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ABSTRACT 

A framework to guide the development of an intelligent component and its 

integration with an existing decision support system has been proposed. An 

initial framework was outlined, drawing concepts from the fields of decision 

support systems, knowledge based systems and intelligent decision support 

systems. This framework was applied to a problem in the domain of dairy 

farm management. A prototype intelligent decision support system was 

developed. Experiences gained during the development process enabled 

refinements to the framework to be made. The prototype was tested to 

assess the success of the framework in producing the desired results. The 

development framework was evaluated based on criteria drawn from relevant 

literature. The proposed development framework is considered to be a 

useful tool for intelligent decision support system development from an 

existing decision support system. Its success is attributed to the integration 

of methods and techniques drawn from a number of well established 

methodologies. 
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1.1 OVERVIEW 

Decision Support Systems are being used in the work place to aid managers make 

decisions involving semi-structured problems (Er, 1988). Knowledge Based Systems 

technology has also had significant success in practice, performing tasks which have 

previously required the expertise of a human (Duffin, 1988). 

The functions of a conventional knowledge based system (KBS) are considered by some 

authors to be very similar to that of a decision support system (DSS) (Chang, Holsapple 

& Whinston, 1993; Doukidis, 1988; Ford, 1985). However, the two fields have 

traditionally been quite separate research and practice areas. A number of authors have 

acknowledged the potential for the use of knowledge based systems techniques in 

decision support (Beulens & Van Nunen, 1988; El-Najdawi & Sylianou, 1993; Er, 1988; 

Marsden & Pingry, 1993; Sprague, 1980; Turban, 1995; Turban & Watkins, 1986) 

Systems that integrate DSS and KBS technologies have been described as Intelligent 

Decision Support Systems (IDSS), Intelligent Support Systems, Expert Decision 

Support Systems (EDSS), Expert Support Systems (ESS) or Knowledge Based decision 

support systems (KBDSS) (El-Najdawi & Sylianou, 1993). It is thought that the 

addition of an intelligent component to an existing conventional decision support system 

could prove to be a valuable technique for the development of intelligent decision 

support systems. 

Both DSSs and KBSs have vanous development methodologies and techniques 

associated with them in the literature. There are a limited number of methodologies 

which exist for the development of IDSSs. Blair, Debenham and Edwards ( l 995a) are 

currently investigating and developing a methodology for the development of an IDSS . 

To the author's knowledge there are no methodologies which exist for the addition of an 

intelligent component to an existing DSS. 

This study investigates a framework for the development of an IDSS from an existing 

DSS. KBS, DSS and IDSS methodologies have associated techniques which could be 

useful within such a framework, thus each group of methodologies have been studied. 
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An initial framework was proposed based on current literature. This framework was 

applied to a problem involving an existing decision support system used in the domain of 

dairy farm management. The initial framework has been revised in light of experiences 

gained during its application, and a prototype system was built to examine the feasibility 

of the framework. The resultant prototype system, and experiences gained during its 

development, provided a means for evaluation of the framework. 

1.2 DEFINITION OF TERMS 

There is considerable confusion within the systems development discipline as to the use 

of terms such as method, methodology and project life cycle; often these terms are used 

interchangeably (Yourdon, 1989). An attempt has been made to define these terms as 

they will be used throughout this report. 

Gillies (1991) defines a methodology to be " .. . a framework for the systematic 

organisation of a collection of methods" . Harmon and Hall (1993) when discussing 

development methodologies for knowledge based systems comment that "a methodology 

is more than a knowledge acquisition strategy; it provides a vocabulary, diagramming 

techniques, and a step-by-step procedure for actually constructing a system and tools for 

managing development projects". Avison and Fitzgerald (1995) consider an information 

systems methodology to be "a recommended series of steps and procedures to be 

followed in the course of developing an information system". Turban (1995) defines a 

life cycle in systems development to be "Structured approach to the development of 

information systems with several distinct steps" . It can be seen that there is no clear 

distinction between the terms methodology and lifecycle; this study will use the term 

methodology wherever possible, as defined by Avison and Fitzgerald ( 1995). 

Methodologies and lifecycles appear to vary in the detail of their descriptions. Avison 

and Fitzgerald (1995) comment that "a methodology can range from being a fully fledged 

product detailing every stage and task to be undertaken to being a vague outline of the 

basic principles in a short pamphlet". This study is attempting to propose only an initial 

framework for a methodology; the author believes its detail does not warrant it being 

called a methodology. Thus the term "framework" will be considered an outline to a 

methodology; something that, with further investigation and addition of detail, could be 

considered a methodology. 
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1.3 RESEARCH METHODOLOGY 

The research methodology used was that of Systems Development Research 

(Nunamaker, Chen & Purdin, 1991 ). Systems Development as a research strategy is 

considered to consist of five stages, shown in the Figure 1.1 from Nunamaker et al 

( 1991 ). 

System Development 

Research Process 

Construct a 
Conceptual 
Framework 

Develop a 
System 

Architecture 

Analyse & 
Design the 

System 

Build the 
---- (Prototype) 

System 

Observe & 
Evaluate the 

System 

Research Issues 

* State a meaningful research questio n 
* Inves tigate the system fu nctionaliti es and requ irements 
* Understand the system building processes/procedures 
* Study relevant disc iplines for new approaches and ideas 

* Develop a unique architecture design for extensibility. 
modularity. etc. 

* Defin e fu nct ionali ti es of system components and 
interrelationships among them 

* Design the database/knowledge base schema and 
processes 10 carry out system functions 

* Deve lo p allemative solutions and choose one solution 

* Learn about the conce pt s. fram ework . and design 
throu gh the system building process 

• Gain insight about the problems and the complex ity 
of the system 

*Observe the use of the system by case studi es and fi eld studies 
• Evaluate the system by laboratory experiments or field experiments 
• Develo p new theories/models based o n the observati on and 

ex perimentation of the system's usage 
• Consolidate experiences learned 

Figure 1.1 - A Process for Systems Development Research (Nunamaker et al., 1991) 

The first step involves stating a clear research problem, which provides a focus for the 

research throughout the development process. From here an appropriate conceptual 

framework can be established drawing from literature in various related disciplines. 

The second step involves investigating appropriate architectures for the system, this 

stage must state objectives and define associated required functionality's of the resulting 

system. These first two steps provide a basis for the third step which involves the 

analysis and design of the system. 

From here a prototype system is developed as a "proof-of-concept" to demonstrate 

feasibility of the proposal. The development in itself is a learning process; the difficulties 

and constraints encountered during the development process can be used to evaluate the 

concepts and theories initially proposed. The resulting prototype can also be evaluated 

based on the defined aims of the research. 
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It is considered to be very important to use other research methodologies to support 

systems development, as the development on its own is not generally considered to be 

serious information systems research. Therefore, the integration of techniques such as 

evaluation and experimentation is critical to validate the development process. 

Nunamaker et al. ( 1991) emphasise that building a system in itself does not constitute 

research, however the "synthesis and expression of new technologies and new concepts 

in a tangible product can act as both the fulfilment of the contributing basic research and 

as an impetus to continuing research" (Nunamaker eta!., 1991). 

1.4 RESEARCH PROBLEM 

As indicated by Nunamaker et al. ( 1991) it is necessary to provide a clear definition of 

the research problem before continuing. Its aim is to direct the development process, 

and is stated as follows . 

To investigate and propose a framework for the development of an 

intelligent component to be integrated with an existing decision support 

system. 

In order to investigate this research problem, the Nunamaker et al. process for systems 

development research was followed. Chapters in the report correspond generally with 

the steps in the process. Chapter 2 reviews literature related to the research problem 

with the aim of investigating methodologies1 and concepts which could be utilised in the 

resulting framework. Related research areas are reviewed including those of decision 

support systems, knowledge based systems and intelligent decision support systems. 

Chapter 3 collates what is considered appropriate concepts and theories from the 

literature into an initial development framework. Chapter 4 provides an overview of the 

domain chosen to test the framework (dairy farm management), and describes the 

decision support system which is to be studied. 

The development framework was applied to the problem domain; this process is 

described in Chapter 5. A revised framework is proposed based on experiences gained 

during its application. The resultant models were then used for the development of a 

prototype IDSS, which is discussed in Chapter 6. 

The documented experiences and the resultant prototype IDSS, provided a basis for the 

evaluation of the framework in Chapter 7. The evaluation has taken two stand points. 
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Firstly, the prototype was evaluated based on the aims determined before its 

development relating specifically to the problem domain, which required involvement 

from the domain expert. This evaluation took the proof-by-demonstration approach 

(Nunamaker et al., 1991); the framework was evaluated using the prototype to prove it 

was feasible and could create the desired results. Secondly, the framework was 

evaluated based on experiences gained during its application in relation to established 

criteria drawn from the literature. 

Chapter 8 concludes the study, discussing the e_xtent to which the stated objectives were 

met. Areas for associated future work, and extensions to this study are also outlined. 



2.1 INTRODUCTION 

This chapter reviews the literature associated with decision support systems, knowledge 

based systems and intelligent decision support systems. Within each discipline, relevant 

terms are defined, and architectures for the systems are investigated. Development 

methodologies for each are also studied, and any techniques considered relevant are 

highlighted and discussed. 

2.2 DECISION SUPPORT SYSTEMS 

Keen and Scott Morton (1978) were amongst the early researchers of decision support 

systems, and proposed the definition for a decision support system (DSS) to be: 

"The application of available and suitable computer-based technology to help 
improve the effectiveness of managerial decision making in semistructured 
tasks" (Keen & Scott Morton, 1978) 

Sprague ( 1980) describes the early characterisation of a decision support system to be: 

"interactive computer based systems, which help decision makers utilise data 
and models to solve unstructured problems" (Sprague, 1980) 

Sprague ( 1980) feels that this definition is too restrictive, resulting in very few systems 

which can completely satisfy it. Broader definitions too, have their problems due to the 

varied interpretations of them by people from different backgrounds. Doukidis ( 1988) 

believes that DSSs are most effective when dealing with semistructured tasks where "the 

system provides mathematical/analytical tools and models to evaluate the situation and 

the user adds his experience and judgement to make a decision". Similarly, Klein and 

Methlie ( 1995) define a DSS to be: 

"A computer program that provides information in a given domain of 
application by means of analytical decision models and access to databases, in 
order to support a decision maker in making decisions effectively in complex 
and ill-structured (non-programmable) tasks" (Klein & Methlie, 1995) 

Er ( 1988) faults these definitions by questioning the meaning of some of the terms used, 

such as "semistructured tasks". Klein and Methlie (1995) also see the definition of this 

term as a key concept in DSS. Thus it seems necessary to define the terms 

semistructured and unstructured tasks in order to define DSSs. Er (1988) discusses 

three types of problems to be solved by management; structured, semistructured and 
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unstructured, between which there are not clear boundaries. The classification of 

problems can depend on the existence of methods for solving them (Er, 1988), and thus 

the definition of structured versus unstructured problems varies with decision makers 

(Marsden & Pingry, 1993). 

Marsden and Pingry ( 1993) define the term structured problem as "If a problem can be 

adequately represented by a decision model which is solvable, then we will say that the 

problem is structured", their corresponding definition of an unstructured problem, is any 

problem that does not satisfy the definition for a structured problem. However, this 

definition of structured depends on the interpretation of 'adequately represent' and 

'solvable'. 

Klein and Methlie ( 1995) discuss the structure of problems in a similar way, as follows: 

"Structured problems are routine and repetitive, because they are 
unambiguous (since each such problem has a single solution method). A less 
structured problem has more alternative solution methods, and the solutions 
may not be equivalent. A completely 'unstructured' problem has unknown 
solution methods or too many solution methods to evaluate effectively" 
(Klein & Methlie, 1995) 

Associated with this definition Klein and Methlie ( 1995) list characteristics of 

semistructured problem situations to be: 

• "The preferences, judgments, intuition and experience of the decision maker are 
essential" 

• "The search for a solution implies a mixture of: 
search for information 
formalisation, or problem definition and structuring (system modelling) 
computation 
data manipulation" 

• "The sequence of the above operations is not known in advance since: 
it can be a function of data 
it can be modified, given partial results 
it can be a function of the user preferences" 

• "Criteria for the decision are numerous, in conflict, and highly dependent on the 
perception of the user" 

• "The solution must be achieved in limited time" 
• "The problem evolves rapidly" (Klein & Methlie, 1995) 

Turban ( 1995) uses the following definitions for the different types of decisions: 
structured decisions "Standard or repetitive decision situations for which 

solution techniques are already available" 
unstructured decisions "Complex decisions for which no standard solutions exist" 
semistructured decisions "Decision's in which some aspects of the problem are 

structured and others are unstructured" 
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Turbans ( 1995) definitions will be used throughout this study as they are consistent with 

the other authors quoted, however he separates them into three clear definitions for the 

different types of decisions. 

Due to the difficulty in defining DSSs and associated terms, Sprague ( 1980) sees it more 

appropriate to provide characteristics of a DSS in order to develop an understanding for 

the term, rather than attempt to provide a definition. This method of definition has been 

adopted by a number of authors in the field, and the following is a collation of 

characteristics of a DSS from various authors: 

• DSSs are interactive, computer based information systems (El-Najdawi & Sylianou, 
1993; Mittra, I 986; Sprague, 1980) 

• DSSs specifically focus on features which make them easy to use by non computer 
people (Mittra, 1986; Sprague, 1980; Turban, I 995) 

• DSSs tend to be aimed at the less well structured, under specified problems that 
upper level managers typically face; (Alter, 1980; El-Najdawi & Sylianou, 1993; 
Mittra, 1986; Sprague, 1980; Turban, 1995) 

• DSSs support but do not replace upper-level managers in decision making (Alter, 
1980; Er, 1988; Turban, 1995) 

• DSSs attempt to combine the use of models or analytic techniques with traditional 
data access and retrieval functions; (El-Najdawi & Sylianou, 1993; Mittra, 1986; 
Sprague, 1980; Turban, 1995) 

• DSSs rely on simulation in cases where an analytic optimising model cannot be 
solved (Mittra, 1986) 

• DSSs use statistical analysis to collect data and to predict trends (Mittra, 1986) 

• DSSs emphasise flexibility and adaptability to accommodate changes in the 
environment and the decision making approach of the user. (Alter, 1980; El-Najdawi 
& Sylianou, 1993; Mittra, 1986; Sprague, 1980; Turban, 1995) 

2.Z.I DECISION SUPPORT SYSTEM ARCHITECTURE 
Sprague (1980) considers DSS software to have three sets of capabilities; database 

management software (DBMS), model based management software (MBMS) and 

software for managing the interface between the user and the system - the dialogue 

generation and management software (DGMS) (Figure 2.1 ). The division of a DSS into 

