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Abstract 

Massey University 
Library 

This paper demonstrates the development and application of a corporate Value-at­

Risk model. Using the RiskMetrics Group 's CorporateMetrics as a starting point we 

show how the framework can be modified to meet the specific needs of Fonterra 

Cooperative, a major New Zealand dairy exporter. We develop a Monte-Carlo 

simulation model that uses univariate ARIMA and multivariate Vector Error 

Correction (VECM) forecast models to estimate the Value-at-Risk on Fonterra Group 

Treasury's interest rate and FX hedge portfolio over a 15-month period. 
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1 Introduction 

In today's environment of volatile financial markets and rapid globalisation, risk 

management has become a crucial element in the success of any organisation. Over 

the last three decades, high volatility as a result of floating exchange rates, interest 

rate instability and fluctuating commodity prices, coupled with the subsequent 

explosion in financial derivatives has led to the need for a simple, easy to understand 

risk measure (Dowd, 1998). The well publicised and oft quoted collapse of such 

financial giants as Barings Bank, Metallgesellschaft and California's Orange County 

only serve to hammer home the need for some measure to quantify firm-wide risk that 

is accessible both to management and shareholders. 

One such measure is value at risk (VaR). Since its inception in the late eighties and 

early nineties, value at risk has become the de facto standard for risk measurement in 

financial institutions (Jorion , 1996). Value at risk allows firm-wide market risk to be 

summarised as a single number, expressed as the maximum loss expected over a fixed 

period at a given probability level. Since VaR was fom1alised in a practical sense by 

JP Morgan's RiskMetrics in 1994, an expansive body of academic literature has 

developed. However, the majority of such research has focused on VaR applied to 

financial institutions as a measure of the short-term potential loss on a portfolio of 

financial instruments (Lee, 1999). Recently there has been increased interest in 

applying a VaR type measure within a corporate environment. In such a setting VaR 

is complicated by the inclusion of business risk and the need to work to a long time 

horizon. Because of these added complications, applying a VaR type measure within a 

corporate setting is a much more firm-specific exercise than traditional portfolio VaR. 

Although the recent creation of the CorporateMetrics framework by the RiskMetrics 

group seeks to simplify this task, the onus remains on the company to identify the 

unique risks facing it and to link these to financial performance measures. In this 

paper we demonstrate how the CorporateMetrics approach can be tailored to fit the 

needs of a specific company. We find that, given limited data and a long-term forecast 

horizon, the forecast framework utilised by CorporateMetrics is inappropriate for our 

project. Instead, we focus on one particular long-run, multivariate forecast model -
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namely the Vector Error Correction Model (VECM) - described in LongRun, 

CorporateMetric's companion forecasting technical document (Kim, Malz and Mina, 

1999). We extend the model by allowing the user to choose to use normal ly 

distributed or bootstrapped residuals as the stochastic error term within the Monte­

Carlo s imulation. 1 n addition, we also fit uni vari ate ARI MA models to each of the 

data series. T hese provide a base case against which we can determine the extent to 

w hi ch the inclusion of additional variab les and use of cointegrating relationships in 

the forecast model improve out-of-sample forecast accuracy. The flexibility in model 

choice al lows end users to gain at least a qualitative fee l for the level of model risk 

inhere nt in the simulation. 

The company used as an example throughout this project is Fonterra Cooperative. 

Fon terra is the world's second largest exporter of dairy products (after estle) with an 

annual turnover of USO 6.8 bil lion, sing le-handedl y generating a staggering 20% of 

New Zea land 's export receipts and 7% of the GDP. As a result, understanding the 

impact of changes in market rates on Fonterra 's profitabi li ty is vital - not just for the 

13,000 farmer shareholders who coll ective ly own the company - but also for the ew 

Zealand economy as a whole. Fonterra has recogn ised the need to quantify its 

exposure to changes in the NZDUSD exchange rate, NZ interest rates and world 

commodity prices in a single firm-wide measure appropriate for reporting at all levels 

of manage ment. VaR1 is the natural choice. 

The aim of this project is two-fo ld . Firstly, we seek to provide a comprehensive 

li terature review of the current state of VaR. Over the past decade VaR has become 

one of the most researched topics in ri sk management literature and as such a vast 

number of alternative techniques have been developed . Given the plethora of VaR 

techniques we think that it is important to outline the numerous methods available, 

with particular emphasis on the assumptions and drawbacks of each. Secondly, we 

develop a VaR model for Fonterra Cooperative and implement it in VBA/Excel. This 

model serves to illustrate the problems of developing a VaR model w ithin the 

1 We use the term VaR loosely throughout this project to refer lo any YaR type risk measure such as 

cash-flow al risk (CFaR) and earnings per share a t risk (EPSaR). 
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constraints of a real-world corporate setting. Many of the techniques described in the 

first section become unrealistic within a practical setting. Our work serves to 

demonstrate the assumptions and simplifications that must be made - and, more 

importantly, the implications of them - when implementing a corporate VaR model. 

The primary complication that arises in applying VaR within in corporate setting is 

the addition of business risk to the risk management process. In a financial institution 

the goal is to measure the uncertainty smTounding the market value of a portfolio of 

financial instruments, so market risk is the primary concern. In a corporate, however, 

market risk and business risk are inextricably linked. 

For example, consider an appreciation of the NZD against the USD. A trading 

institution would be primarily concerned with the impact of the changing FX rate on 

the value of the financial instruments in its various trading portfolios. In contrast, an 

exporter such as Fonterra would be concerned not just with the effect such an 

appreciation would have on its FX hedges (market risk) , but also with the decreased 

competitiveness and subsequent potential reduction in volume of its exports to the US 

(business risk). 

However, the inclusion of business risk, which requires the development of firm-wide 

models, is an extension for future research. This project analyses the market risks 

facing Fonterra. This risk is in the form of a gain or loss on the Group Treasury hedge 

portfolio (consisting of foreign exchange and interest rate hedge instruments) over a 

long-term2 horizon. As such the project provides an in-depth look at the impact of 

market rate changes on Fonterra's profitability, while also providing a natural 

platform from which to launch later investigations into the impact of business risk. 

We also place little emphasis on the actual VaR numbers obtained. Given the fluid 

nature of Fonterra's hedge book we are content to outline the method behind the 

calculations without attempting to model all the intricacies of the hedge book. The 

2 Throughout this report we take long-term as referring to periods greater than one year. Given that the 

usual VaR horizon ofless than 3 month, this seems appropriate terminology. 
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primary aim of the second half of the project is to develop a working model for use by 

Fonterra Cooperative. As such, we are limited in the amount of historical backtesting 

and the extent to which we can verify the concordance of simulated and historical 

data. An in-depth analysis of the robustness of the model is left for further research. 

The the contribution of this project is to illustrate the process by which a VaR model 

can be developed within a corporate setting and provide Fonterra with a viable model 

for their risk management needs. 
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2 Literature Review 

A w ide body of academic YaR literature ex ists and indeed VaR is one of the most 

researched topics in modem financial ri sk management. T he bulk of this research 

however is focused on traditional VaR applied to the trading portfolios of financia l 

instituti ons. It is only more recentl y that YaR has began to be extended to other risk 

management applications including, credit risk and corporate VaR. onetheless, 

because the concepts beh ind YaR are so similar across different applications, 

particularly with respect to the mathematics and performance testing, the YaR 

lite rature provides a sound platform for beginning an analys is of corporate VaR. 

2.1 VaR concepts 

For a broad, a lbeit somewhat outdated, overview of the basic concept of YaR see 

Dowd ( 1998), Jorion ( 1996) or Pan (1997). ln simple terms YaR is the maximum 

amount we wou ld expect to lose over a given time hori zon at a given confidence 

level3. 

VaR has a number of oft-c ited advantages. The first is that VaR provides a common 

yardstick across different ri sk factors (Dowd, 1998). A VaR number on an equity 

pos ition is directl y comparable to a VaR figure on a deri vatives postion, thus YaR 

provides a consistent and comparable risk measure. In addition YaR summarises 

complex risk exposures in a single concrete number that is accessible and 

understandable to a ll levels of the organisation . With increasingly esoteric derivative 

products, that are often far beyond the understanding of senior management, the 

importance of a clear and concise measure of risk should not be underestimated. 

Of course, YaR also has its limitations. Dowd ( 1998) points out several primary 

concerns. Foremost of these is that any YaR system is inherently backward looking; 

that is, past losses are used to forecast future losses. The assumption that past 

3 For example, a 95% VaR of 18 million over a time horizon of one week can be interpreted as follows: 

the maximum amount we would expect to lose 95% of the time on the given portfolio over a one week 

period is 18 mi ll ion. 
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behaviour is a good predictor of the future is particularly dubious where VaR is 

concerned since by definition we are concerned with abnormal events. Extreme 

events, such as a total market crash, may not even appear within the historical period 

used to estimate the VaR model, and yet it is these events with which we should be 

most concerned. One needs on ly to look at the fall of Long Term Capital 

Management to see vivid ly illustrated the consequences of overlooking abnormal 

events. Secondly any VaR number is entirely contigent upon the models used and the 

assumptions made. This shou ld come as no surprise, these are fundamental limitations 

of any measurement framework. The problem with VaR is that in presenting a single, 

seemingly indisputable number, it becomes easy to forget that the apparently concrete 

number is the result a multitude of assumptions and approximations. Dowd (J 998) 

suggests that the answer is not to discard YaR, but to be clearly aware of the 

assumptions upon which the particular VaR model is built. 

Essentially VaR methodology can be broken down into three main categories, namely 

the variance-covariance method, the historical simulation method and the Monte­

Carlo simulation method. We will look at each method in tum. 

2.2 Variance-covariance 

The variance-covariance method 1s arguably the most simplistic approach to 

computing VaR. This approach is based on the assumption that asset returns are 

normally distributed. Such an approach bas two key advantages. First, calculating a 

VaR number from a normal distribution is a trivial exercise (see, for example, Dowd 

(1998) or Jorion (1996)) and second, it is very informative4
. However, the assumption 

of normality is dubious at best. Much research exists indicating that this is not the 

case, for example, often asset returns demonstrate excess kurtosis or "fat tails". 

Similarly the method assumes returns are a linear function of normal risk variables 

which is clearly not the case for instruments such as options. 

Current research focuses primarily on addressing the dual problems of non-normality 

and non-linearity. One path ofresearch looks at accommodating non-linearity through 

4 That is, obtaining a VaR figure for a given confidence level and holding period tells us the VaR for all 

combinations of holding periods and confidence level (Dowd, 1998, p. 64). 
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higher-order approximations such as the Delta-Gamma (second order) methods. 

Wilson (1994) proposes finding VaR as the solution to a corresponding optimisation 

problem using second order approximations. However, Wilson 's approach can be 

very inaccurate. As a result Jamshidian and Zhu (1996) suggest using market delta 

and gamma to simplify calculations while Fallon (1996) app li es a non-linear 

econometric procedure to estimate non-linear relationships. Several papers also 

examine the use of higher moments in VaR calcu lation such as Zangari who adjusts 

the confidence level for skewness (l 996d) and investigates estimating the first four 

moments of the returns distribution and then fitting these to a known distribution 

(1996c). 

Other research focuses on the problem of fat-tails. Zangari (1996a) and Yenkataraman 

(1997) apply a normal mixture approach while Zangari (1996b) proposes the use of a 

general ised error distribution . 

2.3 Historical simulation 

The hi storical simulation (HS) methodology makes the implicit a sumption that the 

historical distribution of asset returns are a good proxy for the di stribution of asset 

returns in the next period (Dowd, 1998). Under the broad banner of HS a plethora of 

methods have been developed to improve the basic methodology. 

Hendricks (1996) provides a comprehensive assessment of basic historical models. 

More recent innovations include Hull and White (1998), who propose the use of using 

GARCH models to scale the historical returns used in forecasting to better reflect 

current market volatility. Other examples of more recent research include the use of 

kernel quantile estimators in HS (Butler and Schachter, 1998), and the use of a 

generalised error distribution model for weighting historical returns (Lin and Chang­

Cheng, 2003). 

Contemporary research in the area revolves around computationally intensive 

algorithms for computing HS VaR for large portfolios of assets. See, for example, 

Audreno and Barone-Adesi (2002) who use a functional gradient descent algorithm to 

compute YaR for a large portfolio of stocks. Of course it is vital to understand the 
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shortcomings of each method. Pritsker (2001) carries out a comprehensive review of 

some of the currently favoured HS techniques and finds a number of shortcomings. 

2.4 Monte-Carlo simulation 

A Monte Carlo (MC) simulation approach to VaR involves estimating VaR from 

simulation results obtained from mathematical forecast models. The techniques tend 

to follow the same general methodology, namely: select a model to describe the future 

behaviour of the variable (e.g. GARCH, random walk, Markov chain, etc.), estimate 

the parameters for the model from historical data, construct price paths using random 

numbers to obtain a distribution at each point in time and use this to estimate a VaR 

number. 

The most well known, and certainly the most influential, Monte-Carlo implementation 

is that of RiskMetrics (see Morgan Guaranty Trust Company ( 1996) and Mina and 

Xiao (2001 )). The RiskMetrics approach forms the cornerstone of VaR calculations 

within many financial institutions5 and it is worth briefly reviewing it here. The 

RiskMetrics approach uses a random walk model for the log-price of each finan cial 

instrument, that is the log-price at time t is given by 

where p
1 

= ln(P,). Since r
1 

= ln(}l_J = ln(P,) - ln(P,_1) = p
1 

- p,_1 it follows that 
P,_I 

r, = µ + a-
1
&

1
• RiskMetrics makes the further assumption that the mean return, µ , is 

zero. An implication of the model is that the variance is a linear function of time, thus 

the daily standard deviation can be scaled up by the square root of time to obtain the 

standard deviation over the longer time period. Thus the price for asset i at time t is 

given by 

Eu~ N(O,l). 

