Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

BIOLOGY AND HOST PLANT RELATIONSHIPS OF SCAPTOMYZA FLAVA LEAF MINER

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in **Entomology**

Plant Science Department

Massey University

Palmerston North

New Zealand

Ali Asghar Seraj

1994

In the Name of ALLAH the Most Merciful the Most Beneficent

I dedicate this disertation to Imam Khomeini and the blessed my deceased brother Ali Mohammad Seraj

ABSTRACT

Scaptomyza flava Fallén (Diptera: Drosophilidae) is a leaf miner of Cruciferous plants (Brassicaceae). It occurs throughout New Zealand and in many other parts of the world. S. flava attacks living plants but also lays eggs on dead leaves and larvae can develop in dead and decaying plant material. However, survival to the adult stage is greater when larvae develop on live leaves. Females are polygamous and mating begins soon after emergence. Female flies start puncturing leaves with their ovipositor ca. 4 h. after emergence and produce peak numbers of punctures within the first 12 h. of their adult lives. It is during this peak time of puncture production that egg laying begins. Oviposition starts on the day following emergence and lasts for about two weeks. After this oviposition rate declines slowly. Eggs are laid mainly between 06.00 and 10.00 h. and between 17.00 and 20.00 h. with a peak between 09.00-10.00 h. and 17.00-18.00 h. The mean number of eggs laid per female per day is dependent on the availability of host plants and ranges from 20.9 to 4.4 eggs per day. Maximum oviposition varies between different host plant species. The total fecundity of some females was as high as 320 eggs (on turnip and in contrast less than 12 eggs on cauliflower) over a lifespan of about 12 days. The larvae destroys the parenchyma of leaves. Although only a small portion of the lamina is damaged by a single larva - approximately 5 cm². Most plant injury is caused by feeding by the third-instar larva which lasts about one week. Sex ratios of adults were close to 1:1 with a slight bias in favour of males. Feeding punctures and fecundity of S. *flava* increase greatly when given honey solution. For both sexes, longevity is affected by adult food source. Caged adult female S. flava lived significantly longer when provided with honey solution and yeast than when confined on glass plates and starved or allowed access to yeast and water only. Virgin females lived only slightly longer than mated females and unmated males lived significantly longer than all other groups.

S. flava is an oligophagous insect with host plants restricted to the Brassicaceae. When S. flava adults were given a simultaneous choice of seven plant species for feeding and oviposition, there was a distinct hierarchical ordering in their ovipositional preference, with turnip, Chinese cabbage, and hedge mustard being preferred over all others. Percentage of punctures with eggs for turnip, Chinese cabbage and cauliflower (three main host plants of S. flava) in choice tests were 3.1, 3 and 6.4% and in non-choice tests 6, 5.4 and 28% respectively. In non-choice tests, females laid more eggs on Chinese cabbage and Abstract

turnip than other Brassicaceae. Egg production was also different between host plants. Females oviposited means of 255, 165 and 48 eggs during their lifespan when maintained on turnip, Chinese cabbage and cauliflower, respectively. Peak egg production period varied between host plants; on cauliflower, peak production occurred 3-7 days from adult emergence and on Chinese cabbage and turnip between days 7-11 from emergence. There were also significant differences in total developmental times of the insect between three Brassicaceous host plants (cauliflower 41d, Chinese cabbage 33.7d and turnip 31d). There were significant differences in duration of the 3rd larval instar among the host plant species with the longest duration on cauliflower (8d). Fecundity of *S. flava* was positively correlated with female body weight and greater female weights resulted when insects were raised on turnip and Chinese cabbage compared to cauliflower.

Although all leaf sizes and/or ages were accepted by the insects (with the exception of the smallest leaves) for egg laying, the number of feeding punctures and eggs per cm² leaf increased with increasing leaf size and/or age. Nitrogen content of leaves did not vary significantly with age. Previous larval feeding experience on turnip and Chinese cabbage appeared to modify adult host plant preference, but previous feeding experience as larvae on a poor host, cauliflower, did not increase egg laying on that host by adult females. Recently eclosed adult *S. flava* may show positive experience effects on turnip (and slightly on Chinese cabbage).

Over a two year period in the Manawatu adults and larvae of *S. flava* were present throughout the year with no evidence of diapause or aestivation. However, there were marked peaks during spring and early summer in numbers of adult flies caught, and again in autumn to early winter with troughs in early autumn and early spring. This pattern, obtained by sampling for adults, was paralleled by sampling for larvae. In a laboratory experiment simulated herbivore injury did not produce the same effect as feeding by *S. flava*. Total fresh-weight accumulation was reduced significantly with increasing levels of injury by *S. flava* feeding but this did not occur with artificial clipping. In another laboratory experiment, where individual plants were caged with 4 mated females for 24 h. reduced growth of Chinese cabbage and turnip occurred from ensuing larval damage. In two separate field experiments turnip tolerated low levels of leaf mining without reduction in weight of bulb but the net yield of Chinese cabbage was significantly reduced.

