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Abstract 

The estimation of sensory thresholds is an important part of the psychophysics field. 

The point at which a physical stimulus becomes detectable can vary from trial to trial 

within as well as between subjects. Often the probability of detection is modelled over 

a range of stimulus intensities using an assumed psychometric curve which has the 

threshold as a parameter. To estimate the threshold with a reasonable accuracy often 

requires careful placement of the stimulus levels when the total number of trials are 

limited. There have been a number of design schemes proposed over the years to find 

the optimum placement strategy to minimise a given loss function. Some of the most 

successful have been Bayesian adaptive designs which select the next signal intensity 

based on prior knowledge and the responses observed up until that point. A critical 

step in the adaptive designs is the choice of threshold estimator and error term, also 

known as the loss function, to be minimised by the design scheme. A sub-class of these 

look-ahead a short number of trials to calculate the expected loss function given the 

current posterior distribution. However sometimes it is not possible to adjust the 

signal after every test. Olfactory sensory threshold tests, for example, can require a 

large setup time. In this situation a number of sensory tests may be grouped into 

sessions, with any design alterations occurring between these. However this would 

require a look-ahead design with a number of steps equal to the number of samples in 

a session. 

Most of the look-ahead designs have been restricted to one or two steps due to the 

little performance increase gained by increasing them and the computational 

limitations at the time they were suggested. The first point is not relevant to situations 

where the step size must be larger, and the second point may be less true today due to 

advances in computer power. This investigation demonstrates that it is possible to 

implement multi-step look-ahead adaptive designs in a computationally efficient 

manner for sessions up to sizes of twelve samples. Based on Monte-Carlo simulations, 

these multi-step look-ahead designs also provide encouraging results in terms of 

performance in minimising a number of loss functions. 

  
 



iii 
 

Acknowledgements 

It is a pleasure to have the opportunity to thank the many people who have helped me 

along the way to completing this thesis. The New Zealand Institute for Plant and Food 

Research Ltd was kind enough to allow me to continue to work full-time while 

studying. Many of my co-workers also deserve a special mention. In particular I would 

like to thank Nihal De Silva and the Biometrics team for their continued 

encouragement to further my study and Sara Jaeger along with the rest of the sensory 

team for being instrumental in inspiring my interest in the area. 

My supervisor Barry McDonald has my thanks for his guidance and invaluable 

suggestions while writing this. 

Lastly I would like to give a special thanks to my wife Evelyn for her never ending 

support and encouragement throughout this long journey. To her I dedicate this thesis.  

  



iv 
 

 

Contents 
Table of Figures ............................................................................................................................. vi 

Table of Tables ............................................................................................................................. vii 

1 Background ........................................................................................................................... 1 

2 Literature Review .................................................................................................................. 3 

2.1 Test Protocols: Yes-No and n-AFC Experiments ............................................................ 4 

2.2 Methods for Estimating the Psychometric Curve ......................................................... 6 

2.2.1 Method of Constant Stimuli .................................................................................. 6 

2.2.2 Method of Limits ................................................................................................... 7 

2.2.3 Method of Adjustment ......................................................................................... 7 

2.2.4 PEST ....................................................................................................................... 7 

2.2.5 Staircase Procedures ............................................................................................. 8 

2.2.6 Maximum Likelihood Adaptive Procedures .......................................................... 8 

2.2.7 Bayesian Adaptive Procedures .............................................................................. 9 

2.2.8 ASTM method ..................................................................................................... 15 

2.3 Odour Detection Experiments at The New Zealand Institute for Plant and Food 
Research .................................................................................................................................. 16 

2.4 Difficulties Implementing Standard Adaptive Procedures with Olfactory and Taste 
Threshold Estimation .............................................................................................................. 17 

2.5 Proposed Adaptive Threshold Estimation for Olfactory and Taste Experiments. ...... 18 

3 Methods .............................................................................................................................. 21 

3.1 Software ...................................................................................................................... 21 

3.1.1 Numpy and Scipy................................................................................................. 22 

3.1.2 Matplotlib............................................................................................................ 22 

3.1.3 PyMC ................................................................................................................... 22 

3.1.4 Playdoh ................................................................................................................ 22 

3.1.5 Numdifftools ....................................................................................................... 22 

3.1.6 Numexpr ............................................................................................................. 22 

3.1.7 ffnet ..................................................................................................................... 23 

3.1.8 OpenOpt .............................................................................................................. 23 

3.2 ASTM method ............................................................................................................. 23 

3.3 Threshold Estimation using the Psychometric Function ............................................. 25 



v 
 

3.3.1 Maximum Likelihood ........................................................................................... 25 

3.3.2 Bayesian Fitting ................................................................................................... 28 

3.3.3 Approximating the Loss Function by Simulation ................................................ 41 

3.4 Loss Function Minimisation ........................................................................................ 41 

3.4.1 Minimisation with Continuous Stimulus Levels .................................................. 42 

3.4.2 Minimisation with Discrete Stimulus Levels ....................................................... 43 

3.4.3 The Adaptive Procedure ..................................................................................... 44 

3.4.4 Python code ........................................................................................................ 46 

4 Results ................................................................................................................................. 49 

4.1 Fitting Bayesian Models through MCMC .................................................................... 49 

4.1.1 Generating data for Neural Network Training .................................................... 49 

4.1.2 Training the Neural network ............................................................................... 50 

4.1.3 Neural Network Performance ............................................................................. 51 

4.1.4 Optimizing based on the Neural Network .......................................................... 55 

4.2 D-Optimal Designs ...................................................................................................... 57 

4.3 Bayesian Optimal Design using Discrete Priors........................................................... 58 

4.3.1 Comparison of Adaptive Schemes ...................................................................... 59 

4.3.2 Adaptive Schemes Under Misspecified Psychometric Curve .............................. 63 

4.3.3 Comparing Look-Ahead Step Sizes: Minent8 vs. Minent1 .................................. 68 

4.4 ASTM Optimal Design ................................................................................................. 71 

4.5 Discrete Signal Intensities ........................................................................................... 72 

5 Discussion and Suggestions for Future research ................................................................ 74 

6 Conclusion ........................................................................................................................... 79 

7 Bibliography ........................................................................................................................ 81 

Appendix A R Computer Code ................................................................................................ 86 

Appendix B Python Computer Code ....................................................................................... 87 

 

  



vi 
 

 

Table of Figures 
Figure 1  An example of a Gumbel psychometric curve .......................................................... 3 
Figure 2  A visual summary of common sensory test protocols .............................................. 5 
Figure 3  Parameterisation and forms of psychometric functions ........................................ 11 
Figure 4  Effect of parameterisation of the logistic psychometric curve with standard 
uniform prior distributions ......................................................................................................... 13 
Figure 5 Example of estimated detection probabilites for a psychometric curve at given 
signal intensities. ......................................................................................................................... 24 
Figure 6  Autocorrelation plots for Threshold parameter estimates. ................................... 32 
Figure 7  Example of a Neural Network with 3 input, 6 hidden and one target neuron. ..... 35 
Figure 8 Example of how the inputs (x) are linked to the outputs (y) via the weights (w) and 
activation function (g). ................................................................................................................ 36 
Figure 9 Example of a log-sigmoid activation function with  ..................................... 36 
Figure 10 Scatter plots of the MCMC estimates based on 8 observations vs. the neural 
network approximations ............................................................................................................. 51 
Figure 11 Scatter plots of the MCMC estimates based on 32 observations vs. the neural 
network approximations ............................................................................................................. 53 
Figure 12 Posterior mean NN approximations versus MCMC means based on 8, 16, 24, and 
32 samples. 54 
Figure 13 Logistic Psychometric curves used to generate responses to assess the 
performance of the NN based adaptive method. ....................................................................... 56 
Figure 14 Estimated RMSE for the NN Adaptive Design ......................................................... 57 
Figure 15 Logistic Psychometric curves under discrete standard uniform priors .................. 59 
Figure 16 RMSE based on 100 samples generated by Logistic Psychometric curves ............. 61 
Figure 17 Mean Absolute Errors based on 100 samples generated by Logistic Psychometric 
curves 62 
Figure 18 Categorical Errors based on 100 samples generated by Logistic Psychometric 
curves 63 
Figure 19 Weibull Psychometric curves used to generate misspecified samples .................. 64 
Figure 20 RMSE based on 100 samples generated by Weibull Psychometric curves ............. 65 
Figure 21 Absolute errors based on 100 samples generated by Weibull Psychometric curves
 66 
Figure 22 Categorical errors based on 100 samples generated by Weibull Psychometric 
curves 67 
Figure 23 Logistic Psychometric curves used to compare the MINENT1 and MINENT8 ........ 69 
Figure 24 Comparison of the convergence of the MINENT8 (red) versus MINENT1 (black). . 70 
Figures 25    Comparison of RMSE for the MINENT1 and MINENT8 procedures ....................... 70 
Figure 26 ASTM Expected RMSE ............................................................................................. 72 
 

  



vii 
 

 

Table of Tables 
Table 1 Example of BET estimates for two panellists. Ticks indicate correct detection at a 
given concentration, and a cross an incorrect response. ........................................................... 16 
Table 2 Variance, Bias, and MSE estimation for teh ASTM method. ....................................... 24 
Table 3 Regression Summary Statistics for Neural Network Approximation Based on samples 
of Length 8 .................................................................................................................................. 52 
Table 4 Summary statistics from regressing the MCMC point estimates on the NN 
approximations based on 32 observations per sample. ............................................................. 53 
 

  



1 
 

 

1 Background 
The investigation underpinning this document relates to a problem encountered 

during the planning stage of a large consumer trial conducted at the New Zealand 

Institute for Plant and Food Research (PFR).  

This trial required a large number of individual sensory olfaction thresholds to be 

calculated from a limited number of trials. The testing method was decided upon as 

being the 3 Alternative Forced Choice (3-AFC) with thirty two such tests per subject. A 

single 3-AFC test involves 3 samples being presented to the individual with one of 

these containing the signal. The subject then samples each of the three in a set order 

and records which is believed to contain the signal.   

The problem was to now make adjustments to data collection and handling as to 

ensure high quality threshold estimates were produced. One such adjustment is the 

choice of how to estimate the threshold given the data. While this is an important 

choice as certain estimators may be more efficient than others, and it will be 

discussed, it is not the focus of this investigation.  

Another alteration that can be made is the selection of the stimulus intensities used at 

the testing stage. If all the tests are administered at concentrations reasonably greater 

than the threshold then the subjects will always (or nearly always if the subject lapses), 

detect the signal resulting in little information to base a reliable threshold estimate on. 

Conversely if the testing is carried out at undetectable levels then the responses are all 

random guesses and the same is true. While these are extreme examples as most 

subjects should see a range of intensities from non-detectable through to always 

detectable, they do demonstrate that the choice of signal intensities presented can 

have an impact on precision of the threshold estimates. 

This problem is not new and is an active area of research. There have been numerous 

methods proposed such as general guidelines on where to set the levels as with the 

American Society for the Testing of Materials (ASTM) method through to fully adaptive 

methods which base the next test on the previous results. While some of these 
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adaptive methods could in theory work there are additional problems relating to the 

PFR experiment setup which means they are impractical. The main difficultly is setup 

time. With vision or hearing tests it can be relatively quick to increase or decrease the 

signal level for the next test. However in the case of the PFR experiments the olfactory 

tests required a carefully measured volume of the compound of interest to be diluted 

in water. This would take too much time between tests to decide upon the next 

concentration and getting the sample ready especially if multiple panellists are being 

tested at the same time. Using sniffing sticks (Hummel, Sekinger, Wolf, Pauli, & Kobal, 

1997) could allow for rapid change in signal intensity, however as this method is 

generally conducted one on one it would be prohibitive in terms of staffing for the 

large study proposed.  

Therefore the investigation should focus on methods which allow for changes in 

concentrations to be made between blocks of samples rather than after each 

individual test. For example the concentrations used for the following day could be 

based on the previous results. It may also be simpler for the experimenter to have the 

same concentrations presented to all panellists and even the same across days. These 

additional restrictions will be looked at also. 

Taking the above limitations into account the problem is that given a set or distribution 

of psychometric curves and a threshold estimation method what is the optimal set of 

concentrations to test to minimise a given error measure? The relationship between 

the design and the expected error is often referred to as the loss function. One could 

try and minimise the loss function analytically or if that proves too difficult, obtain an 

approximate solution through simulation.  
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2 Literature Review 
Relating the intensity level of a stimulus to a subject’s ability to detect or discriminate 

is an important area of Psychophysics, which is itself the more general study of 

connecting physical stimuli to subjective responses(Kuss, Jäkel, & Wichmann, 2005). 

The subject’s performance in detection or discrimination tasks should improve as the 

stimulus level intensifies. While it is possible that a subject may suddenly jump from no 

detection to perfect detection after a small increase in the stimulus level, often, 

however, it is a more subtle change-over. The probability of detection (or 

discrimination) increases in a sigmoid curve shape rather than a simple step function. 

This monotonic curve relating a subject’s performance to a physical stimulus is 

commonly referred to as the psychometric function F(x). An example of a Gumbel 

psychometric curve is shown in Figure 1.   

 

Figure 1  An example of a Gumbel psychometric curve modelling the relationship between Stimulus and 
Detection probability  
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2.1 Test Protocols: Yes-No and n-AFC Experiments 

In order to approximate the underlying psychometric function or estimate a point 

thereon, a testing protocol for determining the response at a given stimulus intensity 

must first be decided upon.  

Two of the most common protocols are the yes-no and n-Alternative Forced Choice 

(AFC) methods. The yes-no method involves the panellists being presented with either 

the signal or a blank sample at the given concentration, to which they respond yes or 

no depending on whether or not the signal was perceived. For the n-AFC procedure 

the subject receives n samples of which one has the signal and remaining are blanks. 

After sampling the n alternatives in a given order the subject indicates which one they 

believe contains the signal. A number of popular test procedures can be visualised in 

Figure 2. 
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Figure 2  A visual summary of common sensory test protocols The figure is based on a similar one presentation at 
the 10th Sensometrics Conference (Lee, 2010). The original red wine glass scalable vector graphic (svg) file was 
downloaded from www.openclipart.org and modified for this figure. 

Klein, 2001 points out that 2-AFC has been more popular than the yes-no method, 

which may be due to the assumption that it removes response bias. However it does 

have problems. The response error in the yes-no method occurs when a subject falsely 

believes that they can detect the signal when in fact they do not. It is also possible for 

the opposite to occur, that is the panellist detects the signal but believes that they 

have not. While the n-AFC method does remove this type of response bias it does 

introduce the possibility of what Klein calls interval bias. Here the subject has a 

preference for selecting certain positions as having the signal over others. For a 2-AFC 

task this may mean a higher chance of detecting the signal at a given intensity if it was 

sampled first in the set than if it was sampled second or vice-versa. Klein goes on to 

discuss methods to correct for these types of bias based on signal detection theory 
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(Green & Swets, 1966). Nevertheless the original experiment on which this 

investigation is based used a 3-AFC testing protocol for detection and therefore the 

methods discussed herein relate to this. It is possible to easily adjust them to suit any 

n-AFC experiment, and with a little more work to a yes-no task. 

2.2 Methods for Estimating the Psychometric Curve 

Once the testing protocol has been set, the focus now shifts to the estimation method. 

Often the parameter of interest is a specific stimulus level which results in a given 

detection probability on the psychometric curve. That is the parameter  , where 

, for a given probability . Common choices for  are 50% (Kelareva, 

Mewing, Turpin, & Wirth, 2010) or when  minimises the so called sweat factor 

(Taylor, 1971). Minimizing the sweat factor should theoretically also minimise the 

variance of the point on the psychometric curve however this may not hold, especially 

when the underlying psychometric curve does not match the form of the fitted model 

(Garcia-Perez & Alcala-Quintana, 2007). For the purposes of this document we will 

define the sensory threshold as , where .  

Various methods have been employed to estimate F(x) itself or individual points 

thereon such as the intensity relating to 50% probability of detection. The sensory 

threshold T is often defined as this intensity, that is F(T)=0.5 (Alcalá-Quintana & García-

Pérez, 2004). Three of the more traditional estimation methods are the method of 

Constant Stimuli , the Method of limits, and the Method of Adjustment. 

2.2.1 Method of Constant Stimuli 
This method requires a set of concentrations to be repeatedly tested by the subject. 

Each concentration is presented in a random order with equal frequency. The 

proportion of correct tests is then plotted against the concentrations and a parametric 

curve is fit allowing for interpolation between the set concentrations. This method is 

generally thought to produce the most accurate threshold and psychometric curve 

estimates, and a modified version of it has been referred to as the “gold standard” 

(Wise, Bien, & Wysocki, 2008). It has the advantage of completely estimating F(x) 

although it often needs a large number of tests to make this possible. Due to this it 

may be unsuitable for many odour or taste threshold estimation experiments where 

set up time can be significant. 
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2.2.2 Method of Limits 
The method of limits starts at an initial concentration with subsequent concentrations 

either always increasing or decreasing until a change over in response occurs. For 

ascending method of limits tasks the initial value is set at an undetectable level. The 

concentrations increase until the signal is detected. Similarly descending runs start at a 

clearly detectable level with concentrations decreasing until the signal is not detected. 

Averages of multiple runs ascending, descending or a mixture of the two, for a given 

subject can be used to improve threshold estimation. This method can introduce bias 

however, in the form of habituation and expectation. Habituation is the tendency for 

the subject to give the same response as was given previously (Amerine, Pangborn, & 

Roessler, 1965). Expectation on the other hand is when the subject anticipates the 

changeover and changes their response prematurely (Heymann & Lawless, 1999). To 

account for these potential biases various modifications have been used such as using 

an n-AFC testing method in place of a yes-no procedure. 

2.2.3 Method of Adjustment 
This method requires the subject to modify the signal intensity until it is barely 

detectable to them. This process is repeated a number of times to get an estimate with 

the results being aggregated. Allowing for subject to set the magnitude may or may 

not be feasible within the experimental setting.  

In an effort to improve efficiency of threshold prediction, adaptive methods have also 

been used. It can be a major problem to acquire reasonably robust threshold estimates 

when the number of trials available is limited. An adaptive method bases the current 

testing level on the results of previous tests. Leek (2001)provides an overview of three 

such adaptive methods: Parameter Estimation by Sequential Testing (PEST), Staircase, 

and Maximum Likelihood. 

2.2.4 PEST 
The PEST procedure (Taylor & Creelman, 1967) begins at a set concentration, with a 

given step size and performance level to be achieved. The panellist is tested at the 

initial concentration multiple times until the observed proportion is deemed to provide 

evidence that the level is either too high or too low. This decision is made using a 

statistical test and it is carried out after each trial. The concentration is then adjusted 
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by the given step size in the appropriate direction. Using a PEST rule the step size is 

then adjusted and the process repeated until the step size reaches a desired level. At 

this point the process is terminated and the final signal magnitude is taken as the 

estimated concentration which results in the performance level of interest. Hall (1981) 

suggested using all of the collected responses to fit a psychometric curve instead of 

solely relying on the final test level. This also allowed for the estimation of a slope 

parameter and removed some of the original PEST method’s sensitivity to the initial 

concentration and step sizes. 

2.2.5 Staircase Procedures 
Staircase procedures are similar to the PEST method except they remove a lot of the 

complexity of the decision rules to change the sample intensity. Depending on the 

point of interest on the psychometric curve a simple rule is used to adjust the signal 

level. The simplest staircase rule of one down – one up targets the 50% chance of 

detection. Here an initial concentration is presented, if the panellist correctly detects 

the signal then the next sample is of lower intensity if they do not then the level is 

increased. The step size and termination rules are also simplified resulting in easy to 

calculate signal adjustments. 

2.2.6 Maximum Likelihood Adaptive Procedures 
Leek (2001) defines this category as being “characterized by stimulus placement on 

each trial, driven by consulting the current best estimate of the entire underlying 

psychometric function after every stimulus-response trial.” One of the earliest methods 

to use this process was QUEST(Watson & Pelli, 1983). This method uses prior 

information expressed as a probability distribution of the threshold to fit the 

psychometric function. The function takes a predetermined form such as the 

cumulative density function (cdf) of the Weibull distribution, with the slope parameter 

fixed at a constant value prior to model fitting. After each sample the data is combined 

with the prior information using Bayes’ theorem resulting in a threshold estimate 

which maximises the posterior distribution. This estimate is then taken as the 

concentration used in the subsequent dose-response test. Depending on the 

termination criteria, this process is repeated until a predetermined number of trials 

are reached or the confidence interval about the threshold is sufficiently narrow. The 
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final threshold estimate ignores the prior information and is the common maximum 

likelihood estimate. 

