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Abstract 
When lakes experience an increase in nutrient availability, the phytoplankton and the 

primary productivity of the lake will also increase. This increase provides a robust means 

of signifying lake trophic fluctuations. The phytoplankton from the surface of the lake 

(photic zone) will sediment out, leading to the accumulation of both planktonic and 

benthic phytoplankton remains at the bottom of the water column. It is these past 

fluctuations in phytoplankton biomass, which accumulate in the lake sediments, provide 

indications of past environmental conditions and lake health. This research aimed to 

assess the potential of phytoplankton pigments preserved/captured within sediments as 

indicators of lake water quality in both neoliminological and paleolimnological lake 

sediments from a dataset of 223 New Zealand Lakes (≈ 6% of the lakes in New Zealand) 

was used for the analysis of surface sediments. These lakes ranged from low elevation 

lakes (<10 m) to high elevation lakes (up to 1,839 m) and included a range of geomorphic 

classifications. The catchments ranged from 35,288 m2 to 704,470,618 m2 and included 

shallow lakes (<10 m) to deep lakes (up to 445 m).  

In addition to accessing the use of  hyperspectral imaging (HSI) techniques as a method 

for detecting phytoplankton pigments within sediments. The assessment of calibrating 

chlorophyll-a (chl-a) detected by HSI in lake core sediment samples to chl-a quantified 

by analytical chemistry methods (High performance liquid chromatography and 

spectrophotometry analyses), found that the use of spectrophotometry without 

acidification provided more consistent results (with an error rate of less than 7.5%) when 

compared to spectrophotometry analysis with acidification. Additionally, the use of  

spectrophotometry without acidification for chl-a calibration revealed the potential for a 

universal equation to be researched.  

Within lakes, high trophic levels are positively correlated with cyanobacterial dominance. 

One of the complications of high trophic levels is cyanobacterial blooms, which can be 

toxic. A reliable pigment indicator for the presence of cyanobacteria is phycocyanin. 

Therefore, the use of HSI was assessed as an analytical technique utilised for detecting 

and quantifying the concentration of phycocyanin within lake core sediment samples. 

This study revealed that phycocyanin could not be detected within the lake sediments 

within this research. Suggesting that phycocyanin was not incorporated into the lake 

sediment within the lakes assessed. Additionally, the HSI signal thought to be detecting 

phycocyanin is potentially measuring chlorophyll-a within the lake core rather than 

phycocyanin. 
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To predict lake water quality through the lake trophic level index (TLI) several machine 

learning models were created (regression trees, random forest models, and boosted 

regression trees) The random forest model was created using the quantif ication of key 

phytoplankton pigments within surface sediments plus five static lake physical 

characteristics this model was the most accurate (within 10% of the TLI). This model 

provides a predictive tool to access lake TLI using a single sample of surface sediment. 

This model was then applied to lake core sediment samples to retrodict lake water 

quality. The assumption of many degraded lakes throughout New Zealand, is that this is 

of anthropogenic origin. The retrodicted TLI’s suggests, that while anthropogenic 

influence is exacerbating the degradation of the lakes, prior to this the trophic levels of 

these lakes did not fluctuate beyond one trophic level (i.e., moving from oligotrophic to 

mesotrophic). Additionally, apparent in the retrodiction of the lakes is the integration of 

cyanobacteria indicator pigments into the sediments relatively recently. The integration 

of these pigments coincides with the arrival of Europeans to the respective areas.  
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 Chapter 1 Introduction 

When lakes experience an increase in nutrient availability, the phytoplankton and the 

primary productivity of the lake will also increase. This increase provides a robust means 

of signifying lake trophic trends (Willén, 2000). The phytoplankton from the surface of 

the lake (photic zone) will sediment out, leading to the accumulation of both benthic and 

planktonic autotrophs remains at the bottom of the water column (Bellinger & Sigee, 

2015). It is these past fluctuations in phytoplankton biomass, which accumulate in the 

lake sediments and provide indications of past environmental conditions and lake health. 

These sedimented remains indicate that phytoplankton pigments captured and 

preserved within the sediments can be used as indicators of lake water quality in both 

neoliminological and paleolimnological lake sediments.  

Paleolimnology analysis of sediments generally relies on several methods of 

identif ication of the phytoplankton. Traditional microscopy and identif ication of 

phytoplankton is commonly complemented with pigment analysis using high-

performance liquid chromatography with diode-array detection (HPLC-DAD). HPLC-

DAD has proven to be a robust and reliable method of pigment analysis, suited for 

analysing large numbers of samples (Sanz et al., 2015). As chlorophylls and carotenoids 

are often the only fossil remains for non-siliceous phytoplankton they are of value to 

paleolimnology studies (Hodgson et al., 1997).  

In the past decade increasingly more research is being conducted on the identif ication 

and quantif ication of phytoplankton fossil pigments through Hyperspectral Imaging (HSI) 

(Butz et al., 2015; Butz et al., 2017; Makri et al., 2020; Schneider et al., 2018; Wolfe et 

al., 2006; Zander et al., 2021). HSI looks to become a valuable paleolimnological 

technique, as when compared to High performance liquid chromatography (HPLC) 

techniques, it is more economical on laboratory resources and is non-destructive on 

samples. However, current research is based on the calibration of individual lake 

sediments using high-performance liquid chromatography with diode-array detection 

(HPLC-DAD).  

Commonly associated with eutrophic lakes and poor water quality, cyanobacterial 

blooms are of increasing concern (Paerl & Paul, 2012). Phycocyanin is an important 

phytoplankton pigment water quality indicator, as it is indicative of cyanobacteria 

(Bellinger & Sigee, 2015; Randolph et al., 2008; Vincent et al., 2004) . Thus, the detection 

of phycocyanin is becoming an important step in the identif ication of Lake health.  
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The analysis of phytoplankton pigments within lake sediment core samples provides a 

step toward the reconstruction of both neoliminological and paleolimnological water 

quality. The neoliminological analysis could potentially provide a predictive tool to access 

lake trophic level indexes (TLI) using a single surface sediment sample, rather than 

requiring monitoring data trends. The use of a single sample will allow for identif ication 

of lake TLI incorporating seasonal fluctuations with a shorter time frame than what is 

currently required when utilising monitoring data trends. This could be a valuable tool for 

regional councils to aid in the identif ication of degraded lakes, allowing for prioritisation 

of rehabilitation projects. These predictive models, if refined, may also provide an idea 

of how to balance the various land uses within a catchment to not exert too much 

pressure on the lake. 

1.1 Objectives and aims 

The overarching aim of this research was to assess the potential of phytoplankton 

pigments preserved/captured in sediments as indicators of lake water quality in both 

neoliminological (modern) and paleolimnological (ancient) settings in New Zealand 

lakes. Another important aim was to test HSI as a method for detecting phytoplankton 

pigments within sediments. These aims were addressed through the following 

objectives: 1) comparing sediment pigment measurements made by HSI against 

measurements made by the ‘traditional’ methods of HPLC and spectrophotometry; and 

2) using pigment analyses from neoliminological sediments to build a 

predictive/retrodictive model for lake trophic status, and then applying that to the 

paleolimnological sediments.  

The first research objective evaluates the limitations of utilising HSI to analyse chl-a and 

phycocyanin in lake sediment cores. Three questions drove this research:  

A) Does the chlorophyll-a (chl-a) HSI signal from lake sediment cores provide 

accurate and reliable measurements of chl-a compared to those achieved 

through traditional analytical methods? 

B) Are between-lake differences small enough that a universal calibration factor can 

be applied to HSI lake sediment core measurements? 

C) Does the phycocyanin HSI signal specifically measure phycocyanin within lake 

sediment cores?  

To answer these questions, lake sediment cores were analysed by HSI as well as by 

HPLC-DAD, spectrophotometry (for chl-a) and fluorimetry (for phycocyanin). 

Comparison of the HSI and analytical measurements were undertaken to determine how 

accurate the chl-a HSI measurements were, whether the same relationship was 



3 

observed across five New Zealand lakes and if phycocyanin could be specifically 

measured by HSI. 

The second research aim analysed lake surface sediments for key phytoplankton 

pigments to infer the water quality. Two questions drove this research:  

A) whether the quantif ication of key phytoplankton pigments within surface 

sediments can be used to create a predictive model of lake TLIs?  

B) Can this predictive model be used to retrodict TLIs using a lake sediment core?  

To answer this question combinations of key phytoplankton pigment concentrations 

within the surface sediments, and land use proportions of the lake’s catchment were 

used to create machine learning models. Selected models were then used to predict and 

retrodict TLI’s of selected lakes.  
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 Chapter 2 Literature Review 

Paleolimnology is a multidisciplinary science which aims to reconstruct environmental 

histories and their catchments with the aim of further understanding environmental 

changes. Sediments at the bottom of a lake will accumulate chronologically, thus 

providing a record of the lake and the surrounding catchment within the layers. 

Paleolimnology will analyse a lake’s history through, among other things, the remains of 

aquatic and terrestrial organisms preserved within the sediments. to reconstruct 

historical environmental conditions (Smol et al., 2002).  

Some of the biological proxies utilised consist of , but are not limited to: pollen and spores 

(Bennett & Willis, 2002), as well as plant macrofossils (Birks, 2002) to infer past flora in 

the lake area; diatom remains (Battarbee et al., 2002) and biogenic silica (Conley & 

Schelske, 2002) to indicate diatom abundance as well as diatom productivity; 

chrysophyta remains as environmental indicators which can infer conditions such as pH 

changes, historical climate, lake-level changes, salinity, etc (Zeeb & Smol, 2002); 

charcoal as a fire proxy, which alongside pollen data can suggest relationships regarding 

the climate, past flora, fire as an ecosystem process, and historical anthropogenic 

activities (Whitlock & Larsen, 2002); and sedimentary pigments which can be utilised in 

research assessing historical phytoplankton abundance, community composition, and 

primary production of the lake (Leavitt & Hodgson, 2002).  

2.1 Phytoplankton and Pigments 

The name phytoplankton refers to motile (either actively or passively), free-floating, 

photosynthetic, aquatic microorganisms (Pal & Choudhury, 2014). Phytoplankton include 

both Prokaryota (cyanobacteria) and Eukaryota (microalgae) and can be classified 

further into divisions or phyla according to various characteristics. However, there is no 

universally accepted classification system for all organisms within these phyla (Barsanti 

& Gualtieri, 2014; Willén, 2000). This thesis will focus on the phyla described in Table 

2.1 which allows for the classification of phytoplankton phyla without distracting from the 

research of this paper with classification specifics.  
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Table 2.1. Algae Phyla classifications. 

Algae Phyla classifications derived from varieties utilised by Pal and Choudhury (2014), Bellinger 

and Sigee (2015), and Barsanti and Gualtieri (2014). This classification is based upon the 

phytoplankton microscopal appearance, biochemical, and cytological characteristics.  

Phytoplankton Phyla Common Name 

Bacillariophyta Diatoms 

Chlorophyta Green algae 

Chrysophyta Golden algae 

Cryptophyta Cryptomonads 

Cyanophyta  Blue-green algae/ Cyanobacteria 

Dinophyta Dinoflagellates 

Euglenophyta Euglenoids 

Rhodophyta Red algae 

Xanthophyta Yellow-green algae 

Analysis of phytoplankton pigments differs from traditional assessments performed 

through studying Bacillariophyta communities, as these contain siliceous structures 

which remain within the sediment and can be examined through various microscopy 

techniques. Often the fossil pigments (the pigments retained in lake sediments) are all 

that remains identif iable from non-siliceous phytoplankton communities.  

All phytoplankton are characterised by their ability to perform photosynthesis; however, 

the pigments utilised for this process differ between different phyla, and even genera, of 

phytoplankton. Numerous phytoplankton pigments have been identified to-date, with the 

pigments falling into three main categories: chlorophylls, carotenoids, and phycobilins. 

These fossil pigments can indicate the phytoplankton community at the time the 

sediment was laid down, which can then be used as indicators of a wide variety of past 

lake conditions, from changes in the physical structure of the lake (Cohen, 2003) to 

anthropogenic impacts, such as eutrophication, and land-use practices (Leavitt & 

Hodgson, 2002). 

2.1.1 Chlorophylls 

Of the phytoplankton pigments, chlorophylls are found in all major phyla of phytoplankton 

(Bellinger & Sigee, 2015; Sanger, 1988; Yackulic, 2017)  as it is required for 

photosynthesis. Several variations of chlorophyll can be found in phytoplankton (Table 

2.2), most notably chlorophyll-a (chl-a), which is known as the characteristic green 

pigment within plants and can be found in almost all photosynthetic phytoplankton. It is 

particularly useful as a proxy for total phytoplankton biomass (Bellinger & Sigee, 2015; 

Leavitt, 1993; Leavitt & Hodgson, 2002; Roy et al., 2011) and for primary productivity 
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analyses. Chlorophyll-b is present in phytoplankton phyla of the ‘green’ lineage, including 

euglenophyta and chlorophyta. Chlorophyll-c1, -c2, and c3 are present in phytoplankton 

of the ‘red’ lineage, including cryptophyta, bacillariophyta, dinophyta, chrysophyta, and 

xanthophyta. These ‘red’ and ‘green’ lineages are denoted by the phytoplankton’s plastid 

(Falkowski et al., 2004).  

While chlorophylls-a, -b and -c are the three main chlorophyll pigments, recent research 

has identif ied two other chlorophyll pigments, chlorophyll-d and -f. Chlorophyll-d was 

originally isolated from the cyanobacteria Acaryochloris marina and is a pigment which 

absorbs light at the far-red end of the spectrum (Li et al., 2012) and is present in 

rhodophyta. Chlorophyll-f also absorbs at the far-red end of the spectrum and has been 

isolated from cyanobacteria when grown under 750 nm far-red light (Nürnberg et al., 

2018). The chemical structures of chl-a, -b, -c, and -d are shown in Figure 2.1. 

Chlorophyll-f discovered by Chen et al. (2010) was originally found in stromatolites 

(sedimentary formations formed by cyanobacteria). However, as chlorophyll-f is not 

known to be found in phytoplankton outside of stromatolites or laboratory cultures and 

chlorophyll-d has not been isolated outside of marine phytoplankton (Larkum & Kühl, 

2005; Li et al., 2012), they will not be considered further in this thesis.  

After the algal cell has degraded, following post-mortem deposition on the lakebed, chl-

a and -b, or their distinctive degradation products, remain detectable (Leavitt & Hodgson, 

2002; Wolfe et al., 2006), providing useful pigments for paleolimnological analysis 

(Cohen, 2003). After the chlorophyll pigment is deposited within the sediments it is likely 

to degrade into either pheophytin or pheophorbide. Both chlorophyll and its degradation 

products can be used as a proxy for lake productivity (Butz et al., 2017).  
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Table 2.2. Chlorophylls reported from different phytoplankton phyla in literature. 

A summary of chlorophyll isomers reported from different phytoplankton phyla in literature.  
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Chlorophyll-a X X X X X X X X X 

(Bellinger & Sigee, 2015; 

Leavitt, 1993; Leavitt & 

Hodgson, 2002; Roy et 

al., 2011) 

Chlorophyll-b X      X   

(Bellinger & Sigee, 2015; 

Cohen, 2003; Leavitt, 

1993; Leavitt & Hodgson, 

2002; Roy et al., 2011) 

Chlorophyll-
c1 

  X  X    X 
(Bellinger & Sigee, 2015; 
Leavitt & Hodgson, 2002; 

Roy et al., 2011) 

Chlorophyll-
c2 

 X X X X    X 

(Bellinger & Sigee, 2015; 

Cohen, 2003; Leavitt & 

Hodgson, 2002; Roy et 

al., 2011); 

Chlorophyll-
c3 

  X  X     
(Bellinger & Sigee, 2015; 

Leavitt & Hodgson, 2002; 

Roy et al., 2011). 

Chlorophyll-d      X    (Li et al., 2012) 
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Figure 2.1. Structures of Main Chlorophyll Pigments Highlighted in this Section. 

Chemical Structures of various chlorophyll compounds as depicted in Roy et al. (2011).  

A) chlorophyll-a; B) chlorophyll-b; C) chlorophyll-c1; D) chlorophyll-c2; E) chlorophyll-c3  

A) 

 

B) 

 

C) 

 

D) 

 

E) 
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2.1.2 Carotenoids 

The carotenoids consist of carotenes (which do not contain oxygen) and xanthophylls 

(which contain oxygen). Carotenoids have various functions within the organism, from 

aiding photosynthetic organisms to harvest light (fucoxanthin and β-carotene), and 

facilitating energy transfer within the cell (peridinin) to protecting the organism from high 

levels of light (echinenone), for example, dissipating excess energy when chlorophylls 

become too excited (Zeaxanthin) (Takaichi, 2011). Additionally, carotenoids are 

generally less labile than chlorophylls (Buchaca & Catalan, 2007; McGowan, 2007).  

The most common carotene is β-carotene (β,β-carotene) which is a dominant pigment 

in chlorophyta, rhodophyta, and one group of dinophyta, and can be found as a minor 

pigment in almost all other phytoplankton groups (Roy et al., 2011), indicating a common 

cyanobacterial ancestor for the inheritance of all extant plastids (Roy et al., 2011). 

Additionally, β-carotene is one of the more relatively stable photosynthetic pigments 

(McGowan, 2007). Other carotenes include α-carotene (β,ε-carotene) and ε-carotene 

(ε,ε-carotene). α-carotene is a minor, or trace pigment present in the phytoplankton 

phyla; chlorophyta, xanthophyta, cryptophyta, chrysophyta, rhodophyta (Bellinger & 

Sigee, 2015; Leavitt, 1993; Leavitt & Hodgson, 2002) and cyanobacteria (Roy et al., 

2011). ε-Carotene is a minor pigment in chlorophyta, dinophyta (Roy et al., 2011), 

chrysophyta, and bacillariophyta (Bellinger & Sigee, 2015). Nonetheless, as with chl-a, 

many carotenes are ubiquitous pigments in phytoplankton phyla. As such they provide 

limited information on phytoplankton community composition. 

The xanthophylls are more structurally diverse than the carotenes (Sanger, 1988) and 

their stability is commonly dependent on their molecular structure, which can be 

negatively correlated with the number of functional groups present (Britton et al., 1995; 

Buchaca & Catalan, 2007; Damsté & Koopmans, 1997). This research focused on 

alloxanthin, canthaxanthin, diadinoxanthin, diatoxanthin, echinenone, fucoxanthin, 

lutein, myxoxanthophyll, peridinin, vaucheriaxanthin, violaxanthin, and zeaxanthin as 

biomarkers to gather paleolimnological information on phytoplankton phyla (Table 2.3) 

and water quality. The chemical structures of these selected xanthophylls are shown in 

Figure 2.2.  
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Table 2.3. Xanthophylls reported from different phytoplankton phyla in literature.  

Phytoplankton groups where the respective pigment is generally encountered are reflected in the 

table.  
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Alloxanthin  X     X   

(Bellinger & Sigee, 2015; 

Buchaca & Catalan, 2007; 

Cohen, 2003; Leavitt, 1993; 

Leavitt & Hodgson, 2002; Roy 

et al., 2011) 

Canthaxanthin      X    

(Buchaca & Catalan, 2007; 
Leavitt, 1993; Leavitt & 

Hodgson, 2002; Richardson, 

1996; Roy et al., 2011) 

Diadinoxanthin X  X X X     
(Buchaca & Catalan, 2007; 

Leavitt & Hodgson, 2002) 

Diatoxanthin   X X X     

(Buchaca & Catalan, 2007; 

Leavitt, 1993; Leavitt & 

Hodgson, 2002; Roy et al., 
2011). 

Echinenone      X    

(Buchaca & Catalan, 2007; 

Leavitt, 1993; Leavitt & 

Hodgson, 2002; Roy et al., 

2011) 

Fucoxanthin   X  X     

(Bellinger & Sigee, 2015; 

Buchaca & Catalan, 2007; 

Cohen, 2003; Leavitt, 1993; 

Leavitt & Hodgson, 2002). 

Lutein X      X   

(Buchaca & Catalan, 2007; 

Cohen, 2003; Leavitt, 1993; 

Leavitt & Hodgson, 2002; Roy 

et al., 2011) 

Myxoxanthophyll      X    (Roy et al., 2011) 

Peridinin    X      

(Bellinger & Sigee, 2015; 

Cohen, 2003; Leavitt, 1993; 

Leavitt & Hodgson, 2002; Roy 

et al., 2011) 

Violaxanthin    X X  X   
(Bellinger & Sigee, 2015; Roy 

et al., 2011), 

Zeaxanthin    X  X  X  

(Bellinger & Sigee, 2015; 

Buchaca & Catalan, 2007; 

Cohen, 2003; Leavitt, 1993; 

Leavitt & Hodgson, 2002; Roy 

et al., 2011) 
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Figure 2.2. Structures of Xanthophylls Highlighted in this Section. 

Chemical Structures of various xanthophyll compounds as depicted in Roy et al. (2011).  

A) Alloxanthin; B) Canthaxanthin; C) Diadinoxanthin; D) Diatoxanthin; E) Echinenone; F) 

Fucoxanthin; G) Lutein; H) Myxoxanthophyll; I) Peridinin; J) Violaxanthin; K) Zeaxanthin. 

A)

 

B) 

 
C) 

 

D) 

 

E) 

 

F) 

 

G) 

 

H)

 
I) 

 

J) 

 

K) 

 

 

 

  

 



13 

Phytoplankton found within lakes with good water quality (oligotrophic) are 

bacillariophyta, chlorophyta, chrysophyta, and cryptophyta (Bellinger & Sigee, 2015; 

Katsiapi et al., 2016; Paul et al., 2012; Rawson, 1956). As such the pigments alloxanthin, 

diadinoxanthin, diatoxanthin, fucoxanthin, lutein, and violaxanthin can be expected to be 

present. Mesotrophic lakes bacillariophyta, chlorophyta, and cryptophyta (Bellinger & 

Sigee, 2015; Katsiapi et al., 2016; Paul et al., 2012; Rawson, 1956) will be present, not 

chrysophyta. However, this is not expected to alter the pigment composition expected to 

be present. In lakes with poorer water quality (eutrophic), cryptophyta, cyanobacteria, 

and euglenophyta (Bellinger & Sigee, 2015; Katsiapi et al., 2016; Paul et al., 2012; 

Rawson, 1956) are present. Therefore, the pigments canthaxanthin, diadinoxanthin, 

echinenone, lutein, myxoxanthophyll, and zeaxanthin can be expected to be present. In 

degraded lakes (hypereutrophic), cyanobacteria and euglenophyta are present 

(Bellinger & Sigee, 2015; Katsiapi et al., 2016; Paul et al., 2012; Rawson, 1956) . Within 

these lakes canthaxanthin, diadinoxanthin, echinenone, lutein, myxoxanthophyll, and 

zeaxanthin can be expected to be present. Consequently, alloxanthin, diatoxanthin, 

fucoxanthin, and violaxanthin can be expected to be found in lakes with good water 

quality. While canthaxanthin, echinenone, myxoxanthophyll, and zeaxanthin can be 

expected in lakes with poor water quality. 

Similar to chlorophylls, carotenoids can be found in lake sediments (Sanger, 1988; 

Vallentyne, 1957a), and there is currently no evidence to suggest that carotenes degrade 

significantly once the phytoplankton is buried in the sediments (Sanger, 1988). 

Vallentyne (1957a) even found evidence of α- and β-carotenes preserved within 20,000-

year-old sediment. However, xanthophylls seem to degrade slightly more rapidly than 

carotenes (Sanger, 1988) but are less liable than chlorophylls. If degradation does occur, 

carotenoids will break down into colourless compounds (Leavitt & Hodgson, 2002) and 

will not be detectable through spectroscopic methods.  

2.1.3 Anthocyanins and Phycobilins 

Other forms of pigments found in phytoplankton include anthocyanins and phycobilins. 

There are diff iculties analysing for anthocyanin and phycobilin pigments in sediments 

due to their high solubility in water (Leavitt & Hodgson, 2002; Sanger, 1988). This means 

that these pigments, including mycosporine-like amino acids and flavonoids (Leavitt & 

Hodgson, 2002), are generally destroyed before they can be integrated into the sediment 

layer. As such, they have not been widely utilised as paleolimnology indicators (Sanger, 

1988). However, it has been noted in Leavitt and Hodgson (2002) that some of these 

pigments, or their degradation products, may be preserved in sediments within the bulk 

material of the detritus. This was noted in Yackulic (2017) where putative signals for 
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phycocyanin (a phycobilin) were detected in sediment core samples from Crater Lake, 

Colorado. Additionally, Favot et al. (2020) noted phycocyanin within the 588-642 

wavelength when analysing sediment cores from Ontario, Canada, using visible near-

infrared reflectance spectroscopy. Sorrel et al. (2021) also reported phycocyanin within 

a core sample from Lake Son Kol, Kyrgyzstan by analysing hyperspectral signals at 

RABD615, following the analysis for phycocyanin as described by Yacobi et al. (2015). 

Phycocyanin is a blue-coloured pigment-protein accessory to chlorophyll which is 

indicative of cyanobacteria (Bellinger & Sigee, 2015; Randolph et al., 2008; Vincent et 

al., 2004). 

2.1.4 Phytoplankton Pigments as Environmental Indicators  
Due to short generation times, phytoplankton can react rapidly (i.e., within days) to 

geophysical and chemical changes in aquatic environments. When lakes experience an 

increase in nutrient availability, the biomass of phytoplankton and the primary 

productivity of the lake will also increase. This increase provides a robust means of 

signifying lake trophic fluctuations (Willén, 2000). The phytoplankton from the surface of 

the lake (photic zone) will sediment out, leading to the accumulation of both benthic and 

planktonic autotrophs remains at the bottom of the water column (Bellinger & Sigee, 

2015). It is these past fluctuations in phytoplankton biomass, which accumulate in the 

lake sediments, which provide indications of past environmental conditions and lake 

health.  

