination and therefore some sort of

solver may be employed. Modified versions of global solvers such as the particle

swarm or genetic algorithm could provide an approximate solution. It could also be

possible to not restrict the concentrations to a finite set and instead treat them as

20

continuous. This would allow for a much wider range of solvers to be used, although

the non-smooth nature of the loss functions may restrict these to derivative free

methods. The issues encountered by this proposed method are discussed in more

detail in the methods section.

It has been previously demonstrated that adaptive Bayesian methods have been

effective in providing designs which improve the quality of sensory threshold estimates

given a limited number of trials possible. The above method aims to expand these

methods to situations where the design can only be altered between sessions

containing a set of trials. This means that methods must be able to look-ahead multiple

steps to calculate the expected loss. If this is possible the benefits of using the adaptive

Bayesian designs could be applied to experiments such as those carried out at PFR,

where the previous adaptive approaches were not feasible.

21

3 Methods

3.1 Software

The Bayesian analysis, computer simulations, neural networks and optimization

algorithms were implemented in the Python programming language version 2.7.3

(www.python.org). A number of required python libraries were compiled from source

under Linux OS kubuntu 10.04. Many libraries have existing precompiled windows

binaries in order to install them under MS windows. Python versions 3x are based on a

major re-write of some of the base code and therefore some libraries which have not

been updated will not function on these versions. To complicate matter further some

components required to install certain packages such as Numpy are not available for

64bit versions of python. For these versions it is recommended to download

precompiled versions from Christophe Gohlke’s website

(http://www.lfd.uci.edu/~gohlke/pythonlibs/).

One other recommended method for installing various libraries is to install and use

PIP. A windows binary of PIP can be found at the above website however it also

requires Distribute to also be installed. The simplest way to achieve this is to download

the setup file for distribute from here:

http://python-distribute.org/distribute_setup.py

First python has to be added to the environment variables path. Python 3.3 will do this

automatically however any previous version will need to be added manually. Once this

is done open the command shell in windows and navigate to the folder containing the

setup file. Then use the following command to install Distribute:

python.exe C:\Path\to\distribute_setup.py

With Pip and Distribute installed libraries can be added to python simply by, while in

the windows command shell typing:

pip install libraryX

Where libraryX is the package to be installed.

22

Alternatively they can be compiled from their source code using the Mingw compiler

with the Mysys command shell (www.mingw.org). The libraries used in the research

project are listed below.

3.1.1 Numpy and Scipy
Numpy and Scipy (Jones, Oliphant, Peterson, & others, 2001; Oliphant, 2007) extend

python to enable scientific programming. Numpy allows for the specification and

manipulation of arrays and matrices while Scipy contains many mathematical and

scientific functions including local optimization routines. Many other libraries including

those listed here require Numpy and Scipy in order to function themselves. If using

windows and a 64bit version of Python it is necessary to get a windows binary installer

for Numpy built using Intel’s MKL library as there are missing components needed to

build using BLAS. These binaries can be found at Gohlke’s website.

3.1.2 Matplotlib
Matplotlib (Hunter, 2007) is a 2-d plotting library and is necessary to provide

diagnostic plots of the PyMC output. Many other libraries also recommend this

package, most notably Numpy and Scipy, to provide publication quality figures.

3.1.3 PyMC
PyMC (Patil, Huard, & Fonnesbeck, 2010) is a Bayesian statistics library. It includes

Monte Carlo Markov Chain methods to fit Bayesian models and allows for user

customization to increase speed and convergence.

3.1.4 Playdoh
Playdoh provides the Particle Swarm (Vaz & Vicente, 2007) global optimizing algorithm

to solve minimization problems. It also provides multicore support to speed up the

optimization process. Playdoh is currently not compatible with Python versions 3x.

3.1.5 Numdifftools
Numdifftools “Solves automatic numerical differentiation problems in one or more

variables”. This was needed to estimate the hessian matrix of the negative log-

likelihood for the attempt to find D-optimal designs.

3.1.6 Numexpr
Numexpr provides a speed increase in evaluating many of Numpy’s basic array

functions.

23

3.1.7 ffnet
Ffnet (Wojciechowski, 2011) is a feed forward neural network library. It enables the

fitting and evaluation of neural networks and the ability to load and save them. Much

of the underlying processes are run in FORTRAN providing a great increase in speed. It

also includes a version of the genetic algorithm which can be adapted to solve discrete

optimization problems.

3.1.8 OpenOpt
OpenOpt (Kroshko, 2007) provides a large number of solvers relating to a variety of

optimization problems. Of particular interest here, is the Global Problem (GLP) solvers

which can be used to find the approximate global minimum or maximum of the

function of interest.

3.2 ASTM method

Given an underlying psychometric curve which generates responses to certain levels of

stimuli, the threshold estimates based on the ATSM method can be thought to follow a

discrete distribution whose mean and variance is easily estimable. For each run of

increasing n stimuli there are only n+1 possible threshold estimates. Each possible

threshold is based on an unsuccessful detection at the concentration immediately

prior to the threshold and successful detection for all concentrations greater than the

threshold. The probabilities of each threshold estimate given the underlying function

can be easily obtained, which in turn allows for the straightforward calculation of

expected values and variance of the estimator at the set concentrations. An example is

given below using at logistic curve with a true threshold of 5 (Figure 5 & Table 2).

24

Figure 5 Example of estimated detection probabilites for a psychometric curve at given signal intensities.

Table 2 Variance, Bias, and MSE estimation for teh ASTM method.

Signal
Intensity

Probability of
detection

Probability of
detection for
all

Threshold

probability
of threshold

)
1 0.345 0.013025 0.5 0.013025 0.006513 0.003256
2 0.365 0.037754 1.5 0.024729 0.037093 0.05564
3 0.413 0.103436 2.5 0.065682 0.164205 0.410511
4 0.513 0.25045 3.5 0.147014 0.51455 1.800925
5 0.667 0.488207 4.5 0.237757 1.069906 4.814575
6 0.821 0.731944 5.5 0.243738 1.340556 7.37306
7 0.921 0.891528 6.5 0.159584 1.037293 6.742403
8 0.968 0.968 7.5 0.076472 0.57354 4.30155

 8.5 0.032 0.272 2.312
 Sum 5.015655 27.81392

Signal Intentsity

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

0 1 2 3 4 5 6 7 8 9 10

0.000

0.345
0.365

0.413

0.513

0.667

0.821

0.921

0.968
1.000

25

Given the underlying psychometric function and concentrations used the expected

value of the estimated threshold, as calculated above, is 5.0157. The expected Bias is

therefore 5.0157 – 5 =0.0157. Since , and

,the expected variance and mean square error of the estimator in

this example are 27.8139 – 5.01572 = 2.6571 and 2.6571 + 0.01572 =2.654 respectively.

This example is over simplified as the underlying curve will be unknown in practical

applications. However it demonstrates the trivial calculation of the measures of the

estimator’s performance. Instead of a single curve, a sample of curves could be taken

from a prior distribution representing the researcher’s uncertainty and the

concentrations can be set based on the measures calculated above. This is a

reasonably straightforward and quick process which serves as a baseline for

comparison with the more time consuming Bayesian approach described later in this

section.

3.3 Threshold Estimation using the Psychometric Function

3.3.1 Maximum Likelihood
Given a set of responses and the form of the psychometric curve one can estimate the

threshold which maximises the likelihood. More formally for a set of concentrations c1,

c2,...,cN, the number of trials at each concentration n1, n2,...,nN and the respective

number of correct responses x1, x2,...,xN the likelihood is

Where is the probability of detection at and is defined by the underlying

psychometric function.

As Kuss et al. point out; this is the “standard binomial mixture model for parametric

functions as assumed in virtually every study on psychometric functions”.

 If for example, the psychometric function takes a logistic form then with a threshold

m, scale parameter w, guessing probability γ, ignoring the lapse probability and setting

 for simplicity, gives:

26

And

To find the threshold m and w which maximise this likelihood i.e. the MLE’s of m and

w, one method is to take the derivatives with respect to m and s of the log-likelihood,

set it equal to zero and then solve for m and s respectively. Once this has been

completed one should also confirm that it is indeed the local maximum.

Setting these resulting derivatives to zero and solving is not trivial using algebraic

means and would be even further complicated with the addition of a lapse parameter.

27

For this reason the MLE’s are often estimated by numerical methods such as the

Newton-Raphson. This can be reasonably straightforward to perform, but it means

that obtaining the expected values, variance, and MSE measures as was done for the

ASTM method, requires generating every possible response pattern, calculating the

probability of observing said pattern assuming the underlying model, and then

estimating the MLE’s for each. While this can be done in a reasonable time frame, the

optimisation algorithms needed to minimise the loss functions require many such

calculations leading to a computationally expensive process. One possible solution is

that rather than evaluating all possible responses, instead a large sample of responses

is generated using the underlying model and current concentration levels. If for

example we had four repetitions of 3-AFC tests at each of eight concentration levels

then there are 58=390,625 possible response patterns. If instead, only say 10,000

response patterns were randomly sampled using the underlying psychometric curve,

then approximate estimates of the mean, variance, etc. could be computed at a

fraction of the computational cost.

3.3.1.1 D-Optimal Designs
One common frequentist approach to optimal design when classical designs are not

appropriate is the D-optimal design. There are D-optimal designs available for

generalised linear models such as the bivariate logistic regression(Heise & Myers,

1996). This is a computer generated design which maximises the determinant of the

information matrix of the model parameters, or equivalently minimises the

determinant of the inverse hessian matrix. The general approach for a logistic

regression is to assume an underlying model which in this setting is a psychometric

curve. Then adjust the design until the determinant of the inverse hessian matrix of

the negative log likelihood evaluated at the maximum likelihood estimate, is

minimised. Custom python code was written to provide the D-optimal designs which

was first checked against known results for the standard logistic regression. The

problem with the D-optimal design outlined here is that it is optimal assuming only a

single curve. Therefore for any individuals with psychometric curves different from the

assumed model, the design may not be close to optimal.

28

3.3.2 Bayesian Fitting
One alternative to MLE estimation of model parameters θ is Bayesian inference. This

has the advantage of incorporating prior knowledge in addition to the data to make

inferences about θ. This relationship is defined by Bayes’ rule:

The relationship results in a probability distribution of θ given the observed data

 referred to as the posterior distribution. This is constructed using the

likelihood function and the prior along with the denominator

which is a constant. As the number of observed data points increases the posterior

becomes less influenced by the prior distributions.

Returning to the previous logistic psychometric function example, given data

consisting of ni, xi, and ci. The posterior is defined as

The denominator is a constant which ensures that

the posterior integrates to 1 as a probability distribution should. The solution to this

denominator integral is often very difficult to obtain unless “conjugate” prior

distributions are used as they result in a posterior with a standard p.d.f. Often however

the problem is side stepped by ignoring this denominator completely and instead

approximating the posterior distribution using Monte Carlo Markov Chain (MCMC)

methods to sample from the posterior based on the weaker relationship:

There are various algorithms, or step methods available to sample from the posterior

with popular methods being Metropolis-Hastings or Gibb’s sampling. For the purposes

of this investigation the PyMC python library uses the Metropolis method, which is a

special case of the Metropolis-Hastings algorithm for the MCMC sampling.

29

3.3.2.1 Metropolis Algorithm
The Metropolis algorithm used allows for the sampling of a distribution where it is

possible to calculate a value proportional to the p.d.f. Continuing the logistic

psychometric example, let:

Then the Metropolis algorithm in PyMC is as follows:

1) Set initial values and .

2) At the current values and , draw candidate values ʹ and
ʹ

3) If
ʹ ʹ

 then and

4) Else
ʹ ʹ

ʹ ʹ

ʹ ʹ

5) Repeat steps 2 through 4 a large number of times, tuning and where

needed to allow for reasonable acceptance levels while at the same time trying

to decrease the correlation amongst consecutive samples.

 Employing the Metropolis algorithm as outlined above results in a large sample from

the posterior distribution. The observations near the beginning of the chain are often

discarded as they can be highly influenced by the initial starting points and . As it

can take a substantial number of the subsequent samples before the model converges

this “burn in” period can be large. Additionally the Metropolis method can produce

samples whose sequence has high auto correlation. Using larger values of and

can reduce this, however this will often reduce the speed of the model mixing as it can

lead to a lower acceptance rate of the candidate values. A commonly employed

solution is to instead “thin” the remaining samples by taking every nth value of the

chain, where n is adjusted until the auto correlation has been sufficiently reduced.

PyMC does allow for other step functions, including custom code. However the

Metropolis algorithm provided sufficient results with a burn in of 1000, and a thinning

factor of 10 to produce 900 samples for each run of model fitting. While the 900

thinned samples will have some variation due to MCMC sampling error this was

30

deemed sufficient due to the trade off between accuracy and the time needed to run a

large number of MCMC simulations.

3.3.2.2 Bayesian Point Estimates
Once the posterior has been approximated an appropriate point estimate is reported.

The choice of estimate often depends on the loss function, however the most common

estimates are the median (Median), mean (Mean), or the mode, also known as the

maximum a posteriori (MAP), of the posterior distribution.

The MAP can be estimated in a similar manner to the MLE and does not actually

require any MCMC sampling. In this investigation the Powell’s minimization method

(Powell, 1964) was used in PyMC to obtain the MAP estimates of which maximise

. It should also be noted if is a flat prior then the MAP will be

close to if not identical to the MLE.

The Mean estimate can be calculated as the mean of the MCMC sample. Similarly the

Median estimate is the sample median. The choice of which statistics to report as the

parameter estimates depends on the loss function. Kelereva et al. note that the MAP

minimises the expected CATERR loss function, while Mean and Median minimise SQERR

and ABSERR respectively.

In the simulations used in this investigation the MAP, Median, and Mean’s were all

calculated and stored along with the standard deviations of the posterior distributions.

3.3.2.3 MCMC Fitting
The Bayesian model fitting was conducted using PyMC 2.2 library in Python 2.7. The

model parameterization used was consistent with Kuss et al. (2005). For ease of model

specification both the threshold and width parameters are assumed to lie within the

(0,1) interval (Treutwein & Strasburger, 1999). Any real world application would

involve normalising the stimulus values (x1,...,xn) by the linear transformation

 to map X onto the (0,1) space, and back-transform the result using

. A and B are calculated as

31

 and where and are the limits of the

sensory space in the original units. Treutwein & Strasburger (1999) describe the same

transformations as above but have an error in the formula for the calculation of B.

Standard uniform prior distributions were assigned to threshold and width

parameters. While Kuss et al. (2005) recommend using a gamma or log normal prior

for the width parameter the alternative approach of Trutwein and Strasburger was

used. Here the width parameter, w, has a standard uniform prior also, however it is

then transformed from the (0,1) interval onto (0.005,0.5) by

And back-transformed with

The upper bound of 0.5 for allows for a flat psychometric curve over the stimulus

space (0,1), while the lower bound allows for a very steep curve.

For the current investigation the guess parameter was fixed at 1/3 as is consistent with

the 3-AFC design, while the lapse parameter was set to 0.0001. The reason for having a

non-zero lapse parameter was to avoid errors in PyMC caused by the observed data

having a virtual probability of zero under a MCMC parameter sample. Instead the

offset make this probability very small and so allows for rare occurrences of incorrect

discrimination for sensitive individuals when the signal is very strong. The logistic

psychometric curve used in the simulations is therefore:

The model fitting involved firstly calculating the MAP and then generating 10,000

MCMC samples, of which 1000 were discarded as a burn-in and a thinning factor of 10

applied to the remaining observations (Figure 6). This was deemed sufficient, based on

some simulated responses, to achieve a converged model while adjusting for

32

autocorrelation amongst the samples. The relatively low number of samples (900)

remaining to base the posterior estimates was in the interest of speed.