2.2.7 Bayesian Adaptive Procedures 
While the final estimate of the Quest method is the maximum likelihood estimate, 

much of the approach relies on Bayesian methods. Indeed Bayesian techniques have 

become increasingly popular in adaptive psychophysical methods(Garcia-Perez & 

Alcala-Quintana, 2007; Kelareva et al., 2010; King-Smith, Grigsby, Vingrys, Benes, & 

Supowit, 1994; Kontsevich & Tyler, 1999; Kuss et al., 2005). One distinction between a 

Bayesian technique and other methods is the incorporation of ‘prior’ knowledge 

specified as a distribution, into the model. Using both the prior information and the 

observed data, one or more ‘posterior’ distributions are constructed which allows for 

inferences about the parameter of interest to be drawn. The constructions of the 

posterior distributions are not always trivial and often a Monte Carlo Markov Chain 

(MCMC) method is used to approximate these distributions. More details regarding 

MCMC methods are provided in the Methods section. As with the other adaptive 

methods the Bayesian techniques must address three main concerns: “estimation of 

the psychometric parameters (threshold and slope), the termination rule, and 

placement of the next trial” (Kontsevich & Tyler, 1999). 

2.2.7.1 Estimation of the Psychometric Parameters 
The Bayesian adaptive procedure generally links the probability of detection  to the 

sample intensity  through the relationship   

  ( 1 ) 

 

Where  is the probability of guessing the correct response when the stimulus is 

undetectable to the subject and  is the probability of lapsing and giving an incorrect 

response when in fact the signal is detected. In n-AFC experiments  is often set to  

. Setting  makes the assumption that the subject always answers correctly when 

the signal is detected. Both  and  can be sensitive to violations of this 

assumption(Prins, 2012; Wichmann & Hill, 2001). Possible explanations for lapsing 

include blinking during a vision related detection task or incorrectly recalling the 
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position of the signal in an n-AFC task. This may be less of an issue with odour 

detection tasks where the number of samples is generally small and the subject has a 

reasonable amount of time to respond.  is a function which models the 

underlying process linking signal intensity to the probability of detection, usually with 

two parameters  and  although there may be more depending on the family of 

curve being fitted. While it is convenient to assume that  is invariant to 

whichever testing methodology is being used this so called ‘high threshold model’ has 

proven to be false(Klein, 2001). For example an estimated   based on the 2-

AFC method may differ from that produced using a 3-AFC on the same subjects. One 

measure that should be comparable amongst different testing protocols is the point on 

the full response curve relating to d’=1. Sometime referred to as the sensitivity index, 

d’ is a measure of how far apart the signal and noise, as represented by standard 

normal distributions, are. A d’=1 corresponds to a signal level for an n-AFC experiment 

which elicits a probability of detection/discrimination equal to 

  

For a 2-AFC experiment, taking note that  this can be calculated as the 

 

For a n-AFC where n is greater than 2 this can be more difficult to calculate but can be 

obtained from the literature such as d’=1 for a 3-AFC occurs at 0.633(Peng, Jaeger, & 

Hautus, 2012). It is also reasonably straightforward to use simulation methods to find 

the approximate detection proportion relating to a d’=1. Custom R code, which can be 

found in the appendix, can produce an approximate proportion relating to d’=1 for an 

n-AFC design based on 100,000 simulations. 

Theoretically the signal level on the 2-AFC response curve corresponding to a 76% 

detection rate should equate to the same signal level which relates to 63.3% rate for 

the 3-AFC response curve and so on. The advantage of the d’ based estimates is that it 

is possible to make comparisons across studies. However if cross protocol comparisons 

are not required, then defining the threshold as the 50% detection level on the 

psychometric curve may be advantageous. Indeed Kuss et al., 2005 provides 
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alternative parameterisations of many of the common psychometric curves which 

include this threshold itself as a parameter.  

The forms used by Kuss et al. (2005) explicitly treat both the threshold, defined as m=F-

1(0.5), and either w, the width of the interval F-1(α) to F-1(1-α) for some small α, or the 

slope s, at threshold as parameters. That is F is parameterised in terms of either 

 or . By restricting w and s to being greater than 0 the resulting 

curves are also restricted to being monotonically increasing functions. 

The forms themselves as presented by Kuss et al. (2005). are listed below and 

presented in Figure 3: 

 

Figure 3  Parameterisation and forms of psychometric functionsas presented by Kuss et al., 2005. The curves 
have been rescaled with all having threshold parameter m=0.5. For the logistic, Gaussian, and Gumbel forms the 
scale parameter w=0.5. The Weibull curves have slope at threshold parameters s=5. 

Logistic. This is the standard logistic regression model found used in Generalized Linear 

Models (GLMs) re-parameterised as a function of m and w instead of the intercept and 

slope. This function is symmetric around the threshold, with . 

  ( 2 ) 

 

Gaussian. Similar to the standard probit model used for GLMs, but again re-parameterised to 

be a function of m and w.  

  ( 3 ) 
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Note that here  with  defined as the cumulative density 

function (cdf) of the standard normal distribution and its inverse. 

Gumbel & Reverse Gumbel. This function is a re-parameterized version of the log-log GLM, 

which results in an asymmetric curve. The probability of detection increases slowly over low 

stimulus levels but converges to 1 more rapidly as the levels increase. The asymmetry can be 

reversed resulting in the reverse Gumbel function. 

  ( 4 ) 

 

  ( 5 ) 

 

Where . 

Weibull & Reverse Weibull. As with the Gumbel the Weibull produces an asymmetric 

curve. It cannot be parameterised in terms of w and instead is defined by m and s 

where . 

  ( 6 ) 

 

  ( 7 ) 

 

Interestingly this function is only defined for x>0, both  and 

 as . This can be a desirable characteristic for a psychometric 

curve (Kuss et al., 2005). 
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These parameterisations have two advantages. Firstly as stated above, the threshold 

itself is a parameter and does not need to be calculated as a function of say slope and 

intercept estimates. Secondly, and more importantly, using the alternative 

parameterisation allows for the explicit specification of the prior distribution of the 

threshold and width. An example of this can be seen in Figure 4 where the more 

standard logistic regression parameterization together with a standard uniform prior 

on the slope strongly favours flat psychometric functions. The alternative more readily 

allows for a greater range of slopes, with the flatness of the prior translated into the 

function space. Kuss et al. (2005) provided a similar figure, with uniform priors over 

the range [-1000,1000] instead of [0,1] as used here. This had the effect of favouring 

steep rather than flat psychometric curve for the standard logistic regression 

parameterisation. However the point remains that using the threshold and width 

parameters simplify the specification of prior distributions. 

 

Figure 4  Effect of parameterisation of the logistic psychometric curve with standard uniform prior distributions 
for the parameters. The standard logistic parameterisation (left) strongly favours flat response curves, whereas 
the parameterisation from (2) allows for a wide range of curves. 

2.2.7.2 Termination Rules 
The termination rule can often be dictated by the experimental setting. One popular 

method is to continue until some pre-defined level of accuracy in the threshold 

estimate is reached. This could be a sufficiently narrow confidence interval (Watson & 

Pelli, 1983) or variance of the posterior distribution. This may be appropriate when a 

large number of queries are possible; however in the clinical setting the number of 

samples possible can be restricted to a low level. (Kelareva et al., 2010). In this case is 

can be more appropriate to stop after a set number of trials. As the original 

experiment, on which this investigation is based, used a small fixed number of 

samples, this will be assumed as the termination rule. 
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2.2.7.3 Signal Intensity of the Next Sample 
There have been a number of schemes based on adaptive Bayesian methods 

presented in the literature to select signal intensities. Some common choices are to 

estimate the mean of the posterior distribution of the threshold based on the 

observed data up until that point and then set the next signal level equal to that mean 

(King-Smith et al., 1994). The median or mode have also been used in place of the 

posterior mean (Watson & Pelli, 1983) to place the next sample. We refer to these as is 

consistent with Kelareva et al., 2010, that is the MEAN, MEDIAN, and MODE query 

schemes respectively. How similar the results from these schemes are depends on how 

symmetric the posterior distribution is. A highly skewed posterior could lead to quite 

different designs.  

Other schemes involve choosing the signal level which, based on the current estimate 

of the psychometric curve, minimises a characteristic of the threshold posterior 

distribution such as its entropy (Kontsevich & Tyler, 1999) or its variance (King-Smith et 

al., 1994). These are referred to as the MINENT and MINVAR procedures respectively.  

Kelareva et al. provide an interesting hybrid whereby for a set number of samples n, 

the first n-k samples follow the MINENT procedure, with the remaining k samples and 

final estimate are selected using one of the MEAN, MEDIAN, or MODE methods, based 

on a certain loss function to be minimised. 

2.2.7.4 Loss Function 

Kelareva et al. give a summary of some common loss functions used to evaluate the 

performance of the technique used to estimate the threshold T. The three loss 

functions used in that paper are referred to as ABSERR, SQERR, and CATERR and are 

outlined below. 

ABSERR. This strategy involves minimising the mean absolute error, that is , 

where T is the true threshold and t is the estimated threshold. This method can allow 

small numbers of large errors if the overall mean is still low. 

SQERR. Here the aim is to minimise the mean of the square errors, i.e. . While 

this is similar to the ABSERR method, it is more sensitive to large errors and thus it is 

appropriate when the goal is to reduce large, even if infrequent, errors.  
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CATERR. The categorical error is the proportion of estimated thresholds which are not 

equal the true threshold exactly. More formally, as defined by Kalereva, we want to 

minimise the mean of L(T,t), where 

 

Clearly CATERR only makes sense when the threshold can only take discrete values. 

Therefore this loss function is confined to problems where the prior distribution of the 

threshold is discrete. 

2.2.8 ASTM method 
To estimate this threshold one could employ a non-parametric approach such as the 

ASTM last reversal method (ASTM International, 2011). While it is known to be biased 

(ASTM International, 2011) it should result in an estimate not far from stimulus level 

required to give 50% detection. The method works by presenting a run consisting of a 

number of 3-AFC tests with the stimulus level increasing each time by a constant 

multiplicative factor. The geometric mean of the concentration at which the last 

incorrect choice was observed and the next concentration is then calculated for each 

run to give a Best-Estimate Threshold (BET). It is also assumed that if the subject had 

been presented with the next step down from the lowest observed sample they would 

have answered incorrectly. This allows for a BET to be calculated when the subject 

correctly detects the signal in all samples. Similarly the next step up from the highest 

observed concentration is treated as being detected to account for cases where the 

highest concentration was not detected. An example of calculating the mean BET for 

two panellists is presented in Table 1. A similar table was presented in ASTM 

International, 2011, but was based on group rather than individual threshold 

estimates. 
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Table 1 Example of BET estimates for two panellists. Ticks indicate correct detection at a given concentration, 
and a cross an incorrect response. 

Panellist 
ID 

Concentrations (often in Log10 units) Best 
Estimate 

Threshold 
(BET) 1 2 3 4 5 6 7 8 

1  x x      3.5 
1         0.5 
1   x      3.5 
1 x x x      3.5 
        Mean 2.75 

2        X 9.5 
2 x x   x    5.5 
2  x x      3.5 
2 x  x x     4.5 
        Mean 5.75 

 

2.3 Odour Detection Experiments at The New Zealand Institute for 

Plant and Food Research  

As was previously stated the basis for this investigation is tied to experiments 

conducted at the New Zealand institute for Plant and Food Research (PFR). A more 

detailed outline of the experiments can be found in Peng et al. (2012) with a brief 

summary provided here. One hundred judges were divided into ten cohorts of size ten. 

For every cohort three odorants were tested with each odorant being presented in 

four repetitions of a series of eight 3-AFC trials. The series included eight 

concentrations which were presented in an increasing order with constant dilution 

factor. Filtered water was used as the solvent with the two blanks presented in each 3-

AFC trial containing the solvent only. All target and blank solutions were placed in 

separate covered wine glasses and left for approximately one hour before being 

sampled. Only two sessions of differing odours, with a break in between were 

conducted per day in order to reduce the influence of fatigue on the panellists’ 

detection ability. In addition the testing was conducted under green light with a 75 

second delay between the three sample sets within the same series. 

Threshold estimates were estimated for each series using the ASTM method, and the 

geometric mean of the thresholds over the four runs taken as the final threshold 
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estimate for the respective odour. The reason for taking the geometric means is that 

the concentrations with a constant dilution factor were represented on the logarithmic 

base 10 scale, resulting in log concentrations equally spaced. Taking arithmetic means 

on the log scale and then back-transforming onto the original scale is equivalent to 

taking the geometric mean of the un-transformed values. 

The starting concentration and dilution factor for the three odours were adjusted 

when necessary after the completion of each cohort to ensure that the range of 

concentrations used for the current cohort encapsulated most of the subjects’ 

threshold values. 

2.4 Difficulties Implementing Standard Adaptive Procedures with 

Olfactory and Taste Threshold Estimation 

In Leek's (2001) review of adaptive procedures they state that “Most of the 

development of these procedures has occurred in the context of vision or auditory 

research”. While they go on to mention that Linschoten, Harvey, Eller, & Jafek, (2001) 

have used maximum likelihood adaptive procedures for both taste and smell studies, it 

still remains relatively uncommon. A major problem implementing these schemes 

relates to the logistics of rapidly altering the concentration levels after each response. 

In the experiment outlined above the samples were prepared an hour before being 

sampled to allow formation of the headspace. If the signal intensity needs to be 

changed rapidly, as with many of the methods previously mentioned, this would 

require a large number of samples to be prepared beforehand and/or large wait times 

between samples as the headspace reformed for repeated intensities.  

One possible solution would be to use ‘sniffin sticks’ (Hummel et al., 1997), where the 

odour is administered by felt tip pens filled with the odorant rather than the 

compound diluted in water and placed in a wine glass. This would allow for the rapid 

altering of the odour intensities. However it requires one staff member to be present 

during the entire testing process to record the response and select the next odour 

level. When a large number of subjects are required this may become cost and time 

prohibitive.  
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For an adaptive method to be appropriate for experiments such as those used by PFR 

it may have to address a number of restrictions. These are: 

 Any altering of the signal intensities cannot occur between samples within the 

same series. Due to logistical problems they must instead be altered after the 

end of the series or between cohorts. 

 The number of tests within a series run and in total may be limited to low levels 

due to issues of fatigue and cost.  

 It may be necessary for all subjects within a cohort to receive the same signal 

intensities  

2.5 Proposed Adaptive Threshold Estimation for Olfactory and Taste 

Experiments. 

Given the numerous models and points of interest on the psychometric curve it would 

be greatly advantageous to develop a flexible method which can easily alternate 

between the various psychometric and loss functions available to produce near 

optimal concentrations for the next series of tests. The increasingly popular Bayesian 

framework would be well suited to this problem. The proposed method is as follows: 

1. Select a psychometric function such as Logistic, Weibull, Gaussian, etc. to 

model and a loss function to minimise 

2. Generate a large number of psychometric functions from the prior distributions 

or even the posterior distributions based on previous trials. 

3. Select signal intensities  for a series of tests. 

4. Generate responses based on  and the chosen psychometric function. 

5. Estimate the psychometric curve using MCMC methods and/or the properties 

of its posterior distribution. 

6. Calculate the approximate loss given the estimated psychometric curve and a 

given loss function, e.g. MSE 

7. Estimate the expected loss by averaging the losses over all simulated samples. 

8. Alter the signal intensities and repeat steps 4 through 7 until the expected loss 

is approximately minimised. 
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This process does present a number of difficulties. One major issue is the expense in 

terms of time taken to approximate the loss function. Fitting a large number of 

psychometric curves based on simulated data could be very time consuming especially 

with MCMC methods which themselves require large numbers of iterations to 

approximate the posterior distributions. One possible solution would be to 

approximate the MCMC solution by means of a neural network. This could itself be 

time consuming as a large number of samples would be needed to train, validate and 

test the neural network. However once the network is trained it allows for rapid 

function approximation to be calculated.  

Another option is to define priors with discrete distributions as this would allow for the 

posterior distributions to be calculated exactly. As long as the number of levels and/or 

the number of points in the design  are not too large then the expected loss should 

be estimable in a reasonable time frame. 

Adjusting the concentrations to minimise the loss function is also not trivial. Even by 

simplifying the problem to finite sets of possible concentrations the complexity quickly 

increases with the number of design points needed. Methods such as MINENT only 

look one concentration ahead. It is reasonably straightforward to evaluate a single 

intensity at a time from a set and select the ‘best’ choice. However when setting the 

concentrations for session of k samples from n possible concentration levels we have a 

k-combinations with repetition. The order of the sequence is ignored, which is 

reasonable since the sequence is increasing in the PFR setup. More explicitly the 

number of possible concentration levels for the next run is  

 

For example if n=20 and k=8, there would be 2,220,075 possible concentrations to 

evaluate, whereas with MINENT there would be 20. Depending on the size of n and k it 

may be unfeasible to evaluate every possible combination and therefore some sort of 

solver may be employed. Modified versions of global solvers such as the particle 

swarm or genetic algorithm could provide an approximate solution. It could also be 

possible to not restrict the concentrations to a finite set and instead treat them as 
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continuous. This would allow for a much wider range of solvers to be used, although 

the non-smooth nature of the loss functions may restrict these to derivative free 

methods. The issues encountered by this proposed method are discussed in more 

detail in the methods section.  

It has been previously demonstrated that adaptive Bayesian methods have been 

effective in providing designs which improve the quality of sensory threshold estimates 

given a limited number of trials possible. The above method aims to expand these 

methods to situations where the design can only be altered between sessions 

containing a set of trials. This means that methods must be able to look-ahead multiple 

steps to calculate the expected loss. If this is possible the benefits of using the adaptive 

Bayesian designs could be applied to experiments such as those carried out at PFR, 

where the previous adaptive approaches were not feasible. 
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3 Methods 

3.1 Software 

The Bayesian analysis, computer simulations, neural networks and optimization 

algorithms were implemented in the Python programming language version 2.7.3  

(www.python.org). A number of required python libraries were compiled from source 

under Linux OS kubuntu 10.04. Many libraries have existing precompiled windows 

binaries in order to install them under MS windows. Python versions 3x are based on a 

major re-write of some of the base code and therefore some libraries which have not 

been updated will not function on these versions. To complicate matter further some 

components required to install certain packages such as Numpy are not available for 

64bit versions of python. For these versions it is recommended to download 

precompiled versions from Christophe Gohlke’s website 

(http://www.lfd.uci.edu/~gohlke/pythonlibs/).   

One other recommended method for installing various libraries is to install and use 

PIP. A windows binary of PIP can be found at the above website however it also 

requires Distribute to also be installed. The simplest way to achieve this is to download 

the setup file for distribute from here: 

http://python-distribute.org/distribute_setup.py 

First python has to be added to the environment variables path. Python 3.3 will do this 

automatically however any previous version will need to be added manually. Once this 

is done open the command shell in windows and navigate to the folder containing the 

setup file. Then use the following command to install Distribute: 

python.exe C:\Path\to\distribute_setup.py 

With Pip and Distribute installed libraries can be added to python simply by, while in 

the windows command shell typing: 

pip install libraryX 

Where libraryX is the package to be installed. 
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Alternatively they can be compiled from their source code using the Mingw compiler 

with the Mysys command shell (www.mingw.org). The libraries used in the research 

project are listed below. 

3.1.1 Numpy and Scipy 
Numpy and Scipy (Jones, Oliphant, Peterson, & others, 2001; Oliphant, 2007) extend 

python to enable scientific programming. Numpy allows for the specification and 

manipulation of arrays and matrices while Scipy contains many mathematical and 

scientific functions including local optimization routines. Many other libraries including 

those listed here require Numpy and Scipy in order to function themselves. If using 

windows and a 64bit version of Python it is necessary to get a windows binary installer 

for Numpy built using Intel’s MKL library as there are missing components needed to 

build using BLAS. These binaries can be found at Gohlke’s website. 

3.1.2 Matplotlib 
Matplotlib (Hunter, 2007) is a 2-d plotting library and is necessary to provide 

diagnostic plots of the PyMC output. Many other libraries also recommend this 

package, most notably Numpy and Scipy, to provide publication quality figures. 

3.1.3 PyMC 
PyMC (Patil, Huard, & Fonnesbeck, 2010) is a Bayesian statistics library. It includes 

Monte Carlo Markov Chain methods to fit Bayesian models and allows for user 

customization to increase speed and convergence.  

3.1.4 Playdoh 
Playdoh provides the Particle Swarm (Vaz & Vicente, 2007) global optimizing algorithm 

to solve minimization problems. It also provides multicore support to speed up the 

optimization process. Playdoh is currently not compatible with Python versions 3x. 

3.1.5 Numdifftools 
Numdifftools “Solves automatic numerical differentiation problems in one or more 

variables”. This was needed to estimate the hessian matrix of the negative log-

likelihood for the attempt to find D-optimal designs. 

3.1.6 Numexpr 
Numexpr provides a speed increase in evaluating many of Numpy’s basic array 

functions.  
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3.1.7 ffnet 
Ffnet (Wojciechowski, 2011) is a feed forward neural network library. It enables the 

fitting and evaluation of neural networks and the ability to load and save them. Much 

of the underlying processes are run in FORTRAN providing a great increase in speed. It 

also includes a version of the genetic algorithm which can be adapted to solve discrete 

optimization problems. 