2.2 Phytoplankton Indicators of Water Quality 
Traditionally, studies assessing environmental aspects of lakes have focused on the 

phytoplankton communities rather than the benthic communities. Predominantly this is 

because the phytoplankton provide the main phototrophic biomass within the lake and 

can be readily sampled (Bellinger & Sigee, 2015). This also means that the main body 

of research available is focused on phytoplankton ecological preferences. Algal 

indicators for the trophic state of lakes have typically been formulated by analysing the 

phytoplankton at either the species level (Flint, 1977; Reynolds, 1990) or the phyla level 

(Katsiapi et al., 2016; Nygaard, 1949; Ptacnik et al., 2008; Stockner, 1972), using various 

indicators and quotient formulae. Other trophic state indicators are provided by species 

diversity and richness metrics (Dodson et al., 2000; Nygaard, 1949; Watson et al., 1997). 

However, the most prevalent approach is the trophic level index (TLI). The TLI utilises 

measurements taken from chl-a concentrations (algal biomass), Secchi disk 

transparency (water clarity), and total phosphorous concentration (algal growth nutrient). 

These three parameters were utilised by Carlson (1977) and Chapra and Dobson (1981) 

who also added a primary production parameter. Carlson (1977) developed their index 
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using European and North American lake data, while Chapra and Dobson (1981) 

developed theirs using data from the Great Lakes of North America  

Burns et al. (2000), updated the TLI framework for New Zealand, as the existing schemes 

were not deemed appropriate. The TLI from Carlson (1977) lacked definition in its higher 

trophic levels for New Zealand and the index developed by Chapra and Dobson (1981) 

was too detailed in scale for New Zealand lakes (Burns et al., 2000). Additionally, 

nitrogen concentration was added to the monitoring data for New Zealand lakes as many 

lakes show aspects of nitrogen limitation to growth (White et al, 1985), and total nitrogen 

is an essential variable in a TLI scheme for New Zealand lakes (Burns et al., 2000). 

Lakes are often classified by their trophic status. Generally, low nutrient lakes possess 

low levels of phytoplankton, and the lake water is clear. These lakes are classified as 

microtrophic (lowest level) or oligotrophic (slightly higher level). Microtrophic and 

oligotrophic lakes are often relatively young lakes (geologically) and can be large lakes 

within small catchments, thus the inputs of nutrients are restricted (Schlesinger & 

Bernhardt, 2020). Kumar and Singh (1979) noted that some oligotrophic lakes can 

display a wide diversity of phytoplankton even though the overall concentration of each 

species is low. 

As the nutrient levels rise, the lake becomes mesotrophic where moderate levels of 

phytoplankton and nutrients can be found. If the nutrient levels continue to rise, the lake 

then becomes eutrophic, here the water clarity will degrade, phytoplankton communities 

will change, and cyanobacteria can often dominate. The highest trophic level of a lake is 

hypertrophic/super-eutrophic, within these waters there is poor water clarity and often 

extreme algal growth (Larned et al., 2019). Additionally, as lakes increases in trophic 

status the complexity of the phytoplankton communities decreases (Rott, 1984) and 

eutrophic lakes rarely exhibit more than a few species of phytoplankton but rather high 

concentrations of these few species (Kumar & Singh, 1979) . Within New Zealand lakes, 

higher nutrient loads are positively correlated with higher trophic states and 

cyanobacterial dominance (Paul et al., 2012). 

The process of lake eutrophication refers to the succession of the lake productivity. This 

can be either a natural process or of anthropogenic basis. Natural eutrophication of lakes 

is a process that occurs where the lake progresses from a state of low productivity 

(microtrophic) to one of high productivity (eutrophic). This process is a natural succession 

for lakes but occurs over centuries and will eventually conclude with the lake being filled 

in (Carpenter, 1981). Anthropogenic eutrophication occurs where human influence on 

the catchment (i.e., agricultural fertilizers, detergents, effluent, etc.)  accelerates the 
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process of eutrophication (Schallenberg & van der Zon, 2019). Some of the 

complications of eutrophication include, but are not limited to: cyanobacterial blooms, 

which can be toxic; a decline in species diversity within the lake; water quality problems, 

such as diminishing water clarity, and potability issues; and hypoxia (Smith & Schindler, 

2009). 

Galbraith and Burns (2007) found that concentrations of nutrients and lake water quality 

are positively related to the extent of modification of the catchment within New Zealand 

lakes. Their study showed that catchment land use directly affected the water body 

trophic status. Paul et al. (2012), Peterson et al. (2007), and Jeppesen et al. (2005), were 

all able to demonstrate relationships between the phytoplankton within the lakes and the 

corresponding land use of the lake catchment. Particularly, Paul et al. (2012) correlated 

the land use of the respective catchment and the subsequent phytoplankton relationships 

to the trophic status of eleven New Zealand lakes located in the Rotorua lake district. 

Noting that lakes within catchments with higher nutrient loads from pastoral land use 

possessed a higher TLI and cyanobacterial dominance. Conversely, lakes with lower 

nutrient loads and a higher proportion of native land use within the catchment possessed 

a lower TLI and a chlorophyta dominance. 

2.3 Phytoplankton Indicators in Paleolimnology  
Fossil phytoplankton pigments such as chlorophyll are indicators for past algal biomass 

in lakes (Leavitt, 1993). Butz et al. (2017) were able to detect ‘green pigments’ (chl-a 

together with its diagenetic products) to infer lake productivity in a lake core dated 1071–

1255 AD. Additionally, fossil carotenoids have also been used as indicators of  past lake 

trophic conditions (Gorham et al., 1974; Guilizzoni et al., 1992; Lami et al., 2010; Sanger, 

1988). Early research suggested that fossil pigments were detected in more abundance 

in sediments of eutrophic lakes (Cohen, 2003; Gorham, 1960; Vallentyne, 1957b) this 

suggests that ratios of specific pigments within sediments may indicate various trophic 

status of lakes (Gorham et al., 1974; Guilizzoni et al., 1992; Sanger, 1988). However, 

while fossil pigment concentrations can provide an indicator of algal production, Leavitt 

(1993) determined that >90% of pigments are degraded into colourless compounds prior 

to fossilisation. Primarily, this is because most pigments are exposed to rapid 

modifications through various microbial actions and diagenetic alteration due to 

oxidation. However, the majority of losses occur prior to burial within the sediments and 

at the surface of the sediments (Cohen, 2003), leaving the remains to be fossilised.  

Sanger (1988) noted unavailability of evidence to suggest decomposition of carotenoids 

once buried and fossilised, and if gradual decomposition was to occur it would be similar 

to all the organic matter within the sediment. As noted earlier, Vallentyne (1957a) found 



17 

evidence of α- and β-carotenes preserved within 20,000-year-old sediment. Additionally, 

Züllig (1986) was able to isolate xanthophylls (including echinenone, lutein, and 

alloxanthin) from 14,000-year-old sediment. Even Watts and Maxwell (1977) were able 

to detect echinenone, zeaxanthin, and canthaxanthin in samples up to 5,000 years old 

before the echinenone and zeaxanthin showed degradation. Within the same core 

canthaxanthin was detected in sediments 340,000 years old. However, it should be noted 

that when comparing pigments in cores as old as the ones described above the stability 

of the pigment needs to be considered. Because if a less stable pigment is not detected 

it cannot be taken as indication in a change of phytoplankton community.  

2.4 Sediment analysis methods  
Paleolimnological analysis of sediments generally relies on several methods of 

identif ication of the phytoplankton. Traditional microscopy and identif ication of 

phytoplankton is commonly complemented with pigment analysis using high-

performance liquid chromatography with diode-array detection (HPLC-DAD). HPLC-

DAD has proven to be a robust and reliable method of pigment analysis, suited for 

analysing large numbers of samples (Sanz et al., 2015). As chlorophylls and carotenoids 

are often the only fossil remains for non-siliceous phytoplankton they are of value to 

paleolimnology studies (Hodgson et al., 1997).  

2.4.1 Spectrophotometry 
Spectrophotometric analyses can be used for determining concentrations of chl-a and 

phycocyanin. Chl-a analyses are a popular method for determining phytoplankton 

biomass in lakes and waterways. However, many of these methods are critiqued, as the 

chlorophyll concentrations can often differ depending on the phytoplankton species and 

the physiological state of the cells (Dos Santos et al., 2003). The more commonly 

performed method for analysing chl-a concentrations involves the spectrophotometric 

analysis of samples at the light wavelength 665 nm. The chl-a can then be quantified via 

a specific absorption coefficient, or the solution can be acidified prior to quantif ication. 

To differentiate the chl-a from its degradation products, the sample is often degraded 

with acid following the initial measurement. This acidification removes the magnesium 

ion creating pheophytin a. A second measurement following acidification is then 

subtracted from the original reading and adjusted using an extinction coefficient 

(absorption coefficient) to determine the level of chl-a present. A study conducted by 

Stich and Brinker (2004) compared the acidified and non-acidified analyses of chl-a and 

found that acidified analyses are underestimated when calibrated by high-performance 

liquid chromatography (HPLC). Additionally, the acidification impairs the accuracy of the 
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chl-a measurement by introducing chlorophyll-b, -c, and carotenoid artifact interference 

(Stich & Brinker, 2004).  

Spectrophotometry can also detect phycocyanin, as noted in Favot et al. (2020) where 

phycocyanin was detected within spiked lake sediment samples using visible near-

infrared reflectance spectroscopy within the 588-642 nm wavelengths. Phycocyanin has 

a characteristic fluorescence spectrum which does not interfere with chlorophyll, it makes 

analysis uncomplicated (Zamyadi et al., 2012). Fluorometrically phycocyanin will excite 

at 580-590 nm with an emission at 645-650 nm (Bellinger & Sigee, 2015; Roy et al., 

2011). Additionally, Vincent et al. (2004) noted that phycocyanin excitation occurred at 

630 nm and emission was at 660nm, which extends the range stipulated by Bellinger 

and Sigee (2015) and Roy et al. (2011).  

2.4.2 HPLC 
Where spectrophotometry measures the light absorbed by compounds at specific 

wavelengths; in this case, the light absorbed by phytoplankton pigments, HPLC-DAD 

separates out the target compounds for quantif ication. The HPLC will separate the 

compounds while the Diode-array detection (DAD) is used to quantify the eluted peak of 

the target compound. Like spectrophotometry, DAD’s use the light spectrum absorbed 

by target compounds for detection. However, rather than just a single wavelength, HPLC-

DAD can perform simultaneous acquisition of data across a range of wavelengths. 

Unfortunately, HPLC-DAD analyses can be expensive, time consuming, and demand 

specialised technical skill (Dos Santos et al., 2003). However, HPLC-DAD has the added 

advantage that the pigments are separated through chromatography prior to being 

analysed by UV-VIS, which has the advantage of increased specificity and the ability to 

measure pigments which possess similar light absorbance spectra. The confirmation of 

pigments through various retention times, absorbance spectra and co-chromatography 

is conducted with certif ied reference standards (Hodgson et al., 1997; Wright et al., 

1991). Additionally, HPLC-DAD is also subject to low interference when analysing 

pigments and is more precise than some other traditional limnology methods, as it can 

distinguish and separate diverse phytoplankton pigments and their degradation products 

(Dos Santos et al., 2003).  

2.4.3 Hyperspectral Imaging 
Because of its reagent-free non-destructive nature (Butz et al., 2015; Das et al., 2005), 

HSI looks to become a valuable paleolimnological technique. Advances in technology 

and computer processing, in particular the increasing precision of spectrometers which 

are capable of quantifying adjacent, f ine bands within wide spectral ranges (Goetz et al., 

1985) will further improve this tool in the future.  
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The principle behind hyperspectral imaging (HSI) is the measurement of light 

wavelengths, measured as a series of narrow bands of wavelengths, detected by 

hyperspectral sensors (Ekpenyong, 2013). HSI measures light wavelengths reflected by 

various targets, as opposed to absorbed light measured by spectrophotometry, and can 

be used to measure inorganic and organic substances within sediment. For example, 

the measurement of inorganic clays within sediments can infer past climate and 

environmental conditions (Dianto et al., 2019), and the measurement of organic 

chlorophyll a can infer past primary productivity. The narrow sections of absorbed light 

from HSI are termed ‘absorbance bands’ and can be used as a diagnostic tool for specific 

substances. However, it must be noted that while concentrations for specific pigments 

can be determined in clean homogenised samples, there is a possibility for interferences-

from and interactions-with substances also found in sediments when the reflectance 

peaks of specific substances overlap (Yackulic, 2017).  

In the past decade increasingly more research is being conducted on the identif ication 

and quantif ication of phytoplankton fossil pigments through HSI (Butz et al., 2015; Butz 

et al., 2017; Wolfe et al., 2006). Rein and Sirocko (2002) originally developed a HSI 

technique to measure chl-a within marine sediments. Achieving an r2 of 0.94. The 

subsequent work conducted by and Butz et al. (2015) and Butz et al. (2017) revealed 

that HSI could reliably identify and map bacteriopheophytin-a and sedimentary green 

pigments (combined chl-a with its diagenetic products) within lake sediment core 

samples. When this hyperspectral data was calibrated against HPLC-DAD pigment 

concentrations it produced an error of 10-15%. Other work to have calibrated HSI to chl-

a concentration includes Makri et al. (2020), who achieved a calibration within 9%, and 

Zander et al. (2021) who calibrated to within 5.4%. Additionally, using HSI Yackulic 

(2017) and Favot et al. (2020) detected signals from the phycobiliprotein phycocyanin in 

sediment core samples from Crater Lake, Colorado and Blue Chalk Lake, Ontario, 

respectively.  

A major challenge for hyperspectral analyses is the attribution of spectral properties to 

substances found in the sediment ( Butz et al. (2015). This is primarily because lake 

sediments contain numerous other substances which could cause variations in spectral 

signals. Additionally, HSI lacks the ability to differentiate chl-a from its degradation 

products and to resolve trace pigments (Wolfe et al., 2006). HSI analyses are not ideal 

for sedimentary carotenoids, as they absorb at overlapping wavelengths making it 

unviable to distinguish between the carotenoids. Furthermore, HSI possesses limitations 

in the shorter wavelengths (400 – 470 nm) (Butz et al., 2015). As such the calibration of 
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spectral properties of the sample needs to be established quantitively. For this reason, 

the results obtained from the HSI should be calibrated using HPLC-DAD.  

The RABD660-670 was originally identif ied by Rein and Sirocko (2002) For HSI analysis to 

measure chl-a within marine sediments achieving a r2 of 0.94. This analysis was then 

applied by Butz et al. (2015) on freshwater sediments achieving an error of 10-15% for 

the calibration of ‘green pigments’ (chl-a and pheophytin a) to HPLC-DAD analysed 

concentrations. This algorithm used a ratio between a weighted average for two 

absorption bands at each end of the specific absorption feature and the absorption band 

minimum (Butz et al., 2015). To select the most appropriate absorption bands for 

calculating the spectral indices Butz et al. (2015) utilised a continuum removal on the 

spectral endmembers. A continuum removal is a normalization procedure used for the 

quantifying absorption features where the overall concave shape of the spectra is 

removed. This resulted in a means to calculate an index of relative absorption band 

depths (RABD). Schneider et al. (2018) also calibrated HSI to ‘green pigments’ (chl-a 

together with its diagenetic products) with an error of 12%. Other work to have calibrated 

HSI to chl-a concentration includes Makri et al. (2020) achieved a calibration within 9%, 

and Zander et al. (2021) who calibrated to within 5.4%.  

To identify phycocyanin within lake core sediment samples the RABD615 signal can be 

used. RABD615 was originally applied to HSI by Yackulic (2017) as this corresponds to 

phycocyanin peak absorption. Favot et al. (2020) noted phycocyanin within the 588-642 

wavelength and Sorrel et al. (2021) also reported phycocyanin RABD615, following the 

analysis for phycocyanin as described by Yacobi et al. (2015). 
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 Chapter 3 Methods 

3.1 Site selection 

3.1.1 Sediment core samples 

Lake sediment cores from five New Zealand lakes were provided for this study by the 

“Our Lakes' Health: Past, Present, Future” funded by the Ministry of Business, Innovation 

and Economy Endeavour Fund programme (referred to as Lakes380 hereafter). The five 

lakes are Lake Nganoke, Lake Okataina, Lake Oporoa, Lake Pounui, and Lake Rototoa 

(see Figure 3.1 for locations and Appendix C for specific characteristics of the lakes). 

These lakes were selected as they were study lakes for other Lakes380 projects, 

covered a range of elevations (from 14 to 358 m a.s.l.), and a range of depths, from 

shallow lakes at less than 10 m depth (Lake Nganoke) to deep lakes over 10 m depth, 

with the deepest at 78.5 m deep (Lake Okataina). These five lakes include two river ine 

lakes (Lake Oporoa and Lake Nganoke), one tectonic/landslide formed lake (Lake 

Pounui), one volcanic lake (Lake Okataina), and one wind/aeolian lake (Lake Rototoa).  

Lake core samples were collected using an Uwitec gravity corer with hammer, with 

polyvinyl chloride barrels at 90 mm diameter and 2 m length. Prior to coring, the barrels 

were cleaned with 2% sodium hypochlorite. Once the core was retrieved, they were 

sealed and stored at 4°C in darkness until required (up to 4 weeks). The cores were  

prepared and analysed by HSI at GNS Science, Avalon, Lower Hutt, where they were 

halved manually and photographed, then sediment type and colour were described and 

recorded. One half of the core was analysed via HSI, the other half of selected cores 

were analysed by other analytical techniques including HPLC-DAD and 

spectrophotometry, with 40 – 42 sub-samples per core of approx. 2 g taken from the 

centre of other half at 1cm intervals and various depths, then stored at -20°C until 

required for analysis.  

3.1.2 Surface sediment samples 

A sample set of 223 New Zealand Lakes (≈ 6% of the lakes in New Zealand) was used 

for the analysis of surface sediments (see Figure. 3.2 for locations). These lakes ranged 

from low elevation lakes (<10 m) to high elevation lakes (up to 1,839 m) and included 

coastal shoreline/lagoons, glacial, riverine, swamp/wetland formed, tectonic/landslide 

formed, volcanic, and wind/aeolian lakes. The catchments ranged from 35,288 m2 to 

704,470,618 m2 and included shallow lakes (<10 m) to deep lakes (up to 445 m) (see 

Appendix C for specific characteristics of the lakes). These have been divided into two 

subsets for the statistical analysis: A) Lakes with TLI values calculated by the Lakes 380 

team (95 lakes), and B) Lakes with unknown TLI values (127 lakes).  
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Figure 3.1. Locations of the five lakes where core samples used for this study were collected 

from. 
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Figure 3.2. Locations of the 223 lakes where surface sediment samples used for this study 

were collected from. 
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3.2 Hyperspectral Imaging 
Claire Shepherd, at GNS Science, Avalon, Lower Hutt conducted the hyperspectral 

analyses, with RABD660-670 and RABD615 values supplied for this analysis. After the lake 

sediment cores were halved, the half intended for HSI was scraped to ensure a flat, 

smooth surface. This core half was then scanned using a Specimen SISU core scanner 

with a sCMOS-50-V10E spectral camera.  

Following the calculation from Butz et al. (2015) (Equation 3.1) HSI image pre-processing 

and normalisation was performed, with spatial resolution set to 1mm/pixel at a spectral 

resolution of 660-670 nm for chl-a and 615 nm for phycocyanin sampled at 48 µm 

intervals. These results were then converted to spectral indices, calculated in R (version 

3.4.0), possessing a range of values between 1 - 2.5. The spectral indices were then 

binned (averaged to 1 cm resolution) to correspond with the analytical chemistry 

resolution from the second half of the core. 

Equation 3.1. RABD Spectral Index Equation as Described in (Butz et al., 2015) 

This calculation determines a weighted average using the two bands situated at each end of the 

absorption feature. In addition to ratio calculated between this weighted average and the 

absorption band minimum. 

𝑅𝐴𝐵𝐷𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝐼𝑁 = (
𝑋 × 𝑅𝐿𝑒𝑓𝑡 + 𝑌 × 𝑅𝑅𝑖𝑔ℎ𝑡

𝑋 + 𝑌
) ÷ 𝑅𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝐼𝑁 

“[W]here RABD Feature MIN = relative absorption band depth at absorption feature 

minimum, R Left = reflectance at the start of the absorption feature, R Right = reflectance 

at the end of the absorption feature, R Feature MIN = reflectance at the minimum of the 

absorption feature, X = number of spectral bands between R Feature MIN and R Right, and Y 

= number of spectral bands between R Feature MIN and R Left” Butz et al. (2015, p. 7). 

3.3 Pigment Analysis 
Sediment samples from both the lake cores and surface sediments were thawed at 4°C 

then subsampled for each respective analysis. 40 – 42 samples per core were selected 

and analysed via spectrophotometry, HPLC-DAD, and fluorescence. This amount of core 

samples analysed was limited due to the batch size and run-time required by the HPLC 

(55 min per sample). The water content of each sample was determined by weighing a 

subsample of sediment (≈0.5 g; to 4 d.p.), freeze-drying and weighing again. 

3.3.1 Pigment extraction for HPLC-DAD and spectrophotometric analysis 

The carotenoids and chlorophylls in the sediment samples were extracted by adding 5 

mL of solvent to ≈1 g subsample of wet sediment. Initially 100% methanol was used for 

the extraction of the surface sediment samples. However, this was later changed to 5 

mL 100% acetone for the extraction of the lake sediment core samples. The samples 

were vortexed, then sonicated for 30 min with ice to avoid methylation of the pigments. 
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Samples were clarif ied by centrifugation at 3,000 × g and 10°C for 10 min. The 

supernatant was transferred to a 20 mL glass vial and the process of adding 5 mL of 

solvent, clarif ication, and transfer was repeated two more times for a final extraction 

volume of 15 mL. The extract was dried under nitrogen gas at 40 °C and stored away 

from light at −20°C prior to resuspension and analysis.  

Prior to analysis the dried pigment extracts were resuspended in 0.5 mL of 100% acetone 

for the lake sediment core samples and 100% methanol for the surface sediment 

samples. The resuspended extract was centrifuged at 12,000 × g for 5 min to remove 

particulates. 200 µL of the resuspension was diluted into 800 µL 90% Ethanol for chl-a 

analysis by spectrophotometry while the remainder of the undiluted resuspension was 

analysed by HPLC-DAD. 

3.3.2 Spectrophotometric Analysis of Chlorophyll-a 

3.3.2.1 Spectrophotometry with Chlorophyll-a acidification 

The chl-a spectrophotometric analysis of the extracts was based on the standard 

operating procedure at Cawthron Institute (Puddick et al., 2018; Puddick et al., 2019). 

For analysis, 200 µL of the sample diluted in 90% Ethanol was plated in quadruplicate 

onto a 96-well plate (Corning, 96-well cell culture cluster 35960 flat bottom with lid) along 

with quadruplicates of a 20 mg/mL CuSO4 solution for path-length calculation, a 1% 

H2SO4 path-length calculation blank, and a blank 90% Ethanol solution. Path-length 

calculation solutions were calibrated spectrophotometrically (Eppendorf 

BioSpectrometer 6137) prior to analysis with the calibration blanked using the 1% H2SO4 

solution (Appendix A for solution preparation). Path-length was calculated following 

Equation 3.2. 

Equation 3.2. Calculation for Path-length of Extract in the Sample Well (Puddick et al., 2018; 
Puddick et al., 2019). 

𝑙 (𝑐𝑚) = 
[(

[𝐴665 − 𝐵𝑙𝑎𝑛𝑘665]
𝐶𝑢𝑆𝑂4 665

) + (
[𝐵750 − 𝐵𝑙𝑎𝑛𝑘750]

𝐶𝑢𝑆𝑂4 750
)]

2
 

Where, l = the path length (cm); A665 = Absorbance of CuSO4 on the EnSpire 

platereader at 665 nm; B = Absorbance of CuSO4 on the EnSpire platereader at 750 

nm; Blank = 1% H2SO4 at 665 and 750 nm; CuSO4 = as measured in the Eppendorf 

spectrometer at 665 and 750 nm.  

Chl-a analysis was performed via spectrophotometry (Enspire Multimode Platereader, 

Thermo Fisher Scientif ic; Waltham, MA, USA) by shaking for 30 sec then obtaining a 

wavelength absorbance reading at 665 nm then at 750 nm. 5µL of 1M HCl was added 

to each sample on the plate and reloaded into the spectrophotometer. The samples were 

shaken for 30 seconds, and a series of readings taken every 2 minutes at 665 nm and 
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750 nm. Once the readings show no further degradation, the final reading is then used 

for the calculation. Chl-a in the extract was calculated following Equation 3.3a for 

concentration in the extract, then Equation 3.3b for the wet weight chl-a concentration in 

the lake sediment sample.  

