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Abstract

Ramp metering, one of the most effective solutions for improving motorway traffic
flows, is playing increasingly important role in traffic management systems. Because of
its capability to handle nonlinear and non-stationary problems, fuzzy logic based ramp
metering agorithms have been aways considered as an extremely suitable control
measures to handle a complex nonlinear traffic system. This thesis proposes a genetic
fuzzy approach to design a traffic-responsive ramp control agorithm for an isolated on-
ramp. For a loca ramp meter algorithm, the problem could be described as the inflow
optimization of on-ramp, based on the evaluation of motorway traffic condition. If the
inflow of on-ramp is considered as the decision variable, the ramp control problem could
be treated as a nonlinear optimization problem of maximizing the evaluation function.
The adaptive genetic fuzzy approach is actualy a control approach to maximize the
inflow of on-ramp under the restriction of evauation function.

In this thesis, a well-known fuzzy logic based ramp metering algorithms developed by
Bogenberger is introduced and implemented with an on-ramp congestion model of
Constellation Drive Interchange in a stochastic microscopic traffic ssimulator, Aimsun. To
improve the performance of fuzzy control system, genetic algorithm is applied to tune the
parameterized membership function of each fuzzy input to maintain the flow density of
motorway blow the estimated congestion density. The performances of the genetic fuzzy
logic control ramp metering are compared with FLC (fuzzy logic control) ramp metering
by means of the percentage change of TTT (Tota Travel Time) based on no control
condition in Aimsun. The simulation results show the genetic fuzzy ramp metering has a
more significant improvement on TTT and more strong stability to maintain system flow

density than FLC ramp metering.
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Chapter 1 Introduction

1.1 Motorway Congestion

Originally, motorways are designed for long distance travel between cities, and high
speed transportation is possible without the disturbance of local traffic. However, during
the past four decades, when the increasingly people move to suburban and are more
depend on automobiles, motorways are constructed for both intercity travel and
commuter traffic especialy when surface streets can not satisfy the growth of traffic
demand. Therefore, congestion problem that only exists on surface streets appears on

motorways Now.

In order to understand how motorway congestion forms and how it affects traffic
situation, it is important to understand the theory of traffic flow. In this thesis,

Greenshield’s Model is employed to explain the above questions [1].
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Figure 1.1 the Density-Flow relationship in Greenshield’s Model
The traffic parameters above are defined as:

Omax IS the maximum number of vehicles passing a certain point, which is given as
vehicles per hour (vehs/h).

Kjam is the number of vehicles occupying a certain space when traffic jam formed on a
freeway, which is given as vehicles per kilometer (vehs/km)

K. is the traffic density when traffic flow is a the maximum value, which is given as
vehicles per kilometer (vehs'km).



Figure 1.1 displays the relationship between traffic density (vehs/km) and traffic flow
(vehs/h). When the traffic density reaches a certain point, the critical density (K), the
traffic flow on a motorway reaches its maximum flow (gmax). Then the traffic flow would
actually decrease with the increase of traffic density until flow density reaches the jam
density where no car move any more and traffic flow turns to be zero. In other words,
only when the flow density is below the critical density is traffic flow possible to reach its
maximum value, which means the motorway is not congested.

On the contrary, once traffic density exceeds the critical value, traffic flow drops due to
motorway capacity drop, which means motorway is congested. The fact that many
publication notice traffic congestion degrades the available infrastructure capacity can be
seen as the best evidence for that. Therefore, motorway congestion may form when
traffic density exceeds the critical density.

For an isolated on-ramp, when downstream density exceeds the critical point, congestion
may form and degrade the downstream capacity. Such a capacity drop would make ramp
inflow much less than normal level. For a motorway network, congestion may happen in
some network links where the traffic demand exceeds the motorway capacity; this limited
congestion reduces the motorway capacity and sometimes leads to the increased
congestion, which might lead to further capacity degradation and further expanded
congestion. Finally the motorway network throughput would much less than the normal

motorway capacity.