these three components is supported by a number of authors (Beulens & Van Nunen, 

1988; El-Najdawi & Sylianou, 1993; Ford, 1985; Marsden & Pingry, 1993). 
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Decision Support System 
~~~~~~ ~~~~~~ 

Database Model Base 

Dialog Subsystem 

User 

Figure 2.1 - DSS Architecture (Ford, 1985) 

Sprague ( 1980) identifies technical capabilities each subsystem must possess if they are 

to be combined to become a DSS. The data subsystem should, according to Sprague 

( 1980) possess, the following capabilities: 

• the ability to combine data sources 

• the ability to add and delete data efficiently 

• the ability to represent data structures in a way the user understands 

• the ability to allow the user to experiment with alternatives based on personal 

judgement and unofficial data 

• the ability to manage this variety of data 

According to Chang, Holsapple and Whinston ( 1993) model management is concerned 

with "computer-based means for representing and processing models'', aiming to increase 

the productivity of decision makers, DSS developers and modelling experts. A model 

base is considered in the Sprague and Carlson (I 982) framework as a collection of 

procedures that can be executed to analyse data. The model subsystem should, 

according to Sprague (I 980) possess the following capabilities: 

• the ability to quickly and easily create new models 

• the ability to organise and maintain a range of models, suitable for all levels of 

management 

• the ability to integrate models with appropriate links to data; 

• the ability to manage the model base with similar functions to database 

management 

The user System interface should, according to Sprague (I 980) possess the following 

capabilities: 

• the ability to deal with different user styles 

• the ability to interact with the user in a variety of media 

• the ability to present data in various formats and media; 

• the ability to provide flexible support given the users' understanding of the situation 
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Bonczek, Holsapple and Whinston ( 1980) propose a framework for DSSs which differs 

from the popular framework of Sprague ( 1980). This framework too, has three major 

components; the language system, a knowledge system and a problem processing system 

(PPS) (Figure 2.2). The first two are systems of representation and the third is a 

software system. 

Decision Support System 

Problem c User - - Language 
~ Processing ~ 

Knowledge 
System System 

• System 

RP~nrmoo 

Figure 2.2 - DSS Architecture (Bonczek et al., 1980) 

The PPS has the function of mediating between the expressions of knowledge in the 

knowledge system and expressions of problems in the language system (Bonczek et al., 

1980). Chang et al. (1993) describe the language and knowledge system as fuel for the 

activities of the problem processor. "The language system is comprised of all requests 

that the PPS can act on with respect to the current contents of DSS's knowledge system. 

The knowledge system is comprised of knowledge that the PPS can use in generating 

responses to user requests" (Chang et al., 1993). 

The PPS is considered to have one or more of the seven abilities required for decision 

making, as defined by Bonczek, Holsapple and Whinston (1980) those being: Power, 

Perception, Design, Analysis, Valuation, Organisation and Adaptation. Power is 

described as being the ability to exercise some power or authoritative force, perception is 

the ability to collect information and design is the ability to formulate models. Power 

and perception are related to valuation as values are based on available information and 

available powers. Analysis is described as a continuing adjustment between design and 

perception and results in beliefs, expectations and facts. Organisation results in the 

execution of plans and is a continuing adjustment between design and power. 

Adaptation is a continuing adjustment between the other six abilities, and involves 

problem recognition, constrained by the other six abilities. Not all of these can be 

accounted for in the processor, such as power, as the processor has no intrinsic power or 

authority. Thus the processor supports rather than makes the decisions. 
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The knowledge system contains the body of knowledge about a problem domain. There 

are a variety of representation schemes which can be adopted in the knowledge system, 

and various types of knowledge can be represented; procedural, descriptive or meta 

knowledge (which is used to govern the use of programs and data, such as reasoning 

knowledge (eg in the form of rules)). This allows for powerful and flexible DSSs 

possibilities to emerge. Chang et al. ( 1993) fit the Sprague and Carlson framework into 

the Bonczek et al. framework by describing the knowledge system as consisting of 

exclusively a data base representing descriptive knowledge and a model base 

representing procedural knowledge. 

This flexible framework is aimed at bringing together different types of systems to offer a 

unified context for research and study (Chang et al., 1993). 

2.2.Z MODELLING AND SIMULATION 

It is generally considered a major characteristic of a DSS to be the inclusion of a 

modelling capability. Mittra ( 1986) defines a mathematical model to be "a representation 

of a real-life situation by means of variables and equations or inequalities". Jeffers 

( 1982) has a similar definition of a model; "a formal expression of the relationship 

between defined entities in physical or mathematical terms". Models are used to simplify 

complex relationships between entities, Jeffers ( 1982) sees them as useful "because they 

reduce ambiguity and because they describe complexity with the maximum parsimony". 

Chang, Holsapple and Whinston ( 1993) discuss the wide variation in the definition of a 

model within the DSS field. Chang et al, ( 1993) after thorough review of associated 

literature, consider the earliest and predominant view of models to be "procedures, 

automated algorithms whereby data can be analysed in response to stated problems". 

The second view commonly taken of models is to treat them as "data that are to be 

analysed by a procedure" (Chang et al., 1993). The third way Chang et al. consider 

'model' to be interpreted is regarding it to be a problem. Model building in this context is 

considered to involve developing a set of equations that are to be 'solved'. 

Another area which needs definition is descriptive and normative models where 

descriptive models "describe things as they are" whereas normative models prescribe 

how a system should operate (Turban, 1995). These type of models are used in 

development methodologies such as (Keen & Scott Morton, 1978) and (Stabell, 1983). 
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The types of models mentioned above are each solved explicitly using mathematical 

techniques, and the solution gives the values to be assigned to the variables defined in the 

model (Mittra, 1986). Mittra ( 1986) gives three limitations to the use of mathematical 

models: 

I. An explicit solution is not possible because the model may be so complex 

2. The time span of a model may not match the required time span, for example if the 

model extends over six months then the solution leaves implicit the plan for week to 

week operations. 

3. A model contains a certain amount of uncertainty as they rely on past historical data. 

Mittra ( 1986) sees the simulation technique as useful for when mathematical models are 

inadequate due to the above limitations. Watson and Blackstone (1981) describe a 

simulation model as "a mathematical model that describes the behaviour of a system over 

time". Simulation builds an experimental model of a system in analytic terms, and 

evaluates alternatives by performing simulated runs of the model, rather than attempting 

to solve the model explicitly as mathematical models do (Mittra, 1986). Simulation 

attempts to answer "what if" questions so that an analyst is able to make inferences about 

the possible behaviour of the real world system. 

Turban (1995) discusses simulation modelling describing it as "a technique for 

conducting experiments (such as "what if') with a digital computer on a model of a 

management system". Turban considers simulation to be not strictly a type of model; as 

it imitates rather than represents reality. He describes is as a descriptive rather than a 

normative tool; as there is no automatic search for an optimal solution, rather it predicts 

the characteristics of a given system under different circumstances. Simulation is usually 

called for only when the problem under investigation is too complex to be treated by 

numerical optimisation techniques like linear programming. 

Mittra ( 1986) warns of the limitations of simulation due to its inclusion of uncertain 

events, resulting in approximations subject to statistical error. A large number of 

simulation runs are also necessary, and as they can involve complex calculations, 

simulation may become an expensive exercise. Simulation does not generate an optimal 

solution but compares alternative solutions. 

Mittra ( 1986) outlines the following objectives for building a simulation model, where 

one or more must be considered: 

• "To describe a current system" 

• "To explore a hypothetical system" 
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• "To design an improved system" 

(Mittra, 1986) 
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There has been extensive research into the development and use of modelling and 

simulation for analysing biological, physical and economic components of agricultural 

systems. These complex models have been used successfully by researchers, however 

their use by groups such as farmers and extension agents is limited (Jones, Jones & 

Everett, 1987). Jones ( 1989) comments that "many well developed models were not 

being fielded partially because they were difficult to correctly parameterize on the front 

end and were difficult to interpret on the back end. Model developers certainly have the 

expertise to initialise and interpret their models, but no simple mechanism for transferring 

their capabilities". 

One of the major problems is the limitations to the generality of many of these models, a 

problem which requires the results to be interpreted in the context of each particular 

application (Jones et al., 1987). Jones et al. ( 1987) see a potential solution to this 

problem to be to "couple heuristic context knowledge to mathematical models in a 

computerised decision system that takes advantage of model capabilities for specific 

applications". 

Z.Z.3 DECISION SUPPORT SYSTEM DEVELOPMENT 

METHODOLOGIES 

Keen and Scott Morton ( 1978) proposed one of the earliest DSS methodologies. This 

includes a predesign cycle (Figure 2.3) which is cycled through at least twice before the 

more formal system design is begun. This cycle involves the development of normative 

models which define the potential range of designs for an information system. Klein and 

Methlie ( 1995) describe the normative approach as prescribing optimal behaviour, that is, 

how the decision should be made. The descriptive model defines a decision situation as 

it stands, it is concerned with understanding how people actually behave when solving 

problems and making decisions (Klein & Methlie, 1995). The difference between the 

two models is considered the degree of change, and is a measure of both pay off and 

difficulty of implementation. 

More than one normative model can generally be developed for a non structured decision 

as there is no one best solution. The choice of normative models should be made by 

management who should recognise the trade off between risk and return. This is seen as 

the key aspect of the design strategy, as management can decide how much risk they 

believe to be feasible. Keen and Scott Morton (1978) place a lot of emphasis on the 
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predesign cycle and the importance of the managers opinions and understanding of the 

decision situation as an input to the design process. They feel the design team needs to 

understand in detail the existing decision process and potential ways of improving it. 

Decision Analysis 

Monitor and describe 
the current decision process 

Determine the key decisions 

Define "normative" 
model(s) 

Compare the descriptive 
and normative models 

Select areas for support 

Entry 

Identify degree of commitment, 
dey interests, and perspectives; 

build momentum for change 

Define objectives 
for support effort 

Identify resources 
available 

Design alternatives; operationalise 
1--------- goals, costs, benefits; identify key issues 

and constraints on implementation 

Figure 2.3 - The Predesign Cycle (Keen & Scott Morton, 1978) 

The design stage involves three separate areas: the user design, defined in terms of 

imperatives; the interface or driver which links them; and the database management 

design. The imperatives answer the question of "What does the system do?" from the 

users perspective, for example "find", "extrapolate" (Keen & Scott Morton, 1978). The 

complete design cycle is shown in Figure 2.4. Arinze (1992) considers this approach to 

be process or operator driven due to the verbs or imperatives which are identified and 

subsequently transformed into DSS routines. 

Keen and Scott Morton (1978) assume an evolutionary approach to design and see this 

as an important feature. The first stage is to design and deliver a system that is seen as 

useable and useful now, but the interface software should be flexible enough to allow 

rapid extension and addition of routines. This requires the users to be involved in the 

design process, and it is them who initiate another iteration of the design process for the 

addition of new features to the new DSS. Evolutionary design does not, therefore, mean 

the design of a first cut system to get it working and then work on improving it. It is 
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based on the assumption that the users will learn with the use of the system and extend 

the design. 

Design interface 

Check out its uability. 
human engineering etc 

Predesign cycle 

Operationalise 
design objectives 

Identi fy "i mperati ves" 

Assign priori ti es 

Design initial routines 

Test system; re lea~e 

when rob ust 

Make necessary adjustments 
after preliminary usage 

Assess system in rel ation 
to objectives 

When system is complete. 
repeat predesign cycle 

Define data ba~e 

Define collection and 
maintenance procedures 

Design data management 
software 

Figure 2.4 - The Design Cycle (Keen & Scott Morton, 1978) 

Keen and Scott Morton ( 1978) summarise their strategy with the following key features: 

" I . The use of decision research to describe the decision process, define key decisions, 

and identify areas for decision support 

2. The use of normative models to define multiple design alternatives and to help 

position a DSS in terms of degree of change, pay offs, and likely implementation 

problems. 

3. The focus on system usage and objectives as determining structure and technical 

design 

4. The separation of interface and imperatives to allow flexibility and evolution. 

5. The inseparability of design and implementation" (Keen & Scott Morton, 1978) 

In contrast to Keen and Scott Morton's (1978) process-driven design approach , that of 

Stabell (1983) is decision driven, similar to the predesign cycle in Keen and Scott 

Morton's approach (Keen and Scott Morton's Predesign cycle is based on earlier work 

of Stabell's). Stabell's "Decision research" process is shown in Figure 2.5. Decision 
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research is defined by Stabell (1983) as "a broad conceptual basis and a variety of 

measurement procedures for describing and evaluating decision-making behaviour in 

unstructured decision situations" and is considered to consist of the following three 

activities: 
"1. Collecting data on current decision-making using techniques, such as interviews, 

observation, questionnaires, and historical records; 
2. Establishing a coherent description of the current decision process; 
3. Specifying a norm for how decisions should be made" Stabell (1983) 

Choice of 
decision situation 

Data collection -- - - - - - - -

Diagnosis and specification 
of changes in decision making 

Functional specs 
for DSS 

Designing and 
building DSS 

Implementation of DSS 

Monitoring and evaluating 
changes in decision making/impact of DSS 

Figure 2.5 - Decision research process (Stabell, 1983) 

Other authors have based their approaches on Simon's IDC model of the decision 

process, described by Klein and Methlie ( 1995) as: 

1. searching for conditions that require a decision - the intelligence activity 

2. Inventing, developing and analysing possible alternatives - the design activity 

3. Selecting one of the alternatives - the choice activity 

However Stabell (1983) feels this approach is not suitable for distinguishing between 

description and norm because it fits the decision process. Stabell believes a framework 

should identify "how managerial decision making in organisations, in a descriptive sense, 

differs from effective decision behaviour" (ie the descriptive differs from the norm). 

Meador, Guyote and Rosenfeld (1986) proposed a four-stage process for developing a 

large scale DSS. This is outlined as follows: 
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1 . Decision Support analysis 
- structured interview 
- decision analysis 
- data analysis 
- technical analysis 
- conceptual DSS orientation 
- plans and prioritization 

3. Prototype development 
- scoping of prototype 
- project evaluation criteria 
- detailed design 
- system construction 
- testing 
- demonstration 

2. DSS software evaluation and selection - evaluation 
- identification of candidate vendors 4. 
- feature analysis 
- benchmarks 
- external site surveys 

Operational deployment and support 
- functional orientation 
- operational training 
- deployment 
- maintenance 
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Meador et al ( 1986) discuss the use of "Decision Support Analysis" as the first step in 

the DSS development. Decision support analysis involves structured interviews with 

management, decision analysis, technical analysis and management orientation . The 

purpose of the interview is to allow managers to identify their critical needs, objectives 

and priorities. It is seen as important to use interview checklists to focus the interviews, 

and these are developed in consultation with one or two key user managers to ensure all 

important areas are covered. 

Following the structured interviews, decision analysis takes place, which in this context 

involves the development of a conceptual framework to guide the identification of DSS 

opportunities, system design , project management, and communication of priorities 

between users and system developers. This type of decision analysis consists of three 

tasks: business area analysis, description of logical functional flow and specification of 

detailed decision areas. 

Business area analysis "studies representative business units to determine their decision 

support functional requirements" (Meador et al., 1986). The unique business needs of 

each unit is identified along with the objectives, functions, shared data and 

reports/analysis needed by each unit. 

The second stage in decision analysis is converting the business area specifications into 

functional flow diagrams, which involves "hierarchical decomposition of the decision 

making activities of the business areas" (Meador et al., 1986). One methodology 

recommended for this purpose is the Structured Analysis and Design Technique. The 

last step in decision analysis is the identification and classification of decisions. Once 

identified they can be prioritised for DSS development. 



Data analysis involves the identification and description of the classes of data used by the 

functions using the functional flow diagrams. The final stage is technical analysis which 

translates the needs identified previously into a proposed system design with technical 

requirements for hardware and software. The results of the Decision Support Analysis 

guide the DSS development through the rest of the stages, outlined above. 

Meador et al. (1986) discuss six characteristics a DSS methodology should exhibit. 

These include having a minimal elapsed time prior to prototype development so that the 

users can see a concrete system. Due to this rapid development, they feel that analysis 

may often be incomplete, thus it is necessary for the method to quickly focus on the 

highest priority applications, and on the functional requirements that require most 

detailed analysis. It is thought that a methodology should evolve with the DSS, "being 

used to discover initial DSS opportunities, establish initial functional requirements, and 

evaluate existing systems to identify directions for further growth" (Meador et al., 1986). 

Meador et al. ( 1986) feel that user involvement is an important part of a methodology, 

and there should be an orientation toward managerial users and their decision making 

activity. It is thought that the methodology should capture managers' decision processes 

and should establish priorities to improve these processes. 

Turban ( 1993; 1995) integrates the work of Meador et al. ( 1986) with that of Keen and 

Scott Morton (1978) to give the development process illustrated in Figure 2.6. The 

steps involve the following activities: 
1. Planning - Needs assessment, problem diagnosis, objectives of the DSS defined, key 

decisions of the DSS determined 
2. Research - Identification of a relevant approach for addressing user needs and 

available resources 
3. Analysis - Define normative models for key decisions. 
4. Design - can be divided into parts corresponding to the major components of a DSS: 

- Database and its management 
- Model base and its management 
- Dialogue subsystem 
Turban's latest publication (1995) includes the design of the knowledge component. 
Appropriate software tools or generators are selected. 

5. Construction - The technical implementation of the design 
6. Implementation - Testing, evaluation, demonstration, orientation, training, and 

deployment 
7. Maintenance and Documentation - Planning for ongoing support 
8. Adaptation - Recycling through the above steps on a regular basis to respond to 

changing user needs. 
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Figure 2.6 - Phases in building a DSS (Turban , 1995) 
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Turban ( 1995) associates with these phases the iterative approach to design which is also 

referred to as the evolutionary or prototyping approach and involves the following four 

activities: 

I . Select a subproblem 

2. Develop a small but useable system 

3. Evaluate the system continuously 

4. Refine, expand and modify the system in cycles 

This process is repeated a number of times until a relatively stable and comprehensive 

system evolves. Turban sees the advantages of the iterative process to be: a short 

development time, short user reaction time (feedback from user) and improved users' 

understanding of the system, its information needs, and its capabilities. 

Sprague and Carlson ( 1982) propose a framework for DSSs analysis and design aimed at 

identifying the characteristics and capabilities that a specific DSS needs to have. This 

approach is based on four user-oriented entities, which from the users point of view 

provide the capabilities of a DSS. These are: 

Representations to help conceptualise and communicate the problem or decision 
situation 
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Operations to analyse and manipulate those representations (similar to Keen and 
Scott Morton's imperatives (Keen & Scott Morton, 1978) according to 
Arinze (Arinze, 1992)) 

Memory aids to assist the user in linking the representations and operations 

Control mechanisms to handle and use the entire system 

This approach is called the ROMC approach. Arinze ( 1992) considers this to be one of 

the most comprehensive DSS methodologies to date. The approach is a tool for 

organising and conducting systems analysis in DSS (Sprague & Carlson, 1982). ROMC 

is process independent and is based on five characteristics of decision making, discussed 

by Sprague and Carlson and summarised by Turban ( 1995) as follows: 

1. Decision makers prefer to use graphical conceptualisation's to describe situations 

2. The three decision making phases (intelligence, design, and choice) can be applied to 
DSS analysis 

3. Memory aids are useful in decision making and should be provided by a DSS 

4. The DSS should help decision makers use and develop their own styles, skills, and 
knowledge. 

5. The decision maker expects to have personal control over the support system. 

Arinze (1992) feels the ROMC methodology results in flexible DSSs, but believes "much 

of the burden of linking models and data is thrust upon the user". He also points out the 

absence of normative models which is present in other methodologies. 

Sprague (1980) sees the necessity for analysis and design techniques for the development 

of DSSs to be different to the traditional approaches. He believes "A DSS needs to be 

built with short, rapid feedback from users to ensure that development is proceeding 

correctly. It must be developed to permit change quickly and easily". Iterative design 

involves the combination of analysis, design, construction and implementation into a 

single step which is iteratively repeated. The manager and builder work together tackling 

one subproblem at a time and after a short period of use, the system is evaluated, 

modified and incrementally expanded. The cycle is repeated three to six times until a 

relatively stable system which supports a number of tasks is produced (Sprague, 1980). 

Weitzel and Kerschberg (1989) discuss the nature of DSSs as having ill-structured 

problems which deems the design-first-implement-later approach to be inappropriate. 

Prototyping is seen by them as a suitable means of developing DSSs due to the difficulty 

in specifying correct, complete and unambiguous requirements. 

Alter (1994) suggests the use of which ever development strategy is most cost effective 

and least risk prone, however, recognises the support in the field for evolutionary 
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approaches in developing DSSs. The four system development methods Alter (1994) 

considers appropriate for DSS's are outlined in Figure 2.7. 

1. Phased Method - Complete the following stages in sequence with formal documentation 
and complete user and MIS sign off after each stage: 
Figure out what is going on in the organisation 
Define system scope and objectives 
Define format, content, and user control of inputs, calculations and outputs 
Design and program the computer system 
Test 
Install 
Revise 

2. Evolutionary method - Iterate through the following steps as rapidly as possible and as 
many times as necessary: 
Try to understand the problem 
Build a partial solution 
Obtain user feedback about the usefulness and completeness of the partial solution 
Revise accordingly 

3. Incremental method 
Start with an existing computer system 
Identify its shortcomings 
Create additional reports, analytical tools, extract versions of the data base, or whatever 
else is needed to improve decision making 
Use the revised system and review periodically 

4. Turnkey method 
Identify a generic problem for which a computerised solution exists which has been 
developed elsewhere 
Install that solution or a slightly modified version of it 
Identify shortcoming 
Either change the organisation to fit the computer system or vice versa 

Figure 2.7 - DSS development strategies (Alter, 1994) 

Alter ( 1994) outlines the benefits of the evolutionary method as being the high degree of 

user interaction, with the user receiving benefits early. He sees this method as good 

when only partial solutions are understood at the outset, and the progress is quick. 

However, he also sees high costs such as the large amount of user time required, the high 

skill needed from the system designer, the difficulty in maintenance due to the likely lack 

of standardisation and documentation, and the possible need to redesign and reprogram 

for efficiency after the concept is demonstrated. 

2.2.4 TECHNIQUES FOR DEVELOPMENT OF DSS 

Atkinson and Arnott ( 1995) investigated the tools and techniques used in the 

development of DSSs. They defined techniques to be "procedures that can guide a 

systems analyst while performing a given task, in analysis activities ... [they] can be manual 

or computer based instructions". A survey of practitioners involved in the development 

of DSSs, revealed that the most popular technique used was the data flow diagram 

(DFD), a contradiction to Goodwin and Wright's (1991) claim the most common 
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graphical technique to describe a decision situation is a decision tree (Atkinson & 

Arnott, 1995). Entity relationship diagrams (ERD) were also found to be a popular 

technique, showing that practitioners are using conventional techniques for the 

development of DSSs. This is surprising as many authors have claimed the necessity for 

alternative techniques to model a decision structure, such as influence diagrams and 

cognitive maps, neither of which were used by practitioners in Atkinson and Arnott's 

survey. Prototyping also had much less support than expected with only 3.6% of 

respondents applying this technique. 

Z.3 KNOWLEDGE BASED SYSTEMS 

Conventional software systems solve problems by performing numerical calculations, 

solving equations and using optimisation algorithms to process large amounts of data. In 

contrast, knowledge based systems are generally considered to perform tasks typically 

solved by human experts in a particular domain. They do so by using rules-of-thumb, or 

heuristic's, to manipulate symbolic descriptions about the knowledge they are given 

(Harmon & King, 1985). 

Jackson (1990) defines an expert system to be: 

"a computer program that represents and reasons with knowledge of some 
specialist subject with a view to solving problems or giving advice". 

Similarly Turban ( 1995) defines an expert system to be: 

"a computer system that applies reasoning methodologies on knowledge in a 
specific domain in order to render advice or recommendations, much like a 
human expert" 

To define knowledge based systems more accurately, a list of capabilities which one 

possesses has been compiled from various authors in the field. This list outlines 

capabilities which distinguish a knowledge based system from a conventional system. 

1. A knowledge based system simulates human reasoning about a problem domain 
(Gillies, 1991; Hayes-Roth, Waterman & Lenat, 1983; Jackson, 1990) 

2. A knowledge based system performs reasoning on representations of human 
knowledge (Jackson, 1990) 

3. A knowledge based system solves problems by heuristic or approximate methods 
(Jackson, 1990; Turban, 1995) 

4. A knowledge based system manipulates symbols which represent objects (Jackson, 
1990) 
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5. A knowledge based system is capable of explaining and justifying solutions or 
recommendations by reasoning about their own inference processes (Gillies, 1991; 
Hayes-Roth et al., 1983; Jackson, 1990; Turban, 1995) 

6. A knowledge based system solves problems that generally fall into one of the 
following categories: interpretation, prediction, diagnosis, debugging, design, 
planning, monitoring, repair, instruction, and control (Hayes-Roth et al., 1983) 

The ability of knowledge based systems to widely distribute scarce expertise with 

perpetual accessibility and consistent answers, are seen as some of their major 

advantages over human problem solvers (Gonzalez & Dankel, 1993). They provide 

explanation facilities and easy modification, as well as the ability to deal with incomplete 

data; features which cannot be achieved with conventional software systems (Gonzalez 

& Dankel, 1993). However, knowledge based systems also have disadvantages such as 

their knowledge being limited to the domain of expertise and their lack of common sense 

(Gonzalez & Dankel, 1993). 

It becomes obvious when studying the literature that the two phrases "knowledge based 

systems" and "expert systems" are often used synonymously (Gonzalez & Dankel, 1993). 

Similarly, Harmon and King (I 985) describe the phrases "knowledge systems" and 

"expert systems" to be synonymous. Harmon and King ( 1985) comment that "The 

popular press and various software entrepreneurs have already used the term "expert 

system" in so many ways ... that it now lacks any precise meaning". Other authors 

consider expert systems to be specialised instances of knowledge based systems (Evans, 

Mondor & Flaten, 1989; Gillies, 1991 ), however this view is not as well supported in the 

literature. The term knowledge based system rather than expert system will be used 

wherever possible throughout this report. 

2.3.1 KNOWLEDGE BASED SYSTEM ARCHITECTURE 

A knowledge based system is generally considered to consist of a knowledge base, an 

inference engine, a user interface and an explanation subsystem (Harmon and King, 

1985; Turban, 1995). The knowledge base contains the knowledge required to 

understand, formulate and solve problems. This includes facts, such as the problem 

situation and theory of the problem area and heuristic's which direct the use of the 

knowledge to solve specific problems (Turban, 1995). The inference engine contains the 

inference strategies and controls for manipulating the facts and rules (Harmon & King, 

1985). 

The explanation subsystem aims to explain the behaviour of the knowledge based system, 

and the user interface provides a means for the user to communicate with the system. A 
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blackboard is also included in some knowledge based systems, _and it is an area of 

working memory used for description of a current problem, it can include a scheduling 

system, which continually examines the pending actions and chooses the one to try next. 

(Turban, 1995, Harmon & King, 1985). Figure 2.8 summarises the architecture of a 

knowledge based system. 

Knowledge Based System 

User Interface Knowledge Base 

Explanation Facility ___ _______,_ Inference Engine 

Blackboard 

Figure 2.8 - Knowledge Based System Architecture (Adapted from (Turban, 1995)) 

2.3.3 KNOWLEDGE REPRESENTATION 
Representation of knowledge within a knowledge based system is a major issue in the 

field, and should achieve the following objectives: 

1. It should capture generalisations 

2. It should be understandable 

3. It should be able to be easily modified 

4. It should be able to be used in a variety of situations 

5. It should be able to be used to narrow the range of possibilities to be considered 

(Mehandjiska, 1993). 

One method of knowledge representation is that of production rules, developed by 

Newell and Simon (1972). The knowledge is presented in the form of condition-action 

pairs, such as "IF this condition (or premise or antecedent) occurs, THEN some action 

(or result, or conclusion, or consequence) will (or should) occur" (Turban, 1995). 

Turban ( 1995) discusses the two types of rules in production systems; declarative rules 

(which state facts and relationships about a problem), and procedural rules (which advise 

on how to solve a problem, given certain facts are known). Each rule in a knowledge 

base represents a part of the knowledge independently, which makes modifications and 

maintenance relatively easy (Turban, 1995). Production rules are considered to be a 
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good representation of the way human experts organise their knowledge and they can be 

expressed at varying levels of generality. However, problems can arise due to the large 

numbers of rules required in some cases (Turban, 1995). 

Another method of organising knowledge uses principles of object-oriented systems. 

This involves the packaging of both data and procedures into structures (called objects) 

related by an inheritance mechanism (Mehandjiska, 1993). Subclasses can inherit 

procedures and data from their superclasses, and the objects can communicate with each 

other via messages. Mehandjiska and Page ( 1993), investigated the use of the object­

oriented approach to expert systems development, and outlined three methods of 

applying the object-oriented approach to knowledge representation: 

• using a static form of an object 

• extending the object-oriented paradigm to include rules 

• pure object-oriented knowledge representation 

Harmon and Hall (1993) discuss "hybrid systems" combining rules and object oriented 

techniques, making it easier to build large KBS and making them easier to maintain. 

Payne and McArthur ( 1990) discuss similar techniques, as do Klein and Methlie ( 1995) 

who suggest the combination of rule inferencing and frame or object stored knowledge. 

Turban ( 1995) also sees advantages of using multiple representations as he feels 

knowledge representation should be able to support the tasks of acquiring and retrieving 

knowledge, as well as subsequent reasoning; three tasks which are difficult to achieve 

with a single representation scheme. Multiple knowledge representation allows different 

subtasks to have appropriate representations. However, problems may arise in 

translating information between them. Turban ( 1995) believes a successful combination 

of representation methods is that of production rules and frames, utilising the advantages 

of both representations. 

2.3.4 KNOWLEDGE BASED SYSTEMS DEVELOPMENT 

METHODOLOGIES 

Harmon and Hall ( 1993) discuss two recognised methods of developing knowledge 

based systems; rapid prototyping and model based development. Rapid prototyping 

involved "creating a set of rules to solve a specific case and then exercising the system to 

see if it could indeed solve similar cases with the rules it now had in its knowledge base". 

This is seen by Avison and Fitzgerald ( 1995) as the prevailing approach to expert system 

development, which has evolved from the trial and error approach of early expert 

systems. However, for large knowledge based systems this approach is found to be too 
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slow, and lacks an overview and a strategy which allows a manager to divide the work 

up (Harmon & Hall, 1993). 

Model based approaches to system development have proved to be prom1smg for 

overcoming these prototyping problems, by providing formal models of the problem 

type. One of these methodologies is the KADS methodology, which defines some 20 

problem types and provides detailed instructions for analysing and designing modules for 

each type of problem (Harmon & Hall, 1993). 

PROTOTYPING KNOWLEDGE BASED SYSTEM DEVELOPMENT METHODOLOGIES 

Hayes-Roth et al. ( 1983) present a methodology for building expert systems, the five 

steps involved with very brief descriptions are outlined below: 

1. Identification: Determining problem characteristics 

2. Conceptualisation: Finding concepts to represent knowledge 

3. Formalisation: 

4. Implementation: 

5. Testing: 

Designing structures to organise knowledge 

Formulating rules that embody knowledge 

Validating rules that embody knowledge 

Hayes-Roth et al. (1983) emphasise the fact that these stages are not clear-cut, well-

defined or independent, they consider the steps to roughly define the knowledge 

acqms1t1on process. Associated with these steps is an evolutionary or incremental 

development technique, where a prototype is developed which solves the initial 

subproblem, which is then improved upon following further iterations of the process. 

Harmon & King (1985) outline two methodologies for building knowledge systems; one 

for small and one for large systems. Both involve the development of a prototype; the 

more detailed process for the development of large knowledge and associated subtasks is 

outlined in below: 
I . Selection of an appropriate problem 

Identifying a problem domain and a specific task 
Finding an expert willing to contribute expertise 
Identifying a tentative approach to the problem 