Equation 3.3. Calculations for Wet Weight Chlorophyll-a Concentration via spectrophotometry 
with acidification (Puddick et al., 2018; Puddick et al., 2019). 

a) 𝐶ℎ𝑙 − 𝑎 (𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡;  𝑚𝑔/𝐿) = 
[(𝐵665− 𝐵750)− (𝐴665− 𝐴750)] ×28.66 ×𝑑𝑖𝑙

𝑙
 

Where, l = the path length calculated in Equation 3.2 (cm); B665 =  absorbance at 665 

nm before acidification; B750 =  absorbance at 750 nm before acidification; A665 = 

absorbance at 665 nm after acidification; A750 = absorbance at 750 nm after 

acidification; 28.66 = as defined by Sartory and Grobbelaar (1984) this absorbtion 

coefficient  is established from the specific absorption coefficient of 83.4 L/g/cm  and 

an acid ratio of 1.72, both for chl-a in ethanol;and dil = dilution factor of extracts 

(generally = 1 (no further dilution of extract), if detector saturation occurred further 

dilution ensued).  

b) 𝐶ℎ𝑙 − 𝑎 (𝑖𝑛 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡;  𝜇𝑔/𝑔) =  
𝐶ℎ𝑙−𝑎 (𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡) ×𝑅𝑒𝑠𝑉𝑜𝑙 ×1,000

𝑊𝑒𝑖𝑔ℎ𝑡
 

Where, Chl-a (in extract) = concentration of chl-a in the extract calculated in equation 

3.3a (mg/L); ResVol = Resuspension volume (in L; generally, 0.0005 L or 0.5 mL); 

1,000 = Conversion of mg into µg; and Weight = Weight of sediment sample (in g) 

3.3.2.2 Spectrophotometry of Chlorophyll a without acidification 

The pigment extracts were analysed via UV-VIS spectrophotometry for UV/visible light 

absorption throughout the range from 220 to 1,000 nm. The extracts were diluted in 

100% methanol for the surface sediment samples and 100% acetone for the lake 

sediment core samples (1:10 initially for all samples. However, if detector saturation 

occurred further dilution ensued) and measured using a ThermoFisher Evolution 201 

benchtop spectrophotometer (Waltham, MA, USA). Absorbance values at 662 and 665 

nm were used to calculate Chl-a concentrations following the formula described by 

Lichtenthaler and Buschmann (2001). Chl-a in extract was calculated following Equation 

3.4a for concentration in the extract, then Equation 3.4b for the wet weight chl-a 

concentration in the lake sediment sample. As the solution being analysed without 

acidification is a mixture of all pigment the chl-b absorbance peak can add to the chl-a 

absorbance peak at the measured wavelength. To counter act this addition, the influence 

of chl-b to the chl-a absorbance peak is subtracted.  

Equation 3.4 Calculations for Wet Weight Chlorophyll-a Concentration via spectrophotometry 

without acidification (Lichtenthaler & Buschmann, 2001). 

A)  100% Acetone: 
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𝐶ℎ𝑙 − 𝑎(𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡;  𝜇𝑔/𝑚𝐿) = (11.24 𝐴(661.6−750) − 2.04 𝐴(644.8−750)) × 𝑑𝑖𝑙 

100% Methanol: 

𝐶ℎ𝑙 − 𝑎(𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡;  µ𝑔/𝑚𝐿) =  16.72 𝐴(665.2−750) − 9.16 𝐴(652.4−750) 

Where, A(661.6-750) = absorbance for chl-a in acetone minus the measurement at 

750 nm for turbidity normilisation; A(644.8-750) = absorbance for chl-b in acetone 

minus the measurement at 750 nm for turbidity normilisation; A(665.2-750) = 

absorbance for chl-a in methanol minus the measurement at 750 nm for turbidity 

normilisation; A(652.4-750) = absorbance for chl-b in methanol minus the 

measurement at 750 nm for turbidity normilisation, and dil = dilution factor of extracts 

(genreally 1:10 or 10). The path length of the cuvette (cm) was 1 cm and not specified 

as the equation was reduced. 

B)  𝐶ℎ𝑙 − 𝑎 (𝑖𝑛 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡;  𝜇𝑔/𝑔) = 
𝐶ℎ𝑙−𝑎 (𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡) ×𝑅𝑒𝑠𝑉𝑜𝑙 

𝑊𝑒𝑖𝑔ℎ𝑡
 

Where, Chl-a (in extract) = concentration of chl-a in the extract calculated in equation 

3.4a (mg/L); ResVol = Resuspension volume (in L; generally, 0.0005 L or 0.5 mL); 

Weight = Weight of sediment sample (in g).  

3.3.3 HPLC-DAD Analysis of Key Phytoplankton Pigments 

HPLC-DAD analysis of the samples was conducted using an Agilent 1260 system (Santa 

Clara, CA, USA). The HPLC-DAD program used follows the methodology described in 

Puddick et al. (2021). Pigment separation on the HPLC-DAD was achieved using a C30 

column (Develosil RP-Aqueous C30, 5-µm, 250 × 4.6 mm; Phenomenex, Torrance, CA, 

USA) at 30°C. The solvents used were (Appendix A for solution preparation): 

• Solvent A: methanol + 0.1% triethylamine  

• Solvent B: 40:60 methanol/isopropyl alcohol + 0.1% triethylamine 

Prior to each injection the C30 column was washed with 90% solvent B for 5 min before 

being re-equilibrated with 100% solvent A for 5 min. Then 10 µL of sample was injected 

at a flow rate of 1 mL/min following the solvent system in Table 3.1.  
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Table 3.1. Solvent System Used for Analysis 

Time (min) 
Flow rate 

(mL/min) 
Solvent A (%) Solvent B (%) Conditions 

0 1 100 0 Injection 

5 1 100 0 Stable state 

40 1 35 65 Linear gradient 

42 1 10 90 Steep gradient 

47 1 10 90 Column wash 

50 1 100 0 Steep gradient 

55 1 100 0 Equilibration 

 

Data was collected over 320 to 800 nm for spectrophotometric absorption, however the 

specific wavelengths for the pigment quantitation are described in Table 3.2.  

Table 3.2. Specific Wavelength Parameters for Data Collection of the Target Pigments 

 Pigment Wavelength (nm) 
Retention time 

(min) 

Equivalence 

factor 

C
h

lo
ro

p
h

y
ll
s
 

Chl-a 655-675 23.1 NA 

Chlorophyll-b 460-480 15.2 NA 

X
a
n

th
o

p
h

y
ll

s
 

Alloxanthin 435-455 11.8 1.2 

Canthaxanthin 460-480 16.1 1.06 

Diadinoxanthin 435-455 8.0 1.21 

Diatoxanthin 435-455 10.9 1.26 

Echinenone 445-465 32.9 0.63 

Fucoxanthin 435-455 4.8 0.55 

Lutein 435-455 9.6 NA 

Myxoxanthophyll 460-480 12.7 1.26 

Peridinin 460-480 4.1 0.72 

Violaxanthin 435-455 5.9 0.88 

Zeaxanthin 435-455 10.3 1.56 
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A mixed standard with five known concentrations (20, 10, 5, 2, and 0.5 µg/mL) was 

created containing Chl-a (Sigma-Aldrich, St. Louis, MO, USA), chlorophyll-b (Sigma-

Aldrich) and lutein (Carotenature, Münsingen, Switzerland) and analysed with each 

HPLC-DAD run. Additionally, each HPLC-DAD run contained four qualitative standards 

to verify the retention times for alloxanthin, canthaxanthin, diadinoxanthin, diatoxanthin, 

echinenone, fucoxanthin, myxoxanthophyll, peridinin, violaxanthin and zeaxanthin.  

Prior to the standard mixtures being created, the target pigments were calibrated using 

extinction coefficients described in Roy et al. (2011), at 450 nm (Alloxanthin), 478 nm 

(Canthaxanthin), 445 nm (Diadinoxanthin), 452 nm (Diatoxanthin), 458 nm 

(Echinenone), 443 nm (Fucoxanthin), 445 nm (Lutein), 472 nm (Myxoxanthophyll), 475 

nm (Peridinin), 443 nm (Violaxanthin), and 453 nm (Zeaxanthin) using a ThermoFisher 

Evolution 201 benchtop spectrophotometer (Waltham, MA, USA).  

Rather than preparing a standard curve for all thirteen target pigments for routine 

quantif ication, equivalence factors were determined for Alloxanthin, Canthaxanthin, 

Diadinoxanthin, Diatoxanthin, Echinenone, Fucoxanthin, Myxoxanthophyll, Peridinin, 

Violaxanthin, and Zeaxanthin. The equivalence factor was determined in relation to lutein 

by analysing the known concentrations of these standards in conjunction with the known 

concentration of a lutein standard (Table 3.2).  

Standard curves, or calibration curves are prepared to predict the unknown concentration 

of the target compound in a solution. These quantitative curves are regressions of 

relationships between prepared solutions with varying known concentrations (normally 

five different concentrations) and response (area of the feature’s peak) using a least 

squares method. However, equivalence factors are used where a compound’s feature 

peak is known to be a certain proportion of  another. A standard mixture is used as quality 

control in analytical chemistry. Where a mixture of compounds is created with known 

concentrations and is analysed alongside each HPLC-DAD run. This ensures unknown 

variables are not interfering with the quantification of the samples.  

3.3.4 Fluorescence Analysis of Phycocyanin 

Phycocyanin has a characteristic fluorescence emission which does not interfere with 

chlorophyll, making analysis uncomplicated (Zamyadi et al., 2012). Fluorometrically 

phycocyanin will excite at 580-590 nm with an emission at 645-650 nm (Bellinger & 

Sigee, 2015; Roy et al., 2011). A qualitative presence/absence fluorometric analysis was 

developed to detect phycocyanin. To confirm that this fluorescence analysis was able to 

detect the presence of phycocyanin, aqueous extracts from 16 cyanobacteria cultures 

known to produce phycocyanin f rom the Cawthron Institute Culture Collection of Micro-
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algae (Rhodes et al., 2016) were analysed with the florescence method. The recovery of 

the phycocyanin by fluorescence from the cyanobacteria cultures (Table 3.3), showed 

that the fluorescence method was able to detect phycocyanin concentrations within these 

cultures.  

Table 3.3. Cyanobacteria pigments recovered via fluorescence from culture extracts.  

Taxonomy 
Zeaxanthin 

(ug/L) 
Echinenone 

(ug/L) 
Chl-a via HPLC 

(ug/L) 
Phycocyanin 

(ug/L) 

Microcystis aeruginosa 6.8 1.8 37.5 145.7 

Microcystis aeruginosa 20.9 7.3 83.0 415.6 

Microcystis sp. 1.7 3.5 40.9 64.0 

Microcystis 
wesenbergii 

9.4 1.6 31.3 198.4 

Nodularia spumigena 1.3 18.7 124.6 358.9 

Leptolyngbya sp. 19.0 0.9 74.5 357.3 

Leptolyngbya sp. 22.5 8.5 99.2 297.1 

Microcoleus 
autumnalis 

21.7 3.7 77.1 469.5 

Microcoleus 
autumnalis 

10.0 10.8 133.0 217.1 

Microcoleus glaciei 2.5 5.4 55.8 13.4 

Nostoc sp. 0.9 1.0 45.0 352.8 

Nostoc sp. 1.5 3.8 46.2 314.3 

Planktotrix sp. 50.9 9.5 131.9 444.0 

Planktotrix sp. 55.5 9.0 103.5 368.1 

Scytonema cf crispum 2.6 3.5 21.5 261.8 

Scytonema sp. 0.3 3.1 20.8 24.2 

To determine the optimum number of extraction repetitions, sixteen samples of surface 

sediment from Lake Ponui were weighed (≈1 g) and batched into five groups of triplicate 

samples. These sediment samples were extracted in a phosphate buffer (50 mM, pH 

7.2; 2 mL) (Appendix A for solution preparation) of which 2 mL was added to each 

sample, and sonicated for 30 min with ice, then frozen at −20°C. The frozen sample was 

sonicated for 30 min with ice and clarif ied by centrifugation at 12,000 x g for 5 min. 

Samples in batch one underwent this extraction once, batch two underwent this 

extraction twice, batch three underwent this extraction three times, and batch four was 
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four times. These samples were analysed using the fluorescence platereader method 

below. After the initial extraction, phycocyanin levels decreased notably in the 

subsequent extractions (some with zero pigment extracted), indicating that only one 

extraction cycle was required to extract the majority of the phycocyanin from the 

sediment.  

The phycocyanin in the sediment samples were extracted by adding 2 mL of phosphate 

buffer to ≈1 g subsample of wet sediment. Samples were sonicated for 30 min with ice, 

then frozen at −20°C. The frozen sample was sonicated for 30 min with ice and clarif ied 

by centrifugation at 12,000 x g for 5 min to ensure all particulates were removed.  

Sample extracts (200 µL) were analysed in duplicate on a black 96-well plate (Costar 

96-well black flat bottom non-treated polystyrene) using a fluorescence platereader 

(Enspire Multimode Platereader, Thermo Fisher Scientif ic; Waltham, MA, USA), along 

with standards and blanks (also in duplicate). The phycocyanin was measured at an 

excitation wavelength (ʎ-ex) of 609 nm and an emission wavelength (ʎ-em) of 643 nm. 

The phycocyanin standards (Sigma-Aldrich; St. Louis, MO, USA) were resuspended in 

phosphate buffer and calibrated spectrophotometrically at 615 nm using extinction 

coefficients 5.92 L/g/cm (Bennett & Bogorad, 1973). A standard curve was prepared 

using phycocyanin at 20, 10, 5, 2, and 1 µg/mL.  

To verify the detection of  phycocyanin by HSI (RABD615) in sediment core samples, a 

phycoliboprotein analysis via fluorescence was performed on lake core sediment 

samples from Lakes Nganoke, Okataina, Oporoa, and Rototoa.  

3.4 Using ArcGIS to Extract Land-Use Proportions Within the Lake Catchment  
Land-use data was collected using ArcGIS desktop 10.6.1 software by Esri, using the 

New Zealand National Digital Elevation Model (DEM) at 25-meter resolution for both the 

North Island (Landcare Research, 2018a) and the South Island (Landcare Research, 

2018b). The ArcGIS Hydrology toolset was used to fill the DEM for each Island, calculate 

the flow direction, then the flow accumulation. Pour points for each lake were manually 

created based on the flow accumulation data and the Watershed tool was run for each 

lake to outline the individual watersheds (see Appendix B for the ArcGIS model).  

These individual watersheds were then used as the ‘clip feature’ with the ArcGIS clip 

tool, with the LCDB v5.0 - Land Cover Database version 5.0, Mainland New Zealand 

(LCDB) (Landcare Research, 2019) as the Feature input overlaid with the respective 

watershed then clipped. This data was then exported as an Excel file and the shape area 

was converted into percentages of the various classifications (Appendix B for ArcGIS 
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model). The LCDB provides 33 land classifications (excluding the two classes specific to 

the Chatham Islands).  

3.5 Statistical Analyses 
All statistical analyses were conducted using RStudio Team (2021) version 4.1.1. 

3.5.1 Hyperspectral Calibration 

The HSI data the RABD value was calibrated to the concentration of chl-a obtained 

through either HPLC-DAD or spectrophotometry, through statistical regression following 

the calibration performed by Butz et al. (2015). The results for the chl-a within the 

selected lake cores were analysed as a wet weight then statistically compared to 

Hyperspectral RABD660-670 results. Regressions and cross-validations were performed 

using the R packages caret (Kuhn, 2021) (an aggregator package for statistical analysis), 

dplyr (Wickham et al., 2021) (to read the "%>%" function) and ggplot2 (Wickham, 2016) 

(for model visualisation). 

To determine whether HSI chl-a calibration required HPLC-DAD analysis, or it could be 

performed via spectrophotometry, a linear regression was performed on the chl-a 

concentrations obtained via HPLC-DAD and by spectrophotometry for the lake core 

sediment samples for each of the five lakes. Chl-a concentrations obtained via HPLC-

DAD and via spectrophotometry were then applied to a linear regression against the 

RABD660-670 values. The regressions were assessed to determine the optimum analyses 

for a calibration.  

This optimum analysis was then applied to a calibration of the RABD660-670 values where 

the combined concentrations of samples for all f ive lakes were assessed for linearity and 

outliers via a linear regression plot, and the regressions were assessed for linearity or 

quadratic relationships. A cross-validation was performed for the individual regression 

for each of the five lakes involving a leave one out cross validation (LOOCV), a k-fold 

cross validation (10-fold), a repeated k-fold cross validation with 10-folds repeated ten 

times (k-fold), and a bootstrap with 100 resamples for each lake.  

To assess the feasibility of a universal RABD660-670 calibration a linear regression was 

performed on a combined dataset of the chl-a concentrations for the core sediment 

samples for the five lakes. Lakes were then selectively removed from the dataset to 

ascertain individual influences on the combined dataset.  

3.5.2 Phycocyanin Detection 

Four lakes cores were analysed for phycocyanin using fluorescence in parallel with HSI, 

chl-a analyses (HPLC-DAD and spectrophotometry), and key xanthophyll pigments 
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using HPLC-DAD. The results for the phycocyanin within the selected lake cores were 

analysed as a wet weight then statistically compared using a linear regression to 

RABD615 results. Statistical regressions were performed using the R package caret 

(Kuhn, 2021) and ggplot2 (Wickham, 2016). 

RABD615 values were linearly regressed against phycocyanin concentrations to 

determine relationships. Additionally, RABD615 values were linearly regressed against 

chl-a via spectrophotometry concentrations, as well as Echinenone and Zeaxanthin 

concentrations determined via HPLC-DAD, to assess the likelihood of the RABD615 signal 

picking up on these pigments rather than phycocyanin.  

3.5.3 Creating a Predictive Model for Lake Trophic Status  

Data normalisation was performed using base R functions (RStudio Team, 2021) with 

the package ggplot2 (Wickham, 2016). Distribution of pre- and post- transformation of 

model variables can be found in Appendix D. Pigment concentrations were normalised 

by transforming them using a natural logarithm of the given value plus one. The TLI 

values possessed a normal distribution, so were not transformed. Models were created 

using the surface sediment subset A (Lakes with known TLI’s, see section 3.1.2). R 

codes for the predictive models can be found in Appendix E.  

3.5.3.1 Regression Tree 

Regression trees were created following Boehmke (2018c). The creation of the tree 

utilised the packages rsample (Silge et al., 2021) (for data splitting), dplyr (Wickham et 

al., 2021) (for data wrangling), rpart (Therneau & Atkinson, 2019) (for building the 

regression trees), rpart.plot (Milborrow, 2021) (for plotting the regression trees), and both 

ipred (Peters & Hothorn, 2021) and caret (Kuhn, 2021) (both for ‘bagging’ or validating 

the accuracy of the regression trees). Three regression trees were modelled to predict 

lake trophic level index (TLI), using 1) land use proportions from the lake’s catchment 

(calculated by ArcGIS), 2) thirteen phytoplankton pigments: twelve measured by HPLC-

DAD (Alloxanthin, chl-a via HPLC, Chlorophyll-b, Canthaxanthin, Diadinoxanthin, 

Diatoxanthin, Echinenone, Fucoxanthin, Lutein, Peridinin, Violaxanthin, and 

Zeaxanthin); and one by spectrophotometry (chl-a), termed the ‘pigments-only data’, and 

3) thirteen phytoplankton pigments plus five physical lake characteristics that would not 

change through time, or would only change very slowly (Elevation, Lake Area, Lake 

Volume, Maximum Depth, and Catchment Area), termed the ‘pigments +’ data.  

Data was first split into ‘test’ and ‘training’ (30:70) partitions. The initial tree was created 

using the ‘rpart’ package. In the background this package computes the values of which 

to prune the tree using a 10-fold cross validation. This will then compute the error of the 
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initial tree. Once created, the tree is then tuned using a grid search of hyperparameters 

which are manually supplied. The parameters tuned were the ‘minsplit’ and the 

‘maxdepth.’ The minsplit is the minimum number of data points required to create a 

terminal node after it is forced to attempt a split, and the maxdepth is the maximum 

number of internal nodes between the terminal nodes and the root node. The optimum 

parameters were selected from the resulting table output, displaying the top results 

resulting in the lowest errors. This table will also display the optimum complexity 

parameter (cp) which controls the size of the regression tree. The minsplit, maxdepth, 

and cp values are used to create the optimum regression tree.  

This optimised tree was bagged (bootstrap aggregation) to improve predictive 

performance. The process of bagging combines and averages multiple regression trees 

reducing the variability of a single tree and reducing overfitting. The ‘ipred’ package was 

used to bag the tree, where 25 bootstrap replicas were used to compute the root mean 

squared error (RMSE) on a portion of the training dataset. The optimised tree was also 

bagged using the ‘caret’ package. Caret preforms a 10-fold cross-validation on the tree 

and calculates the most influential variables (variable importance). The variable 

importance is computed by package assessing the total sums of squares error (SSE) 

decrease as each split in the tree occurs, over a given predictor, averaged over all the 

bagged trees created. The variable importance value is a relative mean decrease in SSE 

when compared to the most important variable on a 0-100 scale.  

3.5.3.2 Random Forest Model 

Random forest models are a modification of bagging regression trees. When bagging 

regression trees, they can be susceptible to correlation as they are not completely 

independent from one-another and possess similar structures. Random forest models 

overcome this correlation by creating a large collection of de-correlated trees. This 

results from this collection of trees is then averaged to produce the result (Boehmke, 

2018b).  

Random forest models were created following Boehmke (2018b). The creation of the 

models utilised the R packages rsample (Silge et al., 2021), RandomForest (Liaw & 

Wiener, 2002) (for basic implementation of the random forest model), ranger (Wright & 

Ziegler, 2017) (which provides faster implementation of the RandomForest package), 

caret (Kuhn, 2021) (an aggregator package for executing various machine learning 

models), dplyr (Wickham et al., 2021) (to read the "%>%" function) and igraph (Csardi & 

Nepusz, 2006) (for visualisation of the random forest model). Two random forest models 
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were developed to predict lake TLI using 1) using the pigments-only data, and 2) using 

the ‘pigments +’ data.  

Data was first split into ‘test’ and ‘training’ (30:70) partitions. The initial tree was created 

using the ‘RandomForest’ package, throughout the model creation the RandomForest 

package will perform a built-in bootstrap validation on the model in the background. The 

model is then tuned using the ‘tuneRF’ function of the RandomForest package. To refine 

the tuning and find the optimum mtry, minimum node size (which controls the complexity 

of the trees), and sample size used for the model training a grid search of various 

hyperparameters was performed. Each hyperparameter combination was looped 

through and applied to 500 trees. The lowest ten RMSE results were displayed with the 

corresponding parameters.  

Once the optimal hyperparameters are identif ied they can be input into the model 

parameters for an accurate error rate to be calculated. This also allows the calculation 

of the variable importance of each of the variables in the same manner as the rpart 

package. This optimal tree can them be used to predict using the test sub-sectioned data 

and thus calculate the final RMSE of the model.  

3.5.3.3 Boosted Regression Tree 

Where a random forest builds a collection of deep independent trees, a gradient boosted 

model (boosted regression tree) builds a sequential group of shallow weak trees, with 

each tree learning and being improved from the previous tree. This collection of trees is 

averaged sequentially to produce the result (Boehmke, 2018a). Boosted regression trees 

utilise stochastic gradient descents to optimise the loss function. This is achieved by 

overcoming potential non-uniform distributions of loss functions by sampling a fraction of 

the training observations, without replacement, and using this subsample to calculate the 

next time (Boehmke, 2018a).  

The boosted regression tree model was created following Boehmke (2018a). The 

creation of the model utilised the packages rsample (Silge et al., 2021), gbm 2.1.8 

(Greenwell et al., 2020) (for basic implementation of the gradient boosted regression 

tree), caret (Kuhn, 2021), and both pdp (Greenwell, 2017) and ggplot2 (Wickham, 2016) 

(both for model visualisation). One boosted regression tree was modelled to predict lake 

TLI using the using the ‘pigments +’ data.  

Data was first split into ‘test’ and ‘training’ (30:70) partitions. The initial model of 10,000 

trees was created using the ‘gbm.fit’ function of the ‘gbm’ package. This initial number of 

trees can be altered to achieve the lowest 5-fold cross validation (cv) error. This cv error 

is automatically calculated by the program in the background. The model was then tuned 
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using a hyperparameter grid search to identify the optimal parameters for the model. The 

parameters optimised are the ‘shrinkage’ (learning rate of the tree), ‘interaction.depth’ 

(complexity of the tree), ‘n.minobsinnode’ (minimum number of observations allowable 

for the trees terminal nodes) and the ‘bag.fraction’ (when <1 this allows for stochastic 

gradient descent). Using the results from the first grid search, a second grid search was 

conducted using the result from the first search to optimise the hyperparameters which 

will provide the minimum error.  

The ‘relative.influence’ function of the gbm package is then used to calculate the relative 

influence. Like variable importance, relative influence calculates which variables possess 

the largest average decrease in mean squared error (MSE), and therefore are deemed 

more important. This model with its optimum parameters can then be used to predict on 

the test fraction of the data to calculate the RMSE using the ‘caret’ package.  

To develop a deeper understanding of the data variables, partial dependence plots can 

be created to understand how the different response variables are affected by the 

different predictor variables.  

3.5.4 Lake Health Predictions 
The three machine learning models (regression tree, random forest model, and boosted 

regression tree) created to predict lake TLI using ‘pigments +’ data were compared using 

linear regression to determine which was more accurate at predicting lake TLI. After the 

model with the lowest error is identif ied, it is applied to the surface sediment subset B 

(see section 3.1.2), to predict the TLI values. 

The model with the lowest error was then applied to the downcore sediment samples for 

Lake Nganoke, Lake Okataina, Lake Oporoa, Lake Pounui, and Lake Rototoa (see 

section 2.1.1). As the retrodicted lake TLI’s do not possess reliable validation data, the 

pigments-only model with the lowest error was applied to the downcore sediment 

samples, to contrast the model with the lowest error and determine whether it presented 

a realistic scenario of historical lake health. Additionally, the retrodicted lake TLI’s were 

contrasted with log transformed chl-a concentrations within the core sediments, and 

cyanobacteria indicator pigment concentrations (Table 2.3) (sum of Canthaxanthin, 

Echinenone, Myxoxanthophyll, and Zeaxanthin concentrations).  
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 Chapter 4 Results 

4.1 Hyperspectral Calibration 

4.1.1 Chlorophyll-a Calibration 

4.1.1.1 High-Performance Liquid Chromatography with Diode-Array Detection or 

Spectrophotometry Analysis 

Linear regressions were performed to assess the relationship between chl-a 

concentrations determined by HPLC-DAD, and by spectrophotometry (both with 

acidification and without acidification). This revealed strong and statistically significant 

relationships in all the five lakes analysed (R ≥ 0.42, p <0.05; Table 4.1). Additionally, 

the 95% confidence interval (CI) reveals groupings of the lakes as indicated by overlap. 

