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Abstract

Plasma-arc cutting (PAC) is widely used in industry, but it is an under-researched fabrication tool.
A review of the literature reveals much study is needed to improve the PAC process regarding
efficiency, quality, stability and accuracy. This research investigated a novel control method for
PAC. The PAC process was investigated to identify the gaps, and develop feasible methods,
methodologies and systems to improve the PAC cutting quality and process control using machine
vision. An automated, visual-inspection algorithm was successfully developed. The algorithm uses
NC code to path plan and perform kerf width measurement. This visual inspection facilitated
research into several aspects of PAC such as the extent of radiative heat transfer, the significance
of kerf asymmetry, and a model describing the slope of the leading edge of the kerf-with respect
to feed rate and material thickness. A kinematic investigation was conducted on 3 bevel capable
plasma heads to complete the elements of a novel control method.

An automated, visual-inspection (AV1) system for PAC was designed that consists of a vision unit
and a mounting rig. This system is able to perform real-time, kerf width measurement reaching an
accuracy of 0.1mm. The methodology was validated by experiment, testing cuts on parts with
varying size, shape and complexity. The outcomes of this research were published in the
International Journal of Mechanical and Production Engineering and the proceedings of the 2017
Mechatronics and Machine Vision in Practice (M2VIP) international conference.

With this developed vision rig, further research was conducted such as an empirical investigation
into the relationship between kerf angle and kerf width with respect to torch height, feed rate and
material thickness. This investigation was comprised of 35 combinations of the process parameters
with 9 replicates for each. A relationship between the process parameters and quality measures
was developed, and the magnitudes of kerf asymmetries were quantified.

The understanding of the phenomenology of PAC is deficient in several areas. An experimental
study was undertaken that reduced the effects of heat transfer by conduction and convection in
order to estimate the contribution by radiative heat transfer. This experimental study maintained
an arc between a water-cooled anode and plasma torch for 15 seconds. A test piece was specifically
designed with imbedded, resistance-temperature-device thermometers positioned around the
transferred arc and the temperature was measured. This investigation was able to estimate the
effects of radiation from the plasma-arc. The study found radiative heat transfer is less than 3% of
the total power input.

Another experimental study obtained information on the shape of the leading edge of the kerf. For
this study slots were cut into steel plates of 6, 8 and 10mm thickness, at feed rates between 350
and 2000mm/min with a torch height of 1.5mm. Edge points for the centre axis of the leading
profile were obtained. A relationship between surface angle and material thickness and feed rate
was established and is validated through the test range.

A study on obtaining cutting profile data on the front face of the kerf was also undertaken. Slots
were cut into plates of 6 and 10mm thickness. Edge points were obtained for the front 180 degrees
of the kerf face at sections in 2mm increments. A 3D representation of the shape of the face was
then able to be presented.

Finally, the kinematics for 3 bevel capable PAC heads was developed. Two of the heads are
existing industrial heads, and the third head is being developed by Kerf Ltd. The kinematics
investigation produced the DH parameters and transformation matrices for the forwards
kinematics. These were validated using MATLAB®. The resulting dynamics were also produced.

In conclusion, PAC is a complicated process. This research carried out several studies and has
addressed several literature gaps with the proposed methods, methodologies and systems,
developed through machine vision and PAC head kinematic study.

This research was funded by Callaghan Innovation PhD research funding and received financial
support from Kerf Ltd. Callaghan Innovation is a New Zealand government research funding body.
Kerf Ltd. is a New Zealand PAC machine manufacturer and distributor.
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