1.2 Ramp Metering
To alleviate or eiminate motorway congestion, ramp metering, or on-ramp control,
which is used to control the traffic amount alowed to flow into each controlled on-ramp,
has been consider as the most direct and effective way for motorway traffic control. The
potential improvement achieved by ramp metering could be generalized asfollows [2]:

e Reduce motorway congestion in space and time

e Increase motorway throughput.

e Reduced congestion spillback to the adjacent urban traffic network or to other

merging motorways.

e Significant improvement of traffic safety due to reduced congestion duration.



To explain how ramp meter works, atypical fundamental diagram is displayed blow.
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Figure 1.2 the Fundamental Diagram [2]
As we discussed before, motorway congestion may form when traffic density exceeds the
critical density, so a successful ramp control strategy should be capable of maintaining
traffic density blow the critical point and traffic flow around the maximum flow rate,
motorway capacity or capacity flow (Qep). If ramp metering is too restrictive, the
mainstream throughput could not reach the motorway capacity and ramp metering
actually causes extra delay for traffic flow. If ramp metering is too permissive,
congestion may still happen and causes the capacity drop.
From the drivers’ point of view, they want to shorten the duration of reaching their
respective destinations at the motorway network exits. Ramp metering should be able to
decrease the total travel time (TTT) when drivers driving on motorway s and waiting on
ramps due to the avoidance of capacity drop caused by motorway congestion.
1.3 Objectives

There exist a large number of ramp metering strategies published in literature, such as
demand-capacity, ALINEA and Zone agorithm. Fuzzy logic control based ramp
metering algorithm is considered as one of the most suitable solution for the nonlinear
traffic system by means of its characteristic of handling inaccurate information and
inexact system model. Since fuzzy logic control (FLC) based ramp metering has been
studied for years, some evolutionary algorithms such as neural networks and genetic
algorithm have been applied with FLC based ramp metering to improve the performance

of FLC based ramp meter in many publications. However, most of them focus on



optimizing the coordination of ramp meters for a traffic network; very few evolutionary
algorithms have been applied to optimize an isolated on-ramp as loca ramp metering
algorithm.

The aims of this thesis research is to develop a new local traffic responsive ramp
metering algorithm by applying genetic agorithm to a typical FLC ramp metering as an
evolutionary algorithm and to study the difference of the performance between the

genetic fuzzy ramp metering and the conventional FLC ramp metering.

1.4 Thethesis contribution

The major contribution of this thesis is to present a genetic fuzzy ramp meter control
approach as a local traffic responsive ramp metering algorithm. The objective function
based on alocal on-ramp model is developed to tune the fuzzy parameters to maintain the
system flow density below the critical density. The research results show genetic fuzzy
ramp metering is more effective to control the flow density to prevent the formation of
congestion by means of the objective function. The research results aso show the genetic
fuzzy ramp metering has more significant improvement on the change of TTT than the
conventional FLC ramp metering especially when the traffic demand is very high.



Chapter 2 Literaturereview

This chapter reviews the literature about some existing ramp control strategies and
generalizes the developing trend of FLC based ramp approaches.

Basically, there are three types of ramp-metering schemes based on the level of
complexity of the control approach: fixed time, local traffic responsive and coordinated

traffic responsive ramp metering [4].

2.1 Fixed time ramp metering algorithm

Fixed-timed ramp control normally generates a ramp signal that operates at constant time
cycle for a specific time of day, usually rush hour. For example, from 6:30 A.M. to 8: 00
A.M. during peak hour, a given ramp signal might be set to green cycle on for 5 seconds,
then cycle off for 30 seconds. After 8:00 AM, the ramp meter would be shut down since
the intense decrease of ramp demand would be impossible to cause any congestion for
downstream. The ramp metering rates are preset based upon historical data that could be
years, months, or daysold [3].