The differences between the regressions can most likely be attributed to different chl-a 

diagenesis products (i.e., pheophorbide-a and pheophytin-a) within each lake. As 

spectrophotometry without acidification measures all chl-a diagenesis products these 

relationships will be different to HPLC-DAD and spectrophotometry with acidification as 

they specifically measure the chl-a compound. Additionally, the differing concentrations 

between HPLC-DAD and spectrophotometry with acidification, while it can be assumed 

that they are both measuring the chl-a compound, are different analytical techniques. 

HPLC-DAD is a highly specific analysis method targeting particular chemical 

compounds, while spectrophotometry with acidification is not as specific as HPLC-DAD 

and spectral interferences from other compounds within the lake sediment could be 

accounting for higher chl-a concentrations.  

Additionally, this also shows that the chl-a has been preserved in a better state in three 

of the lakes (Lake Nganoke, Okataina, and Oporoa; see figure 4.1c). This preservation 

could be due to several factors unexplored in this research, such as, anoxic conditions, 

temperature, lake water depth, etc. A comparison of the linear regressions for all f ive 

lakes can be seen in figure 4.1.  
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Table 4.1. Regression Relationships of Chlorophyll-a Concentrations Analysed by High-

Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) and 

Spectrophotometry both With and Without Acidification. 

A) HPLC-DAD (µg/g) to spectrophotometry with acidification (µg/g). B) HPLC-DAD (µg/g) to those 

analysed by spectrophotometry without acidification (µg/g). C) Spectrophotometry without 

acidification (µg/g) to those analysed by spectrophotometry with acidification (µg/g). 

A) 

Lake R r2 p-value Intercept Gradient CI 

Nganoke 0.91 0.82 < 2.2 x 10-16 1.86 5.74 4.90, 6.60 

Okataina 0.99 0.97 < 2.2 x 10-16 1.73 2.31 2.19, 2.43 

Oporoa 0.84 0.69 1.6 x 10-11 -0.16 3.04 2.39, 3.70 

Ponui 0.55 0.28 1.8 x 10-3 0.62 0.21 0.09, 0.34 

Rototoa 0.86 0.73 1.4 x 10-12 1.29 3.15 2.53, 3.77 

B)  

Lake R r2 p-value Intercept  Gradient CI 

Nganoke 0.77 0.58 2.8 x 10-9 17.92 38.30 28.1, 48.5 

Okataina 0.93 0.86 < 2.2 x 10-16 18.03 10.22 8.9, 11.5 

Oporoa 0.72 0.50 2.0 x 10-7 16.01 65.90 44.8, 87.0 

Ponui 0.42 0.15 2.3 x 10-2 23.53 4.70 0.7, 8.7 

Rototoa 0.87 0.76 1.7 x 10-13 10.91 19.33 15.8, 22.8 

C)  

Lake R r2 p-value Intercept  Gradient CI 

Nganoke 0.92 0.84 < 2.2 x 10-16 2.50 7.20 6.2, 8.2 

Okataina 0.97 0.95 < 2.2 x 10-16 9.61 4.56 4.2, 4.9 

Oporoa 0.97 0.93 < 2.2 x 10-16 8.19 24.45 22.3, 26.6 

Ponui 0.88 0.76 3.5 x 10-10 7.12 25.64 20.1, 31.1 

Rototoa 0.90 0.81 1.4 x 10-15 4.80 5.43 4.6, 6.3 
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Figure 4.1. Linear Regressions of Chlorophyll-a Concentrations Analysed by High-Performance 

Liquid Chromatography with Diode Array Detection (HPLC-DAD) and Spectrophotometry both 

With and Without Acidification. 

A) HPLC-DAD (µg/g) to spectrophotometry (spectro) with acidification (µg/g). B) HPLC-DAD 

(µg/g) to spectrophotometry (spectro) without acidification (µg/g). C) Spectrophotometry (spectro) 

with acidification (µg/g) to spectrophotometry (spectro) without acidification (µg/g). 

A)  

B)  
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C)  

 

To better evaluate the three methods of chl-a analyses to determine if one method is 

more optimum for a calibration to RABD660-670 within lake core sediment samples, a 

comparison was made between linear regressions for RABD660-670 to chl-a via HPLC-

DAD and to chl-a via spectrophotometry both with and without acidification (Table 4.2). 

These regressions showed that for two of the five lakes, Nganoke (Figure 4.2), and 

Rototoa (Figure 4.5) the slope for the HPLC-DAD analysis possessed a better fit as 

indicated by the r2. Additionally, RABD660-670 to chl-a via spectrophotometry with 

acidification displayed higher effect sizes for Oporoa (Figure 4.4) and Ponui (Figure 4.6). 

Whereas only Okataina (Figure 4.3) demonstrated a higher effect size for RABD660-670 to 

chl-a via spectrophotometry without acidification. When the three chl-a analysis methods 

(HPLC-DAD and spectrophotometry both with and without acidification) were regressed 

against the RABD660-670 signal with the data from all f ive lakes combined the r2 values 

were higher for chl-a analysed via spectrophotometry without acidification (0.61). 

This reveals that the two methods of calibrating RABD660-670 to either chl-a via HPLC-

DAD or chl-a via spectrophotometry both with and without acidification, all three produce 

statistically significant correlations (p-value <0.05) and r2 values above 0.27. However, 

chl-a analyses via spectrophotometry without acidification produces more consistent 

results.  
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Table 4.2. Comparison of RABD660-670 Calibration to Chlorophyll-a Concentrations Analysed via 

High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) and 

Spectrophotometry (Spectro) Both with and Without Acidification.  

Lake 
Analysis 
Method 

r2 p-value Intercept Gradient 95% CI 

Nganoke 

HPLC-DAD 0.71 1.9 x 10-12 -13.3 12.8 10.2, 15.4 

Spectro 
(acidification) 

0.58 3.2 x 10-9 -74.3 73.3 53.7, 92.9 

Spectro (non-
acidification) 

0.36 1.5 x 10-5 -461.7 462.5 272.4, 652.6 

Okataina 

HPLC-DAD 0.41 2.8 x 10-6 -32.0 30.6 19.3, 42.0 

Spectro 
(acidification) 

0.51 7.1 x 10-8 -81.5 79.3 55.0, 103.7 

Spectro (non-
acidification) 

0.62 3.4 x 10-10 -413.7 408.9 308.9, 508.8 

Oporoa 

HPLC-DAD 0.59 3.9 x 10-9 -9.2 7.9 5.8, 10.1 

Spectro 
(acidification) 

0.80 5.3 x 10-15 -40.2 33.3 27.9, 38.8 

Spectro (non-
acidification) 

0.72 3.6 x 10-12 -956.7 801.0 638.5, 963.6 

Ponui 

HPLC-DAD 0.27 2.4 x 10-3 -34.4 33.2 12.8, 53.5 

Spectro 
(acidification) 

0.38 2.4 x 10-4 -14.9 14.9 7.7, 22.1 

Spectro (non-
acidification) 

0.33 6.3 x 10-4 -379.3 384.3 180.4, 588.3 

Rototoa 

HPLC-DAD 0.86 <2.2 x 10-16 -11.6 11.2 9.7, 12.6 

Spectro 
(acidification) 

0.57 1.2 x 10-8 -33.5 33.7 24.2, 43.1 

Spectro (non-
acidification) 

0.62 9.8 x 10-10 -207.6 211.1 158.0, 264.2 

Combined 
Lakes 

HPLC-DAD 0.33 <2.2 x 10-16 -5.2 5.3 4.22, 6.36 

Spectro 
(acidification) 

0.24 5.4 x 10-13 -13.2 14.8 11.1, 18.6 

Spectro (non-
acidification) 

0.61 < 2.2 x 10-16 -437.5 427.7 379.2, 476.2 
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Figure 4.2. Lake Nganoke Chlorophyll-a (chl-a) Analysis Comparison. 

A) RABD660-670 to chl-a via High-Performance Liquid Chromatography with Diode Array Detection 

(HPLC-DAD), B) RABD660-670 to chl-a via Spectrophotometry with Acidification, C) RABD660-670 to 

chl-a via Spectrophotometry without Acidification 

A)  

B)  
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C)   
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Figure 4.3. Lake Okataina Chlorophyll-a (chl-a) Analysis Comparison. 

A) RABD660-670 to chl-a via High-Performance Liquid Chromatography with Diode Array Detection 

(HPLC-DAD), B) RABD660-670 to chl-a via Spectrophotometry with Acidification, C) RABD660-670 to 

chl-a via Spectrophotometry without Acidification 

A)  

B)  
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C)  
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Figure 4.4. Lake Oporoa Chlorophyll-a (chl-a) Analysis Comparison. 

A) RABD660-670 to chl-a via High-Performance Liquid Chromatography with Diode Array Detection 

(HPLC-DAD), B) RABD660-670 to chl-a via Spectrophotometry with Acidification, C) RABD660-670 to 

chl-a via Spectrophotometry without Acidification 

A)  

B)  



47 

C)  
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Figure 4.5. Lake Ponui Chlorophyll-a (chl-a) Analysis Comparison. 

A) RABD660-670 to chl-a via High-Performance Liquid Chromatography with Diode Array Detection 

(HPLC-DAD), B) RABD660-670 to chl-a via Spectrophotometry with Acidification, C) RABD660-670 to 

chl-a via Spectrophotometry without Acidification 

A)  

B)  
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C)  
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Figure 4.6. Lake Rototoa Chlorophyll-a (chl-a) Analysis Comparison. 

A) RABD660-670 to chl-a via High-Performance Liquid Chromatography with Diode Array Detection 

(HPLC-DAD), B) RABD660-670 to chl-a via Spectrophotometry with Acidification, C) RABD660-670 to 

chl-a via Spectrophotometry without Acidification 

A)  

B)  
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C)  
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4.1.1.2 Calibration of RABD660-670 to Chlorophyll-a Analysed via Spectrophotometry Without 

Acidification.  

To validate the correlation of RABD660-670 to chl-a analysed via spectrophotometry without 

acidification, linear regression diagnostic plots were assessed for linearity and outliers. 

Looking at the linear regression plots for the validation data from all lakes (Figure 4.7) 

the plots suggest a linear relationship with normal distribution in the data. However, one 

data point fell some distance from the rest of the data. This same data point possessed 

high leverage, but it did not fall outside of the Cooks’ distance dashed line so was not  

treated as an outlier. 

Figure 4.7. Linear Regression Plot for the Combined Data of All Lakes RABD660-670 to Chlorophyll-

a Analysed via Spectrophotometry Without Acidification.  

 

To further determine whether a calibration between the RABD660-670 signal and the chl-a 

concentrations analysed via spectrophotometry without acidification required a linear 

regression, the combined data for the five lake cores were regressed quadratically. Both 

the linear and the quadratic regressions showed statistically significant p-values (Table 

4.3). However, the r2 value and the Akaike’s Information Criteria (AIC) was slightly in 

favour of the quadratic regression (higher r2, lower AIC). Despite this, the differences 

between the linear regression and the quadratic regression for the model of RABD660-670 

to chl-a via spectrophotometry without acidification were small, indicating little difference 

between the two regressions. Therefore, the calibration of RABD660-670 to chl-a via 

spectrophotometry without acidification can be conducted using either linear or quadratic 

regression. However, non-linearity may not be detected within this dataset due to the 

noise of the data. The calibration of RABD660-670 to chl-a via spectrophotometry without 
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acidification was validated on a linear regression (Figure 4.8). Figure 4.8 shows the linear 

regression for all f ive lakes; of note is the data from Lake Oporoa which deviates from 

the linear regression.  

Table 4.3. RABD660-670 to Chlorophyll-a Concentrations Analysed via Spectrophotometry Without 

Acidification Calibration Linear Regression Compared to Quadratic Regression.  

 Linear Regression Quadratic Regression 

r2 0.61 0.77 

AIC 1909.7 1900.4 

p-value < 2.2 x 10-16 < 2.2 x 10-16 

 

Figure 4.8. Data from all Lakes RABD660-670 Calibration to Chlorophyll-a Concentrations Analysed 

via Spectrophotometry Without Acidification.  

Model for a linear regression for all five lakes with a r2 of 0.61, p-value of < 2.2 x 10-16, an intercept 

of -437.5, a gradient of 427.7, and CI of 379.23, 476.16.  

 

To assess the accuracy of the linear models for all f ive lakes, a cross validation approach 

was undertaken for each lake where four validation methods were employed. The 

validation approaches involved a leave one out cross validation, a k-fold cross validation 

(10-fold), a repeated k-fold cross validation (10-fold, ten times), and a bootstrap with 100 

resamples for each lake. The RMSE (root mean squared error), MAE (mean absolute 

error), and r2 (coefficient of determination) results are presented in Table 4.4. The RMSE 

% was calculated by dividing the mean of the predictor variable (RABD660-607) by the 

RMSE value. These values show that the models for all the lakes result in an uncer tainty 
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of less than 8%. By returning small RMSE values demonstrates that the models are 

returning closely predicted data points to the observed data points. Additionally, the small 

MAE values indicate a close fit of the predicted data points to the observed data points. 

The r2 values also indicate that the regression models fit the observed data relatively 

closely. Additionally, Table 4.4 shows that Lake Oporoa possess worse RMSE and MAE 

values than the other lakes. While the exact reasons for the variations in Oporoa’s 

regression and validation results is unknown, it is worth noting that the lake has much 

higher chl-a concentrations within its sediments than the other lakes. These higher chl-

a concentrations could be contributing to the unreliability of Lake Oporoa’s results.  

Table 4.4. RABD660-670 Calibration to Chlorophyll-a Concentrations Analysed via 

Spectrophotometry Without Acidification Model Validation Results. 

Validation methods performed included a leave one out cross validation (LOOCV), a k-fold cross 

validation (10-fold), a repeated k-fold cross validation with 10-folds repeated ten times (k-fold), 

and a bootstrap with 100 resamples for each lake. 

Lake Model Validation Method RMSE r2 MAE 

Nganoke 

10-fold 0.02 (2.4%) 0.57 0.02 

k-fold 0.02 (2.5%) 0.61 0.02 

bootstrap 0.03 (2.8%) 0.41 0.02 

LOOCV 0.03 (2.8%) 0.36 0.02 

Okataina 

10-fold 0.04 (3.9%) 0.79 0.03 

k-fold 0.04 (4.0%) 0.80 0.03 

bootstrap 0.04 (4.4%) 0.72 0.03 

LOOCV 0.05 (4.6%) 0.48 0.03 

Oporoa 

10-fold 0.07 (6.9%) 0.61 0.06 

k-fold 0.07 (7.0 %) 0.71 0.06 

bootstrap 0.07 (7.3%) 0.70 0.06 

LOOCV 0.07 (7.4%) 0.68 0.06 

Ponui 

10-fold 0.01 (1.1%) 0.48 0.01 

k-fold 0.01 (1.0%) 0.63 0.01 

bootstrap 0.01 (1.1%) 0.37 0.01 

LOOCV 0.01 (1.1%) 0.29 0.01 

Rototoa 

10-fold 0.02 (2.3%) 0.56 0.02 

k-fold 0.02 (2.2%) 0.62 0.02 

bootstrap 0.02 (2.4%) 0.59 0.02 

LOOCV 0.02 (2.4%) 0.60 0.02 
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4.1.1.3 Universal Calibration 

To assess the feasibility of a universal equation, data from all f ive lakes were combined. 

The linear regression relationship was statistically significant (p = < 2.2 x 10-16) and the r2 

value (r2 = 0.61) indicated a regression comparable to the individual lake calibrations. 

When comparing the individual lake regressions on the same plot (Figure 4.8) the 

differences can be observed.  

The RABD660-670 values for Lake Oporoa are higher than the other four lakes, as well as 

the model intercept being different. However, the slope of the regression was 

comparable to the other lakes. Additionally, the regression line for Lake Ponui does not 

span as far through the chl-a via spectrophotometry without acidification concentrations 

as the other four lakes. Nevertheless, looking at the intercept and slope data (Table 4.5) 

it is feasible that data from Lake Oporoa is an outlier. However, when Lake Oporoa was 

removed from the dataset (Figure 4.9) the regression line for a universal calibration 

possessed a poorer fit to the data with a lower r2. When Lake Ponui was removed from 

the dataset, there was no change to the r2 value.  

Table 4.5. RABD660-670 to Chlorophyll-a via Spectrophotometry Linear Regression r2 Values.  

r2 values for all five lakes individually, as well as, for the linear regression of all five lakes together, 

the regression of four lakes with Oporoa excluded, and the regression of four lakes with Ponui 

excluded.  

Lake r2 

Nganoke 0.36 

Okataina 0.62 

Oporoa 0.72 

Ponui 0.33 

Rototoa 0.62 

All 5 Lakes Model 0.61 

4 Lakes Model excluding 
Oporoa 

0.48 

4 Lakes Model excluding Ponui 0.61 
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Figure 4.9. Data from Four Lakes with Oporoa Excluded RABD660-670 Calibration to Chlorophyll-

a Concentrations Analysed via Spectrophotometry 

Model for a linear regression with a r2 of 0.48, p-value of < 2.2 x 10-16, an intercept of -373.4, a 

gradient of 374.2, and CI of 312.5, 436.0. 

 

Figure 4.10. Data from Four Lakes with Ponui Excluded RABD660-670 Calibration to Chlorophyll-a 

Concentrations Analysed via Spectrophotometry 

Model for a linear regression with a r2 of 0.61, p-value of < 2.2 x 10-16, an intercept of -453.5, a 

gradient of 439.8, and CI of 385.7, 493.8. 
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4.1.2 Phycocyanin Calibration 

When analysing the samples from four lake cores, a total of 161 samples were analysed 

for phycocyanin via fluorescence: 42 from Lake Nganoke, 42 from Lake Okataina, 40 

from Lake Oporoa, and 37 from Lake Rototoa. From these 161 samples, no sample 

returned a concentration of phycocyanin above the level of detection (0.1 µg/mL). 

Therefore, no quantif iable amounts of phycocyanin could be detected within the lake 

core sediment samples through the fluorescence method used in this analysis.  

Although phycocyanin was not detected via the fluorescence method, there is a clear 

signal detected from the RABD615 band. This signal correlates to the signal detected at 

the RABD660-670 for chl-a. When RABD615 was compared to chl-a via spectrophotometry 

concentrations using a linear regression (Figure 4.11) with a Pearson correlation, there 

was a statistically significant correlation (p-values between 6.4 x 10-5 to 6.2 x 10-12) for 

all lakes with r2 values between 0.33 and 0.74 (Table 4.6).  

Table 4.6. RABD615 to Chlorophyll-a via Spectrophotometry Linear Regression Relationships. 

Lake r2 P-value Intercept Gradient CI 

Nganoke 0.35 2.1 x 10-5 -78.4 77.9 45.2, 110.6 

Okataina 0.32 6.4 x 10-5 -363.3 358.2 196.1, 520.3 

Oporoa 0.71 6.2 x 10-12 -182.2 174.1 138.1, 210.1 

Rototoa 0.74 6.6 x 10-12 -477.1 480.9 384.2, 577.6 
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Figure 4.11. RABD615 to Chlorophyll-a Concentrations Analysed via Spectrophotometry Linear 

Regressions. 

A) Lake Nganoke; B) Lake Okataina; C) Lake Oporoa; D) Lake Rototoa. 

A)  

B)  
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C)  

D)  
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Additionally, when RABD615 levels for the sediment core samples of the four lake cores 

were compared to the concentrations of two carotenoid pigment indicators for 

cyanobacteria; echinenone and zeaxanthin (quantif ied via HPLC-DAD) (Figure 4.12 to 

3.15, and Table 4.7), similar correlations between both the echinenone and the 

zeaxanthin to the RABD615 bandwidth were observed. However, for both echinenone and 

zeaxanthin the correlation was not as strong as it was for the chl-a via spectrophotometry 

concentrations (Table 4.6). Additionally, when RABD615 was compared with echinenone 

and zeaxanthin pigments, three of the four lakes resulted in positive correlations. 

However, Lake Oporoa did not return a relationship, with weak r 2 values and non-

significant p-values. Although this result follows the trend of RABD615 returning stronger 

and more significant correlations when regressed against chl-a.  

Table 4.7. RABD615 to Echinenone and Zeaxanthin Linear Regressions. 

Lake Pigment r2 p-value Intercept Gradient CI 

Nganoke 
Echinenone 0.20 1.6 x 10-3 -6.5 6.4 2.6, 10.2 

Zeaxanthin 0.25 4.0 x 10-4 -37.5 36.5 17.4, 55.6 

Okataina 
Echinenone 0.27 2.5 x 10-4 -3.1 3.0 1.5, 4.5 

Zeaxanthin 0.34 2.7 x 10-5 -15.3 15.1 8.6, 21.5 

Oporoa 
Echinenone <0.01 0.7 138.5 -102.6 -667.8, 462.6 

Zeaxanthin <0.01 0.5 1169.4 -950.8 -2314.7, -4208.1 

Rototoa 
Echinenone 0.58 2.3 x 10-8 -3.4 3.4 2.4, 4.3 

Zeaxanthin 0.63 3.3 x 10-9 -29.9 29.7 22.0, 37.4 
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Figure 4.12. RABD615 to either Echinenone or Zeaxanthin Linear Regressions for Lake Nganoke. 

A) RABD615 vs. echinenone, B) RABD615 vs. zeaxanthin.  

A)  

B)  

  



62 

Figure 4.13. RABD615 to either Echinenone or Zeaxanthin Linear Regressions for Lake Okataina. 

A) RABD615 vs. echinenone, B) RABD615 vs. zeaxanthin.  

A)  

B)  

  



63 

Figure 4.14. RABD615 to either Echinenone or Zeaxanthin Linear Regressions for Lake Oporoa. 

A) RABD615 vs. echinenone, B) RABD615 vs. zeaxanthin.  

A)  

B)  
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Figure 4.15. RABD615 to either Echinenone or Zeaxanthin Linear Regressions for Lake Rototoa. 

A) RABD615 vs. echinenone, B) RABD615 vs. zeaxanthin.  

A)  

B)  
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4.2 Predicting Lake Water Quality Using Surface Sediments 

The data set of lakes used for the creation of the machine learning models consisted of 

95 lakes for which the Lakes 380 team had calculated the trophic level index (TLI) from 

monitoring data provided by regional councils. This dataset includes three coastal 

shoreline/lagoons, 27 glacial lakes, 16 riverine lakes, four swamp/wetland lakes, two of 

tectonic/landslide origin, ten volcanic lakes, and 33 wind/aeolian formed lakes. These 

lakes ranged from low-land lakes (< 10 m a.s.l.) to high-altitude alpine lakes (up to 826 

m a.s.l.). The TLI of these lakes ranged from 1.2 (Microtrophic) to 7.2 (Supertrophic).  

4.2.1 Predicting Lake Trophic Levels from Catchment Land Use  
To assess the effects of land use on the trophic levels of lakes in New Zealand/in this 

study, a regression tree was fitted using the 33 land classifications from the ‘LCDB v5.0 

GIS raster’. None of these variables were transformed, as the TLI values possessed a 

normal distribution (Appendix D), and the land use variables were calculated as relative 

abundance.  

The regression tree was then tuned to find the best minimum number of data points 

required to create a terminal node after it is forced to attempt a split (resulting in 13 splits 

as optimum), and the maximum number of internal nodes between the terminal nodes 

and the root node (resulting in 15 nodes being optimum). The optimum complexity 

parameter (cp) which controls the size of the regression tree was found to be .0.01. The 

final bagged tree returned a RMSE of 1.04 (25.8%) after predicting against the data split 

for the testing.  

Figure 4.16 indicates that 19 of the 33 variables influenced the regression tree to varying 

degrees. The most influential land-use category was the high producing exotic grassland, 

followed by the tall tussock grassland category. The land-use categories which did not 

influence the trophic level of the lake were, depleted grassland, fern land, flax land, 

landslide, mixed exotic shrubland, orchard/vineyard or other perennial crop, river, sand 

or gravel, surface mine or dump, transport infrastructure, and urban parkland/open 

space. The categories not represented within the dataset were estuarine open water, 

herbaceous saline vegetation, and mangrove.  
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Figure 4.16. Variable Importance for the Variables in the Regression Tree for Predicting Lake 

Trophic Levels Using the Land Use Type Ratio.  

 

The land use categories which did not influence the regression tree possess low 

frequency with depleted grassland occurring in 10% of the catchments, fern land 12%, 

flax land 7%, landslide 16%, mixed exotic shrubland 13%, orchard/vineyard or other 

perennial crop 9%, river 12%, sand or gravel 14%, surface mine or dump 10%, transport 

infrastructure 6%, and urban parkland/open space 10%. However, short rotation 

cropland occurred in 11% of the catchments and permanent snow and ice in 7%, yet 

these two variables were influential in the regression tree. 
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4.2.2 Predicting Lake Trophic Levels from Phytoplankton Pigments Within Surface 

Sediment  
Relationships between lake TLI and phytoplankton pigment concentrations within lake 

surface sediment were assessed using a regression tree and a random forest model. 

The regression tree and random forest model was created using twelve phytoplankton 

pigments (with three different measurements of chl-a): twelve measured by HPLC-DAD 

(Alloxanthin, chl-a via HPLC, Chlorophyll-b, Canthaxanthin, Diadinoxanthin, 

Diatoxanthin, Echinenone, Fucoxanthin, Lutein, Peridinin, Violaxanthin, and 

Zeaxanthin); and chl-a by spectrophotometry both with and without acidification  

4.2.2.1 Regression Tree 

The regression tree was tuned to 11 splits as the optimum amount of data points, 13 as 

returning the optimum number of internal nodes between the terminal nodes and the root 

node, and a cp of 0.04. The final bagged tree returned a RMSE of 1.13 (27.8%) after 

testing against the predicted data split. However, the land use proportion regression tree 

performed slightly better (with a lower RMSE).  

The variable importance values for the variables in the bagged regression tree indicates 

that thirteen of the fourteen variables influenced the regression tree to varying degrees 

(Figure 4.17). The most influential phytoplankton pigment was zeaxanthin, followed by 

alloxanthin and echinenone. The phytoplankton pigment which did not influence the 

trophic level of the lake was peridinin.  