3.1.8 OpenOpt 
OpenOpt (Kroshko, 2007) provides a large number of solvers relating to a variety of 

optimization problems. Of particular interest here, is the Global Problem (GLP) solvers 

which can be used to find the approximate global minimum or maximum of the 

function of interest. 

3.2 ASTM method 

Given an underlying psychometric curve which generates responses to certain levels of 

stimuli, the threshold estimates based on the ATSM method can be thought to follow a 

discrete distribution whose mean and variance is easily estimable. For each run of 

increasing n stimuli there are only n+1 possible threshold estimates. Each possible 

threshold is based on an unsuccessful detection at the concentration immediately 

prior to the threshold and successful detection for all concentrations greater than the 

threshold. The probabilities of each threshold estimate given the underlying function 

can be easily obtained, which in turn allows for the straightforward calculation of 

expected values and variance of the estimator at the set concentrations. An example is 

given below using at logistic curve with a true threshold of 5 (Figure 5 & Table 2). 



24 
 

 

Figure 5 Example of estimated detection probabilites for a psychometric curve at given signal intensities. 

Table 2 Variance, Bias, and MSE estimation for teh ASTM method. 

Signal 
Intensity 

 

Probability of 
detection 

 

Probability of 
detection for 
all  

Threshold 
  

probability 
of threshold 

 )  
1 0.345 0.013025 0.5 0.013025 0.006513 0.003256 
2 0.365 0.037754 1.5 0.024729 0.037093 0.05564 
3 0.413 0.103436 2.5 0.065682 0.164205 0.410511 
4 0.513 0.25045 3.5 0.147014 0.51455 1.800925 
5 0.667 0.488207 4.5 0.237757 1.069906 4.814575 
6 0.821 0.731944 5.5 0.243738 1.340556 7.37306 
7 0.921 0.891528 6.5 0.159584 1.037293 6.742403 
8 0.968 0.968 7.5 0.076472 0.57354 4.30155 

   8.5 0.032 0.272 2.312 
   Sum  5.015655 27.81392 
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Given the underlying psychometric function and concentrations used the expected 

value of the estimated threshold, as calculated above, is 5.0157. The expected Bias is 

therefore 5.0157 – 5 =0.0157. Since , and 

,the expected variance and mean square error of the estimator in 

this example are 27.8139 – 5.01572 = 2.6571 and 2.6571 + 0.01572 =2.654 respectively. 

This example is over simplified as the underlying curve will be unknown in practical 

applications. However it demonstrates the trivial calculation of the measures of the 

estimator’s performance. Instead of a single curve, a sample of curves could be taken 

from a prior distribution representing the researcher’s uncertainty and the 

concentrations can be set based on the measures calculated above. This is a 

reasonably straightforward and quick process which serves as a baseline for 

comparison with the more time consuming Bayesian approach described later in this 

section. 

3.3 Threshold Estimation using the Psychometric Function  

3.3.1 Maximum Likelihood 
Given a set of responses and the form of the psychometric curve one can estimate the 

threshold which maximises the likelihood. More formally for a set of concentrations c1, 

c2,...,cN, the number of trials at each concentration n1, n2,...,nN and the respective 

number of correct responses x1, x2,...,xN the likelihood is 

 

Where  is the probability of detection at  and is defined by the underlying 

psychometric function. 

As Kuss et al. point out; this is the “standard binomial mixture model for parametric 

functions as assumed in virtually every study on psychometric functions”. 

 If for example, the psychometric function takes a logistic form then with a threshold 

m, scale parameter w, guessing probability γ, ignoring the lapse probability and setting 

 for simplicity, gives: 
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And  

 

 

To find the threshold m and w which maximise this likelihood i.e. the MLE’s of m and 

w, one method is to take the derivatives with respect to m and s of the log-likelihood, 

set it equal to zero and then solve for m and s respectively. Once this has been 

completed one should also confirm that it is indeed the local maximum. 

 

 

 

 

 

Setting these resulting derivatives to zero and solving is not trivial using algebraic 

means and would be even further complicated with the addition of a lapse parameter. 
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For this reason the MLE’s are often estimated by numerical methods such as the 

Newton-Raphson. This can be reasonably straightforward to perform, but it means 

that obtaining the expected values, variance, and MSE measures as was done for the 

ASTM method, requires generating every possible response pattern, calculating the 

probability of observing said pattern assuming the underlying model, and then 

estimating the MLE’s for each. While this can be done in a reasonable time frame, the 

optimisation algorithms needed to minimise the loss functions require many such 

calculations leading to a computationally expensive process. One possible solution is 

that rather than evaluating all possible responses, instead a large sample of responses 

is generated using the underlying model and current concentration levels. If for 

example we had four repetitions of 3-AFC tests at each of eight concentration levels 

then there are 58=390,625 possible response patterns. If instead, only say 10,000 

response patterns were randomly sampled using the underlying psychometric curve, 

then approximate estimates of the mean, variance, etc. could be computed at a 

fraction of the computational cost. 

3.3.1.1 D-Optimal Designs 
One common frequentist approach to optimal design when classical designs are not 

appropriate is the D-optimal design. There are D-optimal designs available for 

generalised linear models such as the bivariate logistic regression(Heise & Myers, 

1996). This is a computer generated design which maximises the determinant of the 

information matrix of the model parameters, or equivalently minimises the 

determinant of the inverse hessian matrix. The general approach for a logistic 

regression is to assume an underlying model which in this setting is a psychometric 

curve. Then adjust the design  until the determinant of the inverse hessian matrix of 

the negative log likelihood evaluated at the maximum likelihood estimate, is 

minimised. Custom python code was written to provide the D-optimal designs which 

was first checked against known results for the standard logistic regression. The 

problem with the D-optimal design outlined here is that it is optimal assuming only a 

single curve. Therefore for any individuals with psychometric curves different from the 

assumed model, the design may not be close to optimal. 
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3.3.2 Bayesian Fitting  
One alternative to MLE estimation of model parameters θ is Bayesian inference. This 

has the advantage of incorporating prior knowledge in addition to the data to make 

inferences about θ. This relationship is defined by Bayes’ rule: 

 

The relationship results in a probability distribution of θ given the observed data 

 referred to as the posterior distribution. This is constructed using the 

likelihood function  and the prior along with the denominator  

which is a constant. As the number of observed data points increases the posterior 

becomes less influenced by the prior distributions.  

Returning to the previous logistic psychometric function example, given data 

consisting of ni, xi, and ci. The posterior is defined as 

 

The denominator  is a constant which ensures that 

the posterior integrates to 1 as a probability distribution should. The solution to this 

denominator integral is often very difficult to obtain unless “conjugate” prior 

distributions are used as they result in a posterior with a standard p.d.f. Often however 

the problem is side stepped by ignoring this denominator completely and instead 

approximating the posterior distribution using Monte Carlo Markov Chain (MCMC) 

methods to sample from the posterior based on the weaker relationship: 

  

There are various algorithms, or step methods available to sample from the posterior 

with popular methods being Metropolis-Hastings or Gibb’s sampling. For the purposes 

of this investigation the PyMC python library uses the Metropolis method, which is a 

special case of the Metropolis-Hastings algorithm for the MCMC sampling. 
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3.3.2.1 Metropolis Algorithm  
The Metropolis algorithm used allows for the sampling of a distribution where it is 

possible to calculate a value proportional to the p.d.f. Continuing the logistic 

psychometric example, let:   

 

Then the Metropolis algorithm in PyMC is as follows: 

1) Set initial values  and .  

2) At the current values  and , draw candidate values ʹ  and 
ʹ  

3) If 
ʹ ʹ

 then  and  

4) Else 
ʹ ʹ

ʹ ʹ

ʹ ʹ

 

5) Repeat steps 2 through 4 a large number of times, tuning  and  where 

needed to allow for reasonable acceptance levels while at the same time trying 

to decrease the correlation amongst consecutive samples. 

 Employing the Metropolis algorithm as outlined above results in a large sample from 

the posterior distribution. The observations near the beginning of the chain are often 

discarded as they can be highly influenced by the initial starting points  and . As it 

can take a substantial number of the subsequent samples before the model converges 

this “burn in” period can be large. Additionally the Metropolis method can produce 

samples whose sequence has high auto correlation. Using larger values of  and  

can reduce this, however this will often reduce the speed of the model mixing as it can 

lead to a lower acceptance rate of the candidate values. A commonly employed 

solution is to instead “thin” the remaining samples by taking every nth value of the 

chain, where n is adjusted until the auto correlation has been sufficiently reduced.  

PyMC does allow for other step functions, including custom code. However the 

Metropolis algorithm provided sufficient results with a burn in of 1000, and a thinning 

factor of 10 to produce 900 samples for each run of model fitting. While the 900 

thinned samples will have some variation due to MCMC sampling error this was 
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deemed sufficient due to the trade off between accuracy and the time needed to run a 

large number of MCMC simulations. 

3.3.2.2 Bayesian Point Estimates 
Once the posterior has been approximated an appropriate point estimate is reported. 

The choice of estimate often depends on the loss function, however the most common 

estimates are the median (Median), mean (Mean), or the mode, also known as the 

maximum a posteriori (MAP), of the posterior distribution.  

The MAP can be estimated in a similar manner to the MLE and does not actually 

require any MCMC sampling. In this investigation the Powell’s minimization method 

(Powell, 1964) was used in PyMC to obtain the MAP estimates of  which maximise 

. It should also be noted if  is a flat prior then the MAP will be 

close to if not identical to the MLE.  

The Mean estimate can be calculated as the mean of the MCMC sample. Similarly the 

Median estimate is the sample median. The choice of which statistics to report as the 

parameter estimates depends on the loss function. Kelereva et al. note that the MAP 

minimises the expected CATERR loss function, while Mean and Median minimise SQERR 

and ABSERR respectively.  

In the simulations used in this investigation the MAP, Median, and Mean’s were all 

calculated and stored along with the standard deviations of the posterior distributions. 

3.3.2.3 MCMC Fitting  
The Bayesian model fitting was conducted using PyMC 2.2 library in Python 2.7. The 

model parameterization used was consistent with Kuss et al. (2005). For ease of model 

specification both the threshold and width parameters are assumed to lie within the 

(0,1) interval (Treutwein & Strasburger, 1999). Any real world application would 

involve normalising the stimulus values (x1,...,xn) by the linear transformation 

 to map X onto the (0,1) space, and back-transform the result using 

. A and B are calculated as 
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 and  where and are the limits of the 

sensory space in the original units. Treutwein & Strasburger (1999) describe the same 

transformations as above but have an error in the formula for the calculation of B. 

Standard uniform prior distributions were assigned to threshold and width 

parameters. While Kuss et al. (2005) recommend using a gamma or log normal prior 

for the width parameter the alternative approach of Trutwein and Strasburger was 

used. Here the width parameter, w, has a standard uniform prior also, however it is 

then transformed from the (0,1) interval onto (0.005,0.5) by 

 

And back-transformed with 

 

The upper bound of 0.5 for  allows for a flat psychometric curve over the stimulus 

space (0,1), while the lower bound allows for a very steep curve.  

For the current investigation the guess parameter was fixed at 1/3 as is consistent with 

the 3-AFC design, while the lapse parameter was set to 0.0001. The reason for having a 

non-zero lapse parameter was to avoid errors in PyMC caused by the observed data 

having a virtual probability of zero under a MCMC parameter sample. Instead the 

offset make this probability very small and so allows for rare occurrences of incorrect 

discrimination for sensitive individuals when the signal is very strong. The logistic 

psychometric curve used in the simulations is therefore: 

 

The model fitting involved firstly calculating the MAP and then generating 10,000 

MCMC samples, of which 1000 were discarded as a burn-in and a thinning factor of 10 

applied to the remaining observations (Figure 6). This was deemed sufficient, based on 

some simulated responses, to achieve a converged model while adjusting for 
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autocorrelation amongst the samples. The relatively low number of samples (900) 

remaining to base the posterior estimates was in the interest of speed.  

 

Figure 6  Autocorrelation plots for Threshold parameter estimates. Original (left) and thinned by factor of 10 

(right)  

3.3.2.4 Assessing MCMC Convergence and Sensitivity to Initial Values  
While the choice of the number of MCMC samples, burn-in, and thinning parameters 

were based on reducing the auto-correlation in the parameter’s trace this does not 

guarantee that the model has converged. The suitability of the MCMC setup was 

investigated through two procedures. The first of which was the Raftery–Lewis 

approach (Raftery & Lewis, 1995). This method as implemented in PyMC gives a 

recommended number of posterior samples, burn-in, and thinning to estimate a 

chosen percentile to within a given accuracy at a set confidence level. These estimates 

are based on a posterior trace from a pilot MCMC run. For each of the 256 possible 

response patterns to 3-AFC tests at 8 equally spaced concentrations ranging from 0 to 

1, MCMC runs of length 10,000 with no burn-in or thinning were run to produce 

posterior samples for the threshold and scale parameters. For each of these the 

Raftery-Lewis diagnostic produced recommended MCMC fitting parameters for 

estimating the 0.025 and 0.975 quantiles of the respective posterior distributions to 

within 0.01 of the true quantile with 95% confidence. Over all response patterns and 

estimated quantiles the recommended burn-in was always less than 150 samples 

which indicate that the 1000 burn-in used may have been excessive. For estimating the 

0.025 quantile of the threshold and scale posterior distributions the recommended run 

length and thinning parameters only 1 out of 256 only slightly exceeded those that 



33 
 

were used. Estimating the 0.975 quantile was a little more problematic with 109 out 

256 exceeding the run length and thinning used in the final estimates, sometimes by 

up to 3 times. However the main reason for requiring the extra samples appears to be 

due to produce an independence chain. If the model has converged and the run length 

is reasonable, posterior estimates can still be calculated from dependent samples. 

However looking at the 0.975 quantile to within 0.02 of the true quantile the 

recommended run lengths are always lower than what was eventually used, although 

the recommended thinning factor was greater than 10 in some cases. Based on the 

Raftery-Lewis diagnostic it appears that the burn-in of 1000, thinning factor of 10, and 

total run length of 10,000 was adequate to get reasonable estimates of the posterior 

threshold and scale distributions in terms of the 0.25 and 0.975 quantiles at least.  

The second diagnostic used was the Gelman-Rubin method (Gelman & Rubin, 1992) 

which assesses the model's sensitivity to the initial values especially when multi-

modality is present in the posterior. For each of the same 256 response patterns used 

above, ten chains with random initial values were run for each model runs of length 

10,000, burn-in of 1,000 and thinning factor of 10. The Gelman-Rubin diagnostic looks 

at the between and within chain variances in much the same way the standard ANOVA 

does. In PyMC the function returns a statistic R which is based on the ratio of these 

two variances. Values close to 1 indicate that the chains have all converged to the 

same distribution. For the pilot runs the observed ratios were all within the range 

0.999 to 1.061 indicating that the chains all converged despite the differing initial 

values. 

Overall the MCMC fitting parameters appear to have been adequate to get reasonable 

estimates of the posterior distributions, although longer run lengths may have been 

beneficial. There is also the chance that for some of the response and concentration 

combinations these parameters would not be appropriate, however based on the pilot 

samples used this would seem to be unlikely. 
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3.3.2.5 Approximating Posterior Estimates using a Neural Network. 
Simulating responses based on the prior distributions of , then calculating 

the threshold estimate and its respective loss provides a means to obtain a reasonable 

approximation to the expected loss function. However, approximating the posterior 

distribution through MCMC and then evaluating a given loss function for each 

simulated sample can be very time consuming, let alone when this needs to be 

repeated multiple times in order to minimise said loss function. The calculation of the 

posterior Mode can be calculated reasonably quickly using optimization techniques but 

the Mean, Median and Entropy require the full posterior distribution. One attempt to 

overcome this was to simulate a large number of observations as before and calculate 

the posterior mean, mode, median, and discretised entropy for each sample. A Neural 

Network (NN), sometimes referred to as Artificial Neural Network (ANN), was then 

trained based on a large subset of these simulated values to predict the evaluated 

measures.   

Neural networks have successfully been used to approximate functions (Li, 2008). A 

NN is a network of neurons arranged in layers. The neurons in the first layer are the 

predictor variables commonly referred to as ‘inputs’, while in the last layer they are 

the dependent variables or ‘targets’. In practice there is usually only need for one 

intermediate or ‘hidden’ layer and very seldom are more than two layers required. 

There are a number of different forms of NN however for the purposes of this 

investigation Feed Forward NN’s with one hidden layer are considered. A Feed 

Forward NN means that information flows from the input layer through to the hidden 

layer and finally to output (target) layer (Figure 7). It does not for example flow from 

the target layer back to the hidden layer. Often the input and target variables will be 

scaled to lie in the interval between 0.15 and 0.85 to aid in the optimization process. 
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Figure 7  Example of a Neural Network with 3 input, 6 hidden and one target neuron. 

The idea of NN is not new, in fact it dates back to work by Warren McCulloch and 

Walter Pitts in 1943 (McCulloch & Pitts, 1990).The basic process for each neuron in the 

hidden and target layers is to receive a number of inputs from the previous layer. 

Sometimes an additional “bias” input with value 1 is also included. Weights are then 

assigned to each of these inputs, and the sum of the weighted inputs is calculated. 

Finally this sum is passed through an activation function, with the resulting output 

passed on to the next layer or if in the target neuron, taken as the final estimate(s). In 

other words for a given neuron with inputs x0 to xn, weights w0 to wn, activation 

function g, the output y is defined as  see Figure 8 
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Figure 8 Example of how the inputs (x) are linked to the outputs (y) via the weights (w) and activation function 
(g). 

The activation function g can take a number of forms, such as a step or a log-sigmoid 

function. For the purposes of this investigation the log-sigmoid activation function is 

used. That is  where  and  is the slope parameter. 

 

Figure 9 Example of a log-sigmoid activation function with  

Once the network has been trained it is then tested on the remaining data to evaluate 

its ability to approximate the posterior estimates.  
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While generating the samples to fit the Neural Network it became apparent that by 

simply taking random design points it was not exploring the whole design space. For 

example taking a random sample of 8 from the standard uniform distribution is 

unlikely to result in all values less than 0.1 and so this design space is unexplored. In 

order to solve this problem a number of space filling designs were trialled. In particular 

Quasi-Monte Carlo sampling and Stratified Monte Carlo sampling(Giunta, Wojtkiewicz, 

& Eldred, 2003). The Quasi-Monte Carlo method appeared to be too difficult to 

implement although some progress was made by being able to generate the Sobol 

sequence needed for the process. In the end Stratified Monte Carlo sampling was 

preferred due to its simplicity in implementation. Stratified Monte Carlo meant 

dividing the n-dimensional design space into an n-dimensional grid and sampling from 

each cube. The result was a simulated dataset which explored the design space far 

better than the more standard Pseudo-Monte Carlo Sampling. 

The advantage of the neural network approximation is that it greatly improves speed. 

The ffnet package used to train the neural network uses Fortran code for many of the 

calculations resulting in a speed up of over 100,000 over evaluating the same 

estimates using PyMC. The trade off is obviously accuracy. If the network does not 

approximate the MCMC estimates well it will result in poor optimal design estimates 

albeit produced quickly. Therefore the summary statistics of the neural network 

estimates versus the ‘true’ MCMC values as well as their plots were inspected to assess 

the suitability of the neural network approximation. 

3.3.2.6 Bayesian Experimental Design with Discrete Priors 
Once the Bayesian framework has been set up, one obvious approach is to select the 

signal intensities for the current experiment which minimise the expected loss function 

given the posterior predictive distribution. If we have an observed set of 

responses , then the posterior predictive distribution is the distribution 

that a new sequence of responses  at concentrations  would 

follow given Y . More formally 
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Where  is the likelihood and  the posterior distribution based on the 

observed data. 

If no data has been collected the prior distribution  is used in place of the 

posterior. Next we define  as the estimate of  given observed data   and 

unobserved data   with design   . Note that the unobserved   can be one of a finite 

number of possible sequences. By summing over all possible   this leads to  

 

For a given loss function of  and the posterior estimate  the expected value given  

and  is 

 

If  is assumed to be one of a set of j finite values, that is  has a discrete prior(s), 

then: 

 

 

 

In addition if observed data Y is available: 
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This gives the means by which one is able to calculate the expected loss based on the 

discrete prior of , the likelihood function, and a set of design points . The general 

procedure can be explained in the following steps: 

1. Generate all possible response patterns given . In general there will be 2n 

such possibilities, however if there are repeated signal intensities this number 

can be reduced. For example if there are r repeated tests at each of m levels 

then the number of possible responses can be reduced from 2mr to mCr+1. 

2. For each value of  possible under its discrete prior(s) calculate the loss 

function for each of the posteriors based on the pseudo responses. 