The disadvantage of fixed time ramp metering is the lack of reaction to the changing
traffic condition such as someirregular change of ramp inflow.

2.2 Local traffic responsiveramp metering algorithm

Local traffic-responsive ramp metering can automatically adjust the ramp metering rate
based on current traffic conditions in the vicinity of the ramp. Local traffic condition will
be detected by loop detectors. Controller electronics and software agorithms can select
an appropriate metering rate based on the occupancy or flow data from the ramp and
mainline detectors; therefore, traffic-responsive ramp-metering systems can generaly
deliver better results than fixed time metering [4] [5].
The physical components for local responsive ramp metering normally include:
e Ramp Metering Signal and Controller
The signal is typicaly located to the drivers left, or on both sides of the ramp.
Each ramp meter typically has one nearby weatherproof control cabinet which



houses the controller, modems, and inputs of each loop. The controller is set to a
specific algorithm, which generates the ramp metering rate.

e Demand detector
The check-in, or demand detector is located at the ramp cordon line. The check-in
detector notifies the controller that avehicle iswaiting on ramp and to activate the
green cycle.

e Merge Detector
The merge detector is an optiona component which senses the presence of
vehicles in the primary merging area of the ramp. This prevents waiting vehicle
from passing the ramp signal while the front vehicle still stopping in the merging
area for some unexpected reasons.

e Queue detector
The queue detector is located at the end of a ramp. The queue detector prevents
vehicles from spilling over onto the surface street network.

e Mainline detector
Mainline detectors are located on the motorway upstream and sometimes
downstream. The detector collects the information of upstream or downstream
traffic condition to feedback to ramp controller.

Figure2.1 shows a typical local traffic-responsive ramp meter system. The distribution of
detector loops might be different according to deferent application.
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Figure 2.1 A typical local traffic-responsive ramp meter system
Also, to better understand how an adaptive ramp meter work with changing traffic
condition, it is necessary to review severa existing popular local traffic responsive ramp

control algorithms.



2.2.1 Demands-Capacity Control Strategy

Demand-capacity control was introduced with the earliest field implementations of
responsive ramp control. Under demand-capacity control, metering rates are based on the
comparison between the upstream flow measured in the previous period, typicaly 1

minute earlier, and the downstream capacity [29].

q. T T out
in

[~
T~

Demand-capacity strategy = ——--- !

Iq FEEDFORWARD (open loop)
cap

Figure 2.2 the Demands-Capacity Control Strategy [29]

The equation is shown blow:

R(t)=C-q, (-1 (21)

Where,

R isthe number of vehicles allowed entering motorway in period t.

C is the capacity of downstream section, the maximum numbers of vehicles

entering downstream.

Qin(t-1) isthe upstream flow rate in period t-1.
The upstream flow, qin(t-1), is measured by the loop detectors, and the downstream
capacity, C, is apredetermined value.
The main disadvantage of this strategy is that the generated metering rate will be very
unstable and sensitively oscillate with the change of the upstream flow rate since the
feed-forward strategy is very sensitive to the system disturbances, such as a slow vehicle,
ashort shock wave or merging difficulties[2].



2.2.2 Percent-Occupancy Control Strategy

This strategy detects upstream occupancy to identify and measure the potentia
congestion. It is assumed that there is a decreasing linear function to describe the
relationship between the commanded metering rates and mainline occupancy, as plotted
in Figure 2.3.
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Figure 2.3 Percent-Occupancy Control Strategy
The eguation is given as:

900-180

r(k) =900-————(0* -0') (2.2)
o"-o

Where:
r(k) isthe meter rate in timeinterval k.

0" is the high occupancy threshold.

o' isthelow occupancy threshold.