Figure 4.17. Variable Importance for the Variables in the Regression Tree for Predicting Lake 

Trophic Levels Using the Phytoplankton Pigment Concentrations in Lake Sediment.  
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4.2.2.2 Random Forest 

A random forest model was created and tuned (mtry = 5, minimum node size = 9), on a 

model consisting of 500 trees, to achieve the lowest RMSE of 0.49 (11.9%). This 

improved on the regression by more than twice as much as the regression tree. Of the 

fourteen predictors in the model, all fourteen influenced the random forest model (Figure 

4.18). Variable importance for the random forest tree was measured by the program by 

logging the reduction in MSE each time a variable was used as a node split. The most 

influential variables were alloxanthin, echinenone, and zeaxanthin.  

Figure 4.18. Variable Importance for the Variables in the Random Forest Model for Predicting 

Lake Trophic Levels Using the Phytoplankton Pigment Concentrations in Lake Sediment. 
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4.2.3 Creating a Predictive Model for Lake Trophic Status  
A predictive model for use on the down-core samples was created using twelve 

phytoplankton pigments (with three different measurements of chl-a): twelve measured 

by HPLC-DAD (Alloxanthin, chl-a via HPLC, Chlorophyll-b, Canthaxanthin, 

Diadinoxanthin, Diatoxanthin, Echinenone, Fucoxanthin, Lutein, Peridinin, Violaxanthin, 

and Zeaxanthin); and chl-a by spectrophotometry both with and without acidification. Five 

physical lake characteristics that would not change through time, or would only change 

very slowly (Elevation, Lake Area, Lake Volume, Maximum Depth, and Catchment Area) 

were also included in the model. This model was termed the ‘pigments +’ model. These 

18 variables were normalised by transforming them using a natural logarithm of the given 

value plus one.  

4.2.3.1 Regression Tree 

A regression tree was created then tuned to 16 splits as the optimum amount of data 

points, 14 as the optimum number of internal nodes between the terminal nodes and the 

root node, and a cp of 0.02. The final bagged tree returned a RMSE of 0.96 (24.6%) after 

predicting against the data split for the testing. Of the 19 variables used to create the 

regression tree 18 influenced the prediction. The predictor wihich did not influence the 

regression tree was peridinin (Figure 4.19). The most influential variables were those 

related to the size of the lake (maximum depth of the lake, lake area, and lake volume) 

and the most influential phytoplankton pigment concentrations were zeaxanthin and 

echinenone. 



70 

Figure 4.19. Variable Importance for the Variables in the Bagged Regression Tree for Predicting 

Lake Trophic Levels Using the Phytoplankton Pigment Concentrations in Lake Sediment Plus 

Five Physical Characteristics of the Lake.  

 

4.2.3.2 Random Forest 

A random forest model was created then tuned (mtry = 9, minimum node size = 3), 

resulting in a RMSE of 0.39 (10.0%). Once again, the random forest model improved on 

the regression tree more than twice as much and was the best performing TLI predictive 

model within this research. Of the 19 predictors in the model, all 19 influenced the 

random forest model (Figure 4.20). Interestingly chlorophyll-b had a negative influence 

on the random forest model. Variable importance for the random forest tree was 

measured by the program by logging the reduction in MSE each time a variable was 

used as a node split. The most influential variables were those related to the size of the 

lake (maximum depth of the lake, lake catchment size, and lake volume), with the most 

influential phytoplankton pigments being echinenone and canthaxanthin.  
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Figure 4.20. Variable Importance for the Variables in the Random Forest Model for Predicting 

Lake Trophic Levels Using the Phytoplankton Pigment Concentrations in Lake Sediment Plus 

Five Physical Characteristics of the Lake. 
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4.2.3.3 Boosted Regression Tree 

A boosted regression tree was created then tuned to find the optimal parameters. The 

resulting model consisted of 4,000 trees within the model, with a depth of 3, and a 

learning rate of 0.25. Additionally, the minimum number of observations in the trees 

terminal nodes was set to 0.25, and the stochastic gradient descent was set to 0.75, the 

final tree returned a RMSE of 0.94 (24.2%).  

Of the 19 variables, all 19 influenced the prediction (Figure 4.21). Variable importance 

for the random forest tree was measured by the program where for each split in each 

tree, the improvement in the MSE for regression is computed and presented as a 

percentage. The most influential variables of this model were the maximum depth of the 

lake and elevation of the lake, with the most influential phytoplankton pigments being 

echinenone and diatoxanthin.  

Figure 4.21. Relative Influence of the Variables in the Boosted Regression Tree for Predicting 

Lake Trophic Levels Using the Phytoplankton Pigment Concentrations in Lake Sediment Plus 

Five Physical Characteristics of the Lake. 
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4.2.4 Preferred Model for Predictions 
Of the three predictive ‘pigments +’ models the best performing one, with the lowest 

RMSE was the random forest model (Figure 4.22). While a boosted regression tree can 

provide smaller RMSE values than random forests, they tend to overfit models if the data 

contains a lot of noise (Vezhnevets & Barinova, 2007). The linear correlation of the Lake 

Trophic Levels to the Lake Trophic Levels Predicted by the Random Forest Model 

returned a r2 of 0.95. 

Within the models there are three different measurements for chl-a. By using the 

‘pigments +’ model (the best performing model) and creating three versions with one chl-

a measurement in each (Figure 4.23) we can isolate which chl-a analysis provides more 

accurate predictions. There is very little difference in the type of analysis utilised for chl-

a analysis, with a difference in error rates of 0.5% between the three analyses. Utilising 

all three analyses in the random forest model appears to overfit the model, resulting in a 

higher error (10.0%). However, there is less than 1% difference between the random 

forest model utilising all three analyses and the best performing single chl-a analysis 

model. For subsequent analyses in this thesis, the ‘pigments +’ random forest model will 

utilise the chl-a via spectrophotometry with acidification analysis. 
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Figure 4.22. Correlation of Measured Lake Trophic Levels to the Lake Trophic Levels Predicted 

by the Various ‘Pigments +’ Models.  

 

A) 

 

B) 

 
C) 

 

Orange line denotes the regression line for the 

r2, and the dashed green line illustrates a 

perfect regression with a r2 of 1.  

A) Regression tree with a RMSE of 0.96 

(24.6%), r2 of 0.70, minimum predictive error 

of -31%, and maximum predictive error of 

118%. B) Random forest with a RMSE of 0.39 

(10.0%), r2 of 0.95, minimum predictive error 

of -16%, and maximum predictive error of 

44%. C) Boosted regression tree with a RMSE 

of 0.94 (24.2%), r2 of 0.85, minimum predictive 

error of -34%, and maximum predictive error 

of 76%. 
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Figure 4.23. Correlation of Measured Lake Trophic Levels to the Lake Trophic Levels Predicted 

by the Random Forest Pigment Plus Models with Varying Chlorophyll-a (chl-a) Analyses.  

A) 

 

B) 

 
C) 

 

Orange line denotes the regression line for the 

r2, and the dashed green line illustrates a 

perfect regression with a r2 of 1. A) Chl-a 

analysis via HPLC-DAD, with a RMSE of 0.96 

(9.5%), r2 of 0.96, B) Chl-a analysis via 

spectrophotometry with acidification, with a 

RMSE of 0.37 (9.3%), r2 of 0.95, C) Chl-a 

analysis via spectrophotometry without 

acidification, with a RMSE of 0.40 (9.7%), r2 of 

0.95. 
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4.2.5 Modelling the Lake Trophic Status Throughout New Zealand 
By applying the random forest ‘pigments +’ model to the lakes within the original dataset 

of 232 lakes without known TLI’s, predictions of their current lake health could be made. 

Mapping out both the current and predicted TLI’s (Figures 4.25 and 4.26) show the 

distribution of these lakes throughout New Zealand. Histograms of the current and 

predicted TLI’s (Figure 4.24) show that the model is not predicting out to the limits of the 

range of the TLI (both low and high). Rather, the predicted TLIs seem to be constrained 

to the more central values.  

Figure 4.24. Mirrored Histogram of the Current and Predicted TLI’s for New Zealand Lakes. 

Top histogram (green) displays the current TLI’s of New Zealand Lakes used to create the model. 

Bottom (mirrored) histogram displays the TLI’s predicted on the same lakes by the random forest 

‘pigments +’ model.  
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Figure 4.25. Map of the Current Lake TLI’s Within the Dataset Throughout New Zealand.  

Data from these 95 lakes were used to create the predictive model.  
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Figure 4.26. Map of the Predicted Lake TLI’s Within the Dataset Throughout New Zealand.  

Lakes within this dataset do not have monitoring data so no TLI could be calculated. The TLI was 

predicted using the random forest ‘pigments +’ model with an error rate of 8.8% 
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4.2.6 Modelling the Lake Trophic Status Through Time 
By applying the random forest ‘pigments +’ model to five different lake cores the range 

of TLI values indicating lake health through time was investigated. The retrodicted results 

were assessed as to whether they presented a realistic scenario of historical lake health. 

To contrast the results from the random forest models and the effects of the five static 

lake physical characteristic on the lake, the pigments-only model was performed 

alongside the ‘pigments +’ model. The approximate length of these sediment records 

spanned 837 years (Lake Nganoke), 455 years (Okataina), 893 years r (Oporoa), 844 

years (Ponui), and 1,000 years (Rototoa). Ages of the lake core sediment samples were 

provided by GNS Science, Avalon, Lower Hutt.  
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4.2.6.1 Lake Nganoke  

For Lake Nganoke the random forest model could not predict a current TLI as no surface 

sediment sample was included in the original dataset of 232 lakes. However, a spot TLI 

was calculated using grab samples from the lake water when the lake was cored, this 

was calculated to be 6.2. The top of the lake core was estimated to be deposited in 2019, 

resulting in a TLI predicted by the ‘pigments +’ model of 4.9. In this situation the ‘pigments 

+’ model underestimated the TLI by 21%. For both models (pigments-only and pigments 

+) retrodicted TLI for Nganoke showed a trend towards increasing TLI values following 

the arrival of Europeans to the area (Figure 4.27C). In the ‘pigments +’ model, retrodicted 

values move from eutrophic to almost super-eutrophic after the arrival of Europeans to 

the area. Values retrodicted by the pigments-only model span a wider range, with the 

lake moving from the mesotrophic-eutrophic border to a eutrophic-supertrophic state in 

recent times. The retrodicted TLI’s for both the ‘pigments +’ and pigments-only models 

conform with one another regarding the TLI of Lake Nganoke since the arrival of 

Europeans to the area.  

The retrodicted TLI’s for Nganoke showed a visual correlation through the patterns of 

peaks and troughs with the chl-a via spectrophotometry concentrations (Fig. 3.27A & C). 

A similar correspondence is observed between the phytoplankton pigment 

concentrations for cyanobacteria indicators (canthaxanthin, echinenone, 

myxoxanthophyll, and zeaxanthin) and the retrodicted TLI (Fig 3.27B & C). The only 

significant departure between the chl-a and cyanobacteria indicator pigment curves, and 

the two TLI curves occurs just prior to the approximate time where there was evidence 

of Māori settlement, when there is a peak in the chl-a via spectrophotometry and 

cyanobacteria indicator pigments which is not mirrored in the TLI values for either model.  
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Figure 4.27. Lake Nganoke Retrodicted TLI and Comparison Charts. 

A) Chlorophyll-a via spectrophotometry (spectro) concentrations on a logarithmic x-axis, B) 

Cyanobacteria indicator pigment concentrations. Concentration is a combined total of four 

indicator pigments (Canthaxanthin, Echinenone, Myxoxanthophyll, and Zeaxanthin), C) Human 

settlement overlaid by predicted TLI. Black line denotes the ‘pigments +’ model, orange line 

denotes pigments-only model, black dashed vertical lines denote the transition from one trophic 

level to another, and red point denotes current TLI. 

A)           B)    C)  
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4.2.6.2 Lake Okataina  

For Lake Okataina the random forest ‘pigments +’ model overestimated the modern TLI 

by 7%, where it predicted a current TLI of 3.1, whereas the TLI for that lake is currently 

2.9. The retrodicted values for Okataina produced by the ‘pigments +’ model (Figure 

4.28C) indicates that even before the arrival of humans to New Zealand, Okataina was 

sitting on the oligotrophic -mesotrophic border. However, since the arrival of Europeans 

to the area the retrodicted TLI’s show an increasing trend, with the lake moving from the 

oligotrophic-mesotrophic border into mesotrophic during this period. As per Lake 

Nganoke, the values generated by the ‘pigments +’ model span a narrower range than 

those of the pigments-only model. In addition, the pigments-only model predicts a higher 

current TLI for Okataina from the surface sediments than the ‘pigments +’ model. The 

pigments-only model shows Okataina in a mesotrophic state before the arrival of humans 

to the area, then increasing to a eutrophic state after the arrival of Europeans.  

A noticeable event in the history of Okataina which coincides with the arrival of 

Europeans to the area is the 1886 eruption of Mt Tarawera, located 13km to the 

southeast of the lake. Retrodicted TLI values for both the models drop suddenly, 

coincident with the eruption and remain low for approximately 20 years before returning 

to higher levels (Figure 4.28C). Cyanobacteria indicator pigments are low for most of the 

record and only really start to increase within the top layers of the core. The retrodicted 

TLI for Okataina from both models also shows high visual correlations through the 

patterns of peaks and troughs between the chl-a via spectrophotometry concentrations 

and the predicted TLI (Figure 4.28A & C). Additionally, there are also strong visual 

correlations through the patterns of peaks and troughs between the cyanobacteria 

indicator pigment concentrations (Figure 4.28B & C).  
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Figure 4.28. Lake Okataina Retrodicted TLI and Comparison Charts. 

A) Chlorophyll-a via spectrophotometry (spectro) concentrations on a logarithmic x-axis, B) 

Cyanobacteria indicator pigment concentrations. Concentration is a combined total of four 

indicator pigments (Canthaxanthin, Echinenone, Myxoxanthophyll, and Zeaxanthin), C) Human 

settlement overlaid by predicted TLI. Black line denotes the ‘pigments +’ model, orange line 

denotes pigments-only model, black dashed vertical lines denote the transition from one trophic 

level to another, and red point denotes current TLI.  

A)           B)    C)  
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4.2.6.3 Lake Oporoa  

For Lake Oporoa the random forest model predicted a TLI of 4.7 from the surface 

sediment samples collected from the dataset of 232 lakes. Unfortunately, there was no 

lake monitoring data to calculate a current TLI. However, a spot TLI was calculated using 

grab samples from the lake water when the lake was cored, this was calculated to be 

7.7. The model underestimated the TLI of this prediction by 39%. The retrodicted TLI’s 

produced using the ‘pigments +’ model for Oporoa (Figure 4.29C) showed an increasing 

trend since before the arrival of humans to the area. The retrodicted TLI is eutrophic in 

the pre-human era with a slight drop to mesotrophic around the 1300’s before climbing 

to current super-eutrophic levels. The pigments-only model produces higher values of 

TLI, more eutrophic-supertrophic rather than eutrophic in the prehuman/evidence of 

Māori settlement eras before climbing firmly into the supertrophic level after the arrival 

of Europeans.  

Retrodicted TLI’s for Oporoa for both the ‘pigments +’ and pigments-only models showed 

visual correlations through the patterns of peaks and troughs between the chl -a via 

spectrophotometry concentrations (Figure 4.29A & C) and the cyanobacteria indicator 

pigments (Figure 4.29B & C), although not as obviously as Nganoke and Okataina. As 

in the case with Lake Okataina, cyanobacteria indicator pigments only really start to 

appear within the top layers of the core. 
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Figure 4.29. Lake Oporoa Retrodicted TLI and Comparison Charts. 

A) Chlorophyll-a via spectrophotometry (spectro) concentrations on a logarithmic x-axis, B) 

Cyanobacteria indicator pigment concentrations. Concentration is a combined total of four 

indicator pigments (Canthaxanthin, Echinenone, Myxoxanthophyll, and Zeaxanthin), C) Human 

settlement overlaid by predicted TLI. Black line denotes the ‘pigments +’ model, orange line 

denotes pigments-only model, black dashed vertical lines denote the transition from one trophic 

level to another, and red point denotes current TLI. 

A)           B)    C)  
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4.2.6.4 Lake Ponui  

For Lake Ponui the ‘pigments +’ model could not predict a current TLI as no surface 

pigments sediment sample was included in the original dataset of 232 lakes when 

surface sediment samples were collected, and no other methods have been employed 

to determine the current TLI for this lake. The top of the lake core was estimated to be 

deposited in 2014, resulting in a TLI predicted by the ‘pigments +’ model of 4.0. The 

retrodicted TLI for Ponui (Figure 4.30C) using the ‘pigments +’ model indicate that during 

the pre-human/ evidence of Māori settlement eras, Ponui was in a mesotrophic state. 

After the arrival of Europeans to the area there was no major influence on the trophic 

status of the lake until approx. 20 years ago where the TLI increased, moving from 

mesotrophic to eutrophic. As is the case in the other lakes, the TLI values retrodicted by 

the pigments-only model span a wider range than those from the retrodicted TLI’s with 

Ponui fluctuating within the mesotrophic level during the pre-human era. 

Retrodicted TLI’s for Ponui showed visual correlations through the patterns of peaks and 

troughs between the chl-a via spectrophotometry concentrations (Figure 4.30A & C) and 

the cyanobacteria indicator pigments (Figure 4.30B & C) within the last century. Prior to 

this, the peaks and troughs of the pigments do not correlate well with the TLI fluctuation. 

The downcore analysis showed that even before the arrival of humans to the area, lakes 

sediments for Ponui contained cyanobacteria indicator pigments.  
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Figure 4.30. Lake Ponui Retrodicted TLI and Comparison Charts. 

A) Chlorophyll-a via spectrophotometry (spectro) concentrations on a logarithmic x-axis, B) 

Cyanobacteria indicator pigment concentrations. Concentration is a combined total of four 

indicator pigments (Canthaxanthin, Echinenone, Myxoxanthophyll, and Zeaxanthin), C) Human 

settlement overlaid by predicted TLI. Black line denotes the ‘pigments +’ model, orange line 

denotes pigments-only model, black dashed vertical lines denote the transition from one trophic 

level to another, and red point denotes current TLI.  

A)           B)    C)  
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4.2.6.5 Lake Rototoa  

For Lake Rototoa the random forest ‘pigments +’ model overestimated the TLI by only 

3%, where it predicted a current TLI of 3.6, whereas the TLI for that lake is currently 3.5. 

The retrodicted TLI for Rototoa using the ‘pigments +’ model (Figure 4.31C) varies within 

a limited range (0.4) over the core record and has remained in a mesotrophic state since 

the arrival of humans to New Zealand. Additionally, cyanobacteria indicator pigments 

(Figure 4.31B) only really start to appear within the top layers of the core. Contrasting 

the ‘pigments +’ model to the pigments-only model shows less constraint in the 

retrodicted TLI’s. However, the pigments-only model overshoots the present day TLI by 

1.1. The retrodicted TLI’s for the pigments-only model shows Rototoa fluctuating through 

the mesotrophic level before increasing to the eutrophic level.  

The retrodicted TLI for Rototoa for both models show visual correlations through the 

patterns of peaks and troughs between the chl-a via spectrophotometry concentrations 

(Figure 4.31A & C) and the cyanobacteria indicator pigments (Figure 4.31B & C). The 

chl-a via spectrophotometry concentrations and the cyanobacteria indicator pigments 

show a recent increasing trend which does not coincide with the arrival of Europeans to 

the area. However, this is not obvious in the retrodicted TLI’s of both models due to the 

fluctuations.  

  



89 

Figure 4.31. Lake Rototoa Retrodicted TLI and Comparison Charts. 

A) Chlorophyll-a via spectrophotometry (spectro) concentrations on a logarithmic x-axis, B) 

Cyanobacteria indicator pigment concentrations. Concentration is a combined total of four 

indicator pigments (Canthaxanthin, Echinenone, Myxoxanthophyll, and Zeaxanthin), C) Human 

settlement overlaid by predicted TLI. Black line denotes the ‘pigments +’ model, orange line 

denotes pigments-only model, black dashed vertical lines denote the transition from one trophic 

level to another, and red point denotes current TLI.  

A)           B)    C)  
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 Chapter 5 Discussion 

This research was conducted with the objective of assessing the potential of 

phytoplankton pigments preserved/captured in sediments as indicators of lake water 

quality in both neoliminological (modern) and paleolimnological (ancient) settings in New 

Zealand lakes. In addition, HSI was evaluated as a method for detecting phytoplankton 

pigments within sediments. This aim has two distinct threads, 1) comparing sediment 

pigment measurements made by HSI against measurements made by the ‘traditional’ 

methods of HPLC and spectrophotometry; and 2) using pigment analyses from 

neoliminological sediments to build a predictive/retrodictive model for lake trophic status, 

and then applying that to the paleolimnological sediments. 

5.1 Hyperspectral Calibration 
This section of the research aimed to evaluate the limitations of utilising HSI to analyse 

lake core sediment samples. The evaluation was split into two parts. First, an 

investigation was conducted on whether the calibration of chl-a detected by HSI in lake 

core sediment samples required the use of HPLC-DAD or could spectrophotometry 

produce comparable results. Second, the ability of HSI to detect phycocyanin within lake 

core sediment samples was assessed. 

5.1.1 Chlorophyll-a Calibration 

The three methods of calibrating RABD660-670 to chl-a analyses (HPLC-DAD or 

spectrophotometry both with and without acidification) showed that all three produce 

statistically significant correlations (p-value <0.05). The linear regressions revealed that 

chl-a via spectrophotometry without acidification showed more consistent linear 

regressions among the five lakes, with a r2 falling within a narrower range (0.39) and the 

deviation of the gradient differing by 73.6%, as opposed to 81.2% for the chl-a via 

spectrophotometry with acidification. When regressed against data from all f ive lakes 

combined, the r2 values were higher for chl-a analysed via spectrophotometry without 

acidification (0.61), and the 95% confidence interval of the slope was also more 

constrained comparatively, than the other chl-a analyses methods (HPLC-DAD and 

spectrophotometry with acidification). 

Statistically there was little difference between the different methods. However, with 

spectrophotometry analyses, the absorbance of light is measured, and without 

acidification it will also measure chl-a diagenetic products, and other compounds 

absorbing light in that particular wavelength. Conversely, HSI measures the inverse of 

this technique, the reflection of light. As HSI measures samples in a comparable manner 

but using the reflected wavelengths of light rather than the absorbed wavelengths it is 
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more comparable to calibrate the RABD660-670 signal measurements with 

spectrophotometric analysis without acidification. Additionally, chl-a and its diagenetic 

products provide useful information for paleolimnological analysis (Cohen, 2003), as they 

can be used to indicate the past presence of chlorophyll.  

Additionally, two of the three methods of measuring chl-a are measuring different things. 

While HPLC-DAD and spectrophotometry with acidification are specific measurements 

of the chl-a compound, spectrophotometry without acidification analyses are measuring 

absorbed light from the sample at the specific wavelength of chl-a. As such 

spectrophotometry without acidification also measures chl-a diagenesis products, and 

other compounds absorbing light in that wavelength. HSI measures samples in a 

comparable manner, only it uses the reflected wavelengths of light rather than the 

absorbed wavelengths. Therefore, it is more appropriate to calibrate the RABD660-670 

signal measurements with spectrophotometric analysis.  

Within existing research, the use of HSI to assess chl-a concentrations via HPLC using 

the RABD660-670 signal has been restricted to the calibration of lake cores from a single 

lake. Butz et al. (2017); Grosjean et al. (2014); Makri et al. (2020); Sanchini and Grosjean 

(2020); Schneider et al. (2018). Spectral properties of the lake sediments creating 

variations in spectral strengths are theorised to interfere with the HSI measurements 

(Butz et al., 2015) suggesting that lake-specific calibrations need to be developed. 

However, the use of chl-a analysis via spectrophotometry without acidification to 

calibrate the RABD660-670 signal returned an uncertainty of less than 8% for combined 

regression of all f ive lakes (Lakes Nganoke, Okataina, Oporoa, Ponui and Rototoa). 

Therefore, the utilisation of spectrophotometry measurements without acidification for 

HSI calibration opens the possibility for a universal equation.  

The calibration of RABD660-670 to chl-a concentrations measured by spectrophotometry 

without acidification was evaluated using linear regression. These values show that the 

models for all the lakes result in an uncertainty of less than 7.5%. This result was 

comparable to those achieved by others calibrating HSI data using HPLC chl-a analyses. 

Butz et al. (2017) achieved an error of 10-15%, Makri et al. (2020) achieved a calibration 

within 9%, and Zander et al. (2021) calibrated to within 5.4%. The majority of existing 

work follows the methods described by Butz et al. (2017) where the concentration of chl-

a and its digenetic products are measured by HPLC. However, Butz et al. (2015) did 

suggest that spectrophotometric measurements on fresh sediments would be suitable 

for calibration of RABD660-670 to chl-a.  
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5.1.1.1 Limitations of the calibrations 

While HSI provides a two-dimensional image of the surface of a sediment core, HPLC-

DAD and spectrophotometry analyses provide a representative analyses of the sample 

(Butz et al., 2015). Additionally, HSI has limitations in the shorter wavelengths (400 – 

470 nm) which affect the detection of potentially important substances for ecology, such 

as carotenes and xanthophylls (Butz et al., 2015). Additionally, HSI possesses inherent 

uncertainties when assessing a target pigment connected to the potential interference of 

reflected spectral properties of the lake sediments (Butz et al., 2015; Yackulic, 2017). 

This is not necessarily limited to chl-a diagenetic products, as lake sediments contain a 

variety of other substances which could cause spectral variations. This interference could 

potentially transfer to the spectrophotometric calibration due to the method being less 

specific than HPLC-DAD analysis. Conversely, HSI provides a higher spatial resolution 

of information than analytical methods (HPLC-DAD and spectrophotometry both with and 

without acidification), as these analytical methods are limited to the resolution of the 

subsampling used to acquire the samples. Additionally, analytical methods can be limited 

in their sensitivity when small quantities of sample are available for extraction and 

analysis.  