5 Indeed, the introduction of Basel Committee on Banking Supervision requirements in 1996 requires 

standardised YaR calculations. 
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At each time horizon the error terms for each asset are drawn from a multivariate 

normal distribution (MVN)6 taking into account the historical correlations between 

the variables. The variance is all owed to change, at each point in time the variance 

and correlations are forecast using exponentially weighted moving averages7
. The 

fundamental assumption of the RiskMetrics model is that returns are conditionally 

normally distributed, that is the returns are normally distributed conditional on the 

variance . Appendix A and B of the RiskMetrics Technical Document (Morgan 

Guaranty Trust Company (1996, pp. 227-242)) exp lores the assumptions behind the 

RiskMetrics model and how they might be relaxed. Mina and Xiao (2001) revisit the 

RiskMetrics model from the standpoint of the severa l additional years of development 

and discussion. 

Since RiskMetrics much of VaR research has focused on the Monte-Carlo approach. 

In general such simulations are computationally intensive and almost all research in 

the area focuses on reducing computational complexity. Pritsker (1996) proposes a 

"grid MC" whereby the portfolio is mapped onto a grid of factors for which price 

paths are computed reducing the number of simulations. Clewlow and Caverhill 

( 1994) and Boy le, Broadie and Glasserman ( 1997) achieve success in reducing 

computation time through the use of variance reduction techniques. 

Quasi Monte Carlo (QMC) simulation is also the subject of much research. Instead of 

using pseudo-random numbers, which are often clustered close together, QMC takes 

numbers that are evenly and uniformly distributed in the domain8
. Dowd ( 1998) lists a 

multitude of papers making a contribution in this area; including Boyle et al. (1997), 

Owen and Tavella (1996), Brotherton (1994), Joy, Boyle and Tan (1995), Paskov and 

Traub (1995) and Papageorgiou and Traub (1996) among others. Further advances in 

6 
That is&, = MVN ( 0, L.,) where &, = [ &1 ·' £ 2,, • • • c N ·' J and L:, is the variance-covariance 

matrix and time t. 

7 The RiskMetrics Technical Document also explores alternative methods of forecasting variances and 

covariances such as GARCH. 

8 This avoids the inefficency that results when two random numbers very close together are selected 

leading to almost identical price paths. Such a situation effectively means that little information is 

added for an additional computation step. 

15 



efficiency are made by Moskowitz and Caflisch (1995), Neiderreiter and Xing (1995) 

and Tezuka (1994) . 

2.5 Validation and backtesting 

Any VaR model is subject to both random error and possible systematic bias. As a 

result the backtesting and validation of a VaR model against historical data is 

essential. A number of VaR evaluation methods have developed over time in an 

attempt to improve on earlier methods , all of which have specific drawbacks. Early 

methods developed by Kupiec (1995) are based on a binomial assumption and look at 

whether VaR estimates exhibited correct unconditional (average) coverage. However 

such methods fail to test whether a model is accurate at any given point in time, i.e. 

they do not test for correct conditional coverage. 

Christoffersen ( 1998) introduces an interval forecast method which tests for correct 

unconditional and conditional coverage. However, Cmkovic and Drachman (1996) 

and more recently Berkowitz (200 1) point out that interval forecasts, such as that of 

Christoffersen (1998) do not utili se all available information (since they look only at 

exceptions and do not backcheck the model at every percentile) and thus require large 

samples to obtain sufficient data for backtesting. Crnkovic and Drach man ( 1996) and 

Berkowitz (2001) develop density evaluation techniques in an attempt to overcome 

this problem. 

All the aforementioned techniques are based on a hypothesis testing framework and 

generally have relatively low statistical power. An alternative is presented by Lopez 

(1996), who proposes a method based on standard probability forecast evaluation 

techniques instead. 

2.6 Corporate VaR 

There is a small, but growing, body of literature on VaR techniques applied in a 

corporate setting. Techniques such as CFaR applied in a corporate setting are 

increasingly being discussed in practitioner publications such as Financial 

Engineering News and International Finance & Treasury. See, for example, Ripp and 

Cohn (2001), Pitt (2001) and Stein, LaGattuta and Youngen (2000). The CFaR 
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concept 1s originally attributed to the National Economic Research Associates 

(NERA), a consultancy firm who have produced a number of publications on its use9
. 

By far the most comprehensive treatment thus far of the concept is the Ri skMetrics 

Group's CorporateMetrics (Lee, 1999). CorporateMetrics is a comprehensive 

framework for extending the VaR concept to corporate cash flows or earnings. Along 

with LongRun (Kim, Malz and Mina, 1999), the companion long-term forecasting 

framework, CorporateMetrics represents a foundation for extending VaR to 

corporates. It is particularly relevant here because it high lights many of the problems 

inherent in translating VaR to a corporate setting. For example, in contrast to a 

financial institution, where market risk (exposure to foreign exchange, interest ra te 

and commodity price changes) is the primary concern, corporates are exposed to both 

market ri sk and the business ri sk 10 associated with their speci fi c operati ons. In 

addition, the level of market risk is a fun ction of business risk, making ri sk 

management a far more complex ta sk (Lee, 1999). For example, in Fontena 's case a 

change in the ZDUSD exchange rate wi ll not only lead to a ga in/loss due to its 

foreign exchange hedges (market risk), but could al so effect sales volume in the US as 

the re lative competiti veness o f its products in the US changes (business risk). 

Corporate Mctrics does not attempt to mode l business ri sk, rather it seeks to provide a 

consistent framework for quantifying the impact of market risk on the operati on of a 

co1-porate. The process is divided into fi ve dis tinct s teps (as summarised in Lee ( 1999, 

p. 28-29)). The first step is to decide on the metric specification, that is, the risk 

measure to calculate (CFaR, EaR, VaR, etc.), the time horizon and the confidence 

level. T he next step involves the development of "exposure maps" that link the 

changes in market rates through to the financial resul t of interest. These exposure 

9 For example Guth (2002). 

10 Lee ( 1999, p. 5) defines business risk as the "uncertainty of future financial returns related to the 

business decisions that companies make and to the business environment in which companies operate". 

In contrast market risk is defined as " the uncerta inty of future financ ia l results that arises from market 

rate changes". 
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maps might take the form of a simple formu la or a complex set of forecast financial 

statements 11
• 

Once the exposure maps arc in place, long-nm forecasting methodologies are applied 

to forecast the di stribution of each market rate at each time horizon. CorporateMetrics 

makes use of two forecast methods. The first method uses current market information 

su ch as forward and future prices and known relationships between them to forecast 

the future prices. Implicit in the method is the assumption that market expectations of 

future prices a re embedded in current prices. In cases where there is a lack of relevant 

market data, such as for forecasts greater than two years, CorporateMetri cs uses 

econometric time series models in an attempt to capture the long-run relationshi p 

between variables. 

Price paths a rc then obtained by sampling from the forecast distributions at each time 

horizon, taking into account the hi storical correlation between variables . In the fourth 

s tep each scenario is iteratively input into the exposure maps to generate a di s tribution 

of the financial results. Finally, in s tep fi ve the simulated di stribution of the financia l 

result is used to calculate the desired VaR fi gure . 

2.7 Long-run forecasting 

G iven the pivotal role of forecasting in economics and finance, it is not surpri sing that 

the long-run forecasting of economic and financ ial time-series is a heavily researched 

area. In this secti on we focus on alternative models that have been proposed for the 

forecasting of foreign exchange rates, interest rates and commodity prices. 

2.7.1 FX rate forecasting 

Since introduction of flexible exchange rates m the mid-l 980s the forecasting of 

foreign exchange rates bas become an increasingly important topic. Much of this 

research has centred around the question of whether floating exchange rates are non­

stationary or w hether they exhibit mean reversion in the long-run, an issue of vital 

11 For example, the NZDUSD exchange rate may be linked to the final Fonterra milk payout figure via 

a complex series of forecast financial s tatements. Simulated NZDUSD rates fed into the statements as 

inputs would then feed through to impact on the mi lk payout figure. 
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importance when forecasting. The theory of Purchasing Power Parity (PPP) suggests 

that, in the long-run at least, flexible exchange rates will tend to be mean reverting 

(see Rogoff(1996) and Rose (1996)). Similarly, the argument that countries undertake 

monetary policy with the aim of maintaining a stable exchange rate (Sweeney, 2001) 

can be raised as a reason for expecting mean reversion. Yet despite these economic 

arguments many authors report a Jack of mean reversion. Roll ( 1979), Adler and 

Lehmann (1983) and Pigott and Sweeney (1985) all conclude that exchange rates 

under the managed float regime are essentiaJJy a random walk (Jorion and Sweeney, 

1996). This is somewhat surprising since, as Jorion and Sweeney explain, "the 

random walk hypothesis has the disturbing implication that shocks to the real 

exchange rate are never reversed, which implies that there is no tendency for 

Purchasing Power Parity (PPP), a fundamental building block of exchange rate 

models" ( 1996, p. 536). 

Given the lack of concordance of earlier studies with economic theory, a number of 

more recent studies look further into the issue. Huizinga (1987) finds that real 

exchange rates slowly revert to a wandering mean while Abuaf and Jori on ( 1990) 

reject the null of a unit root, albeit only over periods of many decades that span 

multiple exchange rate regimes. Jorion and Sweeney (1996) find strong evidence that 

exchange rates are mean reverting over the 1973-93 period using the multivariate 

framework developed in Abuaf and Jori on ( 1990). Rather than using the usual OLS 

regression test for stationarity 12 on each country individually, Jorion and Sweeney 

estimate the SUR system 

12 That is, for each country estimate R , =a +/JR 
1

_ 1 + µ 
1 

where Ru is the real exchange rate. 
1, I I I , 11 

Under the null of a random walk /J; = 1 while under the alternative of mean reversion /J; < 1. Because of 

the downward bias in /3; under the null , Dickey-Fuller critical values are used rather than the normal !­

statistic (Jorion and Sweeney, 1996). 
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where Ri.t is the real exchange rate and fJ is constrained to be equal across all 

regressions 13
. Abuaf and Jori on (1990) argue that the estimation of a system of 

equations should lead to more powerful tests and under the Jorion and Sweeney 

framework fail to reject the null of no unit root. They go on to examine the forecast 

abi lity of four alternative models and find that while in the short term a random walk 

model is about as good as the mean reversion model, over longer horizons the mean 

reversion model is substantially more accurate. 

Siddique and Sweeney (1998) provide a more in-depth look at the forecast 

performance of the Jorion and Sweeney (1996) mean reversion model relative to a 

random walk model. In a 12-month ahead forecast with a 10-year estimation period 

they find that the random walk model never outperforms the mean reversion model. 

More recently Sweeney (2001) looks at mean reversion in G-10 nominal FX rates and 

finds further evidence of mean reversion. Again, he goes on to show that in out-of­

sample forecasts mean reverting models outperform random walks on average. It is 

worth noting at this stage that for our purposes whether or not exchange rates are 

stationary is not important. What is important is how well the alternative models 

perform in out-of-sample tests. Campbell and Perron ( 1991) argue that the choice 

between treating a series as stationary or not should not necessarily depend on the 

actual stationarity of the series, but rather on the application in mind. 

2.7.2 Interest rate forecasting 

Having examined various long-run forecasting methodologies for exchange rates we 

now tum our attention to similar models for interest rates. Given the regulatory 

environment in which interest rates are determined we would expect such rates to 

exhibit mean reversion in the long-run. 

Extensive literature exists m the area of interest rate models, for example Chan, 

Karolyi, Longstaff and Sanders (1992a) point to the following papers: Merton (1973), 

Brennan and Schwartz (1977, 1979, 1980), Vasicek ( 1977), Dothan (1978), Cox, 

13 In this model R;• = ___5__ is the long-run equilibrium rate and (1-/3) is the common speed of 
1- /3 

adjustment to equilibrium across the exchange rates. 
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Ingersoll and Ross (1980, 1985), Constantinides and Ingersoll (1984), Schaefer and 

Schwartz (1984), Sundaresan (1984), Feldman (1989), Longstaff (1989a), Hull and 

White (1990), Black and Karasinski (1991) and Longstaff and Schwartz (1992). 

Chan et al. ( l 992a) bring together much of the earlier work in interest rate modelling. 

They consider eight alternative continuous time short-term interest rate models, all of 

which are shown to be special cases of a discretised approximation to a single 

stochastic differential equation 

dr = (a + /Jr)dt +ar r dZ 

where r is the interest rate, t is time and dZ is a Weiner process. Eight models well 

established in literature are nested within this differential equation: 

1. Merton (1973) 

2. Vasicek (1977) 

3. Cox, lngerso ll , Ross (1985) 

4. Dothan ( 1978) 

5. Geometric Brownian Motion 

6. Brennan, Schwartz ( 1979) 

7. Cox, Ingersoll , Ross (1980) 

8. Constant Elasticity of Variance 

The differential equation is discretised as 

r,+1 - r, = a + /Jr, + & 1 

dr = adt + a-dZ 

dr =(a+ /Jr)dt + a-dZ 

dr =(a+ /Jr)dt + m- 112 dZ 

dr = ardZ 

dr = /Jrdt + m-dZ 

dr =(a+ /Jr)dt + ardZ 

dr = ar 312dZ 

dr = /Jrdt +arr dZ 

and the parameters are estimated by the Generalised Method of Moments (GMM) of 

Hansen (1982). They then test the explanatory power of the various models as well as 

the forecast performance on US interest rate data. Overall they find that the models 

that best capture the dynamics of short-term interest rates are those that allow the 

volatility of interest rate changes to be sensitive to the level of the risk free rate. Tse 
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(1995) extends the methodology of Chan et al. (1992a) to 11 different countries and 

shows that no single model satisfactorily describes the stochastic structure of interest 

rates for all countries. 