0" isthe detected upstream occupancy
0" and 0 are measured using historical data, by which the ramp metering rates is
generated as a proportional rates. Percent-occupancy control is one of the most
widespread on-ramp metering approaches in the U.S. due to its simplicity of
implementation [6]. The main disadvantage of this strategy is the linearity assumption for
the fundamental diagram which sometimes even causes more inaccurate metering rates

than Demand-Capacity control [2].



2.2.3 AIINEA

Asservissement Linéaire d'Entrée Auotroutiere (ALINEA), as a successful loca responsive
feedback ramp metering strategy, has been implemented in many cities, such as Paris,
Amsterdam and Glasgow [4]. The agorithm adjusts the metering rate to keep the
occupancy downstream blow a preset value, the critica occupancy. Different with both
demand-capacity and percent-occupancy, ALINEA is alocal- feedback control algorithm.
The previous time metering rate will be used as the input for the next iteration. This
smoothes the generated metering rates and avoids the wide swings between short time
intervals [7]. Figure 2.4 shows atypical ALINEA agorithm.

(%]
ql n ! ’ ot

)1/

[ |

r(k)=r(k-+Kg[6-o_, (k)]
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Figure2.4 ALINEA
The equation is given as:
rt) =r(t-1+K[O, - O, (t)] (2.3)

Where:

r(t) isthe meter rate in time interval k.

K isatunable parameter (weighting factor) greater than zero.

Oout IS downstream occupancy

O isthe preset occupancy valve (Paris. 29%; Amsterdam: 18%; Glasgow: 26%)
The main disadvantage of ALINEA is the control strategy does not consider ramp queue
spill-back situation, which generaly generates over-restrictive metering rates, so it is
very hard to balance motorway congestion and ramp queue length. In addition, ALINEA
must take occupancy measurements collected from the downstream at a specific location
where potential merge congestion is possible to be detected. Such a position will not be

easily found [7].



2.3 Coordinated traffic responsive ramp metering algorithm

In order to improve the efficiency of ramp control approaches, coordinated traffic
responsive ramp metering agorithms are designed to optimize traffic flow over a section
of the motorway rather than just a single ramp, which could be further divided into three
classes. cooperative agorithms, competitive algorithms and integral ramp metering
agorithms[8].

2.3.1 Competitivealgorithms

Under competitive algorithms, two metering rates would be generated for a single ramp.
One is based on local traffic condition and other one is based on traffic network
condition. The restrictive one would be finaly applied to the ramp.

The famous implemented competitive algorithms include Bottleneck (Seattle), Compass
(Toronto) and SWARM (Lo Angeles) [4]. Figure 2.5 shows Bottlenect Algorithm flow

charts.
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Figure 2.5 Bottleneck Flow Charts[4]
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2.3.2 Cooperativealgorithms
Under cooperative algorithms, ramp metering rates are first computed with the local
traffic condition, and then adjusted with the traffic conditions of the whole network. The
famous implemented agorithms include Helper (Denver) and Linked-ramp agorithm
(San Diego) [4].
Take Denver agorithm as an example, the ramp controlled area has been divided into six
zones, and one to seven ramp meters are assigned to each zone. The meter rate is first
generated by local traffic condition of each ramp and then adjusted with the motorway
traffic condition or zone traffic condition monitored by the central computer.
2.3.3 Integral ramp metering algorithms
Under integral ramp-metering algorithms, metering rates is generated by considering
local traffic conditions and system-wide traffic conditions at the same time [8]. The
famous implemented algorithms include Linear Programming or LP (Kobe, Japan) and
METALINE (Paris) algorithm [4].
Take LP agorithm as an example, the algorithm considers a motorway network as the
Linear Programming formula consisting of a number of tunable parameters and
weighting factors for a series of ramps. To find the optimal ramp flow rate for each ramp,
the objective function will be maximized under certain constraint equations.
The objective functionis:
Z =(AlxUD + (A2xU 2) +......+ (Ai xUi) (2.3)

Where:

Ai isthe weighting factor for the ith ramp.