HPLC-DAD possesses its own limitations, particularly as it is highly compound specific. 

However, the low interference HPLC-DAD is subject to when analysing pigments 

balances this limitation. It is also more precise than some other traditional limnology 

methods, as it can distinguish and separate diverse phytoplankton pigments and their 

degradation products (Dos Santos et al., 2003). Spectrophotometry without acidification, 

on the other hand, is less compound specific than HPLC-DAD and spectrophotometry 

with acidification, which can result in an overestimation of chl-a in presence of its 

diagenetic compounds. As the diagenetic products will be measured and calculated into 

the chl-a concentration. However, the combined values of chl-a and its diagenesis 

products will still provide useful relative information for paleolimnological analysis 

(Cohen, 2003), particularly for evaluations of lake primary productivity.  

5.1.1.2 Universal Calibration 

The linear regression relationship for a universal calibration of the RABD660-670 HSI signal 

using spectrophotometry without acidification determined chl-a concentrations was 

statistically significant (p < 0.05). The combination of five lakes resulted in a statistically 

significant (p = < 2.2 x 10-16) linear regression relationship with a r2 value (r2 = 0.61) 

comparable to the individual lake calibrations. However, when Lakes Nganoke, 

Okataina, Ponui and Rototoa were combined (without Lake Oporoa), the fit of the 

regression line (indicated by the r2) did not improve. Nevertheless, while a universal 
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calibration between RABD660-670 and chl-a concentrations analysed via 

spectrophotometry without acidification appears feasible more work needs to be 

conducted to confirm this. 

5.1.1.3 Future Work 

The combined dataset of lakes achieving a chl-a spectrophotometry without acidification 

determined calibration r2 of 0.61 opens the possibility for a universal calibration equation. 

However, this universal calibration should be validated with a larger dataset of lakes to 

understand whether some lake possess significantly differing calibrations. Additionally, 

more work needs to be undertaken to investigate the potential outliers and lakes which 

differ in their results, to determine which aspects within these lakes are causing the 

differing results. If a consistent cause can be identified, different calibrations for different 

lake categories might be required. 

5.1.2 Phycocyanin Detection 
It has been noted by Yackulic (2017), Favot et al. (2020), and Sorrel et al. (2021) that 

the RABD615 HSI signal might reflect the presence of the phycobiliprotein phycocyanin in 

sediment core samples. To determine if this observation is correct, phycocyanin analysis 

via fluorescence was undertaken on sediment core samples. When sediment core 

samples were analysed, no phycocyanin was detected above the level of detection (0.1 

µg/mL in the extract or 0.05 µg/g of wet sediment, if 1 g of sample was extracted). 

Therefore, no quantif iable amounts of phycocyanin could be detected through the 

fluorescence method in lake core sediment samples, despite the lake cores showing 

detectable signals at RABD615. However, during the development of the phycocyanin 

analysis via fluorescence quantif iable concentrations of phycocyanin were able to be 

detected within cyanobacterial cultures extracts.  

Of the study lakes within this analysis, Lake Nganoke (Parrish, 2020) and Oporoa 

(Roygard et al., 2019), have confirmed levels of cyanobacteria. However, the topmost 

sample of sediment core dated 2019 AD (Lake Nganoke) and 2015 AD (Lake Oporoa) 

did not return a phycocyanin concentration above the level of detection. This suggests 

that within the study lakes, phycocyanin is not integrated into the sediment layer. Yacobi 

et al. (2015) noted that if phycocyanin concentration was below 10 mg/m3 or 0.01 µg/mL 

and/or the phycocyanin to chlorophyll ratio was below 0.5, then the phycocyanin will be 

masked by the optical activity of the chlorophyll pigments. Yacobi et al. (2015) noted that 

phycocyanin cannot be quantif ied by remote sensing techniques unless these conditions 

had been met to avoid the phycocyanin being masked by the chlorophyll.  

During the preliminary assessment of phycocyanin (via fluorescence platereader), 

phycocyanin concentrations were measured in 16 cyanobacteria cultures. This 
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confirmed that phycocyanin extracted from cyanobacterial cells is detectible using this 

method. However, this method could not detect quantifiable levels of phycocyanin within 

lake core sediment samples. This indicates that the RABD615 signal is more likely to be 

measuring chl-a within the lake core rather than phycocyanin. A linear regression of 

RABD615 to chl-a concentrations (via spectrophotometry with acidification) resulted in a 

statistically significant correlation (p < 0.05) for all lakes with r2 values between 0.33 and 

0.74. Additionally, similar correlations between the cyanobacterial indicator pigments 

echinenone and the zeaxanthin to the RABD615 bandwidth were observed. However, for 

both echinenone and zeaxanthin the correlation was not as strong as it was for the chl-a 

concentrations (via spectrophotometry with acidification). 

Several studies have assessed the remote sensing of  phycocyanin within water bodies. 

Two of which included: Li et al. (2010) where HSI was calibrated to phycocyanin 

concentrations resulting in a r2 of 0.79 for a mesotrophic reservoir (Geist Reservoir, 

Indiana, USA), and Kwon et al. (2020), who calibrated phycocyanin detection with drone 

based HSI with r2 > 0.8. However, these studies have focused on the optically active 

nature of phycocyanin using HSI, where the distinctive reflectance of phycocyanin on the 

surface of the water itself was detected. With reference to paleolimnology, phycocyanin 

has not been widely utilised, as it is assumed that due to the high water solubility of the 

pigment, it will not be deposited out of the water column and into the sediment (Leavitt & 

Hodgson, 2002; Sanger, 1988). This appears to be correct, as phycocyanin was not 

detected in the sediment core samples analysed during this study.  

While the remote sensing of phycocyanin within a water body appears to be promising 

for the detection of cyanobacterial blooms, phycocyanin was not detected in lake 

sediment core samples within this study. Stronger correlations observed between the 

RABD615 HSI signal and chl-a concentration, compared to cyanobacterial indicator 

pigment concentrations, suggest that it is measuring a chl-a side peak rather than 

phycocyanin (as suggested in Yacobi et al. (2015)).  

5.2 Predicting Lake Water Quality Using Surface Sediments 
This second research component investigated the use of surface sediments to infer lake 

water quality using key phytoplankton pigments. The first part of the research assessed 

whether the quantif ication of key phytoplankton pigments within surface sediments could 

be used to create an accurate predictive model for lake trophic level indicators (TLIs). 

The second part of this section assessed whether the predictive model created for the 

first part of the section could be used to retrodict historical TLIs from lake sediment cores. 
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5.2.1 Predictive Lake Health Model 
To assess the effectiveness of key phytoplankton pigments within surface sediments to 

create a predictive lake health model using TLI measurements, this section created 

several predictive models using a machine learning approach (regression trees, random 

forest models, and boosted gradient models): The use of land use proportions within the 

catchment to extrapolate the TLI of the lake; the use of key phytoplankton pigments to 

create a TLI predictive model; and the use of key phytoplankton pigments in addition to 

other lake characteristics to construct a TLI predictive model. These models were 

created using data at a nationwide scale.  

5.2.1.1 The Effect of Land Use Proportions on Lake TLI Prediction 

The regression tree using catchment land use to predict lake TLI returned a RMSE of 

1.04 (25.8%). This tree highlighted the key driver utilised by this model as the proportion 

of high-producing exotic grassland within the catchment. This model was built to assess 

the feasibility of creating a predictive model for lake TLIs using the relationship between 

land use and TLIs. Previously, within New Zealand, Galbraith and Burns (2007) was able 

to link concentrations of nutrients within the lake water, and thus the TLI, to the extent of 

modification of the catchment. Additionally, Paul et al. (2012) correlated the land use in 

lake catchments to the trophic status of eleven New Zealand lakes located in the Rotorua 

lake district. Noting that lakes within catchments with higher nutrient loads from pastoral 

land use possessed a higher TLI and cyanobacterial dominance. Conversely, lakes with 

lower nutrient loads and a higher proportion of native land use within the catchment 

possessed a lower TLI and a chlorophyta dominance. This was supported by the 

catchment land use regression tree which found the highest driver of lake TLI to be high 

producing exotic grassland which will deliver a higher nutrient load to the lake. Paul et 

al. (2012), Peterson et al. (2007), and Jeppesen et al. (2005), also demonstrated 

relationships between the phytoplankton, and therefore the pigments laid down in the 

sediment, within the lakes and the corresponding land use of the lake catchment.  

5.2.1.2 The Effect of Phytoplankton Pigments on Lake TLI Prediction 

A regression tree between the lake TLI and the phytoplankton pigments with the surface 

sediments of the lake returned a RMSE of 1.13 (27.8%). While not as accurate as the 

regression tree created using land use proportions, the phytoplankton pigment model 

highlighted the key pigment drivers utilised by this model as zeaxanthin (a cyanobacteria 

indicator pigment), followed by alloxanthin (a pigment of the phytoplankton cryptophyta 

and chlorophyta) and echinenone (also a cyanobacteria indicator pigment). Additionally, 

a random forest model using twelve phytoplankton pigments (with three different 

measurements of chl-a) within the surface sediments of the lake was developed. The 

resulting pigment model possessed a RMSE of 0.49 (11.9%).  
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This tree highlighted the key phytoplankton pigments contributing to this model as the 

same as the regression tree, but with differing importance of the pigments. The primary 

pigment was alloxanthin, followed by echinenone and zeaxanthin. Additionally, 

alloxanthin, echinenone and zeaxanthin are some of the more stable carotenoids found 

in lake core sediments, isolated in sediments up to and over 5,000 years old (Watts & 

Maxwell, 1977; Züllig, 1986). The model placing importance on alloxanthin shows that it 

is also placing importance on low trophic levels as alloxanthin is indicative of chlorophyta, 

associated with lower TLIs in New Zealand Lakes (Paul et al., 2012). In addition to 

echinenone and zeaxanthin, which are indicative of cyanobacteria, associated with 

higher lake TLIs in New Zealand Lakes (Paul et al., 2012). This importance resulting 

from the model also reinforces the importance of the cyanobacterial indicators 

echinenone and zeaxanthin when it comes to determining lake health.  

5.2.1.3 Creating a Predictive Model for Lake Trophic Status  

Three machine learning models were created (regression tree, random forest, and 

boosted regression tree) for use on the sediment core samples to predict lake TLI using 

twelve phytoplankton pigments (with three different measurements of chl-a), plus five 

static lake physical characteristics (described hereafter as the ‘pigments +’ model). 

The random forest predictive model provided the most accurate predictive power with a 

RMSE of 0.39 (10.0%). As opposed to the ‘pigments +’ regression tree (RMSE of 0.96 

(24.6%)) and the ‘pigments +’ boosted regression tree (0.94 (24.2%)). The ‘pigments +’ 

regression tree identified the key drivers utilised as those related to the size of the lake 

(maximum depth of the lake, lake area, and lake volume). This aligns with research 

conducted by Hamill and Lew (2006), who identif ied lake depth as being closely 

associated with TLI within New Zealand lakes. Showing that lakes with a higher TLI were 

more frequently shallow lakes, and lakes with a lower TLI were more frequently deeper 

lakes. Additionally, the TLI association with lake depth corresponded with shallow lakes 

having a lower capability to assimilate nutrient loads because of their lower water 

volumes (Hamill & Lew, 2006). 

The most influential phytoplankton pigments were identif ied as zeaxanthin and 

echinenone (both cyanobacterial indicator pigments). Additionally, the random forest 

identif ied the key drivers as the maximum depth of the lake, the lake catchment size, and 

the lake volume, indicating that the larger these variables, the lower the TLI would be 

predicted. The most influential phytoplankton pigments being echinenone and 

canthaxanthin (both also cyanobacterial indicator pigments). Furthermore, the ‘pigments 

+’ boosted regression tree identif ied the key drivers as the maximum depth of the lake 

and elevation of the lake, with the most influential phytoplankton pigment being 
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echinenone. The ‘pigments +’ random forest model was the best preforming model 

returning a r2 of 0.95 when the TLI was regressed against the predicted TLI.  

As the ‘pigments +’ models contained three different analyses for chl-a three versions of 

the random forest model were created with one chl-a measurement in each. Chl-a 

analysis via spectrophotometry with acidification, was the best preforming model with a 

RMSE of 0.37 (9.3%) and r2 of 0.95. The improvement of the predicted error rate 

indicates that the combination of the three chl-a analyses within one model were 

overfitting the model.  

When using the ‘pigments +’ random forest model to predict lake TLI on surface sediment 

samples it was noted that the predicted TLIs were constrained to the more central values. 

The model was not predicting out to the limits of the range of the known TLIs (both low 

and high). This constraint could be indicative of the model trying to predict a single 

variable from such a dynamic system that the model is regressing towards the average 

as this is the most straightforward means of prediction. Additionally, the constraint seen 

in this model could also indicate variables not included in this model which influence the 

peripheral values.  

5.2.2 Retrodictive Lake Health Model 
To contrast and assess the accuracy of the two best performing models (the ‘pigments 

+’ random forest model and the pigments-only random forest) they were used to retrodict 

lake trophic states and modelled side by side. Additionally, as previously noted, the 

‘pigments +’ model was constrained (either due to the complexity of the lake ecosystem 

not being captured in the model or variables not included in this model which influence 

the peripheral values.) with its predictions, therefore, the pigments-only random forest 

was modelled alongside to provide a contrast and assess the accuracy of the 

retrodictions. However, the inclusion of the physical variables that would not change 

through time or would only change very slowly was included as this bought the predicted 

TLIs closer to an accurate estimate. With regards to the retrodicted TLIs these physical 

variables do not permit the model to fluctuate to the extremes unless a strong pigment 

concentration is detected. The ‘pigments +’ model allows is more accurate for modelling 

accurate current lake TILs, while the pigments model is better suited for modelling TLI 

changes over time.  

The two models were applied to lake sediment cores from five New Zealand lakes, with 

sediment records spanning: ≈ 800 years for Lake Nganoke, ≈ 450 years for Lake 

Okataina, ≈ 900 years for Lake Oporoa, ≈ 850 years for Lake Ponui, and ≈ 1,000 years 

for Lake Rototoa.  
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5.2.2.1 Lake Nganoke 

The retrodicted TLI for Lake Nganoke from the ‘pigments +’ random forest model 

suggests that even before the arrival of humans to New Zealand, Nganoke was in a 

eutrophic state. The retrodicted TLI fluctuated very little (4.3 to 4.9) throughout the ≈ 800 

years that the core spanned. Land use within the catchment for Nganoke has undergone 

heavy modification since the arrival of humans to the area, with only 5% of the remaining 

flora being native. The remaining vegetation is high producing grassland (84%) and 

exotic forest (8%). The indication given by the regression tree created to assess the 

effect of land use type proportions on trophic levels of lakes is that the proportion of 

various land use types (i.e., high producing exotic grassland) will have a noticeable effect 

on the lake TLI. This is not observed in the Nganoke ‘pigments +’ random forest model. 

Unfortunately, a spatial comparison (comparison of another lake with comparable 

attributes) of the lake is not feasible. Of the other lakes within the dataset compiled for 

this research, with four possessed a comparable catchment size to Lake Nganoke, in 

addition to being small shallow lakes. However, Lake Nganoke possesses the largest 

proportion of native flora within the catchment of the comparable lakes. Therefore, a 

comparison of Nganoke to an equivalent relatively unmodified lake catchment to 

compare the retrodicted TLI’s is not practical.  

A study conducted by Parrish (2020) used bacterial metabarcoding to retrodict the water 

quality of Nganoke. This study found that during the pre-human era and during the time 

of Māori settlement there was relatively low diversity in bacterial taxonomic composition, 

suggesting that the lake was microtrophic to oligotrophic. After the arrival of Europeans, 

the algal diversity in Lake Nganoke increased noticeably, suggesting that the lake moved 

up to the eutrophic level or higher. Neither the ‘pigments +’ model nor the pigments model 

reflected Nganoke as low as oligotrophic. However, both models reflected the increase 

to higher TLI after the arrival of Europeans.  

5.2.2.2 Lake Okataina  

Lake Okataina’s retrodicted TLI’s indicates that even before the arrival of humans to New 

Zealand, Lake Okataina was sitting on the boarder of oligotrophic and mesotrophic. 

Apparent within the lake sediment core was visual evidence of the 1886 Tarawera 

eruption which coincides with the arrival of Europeans to the area (as seen via the tephra 

layer within the core). Additionally, cyanobacteria indicator pigments only really start to 

appear within the top layers of the core, shortly after the lake recovered from the eruption. 

Indicating that they were only recently incorporated into the lake sediment. Like Lake 

Nganoke, Lake Okataina is unable to be spatially compared to other similar lakes as it 

possesses the highest proportion of native flora from the comparable lakes (72%). 
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However, the retrodictive TLI from the ‘pigments +’ random forest model for Lake 

Okataina highlights a possible limitation of the model. Following the eruption of Tarawera 

all phytoplankton and their respective pigments should have been decimated. Therefore, 

a pronounced drop in the retrodicted TLI would be expected. Within the tephra from 

Tarawera in the lake sediment the retrodicted TLI from the ‘pigments +’ model drops to 

its lowest value at 2.7. The possible reason for this is the static lake physical 

characteristics used in building the model. While these parameters allow for a relatively 

accurate predictive model between lakes, they could be introducing a bias within the 

model when it is used on a core of the same lake. Nonetheless, the small variation within 

the ‘pigments +’ model retrodicted TLI’s (2.7 to 3.9) is plausible as the catchment is 

relatively unmodified.  

A recent study conducted by Caird (2021) noted that after the Tarawera eruption and 

European settlement the lake possessed similar levels of primary productivity as the pre-

eruption levels. However, the bacterial community has altered post-eruption with an 

increase in bacterial diversity. This trophic level change appears to be reflected in the 

‘pigments +’ model with Lake Okataina possessing oligotrophic-mesotrophic waters pre-

eruption. While post-eruption modelled trophic levels have shifted slightly higher to 

mesotrophic levels.  

5.2.2.3 Lake Oporoa 

The retrodicted TLIs for Lake Oporoa showed an increasing trend since before the arrival 

of humans to the area (both European and Māori). The predicted downcore TLI is 

eutrophic in the pre-human era with a slight drop to mesotrophic around the ≈ 1300’s 

before climbing to current super-eutrophic levels. Spatially Lake Oporoa is 

geomorphically comparable to Lake Marion, with similar depths, volumes, and catchment 

size. However, Lake Marion sits at ≈. 680 m elevation while Lake Oporoa at ≈. 360 m. 

Lake Oporoa is a highly modified catchment with no native flora present (0%), whereas 

Lake Marion is relatively unmodified (87% native flora) and has a current TLI of 3.5 

(mesotrophic), as opposed to Lake Oporoa’s 7.7 TLI (supertrophic). The lowest 

retrodicted TLI for Lake Oporoa was 3.7 during pre-human times, which is comparable 

to Lake Marion’s 3.5. The average pre-human retrodicted TLI for Lake Oporoa was 4.3, 

while slightly higher (eutrophic as opposed to mesotrophic) the elevation difference 

between the lakes makes this value conceivable.  

5.2.2.4 Lake Ponui 

Lake Ponui’s retrodicted TLIs showed a recent sharp increase (in the past 2 decades), 

moving from mesotrophic to eutrophic. Prior to this Europeans had arrived within the 

area without influencing the trophic status of the lake significantly. However, the 
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retrodicted downcore TLI indicates that even before the arrival of humans to the area, 

Lake Ponui was in a mesotrophic state. Spatially Lake Ponui is geomorphically 

comparable to Lake Wiritoa, with similar elevation, depth, volume, and catchment size. 

However, Lake Ponui has a relatively unmodified catchment (84% native flora), whereas 

Lake Wiritoa is highly modified (2% native flora). Lake Wiritoa has a higher current TLI 

of 5.3, reflecting the catchment modification, while Lake Ponui’s retrodicted recent TLI is 

4.0.  

While it is plausible that Lake Ponui possess a smaller TLI than Lake Wiritoa due to the 

catchment modification. However, Lake Ponui’s retrodicted TLI is high for a relatively 

unmodified catchment. This could possibly be due to the presence of Perch within the 

lake (Jellyman, 1980) as zooplankton grazing by perch has been linked via a trophic 

cascade to cyanobacteria blooms (Smith & Lester, 2007).  

5.2.2.5 Lake Rototoa 

The retrodicted TLI’s for Lake Rototoa show a consistent TLI throughout history, varying 

only 0.4 during the last millennium. However, cyanobacteria indicator pigments only 

really start to appear within the lake sediments within the last century (≈ 1920’s), ≈120 

years after the arrival of Europeans, but ≈ 50 years before the intensification of pine 

plantations to the catchment (Holloway, 2020). Spatially Lake Rototoa is geomorphically 

comparable to Lady Lake, with similar elevation, depth, and volume. However, Lady Lake 

has a catchment three times the size of Lake Rototoa. Nonetheless, Lady Lake 

possesses a relatively unmodified catchment (79% native flora), as opposed to Lake 

Rototoa (32% native flora). The current TLI of Lady Lake (3.4) is comparable to Lake 

Rototoa’s (3.5). Therefore, the retrodicted TLI for Lake Rototoa, varying from 3.1 - 3.5, 

with a current TLI predicted by the model of 3.6 is a conceivable figure.  

5.2.3 Comparison of Retrodicted Lakes 
Within the dataset Lakes Nganoke and Oporoa are comparable small, riverine lakes, 

with small highly modified catchments. The TLIs modelled with the ‘pigments +’ model 

was high for both lakes. Neither of these lakes possess council monitoring data, so 

current TLIs were estimated from ‘spot’ samples (water samples collected at the time of 

coring). Lakes Nganoke and Oporoa show retrodicted TLI fluctuations to be less 

constrained than the other ‘pigments +’ models, through the eutrophic level, with Lake 

Oporoa climbing into the supertrophic level in recent times. For Lakes Nganoke and 

Oporoa the TLI retrodicted by the ‘pigments +’ model on the lake core sediment samples 

appears to be underestimated by the model when compared to the ‘spot’ TLIs (4.9 as 

opposed to 6.2, and 4.9 as opposed to 7.7, respectively). Additionally, the ‘pigments +’ 

model for the surface sediment sample for Lake Oporoa underestimated the lake TLI 
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(4.7 as opposed to 7.7) when compared to the ‘spot’ TLI. However, both the ‘pigments 

+’ models for the surface sediment and the lake core sediment samples for Lake Oporoa 

align closely (4.7 and 4.9 respectively). No surface sediment sample was collected for 

Lake Nganoke.  

Lakes Okataina and Rototoa were also comparable deep lakes with large catchments 

and mesotrophic TLIs retrodicted with the ‘pigments +’ model. However, Okataina is a 

volcanic lake with a large area, while Lake Rototoa is a wind/aeolian lake with an area 

just over 100 ha. Lakes Okataina and Rototoa possess council monitoring data to 

calculate the current TLIs. The ‘pigments +’ model closely predicted the TLIs using the 

surface sediment samples at 3.1 for Lake Okataina (TLI of 2.9) and 3.6 for Lake Rototoa 

(TLI of 3.5). The retrodicted TLI for Lake Okataina using the lake core sediment sample 

was overestimated by the model (3.9) at the surface of the lake core, and it appears that 

pre-human era TLI’s were overestimated by the pigments-only model for Lake Rototoa.  

Lake Pounui, like Lake Oporoa, is a deep small lake, and like Lake Rototoa, it is a 

volcanic lake. Additionally, like Lakes Okataina and Rototoa, Lake Ponui has a large 

catchment and a retrodicted TLI as mesotrophic. However, Lake Ponui does not possess 

council monitoring data, nor was a surface sediment sample taken from the lake. 

Therefore, a comparison of the TLI retrodicted by the ‘pigments +’ model using the lake 

core sediment sample cannot be compared other TLIs for the lake.  

By taking the lake TLIs retrodicted by the ‘pigments +’ model applied to the lake core 

sediment samples, presents an interesting situation. As the assumption of many 

degraded lakes throughout New Zealand, is that this is of anthropogenic origin. However, 

the retrodicted TLI’s of these five lakes suggests, that while anthropogenic influence is 

exacerbating the degradation of the lakes since the arrival of humans to the area, before 

this the trophic levels of these lakes have not drastically increased. 

5.2.4 Detection of Fossilised Cyanobacteria Indicator Pigments  
Apparent in all f ive lake cores are the higher levels of cyanobacteria indicator pigments 

within the most recent lake sediments. This could be an indication of degradation of the 

pigments within the sediments with depth. However, Lakes Nganoke and Rototoa show 

the proportional changes with the cyanobacterial indicators are greater than the 

proportional changes in chl-a. This indicates that if degradation of the cyanobacterial 

indicators was a factor, we could expect to see less degradation than this. Additionally, 

higher levels of the cyanobacteria indicator pigments also coincide with the arrival of 

Europeans to the catchments of most of the lakes (Lakes Oporoa and Rototoa, and 

heightened levels in Lakes Nganoke and Okataina), therefore, a rise in cyanobacteria at 
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this point would be expected, due to the impacts of catchment disturbance. Lakes 

Nganoke, Ponui, and to some extent Okataina show cyanobacteria indicator pigments 

recovered from the lake sediments as old as ≈ 400 to 700 years old.  

Existing literature has demonstrated the resilience of certain pigments in Lake sediment 

samples, for example, Züllig (1986) isolated echinenone from 14,000-year-old lake 

sediment (Lake or pond Lobsigen, Switzerland), while Watts and Maxwell (1977) isolated 

echinenone, zeaxanthin, and canthaxanthin in samples up to 5,000 years old in marine 

sediment samples from the Cariaco Trench, before the echinenone and zeaxanthin 

showed degradation. Within the same core, canthaxanthin was detected in sediments 

340,000 years old. These studies suggest that decrease of cyanobacteria indicator 

pigments down the older lake core sediment samples is not connected to the degradation 

of the pigments, rather it is linked to the arrival of Europeans to the area.  