In the name of Allah the most compassionate the most merciful

By the *Pen* and by the record which men write

(The Holy Qur'an 68:1)

ACKNOWLEDGMENTS

First of all I send my love to beloved Allah (God) for giving me the ability of learning. He is Endlessness, Lord of everything existing, Creator and sustainer of the Cosmos. Praise be to Allah, who hath guided us to felicity: never could we have found guidance, had it not been for the guidance of Allah. I send my love to our beloved prophets Mohammad, Jesus (Isa) and others (peace be upon them). Also I send my greetings to all their followers.

I am immensely grateful and especially indebted to my supervisors Assoc. Professor Peter G. Fenemore and Dr. Marion Harris for close supervision and fruitful discussions concerning this work, and for their appropriate guidance, advice, generous comments, suggestions, encouragement and keen interest. Their critical and careful reviews of the manuscript have improved the English, especially the many helpful comments on my first drafts. Any time I needed their help I was provided a friendly answer.

I owe much of my interest and enthusiasm for leaf-mining insects to Dr. Holloway and greatly appreciate her help for providing insect identifications and who kindly agreed to describe *Scaptomyza* species. The author wishes to thank Mr. J. S. Dugdale for his taxonomical assistance. I have to record my thanks to Mr. Jan Máca of the Australian Museum for much aid in drawing up the descriptions.

ш

Acknowled gments

I would also like to express my deep thanks to other staff of Plant Science Department, Massey University in particular Professor Ken Milne, head of department and Lecturer Mr. Terry Stewart, and secretarial staff Mrs. Collen Hanlon, Mrs. Pamela Howell, Mrs. Hera Kennedy and Mrs. Lois Mather. I gratefully acknowledge the technical assistance of Mr. Hugh Neilson, Mr. Chris Rawlingson and Mr. Jonathan Dixon and I should like to thank very sincerely Mrs. Lorraine Davis for assistance in the preparation of the manuscript in the laboratory and field and for providing the necessary facilities. Staff of Plant Growth Unit have kindly permitted me to have access to their greenhouses and field areas. My gratitude is extended to Mr. Ray Johnston for valuable facilities for greenhouse and field work.

I gratefully acknowledge the grant support provided (full scholarship) by a Fellowship from the Ministry of Culture and High Education of the Islamic Republic of Iran for this research.

The presence of other Iranian post graduate students at Massey University made me feel at home. It is my pleasure to thank all of them and the writer is indebted to his colleagues for being friendly and providing a pleasant work environment.

My sincere thanks are due to my wife for her support, patience, encouragement and for shouldering my share of our duty to educate our children. The patience and forbearance of my daughters Sarah, Motahareh and Narges and my sons Horr and Ali over the nights I was working late is appreciated. Their smiles have encouraged me to cope with difficulties.

Finally, my family and myself have enjoyed the hospitality of the friendly and law-abiding people of New Zealand during our four years in this beautiful country. We would like to thank them all very much.

cknowledgments iii ontents v ist of tables x ist of figures xiii ist of plates xvi htroduction 1 h a p t e r 1 : Literature review 5-54 introduction 5
ist of tables x ist of figures xiii ist of plates xvi introduction 1 h a p t e r 1 : Literature review 5-54
<pre>ist of figures</pre>
ist of plates
ntroduction
h a p t e r 1 : Literature review
introduction 5
definition, shape and distribution of mines and miners
leaf-miners taxonomy
duration of mining
adult biology
host specificity and species diversity
biogeographic patterns of diversity
comparison of plant species as hosts for leaf miners and host plant defense 18
leaf selection
leaf abscission
inter-intraspecific competition
natural enemies of leaf miners:
parasitoids
predators
abiotic mortality factors
population dynamics 41
colour and discolouration of mines 43
the subsequent fate of the mine
effects of leaf-miners on cultivated plants
and economic importance 45

Chapter 2: The biology of Scaptomyza flava
rearing
morphology and behaviour of insect
emergence
sex ratio
mating, feeding and oviposition
eggs
larvae
pupae
production in time of "feeding punctures" and egg laying by S. flava on
Chinese cabbage 83
feeding and fecundity of Scaptomyza flava
longevity of Scaptomyza flava 100
lifespan of mated and unmated adult Scaptomyza flava
number of adult insects emerging from a single leaf of Chinese
cabbage
the ability of Scaptomyza flava to develop in dead and decaying leaf
material

Chapter 3: Host plant relationships of Scaptomyza flava 115-161

.