Figure 6 Autocorrelation plots for Threshold parameter estimates. Original (left) and thinned by factor of 10

(right)

3.3.2.4 Assessing MCMC Convergence and Sensitivity to Initial Values
While the choice of the number of MCMC samples, burn-in, and thinning parameters

were based on reducing the auto-correlation in the parameter’s trace this does not

guarantee that the model has converged. The suitability of the MCMC setup was

investigated through two procedures. The first of which was the Raftery–Lewis

approach (Raftery & Lewis, 1995). This method as implemented in PyMC gives a

recommended number of posterior samples, burn-in, and thinning to estimate a

chosen percentile to within a given accuracy at a set confidence level. These estimates

are based on a posterior trace from a pilot MCMC run. For each of the 256 possible

response patterns to 3-AFC tests at 8 equally spaced concentrations ranging from 0 to

1, MCMC runs of length 10,000 with no burn-in or thinning were run to produce

posterior samples for the threshold and scale parameters. For each of these the

Raftery-Lewis diagnostic produced recommended MCMC fitting parameters for

estimating the 0.025 and 0.975 quantiles of the respective posterior distributions to

within 0.01 of the true quantile with 95% confidence. Over all response patterns and

estimated quantiles the recommended burn-in was always less than 150 samples

which indicate that the 1000 burn-in used may have been excessive. For estimating the

0.025 quantile of the threshold and scale posterior distributions the recommended run

length and thinning parameters only 1 out of 256 only slightly exceeded those that

33

were used. Estimating the 0.975 quantile was a little more problematic with 109 out

256 exceeding the run length and thinning used in the final estimates, sometimes by

up to 3 times. However the main reason for requiring the extra samples appears to be

due to produce an independence chain. If the model has converged and the run length

is reasonable, posterior estimates can still be calculated from dependent samples.

However looking at the 0.975 quantile to within 0.02 of the true quantile the

recommended run lengths are always lower than what was eventually used, although

the recommended thinning factor was greater than 10 in some cases. Based on the

Raftery-Lewis diagnostic it appears that the burn-in of 1000, thinning factor of 10, and

total run length of 10,000 was adequate to get reasonable estimates of the posterior

threshold and scale distributions in terms of the 0.25 and 0.975 quantiles at least.

The second diagnostic used was the Gelman-Rubin method (Gelman & Rubin, 1992)

which assesses the model's sensitivity to the initial values especially when multi-

modality is present in the posterior. For each of the same 256 response patterns used

above, ten chains with random initial values were run for each model runs of length

10,000, burn-in of 1,000 and thinning factor of 10. The Gelman-Rubin diagnostic looks

at the between and within chain variances in much the same way the standard ANOVA

does. In PyMC the function returns a statistic R which is based on the ratio of these

two variances. Values close to 1 indicate that the chains have all converged to the

same distribution. For the pilot runs the observed ratios were all within the range

0.999 to 1.061 indicating that the chains all converged despite the differing initial

values.

Overall the MCMC fitting parameters appear to have been adequate to get reasonable

estimates of the posterior distributions, although longer run lengths may have been

beneficial. There is also the chance that for some of the response and concentration

combinations these parameters would not be appropriate, however based on the pilot

samples used this would seem to be unlikely.

34

3.3.2.5 Approximating Posterior Estimates using a Neural Network.
Simulating responses based on the prior distributions of , then calculating

the threshold estimate and its respective loss provides a means to obtain a reasonable

approximation to the expected loss function. However, approximating the posterior

distribution through MCMC and then evaluating a given loss function for each

simulated sample can be very time consuming, let alone when this needs to be

repeated multiple times in order to minimise said loss function. The calculation of the

posterior Mode can be calculated reasonably quickly using optimization techniques but

the Mean, Median and Entropy require the full posterior distribution. One attempt to

overcome this was to simulate a large number of observations as before and calculate

the posterior mean, mode, median, and discretised entropy for each sample. A Neural

Network (NN), sometimes referred to as Artificial Neural Network (ANN), was then

trained based on a large subset of these simulated values to predict the evaluated

measures.

Neural networks have successfully been used to approximate functions (Li, 2008). A

NN is a network of neurons arranged in layers. The neurons in the first layer are the

predictor variables commonly referred to as ‘inputs’, while in the last layer they are

the dependent variables or ‘targets’. In practice there is usually only need for one

intermediate or ‘hidden’ layer and very seldom are more than two layers required.

There are a number of different forms of NN however for the purposes of this

investigation Feed Forward NN’s with one hidden layer are considered. A Feed

Forward NN means that information flows from the input layer through to the hidden

layer and finally to output (target) layer (Figure 7). It does not for example flow from

the target layer back to the hidden layer. Often the input and target variables will be

scaled to lie in the interval between 0.15 and 0.85 to aid in the optimization process.

35

Figure 7 Example of a Neural Network with 3 input, 6 hidden and one target neuron.

The idea of NN is not new, in fact it dates back to work by Warren McCulloch and

Walter Pitts in 1943 (McCulloch & Pitts, 1990).The basic process for each neuron in the

hidden and target layers is to receive a number of inputs from the previous layer.

Sometimes an additional “bias” input with value 1 is also included. Weights are then

assigned to each of these inputs, and the sum of the weighted inputs is calculated.

Finally this sum is passed through an activation function, with the resulting output

passed on to the next layer or if in the target neuron, taken as the final estimate(s). In

other words for a given neuron with inputs x0 to xn, weights w0 to wn, activation

function g, the output y is defined as see Figure 8

36

Figure 8 Example of how the inputs (x) are linked to the outputs (y) via the weights (w) and activation function
(g).

The activation function g can take a number of forms, such as a step or a log-sigmoid

function. For the purposes of this investigation the log-sigmoid activation function is

used. That is where and is the slope parameter.

Figure 9 Example of a log-sigmoid activation function with

Once the network has been trained it is then tested on the remaining data to evaluate

its ability to approximate the posterior estimates.

37

While generating the samples to fit the Neural Network it became apparent that by

simply taking random design points it was not exploring the whole design space. For

example taking a random sample of 8 from the standard uniform distribution is

unlikely to result in all values less than 0.1 and so this design space is unexplored. In

order to solve this problem a number of space filling designs were trialled. In particular

Quasi-Monte Carlo sampling and Stratified Monte Carlo sampling(Giunta, Wojtkiewicz,

& Eldred, 2003). The Quasi-Monte Carlo method appeared to be too difficult to

implement although some progress was made by being able to generate the Sobol

sequence needed for the process. In the end Stratified Monte Carlo sampling was

preferred due to its simplicity in implementation. Stratified Monte Carlo meant

dividing the n-dimensional design space into an n-dimensional grid and sampling from

each cube. The result was a simulated dataset which explored the design space far

better than the more standard Pseudo-Monte Carlo Sampling.

The advantage of the neural network approximation is that it greatly improves speed.

The ffnet package used to train the neural network uses Fortran code for many of the

calculations resulting in a speed up of over 100,000 over evaluating the same

estimates using PyMC. The trade off is obviously accuracy. If the network does not

approximate the MCMC estimates well it will result in poor optimal design estimates

albeit produced quickly. Therefore the summary statistics of the neural network

estimates versus the ‘true’ MCMC values as well as their plots were inspected to assess

the suitability of the neural network approximation.

3.3.2.6 Bayesian Experimental Design with Discrete Priors
Once the Bayesian framework has been set up, one obvious approach is to select the

signal intensities for the current experiment which minimise the expected loss function

given the posterior predictive distribution. If we have an observed set of

responses , then the posterior predictive distribution is the distribution

that a new sequence of responses at concentrations would

follow given Y . More formally

38

Where is the likelihood and the posterior distribution based on the

observed data.

If no data has been collected the prior distribution is used in place of the

posterior. Next we define as the estimate of given observed data and

unobserved data with design . Note that the unobserved can be one of a finite

number of possible sequences. By summing over all possible this leads to

For a given loss function of and the posterior estimate the expected value given

and is

If is assumed to be one of a set of j finite values, that is has a discrete prior(s),

then:

In addition if observed data Y is available:

39

This gives the means by which one is able to calculate the expected loss based on the

discrete prior of , the likelihood function, and a set of design points . The general

procedure can be explained in the following steps:

1. Generate all possible response patterns given . In general there will be 2n

such possibilities, however if there are repeated signal intensities this number

can be reduced. For example if there are r repeated tests at each of m levels

then the number of possible responses can be reduced from 2mr to mCr+1.

2. For each value of possible under its discrete prior(s) calculate the loss

function for each of the posteriors based on the pseudo responses.

3. Calculate the probability of detection at each of the lth level (xi) of for

every possible using the psychometric function. For the logistic

psychometric curve

4. Calculate the likelihood of observing each sequence given as the product

of the binomial probabilities for each lth level of

5. Multiply the each loss by its likelihood and then multiply again by the

respective prior, or the posterior if observed data is available, probability of

.

6. Take the sum of the weighted losses as the expected loss for design .

While the process is reasonably straightforward it does require a large number of

calculations especially if has a reasonably large number of unique levels, or if the

discrete prior distribution(s) have a large number of levels. For example if it is desired

to set the next 20 design levels there are 220=1,048,537 possible responses multiplied

by the number of levels of the prior(s) loss function evaluations which can become

prohibitively large. Hence this investigation only looks at designs where the number of

levels is 8 or less. The most complicated design used in the simulations involved four

repeats of 8 levels giving 8C5 = 390,625 possible responses.

40

One could instead use a continuous prior and try and estimate the expected loss

function analytically, however the integrals involved are intractable. Another option

would be to use the MCMC techniques previously mentioned to get an approximate

solution. However as Vanlier, Tiemann, Hilbers, & van Riel (2012) point out such a

nested process may not be tractable due to the often computationally expensive

MCMC methods. While they avoid the problem by estimating an approximate solution

via importance sampling a different approach is taken here. The first attempt to

overcome this problem was to use a neural network to provide a fast approximation to

the MCMC estimates.

The next attempt described here was that instead of using continuous distributions;

the prior beliefs are specified by discrete approximations to reduce the computational

burden. In general these priors for both the threshold and width parameters are

discrete uniform of n equally spaced levels over the [0,1] interval. Even if the discrete

priors can be considered approximations to the continuous priors they have the

advantage over the MCMC based methods of giving exact loss estimates. In particular

the sample posterior entropy appeared to be rather unstable under MCMC simulations

and therefore optimizing based on this value can be improved by using the exact

results.

3.3.2.7 Approximate Entropy of the Posterior Distribution
As mentioned previously there are a number of adaptive design schemes which rely on

the selecting stimulus levels to minimise the entropy of the posterior. When using the

discrete priors the entropy can be calculated exactly but for the MCMC based posterior

estimate this is more difficult. To get an approximate entropy estimate, threshold

posterior distributions were divided in 10 bins of equal width. The proportion of the

MCMC samples in each of the i bins, , was then calculated. Finally the entropy, H, of

both the discretised distributions and the posteriors based on discrete priors were

calculated as

41

This is a slightly different parameterisation from the more standard:

The reason for this if then in python, , while

, which is the standard definition.

Additionally for the discrete prior method the numexpr library was used to speed up

many of the matrix calculations. Numexpr does not include a function and

therefore the natural log was used instead. The impact of this change is minimal as H

changes only by a constant depending on which base the logarithm uses and therefore

the minimum entropy still occurs at the same design points as if had been used.

The entropy values were stored together with the other MCMC summary statistics.

The Shannon entropy is an important measure in that minimising the expected entropy

of the posterior through choosing design can be thought of as maximising the

expected gain in posterior information.

3.3.3 Approximating the Loss Function by Simulation
To estimate a particular loss function for a given set of concentrations one strategy

would be to evaluate the threshold estimates for all possible responses and calculate

the expected loss by weighting the estimates by the probability of occurrence

assuming the underlying model.

However if the number of concentrations is large the number of threshold evaluations

needed can be prohibitively large. In this case an alternative strategy can be employed.

Here a number of responses are generated at the current stimulus levels assuming the

underlying model. Threshold estimates are calculated for each of the response

patterns and then the loss function calculated. This will give a reasonable

approximation to the loss function with some noise due to the random sampling.

3.4 Loss Function Minimisation

Once a practical method for estimating a given loss function has been found the

problem now shifts to that of finding an optimum configuration of stimulus levels so as

42

to minimise the loss. If the concentration levels are first restricted to take only values

over the range of interest, [0,1] on the rescaled, then the candidate concentrations for

the next sample may take any real values within this interval. Alternatively, and

perhaps more practically, the candidate concentrations may be also restricted to

belonging to a finite set of stimulus levels. For example only concentrations of 0.1, 0.2,

0.3,...,0.9 are available to the researcher.

3.4.1 Minimisation with Continuous Stimulus Levels
There is a wealth of algorithms available in Python and its various packages to solve

optimization problems. The OpenOpt library in particular provides a great number of

optimisers for various problem types. However the interface to hook in with the

objective function was problematic and therefore OpenOpt was not used in the final

analysis. Instead a number of other solvers were used. Firstly Powell’s minimisation

algorithm (Powell, 1964) implemented in the Scipy.optimize library was used for the

minimisation of the majority of the adaptive methods presented here. Many of the

other optimisers available performed similarly but as noted in a discussion on the

PyMC Google Groups site, Powell’s method can be superior at finding the MAP of the

posterior distribution.

Initially when there was an error in the code to calculate the expected loss the solver

would derive a solution which contained design points far outside the [0,1] interval. To

force the solution to lie within the interval the solver was changed to the box

constrained Broyden-Fletcher-Goldfarb-Shanno L-BFGS-B method (Zhu, Byrd, Lu, &

Nocedal, 1997). However once the bug was found and fixed the box constraints were

no longer necessary and Powell’s method was again implemented as it has the

advantage of being derivative free which could be an advantage if the loss function is

not smooth. Powell may still provide a solutions outside [0,1] however small

discretions are allowable due to the possibility of the ‘true’ threshold being outside

this for the logistic psychometric curve. The Weibull curve on the other hand does not

allow concentrations less than zero so if this psychometric curve was assumed then

the L-BFGS-B solver may be preferable.

For the training of the neural network the TNC optimiser was used as it allowed for a

speed-up by allowing the function evaluations to be spread across multiple cores. The

43

TNC optimiser, which is also available in Scipy is a version of the Newton Conjugate-

Gradient modified to allow for box constraints.

At any rate the choice of minimisation routine is rather arbitrary and therefore the

python code is written to allow for the choice of non-linear solver to be changed.

Another class of solvers, called global solvers, were also implemented. One potential

drawback for the non-linear solvers above is that it is possible to for the algorithm to

find a solution at a local rather than the global minimum. Global solvers overcome this

at the price of speed. The Particle Swarm (PSwarm) and Genetic Algorithm are two

examples of global solvers used in this investigation.

PSwarm involves setting a number of individual “particles” randomly within the design

space and evaluating the loss function. Then each particle moves at a set “speed” with

the direction based on the position of the “best” particle and the best known position

that the individual particle has visited. Once the particles have finished moving the

function is again evaluated and the process is repeated for a set number of iterations.

The final solution is position with the minimum (or maximum) function value which

was explored by any of the particles during the process.

The Genetic Algorithm mimics biological evolution by starting with a number of

individuals within the design space. Each individual has a number of “genes” which are

the design points from which the objective function is calculated. A number of these

individuals are selected based on their respective “fitness” (loss) functions and are

grouped into pairs. Each pair produces “children” which form a new generation of

individuals. The children are generated by selecting one of each pair of genes from its

parents. This process is repeated for a number of generations with a solution being the

“fittest” individual produced over a set number of generations. The experimenter can

also tune this process by adjusting the cross-over and mutation parameters.

3.4.2 Minimisation with Discrete Stimulus Levels
While the majority of this investigation deals with trying to find the optimal design

points, , due to restriction the investigator may only be able to select from a

finite set. In this situation the most straightforward option is to round the optimal

44

concentrations to the nearest possible signal intensity. However this rounded solution

is not guaranteed to be approximately optimal.

A better approach would be to round the inputs to the nearest possible concentration

before they are input into the loss function. This has the effect of making the objective

function non-smooth. Inputs which are real numbers and close in magnitude will be

rounded to the same value and hence produce the same loss. This non-smoothness

can affect the performance of the non-linear solvers leading to the false appearance of

convergence. The global solvers, however do not have this limitation, and are suitable

for the task. As the problem of selecting a design from a finite set of possibilities is not

the focus here, the code is only provided to demonstrate that it is possible to derive an

approximate optimal set of design points from a finite set. In addition a brief number

of simulation results are also provided.