5.2.5 Limitations of the ‘Pigments +’ Model 
The predictive ‘pigments +’ model developed is potentially limited as the measurements 

within this research have not been corrected for variations in sedimentation rates. 

Additionally, the retrodicted models were not corrected for possible pigment degradation 

down the lake core. Additionally, the ‘pigments +’ model appears to have some limitations 

as illustrated by Lakes Okataina and Rototoa where the five physical lake characteristics 

that would not change through time, or would only change very slowly (Elevation, Lake 

Area, Lake Volume, Maximum Depth, and Catchment Area) appear to bias the 

retrodictions of the model within the same lake core. For the initial building of the model 

these physical lake characteristics aided in lowering the model error. However, when 

applied on a single lake, these physical lake characteristics appear to be biasing the 

model toward higher TLIs. In addition to constraining the ‘pigments +’ retrodicted TLIs 

(no extreme fluctuations observed) when they are compared to the pigments-only 

random forest model.  

The ‘pigments +’ model also appears to display bias due to the calibration dataset used 

when creating the predictive models. While the calibration dataset contained a 

comprehensive number of lakes, the representation of lakes from different TLI categories 

was uneven, with nine lakes microtrophic, nine lakes oligotrophic, 25 lakes mesotrophic, 

25 lakes eutrophic, and 27 lakes supertrophic. However, this could also reflect the 

proportion of lake TLIs throughout New Zealand. This could have contributed to model 

bias, with the model to predicting more lakes as mesotrophic to supertrophic.  

Additionally, the TLI itself cannot completely account for all the catchment dynamics and 

influences, as there are always exceptions to the rule. For example, some lakes do not 
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adhere to the ‘less modified catchment, the lower the lake TLI’ scenario, Lake Te Kahika 

is a mesotrophic lake (TLI 2.7) with a highly modified catchment (<1% native flora and 

90% exotic forest), whereas Lake Wainamu is a eutrophic lake (TLI 4.1) with a relatively 

unmodified catchment (92% native flora and 4% high producing exotic grassland). 

Indicating that factors other than the catchment modification are driving the lake TLI. 

Conversely, this could indicate that a low catchment modification of high producing 

grassland is more detrimental to the lake’s health than a large exotic forest modification. 

However, it is apparent that exotic forest has a different impact on lake health than native 

forest. The reason for this was not investigated.  

Furthermore, there is a lack of an appropriate validation dataset to compare the 

retrodicted TLI values, e.g., models of retrodicted lake TLIs created from proxies such 

as diatom abundance, nutrient concentrations (nitrogen and phosphorus), and/or 

fossilised DNA to reconstruct past phytoplankton communities. Contrasting these 

proxies against the ‘pigments +’ model would provide a better understanding of the 

accuracy of the model. Comparisons were drawn with the chl-a and cyanobacteria 

indicator pigments. However, while a comparison of the retrodicted TLI to common 

trophic status indicator pigments (chl-a and cyanobacteria indicators) aids in assessing 

the execution of the model, it needs to be considered that these parameters were 

included in the construction of the model. Therefore, it is logical that the results would be 

comparative.  

5.2.6 Place in Ecology for this model 
The analysis of phytoplankton pigments within the lake sediment core samples provides 

a step toward the reconstruction of both neoliminological and paleolimnological water 

quality. The neoliminological analysis provides a predictive tool to access lake TLI using 

a single surface sediment sample, rather than requiring monitoring data. Particularly, as 

the surface sediment of lakes captures the more recent (last couple of decades 

depending on the sedimentation rate of the lake) changes to the lakes TLI  in a single 

sample. By utilising surface sediment sample as a proxy for lake TLI indications seasonal 

and annual variations (i.e., El Niño and La Niña events) will be averaged out into the 

samples and not result in strong fluctuations providing a more consistent estimation of 

the lake’s health. This can be a valuable tool for regional councils to aid in the 

identif ication of degraded lakes. Allowing for priorit isation of rehabilitation projects. The 

land use model, if refined, may also provide an idea of how to balance the various land 

uses within a catchment to not exert too much pressure on the lake. 

The retrodictive ‘pigments +’ model provides a paleolimnological reconstruction of the 

past lake TLI through the analysis of phytoplankton pigments. This reconstruction will aid 
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in the understanding of past lake conditions particularly if a degraded lake has historically 

been in this state, then rehabilitation is unlikely to be successful. On the same note, if a 

degraded lake has not always been in that state, rehabilitation efforts can be prioritised 

here.  

5.2.7 Future Directions for Modelling Lake TLI Using Phytoplankton 

Pigments in the Lake Sediment.  
There is room for refinement and expansion of the ‘pigments +’ predictive model. While 

the ‘pigments +’ model resulted in a relatively accurate estimate of TLI (within 10% when 

evaluating the surface sediment dataset), this model could be refined by investigating 

the feasibility of constructing a Bayesian network. A Bayesian network provides a more 

dynamic predictive model and can overcome some of the limitations seen in other 

ecological predictive models. For example, a Bayesian network can compensate for 

missing variables in addition to negating statistical inference when highly correlated 

covariates are within the dataset (Ramazi et al., 2021). Additionally, to further refine the 

retrodicted TLI model, suitable validation data needs to be acquired. To completely 

validate the accuracy of the retrodictions they need to be contrasted to other proxies for 

more understanding, for example, diatom analysis retrodictions of TLI. Additionally, the 

validation set should be based on lakes with common components, i.e., similar static 

lake characteristics. Therefore, they would reflect the gradients of limnological conditions 

that could be expected in the retrodicted TLI’s (Smol, 2009). This model could be further 

refined by incorporating additional paleolimnological proxies into the model, if available, 

such as but not limited to, diatom abundance, nutrient concentrations (nitrogen and 

phosphorus), and/or fossilised DNA to reconstruct past phytoplankton communities.  
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 Chapter 6 Conclusion 

This research aimed to assess the potential of phytoplankton pigments 

preserved/captured within sediments as indicators of lake water quality in both 

neoliminological and paleolimnological lake sediment from New Zealand lakes. In 

addition to testing HSI as a method for detecting phytoplankton pigments within 

sediments.  

When comparing sediment pigment measurements made by HSI against measurements 

made by the ‘traditional’ methods of HPLC and spectrophotometry. It was observed that 

the three methods of calibrating RABD660-670 to chl-a analyses (HPLC-DAD or 

spectrophotometry both with and without acidification) produce statistically significant 

correlations (p-value <0.05). With the chl-a via spectrophotometry without acidification 

providing a more consistent linear regression, with a linear regression relationship 

comparable to the individual lake calibrations. This research showed that not only does 

the RABD660-670 HSI signal from lake sediment cores provide accurate and reliable 

measurement of chl-a compared to those achieved through traditional analytical 

methods, but a universal calibration between RABD660-670 and chl-a concentrations 

analysed via spectrophotometry without acidification appears feasible. However, more 

work with a larger dataset needs to be conducted to confirm this. 

This research could find no quantifiable amounts of phycocyanin detectable through the 

fluorescence method in lake core sediment samples for this study, despite the lake cores 

showing detectable signals at RABD615. This suggests that phycocyanin is not integrated 

into the sediment layer of the study lakes. However, it is plausible that the phycocyanin, 

if present, may have been masked by the optical activity of the chlorophyll pigments 

present within the sediment.  

The second part of the research aimed to analyse lake surface sediments from sample 

set of 223 New Zealand Lakes (≈ 6% of the lakes in New Zealand) for key phytoplankton 

pigments to infer the water quality. Creating a random forest model using the ‘pigments 

+’ data resulted in a prediction RMSE of 0.37 (9.3%) and r2 of 0.95. 

This predictive model was then used to retrodict lake trophic states from downcore 

samples from five New Zealand Lakes. However, due to limitations of the model and a 

lack of an appropriate validation dataset to compare the retrodicted TLI values could not 

be sufficiently assessed for accuracy. The analysis of cyanobacteria indicator pigments 

(canthaxanthin, echinenone, myxoxanthophyll, and zeaxanthin) suggested that the 

decrease of cyanobacteria indicator pigments down the older lake core  sediment 

samples is not connected to the degradation of the pigments, rather it is linked to the 
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arrival of Europeans to the area. Nevertheless, by taking the lake TLIs retrodicted by the 

‘pigments +’ model presented an interesting situation. Suggesting that while 

anthropogenic influence is exacerbating the degradation of the lakes since the arrival of 

humans to the area, before this, the trophic levels of these lakes have not drastically 

increased. 

The predictive model of lake TLI provides a tool to access lake TLI using a single surface 

sediment sample, rather than requiring lake monitoring data. This can be a valuable tool 

for regional councils to aid in the identif ication of degraded lakes. Allowing for 

prioritisation of rehabilitation projects. The land use model, if refined, may also provide 

an idea of how to balance the various land uses within a catchment to not exert too much 

pressure on the lake. The retrodictive ‘pigments +’ model provides a paleolimnological 

reconstruction of the past lake TLI through the analysis of phytoplankton pigments aiding 

to better understand past lake conditions and refine rehabilitation efforts for the lakes. 

Particularly, if a degraded lake has historically been in this state, then rehabilitation is 

unlikely to be successful. On the same note, if a degraded lake has not always been in 

that state, rehabilitation efforts can be prioritised here.  

Future directions for this research include the validation of the universal calibration of 

HSI signal RABD660-670 to chl-a concentrations analysed via spectrophotometry without 

acidification with a larger dataset of lakes to understand whether some lake possess 

significantly differing calibrations. Additionally, more work needs to be undertaken to 

investigate the potential outliers and lakes which differ in their results, and to understand 

which aspects within these lakes are causing the differing results. Additionally, to further 

refine the retrodicted TLI model, suitable validation data needs to be acquired  so they 

can be contrasted to other proxies (such as diatom analysis retrodictions of TLI) for a 

better understanding of the model. This model could be further refined by incorporating 

additional paleolimnological proxies into the model, if available, such as, nutrient 

concentrations (nitrogen and phosphorus), and/or fossilised DNA to reconstruct past 

phytoplankton communities.  
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Appendix 

Appendix A. Chemical solution preparation 
Details on how to prepare solutions used for pigment analysis.  

Solution Preparation 

Phosphate Buffer (50 
mM; pH 7.2)  

Add 8.92 g of sodium phosphate dibasic heptahydrate 

(Na2HPO4·7H2O) and 2.31 g of sodium phosphate monobasic 

monohydrate (NaH2PO4·H2O) to 800 mL of Milli-Q® ultrapure 

water.  

Correct the solution to pH 7.2 using either 1 M hydrochloric acid 

(HCl) to decrease pH or 1 M sodium hydroxide (NaOH) to 

increase. Top up the adjusted solution to 1 L with Milli-Q® 

ultrapure water.  

90% Ethanol In a fume hood, mix 450 mL of 100% ethanol with 50 mL of Milli-

Q® ultrapure water. 

1M Hydrochloric Acid 
(HCl) 

In a fume hood, add an ampule of standardised hydrochloric acid 

(0.5 mol/L 1N ampoule) to partially filled 1L volumetric flask, then 

f ill to 1 L with Milli-Q® ultrapure water.  

1N Sulphuric Acid 
(H2SO4) 

In a fume hood, add an ampule of standardised sulfuric acid (1N 

H2SO4) to partially filled 1L volumetric flask, then fill to 1 L with 

Milli-Q® ultrapure water. 

1% H2SO4 In a fume hood, add 9 mL of 1N H2SO4 to a 250 mL partially filled 

volumetric flask, then fill to 250 mL with Milli-Q® ultrapure water. 

20 mg/mL CuSO4 Add 2 g of CuSO4·5H2O to a 100 mL volumetric flask, then 50 mL 

of  1% H2SO4. Mix or sonicate until the CuSO4 dissolves. Top up 

to 100 mL with 1% H2SO4.  

Compare the absorbance of the new solution (at 665 nm and 

750 nm) with the previous solution using a 1 cm cuvette in the 

spectrophotometer which was previously blanked with 1% H2SO4. 

methanol + 0.1% 
triethylamine 

Mix 2 mL triethylamine to 2 L 100% methanol 

40:60 methanol/ 
isopropyl alcohol + 
0.1% triethylamine 

Mix 2 mL triethylamine with 800 mL 100% methanol and 1,200 

mL 100% isopropyl alcohol. 
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Appendix B. ArcGIS Models 
ArcGIS models are workflows that create a sequence of geoprocessing tools automatically providing the output of one process into another tool 

as the selected input. Models are efficient ways of automating high throughput analyses such as delineating watersheds for 232 lakes and 

extracting data relevant data. Initial work steps were followed from Esri (2016) then adapted for the model.  

Watershed Creation Model 
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ArcGIS model for clipping LCDB 
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Appendix C. Specific Characteristics of the Lakes Analysed 
Characteristics of the dataset of 232 lakes utilised within this research.  

Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 

Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Acheron Lakes 1 Southland 168.09508 -45.162173  Glacial 1215.02 14.84 15.10 745061.00 2,020,843.87 

Acheron Lakes 2 Southland 168.099994 -45.172416  Glacial 1215.59 12.66 25.20 1062840.00 3,789,301.14 

Alpine Lake West Coast 170.137758 -43.287304  Glacial 95.36 24.07 57.20 4587404.00 1,656,579.85 

Alta Tarn/Little 

McKay 
Otago 169.189836 -44.878914  Glacial 1714.93 26.05 1.40 124305.00 247,578.40 

Big Lagoon Southland 168.176044 -46.352698  

Coastal 

Shoreline/ 

Lagoon 

15.34 2.90 16.50 160101.00 NA 

Dumb-bell Lake Canterbury 169.760098 -44.241908  Glacial 1557.18 21.99 14.50 1063610.00 1,124,038.47 

Duncan Stream 1 Canterbury 170.043707 -44.011167  Glacial 1839.10 16.32 2.90 158932.00 525,255.41 

Duncan Stream 2 Canterbury 170.052239 -44.017164  Glacial 1698.82 21.99 1.70 125984.00 503,830.25 

Duncan Stream 3 Canterbury 170.059998 -44.032518  Glacial 1336.03 13.56 11.30 510992.00 7,822,438.12 

Hartley Tarn Canterbury 170.439594 -43.881374  Glacial 858.61 18.17 5.90 355542.00 582,714.33 

Horseshoe Hawkes Bay 176.760833 -39.92  
Tectonic/ 

Landslide 
175.89 23.09 31.00 2384056.00 781,690.54 

Horseshoe Lake Canterbury 172.521944 -42.597778  Riverine 456.65 17.75 4.32 255327.47 NA 

Hurimoana Swamp Hawkes Bay 176.719924 -39.554087  
Swamp/ 

Wetland 
38.09 11.91 20.20 800772.00 3,579,944.64 

Irishman stream Canterbury 169.940542 -44.052604  Glacial 1795.46 17.39 1.20 66884.00 36,366,567.92 

Island Lake Southland 167.365662 -45.779249  Glacial 715.18 31.01 41.80 4326328.00 3,399,898.88 

Jane Lake Southland 167.110974 -45.712428  Glacial 855.73 26.05 8.60 748513.00 1,453,243.29 

Kaihoka Lakes 1 Tasman 172.59835 -40.553914  

Coastal 

Shoreline/ 

Lagoon 

52.35 15.99 5.30 281261.00 294,068.44 

Kaihoka Lakes 2 Tasman 172.602592 -40.554992  

Coastal 

Shoreline/ 

Lagoon 

37.47 11.50 6.80 259070.00 562,771.83 

Kaikereru Hawkes Bay 177.549444 -38.755278  Volcanic 298.16 23.99 6.90 552029.00 252,184.58 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Kaikiore Hawkes Bay 177.541111 -38.767778  Volcanic 265.15 24.15 5.60 449195.00 3,432,258.26 

Kaikura Taranaki 174.404495 -39.70007  

Coastal 

Shoreline/ 

Lagoon 

58.13 5.54 5.90 109286.00 8,457,127.78 

Kangaroo Lake West Coast 171.548724 -42.613492  Glacial 96.80 50.63 125.50 21172991.00 6,173,111.08 

Kaurapataka West Coast 171.696405 -42.78562  
Tectonic/ 

landslide 
408.42 48.52 34.90 5644693.00 3,632,017.37 

Kautuku Swamp Hawkes Bay 176.732865 -39.573314  
Swamp/ 

Wetland 
39.78 11.54 10.40 398613.00 2,322,554.73 

Kawau Taranaki 175.351585 -40.262325  Riverine 71.28 13.70 1.00 45767.00 1,574,237.86 

Kaweka 1 Hawkes Bay 176.3625 -39.361389  Man-made 677.25 18.05 8.60 517607.00 1,868,216.77 

Kaweka 2 Hawkes Bay 176.365278 -39.363056  Man-made 677.90 18.27 5.10 313441.00 339,423.76 

Killanery Tasman 172.808308 -40.852047   11 11.8 0.6  57,851.00 

L 15929 Taranaki 174.816663 -39.841709  Wind/Aeolian 59.22 15.66 6.30 328534.00 11,311,148.21 

L 24423 Northland 173.320882 -34.876688  Wind/Aeolian 7.74 2.50 23.50 196089.00 2,305,954.06 

L 45434 Canterbury 169.747966 -44.285174  Glacial 1516.66 14.89 5.90 292422.00 2,480,827.04 

L 46774 West Coast 169.737734 -43.640618  Glacial 1193.70 26.06 10.00 867390.00 525,987.90 

L 50335 Northland 174.027104 -36.29181  
Swamp/ 

Wetland 
11.29  2.50 50937.00 1,614,754.05 

L 51931 Southland 167.706476 -45.581972  Riverine 237.93 12.04 2.60 104474.00 106,772.87 

L 52064 Southland 167.716506 -45.471914  Glacial 275.68 24.60 2.80 229546.00 174,910.91 

L 52117 Southland 167.895873 -45.453998  
Swamp/ 

Wetland 
376.96 0.50 8.70 747569.00 3,148,565.61 

L 52487 Southland 167.870808 -45.346308  Riverine 354.31 12.88 2.00 85013.00 249,616.57 

L 54655 Otago 168.952186 -44.533008  Glacial 1413.81 27.64 3.10 285713.00 1,214,463.58 

Lady Lake West Coast 171.573965 -42.601819  Glacial 111.09 23.00 140.80 10790978.00 15,997,825.39 

Lake 34599 Hawkes Bay 176.963611 -39.647222  
Coastal 
Shoreline/ 

Lagoon 

42.29 13.06 6.00 261487.00 265,898.59 

Lake 36343 Hawkes Bay 176.955833 -39.651111  

Coastal 

Shoreline/ 

Lagoon 

55.22 15.20 6.90 351252.00 1,247,155.34 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Lake Alexandrina Canterbury 170.451473 -43.937539 3.0 Glacial 711.09 27.00 645.70 58109414.00 47,246,367.41 

Lake Bright Southland 167.142116 -45.691707  Glacial 812.93 25.47 18.10 1533204.00 5,600,045.31 

Lake Brunner / 

Kōtukuwhakaoka 
West Coast 171.447500 -42.615833 3.4 Glacial 76.40 109.00 4060.97 1475485331.00 910,431,342.97 

Lake Camp Canterbury 171.055247 -43.614686 3.3 Glacial 675.94 13.00 43.80 1895901.00 6,102,972.61 

Lake Carrot Northland 173.187516 -35.022290 4.4 Wind/Aeolian 54.98 3.00 2.10 20633.00 166,526.91 

Lake Catherine Canterbury 171.560048 -43.221696 2.5 Glacial 667.12 18.63 18.40 1142957.00 2,724,633.10 

Lake Cecil Southland 167.384201 -45.304816  Glacial 633.06 28.45 14.00 1330511.00 11,723,303.11 

Lake Chalice Marlborough 173.31 -41.568056  Landslide 775.71 35.69 42.50 5056408.90 14,028,791.95 

Lake Clearwater Canterbury 171.046680 -43.604066 4.0 Glacial 675.00 18.00 196.60 11798938.00 32,800,697.13 

Lake Denny Canterbury 171.122007 -43.670566 5.5 Riverine 677.85 15.09 5.40 270752.00 15,958,017.21 

Lake Douglas West Coast 169.0911 -43.967272  Glacial 627.75 43.53 64.00 9283409.00 22,161,531.76 

Lake Dudding 
Manawatu 

Wanganui 
175.279000 -40.100300 5.7 Wind/Aeolian 91.85 19.72 7.84 515105.85 1,155,879.52 

Lake Eggeling West Coast 169.145945 -43.985353  Glacial 980.00 27.64 10.00 918527.00 5,513,550.57 

Lake Emily Canterbury 171.227277 -43.551066 4.1 Riverine 674.31 17.31 19.30 1116175.00 2,350,205.12 

Lake Emma Canterbury 171.106261 -43.636279 4.5 Glacial 639.76 3.00 166.80 1667881.00 29,878,344.88 

Lake Eva Southland 167.337171 -45.286146  Glacial 909.79 27.41 13.40 1219933.00 2,905,513.00 

Lake Evelyn Canterbury 171.538898 -43.254488 3.2 Glacial 592.29 23.01 17.60 1352575.00 49,495,471.49 

Lake Eyles Southland 167.468845 -45.25051  Glacial 1004.46 27.46 41.90 3832533.00 2,654,754.94 

Lake Forsyth (Lake 

Wairewa) 
Canterbury 172.736957 -43.805443 6.1 

Coastal 

Shoreline/ 

Lagoon 

2.63 4.00 558.80 7450066.00 111,147,560.30 

Lake Freeman Southland 167.337057 -45.343426  Glacial 734.82 26.29 10.50 923470.00 11,156,205.28 

Lake Gault West Coast 169.984172 -43.430438  Glacial 333.23 42.10 31.80 4460964.00 1,415,809.57 

Lake George Southland 167.858439 -46.356639 4.5 

Coastal 

Shoreline/ 

Lagoon 

10.47 2.00 90.80 605401.00 43,303,580.12 

Lake Georgina Canterbury 171.568705 -43.317001 4.0 Glacial 536.66  17.50 581716.00 6,109,568.24 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Lake Grasmere Canterbury 171.774469 -43.063871 3.4 Riverine 589.18 15.00 62.40 3117796.00 11,675,366.35 

Lake Greaney West Coast 168.784653 -44.092708  Glacial 1183.03 21.84 15.90 1157343.00 1,558,654.17 

Lake Hakanoa Waikato 175.167500 -37.552222 6.8 Riverine 15.50 2.50 56.39 469952.14 5,746,410.34 

Lake Harihari Waikato 174.722778 -38.210833 3.9 Wind/Aeolian 16.04 8.13 18.39 498605.40 1,251,509.28 

Lake Haupiri West Coast 171.659782 -42.445279 3.5 Glacial 176.03 43.58 223.80 32514025.00 38,642,987.05 

Lake Hawden Canterbury 171.849859 -43.104203 3.5 Glacial 571.06 4.00 35.40 471496.00 3,858,596.08 

Lake Hawea Otago 169.307122 -44.456417 1.2 Glacial 283.16 384.00 
15177.0

0 

19426539520.0

0 
1,370,386,978.14 

Lake Hay Southland 167.047436 -45.806496  Glacial 704.37 34.38 26.50 3040254.00 2,049,333.91 

Lake Hayes Otago 168.811058 -44.974953 4.7 Glacial 324.78 35.00 273.82 31945596.67 24,876,866.05 

Lake Heather Northland 173.193598 -35.050958 5.0 Wind/Aeolian 37.85 5.60 8.30 166575.00 517,889.82 

Lake Henrietta Canterbury 171.500517 -43.229210  Glacial 571.75 18.67 4.30 270664.00 8,845,922.09 

Lake Henry Southland 167.717397 -45.431004  Glacial 218.16 21.38 3.50 251240.00 185,930.20 

Lake Herengawe Taranaki 174.640591 -39.792905  Wind/Aeolian 54.90 18.60 14.30 887649.00 5,059,256.60 

Lake Heron Canterbury 171.169529 -43.483910 3.2 Riverine 692.39 37.00 694.50 85658441.00 183,575,216.00 

Lake Hochstetter West Coast 171.659782 -42.445279  Glacial 252.28 42.80 500.20 71369317.00 25,424,189.43 

Lake Humuhumu Northland 174.121361 -36.327457 3.7 Wind/Aeolian 51.05 15.00 139.60 6978376.00 8,942,973.56 

Lake Ianthe West Coast 170.622189 -43.055498  Riverine 9.48 9.11 470.80 14303850.00 16,085,303.20 

Lake Ida Canterbury 171.538249 -43.235059 3.2 Glacial 675.65 9.00 10.00 301251.00 4,093,053.41 

Lake Ione Southland 167.33763 -45.279517  Glacial 914.82 24.75 17.70 1462855.00 2,178,542.24 

Lake Jaquiery Southland 167.241653 -45.834946  Glacial 689.17 27.41 10.40 952418.00 5,190,373.16 

Lake Johnson Otago 168.732361 -45.007715 5.4 Glacial 391.20 27.00 25.47 2292303.94 1,224,359.10 

Lake Kahuparere Northland 174.158237 -36.369540 4.0 Wind/Aeolian 57.50 7.50 7.30 183458.00 17,893,638.35 

Lake Kaiiwi Northland 173.653697 -35.815094 2.9 Wind/Aeolian 78.30 16.00 26.80 1427544.00 5,316,148.16 

Lake Kaniere West Coast 171.145806 -42.829775  
Tectonic/ 

Landslide 
108.09 54.24 1473.80 266478692.00 54,703,914.05 

Lake Kanono Northland 174.143699 -36.363631 4.4 Wind/Aeolian 57.29 14.00 77.10 3597560.00 17,274,786.10 

Lake Kapoai Northland 173.833139 -36.045759  Wind/Aeolian 37.72 12.00 2.50 74695.00 2,657,533.90 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Lake Karaka Northland 174.039526 -36.313304 5.0 Wind/Aeolian 5.92 5.00 10.60 175839.00 8,072,388.95 