Chapter 4: Seasonal life cycle and population density of S. flava . . 162-174

introduction
study site
sampling methods
a: sampling for adult flies
sticky traps
water traps
sweep netting
b: sampling for larvae and for leaf mining injury 165
results and discussion

Chapter 5: Damage assessment experiments with Scaptomyza flava 175-208

damage assessment experiments in laboratory and field with Scaptomyza

flava
introduction
a: laboratory experiment
b: leaf miner damage assessment field trial
introduction
materials and methods
results
discussion
conclusion
simulated insect damage
measurement of leaf area damaged by a single larva
what density of leaf miner (S. flava) may kill plant seedlings? 206

Chapter 6: General discussion	!	209
-------------------------------	---	-----

Rej	f e	r e	n	сe	? S	•••	••		•••	 	••	• • •	 •••	•••	 • • •	• •	 • •	••	 	••	223-278
J	-				-	•••		•••					 • •		 		 	•••	 		

A p	p	e	n	d	i	С	e s	5		•		•	•		•	•	•		•			•		•		•	•		•		•		•	•		•	•	279)-3	5	9
ΔP	P	e e		u		C.	c .	,	••	•	•••	•	• •	• •	•	•	• •	• •	•	• •	• •	• •	••	•	• •	•	• •	• •	•	• •	•	• •	•	• •	•••	• •	•			٩	

Appendix 1: taxonomical notes on the genera Scaptomyza and Drosophila
within the family Drosophilidae
the relation between the genera Scaptomyza and Drosophila 280
family Drosophilidae 280
the separating characters
external morphological characters
inner anatomical characters
the subgenera of Scaptomyza 282
the borderline between Scaptomyza and Drosophila 283
Scaptomyza (Parascaptomyza) pallida (Zetterstedt, 1847) 286
Scaptomyza graminum 286
Scaptomyza flava (Fallen, 1823) 289
Scaptomyza australis
"Family Drosophilidae"
key to genera of Drosophilidae in New Zealand
genus Scaptomyza Hardy 307
key to species of Scaptomyza in New Zealand
Scaptomyza flavella sp.n
Scaptomyza graminum
Scaptomyza fuscitarsis 311
key to Scaptomyza species occurring in New Zealand
the phylogeny of Scaptomyza
Scaptomyza diversity
Appendix 2: some important leaf miner (Agromyzidae) pests 331
Appendix 3: ability of adults to survive at low temperature 332-335
Appendix 4: oviposition in sun and shade
Appendix 5: laboratory insecticide experiments with Scaptomyza flava 340

Appendix 6: the ability of S. elmoi to develop on Chinese cabbage ... 343

Table 6:	numbers of Scaptomyza flava recovered by three different
	sampling methods from Chinese cabbage over a two-year
	period
Table 7:	numbers of Scaptomyza flava recovered by three different
	sampling methods from turnip over a one year period 349
Table 8:	numbers of Scaptomyza elmoi & Scaptomyza fuscitarsis
	captured by 10 sweep net samples from Chinese cabbage
	over a one year period
Table 9:	plant measurements and numbers of larvae from samples
	of five Chinese cabbage plants

Appendix 8: cultural notes on host plants of Scaptomyza flava .. 357-359

Chinese cabbage
pests
diseases
physiological disorders
urnip
diseases and pests
cauliflower
radish

LIST OF TABLES

Table 1:	sex ratio of Scaptomyza flava from laboratory colony
Table 2:	sex ratio of S. flava captured by sweep net in the field at
	Palmerston North from Chinese cabbage and turnip 64
Table 3:	mean number of feeding punctures and eggs per female 85
Table 4:	time of feeding and oviposition activity of Scaptomyza flava
	females under laboratory conditions
Table 5:	production in time of "feeding punctures" and egg laying by S .
	flava on Chinese cabbage under greenhouse conditions
Table 6:	mean number of feeding punctures and eggs per female in time 89
Table 7:	relationship between the number of feeding punctures and food
	source
Table 8:	fecundity of S. flava with different food availability 97
Table 9:	the longevity (survival) of adults of S. flava with different food
	availability (without plant material)
Table 10:	life span of Scaptomyza flava under greenhouse conditions 110
Table 11:	number of adult insects from ten leaves of Chinese cabbage 113
Table 12:	plant species used in studies of host discrimination by S. flava 118
Table 13:	number of feeding punctures and eggs on eight plant species in choice
	tests with Scaptomyza flava
Table 14:	number of feeding punctures and eggs on eight plant species in
	non-choice test with Scaptomyza flava
Table 15:	mean weights of adult S. flava according to sex and host 131
Table 16:	mean life span, number of feeding punctures and number of eggs
	produced by Scaptomyza flava (during entire life time) on three
	plant species
Table 17:	mean numbers of punctures, eggs and adults of Scaptomyza flava and leaf
	area mined per plant
Table 18:	the mean durations (days) of the egg stage, the tree larval instar, the
	pupal period and total time from egg laying to adult death on the three
	plants species