3.4.3 The Adaptive Procedure
Based on the discrete prior approach the python code also contains routines for

finding an optimal design based on the prior distributions as outlined above. Once data

has been collected based on this design the posterior distribution is calculated and

then is used as the new prior for the next set of design points. As the posteriors are

calculated exactly this is allowable since

. Which is equivalent to calculating the posterior distribution for

based on data with prior . This process is repeated until a set number of

samples have been collected and the summary statistics based on the final posterior

distribution are returned. Most of the simulations presented here involve designs of

size 8 being adaptively fit for an individual curve 4 times. It is as Kelareva et al., (2010)

would refer to as a look ahead 8 design, as it looks ahead 8 steps to derive the optimal

design. Hence the 8-step look-ahead adaptive designs compared here will be referred

to as MINENT8, MEAN8, MEDIAN8, and MODE8. The total number of tests at the end

of the 4 blocks of 8 samples is 32. The reason 8 was chosen is due to the number of

tests used on the original PFR study as more than 8 could possibly lead to olfactory

fatigue. Some other versions of these with the same number of total tests (32), were

also simulated for comparison. These were a design with 4 repeats of the same 8

design points, and another which involved looking ahead only 1 point, which are

45

similar to the procedures MINENT, MEAN, MEDIAN, and CATERR (Kelareva et al.,

2010). The MEAN, MODE, and MEDIAN procedures may differ slightly as they explicitly

set the next design point to the mean, median, and mode of the current posterior

respectively. The method used here however, minimises the square, absolute, and

categorical error by summing over the posterior distribution. In theory this should lead

to a similar outcome to the MEAN, MEDIAN, and MODE. A look ahead 32 design was

not possible with this method as it required far too many possible samples (232) to

evaluate over.

These routines allow for four different loss functions: Square, Absolute, and

Categorical error as well the Entropy. The square error is calculated as the squared

difference between the true threshold and the posterior mean, the absolute error as

the absolute difference between true threshold and the posterior median, and the

categorical error as 0 if the posterior mode equals the true threshold, 0 otherwise. The

reason these point estimates were used for the respective loss function is that they

have been shown to minimise said losses (Kelareva et al., 2010).

The discrete priors were uniform in probability with a set number of levels. The

number of these levels was varied to trade off between accuracy and speed. The

simulations presented in the results were based on uniform independent priors

between the interval [0,1] for both the threshold and width parameters. The number

of levels for the majority of simulations was 11, which gave sequences from 0 to 1 with

a step size of 0.1.This resulted in a prior distributions where there were 121 possible

logistic curves all with equal probability. Using a low number of levels meant that the

function evaluations were very quick and hence why it was used to run the large

number of simulations. It is however possible to increase the number of levels and one

simulation comparing the minimum entropy procedures with look ahead 1 and 8 uses

priors with 100 equally spaced points between 0 and 1, resulting in 10,000 possible

curves under the prior distribution.

When comparing the performance of the different adaptive techniques responses

from simulated individuals were randomly sampled. In order to reduce the sampling

variation amongst the different techniques responses were made to be consistent for

46

each individual across different designs. This was done for each individual by taking a

random uniform(0,1) sample of length equal to the number of samples needed. This

simulated response was then generated by taking the inverse of the cumulative

binomial distribution given n and probability equal to the underlying psychometric

function evaluated at design . The random sample is used for all simulations relating

to that individual but is re-generated for each subject. This means, for example, that if

a simulated individual gives a correct response at concentration .5 for the first design

point, then any concentration greater than 0.5 for the first design point, generated

under the other schemes must also be correct. This does not hold for values less than

0.5, or across design points e.g. the second design point at a concentration of .5 may

be incorrect.

3.4.4 Python code
The majority of python code used in the final analyses is available in the appendix,

much of which is custom written with the exception of a function used to generate De

Bruijn sequences. This function was freely available on the De Bruijn sequence entry in

Wikipedia (en.wikipedia.org/wiki/De_Bruijn_sequence). The verbatim code in question

is listed on the next page:

47

def de_bruijn(k, n):
 """
 De Bruijn sequence for alphabet size k
 and subsequences of length n.
 """
 a = [0] * k * n
 sequence = []
 def db(t, p):
 if t > n:
 if n % p == 0:
 for j in range(1, p + 1):
 sequence.append(a[j])
 else:
 a[t] = a[t - p]
 db(t + 1, p)
 for j in range(a[t - p] + 1, k):
 a[t] = j
 db(t + 1, t)
 db(1, 1)
 return sequence

print(de_bruijn(2, 3))

The De Bruijn sequence was used to generate all possible responses by repeating the

sequence with some reordering and reshaping it into a two dimensional array.

Much of the code is nested within functions which not only are more efficient (as it

allows the same routine to be used multiple times succinctly) but it also improves the

memory management. When first running the MCMC routines multiple times the

memory usage continued to increase until it was full causing python to crash. This was

due to the way in which python handles memory. Simply deleting an object does not

remove it from memory, instead the reference count must reach zero before the

system will release the memory back to the system. By creating objects such as large

arrays within a function and only returning summaries of these arrays, the memory

used to store them should be released once the function has terminated.

A lot of the routines used in the discrete prior method to search for the optimal design

involved array manipulation as it is computationally more efficient than using loops.

With some of the larger problems these arrays became too large to store in memory

48

and therefore were split into smaller arrays which were fed into the loss function

separately and then the solutions recombined.

49

4 Results

4.1 Fitting Bayesian Models through MCMC

Logistic psychometric curves were fitted using PyMC with a burn in of 1000, thinning of

factor of 10 and 10,000 as the total number of iterations. Prior distributions for both

the threshold and scale parameters were beta(1,1), which is equivalent to the standard

uniform distribution. For a small sample of the simulations autocorrelation plots were

inspected and deemed to be satisfactory. Under these settings a model with based

designs of lengths ranging between 8 and 40 points with respective binary outcomes

took between 1.89 and 2.15 seconds on an Intel Xeon E5530 8 cores @ 2.4 GHz with

24 gigabyte of ram running Kubuntu 10.04, to evaluate the posterior and return

various summary statistics.

 While this seems a reasonable time frame, in order to carry out any sort of

optimisation routine this process must be repeated a number of times. For example if

there are 8 design points to be set then there are 256 possible response patterns

which need to be evaluated for the expected loss to be calculated at each

configuration of . If there is roughly 200 loss function evaluations needed for the

local solver to converge to a solution then the total time taken would be

approximately 27 hours. For many practical situations this would be too long to be of

any use. Therefore optimising based on a neural network approximation of the

posterior estimates was investigated as a means of improving convergence speed.

4.1.1 Generating data for Neural Network Training
The first step in training the neural network is to generate the data. Firstly a 25,008 by

40 matrix of random standard uniform variables was generated. Each row

corresponded to a design configuration to be used in the data simulation. As stated in

the methods this did not explore the design space adequately. For example, designs

with all placements less than 0.25 were virtually nonexistent as the probability of such

an occurrence =.2540. Therefore the designs were rescaled to lie within 1 of a possible

16 sections of [0,1] , taking up proportions of 1/4,1/3 ,1/2 , or the whole of the

interval. Next 25,008 threshold and scale parameters were generated using the

standard uniform prior distributions. Initially 25,000 was chosen as the number of

scale and threshold parameters to generate in the interest of time while still providing

50

enough samples to train and test the NN’s. This was increased slightly to 25,008 to

allow for equal numbers to be sampled from each of the 16 sub-intervals. For each

simulated design predicted probabilities of detection based on the logistic

psychometric curve with the matching simulated model parameters were calculated

and Bernoulli samples based on these taken. For each of these simulated samples a

number of sub samples were taken and the posteriors estimated by MCMC methods as

described above, with the posterior entropy, mean, mode, median, and standard

deviation for both the threshold and scale parameters being stored. The sub samples

were the first 8, 16, 24, 32, and all 40 observations in each sequence. The reasoning for

this is to be able to estimate 8-step look-ahead loss functions given observed samples.

The total time taken to generate this training data was approximately 3 days.

4.1.2 Training the Neural network
The structure of the neural networks involved having 4 times as many hidden nodes as

there were input nodes, with one output node. Initial attempts treated the sampled

responses and design points as separate inputs however for the neural network to

recognise that each response related directly to an individual design point would

require a complicated specification of the relationships amongst certain input nodes.

Therefore the two parts of information were combined into a single input sequence by

changing the sign of the design point to negative if the response is 0, or leaving it

positive if the response is 1. If there were originally 8 design points with 8 responses

the new input variable has length 8 rather than 16, and so on. The inputs were also

sorted on their absolute value so that they range from the smallest concentration

through to the largest. This helps to avoid inconsistent estimates where the same

inputs produce different outputs based on their order.

A random sample of 20,000 of the 25,008 generated dataset was used to train the

neural networks with the remaining observations used to test the model fit. The fitting

process involved using python’s own TNC solver with 5000 iterations and utilising all 8

cores. This was repeated for each outcome measure and for the samples of length 8,

16, 24, 32, and 40.

51

4.1.3 Neural Network Performance
The trained neural networks perform reasonably well when predicting the mean and

median of the posterior distributions especially when the number of inputs is low. The

mode, standard deviation of the posterior (not shown), and the entropy prove more

difficult to approximate. Scatter plots of the MCMC estimates based on 8 observations

vs. the neural network approximations for the 5008 samples in the test dataset are

shown in Figure 10, with the mean having a tight fit around the y=x line.

Figure 10 Scatter plots of the MCMC estimates based on 8 observations vs. the neural network approximations

The results from fitting a simple linear regression model with the NN approximation

regressed onto the MCMC fits for the same test dataset are shown in Table 3. Note

that an intercept of zero and a slope of one would indicate a perfect fit. The regression

summary statistics (Table 3) agree with Figure 10 in that the mean shows the best

neural network approximation with intercept and slope parameters close to 0 and 1

respectively. It also has the lowest standard error of the estimate, which is a measure

of how much the observed data deviates from the predictions of the regression model.

52

Table 3 Regression Summary Statistics for Neural Network Approximation Based on samples of Length 8

Entropy Mode Mean Median

Intercept 0.1824 0.0309 0.0047 0.0065
Slope 0.9300 0.9204 0.9914 0.9870
r 0.9623 0.9576 0.9953 0.9923
Slope SE 0.0037 0.0039 0.0014 0.0017
Estimate SE 0.1166 0.0914 0.0199 0.0273
N 5008 5008 5008 5008

Based on this it appears that the NN approximates the posterior mean reasonably well,

at least when the number of observations to base the estimate on is small, which in

this case is 8.

The NN was also used to approximate the MCMC estimates based on 16, 24, and 32

observations. As the number of samples increased the quality of the NN

approximations deteriorated, however the rate of decline differed amongst the MCMC

measures. Figure 11 shows the scatter plots for the NN based on samples of length 32

from the test dataset. It is obvious the NN entropy approximation is unacceptable and

appears to almost be random. The mode approximation roughly follows a 1 to 1 trend

however it has a large variance around this. One explanation could be that the NN is

over-fitting the training dataset but it seems unlikely as the mean and median have

reasonable approximations. For these there are some points that have obviously not

been predicted well, but they are few, and the remaining points are grouped around

the one to one line reasonably closely.

53

Figure 11 Scatter plots of the MCMC estimates based on 32 observations vs. the neural network approximations

The regression summary statistics in Table 4shows the median having a slightly superior

fit when compared to the mean, however the difference is negligible.

Table 4 Summary statistics from regressing the MCMC point estimates on the NN approximations based on 32
observations per sample.

Entropy Mode Mean Median

Intercept 0.3257 0.0452 0.0098 0.0062
Slope -0.0148 0.8892 0.9777 0.9871
r -0.2407 0.9232 0.9755 0.9824
Slope SE 0.0008 0.0052 0.0031 0.0027
Estimate SE 0.0412 0.1148 0.0507 0.0441
N 5008 5008 5008 5008

Based on these it appears that neural networks can give reasonable approximations to

the means and medians of threshold posterior distributions fitted by MCMC methods.

As expected, predicting from the NN provides an increase in speed when compared to

54

an MCMC based approach. It took 0.07 seconds to estimate the posterior mean

approximations using the neural network for 25,008 samples each containing 8

samples, whereas evaluating them by MCMC techniques used here took approximately

13 hours, which is a speedup of over 650,000 times. While there are a number of

possibilities for improving the time to complete the MCMC simulations it is unlikely to

get fast enough to be comparable to the neural network in terms of speed.

As the mean can be reasonably approximated by the fitted NN’s, the approximations

could potentially be used in an attempt to find an optimal design. Testing this theory

involved simulating data using parameters drawn from the prior distribution,

calculating the NN approximated threshold estimates and the respective MSE of these

compared to parameters from the prior. Alternatively the median could have been

used in a similar way to minimise the absolute error loss function. Scatter plots

demonstrating the reasonable quality of the NN approximations of the posterior

means are shown in Figure 12 for samples of size 8, 16, 24, and 32.

Figure 12 Posterior mean NN approximations versus MCMC means based on 8, 16, 24, and 32 samples.

55

4.1.4 Optimizing based on the Neural Network
In order to find an approximately optimal design the first problem is to estimate the

loss function. To do this 11 threshold values equally spaced ranging from 0 to 1 and a

similar sequence for the scale parameter were generated. For each of the 121 possible

threshold and scale combinations 100 Bernoulli samples were drawn with probabilities

calculated using the logistic psychometric function with a given design . In order to

make the samples consistent across different iterations, first a random sample of

standard uniform values were drawn, and the Bernoulli samples taken as the quantiles

of the inverse of the cumulative Bernoulli distribution at the probability relating to the

respective uniform samples. This corresponds to setting the Bernoulli samples to 1 if

the standard uniform sample is greater than 0.5, 0 otherwise. Calculating the samples

this way removes the random sample variation between iterations. If the same design

is used twice it will give the same loss. For each sample the NN approximation and its

squared difference with the generating threshold was calculated. The mean of the

squared differences was used as an estimate of the MSE.

Starting with the NN for samples of length 8, various optimization schemes were used

to try and adjust to minimise the MSE. The first attempt used Powell’s minimization

algorithm and converged to a solution after 208 function evaluations. Unfortunately

the solution involved a design where some points were greater than 1 which is outside

of the range used to train the NN. As any NN estimate based on inputs outside its

support could be unreliable the solution must be discarded. The next attempt was to

use a L-BFGS-B boxed bound solver which constrained the solution to lie within the

range [0,1] . However this method often failed to converge, perhaps due to the

function being non smooth or the solution lying outside the bounds.

Finally the particle swarm global solver was used. The loss function was slightly

modified to return a large constant if any design point was outside [0,1] so as to force

the particles to explore within this interval. The search space was explored by 10

particles travelling over ten iterations. Since the PSwarm algorithm is a heuristic

method it is difficult to assess convergence to a minimum. Increasing either the

number of particles or the number of iterations could improve the solution however in

the interest of time ten of each was deemed sufficient.

56

The performance of the adaptive method based on a NN approximation was assessed

by simulating 100 individuals for each of 9 different logistic psychometric curves (Figure

13)

Figure 13 Logistic Psychometric curves used to generate responses to assess the performance of the NN based
adaptive method.

For each individual an initial optimal design was used for the first 8 signal intensities.

Simulated responses were then generated using this information together with the

respective psychometric curve. These simulated responses were then used to find the

minimal MSE design for the next 8 simulated responses. This was repeated until there

a total of 32 design points and responses had been generated and a final threshold

estimated by the NN had been calculated. The MSE was calculated for each of the nine

psychometric curves as the mean of the square differences between the individuals

“true” thresholds and the NN estimates. The results are presented in Figure 14 with the

MSE converted to the Root Mean Square Error (RMSE). The colours span the range of

values from purple for the minimum through to dark red for the maximum.

57

Figure 14 Estimated RMSE for the NN Adaptive Design based on 100 simulations of 32 samples for Logistic
Psychometric curves with varying Threshold and Scale parameters

Over all of these minimization attempts it appears that while the NN can adequately

predict the posterior mean and median, minimizing a loss based on these is very

difficult. The global solvers appear to be more appropriate as they can be restricted to

search in the appropriate space and are less susceptible to the non-smoothness of the

objective function. The addition of the noise due to approximating the MCMC

thresholds also appears to have the detrimental effect on the adaptive design with

reasonably large RMSE’s even for psychometric curves with small scales where

theoretically it should perform well. It also appears that the adaptive design performs

poorly when the true threshold is located at the extremes of the [0,1] interval. With

this in mind and the fact that generating enough samples to train the NN’s is

computationally expensive, an alternative optimization method was sought.