3. Calculate the probability of detection  at each of the lth level (xi) of  for 

every possible  using the psychometric function. For the logistic 

psychometric curve  

 

4. Calculate the likelihood of observing each sequence  given  as the product 

of the binomial probabilities for each lth level of  

  

5. Multiply the each loss by its likelihood and then multiply again by the 

respective prior, or the posterior if observed data is available, probability of 

. 

6. Take the sum of the weighted losses as the expected loss for design . 

While the process is reasonably straightforward it does require a large number of 

calculations especially if  has a reasonably large number of unique levels, or if the 

discrete prior distribution(s) have a large number of levels. For example if it is desired 

to set the next 20 design levels there are 220=1,048,537 possible responses multiplied 

by the number of levels of the prior(s) loss function evaluations which can become 

prohibitively large. Hence this investigation only looks at designs where the number of 

levels is 8 or less. The most complicated design used in the simulations involved four 

repeats of 8 levels giving 8C5 = 390,625 possible responses. 
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One could instead use a continuous prior and try and estimate the expected loss 

function analytically, however the integrals involved are intractable. Another option 

would be to use the MCMC techniques previously mentioned to get an approximate 

solution. However as Vanlier, Tiemann, Hilbers, & van Riel (2012) point out such a 

nested process may not be tractable due to the often computationally expensive 

MCMC methods. While they avoid the problem by estimating an approximate solution 

via importance sampling a different approach is taken here. The first attempt to 

overcome this problem was to use a neural network to provide a fast approximation to 

the MCMC estimates.  

The next attempt described here was that instead of using continuous distributions; 

the prior beliefs are specified by discrete approximations to reduce the computational 

burden. In general these priors for both the threshold and width parameters are 

discrete uniform of n equally spaced levels over the [0,1] interval. Even if the discrete 

priors can be considered approximations to the continuous priors they have the 

advantage over the MCMC based methods of giving exact loss estimates. In particular 

the sample posterior entropy appeared to be rather unstable under MCMC simulations 

and therefore optimizing based on this value can be improved by using the exact 

results. 

 

3.3.2.7 Approximate Entropy of the Posterior Distribution 
As mentioned previously there are a number of adaptive design schemes which rely on 

the selecting stimulus levels to minimise the entropy of the posterior. When using the 

discrete priors the entropy can be calculated exactly but for the MCMC based posterior 

estimate this is more difficult. To get an approximate entropy estimate, threshold 

posterior distributions were divided in 10 bins of equal width. The proportion of the 

MCMC samples in each of the i bins, , was then calculated. Finally the entropy, H, of 

both the discretised distributions and the posteriors based on discrete priors were 

calculated as 

 



41 
 

This is a slightly different parameterisation from the more standard: 

 

The reason for this if  then in python, , while 

, which is the standard definition.  

Additionally for the discrete prior method the numexpr library was used to speed up 

many of the matrix calculations. Numexpr does not include a  function and 

therefore the natural log was used instead. The impact of this change is minimal as H 

changes only by a constant depending on which base the logarithm uses and therefore 

the minimum entropy still occurs at the same design points as if  had been used. 

The entropy values were stored together with the other MCMC summary statistics. 

The Shannon entropy is an important measure in that minimising the expected entropy 

of the posterior through choosing design  can be thought of as maximising the 

expected gain in posterior information.  

3.3.3 Approximating the Loss Function by Simulation 
To estimate a particular loss function for a given set of concentrations one strategy 

would be to evaluate the threshold estimates for all possible responses and calculate 

the expected loss by weighting the estimates by the probability of occurrence 

assuming the underlying model.  

However if the number of concentrations is large the number of threshold evaluations 

needed can be prohibitively large. In this case an alternative strategy can be employed. 

Here a number of responses are generated at the current stimulus levels assuming the 

underlying model. Threshold estimates are calculated for each of the response 

patterns and then the loss function calculated. This will give a reasonable 

approximation to the loss function with some noise due to the random sampling. 

3.4 Loss Function Minimisation 

Once a practical method for estimating a given loss function has been found the 

problem now shifts to that of finding an optimum configuration of stimulus levels so as 
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to minimise the loss. If the concentration levels are first restricted to take only values 

over the range of interest, [0,1] on the rescaled, then the candidate concentrations for 

the next sample may take any real values within this interval. Alternatively, and 

perhaps more practically, the candidate concentrations may be also restricted to 

belonging to a finite set of stimulus levels. For example only concentrations of 0.1, 0.2, 

0.3,...,0.9 are available to the researcher.  

3.4.1 Minimisation with Continuous Stimulus Levels 
There is a wealth of algorithms available in Python and its various packages to solve 

optimization problems. The OpenOpt library in particular provides a great number of 

optimisers for various problem types. However the interface to hook in with the 

objective function was problematic and therefore OpenOpt was not used in the final 

analysis. Instead a number of other solvers were used. Firstly Powell’s minimisation 

algorithm (Powell, 1964) implemented in the Scipy.optimize library was used for the 

minimisation of the majority of the adaptive methods presented here. Many of the 

other optimisers available performed similarly but as noted in a discussion on the 

PyMC Google Groups site, Powell’s method can be superior at finding the MAP of the 

posterior distribution.  

Initially when there was an error in the code to calculate the expected loss the solver 

would derive a solution which contained design points far outside the [0,1] interval. To 

force the solution to lie within the interval the solver was changed to the box 

constrained Broyden-Fletcher-Goldfarb-Shanno L-BFGS-B method (Zhu, Byrd, Lu, & 

Nocedal, 1997). However once the bug was found and fixed the box constraints were 

no longer necessary and Powell’s method was again implemented as it has the 

advantage of being derivative free which could be an advantage if the loss function is 

not smooth. Powell may still provide a solutions outside [0,1] however small 

discretions are allowable due to the possibility of the ‘true’ threshold being outside 

this for the logistic psychometric curve. The Weibull curve on the other hand does not 

allow concentrations less than zero so if this psychometric curve was assumed then 

the L-BFGS-B solver may be preferable. 

For the training of the neural network the TNC optimiser was used as it allowed for a 

speed-up by allowing the function evaluations to be spread across multiple cores. The 
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TNC optimiser, which is also available in Scipy is a version of the Newton Conjugate-

Gradient modified to allow for box constraints. 

At any rate the choice of minimisation routine is rather arbitrary and therefore the 

python code is written to allow for the choice of non-linear solver to be changed. 

Another class of solvers, called global solvers, were also implemented. One potential 

drawback for the non-linear solvers above is that it is possible to for the algorithm to 

find a solution at a local rather than the global minimum. Global solvers overcome this 

at the price of speed. The Particle Swarm (PSwarm) and Genetic Algorithm are two 

examples of global solvers used in this investigation. 

PSwarm involves setting a number of individual “particles” randomly within the design 

space and evaluating the loss function. Then each particle moves at a set “speed” with 

the direction based on the position of the “best” particle and the best known position 

that the individual particle has visited. Once the particles have finished moving the 

function is again evaluated and the process is repeated for a set number of iterations. 

The final solution is position with the minimum (or maximum) function value which 

was explored by any of the particles during the process.  

The Genetic Algorithm mimics biological evolution by starting with a number of 

individuals within the design space. Each individual has a number of “genes” which are 

the design points from which the objective function is calculated. A number of these 

individuals are selected based on their respective “fitness” (loss) functions and are 

grouped into pairs. Each pair produces “children” which form a new generation of 

individuals. The children are generated by selecting one of each pair of genes from its 

parents. This process is repeated for a number of generations with a solution being the 

“fittest” individual produced over a set number of generations. The experimenter can 

also tune this process by adjusting the cross-over and mutation parameters. 

3.4.2 Minimisation with Discrete Stimulus Levels 
While the majority of this investigation deals with trying to find the optimal design 

points,  , due to restriction the investigator may only be able to select  from a 

finite set. In this situation the most straightforward option is to round the optimal 
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concentrations to the nearest possible signal intensity. However this rounded solution 

is not guaranteed to be approximately optimal.  

A better approach would be to round the inputs to the nearest possible concentration 

before they are input into the loss function. This has the effect of making the objective 

function non-smooth. Inputs which are real numbers and close in magnitude will be 

rounded to the same value and hence produce the same loss. This non-smoothness 

can affect the performance of the non-linear solvers leading to the false appearance of 

convergence. The global solvers, however do not have this limitation, and are suitable 

for the task. As the problem of selecting a design from a finite set of possibilities is not 

the focus here, the code is only provided to demonstrate that it is possible to derive an 

approximate optimal set of design points from a finite set. In addition a brief number 

of simulation results are also provided. 

3.4.3 The Adaptive Procedure 
Based on the discrete prior approach the python code also contains routines for 

finding an optimal design based on the prior distributions as outlined above. Once data 

has been collected based on this design the posterior distribution is calculated and 

then is used as the new prior for the next set of design points. As the posteriors are 

calculated exactly this is allowable since 

. Which is equivalent to calculating the posterior distribution for  

based on data  with prior . This process is repeated until a set number of 

samples have been collected and the summary statistics based on the final posterior 

distribution are returned. Most of the simulations presented here involve designs of 

size 8 being adaptively fit for an individual curve 4 times. It is as Kelareva et al., (2010) 

would refer to as a look ahead 8 design, as it looks ahead 8 steps to derive the optimal 

design. Hence the 8-step look-ahead adaptive designs compared here will be referred 

to as MINENT8, MEAN8, MEDIAN8, and MODE8. The total number of tests at the end 

of the 4 blocks of 8 samples is 32. The reason 8 was chosen is due to the number of 

tests used on the original PFR study as more than 8 could possibly lead to olfactory 

fatigue. Some other versions of these with the same number of total tests (32), were 

also simulated for comparison. These were a design with 4 repeats of the same 8 

design points, and another which involved looking ahead only 1 point, which are 
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similar to the procedures MINENT, MEAN, MEDIAN, and CATERR (Kelareva et al., 

2010). The MEAN, MODE, and MEDIAN procedures may differ slightly as they explicitly 

set the next design point to the mean, median, and mode of the current posterior 

respectively. The method used here however, minimises the square, absolute, and 

categorical error by summing over the posterior distribution. In theory this should lead 

to a similar outcome to the MEAN, MEDIAN, and MODE. A look ahead 32 design was 

not possible with this method as it required far too many possible samples (232) to 

evaluate over. 

These routines allow for four different loss functions: Square, Absolute, and 

Categorical error as well the Entropy. The square error is calculated as the squared 

difference between the true threshold and the posterior mean, the absolute error as 

the absolute difference between true threshold and the posterior median, and the 

categorical error as 0 if the posterior mode equals the true threshold, 0 otherwise. The 

reason these point estimates were used for the respective loss function is that they 

have been shown to minimise said losses (Kelareva et al., 2010). 

The discrete priors were uniform in probability with a set number of levels. The 

number of these levels was varied to trade off between accuracy and speed. The 

simulations presented in the results were based on uniform independent priors 

between the interval [0,1] for both the threshold and width parameters. The number 

of levels for the majority of simulations was 11, which gave sequences from 0 to 1 with 

a step size of 0.1.This resulted in a prior distributions where there were 121 possible 

logistic curves all with equal probability. Using a low number of levels meant that the 

function evaluations were very quick and hence why it was used to run the large 

number of simulations. It is however possible to increase the number of levels and one 

simulation comparing the minimum entropy procedures with look ahead 1 and 8 uses 

priors with 100 equally spaced points between 0 and 1, resulting in 10,000 possible 

curves under the prior distribution.  

When comparing the performance of the different adaptive techniques responses 

from simulated individuals were randomly sampled. In order to reduce the sampling 

variation amongst the different techniques responses were made to be consistent for 
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each individual across different designs. This was done for each individual by taking a 

random uniform(0,1) sample of length equal to the number of samples needed. This 

simulated response was then generated by taking the inverse of the cumulative 

binomial distribution given n and probability equal to the underlying psychometric 

function evaluated at design . The random sample is used for all simulations relating 

to that individual but is re-generated for each subject. This means, for example, that if 

a simulated individual gives a correct response at concentration .5 for the first design 

point, then any concentration greater than 0.5 for the first design point, generated 

under the other schemes must also be correct. This does not hold for values less than 

0.5, or across design points e.g. the second design point at a concentration of .5 may 

be incorrect.  

3.4.4 Python code 
The majority of python code used in the final analyses is available in the appendix, 

much of which is custom written with the exception of a function used to generate De 

Bruijn sequences. This function was freely available on the De Bruijn sequence entry in 

Wikipedia (en.wikipedia.org/wiki/De_Bruijn_sequence). The verbatim code in question 

is listed on the next page: 
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def de_bruijn(k, n): 
    """ 
    De Bruijn sequence for alphabet size k  
    and subsequences of length n. 
    """ 
    a = [0] * k * n 
    sequence = [] 
    def db(t, p): 
        if t > n: 
            if n % p == 0: 
                for j in range(1, p + 1): 
                    sequence.append(a[j]) 
        else: 
            a[t] = a[t - p] 
            db(t + 1, p) 
            for j in range(a[t - p] + 1, k): 
                a[t] = j 
                db(t + 1, t) 
    db(1, 1) 
    return sequence 
  
print(de_bruijn(2, 3)) 
 

The De Bruijn sequence was used to generate all possible responses by repeating the 

sequence with some reordering and reshaping it into a two dimensional array. 

Much of the code is nested within functions which not only are more efficient (as it 

allows the same routine to be used multiple times succinctly) but it also improves the 

memory management. When first running the MCMC routines multiple times the 

memory usage continued to increase until it was full causing python to crash. This was 

due to the way in which python handles memory. Simply deleting an object does not 

remove it from memory, instead the reference count must reach zero before the 

system will release the memory back to the system. By creating objects such as large 

arrays within a function and only returning summaries of these arrays, the memory 

used to store them should be released once the function has terminated.  

A lot of the routines used in the discrete prior method to search for the optimal design 

involved array manipulation as it is computationally more efficient than using loops. 

With some of the larger problems these arrays became too large to store in memory 
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and therefore were split into smaller arrays which were fed into the loss function 

separately and then the solutions recombined.   
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4 Results 

4.1 Fitting Bayesian Models through MCMC 

Logistic psychometric curves were fitted using PyMC with a burn in of 1000, thinning of 

factor of 10 and 10,000 as the total number of iterations. Prior distributions for both 

the threshold and scale parameters were beta(1,1), which is equivalent to the standard 

uniform distribution. For a small sample of the simulations autocorrelation plots were 

inspected and deemed to be satisfactory. Under these settings a model with based 

designs of lengths ranging between 8 and 40 points with respective binary outcomes 

took between 1.89 and 2.15 seconds on an Intel Xeon E5530 8 cores @ 2.4 GHz with 

24 gigabyte of ram running Kubuntu 10.04, to evaluate the posterior and return 

various summary statistics. 

 While this seems a reasonable time frame, in order to carry out any sort of 

optimisation routine this process must be repeated a number of times. For example if 

there are 8 design points to be set then there are 256 possible response patterns 

which need to be evaluated for the expected loss to be calculated at each 

configuration of  . If there is roughly 200 loss function evaluations needed for the 

local solver to converge to a solution then the total time taken would be 

approximately 27 hours. For many practical situations this would be too long to be of 

any use. Therefore optimising based on a neural network approximation of the 

posterior estimates was investigated as a means of improving convergence speed. 

4.1.1 Generating data for Neural Network Training 
The first step in training the neural network is to generate the data. Firstly a 25,008 by 

40 matrix of random standard uniform variables was generated. Each row 

corresponded to a design configuration to be used in the data simulation. As stated in 

the methods this did not explore the design space adequately. For example, designs 

with all placements less than 0.25 were virtually nonexistent as the probability of such 

an occurrence =.2540. Therefore the designs were rescaled to lie within 1 of a possible 

16 sections of [0,1] , taking up proportions of 1/4,1/3 ,1/2 , or the whole of the 

interval. Next 25,008 threshold and scale parameters were generated using the 

standard uniform prior distributions. Initially 25,000 was chosen as the number of 

scale and threshold parameters to generate in the interest of time while still providing 
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enough samples to train and test the NN’s. This was increased slightly to 25,008 to 

allow for equal numbers to be sampled from each of the 16 sub-intervals. For each 

simulated design predicted probabilities of detection based on the logistic 

psychometric curve with the matching simulated model parameters were calculated 

and Bernoulli samples based on these taken. For each of these simulated samples a 

number of sub samples were taken and the posteriors estimated by MCMC methods as 

described above, with the posterior entropy, mean, mode, median, and standard 

deviation for both the threshold and scale parameters being stored. The sub samples 

were the first 8, 16, 24, 32, and all 40 observations in each sequence. The reasoning for 

this is to be able to estimate 8-step look-ahead loss functions given observed samples. 

The total time taken to generate this training data was approximately 3 days.  

4.1.2 Training the Neural network 
The structure of the neural networks involved having 4 times as many hidden nodes as 

there were input nodes, with one output node. Initial attempts treated the sampled 

responses and design points as separate inputs however for the neural network to 

recognise that each response related directly to an individual design point would 

require a complicated specification of the relationships amongst certain input nodes. 

Therefore the two parts of information were combined into a single input sequence by 

changing the sign of the design point to negative if the response is 0, or leaving it 

positive if the response is 1. If there were originally 8 design points with 8 responses 

the new input variable has length 8 rather than 16, and so on. The inputs were also 

sorted on their absolute value so that they range from the smallest concentration 

through to the largest. This helps to avoid inconsistent estimates where the same 

inputs produce different outputs based on their order.  

A random sample of 20,000 of the 25,008 generated dataset was used to train the 

neural networks with the remaining observations used to test the model fit. The fitting 

process involved using python’s own TNC solver with 5000 iterations and utilising all 8 

cores. This was repeated for each outcome measure and for the samples of length 8, 

16, 24, 32, and 40. 
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4.1.3 Neural Network Performance  
The trained neural networks perform reasonably well when predicting the mean and 

median of the posterior distributions especially when the number of inputs is low. The 

mode, standard deviation of the posterior (not shown), and the entropy prove more 

difficult to approximate. Scatter plots of the MCMC estimates based on 8 observations 

vs. the neural network approximations for the 5008 samples in the test dataset are 

shown in Figure 10, with the mean having a tight fit around the y=x line.

 

Figure 10 Scatter plots of the MCMC estimates based on 8 observations vs. the neural network approximations 

The results from fitting a simple linear regression model with the NN approximation 

regressed onto the MCMC fits for the same test dataset are shown in Table 3. Note 

that an intercept of zero and a slope of one would indicate a perfect fit. The regression 

summary statistics (Table 3) agree with Figure 10 in that the mean shows the best 

neural network approximation with intercept and slope parameters close to 0 and 1 

respectively. It also has the lowest standard error of the estimate, which is a measure 

of how much the observed data deviates from the predictions of the regression model. 
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Table 3 Regression Summary Statistics for Neural Network Approximation Based on samples of Length 8 

 
Entropy Mode Mean Median 

Intercept 0.1824 0.0309 0.0047 0.0065 
Slope 0.9300 0.9204 0.9914 0.9870 
r 0.9623 0.9576 0.9953 0.9923 
Slope SE 0.0037 0.0039 0.0014 0.0017 
Estimate SE 0.1166 0.0914 0.0199 0.0273 
N 5008 5008 5008 5008 

 

Based on this it appears that the NN approximates the posterior mean reasonably well, 

at least when the number of observations to base the estimate on is small, which in 

this case is 8. 

The NN was also used to approximate the MCMC estimates based on 16, 24, and 32 

observations. As the number of samples increased the quality of the NN 

approximations deteriorated, however the rate of decline differed amongst the MCMC 

measures. Figure 11 shows the scatter plots for the NN based on samples of length 32 

from the test dataset. It is obvious the NN entropy approximation is unacceptable and 

appears to almost be random. The mode approximation roughly follows a 1 to 1 trend 

however it has a large variance around this. One explanation could be that the NN is 

over-fitting the training dataset but it seems unlikely as the mean and median have 

reasonable approximations. For these there are some points that have obviously not 

been predicted well, but they are few, and the remaining points are grouped around 

the one to one line reasonably closely.  
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Figure 11 Scatter plots of the MCMC estimates based on 32 observations vs. the neural network approximations 

The regression summary statistics in Table 4shows the median having a slightly superior 

fit when compared to the mean, however the difference is negligible.  

Table 4 Summary statistics from regressing the MCMC point estimates on the NN approximations based on 32 
observations per sample. 

 
Entropy Mode Mean Median 

Intercept 0.3257 0.0452 0.0098 0.0062 
Slope -0.0148 0.8892 0.9777 0.9871 
r -0.2407 0.9232 0.9755 0.9824 
Slope SE 0.0008 0.0052 0.0031 0.0027 
Estimate SE 0.0412 0.1148 0.0507 0.0441 
N 5008 5008 5008 5008 

 

Based on these it appears that neural networks can give reasonable approximations to 

the means and medians of threshold posterior distributions fitted by MCMC methods. 