2.7.3 Commodity price forecasting 

The literature on long-run modelling of commodity prices is much less developed. 

Tomek (2000) provides an excellent overview of the state of commodity price 

modelling, illustrating and commenting on problems - some of which are unique to 

commodity prices - that arise. A rather haphazard array of different models has been 

applied to commodity prices, necessitated to a degree by the non-uniformity of the 

various commodities . Some look at time series approaches such ARIMA and GARCH 

models while others apply general equi librium models built on an economic 

framework. For example, Yang and Brorsen (1992) fit Mixed Jump Diffusion, 

GARCH and Detem1inistic Chaos models to the daily prices of seven agricultural 

commodities and show that the GARCH model is preferred for exp laining the 

dynamics of dai ly prices . Myers (1994) and Myers and Tomek ( 1993) look at 

commodity prices from an econometric standpoint. In contrast Deaton and Laroque 

(1991) apply a rational expectations competitive storage model to 13 commodities in 

an attempt to explain the high level of autocorrelation and occasional violent price 

explosions often observed in commodity price series. Jesse (2002) proposes a 

systematic, user-friendly process by which future milk prices can be forecast. The 

method has a practical focus and is laid out as a step-by-step in which milk prices are 

derived from forecasts of milk production levels. The papers mentioned illustrate the 

widely different viewpoints from which commodity price research is approached, one 

of the main reasons for the lack of standard forecasting methodologies. 

2.7.4 Time series models 

We have looked at models developed specifically for a particular economic time 

series. Before closing we briefly touch on some more generalised statistical time 

series modelling methods. An advantage or pure time series models is that they can be 

applied consistently across a wide range of time series without the need to specifically 

consider the dynamics or underlying economic rationale behind each individual series. 

Box and Jenkins (1976) describe the traditional ARIMA methodology for fitting 

univariate autoregressive and moving average models to time series. 
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A primary concern with respect to VaR is how to model the co-movement between 

relevant variables. Two models that do so are the Vector Autoregressive Model 

(V ARM), in which each variable depends on past values of other variables in the 

system as well as its own past values, and the Vector Error Correction Model 

(VECM), which models long-run equilibrium relationships between variables (Kim, 

Malz and Mina, 1999) . We explore statistical modelling techniques in more depth 

later within this report. Examples of VECM modelling can be found in Fisher, Fackler 

and Orden (1995), who model the interaction between money, prices and output in 

New Zealand using a VECM model , and Fisher (1996), who examines dynamic 

interactions between the exchange rate, domestic price level and terms of trade in 

Australia and New Zealand. 
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3 Methodology 

3.1 Overview 

In this section we outline the methodology behind the Fonterra Value-at-Risk model. 

Particular emphasis is placed on why we select the model that we do. With this in 

mind we begin by briefly looking at the problems associated with alternative VaR 

models . 

Since its inception at JP Morgan in 1994, the RiskMetrics framework (see Section 

2.4) has become the industry standard for VaR calculations within trading institutions. 

However, we have already noted that the RiskMetric model has significant drawbacks 

when we move from a financial institution to a corporate, primarily relating to the 

complex interaction between business and market risks . In addition to this over-riding 

concern, which here is somewhat mitigated by the fact that we limit the scope of the 

investi gation to market risk alone, the RiskMetrics approach suffers from more 

specific problems in our context. 

Firstly, the RiskMetrics model assumes that the log prices of financial instruments 

follow a random walk; that is , log daily price changes (returns) are independent. This 

is generally a reasonable assumption for daily prices over the short time frames 

typically associated with VaR (usually less than three months), since such changes are 

effectively random. However, we are concerned with monthly prices over a long-term 

timeframe (greater than one year). Given the long-term trends inherent in foreign 

exchange and interest rate series, monthly returns are likely to exhibit significant 

autocorrelation. Indeed, we find evidence that this is the case. The random walk 

model does not provide the best explanation for the long-term dynamics of financial 

returns over long horizons (Kim, Malz and Mina, 1999). 

Secondly, the RiskMetrics model assumes that the mean return is zero. This 

assumption has little impact over short-term horizons but is untenable over longer 

horizons. Finally, in the RiskMetrics model the variance is a linear function of time 

with the implication that the daily standard deviation can be multiplied by the square 
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root of time to obtain the standard deviation for a longer period (Kim, Malz and Mina, 

1999). Again, this "scaling up" approximation is inappropriate when dealing with 

longer horizons. 

The RiskMetrics group's CorporateMetrics (Lee, 1999) seeks to address the issues 

inherent in extending VaR to a corporate setting. While CorporateMetrics offers a 

comprehensive framework that goes a long way towards solving the problems of 

corporate VaR, a number of issues render it inappropriate for our purposes. As we 

have seen, CorporateMetrics utili zes long-term forecast models to forecast the 

distribution of returns at each time hori zon. Price paths are then generated by 

sampling from these forecast distributions taking into account the historical 

correlation between variables. The model used to forecast the mean price and variance 

at each time hori zon varies. At shorter time horizons extensive use is made of current 

market inforn1ation14
, based on the rationale that market expectations of future prices 

are embedded in current spot and derivative prices (Kim, Malz and Mina, J 999). ln 

this regard problems arise with respect to the Fonterra VaR model. Such a forecasting 

methodology requires extensive market data such as option prices and forward rates, 

data which Fonterra does not have readily available. Even if procedures were put in 

place to obtain necessary market data 15 the forecast methodology effectively applies 

only to traded financial instruments. A Jack of derivatives or other instruments on 

Fonterra's commodity prices means that this method is not applicable. On top of these 

data difficulties, the plethora of different forecast models required is impractical for 

this project. The CorporateMetrics approach necessitates not only the use of different 

models for different instruments, but also different models for different forecast 

horizons 16
. Thus the CorporateMetrics approach is both too data intensive and too 

model intensive for out purposes. 

14 For example, the volatility forecast for a particular instrument might be obtained from the implied 

volatility of options on that instrument. 
15 For example, import from Reuters or purchase from RiskMetrics. 
16 While market data may be used to estimate the mean return in one year's time, the mean return in 

two year's time might be estimated using a VECM model or an economic equilibrium model. Loosely 

speaking there is a trade-off between the forecast accuracy obtained by using a greater number of 

models and the additional model risk that increasing the number of models entails. 
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What we reqmre 1s a modelling methodology that takes into account the 

autocorrelation in monthly returns, requires minimal data (ideally we would like to 

use only the time series that we wish to forecast themselves) and takes into account 

the relationship between the series. One method might be to estimate multivariate 

regression models using lagged values of economic time series as predictors in an 

attempt to determine the long-term relationships between variables. However, as we 

will show, the variables in question exhibit non-stationarity and therefore 

relationships estimated by OLS are likely to be spurious (Granger and Newbold, 

1974). 

Univariate time series models, such as ARIMA models, fit the first two criteria. Such 

models are easy to estimate 17 and require only past observations of the variable to be 

forecast. However, ARIMA models do not explicitly account for the correlation 

between variables, although they do so implicitly (since past realisations of the 

variable being modelled, from which the ARIMA model is estimated, depend on the 

value of other variables). 

An alternative to univariate time series models is the vector error correction model 

(VECM). In cases where variables are cointegrated it is possible to estimate a VECM 

model that models the long-run relationship between non-stationary variables. The 

VECM model meets all our criteria: it requires data only for the series being forecast, 

it models the autocorrelation and its forecasts take into account the long-run 

relationships between variables. Of course, the existence of a VECM model is 

conditional on the presence of a cointegrating relationship between variables. For this 

reason we estimate ARIMA models for all variables and VECM models where 

possible. We then assess the forecast accuracy over a 12-month hold-out period for 

both models. The ARIMA models provide a base case against which the forecast 

accuracy of the VECM models can be assessed 18
. In the final VaR model we give the 

17 Most statistical packages, for example SAS and Minitab, allow for the easy estimation of ARlMA 

models. 
18 ln a sense, the difference in forecast accuracy between the ARlMA and VECM models is the extent 

to which the relationship between variables aids in forecasting. lf the VECM models outperform the 
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user the option of choosing the forecast model, thus providing a rough means of 

assessing the model risk. A large difference in the VaR figure generated using 

alternate models is indicative of a high degree of model risk (since the result is not 

robust to model choice). 

One final comment is worth making here. Pure time series models may seem nai've in 

that they do not specifically seek to model the dynamics of market rates based on 

theoretical economic relationships. Instead, they rely entirely on estimating a 

statistical relationship from historical data. While this is certainly a valid criticism, 

there are good reasons for our choice. We have already looked at different forecast 

models developed specifically for foreign exchange and interest rates, for example, 

the mean-reverting Siddique and Sweeney (1998) model for exchange rates 19 and the 

Vasicek (1977) and Cox-Ross-Ingersoll (1985) models for interest rates. 

One problem with using these models is simply the number of different models that 

must be estimated. Not only are the models different, but the method of estimation is 

also different. For example, one might be estimated via the generalised method of 

moments (GMM) while another could be estimated using maximum likelihood. As 

well, no similar models based on economic fundamentals have been developed for 

commodity prices. 

In addition, while these models have been applied extensively to exchange and 

interest rates individually, it is more difficult to determine how to incorporate 

correlations between rates into the separate models. Like the univariate ARIMA 

models, no account is made for relationships between variables. Having said this, 

however, it should be possible to incorporate such correlation information via the 

stochastic error term in a Monte-Carlo simulation by drawing correlated random 

variables. Developing such an approach is an avenue for future research. 

ARIMA models then the long-term relationship between variables is important in forecasting and vice-

versus. 
19 In fact, the Siddique and Sweeney model is merely an AR(l) model, a special case of the general 

ARIMAmodel. 
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3.2 Data analysis 

Having outlined our general approach for developing the Monte-Carlo VaR model we 

now detail the specifics of the data analyses required to develop appropriate ARIMA 

and VECM forecast models. 

3.2.l Basic statistics 

We begin by computing basic statistics for the data senes to determine the 

unconditional normality, autocorrelation properties and correlation of return series. 

We employ three separate normality tests. The Anderson-Darling and Kolmogorov­

Smirov tests are ECDF (empirical cumulative distribution function) and chi -squared 

based test respectively, while the Ryan-Joiner test is co1Telation based. We compute 

the Durbin-Watson statistic to test for first order autocorrelation in the returns of each 

series. The presence of autocorrelation among monthly returns is of particular 

importance since non-independence of returns means the random walk model is 

inappropriate. Finally, we calculate the correlation coefficient between each of the 

return series to give an initial indication of the relationships between series. 

3.2.2 Stationarity 

The stationarity of a time series is vital in determining an appropriate model. Strictly 

speaking a time series is said to be stationary if the joint and conditional probability 

distributions of the process are independent of time; however, in most instances we 

are interested primarily in weak stationarity in which the mean and variance are 

constant over time and the covariance between two points depends only on the lag 

between those points and not on the point in time (Ellwood, 2000). More specifically 

the conditions for weak stationarity can be expressed as 

1) E[y,] = µ for all t, i.e. the mean is independent of time, 

2) var(y,) = a/ for all t, i.e. the variance is a finite constant, and 

3) cov(y,, Yi+k) = rk, i.e. the covariance between two points depends only on the 

lag between them and not on t. 

Time series that are non-stationary present difficulties with regards to econometric 

analysis since the normal properties of the least squares regression break down when 
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non-stationary time series are involved. Granger and Newbold ( 1974) describe and 

demonstrate the problems that can occur when one non-stationary time series is 

regressed on another. In such regressions the least squares estimator is not consistent 

and the conventional t and F test statistics are not distributed as t and F distributions 

when the null hypothesis is true, leading to apparent significant relationships where 

none exist (commonly referred to as "spurious regressions"). Since the usual 

properties of the least squares estimator break down when the time series involved are 

non-stationary, such series must be differenced to achieve stationarity before 

estimating regression models. 

To test for stationarity we apply the Augmented Dickey-Fuller (ADF) unit root test. A 

time series is said to have a unit root if it can be made stationary by differencing. The 

ADF test tests the null hypothesis that the series is difference stationary20
, i.e. has a 

unit root, versus the alternative that the series is trend stationary21
. We apply the 

Dickey-Fuller tes t based on three different models as described in Ellwood (2000): 

n 
(i) a zero mean model 6.z t = fJ z t-I + I fJ 6.z +et 

0 . I J t - J ; = 

n 
(ii) a single mean model & 1 =a + fJ zt 1 + I fJ .& . +et , and 

0 0 - . I J t - ; 
J = 

n 
(iii) a time trend model & 1 =a + a t +/J z t 1 + I p.6.z +e1 0 1 0 - . 1 J t - ; 

J = 

The test applied is the augmented Dickey-Fuller test22
. The relevant parameter in the 

above regressions is /Jo, the coefficient on z1-1. If fJ0=0 then z1 has unit root; that is, z1 

20 A difference stationary series is one that can be made stationary by taking the difference z, - z,_1. 

2 1 A series is trend stationary if it can be expressed in the form z,=f(t) + e, where e, - (0, a 2
) so that the 

residuals will form a detrended stationary series. 

22 Since the Dickey-Fuller test relies on the OLS estimation of model equation, the standard OLS 

assumption that the residuals e, are white noise applies. Any deviation from this will impact on the 

results of the test. For this reason the augmented Dickey-Fuller test adds additional lags of the 

difference with the aim of bringing the residuals closer to white noise . 
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can be made stationary by differencing. Estimating one of the equations above via 

OLS regression yields an estimate of /Jo along with its standard error. We can test the 

hypothesis that fJ0=0 by computing an appropriate t-statistic and comparing to the 

appropriate critical value in the Dickey-Fuller tables as outl ined in Ellwood (2000). 