Analysing the costs and benefits of the effort 
Preparing a specific development plan 

2. Development of a prototype system 
Learning about the domain and the task 
Specifying performance criteria 
Selecting an expert system building tool 
Developing an initial implementation 
Testing the implementation with case studies 
Developing a detailed design for a complete expert system 
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3. Development of a complete expert system 
Implementing the core structure of the complete system 
Expanding the knowledge base 
Tailoring the user interface 
Monitoring the system's performance 

4. Evaluation of the system 
5. Integration of the system 

Arranging for technology transfer 
Interfacing the system with other data bases, instruments, or other hardware to 
enhance the speed or friendliness of the system 

6. Maintenance of the system 
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The sequence of these steps is not entirely fixed; it is provided only to give an overview 

of how an ideal project might proceed (Harmon & King, 1985). It is interesting to note 

that the prototype is developed into the resulting system, that is, it is evolutionary 

prototyping as discussed in Section 2.2.3. 

Another knowledge based systems methodology is that outlined by Duffin (1988): 

GEMINI (Government Expert system Methodology INitiative). This is not considered a 

prototyping methodology in the same way as the above methodologies, as it utilises 

prototyping in a very controlled manner. According to Duffin, GEMINI is intended to 

"provide a complete method for the activities involved in the development of KBS 

software from the inception of a project though to, and including, the process of physical 

design". Duffin states that GEMINI is intended to be used in conjunction with 

conventional software development methods because of the possible need for KBS 

developments to be closely integrated with conventional software systems. One of the 

precepts of GEMINI is the compatibility of the methodology with data processing 

approaches so that a single feasibility study can identify both the KBS and conventional 

components of a business solution, and subsequent stages can work alongside each 

other. 

Due to the undisciplined use of prototyping and incremental development, without a 

clear understanding of the objectives and success criteria to which they conform, the 

steps involved in GEMINI are carefully controlled. It utilises a technique called a project 

review which is returned to after each phase in the systems development (feasibility, 

requirements analysis, system modelling, logical design and physical design). The project 

review provides the "opportunity for re-evaluation of the technical, business and 

organisational viability of the proposed system in the light of the accumulated 

information available at that point" (Duffin, 1988). 

GEMINI adopts a controlled approach to prototyping; in contrast to an implementation 

driven and evolutionary prototyping approach. Prototyping is considered to be an 
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important technique, as it is useful for communication and feedback between the 

developer, users and experts. According to Duffin ( 1988), prototypes "must have an 

explicitly defined aim and success criteria before it is designed, implemented and used" . 

The prototype development is considered to have its own lifecycle consisting of 

definition of aims, design of prototype, implementation, use of prototype and evaluation. 

The evaluation feeds back gained experiences into the real system development life cycle. 

Duffin's proposed lifecycle is shown in Figure 2.9. 

System Development 

I Feasibility 

I Requirements Analysis 

I System Modelling 

I Logical Design 

! Physical Design 

Definition 
of aims 

Evaluation 

Design of 
Prototype 

Prototype 
Development 

Use of 
Prototype 

Implementation 

Figure 2.9 - Prototyping and System Development (Duffin, 1988) 

MODEL BASED KNOWLEDGE BASED SYSTEM DEVELOPMENT METHODOLOGIES 

The KADS methodology (Wielinga, Schreiber & Breuker, 1991) concentrates on the 

analysis phase of the knowledge based systems development. KADS attempts to provide 

a good understanding of the knowledge through a modelling approach. With modelling, 

the behaviour of a real world situation is mapped to an artefact description. Karbach, 

Linster and Voss ( 1990) explain that with KADS "The analysis of knowledge should be 

model driven as early as possible, as this makes the process more efficient and more 

proficient". 

The vanous models in the KADS methodology are outlined in Figure 2.10. The 

following is a description of these models, as defined by Wielinga et al. ( 1991 ). 

• The Organisational model provides an analysis of the socio-organisational 
environment in which the KBS will function. It also attempts to predict how the 
knowledge base system will influence the organisation. 

• The Application model defines what problem the system is to solve in the 
organisation and what the function of the system will be in the organisation. 
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• The Task model specifies how the function of the system is achieved through the 
tasks and subtasks that the system will perform. These subtasks are the starting point 
for the next two models. Each task has an input and output specification, where the 
input is the information used to achieve a goal represented by the output. The task 
environment determines constraints on how the task is performed in the domain, this 
influences the scope and nature of the model of expertise and the model of 
cooperation. 

• The Model of Cooperation provides a decomposition of the tasks in the task model 
into a number of primitive tasks. It specifies which agents carry out which tasks, and 
specifies the functionality of those subtasks which require cooperation. 

• The Model of Expertise is the major activity in the building of a KBS. It specifies the 
problem solving expertise required to perform the problem solving tasks assigned to 
the system. 

• The Conceptual model is a combined, implementation-independent, model of both 
expertise and cooperation. 

• The Design model is a description of the computational and representational 
techniques that are not present in the conceptual model. 

organisational 
model 

application 
model 

system 

Figure 2.10 - Intermediate models in the KADS methodology (Wielinga et al., 1991) 

Traditionally the modelling of knowledge based systems has been "implementation­

oriented" (Hickman, 1989). This causes problems, as very different systems are expected 

to fit into the same basic implementation structures. The level of abstraction in the 

KADS model of expertise ensures an implementation independent model of the experts 

knowledge. The abstraction also makes the description more general, facilitating 

maintenance (Hickman, 1989). Knowledge at this level can be distinguished as either 

domain or control knowledge. Four layers are distinguished in the KADS model of 

expertise, between which there is limited interaction. The four layers are: 



30 

• The Domain Layer embodies the conceptualisation of a domain for a particular 
application. This level is independent of the task layer as it is task neutral, thus there 
is nothing on this layer to control the use of the knowledge. This approach is an 
attempt to gain a flexible and reusable representation of domain knowledge. The 
ontological primitives used to describe domain theories are concepts, properties of 
the concepts, relation between concepts, and relation between property expressions 

• The Inference Layer categorises the basic reasoning steps into inference structures. 
Included in the inference layer is an input/output specification and a reference to the 
domain know ledge that it uses. The inference structure is only an abstract description 
of the inference making, it does not show how these inferences are controlled during 
the task. 

• The Task Layer contains knowledge about how the knowledge sources are combined 
for use in the problem solving processes. Tasks only refer to inferences and not 
explicitly to domain knowledge. There are three types of subtasks: primitive problem 
solving tasks (specified in the inference layer), composite problem solving tasks 
(specified in the task layer) and transfer tasks (require interaction with an external 
agent). There are four types of transfer tasks which are: obtain, present, receive and 
provide. 

• The Strategic Layer contains the knowledge that enables an expert to choose the 
appropriate task structures and goals to solve a particular problem 

The first two layers describe what can be known and inferred, but say nothing about how 

such knowledge is actually applied to reason toward desired conclusions (Hickman, 

1989). The last three layers are regarded as a constraint on the domain layer and are 

domain independent. The middle two layers can be described by generic models of 

expertise called interpretation models. 

A number of interpretation models for various problem solving activities are contained 

within the KADS library of interpretation models. One or more of these existing models 

can be used as a starting point to guide the data acquisition process. If a suitable model 

does not exist, one must be constructed from scratch by the knowledge engineer. 

Existing interpretation models include problem solving activities such as monitoring, 

diagnosis and prediction, 

Kemp, Todd, da Silva & Gray (1994) propose an adaptation to the KADS methodology 

as a knowledge acquisition process. The resultant models are the task model and a three 

layered model of expertise (omitting the strategic layer). The process is illustrated in 

Figure 2.11, where the elicitation process obtains domain information from a source; 

analysis breaks down the results of the elicitation phase into concepts, attributes and 

relationships; the interpretation phase uses the domain knowledge to select interpretation 

templates from the KADS library; and modelling involves developing the task model and 

the model of expertise. 
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Z.3.4 

Elicitation 

Transcripts etc 

Analysis 

Domain concepts etc 

Interpretation 

Interpretation template(s) 
Integrated template 

Template 

Task Model 
Modelling 

Task model 
Model of expertise 

Figure 2.11 - Knowledge acquisition process (Kemp et al., 1994) 

KNOWLEDGE ACQUISITION 

31 

Knowledge acquisition is seen by Sowa ( 1992) as " .. the process of eliciting, analysing, 

and formalising the interconnected patterns of thought underlying some subject matter". 

Wielinga et al. ( 1991 ) define knowledge acquisition as involving the activities of 

"eliciting the knowledge ... , interpreting the elicited data using some conceptual 

framework, and formalising the conceptualisation's in such a way that the program can 

use the knowledge". The formalising stage in this definition has a different meaning to 

Sowa's ( 1992) use of the word. Sowa considers the formalising of the knowledge to be 

translating the modelled knowledge into a language of artificial intelligence. However, 

Wielinga et al's formalising goes no further than modelling the knowledge, their 

interpretation stage involves the interpretation models of the KADS methodology which 

guides the modelling process. 

In the work by Kemp et al. (1994), knowledge acquisition using their adapted KADS 

methodology is considered to involve the stages of elicitation, analysis, interpretation and 

modelling (Figure 2.11 ). This definition is very similar to Wielinga et al's definition 

which excludes the translation of the knowledge into the pre-encoded form. Kemp et al's 

use of the word analysing is different to that of Sowa's, as Sowa's analysis includes 

interpreting and modelling of the data. Table 2.1 summarises the definitions discussed, 

with each column containing terms used equivalently by the different authors. 
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Sowa (1992) eliciting analysing formalising 

Wielinga et al (1991) eliciting interpreting formalising 

Kemp et al ( 1994) eliciting analysing interpreting modelling 

Table 2.1 - The breakdown of definitions for knowledge acquisition. 

CONCEPTUAL ANALYSIS 

Conceptual analysis is the central activity in knowledge acquisition according to Sowa 

( 1992), and needs to be integrated with the elicitation and formalisation processes. It is 

designed to elicit the tacit assumptions that are so obvious that no one thinks of them 

consciously. Regoczei and Hirst (1988) also describe conceptual analysis as explication, 

which involves "organising and systematising the knowledge, separating important from 

less important concepts, checking the knowledge for completeness of coverage, and 

above all making sure that both informant and analyst are talking and thinking about the 

same thing". 

Sowa ( 1984) and Recogzei and Hirst (1988) consider the first step in conceptual analysis 

to be brainstorming, or the "free association with the goal of listing everything related to 

a concept" (Sowa, 1984), two methods of achieving this is by drawing Buzan's Mind 

Maps (Buzan & Buzan, 1993) or Novak and Gowin's concept maps (Novak & Gowin, 

1984 ). These help in the identification and definition of the domain of discourse 

appropriate to the problem. These maps are a way of quickly and naturally representing 

a person's understanding of a domain. They aid in the loosening of inhibitions often 

present when trying to elicit knowledge from an expert, and are intended to be an 

informal notation for quickly capturing relationships (Sowa, 1992). 

The more formal notation of conceptual graphs can then be used as a system of logic for 

analysing distinctions in detail and representing the concept maps more precisely (Sowa, 

1992). 

Sowa adapted a checklist developed by Sloman ( 1978) for conceptual analysis and 

applied some of the ideas to conceptual graphs. This guides the process of developing 

conceptual graphs. 

• Instances - imagine every possible way in which the concept can be used; 
experiment with using the instance in different contexts. 

• Type hierarchy - divide the list of instances into subtypes and group them according 
to different criteria in as many ways as possible; consider all supertypes; find 
synonyms, antonyms and related words; identify what criteria distinguish them. 
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• Canonical Graphs - class the concept as a natural type, a role type, a comparative 
type or an evaluative type; ensure the inclusion of links which are necessary for the 
class. 

• Definitions - extend or complete dictionary definitions; look for general principles; if 
it is a technical concept then create a type definition. 

• Schemata - create schema for concepts which cannot be defined by necessary and 
sufficient conditions showing how it is related to other concepts. 

The Sowa-Sloman checklist follows the creation of the mind or concept maps. The maps 

can generally be divided into small sections which can be converted into conceptual 

graphs. The conceptual graph notation should help guide the process by providing 

formal ways of representing the information. Figure 2. 12 shows a concept map for 

conceptual analysis adapted from Sowa ( 1992). 

Knowledge Acquisition 

first phase is econd hase is 

Knowledge Gathering Formalising 

generates 

has 

Free Association 

such as 
from 

Interviews from 

Documents 1------~ 

Figure 2.12 - Concept map for Conceptual Analysis. 

Z.3.5 CONCEPTUAL GRAPHS 

A conceptual Graph is defined by Sowa ( 1984) as 11 
.. a finite, connected, bipartite graph 11

• 

The two kinds of nodes that can exist in a conceptual graph are concepts and conceptual 

relations. Each conceptual relation has one or more arcs, each of which must be linked 

to some concept, if a relation has n arcs, it is said to be n-adic. A conceptual graph by 

itself may form a conceptual graph, but every arc of every relation must be linked to 

some concept. The graphs are represented as shown in Figure 2.13. 

CONCEPT! CONCEPT2 

Figure 2.13 - Graphical representation of a basic conceptual graph 
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The graph in Figure 2.13 is read as "the relation of concept 1 is concept 2" . Sowa 

(1992) sees the graphical representation as a good way of recording associations, he 

claims that graphs allow a change of focus at any time, so any node in a graph can 

become a new centre for growing a new pattern of relations. The graphs can also be 

written in textual form, with square brackets used around concepts, and rounded 

brackets around relations, for example: 

[CONCEPT!]~ (RELATION)~ [CONCEPT2] 

The function type maps concepts into a set T, whose elements are called type labels. The 

denotation of type t, written C>t, is the set of all entities that are instances of any concept 

of type t. The types can be ordered into a subtype/supertype hierarchy called the type 

hierarchy. The type hierarchy tends to form a type lattice as some types have more than 

one immediate supertype. Biebow et al. ( 1993) describes this lattice as an "IsAKindOf' 

hierarchy, which allows multiple inheritance. 

Generally common nouns correspond to type labels, they are generic terms that specify 

some attribute of the entity they are referring to. They apply equally well to any entity 

with that attribute. Proper nouns instantiate these type labels. The concept box is 

divided into two parts, the type label is followed by a colon and then the referent to that 

type. For example the concept [PERSON:#123] refers to the individual person number 

123, and #123 is called the individual marker. Generic concepts have an asterisk as its 

referent, which refers to any individual of the concept, for example [COW:*] reads "a 

cow" or "some cow" . Abstract concepts can have referents, for example [HAPPY:#234] 

refers to a particular instance of happiness. A referent can also refer to a particular mass 

of a substance, for example [W ATER:#345] refers to a particular mass of water, where 

345 is the identifier for the particular sample of water. 

To represent sets in conceptual graphs, the referent field in a concept may contain a list 

of names or individual markers within braces. For example, [CAT:{Amber, Jasper, 

Blake}], indicates that all three of the individuals in the braces conform to the type CAT. 

To represent sets of different types, a type label which is general enough to enable all 

members to conform to it must be used. For completely unrelated types, the type label T 

would have to be used, as the universal type can have anything as its referent. 

Sowa ( 1984) discusses four types of plural noun phrases to enable the handling of 

different relationships with set concepts. They are: 

• A collective set, is when all elements participate in some relationship together. The 
individuals are separated by commas. { i 1 .. .i0

} 
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• In a distributive set, each element of the set satisfies the relationship individually. 
The set is preceded by the prefix Dist. Dist { i 1 ... in} 

• In a disjunctive set, it is known that one of the individuals participates in the 
relationship, however which one is not known. The individuals in the set are 
separated by a vertical I ine. {i 1 I ... I in} 

• A respective set has an ordered list of individuals which correspond respectively to 
another ordered list with which it is related. The set is within angle brackets and is 
preceded with the prefix Resp. Resp<i, .. .in> 

If a concept v, is within the context of concept u, then u dominates v. Peirce logic leads 

to the ability of inferences to be made with conceptual graphs. The statement "if graph 

I , then graph 2" can be read as "if graph 1 can project into any graphs in the knowledge 

base, then Graph 2 can be asserted" (Polovina & Heaton, 1992). Logically this if/then 

statement can be written as: 

not (graph I and not graph 2) which is the general rule of modus ponens. 

This can be written in the box notation for easier understanding, as in Figure 2.14. The 

domination of graph 1 over graph 2 is obvious in this notation. Polovina and Heaton 

( 1992) simplify the logic by explaining that "Any graph that projects into a graph that 

dominates it may be "rubbed-out" or deiterated" . If graph 1 can be projected into the 

knowledge base (ie. if it is true) , then graph one can be removed leaving a double 

negated ring around graph two, to give not(not graph 2), which cancels out and asserts 2 

to be true. 

Knowledge-base ~ 

Graphs I Graph I I ~ 

Figure 2.14 - Graphical representation of "not (graph I and not graph 2)" 

Figure 2.14 shows that if -,[graph 2] was found to exist in the data base, thus asserting 

graph 2 to be false, the entire statement -,[graph 2] can be deiterated, leaving -,[graph 

1], thus if graph 2 is found to be false, graph 1 is false. This is the general inference rule 

of modus tollen's explained by Polovina and Heaton ( 1992) as "if the consequence of an 

if/then rule is false, then so is its antecedent". These rules of inference ensure truth in 

conceptual graphs, which the formation rules do not. 

A dataflow graph is a type of conceptual graph used for computation which include 

concepts, and a set of nodes called actors (Sowa, 1984 ). An actor is a process that 

responds to messages by performing some function and then generating messages that it 
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passes to other actors (Sowa, 1984). An example of a dataflow graph is shown in Figure 

2.15 . 

NUMBER: *a f __ 
- -, 
~ --...j PRODUCT: *c I 

NUMBER: *b r . .. 
- ,.... 

Figure 2. 15 - Example of a dataflow graph 

For further discussion of conceptual graphs see Jeffries, Todd and Kemp ( 1995b) and 

Sowa (1984). 

2.4 KNOWLEDGE BASED SYSTEMS VERSUS DECISION 

SUPPORT SYSTEMS 

Some authors argue that DSSs and Expert Systems (ESs) have very similar goals, 

Doukidis ( 1988) investigated this claim by surveying 67 ESs to see if they employed DSS 

concepts, which he defined as: 
1. The role of the DSS, addressing the following issues; semistructured task, support 

decision making, effectiveness, multi-objective, multi-domain, individual and group 
decision. 

2. Design features 
3. Components 
4. Prescriptive and Descriptive View 
5. Phases of Decision 
6. Level of Organisational features 

Doukidis ( 1988) found that ESs address semistructured problems and they support users 

to improve the effectiveness of their work, thus have similar aims to DSSs. Ford (1985) 

also investigated the differences between DSSs and ESs, and felt, like Doukidis, that the 

fundamental goal of the two types of systems is basically the same: to improve the 

quality of decisions. 

DSSs are seen by Ford ( 1985) as having more of a support role, providing access to data 

and models relevant and applicable to that decision, whereas ESs provide a conclusion or 

decision to the non-expert user that are more likely to be correct than that user could 

provide. Ford ( 1985) discusses the different types of users of DSSs and ESs, where DSS 

users are mainly middle and upper level management, who are often the decision maker 
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who helped design that system. ESs however, have a user group who are principally 

scientists or researchers in a narrow field of study, and because they are built to "clone" 

the knowledge of particular experts for use by non-experts, the users are not involved in 

the development of the ESs. This is debatable, however, as methodologies such as 

Duffin's ( 1988) GEMINI methodology encourage user involvement, also some expert 

systems are developed for use by the expert. 

Doukidis (1988), Ford (1985) and Turban and Watkins (1986) all found that ESs are less 

flexible, supporting only rigidly defined goals under a well-bounded domain. Thus there 

was a lack of user control in the ESs in comparison to DSS's. 

Doukidis (1988) found that ESs are more common in providing information and advice 

for operational activities, whereas DSSs are mainly for strategic planning and 

management control. Although the two were found to have similar aims, Doukidis 

points out that they achieve them in completely different ways, with the main differences 

being the boundary of the problem space, and the way to tackle problems. 

Ford ( 1985) discusses the similarity of development methodologies for DSSs and ESs, 

both generally using an iterative or prototyping approach, however he points out that the 

development of an ES is generally more time consuming than that of a DSS. 

With the relaxed framework of Bonczek et al. ( 1980) (Section 2.2.1) a conventional 

knowledge based system can be considered a decision support entity where the 

"knowledge system is comprised of rule sets and state variables, whose language system 

consists of requests for advice and explanation, and whose problem processing system is 

an inference engine capable of dealing with such requests and carrying out deductions 

based on knowledge system contents" (Chang et al., 1993). Bonczek et al. (1980) fit 

MYCIN (a well known expert system) into their framework. In contrast, a KBS cannot 

be considered a DSS under the Sprague and Carlson framework as it does not employ 

data base or model base management. 

Table 2.2 is collated from the work of El-Najdawi and Sylianou, 1993; Richards and 

McDonald, 1995 and Turban, 1995, and summarises the differences between DSS and 

KBS. 
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Dimension DSS KBS 

Objective Support decision maker Capture, transfer and make 
available expertise 

Who makes the The human and/or the system The system 
recommendations? 

Means to achieve objective Provide interactive access to data Provide models of the experts 
and models thought processes 

Major query direction Human queries the machine Machine queries the human 

Manipulation method Numerical; quantitative; what-if Symbolic; heuristic 
analysis 

Application Semistructured; ad hoc broad Problem domain dependent; 
problems unstructured problems; narrow 

domain problems; repetitive 

Content of database Factual knowledge Procedural and factual 
knowledge 

Reasoning capability No Yes, limited 

Explanation capability Limited Yes 

Table 2.2 - Comparison of DSS and KBS features 

2.5 INTELLIGENT DECISION SUPPORT SYSTEMS 

Turban (1995) believes the addition of a knowledge management component to a DSS 

"can provide the required expertise for solving some aspects of the problem and/or 

providing knowledge that can enhance the operation of the other DSS components". EI­

Najdawi et al. (1993) too, can see potential in the integration of DSSs and ESs 

technologies, viewing the two tools as complimentary, with the comment that "In 

contrast to the predominantly quantitative focus of DSSs, ESs use qualitative inferences 

procedures and heuristics". 

Although many authors discuss the integration of ES and DSS techniques producing 

what are generally referred to as intelligent decision support systems (IDSS), only some 

of the authors attempt to define IDSSs. Turban ( 1995) defines an IDSS to be: 

"a DSS that includes one or more components of expert systems or other AI 
technologies. This component makes the DSS behave in a better (more 
"intelligent") manner" (Turban, 1995) 

Gottinger and Weimann (1992) define an IDSS as: 

"an interactive tool for decision making for well-structured (or well­
structurable) decision and planning situations that uses expert system 
techniques as well as specific decision models to make it a model-based 
expert system" (Gottinger & Weimann, 1992) 
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This is a clear definition of the term. However confusion arises as it discusses well­

structured decision situations, a contradiction to Klein and Methlie's ( 1995) definition 

which describes an IDSS to be: 

"a computer information system that provides information and 
methodological knowledge (domain knowledge and decision methodology 
knowledge) by means of analytical decision models (systems and users), and 
access to data bases and knowledge bases to support a decision maker in 
making decisions effectively in complex and ill-structured tasks" (Klein & 
Methlie, 1995) 

The use of the terms structured and semistructured tasks was discussed in section 2.2, as 

this also became an apparent problem when attempting to define DSSs. Blair ( 1995) 

considers both of the above definitions, but summarises by defining IDSSs as attempting 

to solve semistructured problems. The author agrees with this decision. It is felt that 

IDSSs aim to solve the same type of problems as DSS, however they also provide 

knowledge based system capabilities. 

Blair et al. ( 1995a) use the terms intelligent decision system (IDS) and intelligent 

decision support system synonymously. Holtzman ( 1989) defines an intelligent decision 

system to be a: 

"decision system that delivers expert-level decision analysis assistance. As 
part of this assistance, the IDS may provide access to a substantial 
knowledge base in the domain of the decision", where a decision system is 
defined as "a system that makes recommendations for action ... typically 
implemented on a computer" (Holtzman, 1989) 

McGovern, Samson and Wirth ( 1991) see intelligent decision systems to be an extension 

of expert systems, defining them as: 

"a class of expert systems with an inference engine based on the application 
of the axioms of decision theory" (McGovern et al., 1991) 

Klein an Meth lie ( 1995) discuss intelligent decision systems as a particular type of 

knowledge based decision support system. They consider an IDS to be a tool which 

makes the skill of expert decision analysts available by using the expert system 

technology to provide both domain knowledge and methodological knowledge. These 

systems utilise decision classes, discussed further in Section 2.5.5. Klein and Methlie 

( 1995) feel that the IDS concept fits within their IDSS framework, with a domain­

specific knowledge base and a decision analysis methodology knowledge base which 

helps the decision maker to formulate and assess influence diagrams for the problem. An 

IDS has the ability to use the decision analysis methodology to elicit important features 

of a given situation. In contrast, the normative power of traditional expert systems are 

limited to the situations represented within the existing knowledge base. 
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This study is investigating intelligent decision support systems as defined by Turban 

( 1995) above, rather than the more specific intelligent decision systems. 

DSSs were defined in Section 2.2 by outlining the capabilities which such a system 

should posses. Blair ( 1995) outlines an equivalent list for IDSSs, dividing the capabilities 

into three perspective's. The list is outlined below with reference to other authors who 

support the capability. As highlighted in Turban's definition, there need be only one 

expert system capability for the system to be considered an IDSS, thus all capabilities 

listed may not be met by any one IDSS. 

External Perspective 

• An IDSS addresses semistructured problems (Blair, 1995, Klein & Methlie, 1995) 

• An IDSS may deal with uncertain or incomplete information (Blair, 1995) 

• An IDSS may deal with decisions which involve risks (Blair, 1995) 

• An IDSS provides normative power to the decision maker (Blair, 1995, Klein & 
Methlie, 1995) 

System Perspective 

• An IDSS is dependent on multiple internal and external information/knowledge 
sources (Blair, 1995, Klein & Methlie, 1995) 

• The IDSS utilises and manages the use of models (Beck & Jones, 1989, Moser, 
1986, Plant & Stone, 1991, Klein & Methlie, 1995) 

Internal Perspective 

• An IDSS is based on several disciplines (eg DSS, databases, KBS etc) (Blair 1995, 
Klein & Methlie, 1995) 

Z.5.3 MODEL MANAGEMENT IN IDSSS 

The combination of KBS techniques and model management is an area of interest among 

authors within the field. Beck and Jones (1989) regard expert systems to be prescriptive 

tools, whereas simulations are predictive, thus see the two tools as complimentary. 

Moser ( 1986) proposes the creation of an integrated DSS developed by combining the 

ability of simulation to predict the values of complex sets of variables over time, with the 

reasoning ability of expert systems. This allows the analysis of the simulation output. 

The system includes a knowledge base editor and a model editor, which helps the user 

create knowledge bases or simulation models that conform to the syntax requirements of 
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the system. The system also contains a model library which has a collection of user­

created simulation models to which the system has access during a consultation session. 

The complex results of the simulation can be analysed by the expert system component, 

enabling recommendations to be made to non-expert users. 

Plant and Stone ( 1991) regard simulation models as demons, when used with knowledge 

based systems, which are external functions or programs called by the inference engine to 

perform a specific function. This idea is also suggested by Fedorowicz and Williams 

( 1986) who discuss an IDSS issuing a call to the appropriate model when all necessary 

data and parameter settings have been supplied. With the ability of expert system shells 

to call or access other programs or software packages, these demon functions are made 

possible. Plant and Stone ( 1991) suggest the use of expert systems technology for 

determining when to run a simulation model, how to initialise it, and how to interpret its 

results. Any missing or unavailable information could be replaced with expert guesses or 

appropriate default values. 

Z.5.4 INTELLIGENT DECISION SUPPORT SYSTEM ARCHITECTURES 

There appear to be two approaches to conceptualising the architecture of an IDSS. The 

first considers the IDSS to be a conventional DSS with an added intelligent component. 

This view is supported by Turban ( 1995) who utilises the commonly used architecture of 

Sprague ( 1980), integrating the intelligent component with the database management 

software (DBMS), the model based management software (MBMS), and the dialogue 

generation and management software (DGMS). This results in four subsystems which 

interact in a variety of ways to form an IDSS. 

Fedorowicz and Williams ( 1986) however adapt the Bonczek et al., ( 1980) framework 

by including both "non-procedural knowledge represented with conventional data base 

techniques, plus procedural knowledge represented with artificial intelligence techniques 

such as formal logic clauses, production rules, semantic nets, and frames" within the 

knowledge system (Chang et al., 1993). The knowledge system also includes models 

utilised by the system. This results in a very integrated system with all information being 

manipulated and stored within the knowledge system. Holtzman's (1989) architecture is 

similar to this, consisting of a general-purpose inference engine, a set of data structures, 

a corresponding set of specialised procedures, and a user interface. This too results in a 

very integrated system where the intelligence appears to be inseparable from the 

conventional features. 
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As this study is concerned with adding an intelligent component to an existing system, it 

seems that the first method of integration is more plausible as the intelligent component 

is considered a separate part of the system. Turban (1995) and Turban and Watkins 

(1986) outline a number of different proposals for this method of integration, these 

include: 

I. Expert System integration into various DSS components; usually considered a one 
way integration; the ES supports the DSS 

1. ES interaction with DBMS. Either the ES is used to improve the structure, use, 
and maintenance of the DBMS, or the DSS provides the ES with essential data. 

11. ES interaction with model base. The ES is an intelligent agent for the model base 
and its management. 

111. ES interaction with the interface. The ES provides, for example, a natural 
language interface; explanation capabilities to the DSS; manipulation of symbolic 
information; tutoring to the user. 

1v. ES as a consultant to the model builder. The ES gives advice on how to 
structure a DSS; how to conduct a feasibility study; or how to adapt the DSS. 

v. ES integration with the user. The ES provides advice to the user regarding the 
type of problem or environmental conditions; possible implementation problems; 
how to use the DSS output; or to provide advice on which DSS to use. 

2. Expert System as a separate component of the DSS 

1. ES output as input to a DSS. The ES is used to determine the importance of the 
problem or to identify the problem, then the problem is transferred to a DSS for 
possible solution. 

11. DSS output as input to ES. The ES interprets the results of the DSS analysis. 

111. Feedback. The output from the ES goes to a DSS, and the output from the DSS 
is fed back to the original ES. 

3. Sharing in the decision making process. The ES is separate from the DSS, where the 
DSS performs the usual functions, and the ES carries out strategy formulation, the 
only component of the decision making process as proposed by Meador et al ( 1986) 
which requires judgement and thus requires an ES. The expert system will be a 
completely separate system (loose integration) but may share the database and 
perhaps use some of the capabilities of the model base. 

4. Generating alternative solutions. Reitman (1982) discusses the possibility for using 
ES techniques for developing alternative solutions for evaluation by the DSS - as 
most DSS's only help users evaluate and choose among potential courses of action 
rather than suggest the alternatives. 
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5. A unified approach. The ES is placed between the data and the models with the 
function of integrating the two components in an intelligent manner 

2.5.5 INTELLIGENT DECISION SUPPORT SYSTEMS DEVELOPMENT 

METHODOLOGIES 

Blair, Debenham & Edwards (I 995b) carried out an extensive study into IDSS 

development methodologies. This consisted of three stages, firstly they were involved in 

the development of an IDSS within a large telecommunications company. This 

highlighted areas where key methodological problems arose. These problems are 

outlined below, and fall into three categories: 

• Requirements analysis 
1. The requirements were difficult to specify, decompose and abstract 
2. The requirements were difficult to understand because more than one model was 

used 
3. The inter-disciplinary requirements were difficult to analyse and model 

• Reuse analysis 
1. Existing software components were difficult to find, understand and cost 
2. Existing software components were difficult to integrate into the IDSS 

• Conceptual design 
I. The conceptual model was difficult to specify, abstract and decompose 
2. The conceptual model was difficult to understand, there was no uniform model 
3. There was little support for normalising the conceptual model 

Having completed this initial study, Blair et al. (I 995b) surveyed practitioners in the field 

to investigate methodologies used. The results of the survey are summarised into the 

following limitations and benefits: 

• Limitations 
I . Requirements analysis, conceptual design and reuse analysis were the least supported 

phases 
2 . The used methods used were drawn from various sources 

• Benefits 
I . Some useful diagrams were found to be influence diagrams, structured grammar 

networks for knowledge acquisition 
2. Expert system based methodologies (Gou! & Tonge, 1987) were said to be good for 

rapid prototyping 
3. KADS was found to be helpful in formalising the design process 

Following the survey Blair et al (I 995a; l 995b) investigated IDSS methodologies, 

comparing five recently published formal methodologies. They found that none of the 
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methodologies investigated provided support for the entire IDSS development process. 

Each of these methodologies are briefly discussed. 

Gou! and Tonge (1987) propose an expert-based systems methodology based on DSS 

design techniques. They draw the concept of adaptive design from DSS techniques, thus 

suggest prototyping, with user responses to the prototype. The ROMC paradigm is the 

basis for the approach, with the focus being on the representation (how an IDSS is 