As expected, predicting from the NN provides an increase in speed when compared to 
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an MCMC based approach. It took 0.07 seconds to estimate the posterior mean 

approximations using the neural network for 25,008 samples each containing 8 

samples, whereas evaluating them by MCMC techniques used here took approximately 

13 hours, which is a speedup of over 650,000 times. While there are a number of 

possibilities for improving the time to complete the MCMC simulations it is unlikely to 

get fast enough to be comparable to the neural network in terms of speed. 

As the mean can be reasonably approximated by the fitted NN’s, the approximations 

could potentially be used in an attempt to find an optimal design. Testing this theory 

involved simulating data using parameters drawn from the prior distribution, 

calculating the NN approximated threshold estimates and the respective MSE of these 

compared to parameters from the prior. Alternatively the median could have been 

used in a similar way to minimise the absolute error loss function. Scatter plots 

demonstrating the reasonable quality of the NN approximations of the posterior 

means are shown in Figure 12 for samples of size 8, 16, 24, and 32. 

 

Figure 12 Posterior mean NN approximations versus MCMC means based on 8, 16, 24, and 32 samples. 
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4.1.4 Optimizing based on the Neural Network 
In order to find an approximately optimal design the first problem is to estimate the 

loss function. To do this 11 threshold values equally spaced ranging from 0 to 1 and a 

similar sequence for the scale parameter were generated. For each of the 121 possible 

threshold and scale combinations 100 Bernoulli samples were drawn with probabilities 

calculated using the logistic psychometric function with a given design . In order to 

make the samples consistent across different iterations, first a random sample of 

standard uniform values were drawn, and the Bernoulli samples taken as the quantiles 

of the inverse of the cumulative Bernoulli distribution at the probability relating to the 

respective uniform samples. This corresponds to setting the Bernoulli samples to 1 if 

the standard uniform sample is greater than 0.5, 0 otherwise. Calculating the samples 

this way removes the random sample variation between iterations. If the same design 

is used twice it will give the same loss. For each sample the NN approximation and its 

squared difference with the generating threshold was calculated. The mean of the 

squared differences was used as an estimate of the MSE.   

Starting with the NN for samples of length 8, various optimization schemes were used 

to try and adjust  to minimise the MSE. The first attempt used Powell’s minimization 

algorithm and converged to a solution after 208 function evaluations. Unfortunately 

the solution involved a design where some points were greater than 1 which is outside 

of the range used to train the NN. As any NN estimate based on inputs outside its 

support could be unreliable the solution must be discarded. The next attempt was to 

use a L-BFGS-B boxed bound solver which constrained the solution to lie within the 

range [0,1] . However this method often failed to converge, perhaps due to the 

function being non smooth or the solution lying outside the bounds.  

Finally the particle swarm global solver was used. The loss function was slightly 

modified to return a large constant if any design point was outside [0,1] so as to force 

the particles to explore within this interval. The search space was explored by 10 

particles travelling over ten iterations. Since the PSwarm algorithm is a heuristic 

method it is difficult to assess convergence to a minimum. Increasing either the 

number of particles or the number of iterations could improve the solution however in 

the interest of time ten of each was deemed sufficient.  
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The performance of the adaptive method based on a NN approximation was assessed 

by simulating 100 individuals for each of 9 different logistic psychometric curves (Figure 

13) 

 

Figure 13 Logistic Psychometric curves used to generate responses to assess the performance of the NN based 
adaptive method. 

For each individual an initial optimal design was used for the first 8 signal intensities. 

Simulated responses were then generated using this information together with the 

respective psychometric curve. These simulated responses were then used to find the 

minimal MSE design for the next 8 simulated responses. This was repeated until there 

a total of 32 design points and responses had been generated and a final threshold 

estimated by the NN had been calculated. The MSE was calculated for each of the nine 

psychometric curves as the mean of the square differences between the individuals 

“true” thresholds and the NN estimates. The results are presented in Figure 14 with the 

MSE converted to the Root Mean Square Error (RMSE). The colours span the range of 

values from purple for the minimum through to dark red for the maximum. 
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Figure 14 Estimated RMSE for the NN Adaptive Design based on 100 simulations of 32 samples for Logistic 
Psychometric curves with varying Threshold and Scale parameters 

Over all of these minimization attempts it appears that while the NN can adequately 

predict the posterior mean and median, minimizing a loss based on these is very 

difficult. The global solvers appear to be more appropriate as they can be restricted to 

search in the appropriate space and are less susceptible to the non-smoothness of the 

objective function. The addition of the noise due to approximating the MCMC 

thresholds also appears to have the detrimental effect on the adaptive design with 

reasonably large RMSE’s even for psychometric curves with small scales where 

theoretically it should perform well. It also appears that the adaptive design performs 

poorly when the true threshold is located at the extremes of the [0,1] interval. With 

this in mind and the fact that generating enough samples to train the NN’s is 

computationally expensive, an alternative optimization method was sought. 

4.2  D-Optimal Designs 

Custom python code was written to derive the d-optimal designs for a standard logistic 

regression model assuming a given intercept and slope parameters. The results 
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provided from this approach compared favourably with those found at http://optimal-

design.biostat.ucla.edu/optimal/polynomial/LogisticD.aspx using the online calculator. Both 

methods produced the same 2-level designs, while the python algorithm provided a 

more efficient 3-level design as it did not require the design points to be equally 

spaced.  

The next step was to alter the code to make calculations based on the logistic 

psychometric curve likelihood function. This proved to be problematic as often during 

the minimisation process the inverse of the hessian would not be positive definite 

leading to a non-optimal solution. A check was introduced to see if the inverse hessian 

matrix had any negative eigenvalues as this would indicate a non-positive definite 

matrix, and if so return a large value. However this still did not lead to consistent 

results with errors being common. Therefore this approach was abandoned in favour 

of the discrete prior method. 

4.3 Bayesian Optimal Design using Discrete Priors 

Another approach to increase the speed of deriving an estimate of the posterior 

distribution is to replace the continuous prior distributions with discrete 

approximations. In this investigation the discrete priors were restricted to discrete 

uniform priors equally spaced between 0 and 1. The number of levels for each prior 

was eleven for most comparisons which gives 121 possible psychometric curves under 

the prior (Figure 15). Increasing the number of prior levels was possible, and optimal 

designs based on priors ranging from 0 to 1 with step sizes 0.01, which gives 10,201 

possible logistic curves, were successfully found in a reasonable time frame. However 

since the evaluation of the procedure involved many simulations, in general the 11 

level priors were often used in the interest of time.  
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Figure 15 Logistic Psychometric curves under discrete standard uniform priors with 11 equally spaced levels for 
the threshold and scale parameters. 

4.3.1 Comparison of Adaptive Schemes 
The general method for the adaptive scheme is described in the methods section. Here 

we compare the adaptive methods based on four loss functions; entropy, absolute 

error, squared error, and categorical error. The absolute error was defined as the 

expected difference between the true threshold and the posterior median as that 

quantity has been shown to minimise the absolute error for a given posterior 

distribution (Kelareva et al., 2010). Similarly the squared error was the expected 

squared difference between the true threshold and the posterior mean, and the 

expected categorical error was the probability that the posterior mode did not exactly 

equal the true threshold.  



60 
 

The comparisons are based on the 121 psychometric curves show in Figure 15. Firstly 

optimal designs of length 8 were found for each method based solely on the prior 

information. Then for each design 100 Bernoulli samples were generated for each 

curve under the priors. These represent 100 x 121=12,100 individuals. Next the 

optimal designs for the next 8 samples were found using both the prior and simulated 

observations. This was repeated two more times with each optimal design derived 

assuming all previously simulated observations for that individual. A final set of 

Bernoulli samples are then taken for the final design points and the posterior 

generated to give the mean, median and mode estimates based on a total of 32 

observations. With these posterior estimates of the threshold the final squared, 

absolute, and categorical errors were calculated. The results are tabulated in Figure 16, 

Figure 17, and Figure 18 with the Root Mean Square Error (RMSE) presented in place 

of the MSE. 
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Figure 16 RMSE based on 100 samples generated by Logistic Psychometric curves of varying scales and thresholds. 
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Figure 17 Mean Absolute Errors based on 100 samples generated by Logistic Psychometric curves of varying scales 
and thresholds. 
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Figure 18 Categorical Errors based on 100 samples generated by Logistic Psychometric curves of varying scales 
and thresholds. 

The figures show all four methods had similar performance in terms of the squared, 
absolute and categorical loss functions. Comparing the RMSE’s with those of the NN 
based approach shows that discrete prior techniques provide a clear increase in 
performance with a large reduction especially for small scales or thresholds close to 0 
or 1. There was some evidence that the MODE8 method produced slightly worse RMSE 
and Absolute errors when compared to the MEAN8, MINENT8, and MEDIAN8. This was 
based on paired t-tests over all 12,100 simulated individuals at the 5% level of 
significance. There was no evidence of a difference amongst the methods in terms of 
categorical error.  

4.3.2 Adaptive Schemes Under Misspecified Psychometric Curve 
All the adaptive schemes performed reasonably well when the samples were 
generated using a logistic psychometric curve with parameters encompassed by the 
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prior distribution. The next step was to assess their performance when the ‘true’ 
psychometric curve is misspecified in the model. For this samples were generating by 
Weibull psychometric curves which also included lapses rate of 0.05. In total there 
were 25 sample generating curves with each having one of five thresholds and one of 
five slopes at the threshold. Since the Weibull function is not defined for 
concentrations less than 0, any responses in this range were set to the 1/3 guessing 
probability. Figure 19 shows the full form of these curves.  

 

Figure 19 Weibull Psychometric curves used to generate misspecified samples with varying threshold and slope at 
threshold parameters. 

The results of these fits were a little more mixed (Figure 20, Figure 21, and Figure 22). 
The RMSE was reasonably small when the underlying Weibull Psychometric curves had 
steep slopes but quickly deteriorated as the curves became flatter. In particular the 
flatter curves with low thresholds provided the worst fit for all methods, although 
these could be considered extreme and unlikely to be encountered in practice if the 
priors have been reasonably set.   
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Figure 20 RMSE based on 100 samples generated by Weibull Psychometric curves of varying thresholds and 
slopes at the threshold. 
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Figure 21 Absolute errors based on 100 samples generated by Weibull Psychometric curves of varying thresholds 
and slopes at the threshold. 
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Figure 22 Categorical errors based on 100 samples generated by Weibull Psychometric curves of varying 
thresholds and slopes at the threshold. 

The RMSE also appears to be less affected by the misspecification. Perhaps this is due 

to the posterior median and modes being restricted to one of 11 possible values under 

the discrete prior used here. The Categorical error in particular was extremely high, 

with the worst combination of slope and threshold resulting in a worse error than 

would be expected by randomly choosing a threshold. 

Comparing the four methods over the misspecified models begins to show a clearer 

picture. Again the MODE8 performs worse in terms of RMSE and absolute error than 

the other methods. However the MINENT8 also has significantly lower RMSE and 
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absolute error than MEAN8 and MEDIAN8 schemes when compared using paired t-

tests (p<0.05), and lower categorical error than MODE8. 

Overall the MINENT8 method appeared to perform the best and even gave reasonable 

results when the model was misspecified. Under the correct specification all models 

performed satisfactorily with 32 simulated 3-AFC samples per individual. In addition 

the final threshold estimate based on the posterior mean, which minimises the MSE 

performed, appeared to be less affected by the misspecification. Therefore the 

MINENT8 method, with the posterior mean as final threshold estimate was 

investigated further.  

4.3.3  Comparing Look-Ahead Step Sizes: Minent8 vs. Minent1 
While the main focus of this investigation was on multistep procedures, comparing 

their performance to the single-step method would give an indication of their 

efficiency. As the MINENT8 procedure gave the best results in the previous simulations 

it was compared to the MINENT1 method as described by Kontsevich & Tyler (1999). 

For this comparison logistic psychometric curves made up of combinations of eleven 

thresholds and six scale parameters (Figure 23). 
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Figure 23 Logistic Psychometric curves used to compare the MINENT1 and MINENT8 performance. 

All simulations involved 32 samples to be drawn in total, with the MINENT1 adapting 

the design after every observation resulting in 32 single sample runs, while MINENT8 

after every set of 8 giving 4 runs of 8 samples. Figure 24 demonstrates the convergence 

process for the two methods. The position of the points on the y-axis represents the 

concentrations used for each sample, while the x-axis shows the sample number. 

Correct detections are shown as solid points, with incorrect being hollow. The 

posterior mean estimates of the detection threshold are plotted against the test 

number as solid lines for the MINENT1 and MINENT8 procedures. 



70 
 

 

Figure 24 Comparison of the convergence of the MINENT8 (red) versus MINENT1 (black). Lines represent the 
posterior mean estimate of the threshold while points indicate concentration level for each test with correct 
answers solid point and incorrect hollow 

The simulated RMSE loss measures based on 1,000 samples for each underlying 

psychometric curve are presented in Figures 25. 

 

Figures 25    Comparison of RMSE for the MINENT1 and MINENT8 procedures, based on 1000 simulated 
individuals for various Logistic Psychometric curves 
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 It can be seen that the MINENT8 procedure actually outperforms the MINENT1 for 

most curves, even if the difference is marginal. A t-test provided evidence that the 

MINENT8 had a lower MSE than the MINENT1 (p=0.006). This isn’t entirely unexpected 

as it has been noted previously that looking ahead more than one step can perform 

slightly better , although the small increase in efficiency was not considered to be 

worth the considerable extra time cost due to computational limitations of the 

day(Kelareva et al., 2010; King-Smith et al., 1994).  

4.4 ASTM Optimal Design 

A method for generating a non-adaptive optimal design for use with the ASTM method 

was also investigated to provide a baseline to compare the adaptive methods with. For 

this the design was restricted to four runs of length 8 using the same 8 design points 

for each run. This is in line with the PFR experiments. The function was minimised by 

calculating the MSE as outlined in the methods for each of the 121 logistic 

psychometric functions used to evaluate the four adaptive procedures and taking its 

mean. The RMSE is plotted in Figure 26 and can be compared directly with Figure 16. 
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Figure 26 ASTM Expected RMSE for Logistic Psychometric curves with varying threshold and scale parameters.  

The ASTM fixed design, as expected performed worse than the adaptive methods. The 

RMSE was approximately double that of the MINENT8 procedure and even with 

reasonably narrow scale parameters the ASTM fitted threshold estimates appear to be 

quite variable. 

4.5 Discrete Signal Intensities 

Under certain conditions it may only be possible to select design from a finite set of 

candidate points. In this case optimal designs produced by MINENT, MEAN, etc. may 

not be appropriate as they will highly likely contain points outside the set of 

candidates. A work around is implemented here. First the design points are rescaled 

from [0,1] to the [0,n] interval where m is the number of candidate design points. 
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These rescaled values are then converted to integers and the respective candidates 

values used as the design to be assessed by the minimisation algorithm as before. As 

this function will be non-smooth only the global solvers were considered for the 

optimisation routine. For the 11 point flat scale and threshold prior distributions the 

standard MINENT8 procedure gave an optimal design for the first run of 8 points with 

expected entropy of 1.67. The discrete version gave a similar if marginally worse 

solution. With candidate concentrations restricted to values ranging from 0 to 1 with 

step sizes of 0.1, the optimal design resulted in expected entropy of 1.70.   
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5 Discussion and Suggestions for Future research 
The results presented in this study present and compare various methods for 

constructing designs for 3-AFC experiments with the restriction that any alterations 

cannot be made except between runs of samples. The runs in this case were set to four 

replicates with lengths of 8 samples to give a total of 32 samples per individual.  

Of all the methods the Bayesian adaptive designs based on discrete priors performed 

the best with the lowest MSE. The MINENT8 procedure had a small increase in 

performance over MEAN8 and MEDIAN8, while MODE8 performed the worst of the 

four. The recommended final estimate under these methods is the posterior mean as it 

is influenced less by the discrete prior. The posterior median and mode are restricted 

to values which are defined exactly in the prior distribution. This was especially evident 

when the underlying model was a Weibull psychometric curve with a lapse rate of 

0.05. Here the posterior mean from the MINENT8 procedure produced superior RMSE. 

The other methods trialled all had various issues. Using continuous priors took too long 

to estimate the posterior distribution through MCMC methods as the process needs to 

be repeated many times for the solver to minimise a given loss function. 

Approximating the MCMC estimates with Neural Networks only produces reasonable 

results for the posterior mean and medians. Unfortunately minimising the square loss 

of the Neural Networks did not translate to an approximately optimal design with the 

resulting MSE’s being rather poor for the simulated results.   

Deriving a D-optimal design for the standard logistic regression model was reasonably 

straightforward. However this proved to be too problematic for the logistic 

psychometric curve with the solver running into errors relating to the hessian matrix.  

The ASTM based fixed design was reasonably straightforward to calculate and to 

estimate the MSE exactly, however its performance was worse than the adaptive 

procedures as expected.  
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Overall the MINENT8 method produced the lowest MSE’s and was more robust to 

model misspecification. It even performed better than the MINENT1, although while 

the performance increase is statistically significant the difference is negligible. 

The code provided in the appendices provides a framework for fitting any of the 

adaptive methods MINENT, MODE, MEDIAN, and MEAN for m-step look-ahead designs 

for a number of runs. The investigation here used mainly 8 steps and 4 runs but it is 

trivial to adjust the code to alter these. However choosing too many steps may require 

a long time to optimise. For olfactory based n-AFC designs this shouldn’t be a problem 

as the number of steps will probably be limited to a reasonable number to avoid 

panellist fatigue. Using the same priors 11 level discrete priors as shown in Figure 15, 

took 6.5 seconds to find an optimal design for a 10-step look-ahead design (210=1024 

possible responses), and 40.1 seconds for 12-step design (4096 possible responses), 

which seems reasonable.  

It is also simple to adjust the code to handle AFC experiments with the number of 

choices other than three by editing the likelihood function. Similarly, other 

psychometric curves such as the Reverse Weibull, can be inserted in place of the 

Logistic in the likelihood calculation. In addition by altering the likelihood the 

framework could find an optimum design for testing protocols other than AFC. 

Kelareva et al., 2010, used the MINENT, MEAN, MEDIAN, and MODE adaptive methods 

for simulations relating to the yes-no protocol.  

It is also possible to use a loss function different to those described in the methods. 

One alternative trialled in this investigation was the joint entropy of the threshold and 

scale parameters. It is not reported in the text but the code can be found in the 

appendix. This method would also seek to maximise the information gain on the slope 

as well as the threshold. The joint entropy of two variables X and Y is defined as: 
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The prior distributions for the parameters can also be adjusted with one current 

limitation that the number of levels for the threshold and scale (or slope) parameters 

must be equal. This is due to how the marginal likelihoods are calculated by reshaping 

a vector into a square array and taking the column or row sums. However it would be 

possible to modify this code to allow for different dimensions. Increasing the number 

of levels also increases the time needed to find an optimal design. For example the 11 

level priors resulting in 121 possible psychometric curves used in much of the 

simulations results in finding an MINENT8 solution for 8 design points in 1.36 seconds. 

Increasing the number of levels in each of the priors to 101 gives a sequence from 0 to 

1 in step sizes of 0.01 and results in 10,201 possible curves and takes 62 seconds to 

reach a solution. While this is a considerable increase in time to find an optimal design 

it is still well within the realms of an acceptable time frame.  

The priors also need not be discrete uniform as was used here either or even rescaled 

to the [0,1] interval. Any discrete distribution could be used although some care may 

be needed to calculate the joint probability of the threshold and scale/slope 

parameters. In the examples used here they were assumed to be uniform and 

independent and therefore the joint probability for each threshold and scale 

combination is equal to one over the number of such combinations, i.e. 1/121. 

Different solvers could also be easily implemented or even combination algorithms. 

For example using PSwarm to get an approximate solution and then refining the search 

with Powell’s method. The list of solvers considered here is only a small subset of 

those available and therefore some experimentation is encouraged. While most of the 

code is python 3 compatible some of the global solvers are not and therefore 

substitutes should be found and implemented. 

Perhaps the most glaring limitation of this research is the fact that it is only based on 

simulations from a known model. The main goal of any future research would be to 

trial it on real panellists, where the noise from a real world situation would really test 

the method. At any rate the simulations provide a theoretical basis for future research 

into the area of multi-step look-ahead adaptive designs. 
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Other future work would involve tweaking the code to allow for easier substitution of 

priors, solvers, and psychometric curves. It would also be beneficial to allow for the 

inclusion of prior distributions for the guessing and lapse parameters, even at the risk 

of making the routine more complicated and therefore slower. 

Improving the speed of the algorithms would also be a goal as it would allow for the 

algorithms to be used on designs with more points or larger number of prior levels. 

One possible solution is to incorporate python package such as theano or PyCUDA 

which allow calculations to be handled by the GPU rather than the CPU. This should 

provide a significant speedup for the array manipulations used presently. In particular 

the calculation of the posterior median as implemented here uses a rather inefficient 

search which cannot be sped up using numexpr.  