Ellwood (2000) points out that the number of lags to be included in the ADF 

regression needs to be selected carefully. Too few lag terms yields residuals that are 

not white noise while too many lag terms impacts on the power of the unit root test 

due to few degrees of freedom (Enders, 1995, pp. 226-227). One means of 

determining the appropriate Jag is to set p =p 1110x , where P max is large enough to include 

the true p. The method is to test the significance of the coefficient on successively 

smaller lag terms from Pmax downwards until the coefficient is found to be 

significantly different from zero (see Ellwood, 2000, pp. 13-14). The first lag that has 

a coefficient significantly different from zero is selected as the lag length to use in the 

test. Alternatively an information criterion, such as the Akaike lnfom1ation Criterion 

(AIC), can be used to distinguish between models of different lag. Such criteria 

attempt to measure the explanatory power of alternative models whilst punishing for 

over-parameterisation. 

Ellwood (2000) also outlines a process for selecting between models (i) , (ii) and (iii) 

since once we have selected an appropriate lag length we need to choose the 

appropriate model. According to Bannerjee, Dolado, Galbraight and Hendry (1993, 

pp. 100) cited in Ellwood (2000), incorrect choice of model can invalidate standard 

inferences due to the presence of nuisance parameters in the data generating process. 

The procedure is to begin with the most general model (iii) and test the significance of 

the additional constant and trend coefficient to determine whether the model is 

appropriate, and hence whether the stationarity conclusion drawn from that model is 

meaningful (see Ellwood, 2000, pp. 16-17). 

3.2.3 Cointegration 

The concept of cointegration (Granger, 1981) is important in econometrics since it is 

linked closely to the idea of long-term equilibrium. In general, as we have discussed 

briefly, if two time series, x1 and y 1, are non-stationary then we must take differences 

30 



before attempting to model the relationship between them because of the dangers of 

spurious regressions. However, there exists a special case when a long-run 

equilibrium exists between Xr and Yr that allows us to model the relationship between 

the un-differenced (level) series. Because differencing removes all information 

contained in the level series, any long-run relationship between level series is lost. 

Cointegration means that we do not need to difference the data, thus the existence of 

cointegration means that we can model the long-run relationship between variables. 

If two time series Yr and Xr are non-stationary, but their first differences Yr-Yr-I and x,-x,_ 

1 are stationary, then y, and x, are said to be integrated processes of order 1, denoted 

1(1 ). In general when y, and x, are I(l), a linear combination y, - a - /Jx, = e, of y, and 

x, will also be 1(1). It is possible, however, that in some cases e, may be stationary, or 

1(0), if the trends in both series tend to cancel out. In such a case the variables are said 

to be cointegrated. In the two variable case, cointegration implies the presence of a 

unique long term relationship between y, and x,; however, when the number of 

variables is greater than two more than one such cointegrating relationship can exist. 

Thus in general cointegration implies the existence of at least one long-term 

equilibrium relationship between the variables. 

We test for cointegration usmg the maximum likelihood Trace Test proposed by 

Johansen ( 1988). The test is conducted by estimating a vector autoregressive (VAR) 

model by maximum likelihood under different assumptions about the number of 

cointegrating vectors23 r and then conducting likelihood ratios tests. The maximum 

likelihood Lmax(r) is a function of the cointegration rank r. Johansen's test is based on 

the log-likelihood ratio 

In( Lmax (r) J where r = k-1, ... , 1, 0 
Lmax (k) 

23 If a linear combination of variables is stationary then the vector of coefficients is called a 

cointegrating vector. For example if e, = z, - /Jo - /J1w, - /J2x, - /J3y, is 1(0) then the vector of coefficients 

( 1, -/30, -/Ji. -/32, -/33 ) is the cointegrating vector (see Thomas, 1997, p. 438). When more than two 

variables are cointegrated more than one such vector can exist. 
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and tests the null hypothesis that the cointegration rank is r against the alternative that 

the cointegration rank is k. 

The V AR(k) model used in the test is of the form 

where X, is an n x 1 vector of I(l) variables (Ellwood, 2000) . We can rewrite this 

using the difference operator V = 1- L, where Lis the Jag operator, so that 

where 

F; = - (1 - A
1 

- ••• - A;) for i = 1, 2, ... , k-1 

fl = - (J - A
1 

- ••• -Ak). 

The matrix fl contains all long-run information in X, since all the other terms are 

differenced and hence lose all long-run information. If we factor ll such that fl = a/J' , 

where a and fJ are n x r matrices, then the columns of fJ are the cointegrating vectors 

while the i'h row of a indicates the importance of each of these cointegrating 

relationship to the i'h series (see Ellwood, 2000, p. 21 ). The number of cointegrating 

vectors is determined by the rank of ll If r=n, then llis full rank and each series is 

stationary, i.e. any linear combination of the variables is stationary. If r=O then llhas 

rank zero and there are no linear combinations of variables that are stationary, i.e. 

there are no cointegrating vectors. Finally, if 0 < r < n then llhas rank r and there are 

r linear combinations of the variables that are stationary. 

It is important that the error terms for each series are white noise. Thus it is often 

necessary to change the number of lags included in the model to ensure that the 
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residuals are normally distributed and uncorrelated. We select the simplest model that 

satisfies these conditions at the 5% level. 

Johansen's approach has the advantage that it allows us to determine not only whether 

cointegration exists, but also the number of cointegrating vectors (Ellwood, 2000). 

Kasa ( 1992) points out that if there are r cointegrating vectors relating a set of n 

variables then there must exist n-r stochastic trends. A stochastic trend is a common 

trend among the variables. In general, the more cointegrating vectors that exist, the 

more inter-related are a set of variables. Likewise, the lower the number of stochastic 

trends, the more inter-related are the variables. For example, if five variables are 

explained by a single common trend they are highly inter-related. The factor loadings 

on each variable within the common trend are an indication of the importance of the 

trend on that variable. lf a common trend is relatively unimportant to a particular 

variable then that variable is more independent compared to the other variables. 

3.2.4 Forecast models 

We now describe the methodology employed to estimate and select appropriate 

forecast models. In this section we apply two different time series modelling 

techniques, namely ARlMA and VECM, to the data series and evaluate the forecast 

accuracy over a 12-month period. Model parameters are estimated using the period 

May-1995 to Jan-03, leaving the 12-month period Feb-03 to Jan-04 against which the 

accuracy of a 12-month forward forecast can be assessed. 

3.2.4.1 ARIMA models 

We first use the ARMA (or Box-Jenkins) approach to model each time senes 

individually. The Box-Jenkins approach is a generalized method for fitting models to 

time series in which the observed autocorrelation properties of the series are 

compared to the autocorrelation properties that would be generated by various 

theoretical series to assist in assigning a model (Box and Jenkins, 1976). The ARMA 

process applies only to stationary time series. ARIMA modeling is an extension of the 

ARMA process, the only difference being that the method is applied to a time series 

that has been differenced to achieve stationarity. 
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ARIMA models have the advantage that we reqmre only the past values of the 

variable in question to predict future values. Of course, this also excludes any 

potential improvement that including past values of other variables may make to the 

forecast. Nonetheless, ARIMA models have the advantage of simplicity and so 

provide a useful starting point for evaluating the alternative forecast models. 

If the series are first difference stationary, as we would expect, then the models will 

be of the form ARIMA(p, l ,q), where I is the level of differencing required to make 

the series stationary and p and q are the orders of the autoregressive and moving 

average components respectively. 

ln general we can write the ARIMA(p, l ,q) model as 

where \lz, = z, - z,_1 are the first differences which form a stationary series { \lz , }, a1 

are white noise disturbances and <h </;;, .. . , ¢p and 81, 82, ... , 8q are the coeffic ients of 

the autoregressive and moving average components respectively. More compactly in 

backshift notation 

In line with the standard Box-Jenkins, methodology the ACF (autocorrelation 

function) and PACF (partial autocorrelation function) are used to determine an initial 

model for each of the differenced series. Once a potential model is assigned the 

residuals are checked for autocorrelation using the Box-Pierce chi-squared test 

statistic at various lags. If the model successfully removes all significant 

autocorrelation from the residuals it is tentatively selected. We then over-fit using an 

ARIMA(p+ 1, l ,q) and an ARIMA(p, 1,q+ 1) model. If the additional coefficients, ¢p+ 1 

and 8q+J, are not significant the selected ARIMA(p, 1,q) model is deemed to be 

appropriate. In cases where higher order models also seem appropriate the most 

parsimonious model is selected. 
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In practice it is often difficult to determine an appropriate model from the behaviour 

of the ACF and PACF alone. In cases where more than one model may be appropriate 

we estimate the possible models and then compare the AIC statistic24
, the 

autocorrelation of the residuals, the significance of the estimated parameters and the 

MSE of each model to determine a preferred model. The assignment of ARIMA 

models is often a qualitative exercise at best so it is important that the selected models 

are tested for robustness . One means of doing so is to estimate separate ARIMA 

models in different sub-periods25
. If the models and coefficient estimates in each sub­

period are similar then we can be more confident that the model is robust. Here, 

however, we are constrained by a lack of data so we must be content with re­

estimating the models as more data becomes available. If the coefficient estimates do 

not remain stable over time then we are likely exposed to significant model risk. 

Two measures of forecast accuracy are computed, the mean average percentage error 

(MAPE) , which provides a measure of the average percentage error of the 12 forecast 

values, and the point forecast percentage error which is simply the percentage error 

between the 12 month forward forecast value and the realised 12 month forward 

value. Specifically the accuracy measures are computed as 

MAPE=-1 I IY, -Ji 1 x l00 
12 / ; T + I I Y, I 

Point Forecast % Error = I Yr+12 - lr+12 Ix 100 
I Yr+12 I 

where y 1 is the actual price,}; is the forecast price and Tis the number of observations. 

24 The AIC (Akaike Information Criteria) value is an indication of the fit of the model taking into 

account over-parameterisation, i.e. it selects the model with the minimum SSE while penalising for 

over-parameterisation. A lower AIC value indicates a better fit. 

25 Abauf and Jorion (1990), in an effort to model exchange rates, describe parameter instability as one 

of the primary drawbacks of autoregressive models. 
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3.2.4.2 VECM models 

Having developed forecast models for each variable in isolation we move on to look 

at multivariate models. One such model is the vector error correction model (VECM). 

Granger and Engle (1987) , in the Granger representation theorem, state that if a set of 

variables are cointegrated then there exists a valid VECM representation. Such a 

representation means that future changes in variables can be predicted by the 

deviatation from long-run equilibrium. In simple terms a VECM for two 1(1) 

variables, X1 and Y1 , can be expressed as 

where e, = y, _1 - a - /Jx, _1 , the deviation from the long-run equilibrium y , =a+ /Jx,, 

is 1(0) . Thus y1 depends on both past values of x 1 and the equilibrium error term e1. The 

presence of the equilibrium error term in the model acts to bring the model back 

towards the long-run equilibrium. For example, if e1 is positive then y 1_1 is above its 

equilibrium level of a - /Jx,_
1

. If A is negative then the next value.0.y, will be smaller 

so when y is out of equilibrium it will tend to move back towards equilibrium in the 

next period (see Koop, 2000) . Because VECM incorporate both the long-run and 

short-run properties of the relationship between variables it is a popular model. 

We first look at whether utiliz ing past values of other basic commodity price series 

(BCP) aids in the forecasting each individual BCP. Then, in cases where cointegrating 

relationships between BCPs and market rates where found to exist, we develop 

models in which exchange and interest rates are used to aid in the forecast of 

individual BCPs. Model fit is assessed by looking at the normality and autocorrelation 

of the residuals for each BCP price series, as well as the cross correlation of residuals 

between series. 

Once we have estimated appropriate models we compare the forecasting performance, 

using the measures outlined previously, over the same 12-month period as the 

ARIMA models. 
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3.3 VaR model 

3.3.1 Group treasury hedge portfolio 

Fonterra Group Treasury is responsible for hedging foreign currency inflows and debt 

book interest rate sensitivity. The hedge book consists of four main instruments, 

namely : FX forwards , NZD call options, interest rate swaps and cross currency 

interest rate swaps. 

Under traditional VaR the composition of the portfolio of financial instruments is 

assumed to be constant over the VaR time hori zon. This is a reasonable assumption 

when the time horizon is short, as is the case in a trading institution. A complication 

of calculating VaR over a long-term horizon is the fact that the composition of the 

portfolio of interest changes over the period. Thus it is necessary to model the 

evolution of Fonterra's hedge portfolio through time before a VaR calculation is 

possible. This is done on a monthly basis and is subject to a number of 

simplifications. 

The FX and interest rate portions are modelled separately based on the Fonterra 

hedging policy for each. Once the composition of the portfolio is known at each 

month in the time horizon we can calculate the gain/loss in each month due the 

difference between the realised market rate in that month and the hedged rate. The 

total hedging gain/loss over the time horizon is then simply the sum of these monthly 

gains and losses over the time horizon. The portfolio models are linked to a Monte­

Carlo simulation model (described in the next section) which generates price paths for 

each market rate using the estimated ARIMA and VECM models. Each simulated 

price path is fed into the portfolio model to calculate the total hedging gain/loss under 

that particular scenario. Repeated iterations generate a distribution of gains/losses on 

the hedge portfolio from which a value at risk number can be calculated. Thus our 

VaR measures the maximum loss over the specified time horizon that would be 

expected 95% of the time as a result of Fonterra 's hedging activities. 
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Details of Fonterra's hedging policy are confidential so we can offer only a broad 

overview here26
. 