Ui isthe ramp flow for the ith ramp.
The function is subject to the following constraints:

a) Ramp queue plus ramp demand minus ramp flow must be less than or equal to the

maximum queue length.

b) Ramp demand plus ramp queue must be less than or equal to the ramp flow rate.

¢) The metering rate must be between the maximum and minimum values.
Finaly, the ramp meter rates will be solved ssimultaneously for all ramp locations by

optimizing the Linear Programming function model.
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2.4 The development of FL C based ramp control approaches

2.4.1 Advantagesof FLC based ramp control approaches
The traditional ramp metering algorithms we mentioned before are all based on the
assumption of the existence of some certain traffic mathematica models, such as
ALENEA and Linear Programming equation. In other words, the more accurate the
mathematical models would be, the better the performance of the ramp metering would
be. Unfortunately, because of the complexity and nonlinear and non-stationary behaviour
of the traffic system, obtaining an accurate control model is extremely difficult [10].
Under this background, fuzzy logic control has been involved in ramp metering control.
The reasons why FLC is better suited for ramp metering than traditional approach have
been generalized to four main reasons by Taylor and Meldrum [9][16].

a) It can utilize incomplete or inaccurate data.

b) It can generate more smooth outputs rather than oscillatory metering rate.

c) It does not require extensive system modelling.

d) Itiseasy to tune by changing weighting factor and the parameters of membership

functions.

2.4.2 Thedevelopingtrend of FL C based ramp control approaches

Aswe have reviewed so far, there have been three control approaches in the devel opment
of ramp metering strategies: pre-timed, local traffic responsive and coordinated traffic
responsive.

The disadvantage of pre-timed approach is its lack of response to current traffic
conditions, either changes in demands or capacities. A local traffic responsive ramp
metering plan is developed based on current traffic information obtained from upstream
or downstream and ramp detectors, so it apparently overcomes the drawbacks the pre-
timed one has, but the disadvantage of this approach is its lack of coordination between
ramps in order to optimize the motorway network. Therefore, based on loca traffic
information, a system-wide approach is to be developed to utilize al local information to
work toward systemic optimization of the motorway network, which is what we call

coordinated traffic responsive.
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Following the trend of development of ramp metering agorithm, FLC (fuzzy logic
control) ramp metering has also been developed from a local design to a coordinated
approach.

FLC has been used for local ramp metering strategies in two previous applications,
Seattle, Washington/ Zoetermeer, Netherlands [11] [12].

In America, FLC ramp metering has been under development at the University of
Washington for a number of years. This algorithm was installed in early 1999 by
WsDOT, controlling 15 metered ramps along 1-405. Early evaluation results have shown
a promising improvement when comparing more traditional Sesttle Bottleneck algorithm
[13].

In Netherlands, FLC metering was first installed in 1989 and nine ramp meters were in
place by 1995. The evaluation focused on the A12 motorway between Utrecht and
Hague, and for the 11 km study area, it showed 3% increase in bottleneck capacity. Other
positive results included higher speeds during congested hours, and 13% shorter travel
times. Although ramp travel time had about 20 seconds increase, total system effects
were acceptable. Along the A12 near Zoetermeer, a comparative study between three
different local metering algorithms RWS strategy, ALINEA and Fuzzy-Logic had been
implemented and the results showed FL C appears more beneficia than other two [12].
Based on local FLC ramp metering algorithm, adaptive fuzzy control concept had been
used in a proposed structure of a coordinated FLC ramp metering by K. Bogenberger in
1999 [4]. There was two kinds of coordinated FLC ramp metering algorithms that had
been proposed, Genetic algorithm based and neuro-fuzzy based [14][15][17].