Currently PyMC uses a mixture of native python code as well as custom fortran code 

which can in some cases result in speeds similar to native C code. One situation where 

this is true is when models are specified using array notation. This was the original 

intention with multiple models fit at the same time, however while it did provide a 

speed increase the convergence of the model was unsatisfactory and the slower scaler 

variable representation was used with models run individually. One implication of this 

is that coding in pure C may potentially give faster runs, however it would have the 

disadvantage of not having the additional diagnostic functions, and various python 

libraries available. Additionally the speedup gains would unlikely to be significant 

enough to solve the problem of sampling from multiple posterior distributions in a 

small enough time frame to be useable. Two of Python’s strengths are its code 

readability and extensibility and both were major factors in its choice for this 

investigation. Future research could look at writing the underlying MCMC sampling in 

C++ with a python interface for usability.  

Some secondary goals would be to translate the methods into the R statistical 

computing language(R. CoreTeam, 2013) and making a gui. This would have some 

advantages in terms of the initial setup. The package management system is simpler 

and would avoid the problems involved in installing extra libraries encountered in 

python. R also has excellent support for Windows, Linux, and MAC operating systems 
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including 64bit versions. One possible downside may be that performance in terms of 

speed may be reduced but by how much is unknown. A naive guess would be that R 

would be on par with Numpy without the speed enhancements provided by the 

numexpr library. 

Another option to improve usability would be to add a Graphical user Interface (gui) to 

the python code and release it as a pre-compiled binary file. There are a number of 

python packages to make this process easier although it would still take some time to 

implement. 

Nevertheless the code presented in the Appendices are in a useable form which can 

easily be altered to suit most needs for generating multi-step look-ahead adaptive 

designs for the estimation of sensory thresholds. 
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6 Conclusion 
The results of this investigation demonstrate that it is possible to construct multi-step 

look-ahead adaptive designs for sensory threshold estimation in a computationally 

efficient manner. A wide variety of adaptive design methods have been proposed and 

successfully implemented for the estimation of psychometric curves. Previously, most 

of these adaptive methods had focused on setting the next test level at some estimate 

of threshold based on the data collected up until that point, or minimising the 

expected loss function by looking-ahead a number of steps. The look-ahead 

approaches generally only used one or two-step approaches due to either limitation in 

computer power at the time (King-Smith et al., 1994; Kontsevich & Tyler, 1999) or the 

price of more complex optimisation problem was not worth the effort for a relatively 

small improvement gained by having larger steps (Kelareva et al., 2010). However 

there are situations whereby the design cannot be altered at every step. The 

estimation of odour detection thresholds using the 3-AFC method requires significant 

setup time and therefore signal intensities must be known well in advance. A one or 

two-step design would require large waiting times for the subject while the next 

sample was being prepared and therefore a design which looked further would be 

advantageous. The design could be fixed for a given session with adjustments to the 

signal intensities made in time before the next. 

All of the adaptive methods based on the discrete priors work reasonably well for 

estimating sensory thresholds when correctly assuming the logistic psychometric 

curve. Based on simulated a large number of individuals, each with data consisting of 

four sessions of eight samples the MSE appeared to be lower than comparable 

schemes investigated. When the generating psychometric function did not match the 

assumed logistic form the MINENT procedure appeared to be the most robust method. 

The MINENT procedure, which minimises the expected entropy to adapt the design 

after each session, is therefore the recommended design protocol for n-AFC 

experiments. 
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The bibliography provides python code to construct the designs described here. The 

framework is very flexible and can be readily altered to assume a number of 

psychometric curves in the underlying model as well as different prior distributions. 

This flexibility should enable the method to be used for most practical situations 

involving the estimation of olfactory thresholds using n-AFC experiments. Future 

research should involve verification of the method with real-world situations. 
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Appendix A R Computer Code 
 

Approximate d’ R code 

dprime_proportion<-function(n,nsim=100000,dprime=1){ 

y<-rnorm(nsim,dprime,1) 

res=rep(0,nsim) 

for(i in 1:(n-1)){ 

temp=y-rnorm(nsim) 

res[temp<0]=1 

} 

return(1-mean(res)) 

} 
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Appendix B Python Computer Code 
Multi-step look-ahead adaptive designs using Discrete Priors 

#import libraries 
import numpy as np 
import numexpr as ne 
import time 
from scipy.optimize import minimize 
from scipy.stats import binom 
#if have installed playdoh 
import playdoh as pd 
 
##if using python 3.x  
xrange=range 
 
###create De Bruijn sequence (code from wikipedia.org) 
def de_bruijn(k, n): 
    """De Bruijn Sequence for alphabet size k  
    and subsequences of length n.""" 
    a = [0] * k * n 
    sequence = [] 
    def db(t, p): 
        if t > n: 
            if n % p == 0: 
                for j in range(1, p + 1): sequence.append(a[j]) 
        else: 
            a[t] = a[t - p] 
            db(t + 1, p) 
            for j in range(a[t - p] + 1, k): 
                a[t] = j 
                db(t + 1, t) 
    db(1,1) 
    return sequence 
 
##repeat and reshape De Bruijn sequence into an array 
##with all possible sequences of alphabet x and length n 
def DB_array(x,n): 
 temp=np.tile(np.array(de_bruijn(x,n)),2) 
 c=x**n 
 temp1=np.reshape(np.repeat(0,n*x**n),(x**n,n)) 
 for i in xrange(c): 
  temp1[i,:]=temp[i:i+n] 
 return temp1  
 
##underlying function to calculate the expected loss 
## loss is expected Entropy of threshold here 
def work_fun(lprobs,lprobs2,yy,n,wgts,ncombs): 
 ##check if only looking 1 point ahead and use numpy 
 ##if true as numexpr returns wrong shaped array 
 ##causing errors later 
 if np.shape(yy)[1]==1: 
  ##find log-like 
  g=np.sum((lprobs*(yy)+(lprobs2)*(n-yy)+ncombs),axis=2) 
 else: 
  ##if looking more than 1 point ahead numexpr returns 
correct 
  ## shape array so use numexpr to calc log-like(much 
faster) 
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  g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)") 
 ##calc posterior probs =(prior*likelihood) 
 z=ne.evaluate("wgts*exp(g)") 
 ##reshape to square array 
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0])) 
 ##calc posterior probs for each m0(threhsold) value 
 pm0=ne.evaluate("sum(z_temp,axis=1)") 
 ##calc probs of rows of yy 
 x_weights=ne.evaluate('sum(z,axis=0)') 
 #normalise rows 
 rsum=x_weights[np.newaxis,:] 
 ##return entropy of posterior dist for m0 (threshold) 
 return ne.evaluate('sum(-pm0*log(pm0/rsum))') 
 
##underlying function to calculate the expected loss 
## loss is expected MSE of threshold here 
def work_fun_mean(lprobs,lprobs2,yy,n,wgts,ncombs): 
 if np.shape(yy)[1]==1: 
  g=np.sum((lprobs*(yy)+(lprobs2)*(n-yy)+ncombs),axis=2) 
 else: 
  g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)") 
 z=ne.evaluate("wgts*exp(g)") 
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0])) 
 m0_temp=m0[:,np.newaxis] 
 ##calculate posterior means for each row of yy 
 mean_m0=ne.evaluate('sum(z*m0_temp,axis=0)') 
 ##calculate the probability of a sample 
 x_weights=ne.evaluate('sum(z,axis=0)') 
 ##calculate probs of each m0 and samp combination 
 m0_by_x_weights=ne.evaluate("sum(z_temp,axis=1)") 
 ##calculate and return MSE 
 return ne.evaluate('sum(m0_by_x_weights*(mean_m0/x_weights-
m0_unique)**2)') 
 
##underlying function to calculate the expected loss 
## loss is expected absolute error of threshold here 
def work_fun_median(lprobs,lprobs2,yy,n,wgts,ncombs): 
 if np.shape(yy)[1]==1: 
  g=np.sum((lprobs*(yy)+(lprobs2)*(n-yy)+ncombs),axis=2) 
 else: 
  g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)") 
 z=ne.evaluate("wgts*exp(g)") 
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0])) 
 x_weights=ne.evaluate('sum(z,axis=0)') 
 m0_by_x_weights=ne.evaluate("sum(z_temp,axis=1)") 
 #calculate median for each row of global yy 
 #seems inefficient 
 cumlative_sum=np.cumsum(m0_by_x_weights,axis=0) 
 cumulative_sum=cumlative_sum/cumlative_sum[-1,:] 
 np.place(cumulative_sum,cumulative_sum<.5,100) 
 m0_median=m0_unique[np.argmin(cumulative_sum,axis=0),0] 
 ##return mean absolute error 
 return ne.evaluate('sum(m0_by_x_weights*abs(m0_median-
m0_unique))') 
 



89 
 

##underlying function to calculate the expected loss 
## loss is expected categorical error of threshold here 
def work_fun_mode(lprobs,lprobs2,yy,n,wgts,ncombs): 
 if np.shape(yy)[1]==1: 
  g=np.sum((lprobs*(yy)+(lprobs2)*(n-yy)+ncombs),axis=2) 
 else: 
  g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)") 
 z=ne.evaluate("wgts*exp(g)") 
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0])) 
 #m0_temp=m0[:,np.newaxis] 
 #mean_m0=ne.evaluate('sum(z*m0_temp,axis=0)') 
 x_weights=ne.evaluate('sum(z,axis=0)') 
 m0_by_x_weights=ne.evaluate("sum(z_temp,axis=1)") 
 #posterior mode for each row of yy 
 m0_mode=m0_unique[np.argmax(m0_by_x_weights,axis=0),0] 
 #return mean categorical error 
 return ne.evaluate('sum((m0_mode!=m0_unique)*m0_by_x_weights)') 
 
##underlying function to calculate the expected loss 
## loss is expected joint entropy of threshold & scale here 
def work_fun_joint_ent(lprobs,lprobs2,yy,n,wgts,ncombs): 
 g=ne.evaluate("sum((lprobs*(yy)+(lprobs2)*(n-
yy)+ncombs),axis=2)") 
 z=ne.evaluate("wgts*exp(g)") 
 z_temp=np.reshape(z,(np.size(m0)**.5,np.size(m1)**.5,np.shape(yy
)[0])) 
 x_weights=ne.evaluate('sum(z,axis=0)') 
 #normalise rows 
 #rsum=ne.evaluate((’sum(pm0,axis=0)') dont need to as 
x_weights=rsum 
 rsum=x_weights[np.newaxis,:] 
 #return mean joint entropy of m0 an m1 
 return ne.evaluate("sum(-z*log(z/rsum))") 
 
###calculate the number of combinations of choosing r from n  
def nCr(n): 
 temp=np.repeat(0,n) 
 for i in xrange(n): 
  temp[i]=np.product(np.arange(n-
i,n))/np.product(np.arange(1,i+1)) 
 return temp 
 
##calculates expected entropy for all possible responses (yy) for a 
given 
## design (c), prior levels m0 & m1 with joint prior probs weights 
## (default is equal probs). 
## n= number of samples per element of c (default max of yy) 
## nsplit specificies how many sections to split up yy if it  
## is too large to pass to work_fun with results combined  
## at end (default is no splitting) 
def subarrayne(c,yy,m0,m1,weights=None,n=None,nsplit=None): 
 if weights is None: 
  weights=np.repeat(1.,np.size(m0)) 
 if n is None: 
  n=np.max(yy) 
 if nsplit is None: 
  nsplit=1 
 ncombs=np.log(nCr(n+1)[yy]) 
 ##create new arrays with right dims for array maniputaions 
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 m00=m0[:,np.newaxis] 
 m11=m1[:,np.newaxis] 
 ##calculate probs of detection for each level of c and m0 & m1 
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))") 
 ##check prior probs sum to 1 
 wgts=weights[:,np.newaxis]/np.sum(weights) 
 ##take logs for easier calculations (log like) in work fun 
 lprobs=np.log(probs[:,np.newaxis]) 
 lprobs2=np.log(1.-probs[:,np.newaxis]) 
 ##split yy if too large 
 y_split=np.array_split(yy,nsplit) 
 ncombs_split=np.array_split(ncombs,nsplit) 
 res=0. 
 ##caculate expected entropy -looping of yy is too large 
 for i in xrange(nsplit): 
 
 res=res+work_fun(lprobs,lprobs2,y_split[i],n,wgts,ncombs_split[i
]) 
 #return expected entropy 
 return res 
 
##calculates expected MSE for all possible responses for a given 
design 
def subarrayne_mean(c,yy,m0,m1,weights=None,n=None,nsplit=None): 
 if weights is None: 
  weights=np.repeat(1.,np.size(m0)) 
 if n is None: 
  n=np.max(yy) 
 if nsplit is None: 
  nsplit=1 
 ncombs=np.log(nCr(n+1)[yy]) 
 m00=m0[:,np.newaxis] 
 m11=m1[:,np.newaxis] 
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))") 
 wgts=weights[:,np.newaxis]/np.sum(weights) 
 lprobs=np.log(probs[:,np.newaxis]) 
 lprobs2=np.log(1.-probs[:,np.newaxis]) 
 y_split=np.array_split(yy,nsplit) 
 ncombs_split=np.array_split(ncombs,nsplit) 
 res=0. 
 for i in xrange(nsplit): 
 
 res=res+work_fun_mean(lprobs,lprobs2,y_split[i],n,wgts,ncombs_sp
lit[i]) 
 #return expected MSE 
 return res 
 
##calculates expected absolute error for all possible responses for a 
given design 
def subarrayne_median(c,yy,m0,m1,weights=None,n=None,nsplit=None): 
 if weights is None: 
  weights=np.repeat(1.,np.size(m0)) 
 if n is None: 
  n=np.max(yy) 
 if nsplit is None: 
  nsplit=1 
 ncombs=np.log(nCr(n+1)[yy]) 
 m00=m0[:,np.newaxis] 
 m11=m1[:,np.newaxis] 
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 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))") 
 wgts=weights[:,np.newaxis]/np.sum(weights) 
 lprobs=np.log(probs[:,np.newaxis]) 
 lprobs2=np.log(1.-probs[:,np.newaxis]) 
 y_split=np.array_split(yy,nsplit) 
 ncombs_split=np.array_split(ncombs,nsplit) 
 res=0. 
 for i in xrange(nsplit): 
 
 res=res+work_fun_median(lprobs,lprobs2,y_split[i],n,wgts,ncombs_
split[i]) 
 #return expected absolute error 
 return res 
 
##calculates expected categorical error for all possible responses for 
a given design 
def subarrayne_mode(c,yy,m0,m1,weights=None,n=None,nsplit=None): 
 if weights is None: 
  weights=np.repeat(1.,np.size(m0)) 
 if n is None: 
  n=np.max(yy) 
 if nsplit is None: 
  nsplit=int(np.shape(yy)[0]/400)+1 
 ncombs=np.log(nCr(n+1)[yy]) 
 m00=m0[:,np.newaxis] 
 m11=m1[:,np.newaxis] 
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))") 
 wgts=weights[:,np.newaxis]/np.sum(weights) 
 lprobs=np.log(probs[:,np.newaxis]) 
 lprobs2=np.log(1.-probs[:,np.newaxis]) 
 y_split=np.array_split(yy,nsplit) 
 ncombs_split=np.array_split(ncombs,nsplit) 
 res=0. 
 for i in xrange(nsplit): 
 
 res=res+work_fun_mode(lprobs,lprobs2,y_split[i],n,wgts,ncombs_sp
lit[i]) 
 #return expected categorical error 
 return res 
 
##calculates expected joint entropy for all possible responses for a 
given design 
def subarrayne_joint_ent(c,yy,m0,m1,weights=None,n=None,nsplit=None): 
 if weights is None: 
  weights=np.repeat(1.,np.size(m0)) 
 if n is None: 
  n=np.max(yy) 
 if nsplit is None: 
  nsplit=1 
 ncombs=np.log(nCr(n+1)[yy]) 
 m00=m0[:,np.newaxis] 
 m11=m1[:,np.newaxis] 
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))") 
 wgts=weights[:,np.newaxis]/np.sum(weights) 
 lprobs=np.log(probs[:,np.newaxis]) 
 lprobs2=np.log(1.-probs[:,np.newaxis]) 
 y_split=np.array_split(yy,nsplit) 
 ncombs_split=np.array_split(ncombs,nsplit) 
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 res=0. 
 for i in xrange(nsplit): 
 
 res=res+work_fun_joint_ent(lprobs,lprobs2,y_split[i],n,wgts,ncom
bs_split[i]) 
 #return expected joint entropy 
 return res 
 
##make loss functions take an array as an argument 
##needed for playdoh  
def ent_loss(c,nweights=None,n=None): 
 return np.apply_along_axis(subarrayne, 0, 
c,yy,m0,m1,nweights,n,None)*1. 
 
def square_loss(c,nweights=None,n=None): 
 return np.apply_along_axis(subarrayne_mean, 0, 
c,yy,m0,m1,nweights,n,None)*1. 
 
def abs_loss(c,nweights=None,n=None): 
 return np.apply_along_axis(subarrayne_median, 0, 
c,yy,m0,m1,nweights,n,None)*1. 
 
def binary_loss(c,nweights=None,n=None): 
 return np.apply_along_axis(subarrayne_mode, 0, 
c,yy,m0,m1,nweights,n,None)*1. 
 
def binary_loss_scaled(c,nweights=None,n=None): 
 return np.apply_along_axis(subarrayne_mode_scaled, 0, 
c,yy,m0,m1,nweights,n,None)*1. 
 
## given responses y & design c calculate posterior probabilities 
## for threhold (m0) and width (m1) parameters 
## weights=prior probs - default to uniform 
## n is the number of samples per design point -default 1 
  
def calc_nweights(c,y,m0,m1,weights=None,n=None): 
 if weights is None: 
  weights=np.repeat(1.,np.size(m0)) 
 if n is None: 
  n=np.max(y) 
 probs=np.reshape(np.repeat(0.,(np.size(m0)*np.size(c))),(np.size
(m0),np.size(c))) 
 y2=np.tile(y,(np.size(m0),1)) 
 cc=np.tile(c,(np.size(m0),1)) 
 mm0=np.transpose(np.tile(m0,(np.size(y),1))) 
 mm1=np.transpose(np.tile(m1,(np.size(y),1))) 
 probs=ne.evaluate(".9999/3.0+2.0/3.0*1.0/(1.0+exp((-(cc-
mm0)/(0.005*10**(mm1*2)))))") 
 #if only look-ahead 1 use numpy -numexpr causes error as it does 
not reduce the  
 #dimension of the array's correctly otherwise numexpr for look-
ahead>1 
 if np.size(c)==1: 
  llike=np.sum((np.log(probs)*(y2)+np.log(1-probs)*(n-
y2)),axis=1) 
  like=weights*np.exp(llike) 
 else: 
  llike=ne.evaluate("sum((log(probs)*(y2)+log(1-probs)*(n-
y2)),axis=1)") 
  like=ne.evaluate("weights*exp(llike)") 
 #check posterior probs sum to 1  
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 like=like/np.sum(like) 
 #return posterior probs 
 return like 
 
##simulates responses from a logistic psychometric curve with  
## threshold ma and width mb and calculates the optimal design 
## to minimise the loss function (loss_fun) given the simulated data. 
## The number of samples is based on the global variable yy (see 
below) 
## This is repeated a number of times (nreps) with the prior 
distribtion 
## (nweights) updated after each rep. Optional arguments c_best is the  
## optimal design based on the original prior distribution only so it  
## does not need to be repeatedly found.  
## After nreps completed it returns posterior Mean, Mode, and Median 
def 
adaptive_fun(nreps,loss_fun,ma,mb,nweights=None,n=None,c_best=None): 
 if nweights is None: 
  nweights=np.repeat(1./np.size(m0),np.size(m0)) 
 for i in xrange(nreps): 
  #if c_best is not specified or isn't 1st iter then find 
opt design 
  if c_best==None or i>0: 
  
 s=minimize(loss_fun,np.linspace(0.,1.,np.shape(yy)[1]),method='P
owell',tol=0.01,args=(nweights,n)) 
   c_best=s.x 
  #calculate probs of detection at opt design, assuming 
thresh=ma and scale=mb 
  pp=(.9999/3.0+2.0/3.0*1.0/(1.0+np.exp((-(c_best-
ma)/(0.005*10**(mb*2)))))) 
  #take binomial random sample assumin pp 
  samp=binom.rvs(1,pp) 
  #calculate posterior probs with observed samp 
  #these probs are used as prior in next iteration 
 
 nweights=calc_nweights(c_best,samp,m0,m1,weights=nweights,n=n) 
 ##calculate posterior mean, ,mode, and median & return 
 nw_temp=np.sum(np.reshape(nweights,(np.size(m0)**.5,np.size(m1)*
*.5)),axis=1) 
 mf_mode=m0_unique[np.argmax(nw_temp),0] 
 cumlative_sum_mf=np.cumsum(nw_temp) 
 cumulative_sum_mf=cumlative_sum_mf/cumlative_sum_mf[-1] 
 np.place(cumulative_sum_mf,cumulative_sum_mf<.5,100) 
 mf_median=m0_unique[np.argmin(cumulative_sum_mf),0] 
 mf_mean=np.sum(nw_temp*m0_unique[:,0]) 
 return np.array(([mf_mean,mf_mode,mf_median])) 
 