3.3.1.1 FX hedge portfolio 

Fonterra's cash inflows are almost exclusively denominated in USD and all other 

foreign currency inflows are hedged back to USD dollars. The Board approved 

Treasury policy, adopted in March 2003 , dictates that all forecast USD inflows out to 

15 months must be fully hedged against any change in the value of the NZD against 

the USD27
. That is , at the end of any given month all forecast cash inflows for the 

month occurring in 15 months time must be 100% hedged. This is achieved by 

purchasing forwards and call options to buy NZD dollars (sell USD) in 15 months 

time. Appendix A provides an example. 

The type and proportion of instruments used is also constrained by policy. The 

implication being that for time horizons up to 15 months the composition of the FX 

hedge portfolio is known with certainty (all instruments are held to expiration). For 

time horizons greater than 15 months the composition of the hedge portfolio, given a 

particular simulated NZDUSD price path , needs to be forecast using the hedging 

policy. Forecasting the composition of the portfolio introduces additional 

assumptions28
. The risk is that the forecast portfolio under each scenari o will not 

match the portfolio that would actually be created under that scenario (dealers have 

some discretion within the broad constraints of the policy). For example, given a 

26 Additional information, for those who have signed a confidentiality agreement with Fonterra 

Cooperative only, is contained in Appendix D (restricted access) . 
27 Although this removes FX risk, additional risks arise due to the fact that forecast cash inflow in 15 

months may not exactly match the realised cash inflow and thus the inflow may not be fully hedged. 

Also non-USD inflows need to be converted back to USD and then hedged with the USD inflows. 
28 Forecasting the FX portfolio composition requires that the forward rate be forecast in add ition to the 

spot rate since we must know at what rate each month's forwards are purchased. Similarly we need to 

know the strike price and premium at which options are purchased. We can make the assumption that 

the future forward rate is related to the simulated spot rate by some fixed forward premium/discount 

and can likewise assume that options are purchased with strike price some fixed number of points 

above this forward rate. Once the strike price is known we can estimate the option premium either by 

using the Black-Scholes option pricing model or using a lookup table of volatilities and prices. 
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scenano in which significant hedging losses are made it is unlikely that Fonterra's 

hedge policy would remain unchanged. For these reasons we limit our VaR 

calculations within this report to time horizons less than 15 months, so that the 

composition of the FX portfolio is already known at each month. 

3.3.1.2 Interest rate hedge portfolio 

All Fonterra debt is raised on a floating basis; however, Treasury policy dictates that a 

certain proportion of each year's debt must be fixed for a specified number of years 

forward via interest rate swaps at the relevant swap rate. The remaining debt is 

floating and interest is paid at a fixed margin above the NZ 30 day bank bill rate. Thus 

at any point in time Fonterra has various amounts of fixed debt, each at a potentially 

different rate, with the remainder of debt floating. The gain/loss on the interest rate 

hedge portfolio is the amount of interest paid when hedged, less the amount of interest 

that wou ld have been paid had Fonterra remained unhedged29
. 

Given the number of assumptions that must be made, forecasting debt compos ition is 

a tenuous exercise at best. One concern is how to forecast the 30 day bank bill rate 

and the relevant swap rate. To forecast both rates together effectively requires a 

forecast of the yield curve at each month. Forecasting the time dynamics of the yield 

curve is not an easy task and we make the simplifying assumption that the relevant 

swap rate sits at some fixed margin above the 30 day bank bill rate and simulate the 

30 day bank bill rate only. Obviously the shape of the yield curve is not constant so 

this assumption has major implications. With all assumptions we give the user the 

ability to input different values so that sensitivity analysis on the impact of the 

particular assumption can be carried out. 

3.3.2 Monte-Carlo simulation 

The ExcelNBA Monte-Carlo simulation model generates multiple monthly pnce 

paths for each market rate series30 over a selected time horizon. Each price path is 

29 Further details of the interest rate hedging policy have been removed due to commercial sensitivity. 

Authorized persons can find additional detail in Appendix D (restricted access). 
30 Note that the hedge portfolio VaR model does not explicitly require the basic commodity price 

(BCP) series to be forecast. Nonetheless we include these throughout our data analysis since an 
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then iteratively input into the hedge portfolio model to calculate the gain/loss on the 

hedge portfolio under each given scenario. Repeated simulation yields a distribution 

of such gains/losses from which the final VaR number can be obtained. Figure 1 

illustrates the process behind the VaR calculation. 

The model allows the user to select either the ARIMA or VECM forecast models. The 

stochastic error term for both models is obtained in one of two ways depending on the 

user choice. The first method is to draw the error tenns for each forecast path from a 

normal distribution with mean and variance equal to the historical mean and variance 

of residuals from the fitted models . Alternatively, the error tenns are obtained by 

bootstrapping with replacement the residuals from the fitted models31
. The first 

method makes the implicit assumption that the models fully explain all pattern in the 

data and thus the residuals are i.i.d. ln contrast, the bootstrapping method does not 

make any such assumption about the distribution of residuals (Brock, Lakonishok and 

LeBaron, 1992, p. 1745). Both methods make the implicit assumption that the 

historical errors provide the best estimate of the future stochastic error series . 

analysis of these series is vital for future work to incorporate the model into milk payout models. 

Ultimately the gain/loss from the hedge portfolio could be offset against revenues to calculate a VaR 

around the yearly milk payout. 
31 Se~ Efron ( 1982), Freedman ( 1984 ), Freedman and Peters ( l 984a, l 984b ), Efron and Tibshirani 

(1986). Brock, Lakanishok and LeBaron (1992) provide a good overview of the bootstrap 

methodology. 
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SIMULATED MARKET RATES 
Taking into account correlation between rates. 

BCPs FX Interest Rates 

FORECAST MODELS FX HEDGING POLICY INTEREST RATE 

(EXPOSURE MAPS) HEDGING POLICY 
Used to forec•st PF Used to forecast PF 
composi tion cornposi tior1 

EJ INGREDIENTS 

ENTERPRISE 

CONSOLIDATED 
STATEMENT 

FX GAIN/l.OSS FROM 
HEDGING ACTIVITIES 

INTEREST PAID! 
RECEIVED 

PAYOUT 

HEDGE PORTFOLIO 

FX PORTFOLIO INTEREST RATE 
PORTFOLIO 

FX Forwards Interest Rate Swaps 
NZD Call Options Cross Currency Swaps 

--<-- ------

--<- ----- ------ --

HEDGE PF GAIN/LOSS 

Figure 1: Fonterra VaR model. The current project looks only at the part of the project 

not enclosed within the grey box. This corresponds to a VaR on the Treasury hedge 

portfolio. The grey box shows how the project might be extended to incorporate 

business risk and provide a VaR figure around the yearly milk payout. 
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4 Data 

4.1 Foreign exchange and interest rates 

For the NZDUSD exchange rate we use the Reserve Bank of New Zealand (RBNZ) 

daily series32 consisting of the mid-rate as at 11 am on each day from Jan-1985 to Jan-

2004. We create a monthly series by taking the daily rate on the last trading day of 

each month. This gives us 229 monthly observations. Given that the NZD was floated 

on 4 March 1985 data earlier than the 1985 is unlikely to reflect the current market 

dete1mined exchange rate so we begin the series in 1985 . 

We use two interest rate series, both sourced from the RBNZ. The NZ 30 Day Bank 

Bill Rate is used as the short-term rate while the 10 Year T-Bond rate is used to proxy 

longer term interest rates. Both rates are the rate as at 11 am on the last trading day of 

each month from Jan-1985 to Jan-2004 and consist of 229 observations. We choose to 

model yields, rather than prices, for fixed income instruments since a well 

documented shortcoming of modeling price returns 1s that the method ignores a 

bond ' s price pull to par phenomenon (Zangari, 1996). 

Graphs of the level and retum33 senes for the exchange and interest rates are 

displayed in Appendix A. 

4.2 Commodity prices 

Ten basic commodity product (BCP) price series are used in the analysis as shown in 

Table 1. Each BCP price series consists of the monthly volume weighted average 

price (USD per Metric Ton) of commodity contracts in the month. We use data from 

the period May-1995 to January-2004. This gives 105 monthly observations for each 

of the ten BCP price series. Graphs of each of the commodity price series can be 

found in Appendix D (restricted access). 

32 RBNZ historical exchange and interest rate senes are available from the RBNZ website at 

http: //www.rbnz.govt.nz. 

33 Where returns are calculated we use log returns. The return at time tis given by r
1 

= /n(_'l_J . 
P1-1 
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Variable Name 

WMP 

SMP 

OS Cheese 

BS Cheese 

Casein 

Butter 

BMP 

AMF 

WPC 

Lactose 

Commodity 

Whole Milk Powder 

Skim Milk Powder 

Dry Salted Cheese 

Brine Sal ted Cheese 

Case in 

Butter 

Butter Milk Powder 

Anhydrous Milk Fat 

Whey Protein Concentrate 

Lactose 

Tab le 1: BCP variables. 
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5 Results 

5.1 Data analysis 

We examine the data series with the aim of specifying ARIMA and VECM forecast 

models and identifying problems with respect to a VaR model. W€ first look at each 

data series in isolation, examining properties such as excess kurtosis that are likely to 

complicate the VaR model, and then move on to look at the extent to which the data 

series are interrelated. The second aspect, as we have previously noted, is particularly 

relevant from a Monte-Carlo simulation perspective. Any co-movement between the 

key variables must be taken into account when simulating price paths into the future , 

thus identifying cointegration between variables is a critica l step of the analysis . 

5.1.I Summary statistics 

Summary statistics for the NZDUSD exchange rate and interest rates , along with their 

respective return series, are presented in Table 2. Table 3 displays the same statistics 

for the BCP price series. Due to confidentiality constraints this table is only available 

in the restricted appendix (see Appendix D). 

Levels Returns 

NZDUSD 30 Dax: BB JOY T-Bond NZDUSD 30 Dax: BB JOY T-Bond 

Mean 0.563292 10.36105 9.565022 0.001543 -0.00509 -0.00457 

Standard Error 0.005075 0.386719 0.25167 0.00211 1 0.00634 0.002723 

Median 0.5658 8.24 7.82 0.002158 -0.00374 -0 00667 

Mode 0.5542 5.28 12.26 #NIA 0 0 

Standard Deviation 0.076802 5.852118 3.808458 0.031879 0.095735 0.04111 

Sample Variance 0.005899 34.24729 14.50435 0.001016 0.009165 0.00169 

Kurtosis -0.5602 1 0.939997 -0.4927 4.44355 6.944 146 0.265737 

Skewness -0. 187 16 1.277914 0.919489 0.331034 0.979702 0.025236 

Range 0.30795 26.36 13.54 0.281337 0.877818 0.227482 

Minimum 0.40115 3.64 5.36 -0.10594 -0.32733 -0.1 1778 

Maximum 0.709 1 30 18.9 0. I 75398 0.55049 I 0. 109699 

Sum 128.994 2372.682 2190.39 0.351713 -1.16061 - 1.04233 

Count 229 229 229 228 228 228 

Table 2: Selected summary statistics for exchange and interest rate series. 
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5.1.2 Normality 

Of particular interest with regards to VaR modelling is whether returns are normally 

distributed since, as we have seen, normality of returns significantly simplifies VaR 

modelling. The NZDUSD returns have kurtosis 4.44. In contrast a normal distribution 

has kurtosis of 3. Excess kurtosis, or "fat-tails", is a well-documented feature of 

financial returns (see Fama (1965) and Mandelbrot (1963)) and complicates a VaR 

analysis since extreme values are more likely to occur than is the case under an 

assumption of normality. As well as exhibiting excess kurtosis, the return series 

demonstrate positive skewness. Like excess kurtosis , positive skewness is a common 

characteristic of financial time series. 

Normality tests on the exchange and interest rate returns are displayed in Table 4. For 

the NZDUSD and 30 Day bank Bill rate returns the null hypothesis of normality is 

strongly rejected in all three tests . In contrast, we fail to reject nonnality for the 1 OY 

T-Bond return series. 

Returns 

NZDUSD 30 Da~ BB JOY T-Bond 

Anderson-Darling 3.098 9.24 1 0.58 

(0.0000)*** (0.0000)*** (01 300) 

Rya n-Joiner 0.967 0.929 0.9964 

(<0.0100)*** (<0.0100)*** (>0.1000) 

Kolmogorov-S mirnov 0092 0.152 0 .048 

(<0.0 I 00)*** (<0.0 100)*** (0 1500) 

Table 4: Return normality tests . 

It is important to note that these are tests of unconditional normality. A lack of 

unconditional normality does not necessarily preclude conditional normality. Even if 

returns are not normally distributed overall they can still be normally distributed 

conditional on their variance34
. Indeed, this is the basic assumption of the RiskMetrics 

approach. Conditional normality allows for fat tails in the unconditional return 

distribution, however, the distributions of many observed financial return series have 

tails that are "fatter" than those implied by conditional normality (Morgan Guaranty 

34 That is, while the returns r1 may not be normally distributed, r/ CY, may be normally distributed. 
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Trust Company, 1996) so the assumption of conditional normality 1s still often 

insufficient to adequately model financial returns. 

It is also worth remembering at this point that it is the normality of the portfolio 

returns that is important here. lf a portfolio is reasonably diversified and if the 

individual returns are sufficiently independent it is possible that the portfolio return 

can be reasonably approximated by a normal distribution, even if the returns of the 

individual instruments are themselves non-normal (Dowd, 1998)35
. 

In the case of Fonterra 's hedge portfolio, however, these conditions are unlikely to be 

met. Fonterra ' s foreign exchange exposure is almost exclusively due to the NZDUSD 

exchange rate through NZD call options and forwards, thus it is unlikely that 

sufficient diversification will exist to eliminate the non-normality of the NZDUSD 

returns. In addition, a significant portion of Fonterra's hedge portfolio (the NZD call 

options) is non-linear in foreign exchange risk. As we have seen, non-linearity in risk 

factors is an immediate obstacle to the normal YaR approach . Although methods have 

been devised for overcoming this difficulty, such as the Delta-Normal approach, most 

tend to have the drawback of making further simplifying assumptions. Finally, it is 

doubtful that the individual returns are wholly independent. For example, economic 

theory would suggest that exchange rate movements are, at least in the long run, 

linked to interest rate differentials. Determining the extent to which the variables 

move together is the subject of much of this analysis. 