structured and presented to the user), memory aids (implied by the system and selected 

by the expert eg dictionary, scratchpad), operations (features intrinsic to the system that 

cannot be changed by the user) and control mechanisms (selections a user can make 

during system use). The expert is allowed, within some limits, to choose these features 

which are the basis for constructing the system. 

MEDESS (Van Weelderen & Sol, 1993) is a methodology for designing expert support 

systems, which are considered by Van Weelderen and Sol (1993) to be synonymous to 

IDSSs. The methodology is based on the understanding that computers should support 

rather than replace experts. MEDESS aims to help the designer to pay attention to 

understanding the problem situation as well as to design a new, improved situation. 

There are four questions that need to be addressed by the designer - why, what, how and 

with what. The why problem is described in terms of organisations, organisational 

structures, problem classes, individuals and tasks. The what problem is described in 

terms of tasks which are characterised by the information needed to solve the problem, 

the resulting information, the expert's problem-solving behaviour, and the support 

structure of an associated ESS. A task is divided into subtasks, and coordination tasks 

which control the sequence the subtasks are executed. The how problem focuses on 

how information is grouped and processed (implementation independent), and the with 

what problem concerns the design of hardware and software. 

This methodology appears to have some similarities to the structure of the KADS 

methodology, with the organisational model being similar to the why problem and the 

task model being similar to the what problem. The how phase is similar to the 

development of the conceptual model, and the with what problem and the KADS design 

model appear to have similar aims. 

Angehm and Luthi (1990) propose the Visual Interactive Modelling (VIM) IDSS 

methodology. This methodology is based on two principles, the first being "Useability 

prior to functionality", a user centred approach which aims at designing a flexible, 

useable working environment the user can interact with effectively. The user interface of 
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the IDSS is designed before the functions are analysed and specified. The second 

principle is that of "active cooperation", where the system takes on the role of adviser 

and facilitator. 

Blair et al. (I 995a) interpret the VIM methodology to include the analysis of the decision 

context of the IDSS, the determination of an appropriate language and form of 

communication between the IDSS and decision makers, and "to identify notions, 

concepts and operations which are familiar to the decision maker and that correspond to 

his/her knowledge and experience" (Blair et al., I 995a). From there, the fundamental 

constructs that support the visual interactive environment of the IDSS can be identified 

(Blair et al., I 995a). 

McGovern et al. ( 1991) propose a methodology for the knowledge acquisition phase of 

IDS development, which results in an influence diagram representation of the decision 

problem. Five steps are followed for the production of a "first cut" influence diagram 

from the expression of the problem in textual form. The steps are: 

I. "Write a description of the problem in simple declarative sentences" 
2 . "Identify and isolate decision elements" 
3. "Establish relationships between decision elements" 
4. "Draw influence diagram" 
5 . "Add goal node" 

(McGovern et al. , 1991 ) 

From here each of the nodes is examined to check for clarity and expand them if 

necessary. Blair et al. (I 995a) found this methodology to be the least supportive in 

developing an IDSS, deeming it simplistic and lacking in guidelines on how to break 

down the complexity of gathering the knowledge for a difficult decision . This is to be 

expected as it is intended to be a methodology for knowledge acquisition rather than a 

complete methodology for the development of an IDS. 

Holtzman ( 1989) outlines the "decision analysis cycle" intended to be a means of 

implementing decision analysis. Blair et al ( 1995a) consider this to be a methodology for 

the development of IDSS. This is questionable however, as it goes no further than 

decision analysis. It appears to be very related to Intelligent Decision System rather than 

Intelligent Decision Support System development. The decision analysis cycle is divided 

into two parts; deterministic attention-focusing method which results in a deterministic 

decision making model and probabilistic decision method, which adds probability 

measures to the decision model. This is based on decision theory and enables the 

uncertainty of the decision maker to be modelled. 
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The idea of decision classes is also introduced by Holtzman ( 1989), which involves 

grouping similar decisions together into classes, and associating a collective decision 

class analysis. This enables individual decisions within a class to be analysed by creating 

an instance of the collective analysis. This can reduce the expense and time typical of 

decision analysis as decisions within a class should share a significant amount of 

structure. Analysing a class of decisions occurs at a higher level of abstraction than 

analysing a single decision as knowledge pertaining to a particular decision situation is 

omitted. 

The idea of decision classes seems very similar to the principles of the interpretation 

models in the KADS library. These are generic models which provide a guide to the 

knowledge acquisition process for collection of domain knowledge as well as a structure 

to be instantiated and ordered in the task layer. 

Following their comparison of the above mentioned IDSS methodologies, Blair ( 1995) 

found the following benefits and limitations: 

• Benefits: 
1 . Influence diagrams are considered a useful tool for modelling requirements 
2. The VIM approach helps address issues of designing user interface 
3. The IDS Methodology supports the modelling decision makers risks 

• Limitations: 
1. The methodologies do not address most of the limitations from the project and 

survey 
2. The methodologies provide little support for the later design phases 

3. The methodologies do not exploit existing KBS and DSS design methodologies 

Based on the problems identified in the Blair (1995) and Blair et al., (1995a; l 995b) 

study, Blair et al. (1995b) propose an initial IDSS design methodology. The 

methodology consists of a lifecycle model for sequencing development phases in the 

methodology. A development phase is performed by the use of a method which is 

defined as a "systematic process, technique, or model of inquiry, used to aid in the 

creation of a satisfactory deliverable" (Blair et al., l 995b ). A suitable lifecycle is chosen 

by the developer of the IDSS which suits their project, such as the waterfall lifecycle or 

an iterative development process. The development phases, in the order which they 

occur, are as follows: 

I. Requirements Analysis. Results in the "requirements specification model" which is an 
implementation independent description and functional specification of the problem, 
along with the external behaviour of the proposed IDSS. This involves constructing 
a high level context diagram which is decomposed resulting in a fairly complete 
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requirements specification model. Developers should search for existing components 
which could be reused in the IDSS. 

2. Conceptual Design. Results in a "conceptual model" which is an implementation 
independent description and non-functional specification of how the IDSS will 
address the specified requirements. Where non-functional is defined as being "not in 
the form of what should be stored and what should be deduced" (Blair et al., I 995b). 
This uses the results of phase one which is refined and specified at a low level with 
enough detail for programmers to implement it. The interconnections with existing 
software components are then modelled. 

3. External Design. Results in an "external model" which contains implementation 
details as to what is required to solve the problem. 

4. Internal Design. Results in an "internal model" which specifies what is stored and 
deduced by the system, it is a complete specification for the programmer. 

5. Physical Design. Results in a "physical model" which is the actual implementation of 
the system, and involves using the internal model and a specified implementation 
platform. 

Blair et al ( 1995b) does not examine the methodologies of Turban ( 1995), Gillies ( 1991) 

or Klein et al. ( 1995). Turban ( 1995) expands his earlier DSS methodology by adding 

the design of a knowledge component to his conventional development process, thus 

making it pass as an IDSS development methodology. This is in line with his proposed 

architectures, keeping the intelligent component separate to the rest of the system. 

Gillies ( 1991) proposes three strategies for the development of integrated systems 

(integration of conventional and knowledge based systems). These strategies are: 

1. Structured integrated expert system (IES) methodology 

This is recommended if "the system has been conceived as an information system in the 

first instance based upon algorithmic solutions, and if the benefits sought from 

integration are greater flexibility and the ability to handle problems in terms of 

knowledge and symbolic reasoning" (Gillies, 1991 ). This methodology is an extension of 

the traditional waterfall lifecycle, and the stages are as follows: 

1. Knowledge elicitation for requirements analysis. The scope of the problem is 
defined, involving communication between the domain expert and the 
knowledge engineer. 

11. Structuring and Software Design. Produces a modular structure for the 
system, resulting in a data flow diagram and then a structure chart. 

m. Task allocation. The tasks are allocated to either the information system, the 
expert system or the user, or the task may be considered a compound task. 

1v. Implementation and unit testing - The conventional modules can be represented 
using conventional structured code. The knowledge based modules can be 
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represented in an AI environment such as a PC based shell, which may be able 
to be converted into an algorithmic approach later. 

v. Synthesis and Integration - The modules are integrated; the difficulty of this 
phase depends on the compatibility of the modules. 

v1. System Testing and Installation 

vii. Operation and Maintenance 

2. The data-centred approach 

This approach is suitable when a data base management system is envisaged, but extra 

features such as data sorting and extraction are also desired. Gillies states that "Many 

organisations are now facing serious problems in terms of an 'information overload'. By 

designing an expert system to run on top of the database, the data extracted may be first 

sorted by the computer, in order to present the user with more useful information" 

(Gillies, 1991). This approach is divided into design and implementation stages. 

The design stage is divided into ES design and database design. The first design stage is 

that of the database using a recognised methodology, the resultant data model (such as 

an entity relationship model) is used as a starting point for knowledge elicitation for the 

expert system. Gillies states that "the knowledge required from the elicitation process is 

concerned with how the client makes use of the data in the database and what knowledge 

he uses in the process". A decision tree may be derived. If the expert system was stand 

alone then the answers to the questions would come from the user, but in this case, they 

may be drawn directly from the database (Gillies, 1991 ). 

One method of implementation is having the two systems separate, linked by data 

exchange; the expert system replaces the user input with automated input. Gillies 

(Gillies, 1991) comments that this will not be producing a truly integrated system but 

may provide the best solution. He warns of problems in maintaining integrity between 

the two systems. Gillies outlines the use of object-oriented programming techniques 

highlighting its advantage in combining both knowledge and data records. The other 

implementation path outlined by Gillies is that of PROLOG environments. 

3. The Prototyping and porting (ProP) approach 

This approach has a number of deliverables in a sequential development process. The 

first deliverable is a prototype system "which must handle all the functionality of the 

problem, but does not have to conform to the full specification in terms of speed 

performance and method of implementation" (Gillies, 1991). Typically, it is built within 

an AI toolkit environment. The purpose of the prototype is to prove that a system is 

feasible, and it is developed using traditional expert system development lines. 
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The intermediate system is then developed and is a complete rewrite of the prototype in a 

transparent well-structure language such as C or Pascal (Gillies, 1991 ). The intermediate 

may end up as the final system, or further development may be necessary to come up 

with the final system. 

Gillies ( 1991) suggests the adaptation of any of the above strategies to fit the problem as 

he feels the "ill-defined nature of expert system problems does not lend itself to the rigid 

application of a methodology". 

Klein and Methlie (1995) propose a methodology for the implementation of a knowledge 

based decision support system (KB-DSS) which is outlined in Figure 2.16. The first two 

steps are involve becoming familiar with the users goals and defining the problem. Step 

three involves understanding and modelling the actual decision processes. This is 

important in assessing what improvements are feasible. This step may utilise influence 

diagrams to represent the decision situation. The normative point of view is modelled in 

step four, which can be elicited from one or more experts. An important task in this step 

is the definition of how various resources are utilised by the expert such as models and 

data. 

Step five utilises the descriptive and normative decision processes to come up with a 

feasible decision process to be implemented in the KB-DSS. Which part of the decision 

process to support is defined in step six. The functional analysis step involves defining 

the main functions and the overall architecture of the system, deciding which components 

and resources are needed by the KB-DSS. 

The design and implementation phase is divided into six tasks 

1. data analysis and modelling 
2. form definition and input verification 
3. decision model design and testing 
4. report definition 
5. knowledge base modelling and testing 
6. overall user interface design and global application logic definition 

In performing task six Klein and Methlie (1995) comment that " ... in our experience, it is 

very important to have the possibility of demonstrating simplified knowledge bases to the 

expert in order to help him or her structure his or her knowledge. Running such a 

simplified knowledge base helps very much the expert to define his or her ideas". This 

idea seems very similar to the principles of the VIM (Angehm & Luthi, 1990) approach. 
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The final three steps involve testing the KB-DSS, educating users and monitoring and 

evaluating the performance of the system. 

Klein and Meth lie ( 1995) suggests an evolutionary design strategy which involves 

implementing a first version of the system which may only include a simple interface, a 

simple decision model, a first data file and a knowledge base containing only a few rules. 

Such a system helps users define their needs for data, interfaces, decision models, 

reports, input forms and type of assistance requested from the intelligent component. 

The ability to utilise an evolutionary design process depends on the flexibility of the 

development environment used. 
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Figure 2.16 - KB-DSS implementation process (Klein & Methlie, 1995) 
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2 .6 DECISION ANALYSIS & INFLUENCE DIAGRAMS 

Decision analysis and influence diagrams have been discussed by a number of authors for 

use when developing both DSS and IDSS (Arnott, 1992; Holtzman, I 989; McGovern et 

al., 1991; Stabell, I 983). The discipline of decision analysis combines aspects of systems 

analysis and statistical theory, and results in knowledge that can deal practically and 

generally with the logic of making choices in complex, dynamic, and uncertain situations 

(Holtzman, 1989). 

Smith ( 1988) sees decision analysis as a means of organising a client's information into a 

coherent picture of the problem, so that the best course of action can be taken given the 

client's stated beliefs and objectives. The reasons for why the chosen course of action is 

optimal should be able to be communicated, and a framework of the decision situation, 

which can be critically appraised and modified, should be developed. Similarly, Arnott 

( 1992) considers the outputs of decision research to be "a detailed description of the 

decision process that is understandable to both user and analyst". Arnott ( 1992) feels 

this should incorporate both a normative and descriptive view of the decision process. 

Decision analysis is seen as playing an integrator role between the decision participants. 

Decision trees are the best known representation language for decision problems, making 

each controllable and uncertain variable of a choice problem explicit (Holtzman, I 989; 

Smith, I 988). However, Holtzman (I 989) points out a number of drawbacks of decision 

trees including their inability to exploit independence relations, and their necessity to be 

symmetrical if information other than an optimal policy recommendation is required. 

Furthermore, they grow exponentially and so anything other than a small problem 

becomes impractical. Holtzman ( 1989) sees significant theoretical and practical 

advantages of influence diagrams over decision trees. Influence diagrams are an effective 

communication language that promote efficient, goal-directed generation of decision 

models (Holtzman, 1989). Arnott ( 1992) considers influence diagramming to be a useful 

tool for describing decisions prior to DSS construction. 

Gottinger and Weimann (1992) discuss the use of influence diagrams as a means of 

decision model based representation. Influence diagrams are network depictions of 

decision situations, and have previously been used to elicit and communicate the 

structure of decision problems. More recently, their use in providing a complete 

mathematical description of a decision problem, and as representations for computation 

has been investigated (Gottinger & Weimann, 1992). Turban (1995) describes influence 

diagrams as a graphical representation of a model which provides a visual 
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communication to the model builder and as a framework for expressing the exact nature 

of the relationship within the model. Shachter (1986) claims that influence diagrams are 

"intuitive enough to communicate with decision makers and experts and, at the same 

time, precise enough for normative analysis" . 

O'Donnell (1995) warns of the use of influence diagrams for knowledge acquisition in the 

way decision analysts such as Holtzman ( 1989) and Shachter (1986) use them. 

O'Donnell (1995) believes decision analysts impose an unnatural normative structure on 

the influence diagram, and sees them as a more valuable tool when used descriptively, in 

the way Bodily ( 1985) uses them. It is this method of using influence diagrams which is 

seen as valuable in knowledge acquisition - representing the decision process of an expert 

in a descriptive manner. 

The notation of influence diagrams varies between authors. That of Bodily ( 1985) will 

be discussed, as it is this notation which is supported by O'Donnell (1995) and O'Donnell 

and Watson (1994). 

An influence diagram is made up of nodes and links where the node represents a variable 

or decision alternative, and the links show some type of influence. Decision nodes are 

usually represented by a rectangle or a square and denote choices or alternatives facing 

the decision maker. Intermediate variables are any variables necessary to link decision 

variables to outcomes, and are represented as circles. Attributes or outcome variables 

are those used by a decision maker to measure performance, and are represented by 

ovals. Figure 2.17 shows an example of an influence diagram from Bodily (1985). 

Random variables, which model uncertainty, are noted with a tilde (-) above the variable, 

and any variable influenced by a random variable is also a random variable. 

Decision variable 

Which 
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Intermediate variable Attibutes 

Cash 
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Actual 
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Figure 2.17 - An influence diagram for a borrowing decision (Bodily, 1985). 
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There are three types of influence arrows. A certain influence is represented by a single 

straight arrow, and is used when one node will, without question, affect the value of the 

other node in the relationship. An uncertain influence is represented by an arrow with a 

sharp bend in it, and is used when one node will affect another, but it is uncertain by how 

much. A double straight arrow signifies a preference dependency, which indicates that 

the decision maker's preference for an attribute is influenced by the level of the 

predecessor attribute. A preference variable indicates an influence on the desirability of 

the influenced variable, and not its level. Examples of each type of influence are shown 

in Figure 2.18. For a more detailed description of influence diagrams the reader is 

referred to Bodily ( 1985). 

Certain 
influence 

Uncertain 
influence 

Preference 
influence 

Price 

Salary 

Sales 

Life 
insurance 

Figure 2.18 - Different types of influence (Bodily, 1985). 

According to Holtzman ( 1989), a full description of a decision problem requires that the 

diagram contains at least one decision node directly or indirectly influencing a variable 

node and that consistent, detailed specifications exist for each node in the diagram. An 

influence diagram which is structurally complete, but has not been specified in detail is 

said to be defined at the level of structure. A completely developed and specified 

diagram is said to be defined at the level of function and number, and a well formed 

diagram must be consistent between all levels. Well formed influence diagrams can be 

manipulated by performing four operations; reversing an influence, merging two nodes, 

splitting a node and removing a node. 
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2. 7 CONCLUSION 

This chapter firstly investigated the decision support systems literature, to provide an 

overview of their capabilities and development approaches. Similarly, the knowledge 

based systems literature has been briefly reviewed. The combination of the two types of 

systems has been discussed by a number of authors, and the resultant intelligent decision 

support systems is a growing area of research. The associated literature has been studied 

to discover existing methodologies and techniques for the development of an IDSS. 

Finally, decision analysis and influence diagrams have been discussed, as it was 

discovered these are closely related to DSS and IDSS development. 

Having completed a thorough review of relevant literature, it is clear that, to the author's 

knowledge, there are no methodologies for the development of an IDSS from an existing 

DSS. Chapter 3 will propose a framework for this type of project, based on the concepts 

discussed in this chapter. 



3.1 INTRODUCTION 

This chapter outlines the initial proposed framework for guiding the development of an 

IDSS from an existing DSS. It might be thought that an intelligent component 

developed for interaction with an existing DSS could be developed quite separately from 

the DSS using a conventional KBS methodology. However, the intelligent component 

will differ from a normal KBS because of its interaction with an existing DSS. 

DSS , KBS and IDSS methodologies have all been investigated because principles from 

each could be used within a methodology for developing an intelligent component for 

integration with an existing DSS. An initial framework was developed from reviewing 

the literature, combining what appeared to be appropriate techniques. 

3.2 THE FRAMEWORK 

The aim of the framework is to provide a means of developing and integrating an 

intelligent component with an existing decision support system. The proposed 

framework is based on the data centred approach of Gillies (I 99 I) (Section 2.5.5), which 

separates the design of the conventional system and the knowledge based system 

components. Similarly, Turban's (I 995) (Section 2.2.3) methodology separates the 

design of the intelligent component from that of other components. Gillies considers the 

conventional systems design to be the first step in the knowledge acquisition process, as 

it familiarises the developer with data needs of the problem. 

The methodologies which integrate the design of the knowledge based and conventional 

features of an IDSS (such as Gou! & Tonge, 1987 and Blair et al l 995b) were regarded 

as inappropriate in a situation where the DSS already exists . This is because complete 

analysis and design of conventional features is not necessary, as they are already 

implemented in the DSS. 

The first step in the proposed framework involves gaining an understanding of the 

existing DSSs capabilities and associated data. The existing DSS may already be fully 

documented and modelled, which would provide a useful means for the knowledge 

engineer to familiarise him/herself with the data and functions of the system. However, if 
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models did not exist, or were out of date, the system would have to be fully analysed. 

The intelligent component could then be designed in light of existing capabilities. 

A prototyping lifecycle has not been suggested within the Gillies ( 1991) methodology. 

However, prototyping and evolutionary design are considered important aspects of many 

KBS, DSS and IDSS methodologies (Keen & Scott Morton, 1978; Alter, 1994; Gou! & 

Tonge, 1987). The very structured approach to prototyping proposed by Duffin ( 1988) 

(Section 2.3.4) has been suggested for use within the proposed framework. A prototype 

is seen as a useful communication tool between the users, the expert and the developers. 

Duffin ( 1988) suggests clearly defining the aims of the prototype before it is developed, 

and evaluation of the prototype is required before continuing development. 

The concept of "useability prior to functionality" , suggested within the Visual Interactive 

Modelling (VIM) IDSS methodology (Angehm & Luthi, 1990), was also seen as suitable 

for inclusion in the framework. Functionality could be simplified in early versions of a 

prototype (if one is developed) so that the prototype system could be implemented 

quickly to aid in communication with the user or the expert. The available tool for this 

case study is KAPPA-PC which offers a very flexible graphical user interface facility, 

well suited to the VIM and structured prototyping concepts. 

An initial framework is proposed for guiding the development of an IDSS from an 

existing DSS. This is summarised in Figure 3. 1. The framework is based on Gillies 

( 1991) data centred approach, as the existing DSS will dictate much of the structure of 

the final IDSS. A prototyping process can be utilised within the framework, 

incorporating the ideas of VIM. 

IOSS Development Framework 
(Based on Gillies 1991) 

Existing Dttision 
Knowledge 

S upport System - Acqulsltlon ror 

Analysis 
Intelligent Component 

of IOSS 

Figure 3.1 - Development framework outline 

Prot011p• 
Dffelopmenl 

(Duffin !988) 

Design of 
Prototyp~ 

Us.of 
Pro1oryp' 
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Methods from the reviewed literature were chosen, and modified where appropriate, to 

achieve the desired tasks within the proposed framework. The first was for analysis of 

the existing DSS, and the second involved the knowledge acquisition process. These sub 

tasks are outlined below. 

3.Z.1 EXISTING DECISION SUPPORT SYSTEM ANALYSIS 

Meador et al. 's ( 1986) Decision Support Analysis (Section 2.2.3) provides a basis for the 

analysis of the existing decision support system. It is intended to be the first stage in the 

development of a large scale DSS, however it has been modified as follows for use in 

analysis of an existing decision support system. 

The structured interviews are intended by Meador et al. ( 1986) to allow the systems 

analyst to become aware of areas within the business which require decision support. In 

this situation they provide a good understanding of the decision situation which is 

supported by the system, thus establishing a good basis for the decision analysis stage, 

and also the knowledge acquisition process. 

The decision analysis stage is described in Section 2.2.3, and aims to identify the 

functional requirements of the system. Three steps are involved in decision analysis: 

business area analysis, description of logical functional flow and specification of detailed 

decision areas. The functionality of the existing DSS is seen as all that needs to be 

analysed to understand it's decision capabilities. It was not seen as necessary to go to the 

depth of identifying decisions, as it is not the intention of the framework to change the 

existing systems method of aiding the decision maker. The business area analysis 

involves studying the entire organisation, whereas this framework is only concerned with 

the existing system. Thus both the business area analysis and the identification and 

classification of decisions were omitted from this framework, and the decision analysis 

stage has been renamed "functional analysis". 

Functional analysis involves the development of functional flow diagrams, which are a 

standard means of representing the functionality of the existing DSS. Data flow 

diagrams are a suitable tool for this activity, due to their popularity amongst DSS 

developers, as discussed in Section 2.2.4. If data flow diagrams already exist for the 

DSS, it is not necessary to develop them again. It is necessary, however, for the 

knowledge engineer to be familiar with them, and ensure they are up to date. Studying 

or developing such diagrams provides the knowledge engineer with a detailed 

understanding of the purpose and capabilities of the existing system. 
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The data analysis stage of decision support analysis results in a data model such as an 

entity relationship diagram, which should be consistent with the data described in the 

functional model. The development of such a model for an existing system enables the 

knowledge engineer to become familiar with the data involved in the system, an 

important aspect for the integration with a KBS component. Once again, if a current 

data model already existed, the redevelopment is not be necessary. 

The technical analysis stage of decision support analysis, is seen as necessary when the 

DSS exists, so as to understand the options for integration with a KBS component. This 

requires the investigation into features such as systems compatibility and existing file 

structures, and could dictate the hardware and software suitable for the development of 

the additional component. 

3.2.2 KNOWLEDGE 

COMPONENT 

ACQUISITION FOR THE INTELLIGENT 

The adaptation of the KADS methodology from Kemp et al. ( 1994) (Section 2.3.4) was 

seen as suitable for combining with decision support approaches as it concentrates on the 

knowledge acquisition process. 

An additional step has been included within the knowledge acquisition process which 

involves defining the aims of the intelligent component. Similar steps are included within 

the IDSS methodologies of Blair et al., (1995b ), Klein and Meth lie (1995) and the IES 

methodology of Gillies ( 1991 ). The step aims to define the scope and functionality of the 

intelligent component, and requires communication between the knowledge engineer and 

the domain expert. 

The first step in Kemp et al. 's (1994) process is knowledge elicitation, which aims to 

obtain information related to the problem domain. This is most likely to take the form of 

interviews, and could overlap the content of the initial interviews in the analysis of the 

existing DSS, and the discussions defining the aims of the intelligent component. 

The analysis phase of the methodology involves the identification and representation of 

the domain knowledge into concepts, attributes and relationships. Knowledge 

acquisition and decision analysis could be viewed as similar as both are attempting to 

elicit and represent a clients conceptualisation and activities in a problem situation. Thus 

methods of decision research were investigated for inclusion into the analysis phase. A 

method of knowledge acquisition and a method of decision research which appear to 
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complement one another were chosen to make up the analysis phase. These are outlined 

below. 

Sowa's conceptual analysis provides a complete and consistent means of representing 

information in the form of conceptual graphs. As suggested by Jeffries, Todd and Kemp 

( 1995a), they could be a suitable means for representing information within the structure 

of the KADS model of expertise. 

Influence diagrams have been recommended by a number of authors for decision analysis 

(Arnott, 1992; Gottinger & Weimann, 1992; Holtzman, 1989). McGovern et al. ( 1991) 

recommend the use of influence diagrams for knowledge acquisition in IDSSs. Thus 

influence diagrams appear to be a suitable tool for incorporating into the analysis phase 

of knowledge acquisition. A five step methodology for analysing text to develop 

influence diagrams is proposed by McGovern et al. (1991) (Section 2.5.5), which fits 

into the overall framework, as interview data from earlier stages can be analysed. 

The interpretation stage of Kemp et al. 's methodology uses knowledge of the domain to 

select interpretation templates from the KADS library. Once identified, these can be 

used to guide the continuing knowledge acquisition process, and the development of the 

model of expertise. The task model is seen as a useful tool in identifying the 

interpretation templates, thus the two processes of interpretation and modelling are 

related and are likely to occur simultaneously. 

The resultant models of Kemp et al. 's knowledge acquisition process are the task model 

and the model of expertise. It is envisaged that the conceptual graphs and influence 

diagrams created in the analysis phase will fit into the domain layer within the model of 

expertise. 

The KADS model of cooperation (Breuker & de Greef, 1993) is also seen as useful in an 

IDSS situation, as its aim is to describe further the tasks in the task model. This involves 

assigning each task to either the user or the system, and describing the functionality of 

these tasks. Gillies ( 1991) mentions the use a model of cooperation in integrated 

systems. In addition to the standard specifications, he suggests the cooperation between 

information and knowledge processing be examined and modelled to achieve full 

integration. Thus, the model of cooperation could be modified slightly for IDSSs, by 

assigning tasks to the KBS, the DSS or the user. This is similar to the task allocation 

step in the JES methodology of Gillies ( 1991 ), where tasks are assigned to the 
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conventional system, the expert system or the user. Tasks which are performed by more 

than one party are considered by Gillies ( 1991) to be compound tasks. 

The model of cooperation provides a useful means of representing the interaction and 

cooperation between the different components of the IDSS. Its development requires 

information from the functional and data models, and the technical analysis of the 

existing DSS. These are required to understand the DSSs current capabilities, available 

data and technical constraints on interaction. The creation of the model of cooperation is 

included in the modelling phase. The model of cooperation is intended to describe the 

link between the different components of the proposed IDSS. 

The detailed initial proposed framework is outlined in Figure 3.2. 

3.3 CONCLUSION 

This chapter has proposed an initial framework for the development of an IDSS from an 

existing DSS. The framework provides the basis for the remainder of the study; it is to 

be applied to a real problem to assess its feasibility and highlight areas for improvement. 

Chapter 4 discusses the problem domain and the existing DSS which was chosen to test 

the framework. The steps involved in applying the framework to the domain are 

documented in Chapter 5, along with relevant examples. A prototype intelligent 

component was developed to aid in evaluating the framework, and details of the 

development and functionality of the prototype are outlined in Chapter 6. 
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4.1 INTRODUCTION 

Decision support systems have been found to be useful within the agricultural domain by 

a number of authors (Bennett, 1992; Lal, Jones, Peart & Shoup, 1992; Mainland, 1994). 

Agricultural decision support systems available on the New Zealand market include 

FarmTracker, DairyMan, UDDER and StockPol 1. These systems aid in the management 

of farm data. However, they do not possess capabilities for fully interpreting the 

information presented to the farmer. 

The use of knowledge based systems technology in the agricultural domain has also been 

investigated by a number of authors (Beck & Jones, 1989; Jones et al., 1987; Jones, 

1989; Plant & Stone, 1991). Current areas of application include, for example, 

diagnosis of diseases in crops and planning for fertilisation or irrigation (Plant & Stone, 

1991). Jones et al. (1987) describe a decision aid which links an economic model with a 

database of insecticide attributes and rules of thumb from an expert, which together 

make a recommendation for applying insecticide to a crop. Such use of simulation 

models in conjunction with knowledge based systems techniques is also discussed by 

Plant and Stone ( 1991) and Jones ( 1989). It is felt that the use of models is restricted to 

users who are very familiar with the specific capabilities and limitations of the models. 

The combination of models with heuristics is seen as a way of increasing the useability of 

the models (Jones et al., 1987). 

Interpretation of large quantities of data, such as the outputs from simulation models is 

also seen as a potential use of knowledge based systems in agriculture (Plant & Stone, 

1991). Plant and Stone (1991) comment that "Databases can overwhelm the farmer, 

who must be expert in so many disciplines to achieve success. Farmers cannot examine 

all the information relevant to their decisions; there isn't time and they do not have the 

expertise". 

This combination of knowledge based system and decision support system techniques is 

a growing area of research within the agricultural field. However, there is limited work 

on the improvement of existing agricultural DSSs by integrating them with an intelligent 

component. It is this improvement of existing DSSs which the framework proposed in 

1Much of this chapter has been developed following personal communications with David Gray, 1996 
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Chapter 3 is directed towards. The agricultural domain, and one of its existing DSSs, is 

seen as a suitable testing ground for the framework. 

The selection of the farm management tool to be the case for application of the 