4.2 D-Optimal Designs

Custom python code was written to derive the d-optimal designs for a standard logistic

regression model assuming a given intercept and slope parameters. The results

58

provided from this approach compared favourably with those found at http://optimal-

design.biostat.ucla.edu/optimal/polynomial/LogisticD.aspx using the online calculator. Both

methods produced the same 2-level designs, while the python algorithm provided a

more efficient 3-level design as it did not require the design points to be equally

spaced.

The next step was to alter the code to make calculations based on the logistic

psychometric curve likelihood function. This proved to be problematic as often during

the minimisation process the inverse of the hessian would not be positive definite

leading to a non-optimal solution. A check was introduced to see if the inverse hessian

matrix had any negative eigenvalues as this would indicate a non-positive definite

matrix, and if so return a large value. However this still did not lead to consistent

results with errors being common. Therefore this approach was abandoned in favour

of the discrete prior method.

4.3 Bayesian Optimal Design using Discrete Priors

Another approach to increase the speed of deriving an estimate of the posterior

distribution is to replace the continuous prior distributions with discrete

approximations. In this investigation the discrete priors were restricted to discrete

uniform priors equally spaced between 0 and 1. The number of levels for each prior

was eleven for most comparisons which gives 121 possible psychometric curves under

the prior (Figure 15). Increasing the number of prior levels was possible, and optimal

designs based on priors ranging from 0 to 1 with step sizes 0.01, which gives 10,201

possible logistic curves, were successfully found in a reasonable time frame. However

since the evaluation of the procedure involved many simulations, in general the 11

level priors were often used in the interest of time.

59

Figure 15 Logistic Psychometric curves under discrete standard uniform priors with 11 equally spaced levels for
the threshold and scale parameters.

4.3.1 Comparison of Adaptive Schemes
The general method for the adaptive scheme is described in the methods section. Here

we compare the adaptive methods based on four loss functions; entropy, absolute

error, squared error, and categorical error. The absolute error was defined as the

expected difference between the true threshold and the posterior median as that

quantity has been shown to minimise the absolute error for a given posterior

distribution (Kelareva et al., 2010). Similarly the squared error was the expected

squared difference between the true threshold and the posterior mean, and the

expected categorical error was the probability that the posterior mode did not exactly

equal the true threshold.

60

The comparisons are based on the 121 psychometric curves show in Figure 15. Firstly

optimal designs of length 8 were found for each method based solely on the prior

information. Then for each design 100 Bernoulli samples were generated for each

curve under the priors. These represent 100 x 121=12,100 individuals. Next the

optimal designs for the next 8 samples were found using both the prior and simulated

observations. This was repeated two more times with each optimal design derived

assuming all previously simulated observations for that individual. A final set of

Bernoulli samples are then taken for the final design points and the posterior

generated to give the mean, median and mode estimates based on a total of 32

observations. With these posterior estimates of the threshold the final squared,

absolute, and categorical errors were calculated. The results are tabulated in Figure 16,

Figure 17, and Figure 18 with the Root Mean Square Error (RMSE) presented in place

of the MSE.

61

Figure 16 RMSE based on 100 samples generated by Logistic Psychometric curves of varying scales and thresholds.

62

Figure 17 Mean Absolute Errors based on 100 samples generated by Logistic Psychometric curves of varying scales
and thresholds.

63

Figure 18 Categorical Errors based on 100 samples generated by Logistic Psychometric curves of varying scales
and thresholds.

The figures show all four methods had similar performance in terms of the squared,
absolute and categorical loss functions. Comparing the RMSE’s with those of the NN
based approach shows that discrete prior techniques provide a clear increase in
performance with a large reduction especially for small scales or thresholds close to 0
or 1. There was some evidence that the MODE8 method produced slightly worse RMSE
and Absolute errors when compared to the MEAN8, MINENT8, and MEDIAN8. This was
based on paired t-tests over all 12,100 simulated individuals at the 5% level of
significance. There was no evidence of a difference amongst the methods in terms of
categorical error.

4.3.2 Adaptive Schemes Under Misspecified Psychometric Curve
All the adaptive schemes performed reasonably well when the samples were
generated using a logistic psychometric curve with parameters encompassed by the

64

prior distribution. The next step was to assess their performance when the ‘true’
psychometric curve is misspecified in the model. For this samples were generating by
Weibull psychometric curves which also included lapses rate of 0.05. In total there
were 25 sample generating curves with each having one of five thresholds and one of
five slopes at the threshold. Since the Weibull function is not defined for
concentrations less than 0, any responses in this range were set to the 1/3 guessing
probability. Figure 19 shows the full form of these curves.

Figure 19 Weibull Psychometric curves used to generate misspecified samples with varying threshold and slope at
threshold parameters.

The results of these fits were a little more mixed (Figure 20, Figure 21, and Figure 22).
The RMSE was reasonably small when the underlying Weibull Psychometric curves had
steep slopes but quickly deteriorated as the curves became flatter. In particular the
flatter curves with low thresholds provided the worst fit for all methods, although
these could be considered extreme and unlikely to be encountered in practice if the
priors have been reasonably set.

65

Figure 20 RMSE based on 100 samples generated by Weibull Psychometric curves of varying thresholds and
slopes at the threshold.

66

Figure 21 Absolute errors based on 100 samples generated by Weibull Psychometric curves of varying thresholds
and slopes at the threshold.

67

Figure 22 Categorical errors based on 100 samples generated by Weibull Psychometric curves of varying
thresholds and slopes at the threshold.

The RMSE also appears to be less affected by the misspecification. Perhaps this is due

to the posterior median and modes being restricted to one of 11 possible values under

the discrete prior used here. The Categorical error in particular was extremely high,

with the worst combination of slope and threshold resulting in a worse error than

would be expected by randomly choosing a threshold.

Comparing the four methods over the misspecified models begins to show a clearer

picture. Again the MODE8 performs worse in terms of RMSE and absolute error than

the other methods. However the MINENT8 also has significantly lower RMSE and

68

absolute error than MEAN8 and MEDIAN8 schemes when compared using paired t-

tests (p<0.05), and lower categorical error than MODE8.

Overall the MINENT8 method appeared to perform the best and even gave reasonable

results when the model was misspecified. Under the correct specification all models

performed satisfactorily with 32 simulated 3-AFC samples per individual. In addition

the final threshold estimate based on the posterior mean, which minimises the MSE

performed, appeared to be less affected by the misspecification. Therefore the

MINENT8 method, with the posterior mean as final threshold estimate was

investigated further.

4.3.3 Comparing Look-Ahead Step Sizes: Minent8 vs. Minent1
While the main focus of this investigation was on multistep procedures, comparing

their performance to the single-step method would give an indication of their

efficiency. As the MINENT8 procedure gave the best results in the previous simulations

it was compared to the MINENT1 method as described by Kontsevich & Tyler (1999).

For this comparison logistic psychometric curves made up of combinations of eleven

thresholds and six scale parameters (Figure 23).

69

Figure 23 Logistic Psychometric curves used to compare the MINENT1 and MINENT8 performance.

All simulations involved 32 samples to be drawn in total, with the MINENT1 adapting

the design after every observation resulting in 32 single sample runs, while MINENT8

after every set of 8 giving 4 runs of 8 samples. Figure 24 demonstrates the convergence

process for the two methods. The position of the points on the y-axis represents the

concentrations used for each sample, while the x-axis shows the sample number.

Correct detections are shown as solid points, with incorrect being hollow. The

posterior mean estimates of the detection threshold are plotted against the test

number as solid lines for the MINENT1 and MINENT8 procedures.

70

Figure 24 Comparison of the convergence of the MINENT8 (red) versus MINENT1 (black). Lines represent the
posterior mean estimate of the threshold while points indicate concentration level for each test with correct
answers solid point and incorrect hollow

The simulated RMSE loss measures based on 1,000 samples for each underlying

psychometric curve are presented in Figures 25.

Figures 25 Comparison of RMSE for the MINENT1 and MINENT8 procedures, based on 1000 simulated
individuals for various Logistic Psychometric curves

71

 It can be seen that the MINENT8 procedure actually outperforms the MINENT1 for

most curves, even if the difference is marginal. A t-test provided evidence that the

MINENT8 had a lower MSE than the MINENT1 (p=0.006). This isn’t entirely unexpected

as it has been noted previously that looking ahead more than one step can perform

slightly better , although the small increase in efficiency was not considered to be

worth the considerable extra time cost due to computational limitations of the

day(Kelareva et al., 2010; King-Smith et al., 1994).

4.4 ASTM Optimal Design

A method for generating a non-adaptive optimal design for use with the ASTM method

was also investigated to provide a baseline to compare the adaptive methods with. For

this the design was restricted to four runs of length 8 using the same 8 design points

for each run. This is in line with the PFR experiments. The function was minimised by

calculating the MSE as outlined in the methods for each of the 121 logistic

psychometric functions used to evaluate the four adaptive procedures and taking its

mean. The RMSE is plotted in Figure 26 and can be compared directly with Figure 16.

72

Figure 26 ASTM Expected RMSE for Logistic Psychometric curves with varying threshold and scale parameters.

The ASTM fixed design, as expected performed worse than the adaptive methods. The

RMSE was approximately double that of the MINENT8 procedure and even with

reasonably narrow scale parameters the ASTM fitted threshold estimates appear to be

quite variable.

4.5 Discrete Signal Intensities

Under certain conditions it may only be possible to select design from a finite set of

candidate points. In this case optimal designs produced by MINENT, MEAN, etc. may

not be appropriate as they will highly likely contain points outside the set of

candidates. A work around is implemented here. First the design points are rescaled

from [0,1] to the [0,n] interval where m is the number of candidate design points.

73

These rescaled values are then converted to integers and the respective candidates

values used as the design to be assessed by the minimisation algorithm as before. As

this function will be non-smooth only the global solvers were considered for the

optimisation routine. For the 11 point flat scale and threshold prior distributions the

standard MINENT8 procedure gave an optimal design for the first run of 8 points with

expected entropy of 1.67. The discrete version gave a similar if marginally worse

solution. With candidate concentrations restricted to values ranging from 0 to 1 with

step sizes of 0.1, the optimal design resulted in expected entropy of 1.70.

74

5 Discussion and Suggestions for Future research
The results presented in this study present and compare various methods for

constructing designs for 3-AFC experiments with the restriction that any alterations

cannot be made except between runs of samples. The runs in this case were set to four

replicates with lengths of 8 samples to give a total of 32 samples per individual.

Of all the methods the Bayesian adaptive designs based on discrete priors performed

the best with the lowest MSE. The MINENT8 procedure had a small increase in

performance over MEAN8 and MEDIAN8, while MODE8 performed the worst of the

four. The recommended final estimate under these methods is the posterior mean as it

is influenced less by the discrete prior. The posterior median and mode are restricted

to values which are defined exactly in the prior distribution. This was especially evident

when the underlying model was a Weibull psychometric curve with a lapse rate of

0.05. Here the posterior mean from the MINENT8 procedure produced superior RMSE.

The other methods trialled all had various issues. Using continuous priors took too long

to estimate the posterior distribution through MCMC methods as the process needs to

be repeated many times for the solver to minimise a given loss function.

Approximating the MCMC estimates with Neural Networks only produces reasonable

results for the posterior mean and medians. Unfortunately minimising the square loss

of the Neural Networks did not translate to an approximately optimal design with the

resulting MSE’s being rather poor for the simulated results.

Deriving a D-optimal design for the standard logistic regression model was reasonably

straightforward. However this proved to be too problematic for the logistic

psychometric curve with the solver running into errors relating to the hessian matrix.

The ASTM based fixed design was reasonably straightforward to calculate and to

estimate the MSE exactly, however its performance was worse than the adaptive

procedures as expected.

75

Overall the MINENT8 method produced the lowest MSE’s and was more robust to

model misspecification. It even performed better than the MINENT1, although while

the performance increase is statistically significant the difference is negligible.

The code provided in the appendices provides a framework for fitting any of the

adaptive methods MINENT, MODE, MEDIAN, and MEAN for m-step look-ahead designs

for a number of runs. The investigation here used mainly 8 steps and 4 runs but it is

trivial to adjust the code to alter these. However choosing too many steps may require

a long time to optimise. For olfactory based n-AFC designs this shouldn’t be a problem

as the number of steps will probably be limited to a reasonable number to avoid

panellist fatigue. Using the same priors 11 level discrete priors as shown in Figure 15,

took 6.5 seconds to find an optimal design for a 10-step look-ahead design (210=1024

possible responses), and 40.1 seconds for 12-step design (4096 possible responses),

which seems reasonable.

It is also simple to adjust the code to handle AFC experiments with the number of

choices other than three by editing the likelihood function. Similarly, other

psychometric curves such as the Reverse Weibull, can be inserted in place of the

Logistic in the likelihood calculation. In addition by altering the likelihood the

framework could find an optimum design for testing protocols other than AFC.

Kelareva et al., 2010, used the MINENT, MEAN, MEDIAN, and MODE adaptive methods

for simulations relating to the yes-no protocol.

It is also possible to use a loss function different to those described in the methods.

One alternative trialled in this investigation was the joint entropy of the threshold and

scale parameters. It is not reported in the text but the code can be found in the

appendix. This method would also seek to maximise the information gain on the slope

as well as the threshold. The joint entropy of two variables X and Y is defined as:

76

The prior distributions for the parameters can also be adjusted with one current

limitation that the number of levels for the threshold and scale (or slope) parameters

must be equal. This is due to how the marginal likelihoods are calculated by reshaping

a vector into a square array and taking the column or row sums. However it would be

possible to modify this code to allow for different dimensions. Increasing the number

of levels also increases the time needed to find an optimal design. For example the 11

level priors resulting in 121 possible psychometric curves used in much of the

simulations results in finding an MINENT8 solution for 8 design points in 1.36 seconds.

Increasing the number of levels in each of the priors to 101 gives a sequence from 0 to

1 in step sizes of 0.01 and results in 10,201 possible curves and takes 62 seconds to

reach a solution. While this is a considerable increase in time to find an optimal design

it is still well within the realms of an acceptable time frame.

The priors also need not be discrete uniform as was used here either or even rescaled

to the [0,1] interval. Any discrete distribution could be used although some care may

be needed to calculate the joint probability of the threshold and scale/slope

parameters. In the examples used here they were assumed to be uniform and

independent and therefore the joint probability for each threshold and scale

combination is equal to one over the number of such combinations, i.e. 1/121.

Different solvers could also be easily implemented or even combination algorithms.

For example using PSwarm to get an approximate solution and then refining the search

with Powell’s method. The list of solvers considered here is only a small subset of

those available and therefore some experimentation is encouraged. While most of the

code is python 3 compatible some of the global solvers are not and therefore

substitutes should be found and implemented.

Perhaps the most glaring limitation of this research is the fact that it is only based on

simulations from a known model. The main goal of any future research would be to

trial it on real panellists, where the noise from a real world situation would really test

the method. At any rate the simulations provide a theoretical basis for future research

into the area of multi-step look-ahead adaptive designs.

77

Other future work would involve tweaking the code to allow for easier substitution of

priors, solvers, and psychometric curves. It would also be beneficial to allow for the

inclusion of prior distributions for the guessing and lapse parameters, even at the risk

of making the routine more complicated and therefore slower.

Improving the speed of the algorithms would also be a goal as it would allow for the

algorithms to be used on designs with more points or larger number of prior levels.

One possible solution is to incorporate python package such as theano or PyCUDA

which allow calculations to be handled by the GPU rather than the CPU. This should

provide a significant speedup for the array manipulations used presently. In particular

the calculation of the posterior median as implemented here uses a rather inefficient

search which cannot be sped up using numexpr.

Currently PyMC uses a mixture of native python code as well as custom fortran code

which can in some cases result in speeds similar to native C code. One situation where

this is true is when models are specified using array notation. This was the original

intention with multiple models fit at the same time, however while it did provide a

speed increase the convergence of the model was unsatisfactory and the slower scaler

variable representation was used with models run individually. One implication of this

is that coding in pure C may potentially give faster runs, however it would have the

disadvantage of not having the additional diagnostic functions, and various python

libraries available. Additionally the speedup gains would unlikely to be significant

enough to solve the problem of sampling from multiple posterior distributions in a

small enough time frame to be useable. Two of Python’s strengths are its code

readability and extensibility and both were major factors in its choice for this

investigation. Future research could look at writing the underlying MCMC sampling in

C++ with a python interface for usability.