5.1.3 Autocorrelation 

Table 5 shows the first order autocorrelation and Durbin-Watson statistic for each 

return series. The Durbin-Watson statistic is often very different from two, indicating 

that significant autocorrelation is present in many of the series. This suggests that in 

many cases a random walk model will be insufficient to model the data36
. 

35 Wilson (1994) and Frain and Meegan (1996) examine the so-called "portfolio-normal" approach in 

which portfolio returns are assumed to be normal without the additional assumption that individual 

asset returns are normally distributed. 
36 In addition, the presence of persistence in regressors can lead to spurious regression problems in 

much the same way as non-stationarity (see Ferson, Sarkissian and Simin, 2003). Powell, Shi and 
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Vari able I st order autocorrelati on coeffi cient Durbin-Watson statisti c 

WMP 0.23 1.48 

SMP 0.28 135 

DS_Checsc -0.05 2.08 

BS_Chcese -0.08 2.15 

Casein 0.4 1 I 15 

Butter 0.07 1.83 

BMP 0.05 1. 88 

AMF -0.03 1.98 

wrc 0.6 1 0 77 

Lactose 0.45 1.08 

BB_RATE -0. 12 2.24 

NZDUS D 0.10 1. 80 

TBON D 0. 14 1.7 1 

Table 5: First order autocorrelation and Durbin-Watson statistic for return series. 

5.1.4 Correlations 

Table 6 displays the matrix of correlations between the return series. The correlation 

between commodity prices and the exchange rate is of particular importance as is 

demonstrated vividly by the story of Western Mining Corporation Holdings , an 

Australian exporter facing similar risks to Fonterra (see Maloney, 1990). There 

appears to be little evidence of corTelation between the NZDUSD exchange rate 

returns and the commodity price returns . 

5.1.5 Stationarity 

The results of the Augmented Dickey-Fuller unit root test are displayed in Table 7 and 

8. The results for each three of the alternative models are presented; in almost all 

cases the model used for the hypothesis test is the time trend model. 

Smith (2003) provide a good discussion of the problem in relation to the use of persistent dividend 

yields as a predictor of future returns. 

47 



Variable WMP SM P DS_Cheese BS_Cheese Casein Butter BM P AMF WPC Lactose BB_RATE NZDUSD TBOND 

WMP 1.00 0.66 0.23 0. 11 0.01 0.34 0. 16 0.47 0.26 0.0 1 0.05 0 .03 -0 .14 

SM P 0.66 1.00 0. 34 0. 12 0. 18 0.34 0.25 0.4 1 0.2 1 0.07 0. 10 0.0 1 -0.17 

DS_Cheese 0.23 0. 34 1.00 0.24 0.29 0.20 007 0. 29 0. 14 0.23 0.08 0.06 0.00 

BS_ Cheese 0. 11 0.12 0.24 1.00 0.21 0.06 -0.10 0.04 0.11 0.12 -0.09 -0.07 -0. 12 

Casein 0.0 1 0.18 0.29 0.21 1.00 0.02 0.08 0.08 0.22 0.33 0.03 -0.1 1 0.07 

Buner 0.34 0.34 0.20 0.06 0.02 1.00 0.20 0.47 0.05 -0.12 -0. 13 -0.05 -0. 16 

BMP 0. 16 0.25 0.07 -0. 10 0.08 0.20 1.00 0.30 0.18 0.03 0.03 0.06 0.06 

AMF 0.47 0.4 1 0.29 0.04 0.08 0.4 7 0.30 1.00 0.09 -0.02 -0. 14 0. 12 -0. 13 

WPC 0.26 0.2 1 0.14 0.1 1 0.22 0.05 0.18 0 .09 1.00 0.29 0.03 0.0 1 -0.07 

Lactose 0.0 1 007 0.23 0.12 0. 33 -0.12 0.03 -0.02 0.29 1.00 -0.07 0.09 0.18 

BB_RATE 0.05 0. 10 0.08 -0.09 0.03 -0. 13 0.03 -0. 14 0.03 -0.07 1.00 -0. 12 0.21 

NZDUSD 0.03 0.0 1 0.06 -0.07 -0. 11 -0 .05 0.06 0. 12 0.0 1 0.09 -0. 12 1.00 -0. 19 

TBOND -0. 14 -0. 17 0.00 -0. 12 0.07 -0. 16 0.06 -0. 13 -0.07 0.18 0.21 -0. 19 1.00 

Table 6: Return correlation matrix. 

NZDUS D 30 Daz- BB JOY T-Bond 

Zero mean model 0.5 1 -2 07 -2.06 

(0.8256) (0.0375)** (0.03774)** 

Single mean model - 1.99 - 1.99 -1.76 

(0.2930) (0.2898) (0.4000) 

Time trend model -2.09 -2.22 -1.82 

(0.5483) (0.4737) (0.6928) 

Table 7: Dickey-Fuller unit root tests on FX and interest rate series. 

For all senes we fai l to reject the null hypothesis of a unit root at any significant 

confidence level. This suggests that we need to difference the series to obtain 

stationarity. 

To confirm that the level series are first difference stationary we repeat the analysis on 

the first difference of each series as displayed in Table 9 and Table 10. In every first 

difference series we reject the null of a unit root at the 1 % level, confirming that the 

first difference series are indeed stationary. We also test the NZDUSD and interest 

rate return series and, like the first difference series, these also exhibit stationarity as 

would be expected. 
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WMP SM P DS Cheese BS Cheese Casein 

zero mean model -0.72 -0.90 -0.03 -0.26 -0.60 

(0.40 13 ) (0.3250) (0.6727) (0.5887) (0.4529) 

single mean model -2.27 -2.22 -I .24 -125 -2.35 

(0. I 846) (0. I 990) (0.6543) (0.65 17) (0. 1592) 

time 1rend model - I .89 - 1. 87 -0.57 -1.7 1 -2.22 

(0 .6525) (0.6650) (0.9784) (0.7422) (0.47 17) 

Butler BMP AM F WPC Lac tose 

zero mean model -0.82 -0.92 -0.96 -0.65 0.29 

(0.358 1) (0.3 I 77) (0.2984) (0.4338) (0.767 1) 

single mean model - I .84 -2.49 -2.03 -2.94 -2.39 

(0.3606) (0. I 199) (0.275 I) (0.0448)** (0. 1464) 

time trend model -1.67 -2.33 - 1. 17 -2.9 1 -2.42 

(0.7568) (0.4 I 46) (0.9 114) (0. 1626) (0.3664) 

Tab le 8: Dickey-Fuller unit root tests on BCP price series. 

NZDUS D 30 Day BB JOY T-Bond 

zero mean model -4.92 -6.70 -537 

(0.0000)*** (0.0000)*** (0.0000)*** 

si ngle mean model -4 .96 -6.86 -5.67 

(0.000 1)* ** (0.000 I)*** (0.000 1)*** 

time !rend model -4.94 -7.00 -5.87 

(0.0004)*** (0.000 1)*** (0.0000)*** 

Table 9: Dickey-Fuller unit root tests on differenced FX and interest rate series . 

WMP SMP DS Cheese BS Cheese Casein 

zero mean model -5.33 -4.58 -5.94 -6.90 -4.99 

(0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** 

single mean model -5.32 -4.58 -5.92 -6.86 -4.96 

(0.0001 )*** (0.0003)*** (0.000 1 )*** (0.000 I)*** (0.000 I)*** 

time trend model -5.43 -4 .70 -6.0 1 -6.83 -4.99 

(0 .000 1)*** (0.00 12)*** (0.0000)*** (0.000 1)*** (0.0005)*** 

Butter BMP AMF WPC Lactose 

zero mean model -5.58 -7.88 -5.62 -5.75 -4.49 

(0.0000)*** (0.0000)*** (0.0000)*** (0 .0000)*** (0.0000)*** 

single mean model -5.57 -7.85 -5.62 -5.72 -4.49 

(0.000 1 )*** (0.000 1 )*** (0.0001)*** (0.000 1)*** (0.0004)*** 

time trend model -5.62 -7.88 -5 .83 -5.70 -4.46 

(0 .000 1 )*** (0.000 I)*** (0 .0000)*** (0.000 1)*** (0 .0028)*** 

Table 10: Dickey-Fuller unit root tests on differenced BCP price series. 
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The non-stationarity of the NZDUSD exchange rate is worth discussing further. 

Conventional wisdom is that floating exchange rates are non-stationary (Sweeney, 

2001 ); however, studies by Jori on and Sweeney ( 1996) and later Siddique and 

Sweeney (1998) find evidence that exchange rates are in fact mean reverting. These 

studies make use of tests with more power than the ADF test employed here. 

However, given that we will be forecasting the exchange rates over a one to two year 

period, even if exchange rates are mean reverting we would expect such behaviour to 

be exhibited over a longer period than this37
. 

As we have discussed , any regression analysis between series must be conducted on 

the differenced series to avoid the spurious regression problem outlined by Granger 

and Newbold (1974). However, differencing a time series has the effect of removing 

all information contained in the levels of that series. Thus information relating to the 

long-run relationship between the levels of two variables is lost. In the next section we 

look for cointegrating relationships which can allow us to model such long-run 

relationships when the series involved are non-stationary. 

5.1.6 Cointegration 

We first check for cointegration between the NZDUSD exchange rate and each of the 

two interest rates using Johansen's (1988 , 1991) Eigenvalue Trace Test (Table 11). 

The first row of the table tests the null hypothesis that r = 0 against the alternative 

that r = 1 and the second row tests r = 1 against r > 1. The hypotheses are tested using 

two different VAR models, one with a linear drift and one with a constant drift38
. lf 

the trace statistic is larger than the 5% critical value we reject the null hypothesis that 

r cointegrating vectors are present. The Johansen test is sensitive to the number of 

lags p included in the VAR model. Verbeek (2000, p. 301) points out that choosing 

too small a p will invalidate the test while choosing too large a p will result in a loss 

37 Campbell and Perron ( 1991) argue that the choice between treating a time series as stationary or non­

stationary should depend on the intended application, and not necessarily on the actual stationarity. For 

example, while a time series may found to be stationary, a non-stationary model may produce better 

forecasts for the purpose at hand. 
38 In all cases we fail to reject the restriction that the drift is constant, hence, we present the results for 

the constant drift model only. 
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of power. We conduct the test using lags of p = 6 and p = 12 to explore the sensitivity 

of the results to the choice of p. 

30 Da Bank Bill Rate 

=6 = 12 

HO HI Eigen Va lue Trace Statistic Eigen Value Trace Stati stic 5% Critical Va lue 

r = 0 r > O 0.0343 11.52 0.0373 15. 11 19 .99 

r = I r > I 0.0166 3.73 0.03 11 6.86 9. 13 

JOY T-Bond Rate 

= 6 = 12 

HO HI Eigen Value Trace Statistic Eigcn Val ue Trace Stati stic 5% Critical Va lue 

r = 0 r > O 0.0389 13.77 0.0412 1632 19.99 

r = I r > I 0.02 18 4.92 0.0326 7.2 9.13 

Table 11: Johansen cointegration test between NZDUSD and interest rates. 

We fail to reject the null hypothesis that no cointegrating vectors exists at the 5% 

level for both interest rate series . Thus there is no evidence of cointegration between 

the NZDUSD exchange rate and the short or long term interest rates in NZ, at least 

not over the time period that we examine. The results for lags of 6 and 12 are similar, 

indicating the robustness of this result39
. Lack of cointegration between the exchange 

rate and interest rates is advantageous from a simulation perspective since it suggests 

that the NZDUSD rate and interest rate can be simulated independently, removing the 

need for multivariate models that the presence co-movement between these rates 

would necessitate. 

Theoretically in the long-term we would expect the NZDUSD exchange rate to equal 

the ratio of the US and NZ price levels (absolute purchasing power parity). Following 

an example ofVerbeek (2000, p. 287) we can express absolute PPP in logarithms as 

s, = p , - p, * 

where St is the log of the spot exchange rate, Pt the log of domestic prices and Pt• the 

log of foreign prices. The presence of a cointegrating vector would suggest a long-

39 Given this result we report the results using a lag length of 12 only for the remaining analysis . 
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term equilibrium relationship between the exchange rate and foreign and domestic 

price levels. Thus, while we do not find any relationship between the exchange rate 

and interest rates that could be used to assist in long-term forecasting, methods based 

on economic fundamentals such as PPP or interest rate parity could provide a fruitful 

avenue for future research . 

We also investigate whether the BCP price series are cointegrated with the exchange 

or interest rates. Identifying relationships (or lack thereof) between commodity prices 

and the market rates is vita l for quantifying Fonterra's risk exposure. For a given 

exchange and interest rate scenario we must be able to state how commodity prices 

will be impacted and vice versus. Table 12 presents the Johansen Trace Test results 

for each individual BCP price series with each of the market rates. Here the tests are 

conducted on two series at a time, later we look for cointegrating relationships 

between all the BCP price series. 