development framework is discussed in Section 4.2. Relevant aspects of the problem 

domain are outlined in Section 4.3. Section 4.4 provides an overview of the chosen 

system, to give a basic understanding of its current capabilities. Finally, the case 1s 

discussed in relation to the list of capabilities of a DSS compiled in Chapter 2. 

4.2 CASE STUDY SELECTION 

"FarmTracker" (developed by B.M. Butler Computing Limited) is a decision support 

tool which was designed to help farmers monitor and plan their farm situation. 

Relevant data is entered into the system, and can be manipulated and presented to the 

farmer in a variety of ways. FarmTracker includes feed budgeting facilities (a planning 

tool) with associated simulation models of pasture growth and stock intake and 

performance. 

Although FarmTracker aids farmers in collating, manipulating and displaying summaries 

of data for planning purposes, it does not show farmers how to use this information. The 

system does not automatically develop feasible plans or evaluate a plans success. The 

farmer is not advised on possible reasons for not achieving targets and the system does 

not help the farmer come up with a new plan that minimises deviation from targets. 

An intelligent component integrated with FarmTracker may be able to assist the farmer in 

developing and evaluating management plans. FarmTracker alone cannot provide this 

type of support due to its lack of heuristic reasoning abilities. 

FarmTracker's developer has a close association with Massey University, and was willing 

to become involved in the study. B.M. Butler Computing Limited is a locally based firm 

making its involvement in the study convenient. The developer of the system is also 

considered an expert in the domain of dairy farm pasture management (Butler, 1986), 

making him a suitable candidate for domain expert. He is also an expert user of the 

FarmTracker system. Throughout the rest of this study the FarmTracker developer will 

be referred to as the sponsor, taking the role of domain expert, DSS developer and 

expert user. 
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Farm management is a large and complex domain. Due to the time constraints imposed 

on the study, it was decided that the research would focus on pasture management 

during part of the dairy farming year. The sponsor requested that the study address the 

area of early spring pasture management. He considered this to be a critical period of the 

year, having a large affect on milk production, with the farmer looking towards having 

his stock in good condition at mating. This is a tightly defined management segment, 

which is relatively well understood by domain experts. 

4.3 THE PROBLEM DOMAIN 

A dairy farm is a complex system involving humans, animals, pastures and soils. One of 

the aims of effective dairy farm management is the achievement of high levels of 

profitability and production without jeopardising the health of the animals and avoiding 

adverse effects on the environment. The domain is complex because it is a biological 

system with a number of factors affecting it, this makes it difficult to predict the systems 

behaviour. There is a considerable amount of data which can be collected to aid farmers 

in their decision making, such as pasture cover levels, pasture growth rates, milk 

production levels, weather information, cow condition, the liveweight of stock, input 

costs and market information. A "knowledgeable" farmer is able to utilise this data for 

tactical decision making by using systems models and rules of thumb to predict future 

events and act accordingly. 

The management of the early spring period is considered critical for achieving high levels 

of production and profitability. An important aim during early spring is to fully feed the 

cows during early lactation. This directly results in high short term milk production, and 

also effects milk production in the longer term. Feeding cows well at this time also 

ensures the cows are in good condition at mating (mid spring) which results in good 

reproductive performance. 

Correct tactical management throughout early spring is necessary in order to fully feed 

cows during this period. It is also important to ensure adequate pasture cover and 

supplements are on hand, and cows are in good condition, at the time of calving (the 

start of the "early spring" period). These aims are often difficult to achieve because 

pasture growth is weather dependant and therefore highly variable. Therefore it is often 

necessary to implement contingency plans to minimise the associated impact of this 

highly variable feed supply. Experienced managers plan for an average year, and build in 

contingency plans which are designed to minimise the impact of variable pasture growth 

rates. 
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Tactical management is used to "control" the dairy system and minimise the impact of 

variability of feed supply. This involves a cyclical process of planning, implementation, 

monitoring and evaluation (Todd, Gray, Lockhart & Parker, 1993). The farmer develops 

a short term (2-3 month) plan from calving until feed supply exceeds feed demand during 

September or October. This plan includes pre-determined targets for animal intakes, 

production levels, cow condition, pasture growth rates, pasture cover levels, the use of 

feed supplements (timing, quantity and type used) and the number of cows on hand at 

any point in time. The plan is implemented and the farmer then monitors the system to 

identify any deviations from the plan. If deviations are identified, the system is then 

evaluated to identify reasons for the deviation. A new plan is then developed to minimise 

the impact of the deviation. This process requires the farmer to decide upon the best 

course of action from a large set of alternative solutions. 

Knowledgeable farmers often use a planning tool known as a feed budget to help them 

manage the early spring period. A feed budget balances feed demand and feed supply. It 

quantifies the relationship between pasture growth and other feed sources and animal 

feed requirements over time, and is used to identify potential feed supply problems. 

Feed budgets can be used to analyse "what if" scenarios and develop the best plan for 

the early spring period. For example, the farmer can experiment with various 

combinations of feeding supplements, applying Nitrogen, reducing cow intakes or stock 

numbers. The plan also documents important targets (such as pasture cover levels and 

production levels) at weekly or two-weekly intervals, which can be used for control 

purposes. These targets can then be compared to actual levels of performance to 

identify potential problems. Figure 4.1 shows a feed budget summary report produced 

by FarmTracker for a trial budget. 

A feed budget can be summarised by the following formula, where t0 is the start of the 

period, and t 1 is some point in time in the future. 

Average pasture cover t1 = Average pasture cover t0 + Feed supply - feed demand 

Average pasture cover is a measure of the average level of pasture on a farm at any time, 

and is measured in kilograms of dry matter per hectare (kgDM/ha). Pasture cover is 

often estimated by eye assessment. Alternatively, pasture plate meters can be used which 

measure pasture height, and associated equations convert this measurement to kgDM/ha. 

More accurate methods such as cutting, drying and weighing a measured area, provide a 

means of calibrating the commonly used methods. 
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Feed budget Summary for Trial budget 3 
Total Area used in Budget: 89.8 ha 

Initial Pasture Cover 01/05/95 

SUPPLY 
Pasture 
Conservation 
Supplementary Feed 

Total Supply 

DEMAND 

Final Pasture Cover 31/10/95 
Final Target Cover 

FEED SURPLUS 

Total kgDM 
195922 

487195 
23745 
22648 

486097 

40281 I 

278888 
197538 

81350 

kgDM/ha 
2182 

5426 
264 
252 

5414 

4486 

3106 
2200 

906 

Figure 4.1 - Feed budget report produced by FarmTracker 

Average pasture cover will increase if feed supply exceeds feed demand and decrease if 

feed demand exceeds feed supply. In order to fully feed cows during early spring it is 

necessary to ensure the pasture cover average does not fall below a certain minimum 

(approximately 1800 kgDM/ha in the Manawatu). This level enables cows to be fully 

fed without jeopardising pasture growth rates. However, problems can also arise if 

pasture cover goes beyond a certain critical maximum during spring due to the increase 

in dead matter in the sward resulting in decreased pasture quality. 

Feed budgeting is necessary to ensure pasture covers remain within the critical maximum 

and minimum levels. Guidelines to these levels are gained from experience on farms; 

levels found on a Massey University farm is shown in Figure 4.2. 

FEED SUPPLY 

Pasture is the major source of feed on a New Zealand dairy farm supplying some 80 -

90% of the feed used on a dairy farm. Pasture production is a function of environmental 

and management factors. Simulation modelling shows that the most important 

determinants are rainfall (soil moisture), temperature (soil and air), evapotranspiration 

(wind), pastures species and soil fertility (Gray & Parker, 1992). Pasture growth rates 

can be increased to a certain extent by the tactical application of nitrogen fertiliser which 

is considered a form of feed supplement. 

The other components of feed supply are supplementary feeds such as hay, silage, crops, 

grain and meal. These may be made on the farm or bought in. This is a more expensive 

method of feeding and so should only be considered when the pasture supply is limited 
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(Holmes & Wilson, 1987). The farmer can manipulate feed supply by applying nitrogen 

fertiliser to improve pasture growth rates, or by using some form of supplementary feed. 

FEED DEMAND 

The feed demand on a property consists of two components; feed eaten by livestock and 

feed harvested as hay or silage. Only the former is important during the early spring 

period. The amount of feed eaten by livestock depends on the number of animals 

(stocking rate), the size and age of the animals and their physiological state (non­

pregnant, pregnant, lactating). Feed requirements of the herd can be calculated, given 

certain performance and reproductive targets. The farmer can control feed demand by; 

(I) manipulating stocking rate through buying or selling stock, or grazing stock off the 

farm, and (2) controlling how much feed the animals receive. 

Pasture Cover Maxima and Minima for Dairy systems 
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Figure 4.2 - Desirable pasture covers for dairy systems (Gray & Parker, ) 
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4.4 FARMTRACKER 

4.4.1 FARMTRACKER OVERVIEW 

FarmTracker is a decision support tool used by farmers for planning and control of their 

pastoral system. Therefore, the DSS has a planning tool - a feed budget, which allows 

farmers to develop plans and evaluate the outcome using simulation models for cow 

intake and pasture growth rate. Relevant historical data is recorded by the system, and 

can be displayed and manipulated by the farmer, and used within the feed budget. 

FarmTracker is divided into a number of modules each dealing with a particular aspect 

of the farm. These modules are farm/weather, paddocks, feed, stock and maps. Figure 

4.3 provides an overview of the FarmTracker system, this is followed by a discussion of 

each module. 

Farm Tracker 

Farm/Weather 
- Farm details 
- Weather records 

Maps 
- Display and manipulate maps 

Feed 
- Pasture cover records 
- Supplementary feed details 
- Grazing records 

I GROW I .---F-e-ed----. 
Budget 

Paddocks 
- Paddock details 
- Management blocks defined 
- Paddock test results 
- Crop records 
- Fertiliser records 
- Weed & pest control records 

Stock 
- Stock class details 
- Production & liveweight recorc 
- Reproduction records 
- Health records 
- Stock reconciliation 
- Stock targets 

Figure 4.3 - Overview of FarmTracker 

The Farm/Weather module manages information regarding the farm such as its area, 

climate and location. Enterprises such as dairy, sheep or cattle for a specific farm can 

be selected from a master list. This determines default attributes within other modules. 

Weather data can be entered in half monthly periods, and includes annual and average 

weather information which can be used to predict future pasture growth rates or analyse 

actual pasture growth rates. 
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Information about each paddock is recorded, stored and manipulated within the 

Paddocks module. The data stored includes paddock area, paddock name and pasture 

types. Management blocks can be defined as groups of paddocks. Each paddock can 

have a number of events associated with it and these can be classed into the following 

different types of events: Fertiliser/Paddock tests, Renewal/Forage Crop or Weed/Pest 

Control. 

The Stock module organises all stock information. Only herd details rather than 

individual animal records are recorded. Various stock classes can be created (such as 

mixed age cows or heifers), and attributes about each class, such as birth year, breed and 

stock units, can be recorded. Within each stock class, a number of different mobs can be 

defined. Events relating to each stock class or mob within a stock class can be recorded, 

and these can be broken down into more specific event groups. "Production/Liveweight" 

events include records of milk production, condition scores and liveweights for a 

particular stock class. "Reproduction" events include calvings, matings and pregnancy 

test results . Vaccination records and incidents of disease are recorded as "Health" 

events. A running tally of stock numbers is recorded within the stock reconciliation, 

which is linked to stock events such as deaths and sales. 

Livestock performance targets are recorded for each stock class. These include targets 

for liveweight and condition score, stock numbers, production levels, reproductive 

performance levels, and the amount of supplements to be fed to each stock class. The 

options available are dependant on the stock class. Various reports relating to each 

stock class and their targets can be created, such as target intake graphs and target 

liveweight gain graphs. These targets are linked to the feed budget. 

The Feed module manages information about the pasture cover levels and available 

supplements on the farm. Details of pasture cover levels at different dates are recorded 

for each paddock. The type of data entered is dependant on the instrument used to 

measure pasture cover, and the associated pasture cover equation. Target pasture cover 

data can be entered, and then compared with actual pasture cover levels. Various 

reports and graphs can be produced relating to pasture cover. Maps can also be 

produced showing the differing pasture cover levels across the farm. Grazing records 

can be entered detailing the location of all stock on the farm. This information is used 

to produce various reports summarising the grazing records of particular stock, or of 

particular paddocks, including a map showing the location of the stock. All transactions 

which occur relating to supplements (such as buying, selling, feeding out) can be 
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recorded. This enables a record of the quantities of supplements on hand to be 

maintained. 

GROW is a simulation model, accessed through the feed module, which is used to 

calculate pasture growth rates from weather, paddock and pasture type information. The 

location of the farm is entered along with slope, aspect and soil and pasture types . An 

appropriate weather station can be chosen, which has associated monthly rainfall and 

temperature defaults for the region. These can be adjusted for a specific farm or actual 

weather data from within the farm/weather module can be used. The GROW model 

calculates potential and actual pasture growth rates for the specified site conditions and 

weather data. The potential pasture cover is calculated based on optimum management 

of the pasture, and actual pasture cover predictions take into account reductions in 

pasture cover due to management. The calculated pasture growth rates can be saved for 

use in a feed budget. 

Feed budgets can be constructed for the farm over a defined period. The user specifies 

values for each of the variables involved in the feed budget and feed supply and feed 

demand is calculated by the system. The expected average pasture cover levels through 

time are calculated for the specified plan. Feed supply is calculated using pasture growth 

rates (which can be estimated using the GROW model), supplementary feeding events, 

and paddock events such as the addition of nitrogen or the making of hay. Feed demand 

is calculated using stock details (whether the targets are to be measured in liveweight, 

liveweight gain or condition score), stock numbers (a separate tool to stock 

reconciliation, as these are target rather than actual numbers), production and 

reproduction details. Reports can be generated to view intakes required at the defined 

stocking rate given the production and reproduction targets. 

When running a feed budget there is an option to change stocking rate for the existing 

feed supply, this is entered as a percentage, and changes the numbers of each stock class 

by the given percentage. There is also the option of entering initial pasture cover for the 

farm which defaults to the most recent actual pasture cover entered. 

The results of the feed budget can be summarised in a number of different reports, such 

as a feed budget summary (Figure 4.1 ), a feed supply and feed demand graph and pasture 

cover graphs. The feed budget can be saved and compared to other saved feed budgets. 

The Mapping facility can be accessed from other modules and enables various types of 

data to be viewed graphically such as pasture/crop types or stock locations across the 
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farm. The map is digitised from an aerial photograph. Overlay maps can be created 

and may include information such as water supply or temporary fencing. Paddock areas 

can be calculated automatically by counting the number of pixel's within areas. 

4.4.Z IS FARMTRACKER A DECISION SUPPORT SYSTEM? 

In Chapter 2, a list of capabilities which a decision support system is considered to 

possess was compiled from various authors. As the FarmTracker system is to be used to 

help test the proposed framework, it is necessary to ensure that it is in fact a decision 

support system. FarmTracker is therefore discussed in relation to each capability of a 

DSS. 

• DSS are interactive, computer based information systems 

The user has the ability to interact easily with the system. For example, it provides a 

means of performing "what if" feed budgets, with the user varying the farm situation. 

• DSS specifically focus on features which make them easy to use by non 
computer people 

The FarmTracker system is divided into logical modules with which the fa1mer is 

familiar, such as stock, feed, and paddocks. The mapping function enables the farmers to 

easily see, for example, pasture cover patterns across the farm, and there are numerous 

graphs and reports which summarise the farm situation. 

• DSS tend to be aimed at the less well structured, under specified problems that 
upper level managers typically face 

FarmTracker organises data for farmers to make decisions regarding future actions. 

These type of decisions require the intuition, preferences, judgement and experience of 

the farmer. The decisions involve considering numerous criteria, and must be made 

within a limited time frame. Such factors make the problems semistructured according to 

the criteria of Klein and Methlie (1995) outlined in Section 2.2. 

• DSS support but do not replace upper level managers in decision making 

The system allows the storage and manipulation of a wide range of data related to farm 

decision making. The final decisions, however, are left to the user of the system. The 

system does not attempt to identify or suggest solutions to problem situations. For 

example, in developing a feed budget, the farmer is required to decide factors such as 

stock numbers, feeding levels, timing of events and the level of feed supplements used. 

The farmer must also decide whether the resultant plan is feasible. Once the plan has 
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been implemented, the farmer must evaluate its success; the system does not recognise 

problems or suggest solutions. 

• DSS attempt to combine the use of models or analytic techniques with 
traditional data access and retrieval functions 

FarmTracker allows data to be stored, retrieved and manipulated easily by the farmer. 

This data is integrated with the GROW simulation model. The feed budgeting facility is 

an analytic tool which brings together the GROW model, stock intake models and 

specified targets. 

• DSS rely on simulation in cases where an analytic optimising model cannot be 
solved 

Pasture growth rates cannot be predicted by any completely certain means, and thus are 

predicted using the simulation model GROW. 

• DSS use statistical analysis to collect data and to predict trends 

Statistical summaries are used by the system to calculate average pasture covers, and 

average intakes. The models used within FarmTracker, such as the GROW model are 

also based on statistical analysis. 

• DSS emphasise flexibility and adaptability to accommodate changes in the 
environment and the decision making approach of the user. 

There is an extensive choice of reports, graphs and management options from which the 

user can choose. Users are also able to define their own graphs. The system allows 

many types of farm enterprises to be recorded, such as dairy or sheep, as well as the 

ability to record data relating to multiple enterprises on a single farm. 

4.5 CONCLUSION 

Agricultural DSSs which aid farmers in organising their data are widely used throughout 

New Zealand. However, they not attempt to interpret the information or suggest actions 

the farmer should take. Various authors within the agricultural community have 

discussed the potential for combining DSS and KBS techniques to help farmers make 

decisions. It seems an obvious step to attempt to improve existing DSSs by integrating 

them with KBS techniques. Thus the agricultural domain, and an associated existing 

DSS, is seen as a suitable candidate to aid in evaluating the proposed framework for the 

development of an intelligent component to be integrated with an existing DSS. 
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FarmTracker is the DSS chosen for examining the development framework. Its 

capabilities have been outlined and discussed in relation to a list of DSS capabilities. It 

was found that FarmTracker exhibited all of the qualities of a DSS, and thus is a suitable 

system to be used within this study. 



5.1 INTRODUCTION 

A framework for the development of an intelligent component to be integrated with an 

existing decision support system was proposed in Chapter 3. To assess its feasibility, the 

framework was applied to a problem related to the farm management decision support 

system, FarmTracker, outlined in Chapter 4. The framework was put to use by the 

researcher who took the role of knowledge engineer. This chapter describes the 

application of the framework; each step is outlined, and examples are included where 

appropriate. For further examples related to the case study, the reader is referred to 

Appendix A and B of this report. The framework has been refined in light of experiences 

gained during its use, and a final framework is presented in Section 5.5. 

5.2 EXISTING DECISION SUPPORT SYSTEM ANALYSIS 

The first stage in the proposed framework is the analysis of the existing decision support 

system. Interviews with the sponsor took place to enable the knowledge engineer to 

become familiar with the problem domain and FarmTracker. It was suggested by the 

sponsor that the most efficient way of learning the systems capabilities was to collect a 

full data set and attempt to manipulate and use the data using FarmTracker. This proved 

to be a valuable means of understanding the type of data which needed to be collected, 

and gave the knowledge engineer an opportunity to use the system in a real situation. 

System documentation and domain specific literature were also used to develop an 

understanding of FarmTracker and dairy farm management. Much of the experience and 

information gained could be considered to be the first stage in knowledge elicitation, 

giving the knowledge engineer an understanding of the problem domain. 

An initial functional model was developed using data from interviews, experience from 

using the system and system documentation. This model proved to be a helpful means of 

directing further interviews as it was adjusted and improved. This process helped the 

knowledge engineer gain a good understanding of the functionality of the system. 

Initially, a levelled data flow diagram (DFD) was developed, with high level processes 

being broken down into more detailed processes at lower levels. However, this proved 

to be confusing as so much interaction between the high level processes occurred. The 

problem could have been that the system had not been developed in this structured 
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manner. It was found that an unlevelled diagram (Appendix A 1) was a more successful 

communication tool, which was more easily understood by the two parties. Gane and 

Sarson ( 1979) suggest such an approach, calling it the expansion approach , arguing that 

users get lost in levelled DFDs, whereas expansion improves readability (Whitten, 

Bentley & Barlow, 1994). 

A data model was developed for the system using an entity relationship diagram 

(Appendix A2). However, this did not model how the system was dealing with the data, 

rather it represented the data modellers conceptualisation of the information . A more 

useful method would have been to represent the actual data files to clarify what data was 

available for use by the added intelligent component. This would have been consistent 

with the functional model, and provided a more helpful reference to the existing structure 

of the data. This was not possible, however, due to confidentiality issues. The sponsor 

was reluctant to reveal the actual file structures used by the DSS. 

From here, a technical analysis took place, in the form of semistructured interviews. As 

the actual file structures used by the system were unknown, it was necessary to create 

dummy ASCII files (Appendix A3). These were considered by the sponsor to be similar 

to the actual files used and produced by FarmTracker. 

The tool available for development of the prototype intelligent component was KAPPA­

PC, a Windows based knowledge based systems shell, which supports rule based 

reasoning and object oriented programming techniques. 

The model to be utilised by the intelligent component was the GROW model, which is a 

pasture growth rate prediction model. During the technical analysis stage it was 

necessary to obtain structures for the input and output files to this model. 

Experimentation also had to take place to see how the model could be run from the 

KAPPA-PC/Windows environment as GROW is a DOS based model. 

The feed budgeting functions were another of the existing systems features which could 

have been utilised by the intelligent component. However, these functions are embedded 

within FarmTracker, rather than being a separate module as GROW is. This made the 

use of the feed budgeting functions technically difficult, and beyond the scope of the case 

study. This highlights one of the shortfalls of developing an IDSS using an existing DSS; 

the structure of the DSS may limit the efficiency and functionality of the resulting system. 

A simplified feed budget was included within the intelligent component to temporarily 

overcome this problem. 
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5.3 KNOWLEDGE ACQUISITION FOR THE INTELLIGENT 

COMPONENT 

The first step in the knowledge acquisition phase involved the definition of aims of the 

intelligent component. The sponsor envisaged a system which would help farmers 

interpret the information presented to them by the FarmTracker system. This was 

tentatively considered to consist of the following tasks: 

• Identify shortfalls in production 

• Determine reasons for the shortfalls 

• Investigate position in two weeks time 

• Investigate possible courses of action given the state of the farm 

• Suggest feasible options 

The sponsor understood this was a research case study and so could not expect a fully 

functional system suitable for use by the decision makers themselves at this stage. His 

aim was to see if such an addition to his system was feasible, and to see how such an 

addition could be undertaken. A system which successfully performed the above tasks, if 

only in a very primitive manner, would prove that with further development, a system to 

aid farmers is achievable. 

The involvement of a group of users was not within the scope of the study in both the 

sponsors and the authors view. Addressing user issues such as interface design was not 

within the objectives of the study. These issues have not been overlooked, rather they 

would be investigated following this study into the feasibility of developing an intelligent 

component for integration with an existing DSS. 

The knowledge elicitation process took the form of interviews; much of the 

familiarisation with the domain had already been achieved from earlier interviews when 

analysing the existing system. The domain knowledge was modelled using conceptual 

graphs to precisely define concepts and represent rules, and influence diagrams which 

represented the decision processes of the expert (Appendix B 1 ). Interview data provided 

the starting point for both conceptual analysis and McGovern's text analysis (Sowa, 

1992; McGovern et al., 1991 ). Initial models provided direction for further interviews; 

the models were modified and extended accordingly. 

Three types of conceptual graphs were developed; type definitions, dataflow graphs and 

If-Then graphs. The type definitions provide a concise description of the concepts by 

differentiating it from its supertype (Figure 5.1). Each of the concepts are also 
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represented within the type lattice, and defined in the conceptual catalogue (Appendix 

Al). 

type WEATHER(x) is 

ENTITY:*x 

J RAINFALL:Resp<h ... in> I 

ET:Resp<i1. .. in> PTIM 

J TEMPERATURE:Resp<h .. . in> I 

Figure 5 .1 - Example of a type definition which reads - "The type weather has attributes 
which include a set of rainfall, evapotranspiration and temperature data which 
correspond respectively to dates in a set which is also an attribute of weather" 

Sowa's dataflow graphs were used to clarify the mathematical relationships which exist 

between the various concepts (Figure 5.2). 

SUPPINTAKE t __ 
- .... 
~ _.,... 

PASTUREINTAKE ~ - - - -

- - - ..j.___IN_T_A_K_E _ _, 

Figure 5.2 - Example of a dataflow graph which shows that the addition of supplement 
and pasture intake gives total intake. 

If-Then graphs were used to represent the rule type relationships which existed (Figure 

5.3). These could later be converted directly into rules within the knowledge based 

systems shell when developing the prototype. 

The first two types of graphs did not appear to represent exclusively information for the 

intelligent component of the IDSS, as many of the relationships already exist within the 

DSS. For example, due to technical restrictions in reusing the feed budgeting module 

from within the intelligent component, a simplified feed budgeting function had to be 

used to duplicate some functions. Thus relationships which exist in the DSS had to also 

be represented in the new component, for example, Figure 5.2. 
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IF:.--------. 
TARGETS t--t1~ PROBLEM DATE 

MP WEEKLY 

=>ROBLEMDIFF:' ~- 1 MPTHRESHOLD I 

THEN: 

PROBLEMMP:Down I 

Figure 5.3 - Example of an If-Then graph which reads - "If target milk production on the 
problem date is greater than or equal to the weekly milk production plus the stated 

threshold on that date, then milk production is considered to be down" 

Influence diagrams were developed to represent the decision process of the expert which 

the system was attempting to emulate (Figure 5.4). These seemed to adequately 

represent important information, however their advantages over a conceptual graph 

representation is in question and warrants further investigation (Section 5.4). 

Post 
Cover 

Average 
Cover 

Figure 5.4 - A section of an influence diagram which shows that pasture intake is 
influenced by pre and post grazing pasture cover, average cover, daily allocation and 

pasture growth rates 
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The development of the task model (Figure 5.5) followed, giving an overall structure to 

the functions of the proposed system. This was developed and modified in discussion 

with the sponsor. The task model does not contain strict ordering, although generally 

the tasks are performed from left to right. 

Assess 

Diagnose 
Problems 

Production 

Assess Supplement 
Intake 

Assess 
Intake 

Early Spring 
Management 

Predict 
Supply & Demand 

Assess Pasture 
Intake 

Figure 5.5 - The Task Model 

The task environment is described as follows: 

• The KBS is not a physical part of the farming system 

Select 
Action 

Assess A vai I able 
Options 

• The KBS contains no sensors, but receives historical data from files produced by 

Farm Tracker 

• The KBS can manipulate data to output to an ASCII file which can be used as input 

to the GROW model which the KBS can execute 

• The KBS users will be farmers who have a general understanding of the farming 

system 

The task model provided the basis for choosing the interpretation models from the 

KADS library. The functionality of the tasks indicated which type of inference structures 

would be suitable. The task model could basically be divided into two sections. The first 

half suited the diagnosis model as the functionality involved diagnosing, and investigating 

reasons for, a production shortfall. The structure was modified to cope with the 

diagnosis of multiple faults as suggested by Hickman ( 1989), thus it describes exhaustive 

diagnosis (Figure 5.6). 
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complaint 

conclusion 

difference 

I. select system model on the basis of the complaint; 

2. decompose system model into hypothesis; 

3. for each attribute of each hypothesis: 

a. select a variable and find its value; 
b. specify a norm from the hypothesis 

comparable to the variable; 
c. compare the norm to the variable value; 

if the difference exceeds tolerance the current 
hypothesis becomes the new system model 
and recurse (from2), else disregard the current 
hypothesis and go on to the next until all 
hypothesis have been tested. 

Figure 5.6 - Diagnosis inference structure for multiple fault diagnosis (Based on 
(Hickman, 1989) ). 

The second part of the task model involved evaluating options given the current and 

expected farm situation. This requires firstly a prediction of the pasture cover in the near 

future, and if this is unacceptable the elimination of unsuitable options given diagnosed 

problems and the current situation. The inference structure most suitable for this 

situation was found to be assessment (Figure 5.7). The prediction is a conventional 

function, simply calling the feed budget module, thus the assessment inference is only 

required for evaluating available options should there be an unfavourable prediction. 

universum of 
observables 

variable 
value 

decision 
class 

system 
model 

norm 

I. Specify a norm from the system model; 

2. abstract from universum of observables taking the norm 
into account, to give the variable value in question 

3. match the norm to the abstract case description 
and produce decision class 

Figure 5.7 - Assessment inference structure (Hickman, 1989) 
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This is a backward chaining inference structure, as the norm is used to abstract the 

variable value. The various options are known; which ones are suitable depends upon 

the state of the observables. 

Each of the inference structures had to be instantiated with domain specific information 

to form the task layer (Figure 5.8, 5.9, Appendix B3.1). This involved combining 

information represented in conceptual graphs and influence diagrams (the domain layer) 

with the inference structures (the inference layer). The task layer differs from the 

inference structure in that it is instantiated and it specifies order. 

Diagnose Problem 
To diagnose problems affecting intake do 
select part of system model related to production complaint (eg intake relationships, intake targets) 
decompose system model into relevant components (eg pasture intake, supplement intake) 
Repeat for each component 

specify norm for that component from the system model (eg target pasture intake) 
select relevant observable based on norm (eg actual pasture intake) 
compare the norm and observable to give the difference 
if the difference exceeds tolerance then 

if the component is atomic then add to the problem list 
else that component becomes the system model for further decomposition 

else disregard the current hypothesis and go on to next (eg supplement intake) 

Figure 5.8 - Part of the task layer based on the diagnosis inference structure 

Assess Available Options 
To assess feasible options available to the farmer given the current farm situation do 
Repeat for each available option in system model 
specify norm from system model (eg specify tolerance for Olsen P levels from system model) 
abstract from actual values the value equivalent to the specified norm (eg get actual Olsen P levels) 
match actual and specified norm values to produce decision (eg match actual Olsen P and threshold 

Olsen P to give Olsen P decision) 

Figure 5.9 - Part of the task layer based on the assessment inference structure 

The conceptual graphs, influence diagrams, inference structures and task layer combined 

to form the initial model of expertise. 

The task model in conjunction with the technical analysis, functional and data models 

provided the basis for developing the model of cooperation (Figure 5.10). This involves 

assigning each of the tasks in the task model to either the KBS, the DSS or the user, and 

describing the functionality of the tasks (Appendix B5.1 ). The technical analysis is 

necessary to understand the interactive ability of each of the components. The functional 

model is used to understand the current capabilities of the system, and the data model 

outlines what data is available for use by the intelligent component. 
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Assess 
Production 

USD 

Diagnose 
Problems 

Assess 
Intake 

Early Spring 
Management 

Key: 
U - User 
S - Knowledge Based System 
D - Decision Support System 

Select 
Action 

~ 
Predict 

Supply & Demand 
SD 

Assess Available 
Options 

SU 

Assess Pasture 
Intake 
SD 

Assess Supplement 
Intake 
SD 

Figure 5.10 - The Model of Cooperation 

The model of cooperation dictated the proposed architecture of the system, which was 

Turban's (1995) sharing of the decision making process (Section 2.5.4). This 

architecture was chosen to correspond with the nature of the problem; the proposed role 

of the intelligent component is to suggest options available to the farmer given the 

current farm situation. This requires access to current and historic farm and weather 

data, and use of the GROW model. Turban suggests a loose integration between the 

components which was envisaged as suitable given the difference in platforms between 

the existing DSS and the proposed intelligent component. Ideally the feed budgeting 

model could also have been utilised by the intelligent component (Figure 5.11 ), however 

technical constraints outlined above required the inclusion of a simulated feed budgeting 

model (Figure 5.12). 

Decision Support System 
D 

Farm Tracker 