## similar to above except fixes intital value problem when yy is a 
nx1 array 
def 
adaptive_fun_minent1(nreps,loss_fun,ma,mb,nweights=None,n=None,c_best=
None): 
 if nweights is None: 
  nweights=np.repeat(1./np.size(m0),np.size(m0)) 
 for i in xrange(nreps): 
  if c_best==None or i>0: 
  
 s=minimize(loss_fun,.5+np.linspace(0.,1.,np.shape(yy)[1]),method
='Powell',tol=0.01,args=(nweights,n)) 
   c_best=s.x 
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  pp=(.9999/3.0+2.0/3.0*1.0/(1.0+np.exp((-(c_best-
ma)/(0.005*10**(mb*2)))))) 
  samp=binom.rvs(1,pp) 
  #samp=binom.isf(rand_num,1,1-pp) 
 
 nweights=calc_nweights(c_best,samp,m0,m1,weights=nweights,n=n) 
 nw_temp=np.sum(np.reshape(nweights,(np.size(m0)**.5,np.size(m1)*
*.5)),axis=1) 
 mf_mode=m0_unique[np.argmax(nw_temp),0] 
 cumlative_sum_mf=np.cumsum(nw_temp) 
 cumulative_sum_mf=cumlative_sum_mf/cumlative_sum_mf[-1] 
 np.place(cumulative_sum_mf,cumulative_sum_mf<.5,100) 
 mf_median=m0_unique[np.argmin(cumulative_sum_mf),0] 
 mf_mean=np.sum(nw_temp*m0_unique[:,0]) 
 return np.array(([mf_mean,mf_mode,mf_median])) 
 
## Similar to adaptive_fun except uses a random sample of standard 
uniform vars  
## (rand_num) to calculate the simulated responses - this allows for 
direct comparison 
## amongst various loss functions. Instead of random binomal vars 
sampled the binomial 
## inverse of the rand_num array is taken. 
def adaptive_fun2(nreps,loss_fun,ma,mb,rand_num,c_best=None): 
 nweights=np.repeat(1./np.size(m0),np.size(m0)) 
 for i in xrange(nreps): 
  #checks if initial design is present and it is the first 
iteration 
  if c_best==None or i>0: 
  
 s=minimize(loss_fun,np.linspace(0.,1.,np.shape(yy)[1]),method='P
owell',tol=0.01,args=(nweights,n)) 
   c_best=s.x 
  pp=(.9999/3.0+2.0/3.0*1.0/(1.0+np.exp((-(c_best-
ma)/(0.005*10**(mb*2)))))) 
  #Take inverse of binomial dist for rand_num percentile 
  samp=binom.isf(rand_num[i],1,pp) 
  #find posterior dist given samp - this is used as prior 
for next iter 
 
 nweights=calc_nweights(c_best,samp,m0,m1,weights=nweights,n=None
) 
 #calculate the posterior probs for unique thresholds (m0) 
 #only works if the number of levels in m0=m1 
 nw_temp=np.sum(np.reshape(nweights,(np.size(m0)**.5,np.size(m1)*
*.5)),axis=1) 
 #calculate posterior mode 
 mf_mode=m0_unique[np.argmax(nw_temp),0] 
 #calculate posterior median - seems inefficient 
 cumlative_sum_mf=np.cumsum(nw_temp) 
 cumulative_sum_mf=cumlative_sum_mf/cumlative_sum_mf[-1] 
 np.place(cumulative_sum_mf,cumulative_sum_mf<.5,100) 
 mf_median=m0_unique[np.argmin(cumulative_sum_mf),0] 
 #calc postior mean 
 mf_mean=np.sum(nw_temp*m0_unique[:,0]) 
 #return posterior mean, mode, median all in an array 
 return np.array(([mf_mean,mf_mode,mf_median])) 
 
## create prior threshold (m0) and width (m1) paramter values 
## prior probabilities are assumed equal but can be specified  
## if needed. Curently need to have an equal number of levels 
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## here it is 11.  
m0=np.repeat(np.arange(11),11)/10. 
m1=np.tile(np.arange(11),11)/10. 
## create global variable yy which is an array of all possible  
## sequences of length 8 and alphabet 2 (i.e. binary) 
yy=DB_array(2,8) 
## unique values of m0 and m1 - values from 0 to 1 with step of 0.1 
m0_unique=np.unique(m0)[:,np.newaxis] 
m1_unique=np.unique(m1)[:,np.newaxis] 
 
##calculates expected entropy for all possible responses for a given 
design 
yy=DB_array(2,8) 
## could try others e.g. 
#yy=DB_array(3,8) ##note would need to use n=2 in the functions 
#yy=DB_array(2,10) 
m0_unique=np.unique(m0)[:,np.newaxis] 
m1_unique=np.unique(m1)[:,np.newaxis] 
 
### Example of find optimum design for yy based on prior alone 
### and entropy loss function. Uses Powell's minimisation method. 
### Also gives time to calculate. 
### This can be used as an intial design for simulations 
temp=time.clock() 
s_init=minimize(ent_loss,np.linspace(0.,1.,np.shape(yy)[1]),method='Po
well',tol=0.01) 
time.clock()-temp 
###create an array to store results from 10 simulations 
res_8=np.reshape(np.repeat(0.,30),(10,3)) 
## define inital optimum design for first 8 samples as calculated 
above 
c_best_init=s_init.x 
###loop for 10 simulated runs of 4 reps of 8 samples with adaptive 
method 
###assuming entropy loss function i.e. MINENT8 with 4 reps 
###takes c_best_init as initial design so it doesn't have to re-
calculate 
###it 10 times. This is a simulation assuming a true thershold of 0.3 
and 
### scale of 0.5. The output (posterior mean, mode, median) are stored 
in 
### res8. Also returns time to compelte the loop 
 
temp=time.clock() 
for i in xrange(10): 
 res_8[i]=adaptive_fun(4,ent_loss,.3,.5,nweights=None,n=1,c_best=
c_best_init) 
 
time.clock()-temp 
 
###check estimated means (1st col) modes (2nd) median (3rd) 
res_8 
### MSE based on 10 samples 
np.mean((res_8[:,0]-.3)**.5) 
### Categorical error based on 10 reps 
np.mean((res_8[:,0]!=.3)) 
### Absoulute error based on 10 reps 
np.mean(np.abs(res_8[:,0]-.3)) 
 
#####find a design with observed data EXAMPLE 
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##first calculate new prior (actually posterior) given observed 
response, concentrations 
##n_obs is the number of tests at each observed concentration 
new_prior=calc_nweights(concentrations_ob,response_ob,m0,m1,weights=No
ne,n=n_obs) 
##find optimal design for next set of design points (length = 
number_points) 
##n is the number of samples at each point probably 1 
my_des=minimize(ent_loss,np.linspace(0.,1.,number_points),method='Powe
ll',tol=0.01,args=(new_prior,n)) 
 
#################DISCRETE SOLVER############## 
##define available concentrations 
concs=np.arange(11)/10. 
##convert [0,1] interval to integers 
## ranging fom 0 to number of concentrations-1 
## and finally return elements of concs relating to 
## these integers 
def concs_discrete(c): 
 ##fix up edges for converting to ints 
 c[c<=.00001]=.00001 
 c[c>=.99999]=.99999 
 c2=np.repeat(0,np.size(c)) 
 for i in xrange(np.size(c)): 
  c2[i]=int(c[i]*(np.size(concs))) 
 return concs[(c2)] 
 
##similar to subarrayne except converts design into sample from concs 
def subarrayne_discrete(c,yy,m0,m1,weights=None,n=None,nsplit=None): 
 ##convert design c to elements of conc 
 c=concs_discrete(c) 
 if weights is None: 
  weights=np.repeat(1.,np.size(m0)) 
 if n is None: 
  n=np.max(yy) 
 if nsplit is None: 
  nsplit=1 
 ncombs=np.log(nCr(n+1)[yy]) 
 m00=m0[:,np.newaxis] 
 m11=m1[:,np.newaxis] 
 probs=ne.evaluate("(.9999/3.0+2.0/3.0*1.0/(1.0+exp((-(c-
m00)/(0.005*10**(m11*2))))))") 
 wgts=weights[:,np.newaxis]/np.sum(weights) 
 lprobs=np.log(probs[:,np.newaxis]) 
 lprobs2=np.log(1.-probs[:,np.newaxis]) 
 y_split=np.array_split(yy,nsplit) 
 ncombs_split=np.array_split(ncombs,nsplit) 
 res=0. 
 for i in xrange(nsplit): 
 
 res=res+work_fun(lprobs,lprobs2,y_split[i],n,wgts,ncombs_split[i
]) 
 ##return expected entropy 
 return res 
 
#allow array inputs for pswarm solver 
def ent_loss_discrete(c,nweights=None,n=None): 
 return np.apply_along_axis(subarrayne_discrete, 0, 
c,yy,m0,m1,nweights,n,None)*1. 
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##solve with pswarm fof design of size 8 
##descriptions from playdoh example 
## results saved as results 
if __name__ == '__main__': 
    # State space dimension (D) 
    dimension = 8 
    # ``initrange`` is a Dx2 array with the initial intervals for 
every 
    # dimension 
    initrange = np.tile([0., 1.], (dimension, 1)) 
    # Maximize the fitness function in parallel 
    results = pd.minimize(ent_loss_discrete, 
                       popsize=100,  # size of the population 
                       maxiter=10,  # maximum number of iterations 
                       cpu=8,  # number of CPUs to use on the local 
machine 
                       initrange=initrange) 
 
##show best design 
results.best_pos 
##los function for opt design 
concs_discrete(results.best_pos) 
 

D-optimal Design code for Logistic Regression 

import numpy as np 
import numdifftools as nd 
import playdoh as pd 
from scipy.optimize import minimize 
 
#####calculate negative loglikelihood 
##### ignores nCr as is constant 
def logistic_like(p0,p=None,n=None,x=None): 
 ##some default params for assumed 
 ##logistic curve to find D-opt design 
 if p is None: 
  p=(0.5,2.5) 
 if n is None: 
  n=1 
 if x is None: 
  x=(-.94,-.2,.54) 
 e=p[0]+p[1]*np.array(x) 
 e1=p0[0]+p0[1]*np.array(x) 
 like=np.exp(e1)/(1.+np.exp(e1)) 
 q=np.exp(e)/(1.+np.exp(e)) 
 y=q*1. 
 z=-np.sum(y*np.log((like/(1.-like)))+1.*np.log((1.-like))) 
 return(z)  
 
##passes design (c) and intercept(a1) 
##and slope (a2) of underlying logistic reg 
##returns detrminant of inverse of hessian 
##of likelihood at MLE 
def myfun(c,a1=None,a2=None): 
 if a1 is None: 
  a1=0.5 
 if a2 is None: 
  a2=2.5 
 a=(a1,a2) 
 hnd=nd.Hessian(lambda a: logistic_like(a,x=c)) 
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 ll=np.linalg.det(np.linalg.inv(hnd(np.array(a))))  
 return(ll) 
 
 
##solve D-optimal design - args(0,1), mean underlying logistic has 
##intercept=0 and slope of 1 -try others. Since 2 initial values 
##(-5,1) are solving for design of 2 points 
s=minimize(myfun,(-.5,1.),method='L-BFGS-B',args=(0,1),bounds=((-
10.,10.),(-10.,10.))) 
##try design with 3 points 
s=minimize(myfun,(5,1.,3),method='L-BFGS-
B',args=np.array(([0.,1.])),bounds=((-10.,10.),(-10.,10.),(-10.,10.))) 
##function for pswarm 
def myfun2(p): 
 z=np.apply_along_axis(myfun, 0, p) 
 return(z) 
##compare pswarm solver - note no args therefore assumes 
##default underlying logistic intercept=0.5, slope=2.5 
results = 
pd.minimize(myfun2,popsize=100,maxiter=10,cpu=1,initrange=(np.array(([
-5.,5.],[-5.,5.])))) 
 
##########try for logistic psychometric curve  
##########Doesn't always work- needs more work -Results May Not Be 
Reliable!! 
##calculate negative log-likelihood at MLE 
def logisticpsy_like2(p0,p,n=None,x=None): 
 if p is None: 
  p=(0.5,0.05) 
 if n is None: 
  n=100. 
 if x is None: 
  x=(-.94,-.2,.54) 
 q=0.9999/3.+2./(3.*(1.+np.exp((p[0]-np.array(x))/p[1]))) 
 like=1./3.+2./(3.*(1.+np.exp((p0[0]-np.array(x))/p0[1]))) 
 y=q*n 
 z=-np.sum(y*np.log((like/(1.-like)))+n*np.log((1.-like))) 
 return(z) 
 
##find determinant of hessian at MLE for design (c) 
def myfunpsytest(a,c=None): 
 if c is None: 
  c=(.45,.5) 
 hnd=nd.Hessian(lambda b: logisticpsy_like2(b,p=a,n=1.,x=c)) 
 #ll=np.linalg.det(np.linalg.inv(hnd(np.array(a)))) 
 ll=np.linalg.inv(hnd(np.array(a))) 
 res=np.linalg.det(ll) 
 ##checks if positive-definite 
 ##all eigenvalues should be positive 
 if np.any(np.linalg.eigvals(ll) < 0): 
  res=99999 
 return((res)) 
 
#try find D-Optimal design for three curves 
g=np.array(([.5,.2],[.4,.1],[.3,.05])) 
##doesnt work for these 
#g=np.reshape(np.repeat(0.,121*2),(121,2)) 
#g[:,0]=np.repeat(np.arange(11)/10.,11) 
#g[:,1]=np.tile(np.arange(11)/10.,11) 
 
##function to take multiple underlying curves to 
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##optimise 
def myfunpsy2(p): 
 z=np.apply_along_axis(myfunpsytest, 1., g,p) 
 return(np.mean(z)) 
 
##function for playdoh -allows array args  
def myfunpsy2_pd(p): 
 z=np.apply_along_axis(myfunpsy2, 0.,p) 
 return(z) 
 
##minimise using box bound L-BFGS-B solver 
s=minimize(myfunpsy2,(.1,.8),method='L-BFGS-
B',bounds=((0.,1.),(0.,1.))) 
##minimise using PSwarm 
results = 
pd.minimize(myfunpsy2_pd,popsize=10,maxiter=10,cpu=4,initrange=(np.til
e([0., 1.], (8, 1)))) 

Minimum MSE design for ASTM method 

from scipy.stats import binom 
from scipy.optimize import minimize 
import numpy as np 
##generate parameters to calc expected MSE 
m0_long=np.repeat(np.arange(11)/10.,11) 
m1_long=np.tile(np.arange(11)/10.,11) 
##function to calculate probabilities of detection 
##for a given design (d) and params m0_long & m1_long 
def Logistic_psych(d): 
    return (1./3.0+2.0/3.0*1.0/(1.0+np.exp((-(d-
m0_long)/(0.005*10**(m1_long*2)))))) 
 
##find probabilities for each possible ASTM threshold  
def multi_probs(g): 
 mp=np.zeros(np.size(g)+1) 
 for i in range(0,np.size(g)+1): 
  mp[i]=np.append(np.sort(np.cumprod(g[::-1])),1)[i]*(1-
np.append(0,g)[i])  
 return mp 
 
##calculate all possible ASTM threhsolds 
def last_reverse(g): 
 g1=np.append(2.0*g[0]-g[1],g) 
 k=np.size(g) 
 g2=np.append(g,2.0*g[k-1]-g[k-2]) 
 return (g1+g2)/2.0 
 
##estimate average MSE over all psychometric curves  
## defined by each m0_long and m1_long pair 
def lastreverse_mse_final(X,nreps): 
 ind_probs=np.transpose(Logistic_psych((X)[:,np.newaxis])) 
 mps=np.apply_along_axis(multi_probs,1,ind_probs)  
 t_ests=last_reverse(X) 
 ##estimated variance 
 est_var=np.sum(mps*(t_ests**2),axis=1)-
np.sum(mps*(t_ests),axis=1)**2 
 ##estimated MSE 
 est_mse=np.mean((np.sum(mps*(t_ests),axis=1)-
m0_long)**2+est_var/nreps) 
 return est_mse 
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##estimate MSE for each individual psychometric curve  
## defined by each m0_long and m1_long pair 
##nreps is the number of reps for each design point 
def lastreverse_mse_final_by_curve(X,nreps): 
 ind_probs=np.transpose(Logistic_psych((X)[:,np.newaxis])) 
 mps=np.apply_along_axis(multi_probs,1,ind_probs)  
 t_ests=last_reverse(X) 
 est_var=np.sum(mps*(t_ests**2),axis=1)-
np.sum(mps*(t_ests),axis=1)**2 
 est_mse=((np.sum(mps*(t_ests),axis=1)-m0_long)**2+est_var/nreps) 
 return est_mse 
 
##find solution for design of 8 points with 4 reps 
s_lr=minimize(lastreverse_mse_final,np.arange(8)/7.,method='Powell',to
l=0.01,args=((4),)) 
s_lr.x 

Attempted Multi-step look-ahead adaptive designs using NN approximations 

import itertools as it 
import numpy as np 
concentrations=[a for a in 
it.combinations((np.arange(0.1+.8/11.0,.89,.8/11.0)),6)] 
import gc as gc 
import pymc as mc 
from scipy.stats import bernoulli 
import copy 
n=1 
##generate 25008 samples of 40 points within  
##various sub-intervals of [0,1]. These are the concentrations 
##to train the Neural Networks 
np.random.seed(29875) 
concs_40=np.random.rand(25008,40) 
centre=np.transpose([(.0,.25,.5,.75,.125,.375,.625,.0,.333,.667,.1665,
.5,.0,.5,0.25,.0)]) 
scale=np.transpose([(0.25,0.25,0.25,0.25,0.25,0.25,0.25,.333,.333,.333
,.333,.333,.5,.5,.5,1.0)]) 
scale=np.repeat(scale,1563,axis=0) 
centre=np.repeat(centre,1563,axis=0) 
##rescale to lie within the various sub-ints 
concs_40_f=concs_40*scale+centre 
##random seed for reproducibility 
np.random.seed(15964) 
#np.random.seed(1138) 
#np.random.seed(2525) 
##draw thresholds and scale paramters from standard uniform 
mrand=np.random.uniform(low=0.0,high=1.,size= np.shape(concs_40_f)[0]) 
srand=np.random.random(np.shape(concs_40_f)[0]) 
##calculate detection probs for given design (XX), mrand & srand 
def psy_p(XX): 
 return (1.0/3.0+2.0/3.0*1.0/(1.0+np.exp((-(XX-
mrand)/(0.005*10**(srand*2)))))) 
 
np.random.seed(654987)  
##calc detection probs for all sim designs 
prand=np.apply_along_axis(psy_p, 0, concs_40_f) 
##draw binomial samples with probs=prand, n=1  
samp=np.random.binomial(n,prand) 
##import pyentropy and use function to find approx entropy 
##by discretising the posterior 
from pyentropy import quantise 
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def approx_ent(a,nbins): 
 ll=quantise(a,nbins,uniform='bins',minmax=(0,1),centers=False) 
 counts=np.trim_zeros(np.sort(np.bincount(ll[0])*1.)) 
 ent=-sum(counts/sum(counts)*np.log2(counts/sum(counts))) 
 return(ent) 
 
##arrays to store results 
import time 
result_8=np.zeros((np.size(centre),9)) 
result_16=np.zeros((np.size(centre),9)) 
result_24=np.zeros((np.size(centre),9)) 
result_32=np.zeros((np.size(centre),9)) 
result_40=np.zeros((np.size(centre),9)) 
 
temp=time.clock() 
 