Contents

Table 19	mean leaf area and number of punctures and eggs according to
	leaf age
Table 20:	influence of larval food plant on adult feeding and egg laying
	preference
Table 21:	effect of first adult feeding on plant preference
Table 22:	results of laboratory experiment to assess the effects of
	Scaptomyza flava on Chinese cabbage
Table 23:	results of laboratory experiment to assess the effects of
	Scaptomyza flava on turnip 178
Table 24:	mean total leaf area, leaf area mined and percentage leaf area
	mined of Chinese cabbage on two sampling dates. 1991/92 field
	experiment
Table 25:	gross and net weights of Chinese cabbage at harvest
Table 26:	mean total leaf area, leaf area mined and percentage leaf area
	mined of turnip on two sampling dates. 1991/92 field
	experiment
Table 27:	mean weights of leaves and bulb roots of turnip on 7/1/92 and at
	harvest
Table 28:	mean total leaf area, leaf area mined and percentage leaf area
	mined of Chinese cabbage on two sampling dates. 1992/93 field
	experiment
Table 29:	mean total leaf area, leaf area mined and percentage leaf area
	mined of turnip on two sampling dates. 1991/92 field
	experiment
Table 30:	mean number of adult Scaptomyza flava captured by sweep
	netting on Chinese cabbage on three sampling dates
Table 31:	mean number of adult Scaptomyza flava captured by sweep
	netting on turnip on three sampling dates
Table 32:	gross and net weights of Chinese cabbage at harvest 196
Table 33:	mean weights of leaves and bulb roots of turnip at harvest 196
Table 34:	results of actual and simulated damage to Chinese cabbage 202
Table 35:	leaf area damaged by single larvae of Scaptomyza flava 205
Table 36:	number leaves damaged by different number of S. flava adults 208

Appendix

Table 1:	comparison of characters of Drosophila subg. Lordiphosa,
	Scaptomyza subg. Bunostoma and two unplaced Scaptomyza
	species from New Zealand
Table 2:	survival in days of adult S. flava at low temperatures
Table 3	number of new emerged adult insects from 1 pair of Scaptomyza flava
	from Chinese cabbage plants in sun and shade
Table 4:	mean number of live adult Scaptomyza flava in experiment 1 after
	48 h
Table 5:	mean number of live adult Scaptomyza flava in experiment 2 342
Table 6:	numbers of Scaptomyza flava recovered by three different sampling
	methods from Chinese cabbage over a two-year period
Table 7:	numbers of Scaptomyza flava recovered by three different
	sampling methods from turnip over a one year period
Table 8:	number of Scaptomyza elmoi & Scaptomyza fuscitarsis captured
	by 10 sweep net samples from Chinese cabbage over a one year
	period
Table 9:	plant measurements and numbers of larvae from samples of five
	Chinese cabbage plants

LIST OF FIGURES

Fig. 1:	types of mines
Fig. 2:	after leaf mining
Fig. 3:	time of emergence of S. flava adults under greenhouse conditions. 61
Fig. 4:	time of feeding activity of Scaptomyza flava females under laboratory
	conditions
Fig. 5:	time of oviposition activity of S. flava females under laboratory
	conditions
Fig. 6:	mean no. feeding punctures and time to commencement of egg laying by
	S. flava on Chinese cabbage 91
Fig. 7:	fecundity of S. flava with different food availability
Fig. 8:	the longevity of adult S. flava with different food availability 104
Fig. 9:	comparison of plant species for feeding punctures by S. flava 125
Fig. 10:	no. of eggs laid by S. flava in choice & non-choice tests 125
Fig. 11:	pattern of feeding by S. flava on three host plants
Fig. 12:	pattern of egg laying by S. flava on three host plants 135
Fig. 13:	relationship between nitrogen content of leaf and leaf age of Chinese
	cabbage
Fig. 14:	relationship between no. of feeding punctures of Scaptomyza flava and
	leaf age of Chinese cabbage 147
Fig. 15:	relationship between no. of eggs of Scaptomyza flava and leaf age of
	Chinese cabbage
Fig. 16:	effect of larval food plant on feeding preference by Scaptomyza flava
	adult flies (cauliflower reared)
Fig. 17:	effect of larval food plant on feeding preference by Scaptomyza flava
	adult flies (Chinese cabbage reared) 153
Fig. 18:	effect of larval food plant on feeding preference by Scaptomyza flava
	adult flies (turnip reared) 153
Fig. 19:	effect of larval food plant on egg laying preference by S. flava adult flies
	(cauliflower reared)
Fig. 20:	effect of larval food plant on egg laying preference by S. flava adult flies
	(Chinese cabbage reared) 154