Some secondary goals would be to translate the methods into the R statistical

computing language(R. CoreTeam, 2013) and making a gui. This would have some

advantages in terms of the initial setup. The package management system is simpler

and would avoid the problems involved in installing extra libraries encountered in

python. R also has excellent support for Windows, Linux, and MAC operating systems

78

including 64bit versions. One possible downside may be that performance in terms of

speed may be reduced but by how much is unknown. A naive guess would be that R

would be on par with Numpy without the speed enhancements provided by the

numexpr library.

Another option to improve usability would be to add a Graphical user Interface (gui) to

the python code and release it as a pre-compiled binary file. There are a number of

python packages to make this process easier although it would still take some time to

implement.

Nevertheless the code presented in the Appendices are in a useable form which can

easily be altered to suit most needs for generating multi-step look-ahead adaptive

designs for the estimation of sensory thresholds.

79

6 Conclusion
The results of this investigation demonstrate that it is possible to construct multi-step

look-ahead adaptive designs for sensory threshold estimation in a computationally

efficient manner. A wide variety of adaptive design methods have been proposed and

successfully implemented for the estimation of psychometric curves. Previously, most

of these adaptive methods had focused on setting the next test level at some estimate

of threshold based on the data collected up until that point, or minimising the

expected loss function by looking-ahead a number of steps. The look-ahead

approaches generally only used one or two-step approaches due to either limitation in

computer power at the time (King-Smith et al., 1994; Kontsevich & Tyler, 1999) or the

price of more complex optimisation problem was not worth the effort for a relatively

small improvement gained by having larger steps (Kelareva et al., 2010). However

there are situations whereby the design cannot be altered at every step. The

estimation of odour detection thresholds using the 3-AFC method requires significant

setup time and therefore signal intensities must be known well in advance. A one or

two-step design would require large waiting times for the subject while the next

sample was being prepared and therefore a design which looked further would be

advantageous. The design could be fixed for a given session with adjustments to the

signal intensities made in time before the next.

All of the adaptive methods based on the discrete priors work reasonably well for

estimating sensory thresholds when correctly assuming the logistic psychometric

curve. Based on simulated a large number of individuals, each with data consisting of

four sessions of eight samples the MSE appeared to be lower than comparable

schemes investigated. When the generating psychometric function did not match the

assumed logistic form the MINENT procedure appeared to be the most robust method.

The MINENT procedure, which minimises the expected entropy to adapt the design

after each session, is therefore the recommended design protocol for n-AFC

experiments.

80

The bibliography provides python code to construct the designs described here. The

framework is very flexible and can be readily altered to assume a number of

psychometric curves in the underlying model as well as different prior distributions.

This flexibility should enable the method to be used for most practical situations

involving the estimation of olfactory thresholds using n-AFC experiments. Future

research should involve verification of the method with real-world situations.

81

7 Bibliography
Alcalá-Quintana, R., & García-Pérez, M. A. (2004). The role of parametric assumptions in

adaptive Bayesian estimation. Psychological Methods, 9(2), 250.

Amerine, M. A., Pangborn, R. M., & Roessler, E. B. (1965). Principles of sensory evaluation of

food. New York: Academic Press.

ASTM International. (2011). E679 - 04: Standard Practice for Determination of Odor and Taste

Thresholds By a Forced-Choice Ascending Concentration Series Method of Limits.

ASTM International, West Conshohocken, PA, USA. Retrieved from

http://www.astm.org/Standards/E679.htm

Garcia-Perez, M. A., & Alcala-Quintana, R. (2007). Bayesian adaptive estimation of arbitrary

points on a psychometric function. British Journal of Mathematical and Statistical

Psychology, 60, 147–174(28). doi:10.1348/000711006X104596

Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple

Sequences. Statistical Science, 7(4), 457–472. doi:10.1214/ss/1177011136

Giunta, A. A., Wojtkiewicz, S. F., & Eldred, M. S. (2003). Overview of modern design of

experiments methods for computational simulations. In Proceedings of the 41st AIAA

Aerospace Sciences Meeting and Exhibit, AIAA-2003-0649. Retrieved from

http://aircraftdesign.nuaa.edu.cn/MDO/ref/Disciplinary%20Optimization/Data%20Sa

mpling%20and%20Surrogate%20Models/AIAA%202003-0649.pdf

Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and Psychophysics. New York:

Wiley.

Hall, J. L. (1981). Hybrid adaptive procedure for estimation of psychometric functions. The

Journal of the Acoustical Society of America, 69(6), 1763–1769.

Heise, M. A., & Myers, R. H. (1996). Optimal Designs for Bivariate Logistic Regression.

Biometrics, 52(2), 613. doi:10.2307/2532900

82

Heymann, H., & Lawless, H. T. (1999). Sensory Evaluation of Food: Principles and Practices

(first.). New York: Chapman & Hall.

Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E., & Kobal, G. (1997). “Sniffin” Sticks’: Olfactory

Performance Assessed by the Combined Testing of Odor Identification, Odor

Discrimination and Olfactory Threshold. Chemical Senses, 22(1), 39–52.

doi:10.1093/chemse/22.1.39

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science &

Engineering, 9(3), 90–95.

Jones, E., Oliphant, T., Peterson, P., & others. (2001). SciPy: Open source scientific tools for

Python. Retrieved from http://www.scipy.org/

Kelareva, E., Mewing, J., Turpin, A., & Wirth, A. (2010). Adaptive psychophysical procedures,

loss functions, and entropy. Attention, Perception, & Psychophysics, 72(7), 2003–2012.

doi:10.3758/APP.72.7.2003

King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C., & Supowit, A. (1994). Efficient and

unbiased modifications of the QUEST threshold method: theory, simulations,

experimental evaluation and practical implementation. Vision Research, 34(7), 885–

912.

Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: a

commentary. Perception & Psychophysics, 63(8), 1421–1455.

Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope

and threshold. Vision research, 39(16), 2729–2737.

Kroshko, D. (2007). OpenOpt: Free scientific-engineering software for mathematical modeling

and optimization. Retrieved from http://www.openopt.org/

Kuss, M., Jäkel, F., & Wichmann, F. A. (2005). Bayesian inference for psychometric functions.

Journal of Vision, 5(5), 478–492. doi:10:1167/5.5.8

83

Lee, H.-S. (2010, July 26). Measuring food or consumers? Latest ideas and methodological

issues in difference tests. Presented at the Sensometrics, Rotterdam, The Netherlands.

Retrieved from

http://www.sensometric.org/Resources/Documents/2010/Meeting/Presentations/002

-000-Hye-Seong%20Lee_2010.pdf

Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception &

Psychophysics, 63(8), 1279–1292.

Li, F. (2008). Function Approximation by Neural Networks. In F. Sun, J. Zhang, Y. Tan, J. Cao, &

W. Yu (Eds.), Advances in Neural Networks - ISNN 2008 (pp. 384–390). Springer Berlin

Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-

87732-5_43

Linschoten, M. R., Harvey, L. O., Eller, P. M., & Jafek, B. W. (2001). Fast and accurate

measurement of taste and smell thresholds using a maximum-likelihood adaptive

staircase procedure. Attention, Perception, & Psychophysics, 63(8), 1330–1347.

McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biology, 52(1-2), 99–115. doi:10.1007/BF02459570

Oliphant, T. E. (2007). Python for Scientific Computing. Computing in Science and Engineering,

9(3), 10–20. doi:10.1109/MCSE.2007.58

Patil, A., Huard, D., & Fonnesbeck, C. J. (2010). PyMC: Bayesian stochastic modelling in Python.

Journal of Statistical Software, 35(4), 1.

Peng, M., Jaeger, S. R., & Hautus, M. J. (2012). Determining odour detection thresholds:

Incorporating a method-independent definition into the implementation of ASTM

E679. Food Quality and Preference, 25(2), 95–104.

Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of several

variables without calculating derivatives. The Computer Journal, 7(2), 155–162.

doi:10.1093/comjnl/7.2.155

84

Prins, N. (2012). The psychometric function: The lapse rate revisited. Journal of Vision, 12(6).

doi:10.1167/12.6.25

R. CoreTeam. (2013). R: A Language and Environment for Statistical Computing. Vienna,

Austria. Retrieved from http://www.R-project.org/

Raftery, A. E., & Lewis, S. M. (1995). Hypothesis testing and model selection. In W. R. Gilks, S.

Richardson, & D. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice (pp. 129–

153). London: Chapman and Hall.

Taylor, M. M. (1971). On the Efficiency of Psychophysical Measurement. The Journal of the

Acoustical Society of America, 49(2B), 505–508. doi:10.1121/1.1912379

Taylor, M. M., & Creelman, C. D. (1967). PEST: Efficient Estimates on Probability Functions. The

Journal of the Acoustical Society of America, 41(4A), 782–787. doi:10.1121/1.1910407

Treutwein, B., & Strasburger, H. (1999). Fitting the psychometric function. Perception &

Psychophysics, 61(1), 87–106.

Vanlier, J., Tiemann, C. A., Hilbers, P. A. J., & van Riel, N. A. W. (2012). A Bayesian approach to

targeted experiment design. Bioinformatics (Oxford, England), 28(8), 1136–1142.

doi:10.1093/bioinformatics/bts092

Vaz, A. I. F., & Vicente, L. N. (2007). A particle swarm pattern search method for bound

constrained global optimization. Journal of Global Optimization, 39(2), 197–219.

doi:10.1007/s10898-007-9133-5

Watson, A. B., & Pelli, D. G. (1983). Quest: A Bayesian adaptive psychometric method.

Perception & Psychophysics, 33(2), 113–120. doi:10.3758/BF03202828

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and

goodness of fit. Perception & Psychophysics, 63(8), 1293–1313.

Wise, P. M., Bien, N., & Wysocki, C. J. (2008). Two Rapid Odor Threshold Methods Compared to

a Modified Method of Constant Stimuli. Chemosensory Perception, 1(1), 16–23.

doi:10.1007/s12078-008-9010-8

85

Wojciechowski, M. (2011). ffnet: Feed-forward neural network for python. Retrieved from

http://ffnet.sourceforge.net/

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran subroutines

for large-scale bound-constrained optimization. ACM Transactions on Mathematical

Software, 23(4), 550–560. doi:10.1145/279232.279236

86

Appendix A R Computer Code

Approximate d’ R code

dprime_proportion<-function(n,nsim=100000,dprime=1){

y<-rnorm(nsim,dprime,1)

res=rep(0,nsim)

for(i in 1:(n-1)){

temp=y-rnorm(nsim)

res[temp<0]=1

}

return(1-mean(res))

}

87

Appendix B Python Computer Code
Multi-step look-ahead adaptive designs using Discrete Priors

#import libraries
import numpy as np
import numexpr as ne
import time
from scipy.optimize import minimize
from scipy.stats import binom
#if have installed playdoh
import playdoh as pd

##if using python 3.x
xrange=range

###create De Bruijn sequence (code from wikipedia.org)
def de_bruijn(k, n):
 """De Bruijn Sequence for alphabet size k
 and subsequences of length n."""
 a = [0] * k * n
 sequence = []
 def db(t, p):
 if t > n:
 if n % p == 0:
 for j in range(1, p + 1): sequence.append(a[j])
 else:
 a[t] = a[t - p]
 db(t + 1, p)
 for j in range(a[t - p] + 1, k):
 a[t] = j
 db(t + 1, t)
 db(1,1)
 return sequence

##repeat and reshape De Bruijn sequence into an array
##with all possible sequences of alphabet x and length n
def DB_array(x,n):
 temp=np.tile(np.array(de_bruijn(x,n)),2)
 c=x**n
 temp1=np.reshape(np.repeat(0,n*x**n),(x**n,n))
 for i in xrange(c):
 temp1[i,:]=temp[i:i+n]
 return temp1

##underlying function to calculate the expected loss
loss is expected Entropy of threshold here
def work_fun(lprobs,lprobs2,yy,n,wgts,ncombs):
 ##check if only looking 1 point ahead and use numpy
 ##if true as numexpr returns wrong shaped array
 ##causing errors later
 if np.shape(yy)[1]==1:
 ##find log-like
 g=np.sum((lprobs*(yy)+(lprobs2)*(n-yy)+ncombs),axis=2)
 else:
 ##if looking more than 1 point ahead numexpr returns
correct
 ## shape array so use numexpr to calc log-like(much
faster)

88

 g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)")
 ##calc posterior probs =(prior*likelihood)
 z=ne.evaluate("wgts*exp(g)")
 ##reshape to square array
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0]))
 ##calc posterior probs for each m0(threhsold) value
 pm0=ne.evaluate("sum(z_temp,axis=1)")
 ##calc probs of rows of yy
 x_weights=ne.evaluate('sum(z,axis=0)')
 #normalise rows
 rsum=x_weights[np.newaxis,:]
 ##return entropy of posterior dist for m0 (threshold)
 return ne.evaluate('sum(-pm0*log(pm0/rsum))')

##underlying function to calculate the expected loss
loss is expected MSE of threshold here
def work_fun_mean(lprobs,lprobs2,yy,n,wgts,ncombs):
 if np.shape(yy)[1]==1:
 g=np.sum((lprobs*(yy)+(lprobs2)*(n-yy)+ncombs),axis=2)
 else:
 g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)")
 z=ne.evaluate("wgts*exp(g)")
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0]))
 m0_temp=m0[:,np.newaxis]
 ##calculate posterior means for each row of yy
 mean_m0=ne.evaluate('sum(z*m0_temp,axis=0)')
 ##calculate the probability of a sample
 x_weights=ne.evaluate('sum(z,axis=0)')
 ##calculate probs of each m0 and samp combination
 m0_by_x_weights=ne.evaluate("sum(z_temp,axis=1)")
 ##calculate and return MSE
 return ne.evaluate('sum(m0_by_x_weights*(mean_m0/x_weights-
m0_unique)**2)')

##underlying function to calculate the expected loss
loss is expected absolute error of threshold here
def work_fun_median(lprobs,lprobs2,yy,n,wgts,ncombs):
 if np.shape(yy)[1]==1:
 g=np.sum((lprobs*(yy)+(lprobs2)*(n-yy)+ncombs),axis=2)
 else:
 g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)")
 z=ne.evaluate("wgts*exp(g)")
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0]))
 x_weights=ne.evaluate('sum(z,axis=0)')
 m0_by_x_weights=ne.evaluate("sum(z_temp,axis=1)")
 #calculate median for each row of global yy
 #seems inefficient
 cumlative_sum=np.cumsum(m0_by_x_weights,axis=0)
 cumulative_sum=cumlative_sum/cumlative_sum[-1,:]
 np.place(cumulative_sum,cumulative_sum<.5,100)
 m0_median=m0_unique[np.argmin(cumulative_sum,axis=0),0]
 ##return mean absolute error
 return ne.evaluate('sum(m0_by_x_weights*abs(m0_median-
m0_unique))')

89

##underlying function to calculate the expected loss
loss is expected categorical error of threshold here
def work_fun_mode(lprobs,lprobs2,yy,n,wgts,ncombs):
 if np.shape(yy)[1]==1:
 g=np.sum((lprobs*(yy)+(lprobs2)*(n-yy)+ncombs),axis=2)
 else:
 g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)")
 z=ne.evaluate("wgts*exp(g)")
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0]))
 #m0_temp=m0[:,np.newaxis]
 #mean_m0=ne.evaluate('sum(z*m0_temp,axis=0)')
 x_weights=ne.evaluate('sum(z,axis=0)')
 m0_by_x_weights=ne.evaluate("sum(z_temp,axis=1)")
 #posterior mode for each row of yy
 m0_mode=m0_unique[np.argmax(m0_by_x_weights,axis=0),0]
 #return mean categorical error
 return ne.evaluate('sum((m0_mode!=m0_unique)*m0_by_x_weights)')

##underlying function to calculate the expected loss
loss is expected joint entropy of threshold & scale here
def work_fun_joint_ent(lprobs,lprobs2,yy,n,wgts,ncombs):
 g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)")
 z=ne.evaluate("wgts*exp(g)")
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0]))
 x_weights=ne.evaluate('sum(z,axis=0)')
 #normalise rows
 #rsum=ne.evaluate((’sum(pm0,axis=0)') dont need to as
x_weights=rsum
 rsum=x_weights[np.newaxis,:]
 #return mean joint entropy of m0 an m1
 return ne.evaluate("sum(-z*log(z/rsum))")

###calculate the number of combinations of choosing r from n
def nCr(n):
 temp=np.repeat(0,n)
 for i in xrange(n):
 temp[i]=np.product(np.arange(n-
i,n))/np.product(np.arange(1,i+1))
 return temp