Lake Karangata Hawkes Bay 177.5425 -38.772778  Volcanic 259.94 33.68 11.04 1240073.95 760,165.33 

Lake Katawich Northland 173.164009 -34.943646  Wind/Aeolian 35.85 11.30 6.90 261419.00 1,531,294.01 

Lake Kereta Auckland 174.280097 -36.592355 5.2 Wind/Aeolian 17.07 5.00 23.60 117947.00 8,389,920.41 

Lake Kohangapiripiri Wellington 174.857033 -41.361741  

Coastal 

Shoreline/ 

Lagoon 

15.71 1.80 10.80 275937.00 3,774,185.95 

Lake Kohangatera Wellington 174.867192 -41.368318  

Coastal 

Shoreline/ 

Lagoon 

14.27 2.50 21.30 542232.00 20,565,642.79 

Lake Kuwakatai Auckland 174.237147 -36.527718 5.3 Wind/Aeolian 56.30 19.00 27.80 1760235.00 9,837,275.54 

Lake Lochnager Otago 168.603678 -44.590747  Glacial 1056.40 45.03 303.60 45576048.00 21,700,318.84 

Lake Lockett Tasman 172.624877 -41.07948  Glacial 1285.44 26.28 27.40 2398479.00 1,481,212.88 

Lake Lucille Southland 167.262574 -45.496883  Glacial 804.21 26.29 12.30 1076648.00 1,612,478.34 

Lake Lyndon Canterbury 171.693466 -43.306460 3.1 Glacial 825.96 28.00 88.40 8249652.00 15,250,255.29 

Lake Mahinapua West Coast 170.919334 -42.793725  Glacial 13.83 10.00 393.80 13125625.00 38,487,198.22 

Lake Mangawhio Taranaki 174.794396 -39.654043  
Tectonic/ 

Landslide 
119.95 17.24 9.20 529832.00 5,399,320.42 

Lake Mapourika West Coast 170.204077 -43.313652  Glacial 52.28 40.48 889.70 120051931.00 65,036,709.63 

Lake Marion Canterbury 172.231667 -42.678889  Glacial 677.43 18.63 9.98 619729.59 824,204.61 

Lake Mason Canterbury 172.168056 -42.733889  Glacial 671.89 25.46 52.60 4467988.00 8,638,633.05 

Lake Mcgregor Canterbury 170.470924 -43.936175  Glacial 709.56 25.47 37.10 3148391.00 49,339,324.14 

Lake Mckay Otago 169.212716 -44.850345  Glacial 1695.19 12.83 2.90 122358.00 910,009.58 

Lake Mike Southland 166.902314 -45.826198  Glacial 486.50 43.31 47.40 6849086.00 8,955,581.47 

Lake Minerva Southland 167.344749 -45.326148  Glacial 779.92 25.95 16.90 1462986.00 6,034,898.55 

Lake Moawhitu 

(Durville) 
Marlborough 173.810666 -40.809941    13.0   2,091,989.89 

Lake Moeraki West Coast 169.275915 -43.728283  Glacial -19.34 12.75 241.80 10272174.00 99,088,431.54 

Lake Mokeno Northland 174.063316 -36.351529 4.6 Wind/Aeolian 8.31 5.50 159.20 2919345.00 8,066,051.64 

Lake Morehurehu Northland 172.997073 -34.642364 3.7 Wind/Aeolian 16.97 14.10 35.90 1676633.00 3,026,983.80 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Lake Morgan West Coast 171.707229 -42.671405  Glacial 1230.03 26.05 11.30 979894.00 683,154.59 

Lake Moumahaki Taranaki 174.665746 -39.69149  Riverine 95.30 37.32 32.90 4086180.00 20,560,850.41 

Lake Ned Otago 168.433194 -45.286903  Glacial 844.86 20.15 11.70 784467.00 35,390,649.84 

Lake Ngahewa Waikato 176.373945 -38.315366  Volcanic 412.97 23.18 8.40 650819.00 7,374,785.26 

Lake Ngakapua Northland 173.192614 -35.020496 4.1 
Swamp/ 

Wetland 
56.19 4.90 6.10 105005.00 443,435.82 

Lake Ngakeketa Northland 172.772042 -34.518375  Wind/Aeolian 38.14 8.70 11.40 329330.00 5,769,816.53 

Lake Nganoke Wellington 175.18696 -41.3555  Riverine 19.91 7.00 3.10 72263.00 1,484,231.92 

Lake Ngapouri 
Bay of 

Plenty 
176.335309 -38.338764  Volcanic 477.39 19.01 21.30 1349818.00 7,471,876.08 

Lake Ngatu Northland 173.197639 -35.031680 4.0 Wind/Aeolian 37.40 6.50 51.70 1119982.00 2,652,062.12 

Lake Nigel Otago 168.427815 -45.295682  Glacial 861.35 17.67 16.60 975013.00 33,257,252.55 

Lake Norma Southland 167.273963 -45.336915  Riverine 405.70 30.97 17.60 1812463.00 18,491,302.58 

Lake Ohau Canterbury 169.852524 -44.224624 1.7 Glacial 455.14 129.00 5926.77 2548511100.00 1,145,648,090.76 

Lake Okareka 
Bay of 

Plenty 
176.362101 -38.170668 3.4 Volcanic 344.39 33.50 334.10 37308073.00 19,785,560.89 

Lake Okaro 
Bay of 

Plenty 
176.394741 -38.298901 5.1 Volcanic 419.72 18.00 30.10 1808142.00 4,733,799.50 

Lake Okataina 
Bay of 

Plenty 
176.407460 -38.128860 2.9 Volcanic 302.04 78.50 1072.80 280713462.00 63,457,468.28 

Lake Onoke Wellington 175.131667 -41.380278  
Coastal 
Shoreline/ 

Lagoon 

0.18 7.70 622.38 15965758.43 3,430,288,608.03 

Lake Oporoa 
Manawatu 

Wanganui 
175.867549 -39.751437 4.4 Riverine 357.55 27.06 7.10 638026.00 400,127.52 

Lake Opouahi Hawkes Bay 176.835840 -39.146529  Riverine 485.30 18.26 5.80 355443.00 600,734.83 

Lake Orakai Hawkes Bay 176.888152 -39.236089  
Tectonic/ 

Landslide 
168.35 23.30 3.30 256405.00 7,842,548.96 

Lake Orbell Southland 167.669139 -45.292665 3.5 Glacial 880.67 40.71 34.50 4676367.00 5,175,322.05 

Lake Otuhie Tasman 172.420242 -40.68533  
Tectonic/ 

Landslide 
4.75 9.10 84.70 2566636.00 15,351,177.65 

Lake Oturi Taranaki 174.62159 -39.779442  Wind/Aeolian 59.01 12.14 10.90 442281.00 3,583,431.51 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Lake Paringa West Coast 169.406752 -43.719989  Glacial -1.68 18.46 474.60 29205220.00 79,668,906.98 

Lake Pauri 
Manawatu 

Wanganui 
175.100556 -39.978056 5.4 Wind/Aeolian 57.58 7.85 19.25 503840.32 7,059,125.63 

Lake Pearson Canterbury 171.779191 -43.103656 3.8 Glacial 603.15 17.00 201.90 11443202.00 41,533,544.73 

Lake Peel Tasman 172.602653 -41.145754  Glacial 1353.06 26.05 4.70 408922.00 645,042.74 

Lake Poerua West Coast 171.493084 -42.706604 3.7 Riverine 95.37 7.75 212.70 5494733.00 22,566,735.46 

Lake Pounui Wellington 175.115342 -41.344251  
Tectonic/ 

Landslide 
14.08 16.25 45.95 2489671.67 667,311.24 

Lake Pukaki Canterbury 170.165528 -44.060630  Glacial 477.64 70.00 
17273.5

9 
4030504426.67 6,880,527.95 

Lake Pupuke Auckland 174.764815 -36.780636 1.5 Volcanic 14.17 57.00 103.80 19730959.00 1,358,619,973.90 

Lake Pyramid (Burnt 

Lake) 
Southland 167.364793 -45.747901 4.1 Glacial 730.74 21.84 13.30 971544.00 1,859,904.54 

Lake Rakatu Southland 167.59316 -45.624662  Glacial 174.90 35.13 130.30 15255359.00 2,324,264.82 

Lake Rerewhakaaitu 
Bay of 

Plenty 
176.503369 -38.296111  Volcanic 438.74 15.80 517.00 27228195.00 106,553,230.70 

Lake Richter Southland 167.505453 -45.485206 3.8 Glacial 311.61 24.95 14.10 1174620.00 31,821,297.31 

Lake Roe Southland 167.152298 -45.70719  Glacial 973.83 18.47 19.20 1179307.00 448,391.15 

Lake Rotoehu 
Bay of 

Plenty 
176.533117 -38.023584  Volcanic 296.87 13.50 790.10 35554381.00 678,724.35 

Lake Rotoiti 
Bay of 

Plenty 
176.433276 -38.038078 4.9 Volcanic 270.40 126.00 3369.10 1415024352.00 75,203,981.18 

Lake Rotokaha Hawkes Bay 177.558611 -38.775556 4.1 Volcanic 255.87 25.85 9.44 813481.62 704,470,618.40 

Lake Rotokare Taranaki 174.410367 -39.45291  Volcanic 192.22 24.48 15.70 1278222.00 5,274,749.83 

Lake Rotokawau 

(Aupouri) 
Northland 173.205751 -35.018884  

Swamp/ 

Wetland 
50.54 3.00 15.20 606136.00 1,982,696.92 

Lake Rotokawau 

(Karikari) 
Northland 173.308949 -34.870514 4.6 Wind/Aeolian 7.86 2.50 66.30 552712.00 394,947.46 

Lake Rotokawau 

(Potu/Poutu) 
Northland 174.147309 -36.347070  Wind/Aeolian 59.99 11.00 25.70 942203.00 5,035,617.56 

Lake Rotomanuka Waikato 175.315278 -37.925833 3.5 
Swamp/ 

Wetland 
58.28 8.70 13.64 218225.00 1,649,720.87 

Lake Rotongaio Hawkes Bay 177.011592 -38.943619 4.9 Volcanic 394.50 22.66 9.30 704646.00 NA 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Lake Rotonuiaha Hawkes Bay 177.039308 -38.947486  Volcanic 278.49 26.82 43.80 3917914.00 404,752.91 

Lake 

Rotootuauru/Swan 
Northland 174.139627 -36.331229  Wind/Aeolian 36.98 5.50 17.20 614425.00 6,793,507.65 

Lake Rotopiko / Lake 

Serpentine N 
Waikato 175.318611 -37.941667 5.4 

Swamp/ 

Wetland 
53.53 11.76 4.64 181730.38 10,441,919.25 

Lake Rotopokaka 

(Cola Lake) 
Northland 173.383394 -34.949906 5.3 Wind/Aeolian 1.97 3.50 11.70 136438.00 NA 

Lake Rotoroa 23681 Northland 173.196136 -35.058951  Wind/Aeolian 32.64 8.00 27.70 738252.00 3,641,625.27 

Lake Rotoroa 37530 Hawkes Bay 177.029432 -38.948362 4.0 Volcanic 316.01 26.66 14.60 1293490.00 1,083,074.45 

Lake Rotorua 
Bay of 

Plenty 
176.268158 -38.075540  Volcanic 270.02 44.80 8047.90 1201815791.00 4,434,723.38 

Lake Rototekoiti West Coast 169.737985 -43.640241 4.3 Glacial 1236.90 35.28 22.90 2698186.00 507,912,684.40 

Lake Rototoa Auckland 174.237926 -36.510555  Wind/Aeolian 76.31 29.00 106.60 10305165.00 576,400.21 

Lake Rototuna Northland 174.040307 -36.252092 5.2 Wind/Aeolian 118.56 5.00 8.90 147536.00 2,188,361.02 

Lake Sarah Canterbury 171.776467 -43.049118 3.2 Glacial 575.37 6.70 22.00 491431.00 22,815,254.98 

Lake Selfe Canterbury 171.518659 -43.239632 3.0 Glacial 568.66 30.00 65.40 6543730.00 6,302,596.07 

Lake Story Southland 167.172096 -45.741325  Glacial 992.84 27.65 26.50 2440490.00 1,398,447.64 

Lake Sumner / 
Hokakura 

Canterbury 172.216389 -42.700278 2.1 Glacial 504.71 134.50 1373.11 615612149.00 314,801,269.30 

Lake Taharoa 21917 Northland 173.648705 -35.807090 1.8 Wind/Aeolian 78.40 37.00 204.20 25182937.00 4,395,315.38 

Lake Tarawera 
Bay of 
Plenty 

176.428345 -38.195766 3.1 Volcanic 278.48 87.50 4115.40 1200331183.00 342,461,430.60 

Lake Taylor Canterbury 172.231111 -42.767500 2.6 Glacial 578.50 40.50 206.81 27919893.38 16,279,673.93 

Lake Te Anau Southland 167.750511 -45.196832 1.5 Glacial 169.44 417.00 
34296.6

1 

47672294016.0

0 
3,110,417,779.07 

Lake Te Kahika Northland 173.001344 -34.623788 2.7 Wind/Aeolian 15.59 10.80 14.50 531127.00 4,797,463.20 

Lake Tekapo Canterbury 170.521303 -43.906406 1.4 Glacial 685.79 120.00 9659.43 3863772480.00 1,444,088,605.71 

Lake Thomas Southland 167.946409 -45.471251  Riverine 488.83 23.90 28.90 2300959.00 814,440.72 

Lake Tikitapu 
Bay of 

Plenty 
176.331526 -38.195768 2.8 Volcanic 414.33 27.50 144.20 13220396.00 5,042,058.21 

Lake Troup Southland 167.131341 -45.478637  Glacial 941.46 27.64 16.20 1495448.00 803,975.20 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Lake Tuakitoto Otago 169.824879 -46.228154 5.4 Riverine 21.03 3.00 131.74 1317384.00 144,850,512.20 

Lake Tutaeinanga Waikato 176.322376 -38.333028  Volcanic 492.45 14.59 3.10 150918.00 530,926.76 

Lake Tutira Hawkes Bay 176.892759 -39.224505 4.5 
Tectonic/ 

Landslide 
160.37 52.88 170.00 29964100.00 9,903,502.05 

Lake Ursula Southland 167.127915 -45.699764  Glacial 1017.21 11.73 2.40 93273.00 86,509.68 

Lake Vincent Southland 168.822927 -46.592383 4.3 Wind/Aeolian 19.16 5.00 17.20 286801.00 2,341,172.92 

Lake Von River 

Valley 
Southland 168.424963 -45.086926  Glacial 687.47 18.69 10.90 680091.00 NA 

Lake Waahi Waikato 175.125556 -37.559167 5.6 Riverine 13.09 5.00 444.57 7409551.67 91,854,223.12 

Lake Wahakari Northland 172.924789 -34.652031  Wind/Aeolian 53.47 12.50 84.00 3358396.00 7,792,894.14 

Lake Wai Raupo Northland 172.758029 -34.515854  Wind/Aeolian 55.96 7.00 11.20 261260.00 2,171,638.50 

Lake Waihola Otago 170.078036 -46.020350 4.8 Riverine 12.36 2.20 607.56 4455420.57 71,049,758.56 

Lake Waikare Waikato 175.200833 -37.435833  Riverine 6.76 1.80 3437.42 20624548.80 3,165,829.61 

Lake Waikare Taranaki 174.805236 -39.669440 7.0 
Tectonic/ 

Landslide 
133.96 23.76 7.40 586908.00 

13,304,798,527.6

3 

Lake Waikere Northland 173.629502 -35.798844 2.4 Wind/Aeolian 91.04 30.00 29.70 2974459.00 1,325,543.32 

Lake Waikopiro Hawkes Bay 176.894308 -39.235158 5.3 
Tectonic/ 

Landslide 
169.21 16.00 10.00 769891.00 1,132,785.81 

Lake Wainamu Auckland 174.468258 -36.889872 4.1 Wind/Aeolian 36.36 15.00 15.00 749008.00 5,029,054.37 

Lake Wainui Northland 173.882274 -36.101340 4.0 Wind/Aeolian 40.26 11.80 3.80 151178.00 1,208,166.57 

Lake Waiparera Northland 173.181403 -34.943930 5.0 Wind/Aeolian 31.26 6.00 108.60 2171542.00 5,961,427.82 

Lake Waiporohita Northland 173.347832 -34.900907 5.1 Wind/Aeolian 14.27 3.70 6.90 68642.00 377,924.35 

Lake Waitahora Northland 172.805572 -34.455619  Wind/Aeolian 12.41 3.85 2.10 26878.00 6,181,900.31 

Lake Wakatipu Otago 168.695948 -45.031880 1.5 Glacial 237.03 380.00 
29825.2

3 

37778631253.3

3 
3,102,950,618.14 

Lake Wanaka Otago 169.109423 -44.530971 1.8 Glacial 233.74 311.00 
20399.8

2 

21147817547.0

0 
2,579,832,240.53 

Lake Westmere 
Manawatu 

Wanganui 
174.999671 -39.895472 5.9 Wind/Aeolian 96.21 23.39 8.10 629776.00 3,676,121.74 

Lake Whangape Waikato 175.050833 -37.470556 6.6 Riverine 17.07 3.50 1078.62 12583939.67 314,528,320.62 

Lake Whatumā / Lake 

Hatuma 
Hawkes Bay 176.525278 -40.021944  

Tectonic/ 

Landslide 
132.38 3.00 152.90 14667954.00 15,280,177.14 
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Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Lake Wiritoa 
Manawatu 

Wanganui 
175.089083 -39.974633 5.3 Wind/Aeolian 51.07 28.88 21.76 2094447.10 8,814,691.76 

Loch Katrine / 

Waitetemoroiti 
Canterbury 172.200000 -42.718333 2.7 Glacial 519.88 28.00 77.90 7270659.00 12,266,745.02 

Long White Lagoon Southland 168.15906 -46.353774  
Swamp/ 

Wetland 
15.29 15.00 1.40 13485.00 1,634,126.99 

Manapouri Southland 167.546684 -45.515162 1.5 Glacial 141.64 444.00 
14177.7

0 

20982949824.0

0 
4,535,735,769.86 

Mangarakau Tasman 172.484985 -40.650392 3.5 

Coastal 

Shoreline/ 

Lagoon 

14.32 9.70 15.30 493547.00 4,352,083.25 

Maori Lake E Canterbury 171.17665 -43.571033 3.9 Riverine 626.83 17.37 9.50 549360.00 91,181,958.10 

Maratoto Waikato 175.304167 -37.886667 5.3 
Swamp/ 

Wetland 
56.08 7.00 17.80 416333.00 662,687.29 

Marymere Canterbury 171.853976 -43.116835  Glacial 615.66 12.88 24.00 1030611.00 1,599,506.62 

McRae/McCrae Canterbury 173.33 -42.183611  Glacial 883.47 41.62 65.80 9123657.00 7,311,647.14 

Oingo Lake Hawkes Bay 176.748298 -39.561721 5.1 Riverine 20.72 1.80 85.10 3915649.00 9,964,965.22 

Rotorua-Kaikoura Canterbury 173.581394 -42.404092 7.2 Riverine 27.53 3.00 43.20 432387.00 3,949,268.87 

Rototai Tasman 172.819081 -40.845441    14.0   35,287.84 

Runanga Lake Hawkes Bay 176.70521 -39.576913 7.0 Riverine 38.27 0.90 110.50 9703287.00 100,980,127.40 

Shallow Lake Southland 167.33694 -45.71276  Glacial 317.57 40.43 13.00 1757219.00 119,537,413.90 

Sheppard Canterbury 172.251111 -42.762222  Glacial 581.57 24.59 109.00 8935281.00 12,158,473.58 

Skiffington Swamp West Coast 169.996492 -43.425136  Glacial 333.52 37.28 27.60 3434889.00 3,125,009.47 

South Mavora Lake Southland 168.175172 -45.308398  Glacial 599.76 35.04 162.80 19018350.00 346,398,491.30 

Spectacle Lake Auckland 174.629987 -36.180147 6.0 Wind/Aeolian 16.00 7.00 43.80 1023022.00 6,561,352.18 

Stony Tarn Canterbury 170.445921 -43.874181  Glacial 817.20 17.27 7.10 406277.00 896,418.37 

Te Ketekete Northland 172.710728 -34.476569  
Swamp/ 

Wetland 
17.26 3.00 10.60 234840.00 27,896,655.20 

Tomarata Lake Auckland 174.650210 -36.193773 4.3 Wind/Aeolian 32.63 5.00 14.40 239265.00 1,455,718.71 

Waiau Taranaki 174.680908 -39.79448  Wind/Aeolian 56.83 16.12 24.00 1289169.00 12,227,726.11 

Waihau Hawkes Bay 177.554722 -38.755000  Volcanic 296.49 24.61 9.80 800480.00 534,177.44 



130 

Name Region Longitude Latitude TLI 
Geomorphic 

Class 

Elevation 

(m) 

Maximum 

Depth (m) 

Lake 
Area 

(ha) 

Lake Volume 

(L) 

Catchment size 

(m2) 

Waihopo Lake Northland 173.042826 -34.755756 4.1 
Swamp/ 

Wetland 
35.02 3.60 3.50 34765.00 1,284,110.55 

Waingata Northland 174.151118 -36.351414  Wind/Aeolian 57.28 7.00 11.00 257661.00 739,389.29 

Waipara Northland 172.854429 -34.586209 3.7 Wind/Aeolian 77.12 10.00 2.00 66115.00 485,779.38 

Whakaki Lagoon Hawkes Bay 177.554914 -39.045391  

Coastal 

Shoreline/ 

Lagoon 

20.48 2.75 474.90 4352717.00 13,889,979.22 
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Appendix D. Distribution of Pre- and Post- Transformation of Model Variables 
Distributions of key phytoplankton pigments and static lake characteristic used for 

machine learning. The land use variables were calculated as relative abundance and 

not transformed. Therefore, the distributions are not displayed. Distributions were 

normalised by transforming them using a natural logarithm of the given value plus one 

Raw Data Normalised Data 

Chlorophyll-a via Spectrophotometry with Acidification 

  

Chlorophyll-a via Spectrophotometry without Acidification 

  

Alloxanthin 

  

Chlorophyll-a via HPLC 
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Raw Data Normalised Data 

Chlorophyll-b 

  

Canthaxanthin 

  

Diadinoxanthin 

  

Diatoxanthin 

  

Echinenone 
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Raw Data Normalised Data 

Fucoxanthin 

  

Lutein 

  

Peridinin 

  

Violaxanthin 
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Raw Data Normalised Data 

Zeaxanthin 

  

Elevation (m) 

  

Lake Area (ha) 

  

Lake Volume (L) 
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Raw Data Normalised Data 

Maximum Depth (m) 

  

TLI 

 

Not transformed due to normal 
distribution.  

Catchment Area (ha) 
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Appendix E. R Code for Predictive Models 

Regression Trees 
set.seed(42) 

data_split <- initial_split(data, prop = .7) 

data_train <- training(data_split) 

data_test  <- testing(data_split) 

 

#Tuned Land use regression tree 

optimal_tree <- rpart( 

  formula = Lakes380_TLI ~ ., 

  data    = data_train, 

  method  = "anova", 

  control = list(minsplit = 13, maxdepth = 15, cp = 0.01)) 

 

#Tuned pigments-only regression tree 

optimal_tree <- rpart( 

  formula = Lakes380_TLI ~ ., 

  data    = data_train, 

  method  = "anova", 

  control = list(minsplit = 19, maxdepth = 15, cp = 0.03)) 

 

#Tuned ‘pigments +’ regression tree 

optimal_tree <- rpart( 

  formula = Lakes380_TLI ~ ., 

  data    = data_train, 

  method  = "anova", 

  control = list(minsplit = 16, maxdepth = 14, cp = 0.02)) 

 

pred <- predict(optimal_tree, newdata = data_test) 

RMSE(pred = pred, obs = data_test$Lakes380_TLI) 

 

rpart.plot(optimal_tree) 

optimal_tree 

 

#Bagging the trees with caret 

ctrl <- trainControl(method = "cv",  number = 10) #Specify 10-fold 

cross validation 

 

# CV bagged model 

bagged_cv <- train(Lakes380_TLI ~ ., 

  data = data_train, 

  method = "treebag", 

  trControl = ctrl, 

  importance = TRUE) 

 

#Predict 

pred <- predict(bagged_cv, data_test) 

RMSE(pred, data_test$Lakes380_TLI) 
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Random Forest Models 
set.seed(42) 

data_split <- initial_split(data, prop = .7) 

data_train <- training(data_split) 

data_test  <- testing(data_split) 

 

#Tuned pigments-only random forest  

rf <-randomForest(Lakes380_TLI~., data=data, mtry=11, 

min.node.size = 3, importance=TRUE, ntree=500) 
 

#Tuned ‘pigments +’ random forest 

rf <-randomForest(Lakes380_TLI~., data=data, mtry=11, 

min.node.size = 3, importance=TRUE, ntree=500) 

 

print(rf) 

 

#Predict 

pred <- predict(rf, data_test) 

RMSE(pred, data_test$Lakes380_TLI) 

 

Boosted Regression Tree 
set.seed(42) 

data_split <- initial_split(data, prop = .7) 

data_train <- training(data_split) 

data_test  <- testing(data_split) 

 

#Tuned boosted regerssion tree 

gbm.fit.final <- gbm( 

  formula = Lakes380_TLI ~ ., 

  distribution = "gaussian", 

  data = data_train, 

  n.trees = 100, 

  interaction.depth = 5, 

  shrinkage = 0.1, 

  n.minobsinnode = 1, 

  bag.fraction = 0.3,  

  train.fraction = 1, 

  n.cores = NULL, 

  verbose = FALSE)  

 

print(gbm.fit.final) 

 

#Predicting 

pred <- predict(gbm.fit.final, n.trees = gbm.fit.final$n.trees, 

data_test) 

RMSE(pred, data_test$Lakes380_TLI) 
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