GROW Model .---~ 

Feed Budget 

Data Files 

User 
u 

Figure 5.11 - Ideal proposed architecture of IDSS 

Intelligent 
Component 

s 
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Decision Support System 
D GROW Model ,___ ____ 

Farm Tracker Feed Budget 

Data Files 

User 
u 

Figure 5.12 - Proposed architecture ofIDSS 

Intelligent 
Component 

s 
Simulated 

Feed Budget 
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5.4 CONCEPTUAL GRAPHS VERSUS INFLUENCE DIAGRAMS 

Influence diagrams and conceptual graphs were both proposed in the initial framework as 

a means of representing domain information. Both methods were used in the 

development of the prototype, and it was found that there was a potential overlap in the 

abilities of the two tools. Influence diagrams were used to represent decision processes, 

a task which could be achieved equally well by conceptual graphs. 

The visual representation in influence diagrams does not allow the specification of the 

nature of the relationship between nodes, but simply shows which variables are of 

interest when detennining the value of a particular node (O'Donnell & Watson, 1994). 

It is this shortfall which appears to distinguish influence diagrams from conceptual 

graphs. Conceptual graphs have the ability to explicitly represent relationships between 

concepts. Mathematical relationships can be expressed using dataflow graphs (a type of 

conceptual graph) as illustrated in figure 5. I 3a and b. 

Supp 
Intake 

Pasture 
Intake 

Intake 

Figure 5.13a - An influence diagram which shows that pasture intake and supplement 
intake have some influence on the value of intake 
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SUPPINT AKE ~ - __ 

--... 
~ ---------i._ __ INT_A_KE _ __, 
- r-

P ASTUREINT AKE ~ - - - - -

Figure 5. l 3b - A conceptual graph which reads "Supplement intake plus pasture intake 
gives the value of intake" 

This example illustrates that although the influence diagram shows the relationship exists, 

the conceptual graph represents the relationship explicitly. In a situation where the 

relationships are not as explicit, such as those expected in a KBS, conceptual graphs can 

fulfil the same role as influence diagrams by showing that an influence relationship exists, 

for example, Figure 5.14 shows a conceptual graph equivalent to the influence diagram 

of Figure 5.4. 

DA INFL 

PRE INFL PASINTAKE 

Figure 5.14 - A conceptual graph which shows that pasture intake is influenced by pre 
and post grazing pasture cover, average cover, daily allocation and pasture growth rates 

The details of this relationship may require the representation of heuristics such as rules 

of thumb, which can be represented using another conceptual graph technique - an If­

Then structure. Admittedly, the conceptual graph in Figure 5.14 contains more nodes 

than Figure 5.4. However, each of the nodes in the conceptual graph are tightly defined 

within the conceptual catalog, type definitions and type lattice. The use of one notation 

for modelling all domain knowledge provides a tidy and consistent representation. 

Different types of influence arrows such as uncertain and preference arrows, could be 

represented within the conceptual graph notation by defining appropriate relations within 

the conceptual catalogue. Random variables could be represented by conceptual graphs 

as a proposition acting on a concept. 
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Another perceived disadvantage of influence diagrams is that their notation varies 

between authors, this variation is confusing and makes it difficult to produce consistent 

diagrams. This problem seems to be due to the lack of a seminal text to outline the 

notation. In comparison, Sowa's 1984 conceptual structures text provides a baseline to 

which all extensions to conceptual graphs can work from. 

It appears that conceptual graphs can represent as much information as influence 

diagrams, with the advantage being the ability to be more explicit in representing the 

relationships. Conceptual graphs utilise only two types of nodes which can be explicitly 

defined to achieve the same meaning of the various nodes and symbols in influence 

diagrams. This also enables conceptual graphs to represent other information such as 

production rules. Therefore it seems sensible to remove influence diagrams from the 

proposed framework, as conceptual graphs can take their place. This simplifies the 

framework and standardises the resultant model. 

5.5 CONCLUSIONS 

The development framework has been described in relation to the case study. Overall , 

the framework was found to be successful. A slightly modified framework is presented 

in Figure 5.15 (compare with Figure 3.2) in light of experiences gained. 

The modifications include the omission of influence diagrams for knowledge 

acquisition due to conceptual graphs having similar capabilities. The initial phase of 

the analysis of the existing system has been changed from "Interviews" to "Information 

Gathering" as it is felt that this is a better description of the phase. Gaining an 

understanding of the existing system involved more than just interviewing; system 

documentation and domain literature was studied and experience was gained by 

gathering data and using the system. There has also been an additional link included 

between the results of the information gathering phase and the elicitation phase. It was 

felt that the information gained was useful in elicitation, even if just implicitly through 

experiences gained by the knowledge engineer. 

Some problems arose due to the inability to use the actual files produced by the DSS. 

Had the study progressed further than experimental stages, the actual file structures 

would have been revealed, or the existing system would have been modified to produce 

files equivalent to the dummy files. 
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The development process showed the difficulty of modelling and developing the 

components of a system so separately, as much of the infonnation is required by both 

components. It was found that much of the intelligent component requirements were in 

fact conventional functions necessary to manipulate the data from the DSS into a suitable 

fonn for rule based reasoning. It is envisaged that this inefficiency could be avoided in a 

situation where all components are developed together and designed for integration, that 

is, when an IDSS is developed from scratch. It is inevitable, that when an intelligent 

component is developed separately, that a certain amount of repetition is necessary. 
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6.1 INTRODUCTION 

Having completed both the analysis of the existing DSS and knowledge acquisition for 

an intelligent component, a prototype could be developed. It was required within the 

prototyping process of Duffin (1988) that a clear definition of aims be specified before 

developing a prototype system. These could include, for example, testing functionality 

or completeness of models. In this study, however, the prototype was developed as a 

means of validating the framework. 

Basili, Selby and Hutchens (1986) propose a framework for experimentation in software 

engineering, the definition phase of which has been utilised for definition of aims of the 

prototype. Basili et al. 's ( 1986) framework is made up of six definition elements; 

motivation, object, purpose, perspective, domain and scope, each of which is defined 

before an experiment begins. The motivation may be, for example, "to understand, 

assess or improve the effect of a certain technology" (Basili et al., 1986). The object of 

the study is the primary entity being examined. The perspective is defined so as to allow 

correct interpretation of the purpose. For example, a study examining software quality 

would include correctness if from the perspective of a developer or reliability if from the 

perspective of the customer (Basili et al., 1986). The domain is defined in terms of the 

programmers (such as experience, size of team) and the program (such as size, 

complexity). The defined domains determines the scope of the study. The definition of 

the prototype system, using Basili et al. 's definition criteria is shown in Table 6.1. 

De mition Element 

Motivation To validate a framework for the development of an 

rated with an existin DSS 

Ob.ect Develo ment framework 

Pu ose To evaluate the validit of the framework 

Pers ective Develo er 

Domain:Pro rammer As the framework is a 

Domain:Pro ram 

Scope Single project 
Table 6.1 - Definition of prototype aims using criteria of Basili et al. ( 1986) 
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Section 6.2 describes the process of converting the models developed in Chapter 5, into 

the prototype system. Section 6.3 outlines the functionality of the resultant system. For 

further details of the prototype, the reader is referred to Appendix C of this report. 

6.2 PROTOTYPE DEVELOPMENT 

KAPPA-PC, an object oriented knowledge based system shell, was used to develop the 

prototype intelligent component. Information is represented in KAPPA-PC by objects, 

which together form an object hierarchy supporting inheritance. A section of the object 

hierarchy for the prototype is shown in Figure 6.1. 

T --<-DailyTargets 

----< - WeeklyTarge~- - -- targets1 < argets 

-- Daily --- actua/1 
Actual--<-. 

Weekly --- actual1weekly 

\ 

.weather 

~ 
Weather~:{· . averagew 

-- :- optw 
\ pesw 

,PredAv 

:'_, PredOp ,, 
l ~:· -· PredPes 

GROWPredicti ·~:: 
·:- · · PrecNar 
" '-.'' PredWoodbanl 

'- Temp 

',Farm------ Woodbank 

, , , ·Pasture_ Silage 

: Supplements- :-.~ - Maize_ Silage 
'.Problem -. Turnips 

Figure 6. I - Section of object hierarchy 

It was found that the object hierarchy within the KAPPA-PC environment and the type 

lattice developed with conceptual graphs could be considered equivalent. This view is 

supported by Lukose (1993) who considers there to be a one-to-one relationship 

between the notion of class in the object-oriented formalism and the notion of type in the 

conceptual graph formalism. Both hierarchies support inheritance. This made for quick 

and easy implementation of the data structures required for the prototype. For example 

Figure 6.2 illustrates an equivalent branch in both the type lattice and the object 

hierarchy. 
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---< DailyTargets 

<Targets 
-
-----< WeeklyTarge~ Data · 

< Daily 
Actual----< Weekly 

PASTURE MGMT DATA 

TARGETS ACTUAL 

TARGETDAILY TARGETWEEKLY ACTUALDAIL Y ACTUALWEEKL Y 

Figure 6.2 - Equivalent branch of object hierarchy and type lattice. 

The intelligent component has the ability to access the following ASCII files, which were 

deemed to be equivalent to files produced by FarmTracker by the sponsor: 
• A farm file containing details relating to the farm in question such as current Olsen P 

levels, soil type, total area 
• A weather file containing weather details recorded on the farm over the past year 
• Weather files based on historic data containing details for a variety of weather 

situations such as optimistic, average or pessimistic 
• A file containing actual values for milk production, pre and post grazing pasture 

covers, average pasture covers, stock intakes, the number of cows grazed on what 
area and total area on that date 

• A target file containing target values for each of the variables in the actual file, 
obtained from industry standards or entered by the farmer from within FarmTracker 

• A file with details of supplements available 

(For a more detailed description of the ASCII files, see Appendix A3). 

The intelligent component reads the appropriate files and creates instances on the 

KAPPA-PC object hierarchy for the information. For example, the class weather has 

instances (italicised) for different weather scenarios, as illustrated by the section of the 

object hierarchy in Figure 6.3. 

, weather 
' 

, , , averagew 
Weather-----{: 

',: optw 
'pesw 

Figure 6.3 - Section of the object hierarchy 
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Attributes in the conceptual graph model translated to slots in the prototype. For 

example the attributes of the type weather, represented in the conceptual graph in Figure 

5.1, are slots within the weather class, which are inherited by each of the instances in 

Figure 6.3. The KAPPA-PC class editor for the class Weather is shown in Figure 6.4. 

The slots in this case are lists, which correspond to the respective sets in the conceptual 

graph. 

Class Editor - Weather 

Figure 6.4 - Editor for the class Weather 

Once read in, the data can be manipulated into suitable forms. For example, daily milk 

production levels were averaged to give a weekly value so that they could be compared 

to a weekly milk production target (Appendix C3.5). Conventional data manipulations 

were represented using dataflow conceptual graphs. These could be implemented in the 

prototype as either functions, or methods within an object which are triggered when the 

data is required. Generally functions were used in the prototype. In hindsight, however, 

it would appear to be preferable to use methods in keeping with KAPPA-PC's object 

oriented approach. Thus the data manipulation would be nested within the objects and 

kept separate from the reasoning processes. These methods could then be considered an 

intermediate component. In an ideal situation, with true integration between 

FarmTracker and the intelligent component, the data read by the intelligent component 

would already be in a suitable form, and thus the methods would not be necessary. 

Many of the functions were simplified, following the principles of Visual Interactive 

Modelling (VIM) (Angehm & Luthi, 1990) (Section 2.5.5). The sponsor was 

comfortable with this approach as he was keen to gain an overview of the capabilities of 
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the intelligent component before the domain details were implemented. KAPPA-PC is a 

suitable platform for such an approach encouraging modular programming, and 

supporting a very easy to use and manipulate graphical user interface. This enabled the 

prototype to be developed within the time frame of this study and for feedback from the 

expert to be gained. 

The If-Then conceptual graphs could be directly implemented as rules in the prototype. 

For example, Figure 6.5 shows the rule represented by the conceptual graph in Figure 

5.3 , instantiated, and implemented with KAPPA-PC's high level descriptive language 

KAL. 

MakeRule( TSDown, 
( GetNthElem( Global:actualfileweekly:PastOnlyTS, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date ) ) 
< ( GetNthElem( Global:targetfileweekly:TS, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date) ) 
- 0 .05 )) And (Problem: Units#= TotalSolids ), 

PostMessage( "Total milk solids is down on target" ); 
Problem:MP =Down; 
} ) ; 

Figure 6.5 - KAL implementation of a rule 

The task model outlined the high level tasks which the intelligent component was to 

contain. This aided the organisation of rules into two groups, and directed the overall 

programming effort. The first group of rules included those for diagnosis, which were 

triggered by a forward chaining mechanism (Appendix C3. l). The second group of rules 

were the assessment rules, which were executed using backward chaining (Appendix 

C3.2). The task layer defined the control structure which orders and instantiates each 

grouping. 

The interface which was developed attempted to emulate that of the existing DSS. This 

was clumsy due to one being a DOS application and the other a Windows based system. 

Ideally the IDSS should appear to the user as if it were a single system rather than 

separate components. This would require at least some modification to the existing 

system such as a means of executing the intelligent component. This, however, was 

beyond the scope of the study and the aims of the prototype. 
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6.3 PROTOTYPE FUNCTIONALITY 

Upon request by the user the intelligent component firstly reads in information for a 

particular farm. Some of the information can be viewed at this point in graphical form, 

for example milk production information. 

The process of diagnosis can then be initiated by the user. The user chooses the week to 

be evaluated and the unit of milk production to be used (total solids or milk fat). 

Forward chaining is initiated by asserting the variable containing milk production units, 

using a breadth first mechanism on the set of diagnosis rules. Breadth first forward 

chaining was used as this is an exhaustive strategy which corresponds to the multiple 

fault diagnosis in the inference structure. A class "Problem" containing slots for different 

variables, is used to record the results of the diagnosis and continue the forward 

chaining. This acts somewhat like a blackboard, recording details of the current 

problem (Turban, 1995). This class could be modified to include scheduling, should it 

be required at a later date. 

Figure 6.6 shows part of the inference browser for an example of the forward chaining 

process. The rule names are italicised, and the variables which assert the rules are in 

normal print. It is helpful to highlight at this point that cow production levels are 

measured using either milk fat content or total solids content of the milk. The cows 

intake has a direct influence on milk production levels. 

In the example, the variable containing the chosen units is asserted, thus triggering rules 

with this in their premise. Each of the milk production rules are tested (TSDown, 

MFDown and MPGood2), and the MFDown rule is found to be true. MFDown's 

consequence assigns a value to the variable Problem:MP, thus asserting it. This then 

triggers the next level of rules which contain the MP variable. In this example, two rules 

were found to be true, one being PaslntakeDown3 which compares actual and target 

pasture intakes. From here, variables which effect the intake are investigated. In some 

cases pasture growth rates (PGR's) are found to be below target, triggering the execution 

of the GROW model in order for further comparisons to be made using current weather 

conditions (Appendix C3.3). This provides the system with three scenarios for 

comparison and investigation; the calculated actual PGR, the target PGR, and the PGR 

which would have been expected given the recorded weather conditions. 

2MF =Milk Fat, TS =Total Solids, MP= Milk Production 

3Paslntake = Pasture Intake 



94 
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Figure 6.6 - Section of Inference Browser for an example situation 

The GROW model requires an ASCII file to be created containing weather information 

along with details of the farm which is obtained from the instance "farm" (originally from 

the farm file). Once this is created the model can be executed which requires a DOS 

shell to be opened. The GROW model can only simulate one situation at a time, and so 

must be executed a number of times if various weather situations are to be investigated. 

The GROW model creates an output ASCII file which can then be input to the intelligent 

component (Appendix C3.3). 

Once the basic diagnosis is complete, a simplified feed budget (See Figure 5.12 & 

Appendix C3.4) calculates various projections on pasture cover given the current 

situation and various weather scenarios. This also utilises the GROW model to predict 

pasture growth rates. A graph displaying the various projections is created (Figure 6.7). 
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Figure 6. 7 - Graph displaying varying projections 
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The user now has the opportunity to evaluate options the system has selected as 

appropriate. This selection process utilises backward chaining (the assessment inference 

structure, Figure 5.7), with the goal of investigating every available option (rather than 

stopping when a single solution has been found). At present at most four options are 

available to the user. The structure of the rule base, however, allows further options to 

be included, by increasing the number of rules within the assessment rule grouping. 

The user is then able to manipulate these options and perform a "what-if" analysis by 

running a feed budget given a new scenario. A graph is displayed showing the predicted 

pasture cover given the chosen changes to the farming system, along with the target 

pasture cover levels (Figure 6.8) . This last step can be repeated any number of times, 

experimenting with various combinations of the feasible options. 

Varying Predictions 
Caver 
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Figure 6.8 - Graph displaying projection given changes in the system 

6.4 CONCLUSION 

KAPPA-PC provided a flexible environment for the development of the prototype 

intelligent component. It allowed various decision support capabilities to be 

implemented, such as the inclusion of "what-if' analysis facilities. 
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The object oriented data structures were well suited for implementing a conceptual graph 

model due to its hierarchical nature. The variety of rule based reasoning methods 

allowed a suitable one to be chosen for each of the inference structures. The graphical 

user interface facility provided by KAPPA-PC enabled an easy to use interface to be 

developed, and data could be displayed clearly to the user. 

The prototype system provides empirical evidence to aid m evaluation of the 

development framework. This is discussed in Chapter 7. 



7 .1 INTRODUCTION 

This chapter evaluates the framework proposed for the development of an intelligent 

component to be integrated with an existing DSS (Figure 5.15). Its success has been 

tested using defined aims and evaluation criteria. The prototype IDSS provides empirical 

evidence useful for evaluation, this is discussed in Section 7.2. In Section 7.3 criteria 

from the literature on the validation of methodologies are compiled. These criteria have 

been used to evaluate the framework based on experiences gained during application of 

the framework and development of the prototype IDSS. 

7.2 PROTOTYPE EVALUATION 

Gillies (1991) comments that "a development strategy stands and falls by the quality of 

the resulting solutions, and the effort required to produce them, and not by any intrinsic 

merit". Thus the prototype IDSS (FarmTracker integrated with the intelligent 

component) was evaluated in order to test the development framework; this was 

achieved by investigating two questions. Firstly, was the intelligent component capable 

of fulfilling the defined aims in the view of the sponsor, and secondly, is the prototype 

IDSS a true IDSS? 

7 .2.1 DOES THE INTELLIGENT COMPONENT MEET THE DEFINED 

AIMS? 

At the beginning of the knowledge acquisition process the aims of the intelligent 

component were defined. These were developed in light of the fact that this was an 

exploratory study, investigating the feasibility of linking an intelligent component with an 

existing DSS. The aims of the intelligent component were defined in Section 5.3 to be: 

• Identify shortfalls in production 

• Determine reasons for the shortfalls 

• Investigate position in two weeks time 

• Investigate possible courses of action given the state of the farm 

• Suggest feasible options 

These aims provide a basis for evaluating the success of the intelligent component. Each 

of the features were investigated in consultation with the sponsor, to see if they were 

included, were correct and were extendable. 
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The level of detail with which they were achieved was not viewed as important, but the 

capability of extending the intelligent component to provide more detail was. The 

extendability issue could not be judged by use alone, so the knowledge engineer's opinion 

was also taken into account. Extendability includes both that of the existing features, 

and the ability for additional features to be included in the intelligent component. 

In the evaluation session the knowledge engineer showed the sponsor the use of the 

intelligent component given a variety of farm scenarios. Each of the five steps were 

investigated separately. For example, in testing the first aim, a scenario where 

production was above target was compared to situations where production was below 

target. This enabled the sponsor to see the capabilities and results of the intelligent 

component. Each of the scenarios are described in Table 7.1. 

Prototype function Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Identify shortfalls in Milk Fat Milk Fat Milk Fat Total solids 
production above target below target below target below tar!!et 
Determine reasons for Pre grazing Average PGR&DA 
shortfall pasture cover pasture cover below target 

below target below tarnet 
Predict pasture cover Predicted Predicted Predicted 
in two weeks pasture cover pasture cover pasture cover 

above target below target below target 
Investigate possible Suggest no Suggest no Change SR Change SR 
courses of action action action Apply Fert ApplyN 
and suggest feasible Feed Supps 
options Aoolv Fert 

Key: SR = Stocking Rate, N = Nitrogen, Supps = Supplementary Feed, Fert = Fertiliser, DA =Daily Allocation 

Table 7. I - Scenarios used to evaluate prototype 

The results of the session are summarised in Table 7.2, with a brief description of the 

functionality which satisfies the aim. For a more detailed description of the prototype 

functionality, see Section 6.3. 

Capability Achieved? Description 
Identify shortfalls in ./ 

Production levels are compared to target and the user is 
production informed if thev are within the threshold 
Determine reasons 

./ 
If production is below target, diagnosis rules are triggered, 

for the shortfalls fla!!!!ing variables which are below target 
Investigate position 

./ 
The pasture cover level in two weeks is predicted using 

in two weeks time current weather patterns and oasture covers 
Investigate possible 

./ 
If predicted pasture cover is not acceptable to the system, then 

courses of action assessment rules determine feasible actions 
Suggest feasible 

./ 
Feasible courses of action are presented to the user, which 

ootions they can then use in 'what-if analvsis 

Table 7 .2 - Summary of evaluation session 
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Although some of the results were simplistic, such as the feed budget prediction, this was 

not seen as a problem by the sponsor. He understood the reasons for using a basic feed 

budget model, and could see the advantages of integrating the feed budget component of 

FarmTracker with an intelligent component. Similarly, the rule sets were unrealistically 

small. For example, the intelligent component only dealt with four options for the 

farmer. The number of options could easily be increased with the addition of more rules. 

The intelligent component's inference structure allows its extension into a fuller system 

suitable for testing with potential users such as farmers. 

The sponsor suggested further extensions to the functionality of the intelligent 

component. He felt that costing each of the scenarios would be a useful function , as well 

as conversion of fertiliser levels into physical quantities of fertiliser necessary to achieve 

those levels. These are seen as decision support capabilities rather than intelligent 

features, and could either be added to the intelligent component, in the form of functions, 

or be achieved within the Farm Tracker system if true integration existed. 

7.2.Z IS THE PROTOTYPE SYSTEM A TRUE IDSS? 

In Section 2.5 a list of capabilities which an IDSS should possess was compiled. 

Examining this list in relation to the developed prototype IDSS provides the test to 

ascertain whether the prototype has the characteristics of an IDSS. If the prototype is 

considered an IDSS, this would provide further evidence of the success of the 

framework. The list of capabilities has been divided into three categories: external, 

system and internal perspectives. 

External Perspective 

• An IDSS addresses semistructured problems 

Klein and Meth lie (I 995) outlined a number of features of semistructured problems 

which provide a basis for determining if the problem addressed by the prototype is in 

fact semistructured. These are outlined in section 2.2, and include the necessity for 

the decision to require the preferences, judgments, intuition and experience of the 

decision maker. These features are required by the prototype, for example, Olsen 

Phosphate threshold levels are determined by the expert decision maker based on 

rules of thumb and experience. These are then used in assessing whether applying 

fertiliser is a feasible course of action. When the system deals with a problem, it has 

to structure and search information for computation, consider the decision criteria 

and make the required trade offs between them. These features all constitute a 

semistructured problem. 
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• An IDSS may deal with uncertain or incomplete information 

The dependence of the farming system on weather makes the prediction of future 

trends very uncertain. The prototype system deals with weather data and uses the 

GROW model to predict various patterns in pasture growth, as well as testing 

current situations to see if they can be attributed to weather. 

• An IDSS may deal with decisions which involve risks 

The decisions of the farmer have a very definite financial risk. The environment and 

livestock condition are an important factor, and causing adverse effects on them must 

be avoided. 

• An IDSS provides normative power to the decision maker 

The IDSS aids the farmer in developing a management plan given the current 

situation on the farm and heuristics represented in the intelligent component. This 

allows domain expertise to be utilised by the farmer; the experts decision process is 

considered normative behaviour, as it describes how a decision should be made. 

System Perspective 

• An IDSS is dependent on multiple internal and external information/knowledge 
sources 

The prototype IDSS utilises an historic database containing details about prior states 

of the farm such as production levels, pasture cover and weather records. Stored 

information regarding the current state of the farm, and target levels are also utilised. 

This information is manipulated by the intelligent component until it is in a form 

suitable for heuristic analysis. The feed budgeting and GROW models from within 

FarmTracker are used by the intelligent component. 

• The IDSS utilises and manages the use of models 

The GROW model is used by the prototype IDSS as a means of predicting pasture 

growth rates. The intelligent component manipulates the data required for prediction 

into a suitable form, and calls the execution of the GROW model. The results of the 

simulation can then be read by the intelligent component for use in decision making. 

A feed budget model is also used to predict the outcome of a particular plan. This is 

able to interact with the GROW and animal intake models. 

Internal Perspective 

• The IDSS is based on several disciplines ( eg DSS, databases, KBS etc) 

The IDSS combines the existing DSS and it's associated data files and models with 

rule based reasoning techniques. The intelligent component included a certain 

amount of conventional features, such as data manipulation and presentation. This 
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was necessary to prepare the data for use by the knowledge base, as well as to 

provide a useful user interface. 

7.2.3 SUMMARY 
As discussed by Gillies ( 1991 ), the quality of the results of a development strategy are a 

good indicator of its success. Thus this section has evaluated first the intelligent 

component and then the prototype IDSS developed using the proposed framework. The 

aims of the sponsor were discussed in relation to the intelligent component, and it was 

found that these were achieved. The desired characteristics of an IDSS have also been 

discussed and each of these characteristics have been met by the prototype in some way, 

enabling it to be considered an IDSS. 

Having validated the success of the prototype, the framework can now be evaluated from 

the perspective of the knowledge engineer. 

7.3 FRAMEWORK EVALUATION 

The proposed framework needs to be evaluated to see whether it has the power to assist 

in the addition of an intelligent component to an existing DSS. Criteria for judging the 

framework had to be developed to provide a basis for drawing conclusions. The 

proposed framework is intended to be a step towards a complete methodology, but as 

yet does not contain adequate detail. The search for criteria for evaluation focused on 

that of methodologies, as it is a methodology to which the framework aspires. 

Two evaluation approaches have been investigated; that of Jeffries (1994) and Blair et al. 

( 1995a). Relevant aspects of each were seen as applicable for evaluation of a framework 

for the development of an intelligent component to be integrated with an existing DSS. 

A set of criteria for this study has been compiled drawing from both of the evaluation 

approaches. 

Jeffries (I 994) discussed criteria from relevant literature (Alenmang & Rothenfluh, 

1992; Guida & Tasso, 1989; Rothenberg, 1989; Nosek & Roth, 1990; Teague & 

Pidgeon, 1985; Sloman, 1978) for evaluating knowledge acquisition methodologies. As 

these criteria are concerned with development techniques associated with knowledge 

based system concepts, most are seen as applicable for evaluating the framework. 

Blair et al. (l 995a) developed a rigorous approach for comparing IDSS design 

methodologies. Each phase in his proposed development methodology (Section 2.5.5) 
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has an associated set of criteria in question form. There are also criteria for software 

reuse and interface design outlined within the framework . The approach Blair et al. 

( 1995a) uses appears to stem from limitations and benefits identified in existing IDSS 

methodologies (Section 2.5.5). It draws from literature relating to KBS, DSS and 

software engineering methodologies and is intended for the evaluation of complete 

methodologies. 

This study is not proposing a complete methodology, thus only a selection of the criteria 

have been utilised. Much of the Blair et al. (1995a) work is specifically for Intelligent 

Decision Systems (IDS) rather than the more general Intelligent Decision Support 

Systems, thus these IDS criteria have been omitted. The sections involving the decision 

maker were also excluded because this study does not involve the decision maker. This 

was not within the aim of the project as defined in Chapter 1, the aim is to propose a 

means of adding a working intelligent component, rather than implementing a system 

immediately ready for use by the decision maker. This also makes the interface design 

phase of the Blair et al. 's ( l 995a) evaluation framework inappropriate. 

Many of the criteria from both authors appear to be investigating similar aspects of 

methodologies. The Jeffries (1994) criteria are quite general, whereas those of Blair et 

al. ( l 995a) are very specific. In order to prevent repetition during evaluation which is to 

be in discussion form, similar criteria have been grouped together, and the wording of 

some of the criteria has been modified to be specific to this study. Table 7 .3 summarises 

the selected criteria which will form the basis for discussion in Section 7.3.1. 

7 .3.1 DISCUSSION 

The selected criteria are used as a basis for discussion of evaluation of the proposed 

framework. Many of these criteria require experience in using the methodology in order 

for them to be tested. Much of the discussion is related to experiences gained during the 

development process. Readers are referred to the framework summary in Figure 5.15. 

1. A methodology should be focused, especially emphasising those tasks which 
are typical of IDSS analysis such as domain and problem analysis and 
knowledge modelling. (Jeffries, 1994) 

The overall framework is very focused with the aim of creating a model of expertise and 

model of cooperation. Conventional analysis of the existing DSS provides the 

knowledge engineer with an understanding of the domain and the systems capabilities. 

The data and functional models developed provide a good grounding for the knowledge 

acquisition phase to begin. 
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I. A methodology should be focused, especially emphasising those tasks which are typical of IDSS 
analysis such as domain and problem analysis and knowledge modelling. 

2. A methodology should include a procedure for eliciting knowledge from the domain expert 
A methodology should include a procedure for the inclusion of knowledge from knowledge 

sources of various types (domain experts, documentation , experimentation, observation and 
induction)? 

3. A methodology should be as definite as possible, there should be a clear purpose associated with 
the methodology, and the techniques should be explicitly specified and not left to the intuitions of 
individuals. A methodology should be practical , it should be easy to teach and apply and 
comprehensible by all parties involved in the knowledge acquisition process. 

4. A methodology should be open, it should support the use and integration of existing techniques 
and tools aimed at specific aspects or phases of the expert system development process (eg 
knowledge acquisition tool s, project management tool s, knowledge base verification and 
refinement techniques) and promote the development of new ones. 
A methodology should include a graphical model to represent the conceptual design 

5. A methodology should be explorative, it should allow both system specification and design to 
proceed incrementally, experimenting with alternative problem solving approaches. 

6. A methodology should be structured and modular, it should support as far as possible 
(hierarchical) work decomposition into elementary components, and enable generalisation through 
the structures hierarchical chaining. 
A methodology should include techniques to abstract and decompose the requirements 
A methodology should include methods to abstract and decompose the conceptual design of the 

IDSS 

7. A methodology's design language should be rich in the sense that it allows the expression of 
different kinds of knowledge by different language primitives 

8. A methodology should be rich in heuristic power, the concepts, assumptions, symbolisms and 
transformation procedures should be such as to make the detection of gaps and errors, the design of 
problem solving strategies, the recognition of relevant evidence, easily manageable. 

9. A methodology should include techniques to normalise the conceptual model 

10. A methodology should have the ability to be adapted to various applications, it should be general, 
flexible, maintainable and extendable. 
A methodology should allow the knowledge domain be expressed independently from its use 

11. A methodology should include a uniform approach to gather the inter-disciplinary requirements of 
the IDSS 
A methodology should include models to represent the inter-disciplinary requirements graphically 
A methodology should include languages for describing the inter-disciplinary requirements 

12. A methodology should include techniques for searching the organisation for potential existing 
software components 
A methodology should include techniques which help developers to understand what existing 

software components do 
A methodology should support the interconnection of existing and hand coded software 

components within the IDSS 

Table 7 .3 - Selected evaluation criteria adapted from (Blair et al., l 995a) and Jeffries 
(1994) 
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The "Analysis" phase of the framework (Figure 5.15) concentrates on domain analysis, 

working from interview data. The resultant conceptual graphs form the domain layer in 

the model of expertise. The creation of the task model involved problem analysis, to 

determine the tasks which were involved. This continued with the creation of the model 

of cooperation, the choice of interpretation templates, and their instantiation for the task 