##calculates expected entropy for all possible responses (yy) for a
given
design (c), prior levels m0 & m1 with joint prior probs weights
(default is equal probs).
n= number of samples per element of c (default max of yy)
nsplit specificies how many sections to split up yy if it
is too large to pass to work_fun with results combined
at end (default is no splitting)
def subarrayne(c,yy,m0,m1,weights=None,n=None,nsplit=None):
 if weights is None:
 weights=np.repeat(1.,np.size(m0))
 if n is None:
 n=np.max(yy)
 if nsplit is None:
 nsplit=1
 ncombs=np.log(nCr(n+1)[yy])
 ##create new arrays with right dims for array maniputaions

90

 m00=m0[:,np.newaxis]
 m11=m1[:,np.newaxis]
 ##calculate probs of detection for each level of c and m0 & m1
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))")
 ##check prior probs sum to 1
 wgts=weights[:,np.newaxis]/np.sum(weights)
 ##take logs for easier calculations (log like) in work fun
 lprobs=np.log(probs[:,np.newaxis])
 lprobs2=np.log(1.-probs[:,np.newaxis])
 ##split yy if too large
 y_split=np.array_split(yy,nsplit)
 ncombs_split=np.array_split(ncombs,nsplit)
 res=0.
 ##caculate expected entropy -looping of yy is too large
 for i in xrange(nsplit):

 res=res+work_fun(lprobs,lprobs2,y_split[i],n,wgts,ncombs_split[i
])
 #return expected entropy
 return res

##calculates expected MSE for all possible responses for a given
design
def subarrayne_mean(c,yy,m0,m1,weights=None,n=None,nsplit=None):
 if weights is None:
 weights=np.repeat(1.,np.size(m0))
 if n is None:
 n=np.max(yy)
 if nsplit is None:
 nsplit=1
 ncombs=np.log(nCr(n+1)[yy])
 m00=m0[:,np.newaxis]
 m11=m1[:,np.newaxis]
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))")
 wgts=weights[:,np.newaxis]/np.sum(weights)
 lprobs=np.log(probs[:,np.newaxis])
 lprobs2=np.log(1.-probs[:,np.newaxis])
 y_split=np.array_split(yy,nsplit)
 ncombs_split=np.array_split(ncombs,nsplit)
 res=0.
 for i in xrange(nsplit):

 res=res+work_fun_mean(lprobs,lprobs2,y_split[i],n,wgts,ncombs_sp
lit[i])
 #return expected MSE
 return res

##calculates expected absolute error for all possible responses for a
given design
def subarrayne_median(c,yy,m0,m1,weights=None,n=None,nsplit=None):
 if weights is None:
 weights=np.repeat(1.,np.size(m0))
 if n is None:
 n=np.max(yy)
 if nsplit is None:
 nsplit=1
 ncombs=np.log(nCr(n+1)[yy])
 m00=m0[:,np.newaxis]
 m11=m1[:,np.newaxis]

91

 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))")
 wgts=weights[:,np.newaxis]/np.sum(weights)
 lprobs=np.log(probs[:,np.newaxis])
 lprobs2=np.log(1.-probs[:,np.newaxis])
 y_split=np.array_split(yy,nsplit)
 ncombs_split=np.array_split(ncombs,nsplit)
 res=0.
 for i in xrange(nsplit):

 res=res+work_fun_median(lprobs,lprobs2,y_split[i],n,wgts,ncombs_
split[i])
 #return expected absolute error
 return res

##calculates expected categorical error for all possible responses for
a given design
def subarrayne_mode(c,yy,m0,m1,weights=None,n=None,nsplit=None):
 if weights is None:
 weights=np.repeat(1.,np.size(m0))
 if n is None:
 n=np.max(yy)
 if nsplit is None:
 nsplit=int(np.shape(yy)[0]/400)+1
 ncombs=np.log(nCr(n+1)[yy])
 m00=m0[:,np.newaxis]
 m11=m1[:,np.newaxis]
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))")
 wgts=weights[:,np.newaxis]/np.sum(weights)
 lprobs=np.log(probs[:,np.newaxis])
 lprobs2=np.log(1.-probs[:,np.newaxis])
 y_split=np.array_split(yy,nsplit)
 ncombs_split=np.array_split(ncombs,nsplit)
 res=0.
 for i in xrange(nsplit):

 res=res+work_fun_mode(lprobs,lprobs2,y_split[i],n,wgts,ncombs_sp
lit[i])
 #return expected categorical error
 return res

##calculates expected joint entropy for all possible responses for a
given design
def subarrayne_joint_ent(c,yy,m0,m1,weights=None,n=None,nsplit=None):
 if weights is None:
 weights=np.repeat(1.,np.size(m0))
 if n is None:
 n=np.max(yy)
 if nsplit is None:
 nsplit=1
 ncombs=np.log(nCr(n+1)[yy])
 m00=m0[:,np.newaxis]
 m11=m1[:,np.newaxis]
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))")
 wgts=weights[:,np.newaxis]/np.sum(weights)
 lprobs=np.log(probs[:,np.newaxis])
 lprobs2=np.log(1.-probs[:,np.newaxis])
 y_split=np.array_split(yy,nsplit)
 ncombs_split=np.array_split(ncombs,nsplit)

92

 res=0.
 for i in xrange(nsplit):

 res=res+work_fun_joint_ent(lprobs,lprobs2,y_split[i],n,wgts,ncom
bs_split[i])
 #return expected joint entropy
 return res

##make loss functions take an array as an argument
##needed for playdoh
def ent_loss(c,nweights=None,n=None):
 return np.apply_along_axis(subarrayne, 0,
c,yy,m0,m1,nweights,n,None)*1.

def square_loss(c,nweights=None,n=None):
 return np.apply_along_axis(subarrayne_mean, 0,
c,yy,m0,m1,nweights,n,None)*1.

def abs_loss(c,nweights=None,n=None):
 return np.apply_along_axis(subarrayne_median, 0,
c,yy,m0,m1,nweights,n,None)*1.

def binary_loss(c,nweights=None,n=None):
 return np.apply_along_axis(subarrayne_mode, 0,
c,yy,m0,m1,nweights,n,None)*1.

def binary_loss_scaled(c,nweights=None,n=None):
 return np.apply_along_axis(subarrayne_mode_scaled, 0,
c,yy,m0,m1,nweights,n,None)*1.

given responses y & design c calculate posterior probabilities
for threhold (m0) and width (m1) parameters
weights=prior probs - default to uniform
n is the number of samples per design point -default 1

def calc_nweights(c,y,m0,m1,weights=None,n=None):
 if weights is None:
 weights=np.repeat(1.,np.size(m0))
 if n is None:
 n=np.max(y)
 probs=np.reshape(np.repeat(0.,(np.size(m0)*np.size(c))),(np.size
(m0),np.size(c)))
 y2=np.tile(y,(np.size(m0),1))
 cc=np.tile(c,(np.size(m0),1))
 mm0=np.transpose(np.tile(m0,(np.size(y),1)))
 mm1=np.transpose(np.tile(m1,(np.size(y),1)))
 probs=ne.evaluate(".9999/3.0+2.0/3.0*1.0/(1.0+exp((-(cc-
mm0)/(0.005*10**(mm1*2)))))")
 #if only look-ahead 1 use numpy -numexpr causes error as it does
not reduce the
 #dimension of the array's correctly otherwise numexpr for look-
ahead>1
 if np.size(c)==1:
 llike=np.sum((np.log(probs)*(y2)+np.log(1-probs)*(n-
y2)),axis=1)
 like=weights*np.exp(llike)
 else:
 llike=ne.evaluate("sum((log(probs)*(y2)+log(1-probs)*(n-
y2)),axis=1)")
 like=ne.evaluate("weights*exp(llike)")
 #check posterior probs sum to 1

93

 like=like/np.sum(like)
 #return posterior probs
 return like

##simulates responses from a logistic psychometric curve with
threshold ma and width mb and calculates the optimal design
to minimise the loss function (loss_fun) given the simulated data.
The number of samples is based on the global variable yy (see
below)
This is repeated a number of times (nreps) with the prior
distribtion
(nweights) updated after each rep. Optional arguments c_best is the
optimal design based on the original prior distribution only so it
does not need to be repeatedly found.
After nreps completed it returns posterior Mean, Mode, and Median
def
adaptive_fun(nreps,loss_fun,ma,mb,nweights=None,n=None,c_best=None):
 if nweights is None:
 nweights=np.repeat(1./np.size(m0),np.size(m0))
 for i in xrange(nreps):
 #if c_best is not specified or isn't 1st iter then find
opt design
 if c_best==None or i>0:

 s=minimize(loss_fun,np.linspace(0.,1.,np.shape(yy)[1]),method='P
owell',tol=0.01,args=(nweights,n))
 c_best=s.x
 #calculate probs of detection at opt design, assuming
thresh=ma and scale=mb
 pp=(.9999/3.0+2.0/3.0*1.0/(1.0+np.exp((-(c_best-
ma)/(0.005*10**(mb*2))))))
 #take binomial random sample assumin pp
 samp=binom.rvs(1,pp)
 #calculate posterior probs with observed samp
 #these probs are used as prior in next iteration

 nweights=calc_nweights(c_best,samp,m0,m1,weights=nweights,n=n)
 ##calculate posterior mean, ,mode, and median & return
 nw_temp=np.sum(np.reshape(nweights,(np.size(m0)**.5,np.size(m1)*
*.5)),axis=1)
 mf_mode=m0_unique[np.argmax(nw_temp),0]
 cumlative_sum_mf=np.cumsum(nw_temp)
 cumulative_sum_mf=cumlative_sum_mf/cumlative_sum_mf[-1]
 np.place(cumulative_sum_mf,cumulative_sum_mf<.5,100)
 mf_median=m0_unique[np.argmin(cumulative_sum_mf),0]
 mf_mean=np.sum(nw_temp*m0_unique[:,0])
 return np.array(([mf_mean,mf_mode,mf_median]))

similar to above except fixes intital value problem when yy is a
nx1 array
def
adaptive_fun_minent1(nreps,loss_fun,ma,mb,nweights=None,n=None,c_best=
None):
 if nweights is None:
 nweights=np.repeat(1./np.size(m0),np.size(m0))
 for i in xrange(nreps):
 if c_best==None or i>0:

 s=minimize(loss_fun,.5+np.linspace(0.,1.,np.shape(yy)[1]),method
='Powell',tol=0.01,args=(nweights,n))
 c_best=s.x

94

 pp=(.9999/3.0+2.0/3.0*1.0/(1.0+np.exp((-(c_best-
ma)/(0.005*10**(mb*2))))))
 samp=binom.rvs(1,pp)
 #samp=binom.isf(rand_num,1,1-pp)

 nweights=calc_nweights(c_best,samp,m0,m1,weights=nweights,n=n)
 nw_temp=np.sum(np.reshape(nweights,(np.size(m0)**.5,np.size(m1)*
*.5)),axis=1)
 mf_mode=m0_unique[np.argmax(nw_temp),0]
 cumlative_sum_mf=np.cumsum(nw_temp)
 cumulative_sum_mf=cumlative_sum_mf/cumlative_sum_mf[-1]
 np.place(cumulative_sum_mf,cumulative_sum_mf<.5,100)
 mf_median=m0_unique[np.argmin(cumulative_sum_mf),0]
 mf_mean=np.sum(nw_temp*m0_unique[:,0])
 return np.array(([mf_mean,mf_mode,mf_median]))

Similar to adaptive_fun except uses a random sample of standard
uniform vars
(rand_num) to calculate the simulated responses - this allows for
direct comparison
amongst various loss functions. Instead of random binomal vars
sampled the binomial
inverse of the rand_num array is taken.
def adaptive_fun2(nreps,loss_fun,ma,mb,rand_num,c_best=None):
 nweights=np.repeat(1./np.size(m0),np.size(m0))
 for i in xrange(nreps):
 #checks if initial design is present and it is the first
iteration
 if c_best==None or i>0:

 s=minimize(loss_fun,np.linspace(0.,1.,np.shape(yy)[1]),method='P
owell',tol=0.01,args=(nweights,n))
 c_best=s.x
 pp=(.9999/3.0+2.0/3.0*1.0/(1.0+np.exp((-(c_best-
ma)/(0.005*10**(mb*2))))))
 #Take inverse of binomial dist for rand_num percentile
 samp=binom.isf(rand_num[i],1,pp)
 #find posterior dist given samp - this is used as prior
for next iter

 nweights=calc_nweights(c_best,samp,m0,m1,weights=nweights,n=None
)
 #calculate the posterior probs for unique thresholds (m0)
 #only works if the number of levels in m0=m1
 nw_temp=np.sum(np.reshape(nweights,(np.size(m0)**.5,np.size(m1)*
*.5)),axis=1)
 #calculate posterior mode
 mf_mode=m0_unique[np.argmax(nw_temp),0]
 #calculate posterior median - seems inefficient
 cumlative_sum_mf=np.cumsum(nw_temp)
 cumulative_sum_mf=cumlative_sum_mf/cumlative_sum_mf[-1]
 np.place(cumulative_sum_mf,cumulative_sum_mf<.5,100)
 mf_median=m0_unique[np.argmin(cumulative_sum_mf),0]
 #calc postior mean
 mf_mean=np.sum(nw_temp*m0_unique[:,0])
 #return posterior mean, mode, median all in an array
 return np.array(([mf_mean,mf_mode,mf_median]))

create prior threshold (m0) and width (m1) paramter values
prior probabilities are assumed equal but can be specified
if needed. Curently need to have an equal number of levels

95

here it is 11.
m0=np.repeat(np.arange(11),11)/10.
m1=np.tile(np.arange(11),11)/10.
create global variable yy which is an array of all possible
sequences of length 8 and alphabet 2 (i.e. binary)
yy=DB_array(2,8)
unique values of m0 and m1 - values from 0 to 1 with step of 0.1
m0_unique=np.unique(m0)[:,np.newaxis]
m1_unique=np.unique(m1)[:,np.newaxis]

##calculates expected entropy for all possible responses for a given
design
yy=DB_array(2,8)
could try others e.g.
#yy=DB_array(3,8) ##note would need to use n=2 in the functions
#yy=DB_array(2,10)
m0_unique=np.unique(m0)[:,np.newaxis]
m1_unique=np.unique(m1)[:,np.newaxis]

Example of find optimum design for yy based on prior alone
and entropy loss function. Uses Powell's minimisation method.
Also gives time to calculate.
This can be used as an intial design for simulations
temp=time.clock()
s_init=minimize(ent_loss,np.linspace(0.,1.,np.shape(yy)[1]),method='Po
well',tol=0.01)
time.clock()-temp
###create an array to store results from 10 simulations
res_8=np.reshape(np.repeat(0.,30),(10,3))
define inital optimum design for first 8 samples as calculated
above
c_best_init=s_init.x
###loop for 10 simulated runs of 4 reps of 8 samples with adaptive
method
###assuming entropy loss function i.e. MINENT8 with 4 reps
###takes c_best_init as initial design so it doesn't have to re-
calculate
###it 10 times. This is a simulation assuming a true thershold of 0.3
and
scale of 0.5. The output (posterior mean, mode, median) are stored
in
res8. Also returns time to compelte the loop

temp=time.clock()
for i in xrange(10):
 res_8[i]=adaptive_fun(4,ent_loss,.3,.5,nweights=None,n=1,c_best=
c_best_init)

time.clock()-temp

###check estimated means (1st col) modes (2nd) median (3rd)
res_8
MSE based on 10 samples
np.mean((res_8[:,0]-.3)**.5)
Categorical error based on 10 reps
np.mean((res_8[:,0]!=.3))
Absoulute error based on 10 reps
np.mean(np.abs(res_8[:,0]-.3))

#####find a design with observed data EXAMPLE

96

##first calculate new prior (actually posterior) given observed
response, concentrations
##n_obs is the number of tests at each observed concentration
new_prior=calc_nweights(concentrations_ob,response_ob,m0,m1,weights=No
ne,n=n_obs)
##find optimal design for next set of design points (length =
number_points)
##n is the number of samples at each point probably 1
my_des=minimize(ent_loss,np.linspace(0.,1.,number_points),method='Powe
ll',tol=0.01,args=(new_prior,n))

#################DISCRETE SOLVER##############
##define available concentrations
concs=np.arange(11)/10.
##convert [0,1] interval to integers
ranging fom 0 to number of concentrations-1
and finally return elements of concs relating to
these integers
def concs_discrete(c):
 ##fix up edges for converting to ints
 c[c<=.00001]=.00001
 c[c>=.99999]=.99999
 c2=np.repeat(0,np.size(c))
 for i in xrange(np.size(c)):
 c2[i]=int(c[i]*(np.size(concs)))
 return concs[(c2)]

##similar to subarrayne except converts design into sample from concs
def subarrayne_discrete(c,yy,m0,m1,weights=None,n=None,nsplit=None):
 ##convert design c to elements of conc
 c=concs_discrete(c)
 if weights is None:
 weights=np.repeat(1.,np.size(m0))
 if n is None:
 n=np.max(yy)
 if nsplit is None:
 nsplit=1
 ncombs=np.log(nCr(n+1)[yy])
 m00=m0[:,np.newaxis]
 m11=m1[:,np.newaxis]
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))")
 wgts=weights[:,np.newaxis]/np.sum(weights)
 lprobs=np.log(probs[:,np.newaxis])
 lprobs2=np.log(1.-probs[:,np.newaxis])
 y_split=np.array_split(yy,nsplit)
 ncombs_split=np.array_split(ncombs,nsplit)
 res=0.
 for i in xrange(nsplit):

 res=res+work_fun(lprobs,lprobs2,y_split[i],n,wgts,ncombs_split[i
])
 ##return expected entropy
 return res

#allow array inputs for pswarm solver
def ent_loss_discrete(c,nweights=None,n=None):
 return np.apply_along_axis(subarrayne_discrete, 0,
c,yy,m0,m1,nweights,n,None)*1.