##function to initialise model for MCMC  
##uniform priors for scale and threshold 
##logistic psychometric function 
def est_psy_model(response,concsx,nn): 
 import numpy as np 
 import pymc as mc 
 s1 = mc.Beta('s1', 1.0, 1.0, value=np.zeros(1)+0.51) 
 m1 = mc.Uniform('m1', 0.0, 1.0, value=np.zeros(1)+0.51) 
 #likelihood  
 #y_i=mc.Binomial('y_i',value=response,n=nn,p=(1.0/3.0+2.0/3.0*1.
0/(1.0+mc.exp((-(concsx-
m1)/(0.005*10**(s1*2)))))),observed=True,trace=False) 
 @mc.deterministic(plot=False) 
 def modelled_yy(c=concsx, m=m1,s=s1,trace=False): 
   """modelled_yy = 1.0/3.0+2.0/3.0*(1/(1+exp((-
2.197225/wp*(XX-m1[ind])))))""" 
   return (1.0/3.0+2.0/3.0*1.0/(1.0+np.exp((-(c-
m)/(0.005*10**(s*2))))))  
 @mc.stochastic(observed=True,trace=False) 
 def y(value=response,p0=modelled_yy,n0=nn): 
  return mc.binomial_like(value,n=n0,p=p0) 
 return locals() 
 
def est_psy(response,concsx,nn):  
 import pymc as mc 
 import numpy as np 
 import gc as gc 
 ##specify model using est_psy_model 
 model = mc.Model(est_psy_model(response,concsx,nn)) 
 ##calculate mode of posterior 
 M=mc.MAP(model) 
 M.fit(method='fmin_powell',tol=0.0001, verbose=1) 
 ##some code for memory management 
 m1_mode=copy.copy(M.m1.value[0]) 
 s1_mode=copy.copy(M.s1.value[0]) 
 del M,model 
 gc.collect() 
 ##sample from posterior using MCMC metropolis algorithm 
 ##trace is stoed in hdf5 to keep out of memory 
 Ma = 
mc.MCMC(est_psy_model(response,concsx,nn),db='hdf5',dbname='tempdb2.hd
f5',dbmode='w') 
 #10000 iterations, burnin 1000, and thinning factor 10 
 Ma.sample(iter=10000, burn=1000, thin=10) 
 ##calculate posterior mean, sd, med for thresh & scale 
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 t3=copy.copy(np.mean(Ma.trace('m1')[:])) 
 t4=copy.copy(np.std(Ma.trace('m1')[:])) 
 t5=copy.copy(np.mean(Ma.trace('s1')[:])) 
 t6=copy.copy(np.std(Ma.trace('s1')[:]))  
 m1_mean=copy.copy(Ma.m1.stats()['mean']) 
 m1_med=copy.copy(Ma.m1.stats()['quantiles'][50]) 
 m1_sd=copy.copy(Ma.m1.stats()['standard deviation']) 
 s1_mean=copy.copy(Ma.s1.stats()['mean']) 
 s1_med=copy.copy(Ma.s1.stats()['quantiles'][50]) 
 s1_sd=copy.copy(Ma.s1.stats()['standard deviation']) 
 ##calculate approx threshold entropy 
 m1_ent=approx_ent(np.reshape(Ma.m1.trace()[:],(np.size(Ma.m1.tra
ce()[:]),)),10) 
 Ma.db.close() 
 del Ma 
 gc.collect() 
 ##return results 
 return 
[m1_ent,m1_mode,m1_mean,m1_med,m1_sd,s1_mode,s1_mean,s1_med,s1_sd] 
 
 
##calculate posterior estimates for 8,16, 24,32, and 40 
##observations & store them 
##TAKES DAYS! 
for i in xrange(np.size(concs_40_f)/40): 
 temp=time.clock() 
 result_8[i]=est_psy(samp[i,0:8],concs_40_f[i,0:8],1) 
 result_16[i]=est_psy(samp[i,0:16],concs_40_f[i,0:16],1) 
 result_24[i]=est_psy(samp[i,0:24],concs_40_f[i,0:24],1) 
 result_32[i]=est_psy(samp[i,0:32],concs_40_f[i,0:32],1) 
 result_40[i]=est_psy(samp[i,0:40],concs_40_f[i,0:40],1) 
 ##print to see what iteration at 
 if i%200==199: 
  gc.collect() 
 print "i",i,time.clock()-temp 
  
 
##save results as dont want to re-run  
import pickle  
object_res = result_8 
file_res = open('final_logistic_result_8b.pkl', 'w')  
pickle.dump(object_res, file_res)  
file_res.close() 
 
object_res = result_16 
file_res = open('final_logistic_result_16b.pkl', 'w')  
pickle.dump(object_res, file_res)  
file_res.close()  
 
object_res = result_24 
file_res = open('final_logistic_result_24b.pkl', 'w')  
pickle.dump(object_res, file_res)  
file_res.close()  
 
 
object_res = result_32 
file_res = open('final_logistic_result_32b.pkl', 'w')  
pickle.dump(object_res, file_res)  
file_res.close()  
 
object_res = result_40 
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file_res = open('final_logistic_result_40b.pkl', 'w')  
pickle.dump(object_res, file_res)  
file_res.close()   
 
##read in result 
import pickle 
result_8=pickle.load(open('final_logistic_result_8b.pkl', 'r'))  
result_16=pickle.load(open('final_logistic_result_16b.pkl', 'r'))  
result_24=pickle.load(open('final_logistic_result_24b.pkl', 'r'))  
result_32=pickle.load(open('final_logistic_result_32b.pkl', 'r'))  
result_40=pickle.load(open('final_logistic_result_40b.pkl', 'r'))  
##sort concentrations (simulated designs from beginning) 
concs_8_f_sorted=np.sort(concs_40_f[:,0:8],axis=1) 
concs_16_f_sorted=np.sort(concs_40_f[:,0:16],axis=1) 
concs_24_f_sorted=np.sort(concs_40_f[:,0:24],axis=1) 
concs_32_f_sorted=np.sort(concs_40_f[:,0:32],axis=1) 
concs_40_f_sorted=np.sort(concs_40_f,axis=1) 
c_ind_8=np.argsort(concs_40_f[:,0:8],axis=1) 
c_ind_16=np.argsort(concs_40_f[:,0:16],axis=1) 
c_ind_24=np.argsort(concs_40_f[:,0:24],axis=1) 
c_ind_32=np.argsort(concs_40_f[:,0:32],axis=1) 
c_ind_40=np.argsort(concs_40_f,axis=1) 
##sort simulated samples so they match sorted concs 
samp_8=np.zeros(np.shape(samp[:,0:8])) 
samp_16=np.zeros(np.shape(samp[:,0:16])) 
samp_24=np.zeros(np.shape(samp[:,0:24])) 
samp_32=np.zeros(np.shape(samp[:,0:32])) 
samp_40=np.zeros(np.shape(samp)) 
for i in xrange(np.shape(samp_40)[0]): 
 samp_8[i]=samp[i,0:8][c_ind_8[i]] 
 samp_16[i]=samp[i,0:16][c_ind_16[i]] 
 samp_24[i]=samp[i,0:24][c_ind_24[i]] 
 samp_32[i]=samp[i,0:32][c_ind_32[i]] 
 samp_40[i]=samp[i,c_ind_40[i]] 
 
input_8=np.append(concs_8_f_sorted,samp_8,axis=1) 
input_16=np.append(concs_16_f_sorted,samp_16,axis=1) 
input_24=np.append(concs_24_f_sorted,samp_24,axis=1) 
input_32=np.append(concs_32_f_sorted,samp_32,axis=1) 
input_40=np.append(concs_40_f_sorted,samp_40,axis=1) 
target=result_40[:,(1,3)] 
##import ffnet 
from ffnet import ffnet, mlgraph 
#conec = mlgraph((16,56,16,6)) 
#conec = mlgraph((80,320,8)) 
##### conection construction 
input_test8=concs_8_f_sorted*(2.0*(samp_8-.5)) 
input_test16=concs_16_f_sorted*(2.0*(samp_16-.5)) 
input_test24=concs_24_f_sorted*(2.0*(samp_24-.5)) 
input_test32=concs_32_f_sorted*(2.0*(samp_32-.5)) 
input_test40=concs_40_f_sorted*(2.0*(samp_40-.5)) 
 
 
input_test40_f=np.append(input_test40,input_test40_2,axis=0) 
input_test40_f=np.append(input_test40_f,input_test40_3,axis=0) 
input_test40=concs_40_f_sorted+(2.0*(samp_40-.5)) 
target_test40=result_40[:,1] 
target_test8=result_8[:,1] 
conec = mlgraph((8,64,1)) 
conec40 = mlgraph((40,160,1)) 
net_8test = ffnet(conec) 
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net_40test = ffnet(conec40) 
 
 
net_40test_ent = ffnet(conec40) 
net_40test_mode = ffnet(conec40) 
net_40test_mean = ffnet(conec40) 
net_40test_median = ffnet(conec40) 
net_40test_sd = ffnet(conec40) 
 
print "TRAINING NETWORK..." 
net_40test_ent.train_tnc(input_test40, result_40[:,0], maxfun = 5000, 
messages=1,nproc='ncpu') 
net_40test_mean.train_tnc(input_test40, result_40[:,2], maxfun = 5000, 
messages=1,nproc='ncpu') 
net_40test_mode.train_tnc(input_test40, result_40[:,1], maxfun = 5000, 
messages=1,nproc='ncpu') 
net_40test_median.train_tnc(input_test40, result_40[:,3], maxfun = 
5000, messages=1,nproc='ncpu') 
net_40test_sd.train_tnc(input_test40, result_40[:,4], maxfun = 5000, 
messages=1,nproc='ncpu') 
print 
 
np.random.seed(29875) 
arr=np.arange(25008) 
np.random.shuffle(arr) 
conec8 = mlgraph((8,32,1)) 
net_8test_ent = ffnet(conec8) 
net_8test_mode = ffnet(conec8) 
net_8test_mean = ffnet(conec8) 
net_8test_median = ffnet(conec8) 
net_8test_sd = ffnet(conec8) 
print "TRAINING NETWORK..." 
net_8test_ent.train_tnc(input_test8[arr[0:20000],:], 
result_8[arr[0:20000],0], maxfun = 5000, messages=1,nproc='ncpu') 
net_8test_mean.train_tnc(input_test8[arr[0:20000],:], 
result_8[arr[0:20000],2], maxfun = 5000, messages=1,nproc='ncpu') 
net_8test_mode.train_tnc(input_test8[arr[0:20000],:], 
result_8[arr[0:20000],1], maxfun = 5000, messages=1,nproc='ncpu') 
net_8test_median.train_tnc(input_test8[arr[0:20000],:], 
result_8[arr[0:20000],3], maxfun = 5000, messages=1,nproc='ncpu') 
net_8test_sd.train_tnc(input_test8[arr[0:20000],:], 
result_8[arr[0:20000],4], maxfun = 5000, messages=1,nproc='ncpu') 
print 
 
conec32 = mlgraph((32,128,1)) 
net_32test_ent = ffnet(conec32) 
net_32test_mode = ffnet(conec32) 
net_32test_mean = ffnet(conec32) 
net_32test_median = ffnet(conec32) 
net_32test_sd = ffnet(conec32) 
 
print "TRAINING NETWORK..." 
net_32test_ent.train_tnc(input_test32[arr[0:20000],:], 
result_32[arr[0:20000],0], maxfun = 5000, messages=1,nproc='ncpu') 
net_32test_mean.train_tnc(input_test32[arr[0:20000],:], 
result_32[arr[0:20000],2], maxfun = 5000, messages=1,nproc='ncpu') 
net_32test_mode.train_tnc(input_test32[arr[0:20000],:], 
result_32[arr[0:20000],1], maxfun = 5000, messages=1,nproc='ncpu') 
net_32test_median.train_tnc(input_test32[arr[0:20000],:], 
result_32[arr[0:20000],3], maxfun = 5000, messages=1,nproc='ncpu') 
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net_32test_sd.train_tnc(input_test32[arr[0:20000],:], 
result_32[arr[0:20000],4], maxfun = 5000, messages=1,nproc='ncpu') 
print 
 
 
PLT.scatter(result_8[arr[20000:],0],net_8test_ent(input_test8[arr[2000
0:],:])) 
PLT.scatter(result_8[arr[20000:],1],net_8test_mean(input_test8[arr[200
00:],:])) 
PLT.scatter(result_8[arr[20000:],2],net_8test_mode(input_test8[arr[200
00:],:])) 
PLT.scatter(result_8[arr[20000:],3],net_8test_median(input_test8[arr[2
0000:],:])) 
PLT.scatter(result_8[arr[20000:],4],net_8test_sd(input_test8[arr[20000
:],:])) 
 
 
 
 
#####make function to optimise for min 
##generate random values to allow for repeatable results 
##samples are based on the cumulative inverse of these 
rand_nums=np.reshape(np.random.random(100*np.size(m0)*32),(np.size(m0)
*100,32)) 
from scipy.stats import binom 
##function to find probabilites based on prior threshold and scale 
params 
def psy_p2(XX): 
 XX=XX[:,np.newaxis] 
 return np.transpose(1.0/3.0+2.0/3.0*1.0/(1.0+np.exp((-(XX-
m0)/(0.005*10**(m1*2)))))) 
 
##function to find probabilites based on SPECIFIED threshold (m) and 
scale (w) params 
def psy_p(XX,m,w): 
 return np.transpose(1.0/3.0+2.0/3.0*1.0/(1.0+np.exp((-(XX-
m)/(0.005*10**(w*2)))))) 
 
##find approximate MSE based on simulations for 8 design points 
def NN8_MSE(x): 
 x=np.sort(x) 
 #penalty for outside range 
 penalty=1.*(np.max(x)>1. or np.min(x)<0.) 
 probs_temp=np.tile(psy_p2(x),(100,1)) 
 #y=binom.rvs(1,probs_temp) 
 y=binom.isf(rand_nums[:,0:8],1,probs_temp) 
 inputs=np.tile(x,(np.size(m0)*100,1))*(2.0*(y-.5)) 
 mse_est=np.mean((np.tile(m0,100)-
net_8test_mean(inputs)[:,0])**2) 
 return mse_est+penalty*9999. 
 
##find approximate MSE based on simulations for 8 design points 
##note also takes argument for previous 8 observed responses 
def NN16_MSE(x,input_obs): 
 probs_temp=np.tile(psy_p2(x),(100,1)) 
 penalty=1.*(np.max(x)>1. or np.min(x)<0.) 
 #y=binom.rvs(1,probs_temp) 
 y=binom.isf(rand_nums[:,8:16],1,probs_temp) 
 inputs=np.tile(x,(np.size(m0)*100,1))*(2.0*(y-.5)) 
 inputs2=np.append(np.tile(input_obs,(np.size(m0)*100,1)),inputs,
axis=1) 
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 col_order=np.argsort(np.abs(inputs2[0,:])) 
 inputs3=inputs2[:,col_order] 
 mse_est=np.mean((np.tile(m0,100)-
net_16test_mean(inputs3)[:,0])**2) 
 return mse_est+penalty*9999. 
 
##find approximate MSE based on simulations for 8 design points 
##note also takes argument for previous 16 observed responses 
def NN24_MSE(x,input_obs): 
 penalty=1.*(np.max(x)>1. or np.min(x)<0.) 
 probs_temp=np.tile(psy_p2(x),(100,1)) 
 #y=binom.rvs(1,probs_temp) 
 y=binom.isf(rand_nums[:,16:24],1,probs_temp) 
 inputs=np.tile(x,(np.size(m0)*100,1))*(2.0*(y-.5)) 
 inputs2=np.append(np.tile(input_obs,(np.size(m0)*100,1)),inputs,
axis=1) 
 col_order=np.argsort(np.abs(inputs2[0,:])) 
 inputs3=inputs2[:,col_order] 
 mse_est=np.mean((np.tile(m0,100)-
net_24test_mean(inputs3)[:,0])**2) 
 return mse_est+penalty*9999. 
 
##find approximate MSE based on simulations for 8 design points 
##note also takes argument for previous 24 observed responses 
def NN32_MSE(x,input_obs): 
 penalty=1.*(np.max(x)>1. or np.min(x)<0.) 
 probs_temp=np.tile(psy_p2(x),(100,1)) 
 #y=binom.rvs(1,probs_temp) 
 y=binom.isf(rand_nums[:,24:32],1,probs_temp) 
 inputs=np.tile(x,(np.size(m0)*100,1))*(2.0*(y-.5)) 
 inputs2=np.append(np.tile(input_obs,(np.size(m0)*100,1)),inputs,
axis=1) 
 col_order=np.argsort(np.abs(inputs2[0,:])) 
 inputs3=inputs2[:,col_order] 
 mse_est=np.mean((np.tile(m0,100)-
net_32test_mean(inputs3)[:,0])**2) 
 return mse_est+penalty*9999. 
 
##find intial design for first 8 points 
from scipy.optimize import minimize 
s_NN8=minimize(NN8_MSE,np.arange(8)/7.,method='Powell',tol=0.01) 
## take given threshold and scale params and simulate  
## an adaptive design based on NN approximations 
def adaptive_sim(m0_t,m1_t): 
 ##get initial design points from global var s_NN8 
 obs_x=s_NN8.x 
 ##random sample of detection given design and params 
 obs_y=binom.rvs(1,psy_p(obs_x,m0_t,m1_t)) 
 ##transform to input into NN 
 obs_inputs=obs_x*(2.0*(obs_y-.5)) 
 ##find next 8 design points assuming 8 observed 
 s_NN16=minimize(NN16_MSE,np.arange(8)/7.,method='Powell',tol=0.0
1,args=((obs_inputs),)) 
 ##generate and append obs 
 obs_x=np.append(obs_x,s_NN16.x) 
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN16.x,m0_t,m1_t))) 
 obs_inputs=obs_x*(2.0*(obs_y-.5)) 
 ##find next 8 design points assuming 16 observed 
 s_NN24=minimize(NN24_MSE,np.arange(8)/7.,method='Powell',tol=0.0
1,args=((obs_inputs),)) 
 ##generate and append obs 
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 obs_x=np.append(obs_x,s_NN24.x) 
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN24.x,m0_t,m1_t))) 
 obs_inputs=obs_x*(2.0*(obs_y-.5)) 
 ##find next 8 design points assuming 24 observed 
 s_NN32=minimize(NN32_MSE,np.arange(8)/7.,method='Powell',tol=0.0
1,args=((obs_inputs),)) 
 ##generate and append obs 
 obs_x=np.append(obs_x,s_NN32.x) 
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN32.x,m0_t,m1_t))) 
 obs_inputs=obs_x*(2.0*(obs_y-.5)) 
 return obs_inputs 
 
##try 10 runs of adaptive assuming threshold=0.5 scale=0.4 
adaptive_NN_res=np.reshape(np.repeat(0.,10*32),(10,32)) 
for i in xrange(10): 
 adaptive_NN_res[i,:]=adaptive_sim(.5,.4) 
 
##functions to allow for array inputs so can use PSwarm 
import playdoh as pd 
def myfun8(p): 
 z=np.apply_along_axis(NN8_MSE, 0, p) 
 return(z) 
 
def myfun16(p,a): 
 z=np.apply_along_axis(NN16_MSE, 0, p,a) 
 return(z) 
 
def myfun24(p,a): 
 z=np.apply_along_axis(NN24_MSE, 0, p,a) 
 return(z) 
 
def myfun32(p,a): 
 z=np.apply_along_axis(NN32_MSE, 0, p,a) 
 return(z) 
 
## function as above put uses PSwarm global solver 
## rather than Powell's   
def adaptive_sim2(m0_t,m1_t): 
 obs_x=s_NN8.best_pos 
 obs_y=binom.rvs(1,psy_p(obs_x,m0_t,m1_t)) 
 obs_inputs=obs_x*(2.0*(obs_y-.5)) 
 s_NN16=pd.minimize(myfun16,popsize=10,maxiter=10,cpu=8,initrange
=(np.tile([0., 1.], (8, 1))),args=((obs_inputs),)) 
 obs_x=np.append(obs_x,s_NN16.best_pos) 
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN16.best_pos,m0_t,m1_
t))) 
 obs_inputs=obs_x*(2.0*(obs_y-.5)) 
 s_NN24=pd.minimize(myfun24,popsize=10,maxiter=10,cpu=8,initrange
=(np.tile([0., 1.], (8, 1))),args=((obs_inputs),)) 
 obs_x=np.append(obs_x,s_NN24.best_pos) 
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN24.best_pos,m0_t,m1_
t))) 
 obs_inputs=obs_x*(2.0*(obs_y-.5)) 
 s_NN32=pd.minimize(myfun32,popsize=10,maxiter=10,cpu=8,initrange
=(np.tile([0., 1.], (8, 1))),args=((obs_inputs),)) 
 obs_x=np.append(obs_x,s_NN32.best_pos) 
 obs_y=np.append(obs_y,binom.rvs(1,psy_p(s_NN32.best_pos,m0_t,m1_
t))) 
 obs_inputs=obs_x*(2.0*(obs_y-.5)) 
 return obs_inputs 
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##run some simulations for different thresholds (m0_NN) 
## and scale (m1_NN) parameters 
adaptive_NN_res2=np.reshape(np.repeat(0.,900*32),(900,32)) 
m0_NN=np.tile(np.repeat(np.arange(.1,.91,.4),100),3) 
m1_NN=np.repeat(np.arange(.1,.91,.4),300) 
for i in xrange(900): 
 adaptive_NN_res2[i,:]=adaptive_sim2(m0_NN[i],m1_NN[i]) 
 
##append final estimate of threshold after adaptive design 
## with true thresh and scale parameter 
results_NN_est=np.reshape(np.repeat(0.,np.size(m0_NN)*3),(np.size(m0_N
N),3)) 
results_NN_est[:,0]=m0_NN 
results_NN_est[:,1]=m1_NN 
results_NN_est[:,2]=net_32test_mean(adaptive_NN_res2)[:,0] 
##save results as csv file 
np.savetxt("results_NN_est.csv", results_NN_est, delimiter=",") 
 