layer. The entire process was directed by the aim of creating the resultant models; 

modelling is therefore an important aspect of the framework. 

Well defined methods (such as KADS and conceptual analysis) were utilised, providing a 

sound basis for the framework. The conceptual graph notation ensures a consistent 

model is created, representing a wide range of information suitable for use within the 

domain layer of the model of expertise. The interpretation templates in the KADS library 

provided direction by suggesting various alternatives to the problem solving tasks. The 

model of expertise bought the information together into a well structured organisation. 

2. A methodology should include a procedure for eliciting knowledge from the 
domain expert (Blair et al., l 995a) 

A methodology should include a procedure for the inclusion of knowledge from 
knowledge sources of various types (domain experts, documentation, 
experimentation, observation and induction)? (Blair et al., l 995a) 

The "Information Gathering" stage (Figure 5.15) in the analysis of the existing DSS 

involved collecting information from a number of sources, including interviews with the 

sponsor, system documentation and use of the system. The interviews with the sponsor 

enabled the knowledge engineer to gain an understanding of FarmTracker and the 

problem domain. System documentation provided an overview of the capabilities of the 

DSS. The collection of a complete data set for use with the system was helpful, giving 

the knowledge engineer both a deeper understanding of the domain, and the opportunity 

to experiment with the DSS. 

The models created during the Functional and Data analysis phases, and the experience 

gained during these phases were a useful source of information for the knowledge 

acquisition process. Knowledge acquisition interviews with the sponsor provided 

additional data. The sponsor was involved in most of the knowledge acquisition phases 

by providing feedback as to the correctness of models, and expanding on them with 

further information. 
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3. A methodology should be as definite as possible, there should be a clear 
purpose associated with the methodology, and the techniques should be 
explicitly specified and not left to the intuitions of individuals. (Jeffries, 1994) 

A methodology should be practical, it should be easy to teach and apply and 
comprehensible by all parties involved in the knowledge acquisition process. 
(Jeffries, 1994) 

The purpose of the framework is to provide a guide for the analysis and design of an 

intelligent component to be integrated with an existing DSS. The framework includes 

methods which are generally well defined in their associated literature. 

The data and functional models used (data flow diagrams and entity relationship 

diagrams) are each recognised standards in their discipline and have their notations 

defined by a number of authors (for example Yourdon, 1989). The use of unlevelled 

data flow diagrams made the functionality more comprehensible by the sponsor (Section 

5.2). The newer techniques used (conceptual analysis and KADS) each had some 

problems associated with them due to the lack of complete examples. 

Although the process of application of conceptual graphs (during the analysis phase of 

the knowledge acquisition) is fairly unstructured, the resultant models are very readable. 

The graphical notation makes for easy and clear reading. When presented with the 

models, the sponsor quickly grasped the concepts and was able to read the graphs with 

relative ease. 

The apparent ease of reading conceptual graphs seems to be due to their direct mapping 

to and from natural language without loss of information. It seems that once the basic 

conceptual graph notation has been understood, it can be applied to any domain 

resulting in an easy to read representation. 

The type lattice is a clear and reasonably self explanatory method of showing the 

hierarchy of types, which can be followed and checked by the sponsor. This ensures a 

mutual understanding of the meaning of the concepts has been reached between the 

sponsor and the knowledge engineer. 

Although conceptual graphs are easy to read, their complexity is apparent when trying 

to learn or teach the notation. The author found that for a person with a basic 

background in knowledge representation, a detailed study of the literature was required 

before the main ideas had been grasped. This can be quite time consuming, especially if 

one wishes to master all the techniques of the notation, as it is quite extensive in its 

capabilities. 
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Parts of the model of expertise are not particularly easy to read and understand for a 

person who has little understanding of the methodology. The domain layer is fairly 

straight forward, represented by conceptual graphs. The inference structures however, 

take a fair amount of study before they are clearly understood. The choice of the 

structures, however, is a task for the knowledge engineer and their instantiation and 

ordering for the task layer clarifies their meaning for other parties to understand. 

4. A methodology should be open, it should support the use and integration of 
existing techniques and tools aimed at specific aspects or phases of the expert 
system development process (eg knowledge acquisition tools, project 
management tools, knowledge base verification and refinement techniques) 
and promote the development of new ones. (Jeffries, 1994) 

A methodology should include a graphical model to represent the conceptual 
design (Blair et al., l 995a) 

The proposed framework certainly utilises existing techniques. Standard tools are used 

for the functional and data analysis of the existing DSS. Conceptual graphs are 

integrated with the KADS model of expertise to produce a comprehensive representation 

of the domain knowledge. Thus tools which specialise in various aspects of the lifecycle 

have been utilised. 

The modelling tools utilised within the analysis of the ex1stmg system (data flow 

diagrams (DFDs) and entity relationship diagrams (ERDs)) are standard tools drawn 

from the systems analysis discipline. These tools were also found to be popular in 

practice for developing decision support systems (Atkinson & Arnott, 1995) (Section 

2.2.4). Their use for modelling an existing DSS was found to be successful, the only 

unusual deviation from the norm being the use of unlevelled DFDs (Section 5.2). The 

ERD was not found to be completely useful, however this was because it was not based 

on existing files due to confidentiality issues (Section 5.2). 

Data flow diagrams and entity relationship diagrams both have graphical standards for 

display. These standards are supported by a number of CASE tools, the Visible Analyst 

tool was used for the creation of these diagrams, the use of such tools aids in the 

standardisation of the resultant models. 
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5. A methodology should be explorative, it should allow both system specification 
and design to proceed incrementally, experimenting with alternative problem 
solving approaches. (Jeffries, 1994) 

The model of expertise moves on to the early stages of design by providing a task layer 

which defines the control structure for how the intelligent component utilises the 

information in the inference and domain layers. The purpose of KADS is to represent 

the problem solving capabilities of a future system which involves specifying the early 

stages of design of the system. 

Due to the separation of knowledge in the model of expertise, different control structures 

can be applied to the same domain knowledge, this reuseability of the domain layer is 

seen as one of the major advantages of the KADS methodology. The inference 

structures (Figure 5.6 and 5.7) have no implied direction, thus they can be used in 

different ways such as forward or backward chaining. This allows experimentation with 

different problem solving approaches within the same inference structure. 

The model of expertise can be used to explore different methods of implementation, such 

as a variety of expert system shells or programming languages. It was found that the 

conceptual graph formalism lent itself very well to being implemented in the object 

oriented environment of KAPPA-PC. This straight forward mapping allowed the 

prototype to be developed relatively easily and quickly. 

6. A methodology should be structured and modular, it should support as far as 
possible (hierarchical) work decomposition into elementary components, and 
enable generalisation through the structures hierarchical chaining. (Jeffries, 
1994) 

A methodology should include techniques to abstract and decompose the 
requirements (Blair et al., I 995a) 

A methodology should include methods to abstract and decompose the 
conceptual design of the IDSS (Blair et al., J 995a) 

The data flow diagrams developed in the "Functional analysis" phase (Figure 5.15) can 

be organised in a layered manner, with higher layers generalising lower layers. This 

approach, however, was found to be inappropriate in this case as an unlevelled diagram 

was a more effective communication tool (Section 5.2). 

The conceptual graph notation is definitely based on structural inheritance networks, 

enabling generalisation and specialisation of the graphs and concepts. The type lattice 

provides the basis for this generalisation to take place. Relations can also form a 

hierarchy with some relations being defined in terms of more primitive ones. 
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The KADS models do not have this type of hierarchical chaining, but do decompose the 

knowledge into elementary components. The task model breaks the problem into tasks 

and subtasks, with the primitive tasks being allocated to particular components for 

execution within the model of cooperation. 

The domain layer is quite separate from the other layers in the model of expertise, and is 

used to instantiate the inference structures in the task layer. There are several 

advantages of separating domain and inference knowledge, this enables the use of the 

same domain knowledge a number of times, knowledge redundancy is also prevented 

because domain knowledge that is used in more than one inference is specified only once. 

The framework does not have a means of abstracting and decomposing the requirements 

of the IDSS. The requirements definition differs from a typical IDSS methodology, as 

much of the functionality is determined by the structure of the existing DSS. Thus, aims 

of the intelligent component are not defined until mid way through the development 

framework at the beginning of the knowledge acquisition phase, following the analysis of 

the existing DSS. There is no specified method for requirements definition within the 

proposed framework . 

7. A methodology's design language should be rich in the sense that it allows the 
expression of different kinds of knowledge by different language primitives 
(Blair et al., l 995a) 

The KADS methodology separates different kinds of knowledge within the model of 

expertise. The domain knowledge is represented by conceptual graphs and the task layer 

represents the control knowledge. The overall framework also separates models of the 

existing DSS from that of the intelligent component. The two sets of models are linked 

by the model of cooperation. 

8. A methodology should be rich in heuristic power, the concepts, assumptions, 
symbolisms and transformation procedures should be such as to make the 
detection of gaps and errors, the design of problem solving strategies, the 
recognition of relevant evidence, easily manageable. (Jeffries, 1994) 

The KADS interpretation models provide a great deal of power to the methodology by 

acting as templates for the inference of a proposed system. These interpretation models 

ensure that the relevant domain knowledge is used at the inference layer. The 

interpretation models direct the development of the task layer which contains the 

problem solving strategies of the proposed system. The templates integrate the layers in 

the model of expertise helping to ensure that no gaps or errors are left in the model. The 
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overall structure of the model of expertise, with the separate layers for the different types 

of knowledge makes the representation manageable. These advantages of the KADS 

methodology results from its top-down approach to knowledge acquisition. 

Conceptual graphs have the ability to represent as much information as predicate logic 

which is generally considered to be a rigorous representation mechanism. The division of 

concepts into type and referent fields allows a vast amount of information to be 

formalised. The conceptual relations provide an efficient way of representing the 

relationships between concepts. The formation rules associated with the notation ensure 

that all models created are consistent and represented correctly. 

9. A methodology should include techniques to normalise the conceptual model 
(Blair et al., I 995a) 

Relations are said to be normalised if all underlying domains contain only atomic values 

(Date, 1995). It is felt that with the association of conceptual graphs with first order 

predicate logic, the conceptual graph model can be considered normalised. The 

representation is grounded in logic and the notation, if applied correctly ensures a correct 

model. The ERD created in the "Data Analysis" phase (Figure 5.15 and Appendix A) for 

the existing DSS can be normalised to ensure a consistent model is created. 

10. A methodology should have the ability to be adapted to various applications, it 
should be general, flexible, maintainable and extendable. (Jeffries, 1994) 

A methodology should allow the knowledge domain be expressed independently 
from its use (Blair et al., I 995a) 

Stages in the development framework have been defined, and suitable methods have been 

suggested. However, alternative or additional methods could be used enabling the 

substitution of methods with which the knowledge engineer is familiar. For example, the 

domain layer in the model of expertise could be modelled using semantic networks rather 

than conceptual graphs. This makes the framework very flexible. Some of the proposed 

methods are also inherently flexible. For example conceptual graphs have the ability to 

represent anything that can be expressed in natural language. 

The proposed framework has only been investigated using a single case study. It is 

thought, however, that the framework would lend itself to other situations where a 

decision support system exists and where intelligent capabilities would add value to the 

system. The functional and data models should be able to be created for any existing 

DSS. 
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The layering in the KADS model of expertise allows reuseability of the domain layer as 

the knowledge is represented independently from its use. The addition of information to 

the domain layer allows the model to be extendable. The inference structures aim to 

generally model a wide range of problem situations, and each can be extended or 

modified to cope with specific situations. 

11. A methodology should include a uniform approach to gather the inter­
disciplinary requirements of the IDSS (Blair et al., 1995a) 

A methodology should include models to represent the inter-disciplinary 
requirements graphically (Blair et al., l 995a) 

A methodology should include languages for describing the inter-disciplinary 
requirements (Blair et al., l 995a) 

The term "inter-disciplinary" has been taken to mean the interaction between the 

conventional decision support system and the intelligent component. The model of 

cooperation has the purpose of representing the link between the two types of 

information. This is a graphical representation which follows the convention outlined in 

the KADS methodology, with the additional ability to assign tasks to the DSS. The 

model of cooperation is developed using the task model and by assigning each low level 

subtask to particular components in the proposed IDSS. This requires information 

outlining the capabilities of each component, which can be gathered from the data and 

functional models and the model of expertise. 

Although there is a graphical model for representing the inter-disciplinary requirements, 

the development framework does not define a language for this purpose. 

12. A methodology should include techniques for searching the organisation for 
potential existing software components (Blair et al., 1995a) 

A methodology should include techniques which help developers to understand 
what existing software components do (Blair et al., l 995a) 

A methodology should support the interconnection of existing and hand coded 
software components within the IDSS (Blair et al., l 995a) 

The aim of the analysis of the existing DSS is to gain an understanding its capabilities. 

This allows for reuse of some of the components in the DSS and minimises repetition in 

functionality within the intelligent component. The development of data and functional 

models define the data requirements and functionality of the DSS. 

The overall intention of the framework is to allow for the integration of existing software 

with an intelligent component. The model of cooperation is used to represent the link 

between the components. 
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7.4 CONCLUSION 

It has been shown that the intelligent component developed meets the needs of the 

sponsor, and that the overall system can be considered an IDSS. It is felt that this 

validates the proposed framework's ability to develop the desired results. 

The views and experiences gained in developing the protoype IDSS have also been 

discussed in relation to criteria outlining desired attributes of a methodology. The 

functional and data models developed in the framework were found to be a useful means 

of representing the capabilities and associated data of the existing DSS. The KADS 

methodology provided a solid foundation for the knowledge acquisition phase of the 

framework. Conceptual graphs were successfully integrated with the KADS model of 

expertise, ensuring a rich representation of the domain knowledge. The KADS library of 

interpretation models guided the knowledge engineer in representing control knowledge. 

The model of cooperation provided the link between the existing DSS and the proposed 

intelligent component. 

Overall, the framework was found to be a thorough and useful tool for the development 

of an intelligent component that has to be integrated with an existing DSS to form an 

IDSS. The framework brings together components from existing, well defined 

methodologies in a structured manner. The integration of a variety of methods allows 

the different aspects of an IDSS to be rigorously modelled. Drawing appropriate 

techniques from established methodologies enables the framework to fulfill many of the 

requirements of an IDSS methodology. 



The aim of the study was to investigate and propose a framework for the development of 

an intelligent component to be integrated with an existing decision support system. 

Nunamaker et al's ( 1991) systems development research methodology (Figure 1. 1) 

provided a guide for the overall research effort and each of the five stages in the process 

were successfully completed. 

A thorough review of the literature associated with DSS, KBS and IDSS development 

revealed that although methodologies exist for each of these there did not appear to be a 

methodology aimed at improving existing DSSs by adding an intelligent component. 

Thus an initial development framework was proposed to deal with such a situation, 

drawing on concepts from related disciplines. 

Conventional DSSs are widely used by farmers throughout New Zealand. These systems 

aid the farmer in organising their data, but do not attempt to interpret the data or suggest 

feasible courses of action. Simulation models are incorporated within some of these 

DSSs which can be utilised for planning purposes. These often require a considerable 

amount of expertise to ensure they are being used correctly, and the results interpreted 

accurately. The combination of KBS techniques with DSS capabilities to form an IDSS 

is seen as a means of providing a more powerful tool for the farmer. 

The integration of an intelligent component with an existing agricultural DSS would 

seem an efficient and cost effective method for creating an IDSS. Thus the initial 

development framework was applied to the domain of dairy farm management based on 

an existing DSS, FarmTracker. A prototype IDSS was developed with the intention of 

testing the frameworks feasibility. The framework was modified in light this experience. 

The final step in Nunamaker et al's ( 1991) process (observation and evaluation) was 

discussed in Chapter 7. The success of the intelligent component was investigated by 

observing its functionality and assessing whether it achieved its defined aims. The overall 

IDSS was evaluated in light of capabilities which such a system should possess. The 

experiences gained during development were discussed in relation to criteria established 

for evaluating an IDSS development framework. The overall findings suggest that the 

proposed framework, summarised in Figure 5.15, is a feasible approach to developing an 

intelligent component for integration with an existing DSS. 
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The framework is divided into two strands, firstly the analysis of the existing system, and 

then the knowledge acquisition process for the intelligent component. The framework 

suggests the use of prototyping for testing specific aspects of the IDSS, as opposed to its 

more common use as an iterative or evolutionary lifecycle. 

The analysis of the existing DSS utilises existing functional and data modelling tools. 

These were found to provide a clear representation of the DSS, and their development 

enables the capabilities and data requirements of the existing system to be understood by 

the knowledge engineer. This provides a sound foundation for the knowledge 

acquisition process to begin. The framework takes into account the data and capabilities 

of the existing DSS when structuring the intelligent component. 

The knowledge acquisition process is based on the KADS methodology. A three layered 

KADS model of expertise provides an organised structure for representing the 

knowledge. Conceptual graphs were found to be a suitable representation mechanism 

for the domain layer, providing a complete and consistent model representing a wide 

range of knowledge. The inference structures from the KADS library provide a 

considerable amount of power to the framework, aiding the knowledge engineer in 

developing the inference layer. A task model breaks the functions of the intelligent 

component into subtasks, which aids in the selection of appropriate inference structures. 

The task layer represents the control knowledge which instantiates and specifies order to 

the inference layer. 

A modified KADS model of cooperation was seen as a key model in the framework, 

providing a link between the conventional and intelligent components. This is based on 

the task model and defines which component is to carry out each subtask. 

The knowledge based system shell, KAPPA-PC, was used to develop the prototype. 

The object oriented environment lent itself well to the conceptual graph representation 

allowing some aspects of the conceptual model to be directly implemented as equivalent 

object oriented structures. For example, the type lattice maps to the object hierarchy. 

The study was limited by time constraints. This meant user issues were not investigated. 

These are of obvious importance when developing an IDSS. Time constraints also 

restricted the scope of the case study, with the prototype intelligent component 

investigating only a portion of the problem domain. Tecnical difficulties required a 

simplified feed budget to be used within the prototype, rather than using the feed budget 

module within Farm Tracker. Confidentiality issues also limited the study, requiring 
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dummy files to be created to provide the link between the DSS and the intelligent 

component. This meant a truly integrated IDSS could not be developed. 

By proposing a development framework and proving its feasibility by demonstration, the 

aims of the study have been achieved. Overall, the success of the framework is attributed 

to its use and modification of existing, well established methods. The framework draws 

concepts from DSS, KBS and IDSS research. The resulting integrated set of methods is 

well suited to a situation where an existing DSS could be enhanced by KBS techniques. 

8.1 FUTURE WORK 

The most obvious extension to the study is the development of the framework into a 

complete methodology. This would require more detail to be defined at each of the 

steps. For example, defining a more detailed approach to the definition of aims phase. A 

complete methodology could be evaluated rigorously as all aspects of development 

should have been dealt with. 

Further studies should also involve consultation with users. This could result in a more 

functional system for the average user. Interface issues could also be explored. 

Further investigation into the link between the conceptual graph notation and the object 

oriented formalism could prove valuable. Development of the prototype using KAPPA­

PC indicated there is a fairly direct mapping between the two representations; one which 

could be used for the rapid development of systems. 

Within the domain of dairy farm management, the prototype IDSS could be developed 

further, as the domain would benefit from the use of Intelligent Decision Support 

Systems. This would require additional knowledge acquisition and true integration with 

FarmTracker. The involvement of typical users in the development would be necessary. 



Alter, S. (1980). Decision Support Systems: Current Practice and Continuing 
Challenges. Reading: Addison-Wesley. 

Alter, S. ( 1994). Transforming DSS Jargon into Principles for DSS Success. In P. Gray 
(Eds.), Decision Support and Executive Information Systems . Englewood Cliffs: 
Prentice-Hall. 

Angehrn, A. A., & Luthi, H.-J. ( 1990). Intelligent Decision Support Systems: A Visual 
Interactive Approach. Interfaces. 20(6), 17-28. 

Arinze, B. ( 1992). A user enquiry model for DSS requirements analysis: a framework 
and case study. International Journal of Man-Machine Studies, 37, 241-264. 

Arnott, D.R. ( 1992). A Debiasing Methodology for Decision Support Systems 
Development (Working paper 6/92): Monash University. 

Atkinson, J., & Arnott, D. (1995). Tools and Techniques used in Systems Analysis for 
Decision Support Systems (Working Paper 22/95): Monash University. 

Avison, D. E., & Fitzgerald, G. (1995). Information Systems 
Development:Methodologies, Techniques and Tools. (2 ed.). London: McGraw­
Hill Book Company. 

Basili, V., Selby, R., & Hutchens, D. ( 1986). Experimentation in Software Engineering. 
IEEE Transactions on Software Engineering. 12(7), 733-743 . 

Beck, H. W., & Jones, J. W. (1989). Simulation and Artificial Intelligence. In J. R. 
Barrett & D. D. Jones (Eds.), Knowledge Engineering in Agriculture. Michigan: 
American Society of Agricultural Engineers. 

Bennett, R. (1992). Case-Study of a Simple Decision Support System to Aid Livestock 
Disease Control Decisions. Agricultural Systems. 38, 111-129. 

Beulens, A. J.M., & Van Nunen, J. A. E. E. (1988). The Use of Expert System 
Technology in DSS. Decision Support Systems, 4, 421-431. 

Biebow, B., & Chaty, G. (1993). A Comparison between Conceptual Graphs and KL­
ONE. In G. Mineau, B. Moulin, & J. F. Sowa (Eds.), Conceptual Graphs for 
Knowledge Representation (pp. 75-89). Germany: Springer-Verlag. 

Blair, A. ( 1995). A Comparative study of Methodologies for Designing IDSSs 
[Conference Seminar]. Canberra. 

Blair, A., Debenham, J., & Edwards, J. (I 995a). A Comparative Study of Formal 
Methodologies for Designing IDSSs. Paper presented at the Eight Australian Joint 
Conference on Artificial Intelligence, Canberra, Australia. 



116 

Blair, A., Debenham, J., & Edwards, J. (1995b). Methodologies for Designing IDSSs: 
Problems and Solutions. Paper presented at the First Australian Workshop on 
Intelligent Decision Support Systems, Canberra. 

Bodily, S. E. (1985). Modern Decision Making. New York: McGraw-Hill, Inc. 

Bonczek, R. H., Holsapple, C., & Whinston, A. (1980). Future Directions for 
Developing Decision Support Systems. Decision Support Systems. 11, 616-631 . 

Breuker, J., & de Greef, P. (1993). Modelling System-User Cooperation in KADS. In G. 
Schreiber, B. Wielinga, & J. Breuker (Eds.), KADS A Principled Approach to 
Knowledge-Based System Development (pp. 47-70). Cambridge: Academic Press. 

Butler, B. M. (1986). The effect of grazing intensity and freguency during spring and 
early summer on the sward characteristics of a ryegrass-white clover pasture. 
Unpublished Masters thesis, Massey University. 

Buzan, T., & Buzan, B. (1993). The Mind Map Book. London: BBC Books. 

Chang, A.-M., Holsapple, C. , & Whinston, A. (1993). Model management issues and 
directions. Decision Support Systems. 9, 19-3 7. 

Date, C. J. (1995). An Introduction to database systems. (6 ed.). Reading: Addison­
Wesley Publishing Company. 

Doukidis, G. (1988). Decision Support System Concepts in Expert Systems: An 
Empirical Study. Decision Support Systems. 4, 345-354. 

Duffin, P.H. (1988). GEMINI: Government Expert system Methodology INitiative: 
Central Computer and Telecommunications Abency, London. 

El-Najdawi, M. K., & Sylianou, A. C. (1993). Expert Support Systems: Integrating Al 
Technologies. Communications of the ACM. 36(12), 55-65. 

Er, M. C. (1988). Decision Support Systems:A Summary, Problems, and Future Trends. 
Decision Support Systems. 4, 355-363. 

Evans, M., Mondor, R., & Flaten, D. (1989). Expert Systems and Farm Management. 
Canadian Journal of Agricultural Economics, 37, 639-666. 

Fedorowicz, J., Williams, G. B. (1986). Representing Modeling Knowledge in an 
Intelligent Decision Support System. Decision Support Systems, 2, 3-14. 

Ford, F. N. ( 1985). Decision Support Systems and Expert Systems: A Comparison. 
Information and Management, 8, 21-26. 

Gane, C., & Sarson, T . (1979). Structured Systems Analysis: Tools and Techniques. 
Englewood Cliffs: Prentice Hall. 

Gillies, A. ( 1991 ). The Integration of Expert Systems into Mainstream Software. 
Cornwall: Chapman and Hall. 



REFERENCES 117 

Gonzalez, A., & Dankel, D. ( 1993). The Engineering of Knowledge-based Systems: 
Theory and Practice. Englewood Cliffs: Prentice-Hall. 

Goodwin, P., & Wright, G. ( 1991 ). Decision Analysis for Managerial Judgement. New 
York: Wiley & Sons, Inc . 

Gottinger, H. W., & Weimann, P. ( 1992). Intelligent decision support systems. Decision 
Support Systems, 8, 317-332. 

Gou I, M. , & Tonge, F . ( 1987). Project IPMA: Applying Decision Support System 
Design Principles to Building Expert-based Systems. Decision Sciences, 18, 448-
467. 

Gray, D. I., & Parker, W. J. ( 1992). The Planning, Implementation and Control of 
Pastoral Based Systems : Agricultural and Horticultural Systems Management 
Department, Massey University. 

Guida, G., Tasso, T. (1989). Building Expert Systems: From Life Cycle to 
Development Methodology. In G. Guida, C. Tasso (Eds.), Topics in Expert 
Systems Design: Methodologies and Tools (pp 3-26). Amsterdam: North Holand. 

Harmon, P., & Hall, C. (1993). Intelligent Software Systems Development: An IS 
Manager's Guide . New York: John Wiley and Sons, Inc . 

Harmon, P., & King, D. (1985). Expert Systems: Artificial Intelligence in Business. New 
York: John Wiley & Sons. 

Hayes-Roth, F., Waterman, D., & Lenat, D. ( 1983). An Overview of Expert Systems. In 
Hayes-Roth, Waterman, & Lenat (Eds.), Building Expert Systems. Reading: 
Addison-Wesley Publishing Company. 

Hickman, F. R. ( 1989). Analysis for knowledge-based systems: a practical guide to the 
KADS methodology. Chichester: Ellis Horwood Limited. 

Holmes, C. W., & Wilson, G. F. (1987). Milk Production From Pasture. (2 ed.). 
Wellington : Butterworths. 

Holtzman, S. (1989). Intelligent Decision Systems. Reading: Addison-Wesley Publishing 
Company, Inc. 

Jackson, P. (1990). Introduction to Expert Systems. (2 ed.). Wokingham: Addison­
Wesley. 

Jeffers, J. N. R. (1982). Modelling. London: Chapman and Hall. 

Jeffries, A. E. ( 1994 ). An Investigation into the use of Conceptual Graphs for Analysing 
and Representing Knowledge. Unpublished Honours Dissertation, Massey 
University. 



118 

Jeffries, A. E., Todd, E. G., & Kemp, E. A. (1995a). Comparison of KADS and 
Conceptual Analysis. Paper presented at the Eighth Australian Conference on 
Artificial Intelligence, Canberra. 

Jeffries, A. E., Todd, E.G., & Kemp, E. A. (1995b). A Tutorial on Conceptual Graphs 
(Technical Report 1/95): Massey University. 

Jones, J. W., Jones, P., & Everett, P.A. (1987). Combining Expert Systems and 
Agricultural Models: A Case Study. Transactions of the ASAE. 30(5), 1308-1314. 

Jones, P. ( 1989). Agricultural Applications of Expert Systems Concepts. Agricultural 
Systems. 31, 3-18. 

Karbach, W., Linster, M., & Voss, A. (1990). Model of Problem-Solving: One label -
One idea? In B. Wielinga, J. Boose, B. Gaines, G. Schreiber, & M. van Someren 
(Eds.), Current Trends in Knowledge Acquisition. London: Ellis Horwood. 

Keen, P., & Scott Morton, M. ( 1978). Decision Support Systems: An Organizational 
Perspective. Reading: Addison-Wesley. 

Kemp, E. A., Todd, E.G., daSilva, A., & Gray, D. I. (1994, ). Knowledge acquisition 
applied to farmer decision making. Paper presented at the SPICIS. 

Klein, M ., & Methlie, L. (1995) . Knowledge-based Decision Support Systems: With 
Applications in Business. (2 ed.). Chichester: John Wiley & Sons. 

Lal, H., Jones, J., Peart, R., & Shoup, W. (1992). FARMSYS - A Whole-Farm 
Machinery Management Decision Support System. Agricultural Systems. 38, 257-
273. 

Lukose, D. (1993). Executable Conceptual Structures. In G. Mineau, B. Moulin, & J. F. 
Sowa (Eds.), Conceptual Graphs for Knowledge Representation . New York: 
Springer-Verlag. 

Mainland, D. (1994). A Decision Support System for Dairy Farmers and Advisors. 
Agricultural Systems. 45, 217-231. 

Marsden, J., & Pingry, D. (1993). Theory of Decision Support Systems portfolio 
evaluation. Decision Support Systems. 9, 183-199. 

McGovern, J., Samson, D., & Wirth, A. (1991). Knowledge acquisition for intelligent 
decision systems. Decision Support Systems. 7, 263-272. 

Meador, C. L., Guyote, M. J., & Rosenfeld, W. L. (1986). Decision Support Planning 
and Analysis: The Problems of Getting Large-Scale DSS Started. MIS 
Quarterly(June), 158-177. 

Mehandjiska, D. S. (1993). Knowledge Representation. Lecture presented at Massey 
University, Palmerston North, New Zealand. 



REFERENCES 

Mehandjiska, D. S., & Page, D. ( 1993). Object-Orientated Development of Expert 
Systems. Paper presented at the ANNES, Dunedin. 

119 

Mittra, S. S. (1986). Decision Support Systems: Tools and Techniques. New York: John 
Wiley & Sons. 

Moser, J. G. ( 1986). Integration of artificial intelligence and simulation in a 
comprehensive decision-support system. Simulation, 47(6), 223-229. 

Newell, A., & Simon, H. (1972). Human Problem Solving. Englewood Cliffs: Prentice­
Hall. 

Nosek, J., Roth, I. ( 1990). A comparison of formal knowledge representation schemes 
as communication tools: predicate logic vs semantic network. International 
Journal of Man Machine Studies, 33, 227-239. 

Novak, J. D., & Gowin, D. B. ( 1984). Learning How To Learn. Cambridge: Cambridge 
University Press. 

Nunamaker, J., Chen, M., & Purdin, T. (1991 ). Systems Development in 
Information Systems Research. Journal of Management Information Systems. 7(3), 
89-106. 

O'Donnell (1995, September 24). Re:IDEdit [e-mail to Anna Jeffries], [Online] . 
Available e-mail: podonnel@fcit.monash.edu.au. 

O'Donnell, P., & Watson, J. ( 1994). IDEdit: An Influence Diagram Editor for Macintosh 
(Working Paper 5/94): Monash University. 

Payne, E. C. , & McArthur, R. C. ( 1990). Developing Expert Systems: A Knowledge 
Engineer's Handbook for Rules & Objects. New York: John Wiley & Sons. 

Plant, R. E., & Stone, N. D. ( 1991 ). Knowledge-Based Systems in Agriculture. New 
York: McGraw-Hill. 

Polovina, S., & Heaton, J. ( 1992). An Introduction to Conceptual Graphs. Al 
Expert(May), 36-43. 

Regoczei, S., & Hirst, G. (1988). Knowlege acquisition as knowledge explication by 
conceptual analysis (Technical Report CSRI-205): Computer Systems Research 
Institute, University of Toronto. 

Reitman, W. (1982). Applying Artificial Intelligence to Decision Support: Where Do 
good Alternatives Come From? In Ginzberg, Reitman, & Stohr (Eds.), Decision 
Support Systems. New York: North-Holland Publishing Company. 

Richards, D., & McDonald, C. ( 1995, ). Adapting Expert Systems to Behave Like 
Decision Support Systems. Paper presented at the First Australian Workshop on 
Intelligent Decision Support Systems, Canberra. 



120 

Rothenberg, J. (1989). The Nature of Modelling. In L. Widman, K. Loparo, N. Nielson 
(Eds.), Artificial Intelligence. Simulation. and Modeling (pp. 75 - 92). New York: 
Wiley. 

Schacter, R. D. (1986). Evaluating Influence Diagrams. Operations Research. 34(6), 
871-882. 

Sloman, A. ( 1978). The Computer Revolution in Philosophy. Hassocks: John Spiers. 

Smith, J. Q. (1988). Decision Analysis: A Bayesian approach. London: Chapman and 
Hall Ltd. 

Sowa, J. F. (1984 ). Conceptual Structures: Information Processing in Mind and 
Machine. (1 ed.). Reading: Addison-Wesley Publishing Company, Inc. 

Sowa, J. F . ( 1992). Conceptual Analysis as a Basis for Knowledge Acquisition. In R. R. 
Hoffman (Eds.), The psychology of expertise: cognitive research and empirical AI 
(pp. 80-96). New York: Springer-Verlay. 

Sprague, R., & Carlson, E. (1982). Building effective decision support systems. 
Englewood Cliffs: Prentice-Hall. 

Sprague, R. H. ( 1980). A Framework for the Development of Decision Support 
Systems. MIS Quarterly. 4(4), 1-26. 

Stabell, C. B. (1983). A Decision-oriented Approach to Building DSS. In J. L. Bennett 
(Eds.), Building Decision Support Systems. Menlo Park: Addison-Wesley 
Publishing Company. 

Teague, C., Pidgeon, C. (1985). Structured Analysis Methods for Computer 
Information Systems. California: Science Research Associates. 

Todd, E.G., Gray, D. I., Lockhart, J . C., & Parker, W. J. (1993, ). An expert system to 
aid dairy farmers. Paper presented at the 13th New Zealand Computer Society 
Conference, New Zealand. 

Turban. (1993). Decision Support and Expert Systems: Management Support Systems. 

Turban, E. ( 1995). Decision Support and Expert Systems: Management Support 
Systems. (4 ed.). New Jersey: Prentice Hall. 

Turban, E., & Watkins, P. (1986). Integrating Expert Systems and Decision Support 
Systems. MIS Quarterly( June), 121-136. 

Van Weelderen, J., & Sol, H. (1993). MEDSS:A Methodology for Designing Expert 
Support Systems. Enterfaces. 23(3), 51-61. 

Watson, H., & Blackstone, J. (1981). Computer Simulation. (2 ed.) . New York: John 
Wiley & Sons. 



REFERENCES 121 

Weitzel, J. R., & Kerschberg, L. (1989). Developing Knowledge-Based Systems: 
Reorganizing the System Development Life Cycle. Communications of the ACM. 
32(4), 482-488. 

Whitten, J. L., Bentley, L. D., & Barlow, V. M. (1994). Systems Analysis and Design 
Methods. (3 ed.). Burr Ridge: Irwin. 

Wielinga, B. J., Schreiber, A. T., & Breuker, J. A. (1991 ). KADS: A Modelling 
Approach to Knowledge Engineering (P5248 KADS-II): University of Amsterdam. 

Yourdon, E. ( 1989). Modern Structured Analysis. Englewood Clffs: Prentice-Hall. 



AI UNLEVELLED DATA FLOW DIAGRAM 

Farm Details 
18 

Farm Dcla.i ls ""' Define t----it"""=c---.tD20 Resource Lists 
.,,[ } Format 

Map.< 

•t~ Maps ... Resources Maps 
Farm Repoos 

16 
Farm Years Fam1 Details ..._ 

.... Define 
Fann 
Years 

____ _.,.,,.,! D8 I Fann Years 
Farm Details ..._ Reconcile l~k Numbers ....._ 02 Stock Numbers 

..,. ,...- Stock l4=m------r-, 
..,.Farm Rcpoos Numbers -.... Stock Evcms 

14 
Fann Dc1ail s 1111... 

Enter 
Fann 

Description 

FarmDl...~ription.. 
~ 

,.. D7 I Fann Descriorion 

I 
_I Farm Description 

17 • I D6 !Weather Records 
Weather 

Rcrords 

Weattu 

R~ Record 

Farm Dclails ~ --r­
,.. Record 

..o Stock 