NZDIJSD 30 Day BB JOY T-Bond 

Variable HO HI Eigenvalue Trace Eigenvalue Trace Eigenvalue Trace 

WMP r = 0 r > 0 0.08 13. 19 0.13 19.62 0.14 23. 19** 

r = I r > I 0.05 5. 19 0.07 6.65 0.10 9.64** 

SMP r = 0 r > 0 0.09 13.30 0. 10 17.48 0. 11 19.15 

r = I r > I 0.05 4.63 0.08 7.30 0.08 8.11 

DS_Cheese r = 0 r > 0 0. 15 2 1.45** 0.22 29.2 1 ** 0.14 22.6 1 ** 

r = I r > I 0.06 5.96 0.07 6.60 0.09 8.34 

BS_Cheese r = O r > 0 0. 17 22.52** 0.14 20.76** 0. 15 23. 7 1 •• 

r = I r > I 0.05 5.1 1 0.07 6.32 0.08 8.06 

Casein r = 0 r > 0 0 .15 19.27 0.16 23.83** 0. 19 28.29** 

r = I r > I 0.04 4.04 0.08 8.07 0.09 9.12 

Butter r = 0 r > 0 0.23 27.94** 0.12 16.60 0. 14 21.46** 

r = I r > I 0.04 3.6 1 0.05 4.95 0.08 7.94 

BMP r = 0 r > 0 0 .1 I 15.01 0.14 20.96** 0. 15 24.65** 

r = I r > I 0.04 4.12 0 .07 6.97 0.09 9. 13** 

AMF r = 0 r > 0 0 .24 28.94** 0.14 20.34** 0.13 23.09** 

r = I r > I 0.04 3.95 0.07 6.47 0.10 9.89** 

WPC r = 0 r > 0 0.08 11.99 0.09 16.95 0.11 17.44 

r = I r > I 0.05 4.44 0.08 7.94 0.07 6.8 1 

Lactose r = 0 r > 0 0.12 15.8 1 0.21 33.90** 0.13 22 . 7 1 ** 

r = I r > I 0.05 4.41 0 .12 11.91 ** 0.10 I 0.09** 

Table 12: Johansen cointegration test between individual BCPs and each market rate. 
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The 5% critical value for Ho is 19.99 and 9.13 for H 1• In cases denoted by **we reject 

the null hypothesis of r cointegrating vectors. In most cases we reject r = 0 and 

subsequently cannot reject the null hypothesis that r = 1 implying the existence of a 

stable long-term relationship between the pair of variab les. In some cases, for 

example WMP with lOY T-Bond, we also reject the hypothesis that there is one 

cointegrating vector. This implies that the cointcgration rank is two, which is equal to 

the number of variables . Such a result means that both series are themselves 

stationary. This conflicts with our earlier findings using the Dickey-Fuller unit root 

test. We note that in these cases the null of one cointegrating vector is rejected only 

marginally, so one possibility is that only one cointegrating vector exists. 

Alternatively it has been noted that the Dickey-Fuller unit root test lacks power 

(Jorion and Sweeney, 1996) so it is possible that test may have failed to reject the 

presence of a unit root in the these time series when the series where in fact stationary 

in levels. It should be stressed that discretion needs be exercised when selecting the 

cointegration rank, particularly g iven the Johansen test's sensitivity to the number of 

lags included. Although the Johansen test may indicate cointegration, if the long-tem1 

relationship obtained from the estimated cointegration vector makes little sense 

economically, caution should be exercised. 

Table 13 summarises the results, indicating those series which are cointegrated at the 

5% level. 

NZDUS D 30 Day BB JO Y T-Bond 

WMP No No No 

SMP No No No 

DS_Cheese Yes Yes Yes 

BS_Cheese Yes Yes Yes 

Casein No Yes Yes 

Butter Yes No Yes 

BMP No Yes No 

AMF Yes Yes No 

WPC No No No 

Lactose No No No 

Table 13: BCP cointegration with market rates. 

Finally we look for cointegrating relationships between all the BCP price series. The 

time series graph presented in Appendix D (restricted access) suggests that some of 
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the BCP price series are highly correlated so we expect cointegrating relationships to 

exist. The results are presented in Table 14. 

HO HI Eigenvalue Trace 5% Crit ical Val ue 

r = 0 r > 0 0 77 533.72** 244.56 

r = I r > I 0.60 387.47** 203.34 

r =2 r > 2 0.53 297.74** 165 .73 

r =3 r > 3 0.44 222.49** 13200 

r =4 r > 4 0.42 164.86** 101.84 

r =5 r > 5 0.32 110.3** 75.74 

r =6 r > 6 0.30 7 1 .88** 53.42 

r =7 r > 7 0.16 36.22** 34.80 

r =8 r > 8 0.1 1 19.26 19.99 

r =9 r > 9 0.08 8.03 9. 13 

Table 14: Johansen Trace Test for BCP cointegration. 

At the 5% level the null that there are seven cointegrating relations is rejected while 

we cannot reject the null that there are eight cointegrat ing vectors. Thus we conclude 

that there are eight cointegrating vectors linking the ten BCP variables. Since there are 

eight cointegrating vectors among ten variables we conclude that there are two 

common trends among the ten variab les. This result highlights one of the problematic 

issues with cointegrating relationships, namely if there are eight different linear 

combinations of BCPs that yield a stationary error series which one do we regard as 

the "true" long run relationship? 

We use results from this analysis to develop vector error correction (VECM) models 

to take advantage of the long-term relationships identified in a later section. 

5.2 Forecast Models 

Now that we have examined the characteristics of the data series we develop forecast 

models for use in the Monte-Carlo simulation. In this section we apply two different 

time series modelling techniques, namely univariate ARIMA models and multivariate 

VECM models, to the data series and evaluate the forecast accuracy over a 12-month 

period. Model parameters are estimated using the period May-1995 to Jan-03 leaving 

the 12-month period Feb-03 to Jan-04 against which the accuracy of a 12-month 

forward forecast can be assessed. 
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5.2.1 ARIMA Models 

As outlined in the methodology section we apply the standard Box-Jenkins approach 

(Box and Jenkins, 1976) to identify appropriate ARIMA models . Table 15 presents 

the se lected model and estimated coefficients for each BCP price series. The p-value 

for the significance or each estimated coefficient is given in brackets and the 

sign ificance is denoted in the usual manner. 

Parameter Esti mates Forecast Accu racy 

BCP Model <1>1 <j>, e, 82 MA PE 
Point Forecast % 

Error 

WMP ARIMA( J, 1,1) 0.78 18 0.5693 12.75 6.93 

(0.0002)*** (0.0247)** 

SM P AR IMA( l , 1, 1) 0.8 120 0.5646 17.0 1 14 .2 1 

(<0.000 1)*** (0.0072)*** 

DS_Chccsc AR IM A(0, 1,0) 1333 28.36 

BS_Chccsc ARI MA(0, 1,0) 16.52 31.42 

Case in 

Butter 

BMP 

AMF 

WPC 

Lactose 

ARlM A( l ,1,0) 03775 20.92 34. 14 

(0.0002)*** 

AR IMA(2, 1,2) 1 .2286 -0.63 10 1.2063 -0.8353 9.89 14 .2 5 

(<0.000 1)*** (0.0002)*** (<0.000 1)*** (<0.000 1 )*** 

ARIMA(2, 1,2) -0.5365 -0.93 19 -0.6730 -0.9835 8.27 8.20 

(<0.000 1)*** (<0.000 1 )*** (<0.000 1)*** (<0.0001)*** 

AR lMA( l ,1,2) 0.6 159 0.6800 -0.3715 5.64 10.78 

(0.00 15)*** (0.0004)*** (0.0005)*** 

AR 1M A(2, 1,0) 0.8 164 -0.2733 9.54 5.66 

(<0.0001 )*** (0.0085)*** 

AR IM A( l , 1,0) 0.4 728 9.49 2 1.95 

(<0.000 1 ••• 

Avera c 1234 17.59 

Table 15: BCP ARIMA Models. 

ARMA models are also estimated for the NZDUSD, 30 Day Bank Bill and 1 OY T­

Bond return series (Table 16). Because of the extreme levels of interest rates in the 

late 80s a log-transformation is found to be necessary before we can adequately model 

the interest rate series. The ARIMA model for the 30 Day Bank Bill Rate and 1 OY T­

Bond rate are thus both estimated using the natural log of the series. The NZDUSD 

model applies to the original series. 
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Parameter Es ti mates Forecast Accuracy 
Point Forecast % 

Seri es Model qi, qi, a, 9, MAPE Error 

In 30 Day BB ARIM A( l ,1,1) 5.20 4.62 

ZDUS D ARIM A( l , I) -0.7048 -0.7886 7.98 18.33 

(<0.0085)*** (0.0008)* * 

In I OY T-Bond ARIMA(0,1,1) -0 .1838 2.35 0 .06 

(0.0067)*** 

Avera c 5. 18 7.67 

Table 16: FX and interest rate ARIMA models. Interest rate models are estimated 

using log-transformed series. 

We initially estimated each model with a constant term; however, in all cases this 

term was insignificant at the 10% level so each model was re-estimated without the 

constant. 

Two measures of forecast accuracy are computed, the mean average percentage error 

(MAPE), which provides a measure of the average percentage error of the 12 forecast 

values, and the point forecast percentage error which is simply the percentage error 

between the 12 month forward forecast value and the realised 12 month forward 

value. Specifically the accuracy measures are computed as 

MAPE = -1 f IY, - /, 1 x IOO 
12 l =T+ I I y , I 

Point Forecast % Error = I Yr+i2 - l r +12 Ix 100 
I Yr+12 I 

where y 1 is the actual price,}; is the forecast price and Tis the number of observations. 

Appendix C presents graphs of the actual and forecast senes for the NZDUSD 

exchange rate and the two interest rate series. Because of their confidentiality, graphs 

of the BCP forecasts are only shown in Appendix D (restricted access). 
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The ARIMA models specified have the advantage that they utilize only the past 

observations of the variable in question . From the perspective of the VaR project 

these models offer a simple means of forecasting market rates over a 12-month 

horizon without the need to utilize additional data series or develop complex 

multivariate models that in the end might have only a limited effect on the accuracy of 

the forecast. 

However, commodity prices tend to move together, so it may be advantageous to 

utilize the past values of other commodity price series when making forecasts . This is 

the next step of the modeling process. We develop models that use the cointegrating 

relationships between variables in addition to Jagged values of the variab le in 

question. 

One point that shou ld be noted is the size of the 95% confidence intervals around the 

forecast. In all but two cases40 the realized price path falls within these bounds , 

however, these bounds are very wide. This illustrates the danger of relying too heavily 

on a single forecast path. Rather, in the Monte-Carlo model we simulate a large 

number of price paths (roughly 95% of which would be expected to fa ll within these 

bands) using bootstrapped residuals from the model estimation phase to provide the 

stochastic error term, thus better capturing this large future uncertainty. At the same 

time it is important that these bounds make economic sense. For example, it may be 

imposs ible for a commodity price to reach a certain level due to economic or market 

forces such as the US milk support price. An important part of model testing is to 

validate the simulation results against historical data to ensure that any boundary 

constraints are met. 

Also it is important to note that the measures of forecast accuracy do not tell us a great 

deal in isolation. Once we specify VECM models we can use the forecast accuracy to 

assist in selecting the best modeling method. 

40 The realised DS Cheese and BS Cheese price paths fall outside the confidence interval, however, it 

shou ld be noted that for both these series the first difference series is already effectively white noise so 

no model is applied. Thus the confidence intervals may not be as meaningful as for the other models. 
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5.2.2 VECM Models 

Having developed forecast models for each variable in isolation we now move on to 

look at multivariate models. 

We first look at whether utilizing past values of different BCPs aids in forecasting 

each individual BCP. Then, in cases where cointegrating relationships between BCPs 

and market rates were found to exist, we develop models in which exchange and 

interest rates are used to aid in the forecast of individual BCPs. 

YECM ~ = l VECM~ = 2 VECM ~ = 6 
Point Forecast% Point Forecast % Point Forecast % 

BCP MAPE Error MAPE Error MAPE Error 

WMP 18. 16 16. 11 15.98 5.34 33.8 1 I 6.44 

SMP 32.90 39 .30 27.87 19 .37 59.98 57.57 

DS Cheese 8.07 3.66 8.52 9.09 37 .60 26 .11 
BS Cheese 7.2 1 6.52 8.46 13.21 22 .39 38.41 
Casein 10.44 10.09 14.35 13.40 38 .50 61.30 
Butter 8.63 5.04 8.76 17.49 49.81 61.34 

BMP 32.43 32.27 37 .06 16.35 83.28 73.55 
AMF 4.73 7.60 6.62 13.81 48.66 75. 10 
WPC 41.24 46.23 42. 17 45.27 131.51 163. 18 
Lactose 4.57 1.2 1 7.82 3.59 39.43 63.59 

Average 16.84 16.80 17.76 15.69 54.50 63 .66 

Table 17: Forecast error for BCP VECM model. 

We have noted the existence of significant cointegrating relationships exist between 

the ten BCPs series (Table 13). Table 17 shows the forecast error for three different 

VECM models . Each model uses all ten BCP price series to generate the forecast for 

each individual BCP. The only difference between models is the number of lag terms 

included. Model fit is assessed by looking at the normality and autocorrelation of the 

residuals for each BCP price series, as well as the cross correlation of residuals 

between series. In general, the individual residual series are white noise and each 

individual BCP model is significant as assessed by the F-statistic41
. However, in most 

41 There are, of course, exceptions. In some cases the residuals for an individual BCP price series fail 

the chi-squared normality test or exhibit significant ARCH effects . However, such cases are infrequent 
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cases significant cross correlation exists between residual series suggesting that the 

models fai l to totally explain the relationship between variables. 