97

##solve with pswarm fof design of size 8
##descriptions from playdoh example
results saved as results
if __name__ == '__main__':
 # State space dimension (D)
 dimension = 8
 # ``initrange`` is a Dx2 array with the initial intervals for
every
 # dimension
 initrange = np.tile([0., 1.], (dimension, 1))
 # Maximize the fitness function in parallel
 results = pd.minimize(ent_loss_discrete,
 popsize=100, # size of the population
 maxiter=10, # maximum number of iterations
 cpu=8, # number of CPUs to use on the local
machine
 initrange=initrange)

##show best design
results.best_pos
##los function for opt design
concs_discrete(results.best_pos)

D-optimal Design code for Logistic Regression

import numpy as np
import numdifftools as nd
import playdoh as pd
from scipy.optimize import minimize

#####calculate negative loglikelihood
ignores nCr as is constant
def logistic_like(p0,p=None,n=None,x=None):
 ##some default params for assumed
 ##logistic curve to find D-opt design
 if p is None:
 p=(0.5,2.5)
 if n is None:
 n=1
 if x is None:
 x=(-.94,-.2,.54)
 e=p[0]+p[1]*np.array(x)
 e1=p0[0]+p0[1]*np.array(x)
 like=np.exp(e1)/(1.+np.exp(e1))
 q=np.exp(e)/(1.+np.exp(e))
 y=q*1.
 z=-np.sum(y*np.log((like/(1.-like)))+1.*np.log((1.-like)))
 return(z)

##passes design (c) and intercept(a1)
##and slope (a2) of underlying logistic reg
##returns detrminant of inverse of hessian
##of likelihood at MLE
def myfun(c,a1=None,a2=None):
 if a1 is None:
 a1=0.5
 if a2 is None:
 a2=2.5
 a=(a1,a2)
 hnd=nd.Hessian(lambda a: logistic_like(a,x=c))

98

 ll=np.linalg.det(np.linalg.inv(hnd(np.array(a))))
 return(ll)

##solve D-optimal design - args(0,1), mean underlying logistic has
##intercept=0 and slope of 1 -try others. Since 2 initial values
##(-5,1) are solving for design of 2 points
s=minimize(myfun,(-.5,1.),method='L-BFGS-B',args=(0,1),bounds=((-
10.,10.),(-10.,10.)))
##try design with 3 points
s=minimize(myfun,(5,1.,3),method='L-BFGS-
B',args=np.array(([0.,1.])),bounds=((-10.,10.),(-10.,10.),(-10.,10.)))
##function for pswarm
def myfun2(p):
 z=np.apply_along_axis(myfun, 0, p)
 return(z)
##compare pswarm solver - note no args therefore assumes
##default underlying logistic intercept=0.5, slope=2.5
results =
pd.minimize(myfun2,popsize=100,maxiter=10,cpu=1,initrange=(np.array(([
-5.,5.],[-5.,5.]))))

##########try for logistic psychometric curve
##########Doesn't always work- needs more work -Results May Not Be
Reliable!!
##calculate negative log-likelihood at MLE
def logisticpsy_like2(p0,p,n=None,x=None):
 if p is None:
 p=(0.5,0.05)
 if n is None:
 n=100.
 if x is None:
 x=(-.94,-.2,.54)
 q=0.9999/3.+2./(3.*(1.+np.exp((p[0]-np.array(x))/p[1])))
 like=1./3.+2./(3.*(1.+np.exp((p0[0]-np.array(x))/p0[1])))
 y=q*n
 z=-np.sum(y*np.log((like/(1.-like)))+n*np.log((1.-like)))
 return(z)

##find determinant of hessian at MLE for design (c)
def myfunpsytest(a,c=None):
 if c is None:
 c=(.45,.5)
 hnd=nd.Hessian(lambda b: logisticpsy_like2(b,p=a,n=1.,x=c))
 #ll=np.linalg.det(np.linalg.inv(hnd(np.array(a))))
 ll=np.linalg.inv(hnd(np.array(a)))
 res=np.linalg.det(ll)
 ##checks if positive-definite
 ##all eigenvalues should be positive
 if np.any(np.linalg.eigvals(ll) < 0):
 res=99999
 return((res))

#try find D-Optimal design for three curves
g=np.array(([.5,.2],[.4,.1],[.3,.05]))
##doesnt work for these
#g=np.reshape(np.repeat(0.,121*2),(121,2))
#g[:,0]=np.repeat(np.arange(11)/10.,11)
#g[:,1]=np.tile(np.arange(11)/10.,11)

##function to take multiple underlying curves to

99

##optimise
def myfunpsy2(p):
 z=np.apply_along_axis(myfunpsytest, 1., g,p)
 return(np.mean(z))

##function for playdoh -allows array args
def myfunpsy2_pd(p):
 z=np.apply_along_axis(myfunpsy2, 0.,p)
 return(z)

##minimise using box bound L-BFGS-B solver
s=minimize(myfunpsy2,(.1,.8),method='L-BFGS-
B',bounds=((0.,1.),(0.,1.)))
##minimise using PSwarm
results =
pd.minimize(myfunpsy2_pd,popsize=10,maxiter=10,cpu=4,initrange=(np.til
e([0., 1.], (8, 1))))

Minimum MSE design for ASTM method

from scipy.stats import binom
from scipy.optimize import minimize
import numpy as np
##generate parameters to calc expected MSE
m0_long=np.repeat(np.arange(11)/10.,11)
m1_long=np.tile(np.arange(11)/10.,11)
##function to calculate probabilities of detection
##for a given design (d) and params m0_long & m1_long
def Logistic_psych(d):
 return (1./3.0+2.0/3.0*1.0/(1.0+np.exp((-(d-
m0_long)/(0.005*10**(m1_long*2))))))

##find probabilities for each possible ASTM threshold
def multi_probs(g):
 mp=np.zeros(np.size(g)+1)
 for i in range(0,np.size(g)+1):
 mp[i]=np.append(np.sort(np.cumprod(g[::-1])),1)[i]*(1-
np.append(0,g)[i])
 return mp

##calculate all possible ASTM threhsolds
def last_reverse(g):
 g1=np.append(2.0*g[0]-g[1],g)
 k=np.size(g)
 g2=np.append(g,2.0*g[k-1]-g[k-2])
 return (g1+g2)/2.0

##estimate average MSE over all psychometric curves
defined by each m0_long and m1_long pair
def lastreverse_mse_final(X,nreps):
 ind_probs=np.transpose(Logistic_psych((X)[:,np.newaxis]))
 mps=np.apply_along_axis(multi_probs,1,ind_probs)
 t_ests=last_reverse(X)
 ##estimated variance
 est_var=np.sum(mps*(t_ests**2),axis=1)-
np.sum(mps*(t_ests),axis=1)**2
 ##estimated MSE
 est_mse=np.mean((np.sum(mps*(t_ests),axis=1)-
m0_long)**2+est_var/nreps)
 return est_mse

100

##estimate MSE for each individual psychometric curve
defined by each m0_long and m1_long pair
##nreps is the number of reps for each design point
def lastreverse_mse_final_by_curve(X,nreps):
 ind_probs=np.transpose(Logistic_psych((X)[:,np.newaxis]))
 mps=np.apply_along_axis(multi_probs,1,ind_probs)
 t_ests=last_reverse(X)
 est_var=np.sum(mps*(t_ests**2),axis=1)-
np.sum(mps*(t_ests),axis=1)**2
 est_mse=((np.sum(mps*(t_ests),axis=1)-m0_long)**2+est_var/nreps)
 return est_mse

##find solution for design of 8 points with 4 reps
s_lr=minimize(lastreverse_mse_final,np.arange(8)/7.,method='Powell',to
l=0.01,args=((4),))
s_lr.x

Attempted Multi-step look-ahead adaptive designs using NN approximations

import itertools as it
import numpy as np
concentrations=[a for a in
it.combinations((np.arange(0.1+.8/11.0,.89,.8/11.0)),6)]
import gc as gc
import pymc as mc
from scipy.stats import bernoulli
import copy
n=1
##generate 25008 samples of 40 points within
##various sub-intervals of [0,1]. These are the concentrations
##to train the Neural Networks
np.random.seed(29875)
concs_40=np.random.rand(25008,40)
centre=np.transpose([(.0,.25,.5,.75,.125,.375,.625,.0,.333,.667,.1665,
.5,.0,.5,0.25,.0)])
scale=np.transpose([(0.25,0.25,0.25,0.25,0.25,0.25,0.25,.333,.333,.333
,.333,.333,.5,.5,.5,1.0)])
scale=np.repeat(scale,1563,axis=0)
centre=np.repeat(centre,1563,axis=0)
##rescale to lie within the various sub-ints
concs_40_f=concs_40*scale+centre
##random seed for reproducibility
np.random.seed(15964)
#np.random.seed(1138)
#np.random.seed(2525)
##draw thresholds and scale paramters from standard uniform
mrand=np.random.uniform(low=0.0,high=1.,size= np.shape(concs_40_f)[0])
srand=np.random.random(np.shape(concs_40_f)[0])
##calculate detection probs for given design (XX), mrand & srand
def psy_p(XX):
 return (1.0/3.0+2.0/3.0*1.0/(1.0+np.exp((-(XX-
mrand)/(0.005*10**(srand*2))))))

np.random.seed(654987)
##calc detection probs for all sim designs
prand=np.apply_along_axis(psy_p, 0, concs_40_f)
##draw binomial samples with probs=prand, n=1
samp=np.random.binomial(n,prand)
##import pyentropy and use function to find approx entropy
##by discretising the posterior
from pyentropy import quantise

101

def approx_ent(a,nbins):
 ll=quantise(a,nbins,uniform='bins',minmax=(0,1),centers=False)
 counts=np.trim_zeros(np.sort(np.bincount(ll[0])*1.))
 ent=-sum(counts/sum(counts)*np.log2(counts/sum(counts)))
 return(ent)

##arrays to store results
import time
result_8=np.zeros((np.size(centre),9))
result_16=np.zeros((np.size(centre),9))
result_24=np.zeros((np.size(centre),9))
result_32=np.zeros((np.size(centre),9))
result_40=np.zeros((np.size(centre),9))

temp=time.clock()

##function to initialise model for MCMC
##uniform priors for scale and threshold
##logistic psychometric function
def est_psy_model(response,concsx,nn):
 import numpy as np
 import pymc as mc
 s1 = mc.Beta('s1', 1.0, 1.0, value=np.zeros(1)+0.51)
 m1 = mc.Uniform('m1', 0.0, 1.0, value=np.zeros(1)+0.51)
 #likelihood
 #y_i=mc.Binomial('y_i',value=response,n=nn,p=(1.0/3.0+2.0/3.0*1.
0/(1.0+mc.exp((-(concsx-
m1)/(0.005*10**(s1*2)))))),observed=True,trace=False)
 @mc.deterministic(plot=False)
 def modelled_yy(c=concsx, m=m1,s=s1,trace=False):
 """modelled_yy = 1.0/3.0+2.0/3.0*(1/(1+exp((-
2.197225/wp*(XX-m1[ind])))))"""
 return (1.0/3.0+2.0/3.0*1.0/(1.0+np.exp((-(c-
m)/(0.005*10**(s*2))))))
 @mc.stochastic(observed=True,trace=False)
 def y(value=response,p0=modelled_yy,n0=nn):
 return mc.binomial_like(value,n=n0,p=p0)
 return locals()

def est_psy(response,concsx,nn):
 import pymc as mc
 import numpy as np
 import gc as gc
 ##specify model using est_psy_model
 model = mc.Model(est_psy_model(response,concsx,nn))
 ##calculate mode of posterior
 M=mc.MAP(model)
 M.fit(method='fmin_powell',tol=0.0001, verbose=1)
 ##some code for memory management
 m1_mode=copy.copy(M.m1.value[0])
 s1_mode=copy.copy(M.s1.value[0])
 del M,model
 gc.collect()
 ##sample from posterior using MCMC metropolis algorithm
 ##trace is stoed in hdf5 to keep out of memory
 Ma =
mc.MCMC(est_psy_model(response,concsx,nn),db='hdf5',dbname='tempdb2.hd
f5',dbmode='w')
 #10000 iterations, burnin 1000, and thinning factor 10
 Ma.sample(iter=10000, burn=1000, thin=10)
 ##calculate posterior mean, sd, med for thresh & scale

102

 t3=copy.copy(np.mean(Ma.trace('m1')[:]))
 t4=copy.copy(np.std(Ma.trace('m1')[:]))
 t5=copy.copy(np.mean(Ma.trace('s1')[:]))
 t6=copy.copy(np.std(Ma.trace('s1')[:]))
 m1_mean=copy.copy(Ma.m1.stats()['mean'])
 m1_med=copy.copy(Ma.m1.stats()['quantiles'][50])
 m1_sd=copy.copy(Ma.m1.stats()['standard deviation'])
 s1_mean=copy.copy(Ma.s1.stats()['mean'])
 s1_med=copy.copy(Ma.s1.stats()['quantiles'][50])
 s1_sd=copy.copy(Ma.s1.stats()['standard deviation'])
 ##calculate approx threshold entropy
 m1_ent=approx_ent(np.reshape(Ma.m1.trace()[:],(np.size(Ma.m1.tra
ce()[:]),)),10)
 Ma.db.close()
 del Ma
 gc.collect()
 ##return results
 return
[m1_ent,m1_mode,m1_mean,m1_med,m1_sd,s1_mode,s1_mean,s1_med,s1_sd]

##calculate posterior estimates for 8,16, 24,32, and 40
##observations & store them
##TAKES DAYS!
for i in xrange(np.size(concs_40_f)/40):
 temp=time.clock()
 result_8[i]=est_psy(samp[i,0:8],concs_40_f[i,0:8],1)
 result_16[i]=est_psy(samp[i,0:16],concs_40_f[i,0:16],1)
 result_24[i]=est_psy(samp[i,0:24],concs_40_f[i,0:24],1)
 result_32[i]=est_psy(samp[i,0:32],concs_40_f[i,0:32],1)
 result_40[i]=est_psy(samp[i,0:40],concs_40_f[i,0:40],1)
 ##print to see what iteration at
 if i%200==199:
 gc.collect()
 print "i",i,time.clock()-temp

##save results as dont want to re-run
import pickle
object_res = result_8
file_res = open('final_logistic_result_8b.pkl', 'w')
pickle.dump(object_res, file_res)
file_res.close()

object_res = result_16
file_res = open('final_logistic_result_16b.pkl', 'w')
pickle.dump(object_res, file_res)
file_res.close()

object_res = result_24
file_res = open('final_logistic_result_24b.pkl', 'w')
pickle.dump(object_res, file_res)
file_res.close()

object_res = result_32
file_res = open('final_logistic_result_32b.pkl', 'w')
pickle.dump(object_res, file_res)
file_res.close()

object_res = result_40

103

file_res = open('final_logistic_result_40b.pkl', 'w')
pickle.dump(object_res, file_res)
file_res.close()