Contents

effect of larval food plant on egg laying preference by S. flava adult flies
(turnip reared)
effect of adult experience on feeding preference by S. flava
adult flies
effect of adult experience on oviposition preference by S. flava
adult flies
seasonal rainfall & relative humidity 169
seasonal temperature (max, mean, min)
weekly sampling of S. flava on Chinese cabbage by two
sampling methods
weekly sampling of S. flava on turnip by two sampling methods . 170
weekly sampling of S. flava adults and larvae on Chinese
cabbage
weekly sweep net sampling of S. flava on Chinese cabbage 172
percentage of leaf area mined for Chinese cabbage by S. flava 173
no. of S. elmoi & S. fuscitarsis captured by sweep netting 174
the effects of Scaptomyza leaf miner on Chinese cabbage and turnip
in laboratory (re: leaf area mined)
the effects of Scaptomyza leaf miner on Chinese cabbage
and turnip in laboratory (re: weight of leaves and bulb root) 180

Appendix:

Figs. 1-4:	phallic organs of the Scaptomyza species.	293
Figs. 5-6:	spermatheca, parovarium, ventral receptacle S. griseola, and S.	
	apicalis (flava)	293
Figs. 7-10:	posterior spiracles of 3rd instar larvae	294
Fig. 11:	wing indices of Scaptomyza and their dependence on the wing	
	length.	295
Fig. 12:	frequency of Scaptomyza pallida and S. graminum during	
	collecting periods.	296
Figs. 13-17:	male genitalia of Parascaptomyza species	302

xiv

Contents

Figs. 18-26:	male genitalia of Scaptomyza species	302
Figs. 27-38:	male genitalia of Scaptomyza species	303
Figs. 39-44:	male genitalia of Scaptomyza species.	304
Figs. 45-48:	genitalia of Scaptomyza australis from newly discovered	
	distributions	305
Figs. 49-54:	wings of the Scaptomyza species	314
Figs. 55-56:	head of the Scaptomyza species	314
Fig. 57:	some characters of the family Drosophilidae (holloway, 1990)	316
Fig. 58:	profile of scutellum (from the left side) of the Scaptomyza	
	species	317
Figs. 59-60:	acrostichal hairs on thorax of the Scaptomyza species compared	
	with Drosophila species (holloway, 1990)	318
Figs. 61-67:	male genitalia of Scaptomyza and Drosophila species	326
Figs. 68-81:	spermatheca of Scaptomyza and Drosophila species	327
Figs. 82-85:	testes and paragonia of Drosophila fenestrarum and Scaptomyza	
	species.	328

-

xv

LIST OF PLATES

Plate 1:	rearing cages	56
Plate 2:	adult female Scaptomyza flava (dark form)	59
Plate 3:	anaesthetic operation tools	65
Plate 4:	feeding punctures of S. flava in leaves of Chinese cabbage	70
Plate 5:	single egg of Scaptomyza flava	73
Plate 6:	eggs laid in leaf tissue	73
Plate 7:	larvae of Scaptomyza flava	75
Plate 8:	blotch mines on Chinese cabbage leaves	77
Plate 9:	increasing severity of damage on leaves of Chinese cabbage by	
	Scaptomyza flava	77
Plate 10:	blotch mines on cauliflower leaves	78
Plate 11:	blotch mines on turnip leaves	78
Plate 12:	plants of Chinese cabbage undamaged and heavily damaged by	
	Scaptomyza flava	79
Plate 13:	pupa of S. flava	82
Plate 14:	small cylindrical oviposition cages (foreground)	95
Plate 15:	comparison between feeding punctures with male and female S .	
	flava	109
Plate 16:	cylindrical cage used for choice tests	120
Plate 17:	square cage used for non-choice tests	120
Plate 18:	area meter Mk2	185

Appendix:

Plates 1-2:	ovipositor of female S. flava	319
Plate 3:	external male genitalia of S. flava	320
Plate 4:	proboscis of adults S. flava	321
Plate 5:	longitudinal rows of acrostichal bristles S. flava	322

xvi