In terms of overall average forecasting error, the YECM models under-perform 

simple ARIMA models. Appendix D (restricted access) displays graphs of the VECM 

forecasts for each BCP price series using the lag 1 model which gives the lowest 

forecast error. It is important to remember here that even if VECM models do not 

perform as well in forecast accuracy terms, from a Monte-Carlo perspective they still 

may offer an advantage over the univariate ARIMA models in that they incorporate 

the co-movement between individual series42
. For example, under a single forecast 

scenario using ARIMA models the price paths for two closely correlated BCP price 

series could be widely divergent since no account is made of the relationship between 

them. Using a YECM model , on the other hand, ensures that the forecast price paths 

are bound by the long-run cointegrating relationships between variables. Thus under a 

single scenario the price paths of correlated BCP price series will be similar. Of 

course, if forecast error is significantly worse under a VECM model then the models 

are unlikely to be modelling the relationships between series correctly anyway, 

nullifying this perceived advantage. 

We now tum our attention to usmg the exchange and interest rates to assist m 

forecasting the BCP price series. Table 12 in section 5.1 .6 displayed the cointegrating 

relationships between each BCP price series and the exchange and interest rates. Not 

all BCPs exhibit such cointegration, but in cases where they do we estimate a YECM 

model with the aim of improving the forecast error for these BCP price series. The 

model and forecast error is displayed in Table 18. 

and overall the VECM models do a reasonable job of explaining the variation in individual BCP price 

sen es. 
42 Although the prevailing view is that the use of cointegrating relationships where possible will 

produce superior long-term forecasts (see, for example Stock (1995, p. 1)), recent work by 

Christoffersen and Diebold (1997) suggests that nothing is lost when forecasting at long horizons by 

ignoring cointegrating relationships (in fact, univariate Box-Jenkins forecasts are just as accurate), at 

least when standard measures of forecast accuracy are used. 
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Forecast Error 

BCP Additional Explanatory Variables MAPE Point Forecast % Error 

OS Cheese NZDUSD, BB_ RATE, TBOND 18.62 2.06 

BS_ Cheese NZDUS D, BB_ RATE, TBOND 7.74 9.43 

Casein BB_ RATE, TBOND 9.86 22.06 

Butter NZ DUSD, TBOND 10.30 1038 

BMP BB RAT E 22.59 0.67 

AMF BB RA TE, NZDUSD 5.75 14.55 

Average 12.48 9.86 

Table 18: VECM models and forecast enors using exchange and interest rates. 

The average MAPE over the six BCP price series when using lagged exchange and 

interest rates as explanatory variables (12.48%) is slightly higher than that of the same 

six BCPs when using all the lagged BCPs as exp lanatory variables (11.92%). 

However, the point forecast accuracy is slightly better (9.86% compared to 10.87%) . 

Given these results it is difficult to conclude that using lagged values of the exchange 

and interest rates aids in forecasting performance. Of course, here we look only at a 

single period. Ideally we should look at forecast perfonnance over a range of sub­

periods, but - as is so often the case in time series modelling - insufficient data 1s a 

major hindrance. 

F orccast Error 

BCP MAPE Poi nt Forecas t % Error 

WMP 26. 13 26.26 

SM P 29.37 31.6 1 

DS_Chccsc 9.50 1.1 9 

BS_Chccsc 6.46 4.14 

Casein 20.22 28.83 

Butter 10.83 8.42 

BMP 49.76 48.85 

AMF 12.70 9.16 

WPC 38.03 49.73 

Lactose 2.54 2.47 

Average 20.55 21 .07 

Table 19: Forecast enors for VECM model using all BCPs and exchange and interest 

rates. 

Finally we estimate a VECM model using all BCPs, the exchange rate and both the 

short and long term interest rates. Given that using the exchange and interest rates 
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alone as explanatory variables does not significantly improve forecast performance, 

we would not expect using these variables in conjuction with all BCPs to provide 

significantly better forecasts than using the BCPs alone. The results (Table 19) 

confirm this. 

The average MAPE and point forecast error are slightly worse than when the VECM 

model is estimated without using the exchange and interest rates. 

As an aside it is interesting to note the forecasts of the exchange and interest rates 

under this VECM model. Intuitively we would not expect Jagged values of the BCP 

price series to aid in forecasting NZ market rates. Although dairy exports represent a 

large portion of New Zealand's exports, it seems unlikely world dairy commodity 

prices are a significant driver of the exchange rate or interest rate. Table 20 tends to 

confirm this. The forecasts of the exchange and interest rates using BCPs as 

explanatory variables are not better than the ARIMA models. 

Forecast Error 

BCP MA PE Point Forecas t % Error 

NZDUS D 5.76 17 .12 

BB_RATE 8.15 8.99 

TBON D 15.30 18.79 

Average 9.74 14.96 

Table 20 : Forecast error for exchange and interest rates using VECM model 

incorporating all BCPs and FX and interest rates . 

5.3 Monte-Carlo simulation 

We now illustrate the application of the model to Fonterra's FX hedge portfolio43
. We 

use the Monte-Carlo model to calculate the maximum foreign exchange loss over the 

15-month horizon from Feb-04 to Apr-05 that would be expected 95% (and 99%) of 

the time, i.e. the greatest loss expected with 95% (99%) confidence as a result of 

Fonterra's FX hedging activities. 

43 Monthly forecast debt levels were unavailable at the time of writing so we do not apply the model to 

the interest rate portion of the hedge portfolio. 

61 



The relevant forecast variable is the NZDUSD exchange rate. Figure 2 illustrates 20 

price paths generated by the VECM model with bootstrapped residuals. 
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Figure 2: 20 simulated NZDUSD price paths using VECM,BS model. 

Table 21 shows selected summary statistics for the simulated distribution of returns 

from each forecast model and the historical distribution. 

Histo rical ARIMA ,BS ARIMA ,N VECM,BS VECM, 

N 103 280 280 280 280 

Mean -0.0002 0.00 11 0.0010 0.0014 0.0010 

Std. Dev. 0.0305 0.0311 0.0269 0.0223 0.0235 

Skewness -0.2246 0.091 6 -0.0011 -0.3536 -0.0110 

Kurtosis 0.8388 2. 1717 0.6358 0.9800 -0.4070 

t-stat (mean difference) -0.37 -0.36 -0.49 -0.37 

(0.7090) (0 .7220) (0.6250) (0 .7 150) 

Table 21: Selected summary statistics for historical and simulated return distributions. 

Simulation returns are obtained from 20 price paths. 

The forecast models are ARlMA with bootstrapped residuals (ARIMA,BS), ARIMA 

with normal residuals (ARIMA,N), VECM with bootstrapped residuals (VECM,BS) 

and VECM with normal residuals (VECM,N). Wet-test the difference between mean 
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of the historical return distribution and the mean of the forecast distribution for each 

model and find the difference to be not significantly different from zero in each case. 

Figure 3 shows the forecast cumulative return distribution from each model compared 

to the historical cumulative return distributions. The cumulative distribution of 

simulated returns appears comparable to the historical distribution . Jones (2004) 

proposes a means of testing the concordance of the unconditional distribution of 

simu lated returns with the observed unconditional distribution. His method involves 

applying the bootstrap methodology to generate many return series and then simply 

counting the number of times each of the first four moments is greater than the 

origina l return series. A good forecast model should generate return distributions with 

each moment greater than the original series close to half the time. Although we do 

not pursue this approach here, his method suggests a simple means by which we 

might determine how closely the unconditional distribution of the simulated returns 

matches the observed distribution. 

Cumulative Distribution function of historical and simulated 
returns 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

return 

!--Historical - - - -ARll\N\ BS -- - - - - · ARJl\N\ N - -- --VECM BS - - - - - VECM NI I I I I 

- -· --- - --- ---

Figure 3: Cumulative distribution function of simulated returns (from 20 simulation 

paths) versus the observed cumulative distribution function. 

To obtain our final VaR number we simulate 10,000 price paths for the NZDUSD 

exchange rate for 15 months from Feb-04. Each price path is iteratively fed into the 
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FX hedge portfolio model to generate the gain/loss on the portfolio under that specific 

exchange rate scenario. Figure 4 displays the forecast distribution of FX hedge 

portfolio NZD gains/losses using the VECM,BS model with 1000 simulation paths. 
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Figure 4: Distribution of simulated FX hedge portfolio gain/loss over 15-month 

forecast horizon using the VECM,BS model with 1000 simulation paths. 

From the distribution we can calculate the 95% and 99% VaR by ordering the 

gain/loss figures and selecting the 9501
h and 9901

h worst result respectively. Table 22 

displays the 95% and 99% VaR for each of the four forecast models. The 95% VaR of 

- 13 .31 million using the VECM,BS model can be interpreted as the greatest amount 

that Fonterra would expect to lose over the next 15 months as a result of current FX 

hedges 95% of the time. 

It is apparent that while the BS and N models produce similar results, a significant 

difference exists between the ARIMA and VECM models. The difference lies in the 

fact that the price paths generated by the VECM models exhibit more than twice the 
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variation of the ARIMA price paths. Ongoing out-of-sample testing is required to 

determine which model provides the best description of future variability. 

ARlMA, BS ARIMA ,N V ECM,BS VECM,N 

FX gain/ loss (NZD mil) Minimum - 12.8 1 - 11.66 -25.79 -28.77 

Maximum 37. 11 33.73 96.2 1 74.67 

Average 4.63 4 .90 11 .36 10.63 

Std . Dev. 6.95 7.02 19.57 17.57 

95% VaR -4.79 -4.61 -13.3 1 -13.25 

99% VaR -7.82 -8.01 -20.67 -23.89 

15-month NZDUS D forecast Minimum 0.5578 0.565 3 0.4727 0.4532 

Max imum 0.7793 0.7682 0.973 0 0 .9024 

Average 0.6638 0.6650 0.6808 0.6790 

Std . Dev. 0.032 1 0.0324 0.0802 0.0750 

Table 22: 95% and 99% VaR on Fonterra FX hedge portfolio using VECM,BS model 

with 1000 simulation paths. 

As Table 22 illustrates, the VaR number obtained via Monte-Carlo simulation is 

conditional upon the forecast model used and the assumptions made. The degree of 

difference between the results from the four alternative models provides a rough 

indication of the level of model risk inl1erent in the result; that is, the sensitivity of the 

result to the forecast model employed. Similar sensitivity analysis should be 

conducted around the different assumptions made to get an idea of the impact of each 

on the result. 
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6 Conclusion 

This project has illustrated the creation of a VaR type model for use within the 

treasury department of a major corporate. Academic research in the area of VaR is 

increasingly technical and esoteric, often at the expense of practicality. Our model is 

developed under the real-world constraints of cost and time pressure, limited data 

resources and standard software platforms. Thus the project not only provides a 

framework for the development of a corporate VaR model, but also illustrates the 

extent to which academic theory is applicable when bounded by real-world 

constraints. 

Throughout the project we have sought to emphasise the process by which a corporate 

VaR model might be developed. With that goal in mind we begin by looking at the 

problems inherent in the widely used RiskMetrics and CorporateMetrics approaches 

and propose an alternative Monte-Carlo method using ARIMA and VECM time series 

forecast models in an effort to improve on these limitations. Such models have the 

advantage of minimal data requirements and ease of estimation, and are therefore well 

suited to the corporate environment. More importantly, VECM models take into 

account the autocorrelation inherent in monthly return series and model the long-term 

relationship between variables, thus accounting for co-movement between variables. 

We then show how the model can be applied to Fonterra's Treasury FX hedge 

portfolio to find the maximum loss over a 15 month period that would be expected 

95% and 99% of the time as a result of Fonterra ' s FX hedging policies. 

While, in adopting the approach that we do, we illustrate the method behind the model 

we stop short of an exhaustive analysis of the robustness of the VaR result. Given the 

changing composition of the hedge book and fluidity of hedging policies, adequately 

backtesting the model is difficult. In addition, Fonterra has only existed in its current 

state since 2001 so a lack of historical data compounds the problems. We are content 

to look briefly at sensitivity to different forecast model choices and leave a more in­

depth quantitative assessment of model accuracy and robustness as an avenue for 

further research. It is our opinion that quantitative tests of the "accuracy" of a model 

of this nature are dubious at best and worse, can often be misleading. The importance 
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of the human element in assessing the model cannot be over-emphasised. Here we 

return again to the theme of practicality that runs through this report. The first test of 

the accuracy of the model should be whether the results make "sense" to the users of 

that model. Likewise, the assumptions behind any model should be rigorously tested 

on an ongoing basis by tho ·e using the model. Like any model, the Fontcrra VaR 

model is only as good as the assumptions on which it is built. 
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Appendix A: Treasury hedge portfolio 

Al. FX hedge portfolio 

Reporting Year 

Jun-04 May-OS 

NZDUSD 0.7000 0.6000 

(1) (2) 

Cash flow Year 

The FX gain/loss in month t is the sum of the gain/loss on forwards and options 

expiring in month t, i.e. 

FX gain/loss, = NZD amount forwards, x (Actual rate, - Forward rate,) 

+ NZD amount options, x max(O, Actual rate, - Strike rate,) . 

The cash flow year is offset by approximately three months from the financial year so 

Fonterra fully hedges 15 months. As a result , three months of outstanding forwards 

and options relating to the current financial year are revalued at the end of year 

exchange rate. For example, the options and forwards expiring in the three months 

labeled (2) on the diagram are revalued using a strike and forward rate of 0 .6000 and 

are included in the 2004 reporting period. This also means that the forwards and 

options in the first three months of each reporting year are valued at the exchange rate 

as at the end of the previous reporting period. For example, the gain/loss on options 

and forwards in the period labeled are (1) is calculated using a strike and forward rate 

of 0.7000_ The revaluation is for accounting purposes only and does not affect the 

total gain/loss from any given position. 

Further description of the FX hedge portfolio and an overview of the interest rate 

hedging policy are commercially sensitive and are included in Appendix D only. 
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Appendix C: ARIMA model forecast graphs 
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Appendix D: Confidential information 

This section is confidential and is only to be accessed by persons who have signed a 

confidentiality agreement with Fonterra Cooperative. Please contact the author for 

further information. 
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