##read in result
import pickle
result_8=pickle.load(open('final_logistic_result_8b.pkl', 'r'))
result_16=pickle.load(open('final_logistic_result_16b.pkl', 'r'))
result_24=pickle.load(open('final_logistic_result_24b.pkl', 'r'))
result_32=pickle.load(open('final_logistic_result_32b.pkl', 'r'))
result_40=pickle.load(open('final_logistic_result_40b.pkl', 'r'))
##sort concentrations (simulated designs from beginning)
concs_8_f_sorted=np.sort(concs_40_f[:,0:8],axis=1)
concs_16_f_sorted=np.sort(concs_40_f[:,0:16],axis=1)
concs_24_f_sorted=np.sort(concs_40_f[:,0:24],axis=1)
concs_32_f_sorted=np.sort(concs_40_f[:,0:32],axis=1)
concs_40_f_sorted=np.sort(concs_40_f,axis=1)
c_ind_8=np.argsort(concs_40_f[:,0:8],axis=1)
c_ind_16=np.argsort(concs_40_f[:,0:16],axis=1)
c_ind_24=np.argsort(concs_40_f[:,0:24],axis=1)
c_ind_32=np.argsort(concs_40_f[:,0:32],axis=1)
c_ind_40=np.argsort(concs_40_f,axis=1)
##sort simulated samples so they match sorted concs
samp_8=np.zeros(np.shape(samp[:,0:8]))
samp_16=np.zeros(np.shape(samp[:,0:16]))
samp_24=np.zeros(np.shape(samp[:,0:24]))
samp_32=np.zeros(np.shape(samp[:,0:32]))
samp_40=np.zeros(np.shape(samp))
for i in xrange(np.shape(samp_40)[0]):
 samp_8[i]=samp[i,0:8][c_ind_8[i]]
 samp_16[i]=samp[i,0:16][c_ind_16[i]]
 samp_24[i]=samp[i,0:24][c_ind_24[i]]
 samp_32[i]=samp[i,0:32][c_ind_32[i]]
 samp_40[i]=samp[i,c_ind_40[i]]

input_8=np.append(concs_8_f_sorted,samp_8,axis=1)
input_16=np.append(concs_16_f_sorted,samp_16,axis=1)
input_24=np.append(concs_24_f_sorted,samp_24,axis=1)
input_32=np.append(concs_32_f_sorted,samp_32,axis=1)
input_40=np.append(concs_40_f_sorted,samp_40,axis=1)
target=result_40[:,(1,3)]
##import ffnet
from ffnet import ffnet, mlgraph
#conec = mlgraph((16,56,16,6))
#conec = mlgraph((80,320,8))
conection construction
input_test8=concs_8_f_sorted*(2.0*(samp_8-.5))
input_test16=concs_16_f_sorted*(2.0*(samp_16-.5))
input_test24=concs_24_f_sorted*(2.0*(samp_24-.5))
input_test32=concs_32_f_sorted*(2.0*(samp_32-.5))
input_test40=concs_40_f_sorted*(2.0*(samp_40-.5))

input_test40_f=np.append(input_test40,input_test40_2,axis=0)
input_test40_f=np.append(input_test40_f,input_test40_3,axis=0)
input_test40=concs_40_f_sorted+(2.0*(samp_40-.5))
target_test40=result_40[:,1]
target_test8=result_8[:,1]
conec = mlgraph((8,64,1))
conec40 = mlgraph((40,160,1))
net_8test = ffnet(conec)

104

net_40test = ffnet(conec40)

net_40test_ent = ffnet(conec40)
net_40test_mode = ffnet(conec40)
net_40test_mean = ffnet(conec40)
net_40test_median = ffnet(conec40)
net_40test_sd = ffnet(conec40)

print "TRAINING NETWORK..."
net_40test_ent.train_tnc(input_test40, result_40[:,0], maxfun = 5000,
messages=1,nproc='ncpu')
net_40test_mean.train_tnc(input_test40, result_40[:,2], maxfun = 5000,
messages=1,nproc='ncpu')
net_40test_mode.train_tnc(input_test40, result_40[:,1], maxfun = 5000,
messages=1,nproc='ncpu')
net_40test_median.train_tnc(input_test40, result_40[:,3], maxfun =
5000, messages=1,nproc='ncpu')
net_40test_sd.train_tnc(input_test40, result_40[:,4], maxfun = 5000,
messages=1,nproc='ncpu')
print

np.random.seed(29875)
arr=np.arange(25008)
np.random.shuffle(arr)
conec8 = mlgraph((8,32,1))
net_8test_ent = ffnet(conec8)
net_8test_mode = ffnet(conec8)
net_8test_mean = ffnet(conec8)
net_8test_median = ffnet(conec8)
net_8test_sd = ffnet(conec8)
print "TRAINING NETWORK..."
net_8test_ent.train_tnc(input_test8[arr[0:20000],:],
result_8[arr[0:20000],0], maxfun = 5000, messages=1,nproc='ncpu')
net_8test_mean.train_tnc(input_test8[arr[0:20000],:],
result_8[arr[0:20000],2], maxfun = 5000, messages=1,nproc='ncpu')
net_8test_mode.train_tnc(input_test8[arr[0:20000],:],
result_8[arr[0:20000],1], maxfun = 5000, messages=1,nproc='ncpu')
net_8test_median.train_tnc(input_test8[arr[0:20000],:],
result_8[arr[0:20000],3], maxfun = 5000, messages=1,nproc='ncpu')
net_8test_sd.train_tnc(input_test8[arr[0:20000],:],
result_8[arr[0:20000],4], maxfun = 5000, messages=1,nproc='ncpu')
print

conec32 = mlgraph((32,128,1))
net_32test_ent = ffnet(conec32)
net_32test_mode = ffnet(conec32)
net_32test_mean = ffnet(conec32)
net_32test_median = ffnet(conec32)
net_32test_sd = ffnet(conec32)

print "TRAINING NETWORK..."
net_32test_ent.train_tnc(input_test32[arr[0:20000],:],
result_32[arr[0:20000],0], maxfun = 5000, messages=1,nproc='ncpu')
net_32test_mean.train_tnc(input_test32[arr[0:20000],:],
result_32[arr[0:20000],2], maxfun = 5000, messages=1,nproc='ncpu')
net_32test_mode.train_tnc(input_test32[arr[0:20000],:],
result_32[arr[0:20000],1], maxfun = 5000, messages=1,nproc='ncpu')
net_32test_median.train_tnc(input_test32[arr[0:20000],:],
result_32[arr[0:20000],3], maxfun = 5000, messages=1,nproc='ncpu')

105

net_32test_sd.train_tnc(input_test32[arr[0:20000],:],
result_32[arr[0:20000],4], maxfun = 5000, messages=1,nproc='ncpu')
print

PLT.scatter(result_8[arr[20000:],0],net_8test_ent(input_test8[arr[2000
0:],:]))
PLT.scatter(result_8[arr[20000:],1],net_8test_mean(input_test8[arr[200
00:],:]))
PLT.scatter(result_8[arr[20000:],2],net_8test_mode(input_test8[arr[200
00:],:]))
PLT.scatter(result_8[arr[20000:],3],net_8test_median(input_test8[arr[2
0000:],:]))
PLT.scatter(result_8[arr[20000:],4],net_8test_sd(input_test8[arr[20000
:],:]))

#####make function to optimise for min
##generate random values to allow for repeatable results
##samples are based on the cumulative inverse of these
rand_nums=np.reshape(np.random.random(100*np.size(m0)*32),(np.size(m0)
*100,32))
from scipy.stats import binom
##function to find probabilites based on prior threshold and scale
params
def psy_p2(XX):
 XX=XX[:,np.newaxis]
 return np.transpose(1.0/3.0+2.0/3.0*1.0/(1.0+np.exp((-(XX-
m0)/(0.005*10**(m1*2))))))

##function to find probabilites based on SPECIFIED threshold (m) and
scale (w) params
def psy_p(XX,m,w):
 return np.transpose(1.0/3.0+2.0/3.0*1.0/(1.0+np.exp((-(XX-
m)/(0.005*10**(w*2))))))

##find approximate MSE based on simulations for 8 design points
def NN8_MSE(x):
 x=np.sort(x)
 #penalty for outside range
 penalty=1.*(np.max(x)>1. or np.min(x)<0.)
 probs_temp=np.tile(psy_p2(x),(100,1))
 #y=binom.rvs(1,probs_temp)
 y=binom.isf(rand_nums[:,0:8],1,probs_temp)
 inputs=np.tile(x,(np.size(m0)*100,1))*(2.0*(y-.5))
 mse_est=np.mean((np.tile(m0,100)-
net_8test_mean(inputs)[:,0])**2)
 return mse_est+penalty*9999.

##find approximate MSE based on simulations for 8 design points
##note also takes argument for previous 8 observed responses
def NN16_MSE(x,input_obs):
 probs_temp=np.tile(psy_p2(x),(100,1))
 penalty=1.*(np.max(x)>1. or np.min(x)<0.)
 #y=binom.rvs(1,probs_temp)
 y=binom.isf(rand_nums[:,8:16],1,probs_temp)
 inputs=np.tile(x,(np.size(m0)*100,1))*(2.0*(y-.5))
 inputs2=np.append(np.tile(input_obs,(np.size(m0)*100,1)),inputs,
axis=1)

106

 col_order=np.argsort(np.abs(inputs2[0,:]))
 inputs3=inputs2[:,col_order]
 mse_est=np.mean((np.tile(m0,100)-
net_16test_mean(inputs3)[:,0])**2)
 return mse_est+penalty*9999.

##find approximate MSE based on simulations for 8 design points
##note also takes argument for previous 16 observed responses
def NN24_MSE(x,input_obs):
 penalty=1.*(np.max(x)>1. or np.min(x)<0.)
 probs_temp=np.tile(psy_p2(x),(100,1))
 #y=binom.rvs(1,probs_temp)
 y=binom.isf(rand_nums[:,16:24],1,probs_temp)
 inputs=np.tile(x,(np.size(m0)*100,1))*(2.0*(y-.5))
 inputs2=np.append(np.tile(input_obs,(np.size(m0)*100,1)),inputs,
axis=1)
 col_order=np.argsort(np.abs(inputs2[0,:]))
 inputs3=inputs2[:,col_order]
 mse_est=np.mean((np.tile(m0,100)-
net_24test_mean(inputs3)[:,0])**2)
 return mse_est+penalty*9999.

##find approximate MSE based on simulations for 8 design points
##note also takes argument for previous 24 observed responses
def NN32_MSE(x,input_obs):
 penalty=1.*(np.max(x)>1. or np.min(x)<0.)
 probs_temp=np.tile(psy_p2(x),(100,1))
 #y=binom.rvs(1,probs_temp)
 y=binom.isf(rand_nums[:,24:32],1,probs_temp)
 inputs=np.tile(x,(np.size(m0)*100,1))*(2.0*(y-.5))
 inputs2=np.append(np.tile(input_obs,(np.size(m0)*100,1)),inputs,
axis=1)
 col_order=np.argsort(np.abs(inputs2[0,:]))
 inputs3=inputs2[:,col_order]
 mse_est=np.mean((np.tile(m0,100)-
net_32test_mean(inputs3)[:,0])**2)
 return mse_est+penalty*9999.

##find intial design for first 8 points
from scipy.optimize import minimize
s_NN8=minimize(NN8_MSE,np.arange(8)/7.,method='Powell',tol=0.01)
take given threshold and scale params and simulate
an adaptive design based on NN approximations
def adaptive_sim(m0_t,m1_t):
 ##get initial design points from global var s_NN8
 obs_x=s_NN8.x
 ##random sample of detection given design and params
 obs_y=binom.rvs(1,psy_p(obs_x,m0_t,m1_t))
 ##transform to input into NN
 obs_inputs=obs_x*(2.0*(obs_y-.5))
 ##find next 8 design points assuming 8 observed
 s_NN16=minimize(NN16_MSE,np.arange(8)/7.,method='Powell',tol=0.0
1,args=((obs_inputs),))
 ##generate and append obs
 obs_x=np.append(obs_x,s_NN16.x)
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN16.x,m0_t,m1_t)))
 obs_inputs=obs_x*(2.0*(obs_y-.5))
 ##find next 8 design points assuming 16 observed
 s_NN24=minimize(NN24_MSE,np.arange(8)/7.,method='Powell',tol=0.0
1,args=((obs_inputs),))
 ##generate and append obs

107

 obs_x=np.append(obs_x,s_NN24.x)
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN24.x,m0_t,m1_t)))
 obs_inputs=obs_x*(2.0*(obs_y-.5))
 ##find next 8 design points assuming 24 observed
 s_NN32=minimize(NN32_MSE,np.arange(8)/7.,method='Powell',tol=0.0
1,args=((obs_inputs),))
 ##generate and append obs
 obs_x=np.append(obs_x,s_NN32.x)
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN32.x,m0_t,m1_t)))
 obs_inputs=obs_x*(2.0*(obs_y-.5))
 return obs_inputs

##try 10 runs of adaptive assuming threshold=0.5 scale=0.4
adaptive_NN_res=np.reshape(np.repeat(0.,10*32),(10,32))
for i in xrange(10):
 adaptive_NN_res[i,:]=adaptive_sim(.5,.4)

##functions to allow for array inputs so can use PSwarm
import playdoh as pd
def myfun8(p):
 z=np.apply_along_axis(NN8_MSE, 0, p)
 return(z)

def myfun16(p,a):
 z=np.apply_along_axis(NN16_MSE, 0, p,a)
 return(z)

def myfun24(p,a):
 z=np.apply_along_axis(NN24_MSE, 0, p,a)
 return(z)

def myfun32(p,a):
 z=np.apply_along_axis(NN32_MSE, 0, p,a)
 return(z)

function as above put uses PSwarm global solver
rather than Powell's
def adaptive_sim2(m0_t,m1_t):
 obs_x=s_NN8.best_pos
 obs_y=binom.rvs(1,psy_p(obs_x,m0_t,m1_t))
 obs_inputs=obs_x*(2.0*(obs_y-.5))
 s_NN16=pd.minimize(myfun16,popsize=10,maxiter=10,cpu=8,initrange
=(np.tile([0., 1.], (8, 1))),args=((obs_inputs),))
 obs_x=np.append(obs_x,s_NN16.best_pos)
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN16.best_pos,m0_t,m1_
t)))
 obs_inputs=obs_x*(2.0*(obs_y-.5))
 s_NN24=pd.minimize(myfun24,popsize=10,maxiter=10,cpu=8,initrange
=(np.tile([0., 1.], (8, 1))),args=((obs_inputs),))
 obs_x=np.append(obs_x,s_NN24.best_pos)
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN24.best_pos,m0_t,m1_
t)))
 obs_inputs=obs_x*(2.0*(obs_y-.5))
 s_NN32=pd.minimize(myfun32,popsize=10,maxiter=10,cpu=8,initrange
=(np.tile([0., 1.], (8, 1))),args=((obs_inputs),))
 obs_x=np.append(obs_x,s_NN32.best_pos)
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN32.best_pos,m0_t,m1_
t)))
 obs_inputs=obs_x*(2.0*(obs_y-.5))
 return obs_inputs

108

##run some simulations for different thresholds (m0_NN)
and scale (m1_NN) parameters
adaptive_NN_res2=np.reshape(np.repeat(0.,900*32),(900,32))
m0_NN=np.tile(np.repeat(np.arange(.1,.91,.4),100),3)
m1_NN=np.repeat(np.arange(.1,.91,.4),300)
for i in xrange(900):
 adaptive_NN_res2[i,:]=adaptive_sim2(m0_NN[i],m1_NN[i])

##append final estimate of threshold after adaptive design
with true thresh and scale parameter
results_NN_est=np.reshape(np.repeat(0.,np.size(m0_NN)*3),(np.size(m0_N
N),3))
results_NN_est[:,0]=m0_NN
results_NN_est[:,1]=m1_NN
results_NN_est[:,2]=net_32test_mean(adaptive_NN_res2)[:,0]
##save results as csv file
np.savetxt("results_NN_est.csv", results_NN_est, delimiter=",")