"' Farm Repoos E 

~~ 
~~1ock 

Class 

Stock Events 
1-------1~91.r DJ Stock Events 

Weather 
Records ..,.. Parm I De1ails ' 

"" Reporu Enter i.:--
Dl9 Fann Enterprises - ------91"" Stock Farm 

Enterprises ,... Class Details Detai ls Enterprises 

Specify 
Stock 

Targets 

.... f>~ 

-.... Details 

Farm 1--'-'15'---Blterpriscs i Stock 

Cla s 
<'•~ ,., , , ..... + 

~-_,,,"""-.!...lllSU""'""'-----__J Slock 

~ Specify 
Fann 

Enterprises 

Orazin• :::0 ID16 !Grazing Records De~ i I Targets 

~, 

Farm 

Details 

Records 
,--10~--. .., "·- DI I Stock Classes 

Record 
.,. Grazing 

~-----.,.. Records 
Pad ock Details 

...,. Dc1ails 

-,,,.. Stock Class Details 
F 

Detail 

Stock 

Class I 
~'tails T Stock Targets 

I D24 I Feed Budgets Feed Budl!cts ..._ 7 
..... Pasture Cover Tarects 

,.. Develop "" Farm Reoorts a.. 
I Dl2 I Stock Intake Tables ---1n-tak-.,----1;.~"',eed Budgeu~ .,.. 

~D-2-2 ~M~an=a=g::'.:e=me=n=t B=l=oc=k=s=--- • ~~ .H 

Suool 

Paddock 

argets 

D4 Stock Targets 

I 
,0 

Specify 
Pasture 

Cover Tar2ets 

Pasture 

~ 
Farm 

Details 

~,. ~, 

a~: Farm i iD2JI Supp Feed Plans r-ee<1 Plans 
~:'ks arm 

tails Oct.ails Supp 

Cover 

,Jargets 
' 

Create J 
Paddocks 

Paddot~ 

Detai ~ 

,---
0
-'--", ,, Feed Plans 

Specify 
Management 

Blocks 

Record 
Paddock 
Events 

Farm 

Dc1ails o. Specify 
r Supplementar: 

• ~: Feed Plan 
M Paddock k Suppl~ 

.-~~''--r-~-B_loc_.__~- Dct.-ai_l•~---~-ven-t _ ~-r-~_Det_ai_ls~----
1D t4 Paddocks ID11 Paddock Events IDl5 ISupplementarv Feed 

Farm 13 

~ Record 
Soil Tests 

oil Test 

~esulls 
~, 

addock 

Details 
~, 

Supplementary 

Feed 

~~ 

I 
Details 

.__ ~:, o. >--R-ec~:~r-d----< 
Farm ...- Supplement 

Enter 
Pasture 

~C=o-'-veorrs-=-..- Details Details 

Initial Pasture Cover 
ID1sl Soil Tests D t I I Pasture Covers 

I D5 Pasture Cover Targets 

I 
Paddock Event Targets D25 

D2 I !Expected Growth Rates 

21 

Expected 

PGR 

1 ... Enter 
Expected 
Growth 

I...,. Fann Details 

Pas1ure 

Paddock 

Event 
Tarii;ets 

23 

Specify 
Paddock Event 

Tar2ets 

• 
Pas urc 

~----< Predict Pasture 
Gn: "'111 i Grol>M Growth Rates ~ Details 
Rats Rates 

(GROW) 
IDIO iPGR Predictions ~~ 

Weather 
Records 

I D6 !weather Records 



APPENDIX A - EXISTING DSS ANALYSIS 

AZ SIMPLIFIED ENTITY RELATIONSHIP DIAGRAM 
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A3 TECHNICAL ANALYSIS 

File structures for dummy ASCII Files, all are tab delimited. 

"Farm" Data File 

Attribute Description Unit Example 

Name Farm Name Woodbank 

Farmer Farmer Name B. D. Speedy 

Area Total Farm Area hectares 100 

TotMk Total number of milking cows 100 

NumPad Number of Paddocks 30 

Max Cows Maximum number of cows 120 

OlsenP Olsen phosphate level µg/ml 24 

Pott Pottasium level me/lOOg 5.5 

s Sulphur level µgig 10 

pH pH of the soil 5.8 

N% Percentage of nitrogen in the soil % 5 
SType Soil Type Clay 

SDepth Soil Depth (deep, mod, shallow) deep 

WHC Water Holding Capacity mmHpllOcm 10 
soil depth 

Weight Average live weight of cows kg 400 

cs Average condition score 4.5 

"Weather" Data File 

Attribute Description Unit Example 

Date Week start date Julian 212 

Rfall Total week rainfall rrnn 75 

Temp Weeks average temperature 0 celcius 12 

ET Evapotranspiration mm 5 
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"Actual" Data File 

Attribute Description Unit Example 

Date Date Julian 212 

TS Total Solids kg/cow 0.49 

MF Milk Fat kg/cow 0.21 

PadNum Paddock number 5 

Pre Pre grazing pasture cover kg DM/ha 2500 

Post Post grazing pasture cover kg DM/ha 1900 

Av Average pasture cover kg DM/ha 2200 

Paslnt Pasture intake kg/cow 13 

Supplnt Supplement intake kg/cow 5 

NumMilk Number of cows milking 90 

NumDry Number of cows dry 12 

DA Daily area allocated to cows hectares I 

Area Total available area hectares 90 

"T t II D t F"I arge s aa I e 

Attribute Description Unit Example 

Date Week start date Julian 212 

TS Total solids kg/cow/day 0.49 

MF Milk fat kg/cow/day 0.21 

Pre Pre grazing cover kg DM/ha 2500 

Post Post grazing cover kg DM/ha 1900 

Pas Int Pasture intake kg/DM/cow/day 13 

Supplnt Supplement intake kg/DM/cow/day 5 

PGR Pasture growth rate kg DM/ha/day 11 

NumMilk Number of cows milking 90 

NumDry Number of cows dry 12 

DA Daily area allocated to cows hectares 1 

Area Total available area hectares 90 
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"S t "D ta F0 l opp emen s a I e 

Attribute Description Units Example 

Name Supplement name Hay 

Feeding Unit Unit fed to animals Bales 

KgperUnit Kilograms per unit kg 20 

FreshDrv Fresh or dry feed F 

DMPercent Percntage of feed which is dry % 30 

matter 

MJMEperKgDM Mega joules of energy per MJME/ 10 

kilogram of dry matter KgDM 

CrudeProtein Crude protein content g/kgDM 15 

Costperunit Cost per Unit $ 5 
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GROW Input Data File - GROW.TXT 

All records start on the I st of July in any year 

00, Farm Name, Altitude, Latitude, Distance from Coast, Run Hidden (YIN), Periods 
( 12 or 24 in 02-04 records) 

0 I, Rainfall (12 or 24 periods) 
02, Paddock No, Irrigation (12 or 24 periods) 
03, Air Temperature ( 12 or 24 periods) 
04, Evapotranspiration ( 12 or 24 periods) 
05, Percentage change in Rainfall, Irrigation and Temperature 
06 Paddock No, Slope, Aspect, Soil Type, 14 or 28 day grazing, Soil Name, Soil 

Depth, Maximum Water Holding Capacity, Initial Water Holding Capacity, Soil 
OlsenP, 

07, Paddock No, Pasture Name, (HF, LF, WC),% Content 
(up to 5 pasture types and composition) 

99 End of file 

(HF= High fertility grasses, LF =Low fertility grasses, WC= White and other clovers) 

Example: 
00, KappaPrediction, 0, 0, 0, Yes, 24 
0 I, 52.5, 49, 59.5, 66.5, 70, 66.5, 84, 73.5, 94.5, 94.5, I 05, I 05, 122.5, 112, 140, 126, 

98, I 05, 84, I 05, 87.5, 84, 56, 56 
02,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
03, 5.11, 3.92, 5.95, 5.67, 7.42, 6.23, 8.82, 7.14, 10.01, 9.73, 12.11, 11.9, 13.02, 13.02, 

13.65, 13.02, 9.94, 11.41, 8.12, 10.22, 7.77, 7.84, 5.67, 5.74 
04, 3.5, 6.3, 9.1, 8.4, 12.6, 10.5, 23.8, 14.7, 32.2, 24.5, 32.9, 32.2, 35.7, 37.8, 32.9, 

41.3, 16.8, 25.9, 13.3, 18.2, 9.8, 7.7, 6.3, 3.5 
05,0,0,0 
06, I ,Flat,Sunny, Clay , 14, Clay , Deep , 120, 120 , 24 
07, I ,Ryegrass,HF,90,Whiteclover,WC, 10 
99 



128 

GROW Output File - GROW.OUT 

All records start on the 1st of July in any year 

00, Farm Name, Altitude, Latitude, Distance from Coast, Run Hidden (YIN), Periods 
( 12 or 24 in 02-04 records) 

0 I , Rainfall (12 or 24 periods) 
02, Paddock No, Irrigation ( 12 or 24 periods) 
03, Air Temperature (12 or 24 periods) 
04, Evapotranspiration (12 or 24 periods) 
05, Percentage change in Rainfall, Irrigation and Temperature 
06 Paddock No, Slope, Aspect, Soil Type, 14 or 28 day grazing, Soil Name, Soil 

Depth, Maximum Water Holding Capacity, Initial Water Holding Capacity, Soil 
OlsenP, 

07, Paddock No, Pasture Name, (HF, LF, WC, PA, KI),% Content 
(up to 5 pasture types and composition) 

51 , Predicted rainfall ( 12 periods) 
52, Predicted temperature ( 12 periods) 
53, Predicted evapotranspiration (12 periods) 
54, Paddock No, Predicted growth rate (1st, 11th and 21st of each month = 36 

periods) 
99 End of file 

Example: 
00, KappaPrediction, 0, 0, 0, Yes, 24 
01, 52.5, 49, 59.5, 66.5, 70, 66.5, 84, 73.5, 94.5, 94.5, 105, 105, 122.5, 112, 140, 126, 

98, 105,84, 105,87.5,84,56,56 
02,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
03, 5.11, 3.92, 5.95, 5.67, 7.42, 6.23, 8.82, 7.14, 10.01, 9.73, 12.11, 11 .9, 13.02, 13.02, 

13.65, 13.02, 9.94, 11.41, 8.12, 10.22, 7.77, 7.84, 5.67, 5.74 
04, 3.5, 6.3, 9.1, 8.4, 12.6, 10.5, 23.8, 14.7, 32.2, 24.5, 32.9, 32.2, 35.7, 37.8, 32.9, 

41.3, 16.8, 25.9, 13.3, 18.2, 9.8, 7.7, 6.3, 3.5 
05,0,0,0 
06, 1,Flat,Sunny, Clay , 14, Clay , Deep , 120, 120 , 24 
07, l ,Ryegrass,HF,90,Whiteclover,WC, 10 
51,60,60,60,60,60,60,60,60, 60,60,60,60, 
52, 4.0, 5.0, 7.0, 11.0, 13.0, 15.0, 17.0, 20.0, 17.0, 12.0, 9.0, 6.0 
53, 23, 38, 62, 97, 120, 140, 140, 114, 93, 54, 32, 20 
54, 1,5,3,3,5,5,7,9,11 , 17,34,51,56,73,70,37,25,26,26, 16, 19, 19, 18, 19,20,26,26,27,26,27, 

26,22,22,23,21, 19 
99 



This appendix is not intended to provide a complete model of the problem domain. 

Examples of each type of representation have been included to aid in the understanding 

of the text. 

Bl THE DOMAIN LAYER 

Bl .1 TYPE DEFINITIONS 

type WEATHER( x) is 

ENTITY:*x ATTR 

I RAINFALL:Resp<i i. .. in> I 

ET:Resp<i i. .. in> 

I TEMPERATURE:Resp<i i. .. in> I 
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type PASTURE MANAGEMENT DATA(x) is 

ENTITY:*x 

ATTR 

PRE:Resp<ii .. . in> I PASINTAKE:Resp<ii .. .in> 

POST:Resp<i L .in> I SUPPINTAKE:Resp<ii. .. in> 

I AVCOVER:Resp<h ... in> I I AREA:Resp<i1. . .in> 

DA:Resp<h .. . in> I I TOTINTAKE:Resp<i1 .. .in> 

type MILK PRODUCTION DAT A(x) is 

ENTITY:*x 

ATIR 

I TS:Resp<i1. . .in> I MF:Resp<i1 ... in> 

ATTA 

ATIR 

NUMDRY:Resp<ii ... in> I TOTNUM:Resp<ii ... in> I e------

I NUMMILKING:Resp<h ... in> I 

DATE:Resp<h ... in> 

PTIM 

DATE:Resp<i1. .. in> 

PTIM 
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type PGR PREDICTION(x) is 

ENTITY:*x 

PGR:Resp<iL .. in> 

type SUPPLEMENT(x) is 

ENTITY:* ATTA 

Bl.Z ACTOR GRAPHS 

NUMBER ~ . __ 

ATTA 

PTIM 

I COSTPERUNIT 

I CRUDEPROTEIN 

OM% 

FEEDING UN IT 

FRESH/DRY 

KG PERUN IT 

MJMEPERKGDM I 
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- .... 
~ - - - - - - - ...j~_P_R_o_o_u_c_T_~ 

~--N_U_M_B_E_R _ _ ~~ - - - - - - ~ 

MINUEND ~ . __ 

- ...... 
~ - - - - - - -...j DIFFERENCE 

- .., 
SUBTRAHEND ~ - - -
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DIVIDEND I I DIVISOR 

' QUOTIENT 

TOTNUM I AREA I 

cow 

kg OM/ha 

PRE:@ 

' kgDM/ha cow/ha y 

~ ..jTARGETTOT'.NTAKE:@I I STOCKING RATE:@ I 

j - - - -

I TARGET' POST:@ I 

kg OM/ha 

SUPPINTAKE f __ _ 

..... > 

~ 

' I TARGET INTAKE:@ I 

kg OM/cow 

ha 

- -.... 
~ -------...j TOTINTAKE 

_ .... 
~-P_A_S_IN_T_A_K_E __ ~ - - - - -

NUMMILKING f - __ 
-- .... 
~-- --- --...j TOTNUM 

- ~ 

NUMDRY ~ - - - - - - -
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POST 

PRE NUMBER:2 

DATE PTIM AVCOVER 

ATTR TARGETS 
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Bl .3 IF-THEN CONCEPTUAL GRAPHS 

IF:r----~ 
TARGETS t------t1~ ATTR PROBLEMDATE 

PTIM 

MP ATTR ACTUAL 

' 

=>ROBLEMDIFF:' ~. j MPTHRESHOLD I 

THEN: 

PROBLEMMP:Down 

If:,...-----. 
TARGETS 1-----1- ATTR PROBLEM DATE 

PTIM 

INTAKE ATTA ACTUAL 

=>ROBLEMDIFF:' ~ · jNTAKETHRESHOLCI 

I PROBLEMMP:Down 

THEN: 
,~P_R_O_B_L_E_M_IN_T_A_K_E-:D_o_w_n~I 
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IF: ~--~ 
TARGETS r-----il~ 

PASINTAKEVARIABLE 

ATTR 

PASINTAKEVARIABLE 

PROBLEM DATE 

ATTR ACTUAL 

=>ROBLEMDIFF:' ~ ~ j 1NTAKEVARIABLETHRESHOLD j 

I PROBLEMPASINTAKE:Down I 

THEN: 

PROBLEMINTAKEVARIABLE:Down 

IF,_: -------~ 
I PROBLEMPGR:Down 

THEN: 

EXECUTE GROW 

135 
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IF,__- ----- -, 
PGRPREDICTIONS f---~ 

PTIM 

PGR 

PROBLEM DATE 

ATTR ACTUAL 

=>ROBLEMDIFF:' - - -~- - -1 PGRTHRESHOLD 

PROBLEMPGR:Down 

THEN: 

/ 'ROBLEMPGRPRED:Dowr / 
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Bl .4 TYPE LATTICE 

T 

MEASURE REPRESENTATION ENTITY 

DATE VARIABLES NUMBER 

' PROBLEM DATE THRESHOLD 
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PROBLEM MP 

PROBLEMSUPPINTAKE PROBLEMPASINTAKE 

PROBLEMNUM 



APPENDIX B - KNOWLEDGE ACQUISITION 139 

ACTUAL WEEKLY 
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Bl .5 CONCEPTUAL CATALOGUE OF CONCEPTS 

AREA < MEASURE. Area is a measure of the area of the farm being grazed by the 
milking herd in hectares. 

A YCOYER < PASTINT AKEY ARIABLE. Average pasture cover is a measure of the 
amount of pasture across the farm, meaxsured in KgDM/ha. 

DA < PASTINT AKEY ARIABLE. Daily allocation is the area of the farm the cows are 
allowed to graze in one day. 

DATE< REPRESENTATION. Date is a representation of time. 

ENTITY< T. Entities include physical objects as well as abstractions (Sowa 1984). 

INT AKE < MEASURE. Intake is a measure of the feed eaten by an animal, measured in 
KgDM/cow/day. 

MEASURE < T. Measure has no supertypes other than T (Sowa 1984). 

MF< MP. Milk fat is a measure of milk production, measured in kg/cow/day 

MP < MEASURE. Milk production level is a measure of milk produced by cows. 

NUMBER< REPRESENTATION. A number is a representation (Sowa 1991). 

PASTINT AKEY ARIABLE < MEASURE. Pasture intake variables are measures of 
pasture intake. 

PASTUREMGMTDAT A< ENTITY. Pasture management data is an entity which 
represents information related to the current state of the farm and herd. 

PGR < PASTINT AKEY ARIABLE . Pasture growth rate is a measure of the rate of 
growth of pasture. 

PRE < PASTINT AKEY ARIABLE. Pre is a measure of pre grazing pasture cover, 
measured in KgDM/ha. 

POST < PASTINT AKEY ARIABLE Pre is a measure of post grazing pasture cover, 
measure in KgDM/ha. 

RAINFALL< WEATHERMEASURES. Rainfall is a measure of the amount of rain. 

REPRESENTATION < T. A representation is a subtype of the universal type. 

STOCKINGRA TE < MEASURE. Stocking rate is a measure of the number of cows 
grazed per hectare. 

SUPPINTAKE < INT AKE. Supplement intake is the measure of supplement fed to 
cows, measured in KgDM/cow/day. 
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SUPPMEASURES <MEASURES. Supplement measures are a measure of supplement 
attributes. 

THRESHOLD< NUMBER. A threshold is a number which represents tolerance levels 
of an expert between actual and target levels. 

TIME <T. 

VARIABLES < REPRESENTATION. A variable is a representation of intermediate 
values used in heuristic evaluation. 

WEATHERMEASURES <MEASURE. Weather measures are indicators of the 
weather situation 

1- < all other types. 

T <all other types. 

Bl.6 CONCEPTUAL CATALOGUE OF RELATIONS 

attribute. (ATTR) links [ENTITY:*x] to [ENTITY:*y], where *x has an attribute *y 
(Sowa 1984). 

greater than or equal to. (>=) links an [ATTRIBUTE] to a [NUMBER]. 

influences. (INFL) links an [ATTRIBUTE] to an [ENTITY] where the attribute 
influences the entity. 

point in time. (PTIM) links [T] to a [TIME] at which it occurs (Sowa 1984). 
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Bl.7 INFLUENCE DIAGRAMS 

Feed 
Supplements 

Apply 
Fertiliser 

Change 
Rotation 
Length 

Apply 
Nitrogen 

Olsen P 

Decide 
#Cows 

Weather for 
Period 

Average 
Production 
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Willing 
Level of 

Risk 

Predicted 
Weather 

Av 
Cover 

Range of 
Production 

Average 
Production 

Problem 
Diagnosis 

Production 
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BZ.1 

universum of 
observables 

BZ INFERENCE LAYER 

DIAGNOSIS INFERENCE STRUCTURE FOR MULTIPLE FAULT 

DIAGNOSIS (BASED ON (HICKMAN, 1989)). 

complaint 

conclusion 

difference 

I. select system model on the basis of the complaint; 

2. decompose system model into hypothesis; 

3. for each attribute of each hypothesis: 

a. select a variable and find its value; 
b. specify a nonn from the hypothesis 

comparable to the variable; 
c. compare the norm to the variable value; 

if the difference exceeds tolerance the current 
hypothesis becomes the new system model 
and recurse (from2), else disregard the current 
hypothesis and go on to the next until all 
hypothesi s have been tested. 

BZ.2 ASSESSMENT INFERENCE STRUCTURE (HICKMAN, 1989) 

universum of system 
observables model 

variable 
value 

decision 
class 

norm 

I. Specify a nonn from the system model; 

2. abstract from universum of observables taking the norm 
into account, to give the variable value in question 

3. match the nonn to the abstract case description 
and produce decision class 
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B3 TASK LAYER 

83.1 DIAGNOSIS 

See Figure 5.8 

To diagnose problems affecting intake do 
select intake relationships and intake targets 
decompose into pasture intake and supplement intake 

specify norm pasture intake (target) = 12 kgDM/cow/day 
select actual pasture intake = I 0 kgDM/cow/day 
compare target pasture intake and actual pasture intake to give difference 
as difference exceeds threshold 

and pasture intake is not atomic 
decompose pasture intake into pre, post, av, da, PGR4 

specify norm pre (target) = 2500 kgDM/ha 
select actual pre = 2400 kgDM/ha 
compare target pre and actual pre to give difference 
as difference exceeds threshold 

and pre is atomic add pre to problem list 

specify norm post (target) = 1900 kgDM/ha 
select actual post = 1800 kgDM/ha 
compare target post and actual post to give difference 
as difference exceeds threshold 

and post is atomic add post to problem list 

specify norm av (target) = 2200 kgDM/ha 
select actual av = 2050 kgDM/ha 
compare target av and actual av to give difference 
as difference exceeds threshold 

and av is atomic add av to problem list 

specify norm da (target) = I ha 
select actual da = I ha 
compare target da and actual da to give difference 
difference does not exceed threshold 

specify norm PGR (target) = 6 kgDM/ha/day 
select actual PGR = 5 kgDM/ha/day 

4pre = pre grazing pasture cover 
post = post grazing pasture cover 
av = average pasture cover 
da = daily allocation 
PGR = Pasture growth rate 
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B3.2 

compare target PGR and actual PGR to give difference 
as difference exceeds threshold 

and PGR is atomic add PGR to problem list 

specify norm supplement intake (target) = 3 kgDM/cow/day 
select actual supplement intake= 3 kgDM/cow/day 
compare target supplement intake and actual supplement intake to give difference 
difference within threshold 

ASSESSMENT 

See Figure 5.9 

Repeat for each available option in the system model 

specify tolerance level for Olsen P from system model = 30 
abstract actual Olsen P levels = 24 
match actual levels (24) less than tolerance (30) therefore decision = add Olsen P 

to feasible options 

specify tolerance level for Nitrogen from system model = Application within last 
two weeks 

abstract actual Nitrogen= No recent application 
match actual levels (No application) within tolerance (No application) therefore 

decision = add apply Nitrogen to feasible options 

specify tolerance level for supplementary feed from system model = Supplements 
less than 30% intake 

abstract actual supplement feed levels = 40% intake 
match actual levels ( 40%) above tolerance (30%) therefore decision = feeding 

supplements is not an option 
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Diagnose 
Problems 

B4 TASK MODEL 

Early Spring 
Management 

Select 
Action 

~ 
Assess 

Production 
Assess 
Intake 

~ 
Predict 

Supply & Demand 

Assess Supplement Assess Pasture 
Intake Intake 

B5 MODEL OF COOPERATION 

U - User 

Assess Available 
Options 

Early Spring 
Management 

S - Knowledge Based System 
D - Decision Support System 

Diagnose 
Problems 

~ 
Assess 

Production 
USD 

Assess Pasture 
Intake 
SD 

Assess 
Intake 

Predict 
Supply & Demand 

SD 

Assess Supplement 
Intake 
SD 

BS.I SPECIFICATION OF FUNCTIONALITY 

Assess Production 
Agents: 

User 
Farm Tracker 
Intelligent Component 

Functionality: 

Select 
Action 

Assess Available 
Options 

SU 
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Intelligent Component reads production data from ASCII file produced by 
FarmTracker 

Intelligent Component accepts unit and week for evaluation of milk production 
from user in order to diagnose problems with milk production 

Assess Pasture Intake 
Agents: 

Intelligent Component 
Farm tracker 

Functionality: 
Intelligent Component reads intake variables data from ASCII file produced by 
FarmTracker to diagnose problems with pasture intake 

Assess Supplement Intake 
Agents: 

Intelligent Component 
Farm tracker 

Functionality: 
Intelligent Component reads intake variables data from ASCII file produced by 
FarmTracker to diagnose problems with pasture intake 

Predict Supply & Demand 
Agents: 

Intelligent Component 
Farm tracker 

Functionality: 
Intelligent Component uses simplified feed budget to predict pasture cover using 
data from ASCII file produced by FarmTracker 

Assess Available Options 
Agents: 

Intelligent Component 
User 

Functionality: 
Intelligent Component assesses feasible courses of action given the state of the 
farm and presents them to the user 
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CZ RULES 

/************************************* 
**** RULE: TSDown 
*************************************/ 

MakeRule( TSDown, [], 
( GetNthElem( Global :actualfileweekly:PastOnlyTS, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date)) 
< ( GetNthElem( Global :targetfileweekly:TS, 

GetEiemPos( Global:targetfileweekly:Date, Problem:Date)) 
- 0.05)) And (Problem: Units#= TotaJSolids ), 

PostMessage( "Total milk solids is down on target" ); 
Problem:MP =Down; 
} ); 

/************************************* 
**** RULE: MFDown 
*************************************/ 

MakeRule( MFDown, [], 
( GetNthElem( Global :actualfileweekly:PastOnlyMF, 

GetElemPos( Global:actualfileweekly:Date, Problem:Date)) 
< ( GetNthE!em( Global:targetfileweekly:MF, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date)) 
- 0.025 ) ) And (Problem: Units#= MilkFat ), 

PostMessage( "Total milk fat is down on target" ); 
Problem:MP =Down; 
} ); 

/************************************* 
**** RULE: SupplntakeGood 
*************************************/ 

MakeRule( SupplntakeGood, [], 
( GetNthElem( Global:actualfileweekly:Supplntake, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date)) 
>= ( GetNthElem( Global:targetfileweekly:Supplntake, 

GetEJemPos( Global:targetfileweekly:Date, Problem:Date) ) 
- 1 ) ) And ( Problem:MP #= Down ), 

Problem:Supplntake =Good; 
} ); 

/************************************* 
**** RULE: PreDown 
*************************************/ 

MakeRule( PreDown, [], 
( GetNthElem( Global:actualfileweekly:Pre, GetElemPos( Global:targetfileweekly:Date, 

Problem:Date ) ) 
< ( GetNthE!em( Global:targetfileweekly:Pre, 

GetEJemPos( Global:targetfileweekly:Date, Problem:Date) ) 
- 50 ) ) And Problem:Paslntake, 

PostMessage( "Pre grazing cover is down on target" ); 
Problem:Pre = Down; 
} ); 
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/************************************* 
**** RULE: PostDown 
*************************************/ 

MakeRule( PostDown, [], 
( GetNthElem( Global:actualfileweekly:Post, GetElemPos( Global:targetfileweekly:Date, 

Problem:Date ) ) 
< ( GetNthElem( Global :targetfileweekly:Post, 

GetElemPos( Global:targetfileweekly:Date, Problem: Date)) 
- 50 ) ) And Problem:Paslntake, 

PostMessage( "Post grazing cover is down on target" ); 
Problem:Post = Down; 
} ); 

!************************************* 
**** RULE: DADown 
*************************************/ 

MakeRule( DADown, [], 
( GetNthElem( Global:actualfileweekly:DA, GetElemPos( Global:targetfileweekly:Date, 

Problem:Date ) ) 
< GetNthElem( Global:targetfileweekly:DA, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date))) 
And Problem:Paslntake, 

Problem:DA = Down; 
} ) ; 

/************************************* 
**** RULE: PGRDown 
*************************************/ 

MakeRule( PGRDown, [], 
( GetNthElem( Global:actualfileweekly:PGR, GetElemPos( Global :targetfileweekly:Date, 

Problem:Date)) 
< ( GetNthElem( Global:targetfileweekly:PGR, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date)) 
- 2 ) ) And Problem:Paslntake, 

PostMessage( "PGR's are less than target"); 
Problem:PGR = Down; 
) ); 

!************************************* 
**** RULE: InvPastWastage 
*************************************/ 

MakeRule( InvPastWastage, [], 
Problem:Totlntake #= Good, 
InvestigateWastage( ) ); 

SetRulePriority( InvPastWastage, I 0 ); 

/************************************* 
**** RULE: lnvDA 
*************************************/ 

MakeRule( InvDA, [), 
Problem:DA #= Down, 
PostMessage( "DA is down on target")); 

/************************************* 
**** RULE: MPGood 
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*************************************/ 
MakeRule( MPGood, [], 

( ( GetNthElem( Global:actualfileweekly:PastOnlyTS, 
GetElemPos( Global :targetfileweekly:Date, Problem:Date)) 
>= ( GetNthElem( Global:targetfileweekly:TS, 

GetElemPos( Global: targetfi leweekly: Date, 
Problem:Date ) ) - 0.05 ) ) 

And (Problem: Units#= TotalSolids)) Or ( ( GetNthElem( Global:actualfileweekly:PastOnlyMF, 
GetElemPos( Global:targetfileweekly:Date, 

Problem:MP = Good ); 

Problem:Date ) ) 
>= 

( GetNthElem( Global:targetfileweekly:MF, 
GetElemPos( Global: targetfileweekly:Date, 

Problem:Date) ) 

0.025)) 
And 
( Problem:Units 

#= 
MilkFat) ), 

/************************************* 
**** RULE: InvestigateRange 
*************************************/ 

MakeRule( lnvestigateRange, [], 
Problem:MP #= Good, 
InvestigateRange( ) ); 

/************************************* 
**** RULE: ReqFertGROW 
*************************************! 

MakeRule( ReqFertGROW, [], 
Problem:PGR = Down, 
{ 
ReqFertGROW( Problem ); 
} ); 

/************************************* 
**** RULE: DownOnPrediction 
*************************************/ 

MakeRule( DownOnPrediction, [], 
( Problem:Predict #=Done) And ( GetNthElem( Global:actualfileweekly:PGR, 

GetElemPos( Global :targetfileweekl y:Date, 
Problem:Date)) 

< ( GetNthElem( Global:pred:PGR, 
GetElemPos( Global:pred:Date, 

Global:z)) 
- 2) ), 

Problem:PGRPred = Down ); 

/************************************* 
**** RULE: InvPred 
*************************************/ 

MakeRule( InvPred, [], 
Problem:PGRPred #= Down, 
InvPred( ) ); 
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/************************************* 
**** RULE: GoodcfPrediction 
*************************************/ 

MakeRule( GoodcfPrediction, [], 
( Problem:Predict #=Done ) And ( GetNthElem( Global:actualfileweekly:PGR, 

GctEiemPos( Global :targetfileweekly: Date, 
Problem:Date ) ) 

>= ( GetNthElem( Global:pred:PGR, 
GetEiemPos( Global:pred:Date, 

Global:z)) 
- 2 ) ), 

Problem:PGRPred =Good); 

/************************************* 
**** RULE: BlameWeatherFert 
*************************************/ 

MakeRule( BlameWeatherFert, [], 
Problem:PGRPred #=Good, 
PostMessage( "The PGR's were to be expected given the weather conditions and fertility for the 

problem period, however they were below target" ) ); 

/************************************* 
**** RULE: SupplntakeDown 
*************************************/ 

MakeRule( SupplntakeDown, [], 
( GetNthElem( Global:actualfileweekly:Supplntake, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date)) 
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< ( GetNthElem( Global:targetfileweekly:Supplntake, GetElemPos( Global:targetfileweekly:Date, 
Problem:Date) ) 

- I ) ) And ( Problem:MP #= Down ), 

Problem:Supplntake = Down; 
} ); 

/************************************* 
**** RULE: PaslntakeGood 
*************************************/ 

MakeRule( PaslntakeGood, [], 
( GetNthElem( Global:actualfileweekly:Paslntake, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date)) 
>= ( GetNthElem( Global:targetfileweekly:Paslntake, GelEiemPos( Global:targetfileweekly:Date, 

Problem:Date ) ) 
- I ) ) And ( Problem: MP#= Down ), 

Problem:Paslntake = Good; 
} ); 

/************************************* 
**** RULE: InvSupp 
*************************************/ 

MakeRule( InvSupp, [], 
Problem:Supplntake #= Down, 
InvSupp( ) ); 

/************************************* 
**** RULE: PaslntakeDown 
*************************************/ 

MakeRule( PaslntakeDown, [], 
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( GetNthEiem( Global:actualfileweekly:Paslntake, 
GetElemPos( Global:targetfileweekly:Date, Problem:Date) ) 
< ( GetNthElem( Global :targetfileweekly:Paslntake, GetElemPos( Global:targetfileweekly:Date, 

Problem:Date ) ) 
- I ) ) And ( Problem:MP #= Down ), 

PostMessage( "The Pasture Intake is Down on Target"); 
Problem:Paslntake = Down; 
} ); 

/************************************* 
**** RULE: AvDown 
*************************************/ 

MakeRule( AvDown, [], 
( GetNthElem( Global:actualfileweekly:Av, GetElemPos( Global :targetfileweekly:Date, 

Problem:Date ) ) 
< ( GetNthElem( Global:targetfileweekly:Av, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date)) 
- 50 ) ) And Problem:Paslntake, 

PostMessage( "Average cover is down on target"); 
Problem:A v = Down; 
} ); 

/************************************* 
**** RULE: PGRDate 
*************************************/ 

MakeRule( PGRDate, [], 
( Problem:Predict #=Done) And Not( Member?( Global:pred:Date, 

Problem:Date ) ), 
FindPGRDate( ) ); 

SetRulePriority( PGRDate, 10 ); 

/************************************* 
**** RULE: OptionFert 
*************************************/ 

MakeRule( OptionFert, [], 
Global:farmfile:OlsenP < 30, 
Problem:OptionFert = Y ); 

/************************************* 
**** RULE: NotOptionFert 
*************************************/ 

MakeRule( NotOptionFert, [], 
Global:farmfile:OlsenP >= 30, 
Problem:OptionFert = N ); 

/************************************* 
**** RULE: OptionSupp 
*************************************/ 

MakeRule( OptionSupp, [], 
GetNthElem( Global:actualfileweekly:Supplntake, 

GetElemPos( Global:targetfileweekly:Date, Problem: Date)) 
I GetNthElem( Global:actualfileweekly:Paslntake, 

GetElemPos( Global:targetfileweekly:Date, Problem:Date)) 
<=0.3, 

Problem:OptionSupp = Y ); 
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/************************************* 
**** RULE: NotOptionSupp 
*************************************/ 

MakeRule( NotOptionSupp, [], 
GetNthElem( Global:actualfileweekly:Supplntake, 

GetElemPos( Global :targetfileweekly :Date, Problem:Date )) 
I GetNthElem( Global :actualfileweekly :Paslntake, 

GetElemPos( Global:targetfileweekly: Date, Problem:Date ) ) 
> 0.3, 

Problem:OptionSupp = N ); 

/************************************* 
**** RULE: NPred 
*************************************/ 

MakeRule( NPred, [], 
NApp :yn #=No And Problem:ComjngRight #= N, 
( 
Solution:N = "Add Nitrogen"; 
} ); 

/************************************* 
**** RULE: FertPred 
*************************************/ 

MakeRule( FertPred, [], 
Problem:OptionFert #= Y And Problem:ComingRi ght #= N, 
{ 
Solution:Fert = "Appl y Fertiliser"; 
} ) ; 

/************************************* 
**** RULE: SuppPred 
*************************************/ 

MakeRule( SuppPred, [], 
Problem:OptionSupp #= Y And Problem:ComingRight #= N, 
{ 
Solution:Supps = "Feed Supplements"; 
} ); 

/************************************* 
**** RULE: NotSuppPred 
**** Feeding Supps is not an option as already more than 30% of intake is supplements 
*************************************/ 

MakeRule( NotSuppPred, [], 
Problem:OptionSupp #= N And Problem:PGR #= Down, 
{ 
ResetValue( Solution:Supps ); 
} ); 
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SetRuleComment( NotSuppPred, "Feeding Supps is not an option as already more than 30% of intake is 
supplements"); 

/************************************* 
**** RULE: NotNPred 
**** Addition of Nitrogen is not an option because some has been applied in the last fortnight 
*************************************/ 

MakeRule( NotNPred, [] , 
NApp:yn #=Yes And Problem:CorrungRight #= N, 
{ 
ResetValue( Solution:N ); 
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} ); 
SetRuleComment( NotNPred, "Addition of Nitrogen is not an option because some has been applied in 
the last fortnight" ); 

/************************************* 
**** RULE: NotComingRight 
*************************************/ 

MakeRule( NotComingRight, [], 
GetNthElem( Predict: Average, GetElemPos( Predict: Date, 

Problem:Date + 14)) 
< GetNthElem( Predict:Target, GetElemPos( Predict:Date, 

Problem:Date + 14) ), 
Problem:ComingRight = N ); 

/************************************* 
**** RULE: ComingRight 
*************************************/ 

MakeRule( ComingRight, [], 
GetNthElem( Predict: Average, GetElemPos( Predict: Date, 

Problem:Date + 14 ) ) 
>= GetNthElem( Predict:Target, GetElemPos( Predict:Date, 

Problem:Date + 14 ) ), 

PostMessage( "Will be on target in 2 weeks with average weather so suggest no action"); 
Problem:ComingRight = Y; 
} ); 

!************************************* 
**** GOAL: Solution 
*************************************/ 

MakeGoal( Solution, 
{ 
Solution:Fert; 
Solution:N; 
Solution:Supps; 
} ); 

CZ.I RULE GROUPS 

FORWARD CHAINING RULES 

MakeSlot( Problem:FwdRules ); 
SetSlotOption( Problem:FwdRules, MULTIPLE); 
SetValue( Problem:FwdRules, AvDown, BlameWeatherFert, DADown, DownOnPrediction, 
GoodcfPrediction, lnvDA, InvestigateRange, InvPastWastage, InvPred, InvSupp, MFDown, MPGood, 
PaslntakeDown, PaslntakeGood, PGRDate, PGRDown, PostDown, PreDown, ReqFertGROW, 
SupplntakeDown, SupplntakeGood, TSDown ); 

BACKWARD CHAINING RULES 

MakeSlot( Problem:BwdRules ); 
SetSiotOption( Problem:BwdRules, MULTIPLE); 
SetValue( Problem:BwdRules, NotOptionFert, NotOptionSupp, OptionFert, FertPred, NPred, SuppPred, 
OptionSupp, NotSuppPred, NotNPred, ComingRight, NotComingRight ); 
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C3 SELECTED FUNCTIONS 

C3.1 DIAGNOSIS 

/************************************* 
**** FUNCTION: Diagnosis 
*************************************/ 

MakeFunction( Diagnosis, [], 
{ 
SetForwardChainMode (BREADTHFIRST, IGNORE); 
ResetValue(Problem:Units); 
ResetValue(Problem:Date); 
Reset Value(Problem:PGR); 
ResetValue(Problem:Av); 
ResetValue(Problem:DA); 
ResetValue(Problem:MP); 
ResetValue(Problem:Paslntake); 
ResetValue(Problem:PGRPred); 
ResetValue(Problem:Post); 
ResetValue(Problem:Pre); 
Reset Val ue(Problem:Predict); 
ResetValue(Problem:Supplntake); 
ResetValue(Problem:TotNum); 

SetPostMessageTitle (" "); 

Assert (Problem: Units); 
ForwardChain(NULL, Problem:FwdRules) ; 
RunPreds (); 
} ); 

C3.2 ASSESSMENT 

/************************************* 
**** FUNCTION: StartBChain 
*************************************/ 

MakeFunction( StartBChain, [], 
{ 
CheckNApp (); 

ResetValue(Solution, Fert); 
ResetValue(Solution, Supps); 
ResetValue(Solution, N); 
ResetValue(Problem, OptionFert); 
ResetValue(Problem, OptionSupp); 
ResetValue(Problem, ComingRight); 
Reset Value(NApp:ChoiceAmt) ; 
ResetValue(NApp:ChoiceResp ); 
ComboPrediction:SuppAmt = 0 ; 

ClearList(Solution:List); 

BackwardChain([NOASK] , Solution, Problem:BwdRules); 
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If Not (Null?(Solution:Fert)) Then AppendToList(Solution:List, Solution:Fert); 
If Not (Null?(Solution:Supps))Then AppendToList(Solution:List, Solution:Supps); 
If Not (Null?(Solution:N)) Then AppendToList(Solution:List, Solution:N); 

If (LengthList(Solution:List) > 0) Then 
{ 
ComboPrediction:TotNum = (GetNthElem(Global:actualfileweekly:TotNum, 
GetElemPos(Global:actualfileweekly:Date, Problem:Date))); 
ComboPrediction:OlsenP = Global:farmfile:OlsenP; 
ComboPrediction:Weather = Global :AvWeather; 
ShowWindow(Session 11 ); 
ShowWindow(Session 12); 
ShowWindow(Session 13); 
ShowWindow(Session 14 ); 
HideWindow(Session5); 

IfMember?(Solution:List, "Add Nitrogen") Then ShowWindow(Session8); 
If Member?(Solution:List, "Apply Fertiliser" ) Then ShowWindow(Session9); 
If Member?(Solution:List, "Feed Supplements" ) Then ShowWindow(Session 10); 
} ; 
} ); 

C3.3 USE OF THE GROW MODEL 

/************************************* 
**** FUNCTION: CreateGrowln 
*************************************/ 

MakeFunction( CreateGrowln, [wf OlsenP name], 
{ 
OpenWriteFile ("c:\ft\grow.txt"); 
WriteLine ("00,", "KappaPrediction,", "O,", "O,", "O,", "Yes,", "24"); 
Write ("01 "); 
EnumList(wf:Rainfall, rain, (Write(",", rain))); 
WriteLine(); 
WriteLine ("02, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0"); 
Write ("03"); 
EnumList(wf:Temp, temp, (Write(",", temp))); 
WriteLine(); 
Write ("04"); 
EnumList(wf:ET, et, (Write(", ",et))) ; 

WriteLine(); 
WriteLine("05,0,0,0"); 
WriteLine("06,l,Flat,Sunny,", Global:farmfile:SoilType, ", ", "14,", Global:farmfile:SoilType, ", ", 
Global :farmfile :SoiJDepth, ", ", "120,", Global :farmfile:WHC, ", ", OlsenP); 
WriteLine("07, 1,Ryegrass,HF,90,Whiteclover,WC, 1 O"); 
WriteLine("99"); 
CloseWriteFile(); 

} ); 

/************************************* 
**** FUNCTION: ExecuteGROW 
*************************************/ 

MakeFunction( ExecuteGROW, [], 
{ 
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Execute(" c: \ft\grow. bat"); 

For i From I To 800 Do 
{ 
WaitForlnput() ; 
}; 

Wait( JO); 
} ); 

!************************************* 
**** FUNCTION: ReadGrowOut 
*************************************/ 

MakeFunction( ReadGrowOut, [name], 
{ 
OpenReadFi le(" c :\ft\grow .out"); 
Global:x = ReadWord(); 
While (Global:x != 54) 

{ 
ReadLine(); 
Global:x = ReadWord(); 
}; 

ReadWord(); 
Global :pred = Pred # name; 
ReadWord() ; 
If Instance?(Global :pred) Then 

Deletelnstance (Global:pred); 

Makelnstance( (Global :pred), GROWPrediction); 

For i From I To 36 Do 
{ 
ReadWord(); 
AppendToList (Global:pred:PGR, ReadWord()); 
}; 

CloseReadFile(); 

} ); 

C3.4 SIMULATED FEED BUDGET 

/************************************* 
**** FUNCTION: ComboPrediction 
*************************************/ 

MakeFunction( ComboPrediction, [], 
{ 

/*From the week being investigated, the cover is calculated weekly by using target intake and pgr's for 
each week. Updated SR's and intakes due to supps are included*/ 

ClearList (Predict: Variable); 
ClearList (Predict:Date); 

Global:x = 1; 
Global:y = GetNthElem(Global:actualfileweekly:Date, 1 ); 

AppendToList(Predict:Date, Global:y); 



162 

AppendToList(Predict: Variable, (GetNthElem(Global:actual fileweekly:A v, 
GetElemPos(Global:targetfileweekly:Date, Global:y)))); 

While (Global:y < Problem:Date) 
{ 
Global:x += I; 
Global:y = GetNthElem(Global:actualfileweekly:Date, Global:x); 
AppendToList(Predict:Date, Global:y); 
AppendToList(Predict: Variable, (GetNthElem(Global :actualfileweekly :Av, 

GetElemPos(Global:targetfileweekly:Date, Global:y)))); 
); 

Global:x = Problem:Date; 

Predict:x =GetNthElem(Global:targetfileweekly:Paslntake, GetElemPos(Global:targetfileweekly:Date, 
Global:x)); 
Predict:z = GetNthElem(Global:actualfileweekly:Area, GetElemPos (Global:actualfileweekly:Date, 
Global:x)); 

!* Intake per ha = Pasture Intake per cow * number of cows I area */ 

Global:y = (Floor ( (Predict:x - ComboPrediction:SuppAmt*0.25) * (ComboPrediction:TotNum) I 
Predict:z *IO) ) /IO; 

IfGlobal:y < 0 Then Global:y=O; 

For a From I To 2 Do 
{ 
Global:z = Global:x; 
While (Not (Member?(Global:pred:Date, Global:z))) 

Global:z -= I; 

PredictCover(GetNthElem(Predict: Variable, GetElemPos(Predict:Date, Global:x)), 
(Global:y), 
(GetNthElem(PredVar:PGR, GetElemPos(PredVar:Date, Global:z)))); 

AppendToList (Predict: Variable, PredictForwardCover:FinalCover); 

Global:x += 7; 
AppendToList (Predict:Date, Global:x); 

} ; 
} ); 

/***** ******************************** 
**** FUNCTION: PredictCover 
*************************************/ 

MakeFunction( PredictCover, [cc ti pgr], 
{ 
PredictForwardCover:FinalCover = (cc - (ti*7) + (pgr*7)); 
} ); 

C3.5 AVERAGE WEEKLY DATA TO MATCH TARGETS 

/************************************* 
**** FUNCTION: CalcWeeklyAv 



APPENDIX C - PROTOlYPE IDSS 

*************************************! 
MakeFunction( CalcWeeklyAv, [z], 
{ 
Global:x = I; 
Global:y = I; 
ClearList (Global:actualfileweekly:Date); 

While (GetNthElem (Global:targetfileweekly:Date, Global:y) < GetNthElem (Global:actualfile:Date, 
LengthList(G lobal: actualfi le: Date))) 
{ 
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While (GetNthElem (Global:actualfile:Date, Global:x)!= GetNthElem (Global:targetfileweekly:Date, 
Global:y)) 

{ 
Global:x += 1; 
}; 

AppendToList (Global :actual fi leweekly: Date, (GetNthElem (Global :targetfileweekl y : Date, 
Global:y))); 

Global:y += I; 
Global:count = O; 
Global:sum = O; 
While (GetNthElem (Global:actualfile:Date, Global:x) < GetNthElem (Global:targetfileweekly:Date, 

Global:y)) 
{ 
Global:sum += (GetNthElem (Global:actualfile:z, Global:x)); 
Global:x += I; 
Global:count += I; 
}; 

AppendToList (Global :actual fileweekly:z, (Global :sum/Global :count)); 
}; 

AppendToList (Global:actualfileweekly:Date, GetNthElem (Global:targetfileweekly:Date, Global:y)); 
Global:sum = O; 
Global:count = O; 
While (GetNthElem (Global:actualfile:z, Global:x) != GetNthElem (Global:actualfile:z, 
LengthList(Global :actual file:z))) 

{ 
Global:sum += (GetNthElem (Global:actualfile:z, Global:x)); 
Global:x += I ; 
Global:count += I; 
}; 

If (Global:count = 0) Then 
{ Global:count = 1; 
Global:sum = ((GetNthElem (Global:actualfile:z, LengthList(Global:actualfile:z)))); 
} ; 

AppendToList (Global:actualfileweekly:z, (Global :sum/Global:count)); 

} ); 
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