In 2001, these two kinds of algorithms had been generaized into a new model family,
ACCEZZ (Adaptive and Coordinated Control of Entrance Ramps with Fuzzy Logic), and
expanded to five versions. neuro-fuzzy online, neuro-fuzzy offline, GA fuzzy online, GA
fuzzy offline and GA fuzzy reality. The performance of the new model was assessed in a
simulation context with a microscopic traffic flow model and compared with the results
of five different standard ramp metering algorithms: demand-capacity, occupancy
strategy, ALINEA, Denver’s HELPER algorithm and Minnesota’s Zone approach [10].
The total time spent (TTS) in the system was used to evauate the overal system
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performance of a strategy, and the fina results showed ACCEZZ model better than
others. Table2.1 shows the table of compared results.

Table2.1 Total time spent (TTS) in system [10]

3-On-Ramp Scenario 35-On-Ramp Scenario Incident Scenario
7.00 —20.00 | 11.00 — 18.00 | 7.00 — 20.00 | 11.00 — 18.00 | 7.00 — 20.00 | 11.00 — 18.00
No Control 100% 100% 100% 100% 100% 100%
HELPER 87% 82% 88% 78% 85% 79%
Demand-Capacity 87% 82% 89% 79% 89% 83%
Occupancy 86% 80% 87% 77% 87% 81%
ALINEA 85% 79% 86% 77% 86% 80%
Zone 85% 78% 87% 77% 86% 79%
Neuro-Fuzzy Online 85% 78% 86% 76% 86% 80%
Genetic Fuzzy Online 85% 78% 86% 76% 86% 80%
Neuro-Fuzzy Offline 84% 77% 86% 76% 86% 80%
Genetic Fuzzy Offline 83% 76% 86% 76% 86% 79%
Genetic Fuzzy Reality 83% 76% - - - -

Figure 2.6 and Figure 2.7 show the structures of Neuro-Fuzzy and Genetic Fuzzy Moddl.
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Figure 2.6 the Neuro Fuzzy Model [10]
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Figure 2.7 the Genetic Fuzzy Model [10]

2.5 Conclusion

From the research on the existing ramp metering approaches and the devel opment of FLC
based ramp metering, the information to design a FLC based local traffic responsive ramp
meter could be generalized as flows:

a) Loca traffic responsive ramp metering is actually a specific algorithm that reacts
to loca traffic condition periodically, so the installation of loop detectors is
essential to collect real time traffic information.

b) The positions to place detectors are not fixed, which normally should include the
upstream and downstream of on-ramp, the entrance of on-ramp and the position
of the ramp meter.

c) Different with the traditional ramp control approaches, a typica FLC ramp
metering a gorithm does not need an exact traffic model or mathematical formula,
but the rules of FLC must be based on the knowledge of traffic system.

d) Evolutionary agorithms such as Neuro-Fuzzy and Genetic Fuzzy could be used to

improve the performance of FLC ramp metering, but it will not be unnecessary
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f)

for FLC ramp metering to select a proper traffic model since the objective
function of evolutionary algorithms needs a exact mathematica expression.

For an isolated metered on-ramp, generalized ramp metering rates should be able
to maintain the downstream traffic volume (occupancy or flow density) close to
but no more than the critical value.

To evauate the performance of FLC ramp metering, a traffic simulation
environment will be involved to implement and anayse the ramp control

algorithm.
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Chapter 3 Fuzzy ramp metering algorithm

This chapter will present the outline of a simple fuzzy logic ramp meter proposed by
Bogenberger [4]. The control logic has been coded in both Matlab and Microsoft C++ for
test.

3.1 Overview of fuzzy logic control

Fuzzy logic is more like human language than traditional logical systems. Rather than
forcing a yes or no, on or off response, fuzzy logic utilizes the linguistic variables like
small, very small, big, very big and normal. To process the approximate and inexact
information for the real world, the fuzzy logic controller is actualy a set of linguistic
control rules related by the dual concepts of fuzzy implication and the compositional rule
of inference [18] [19].

Fuzzification Defuzzification

A 4

Output

A 4

Input

q Inference
Ll

Rules

Figure 3.1 atypical fuzzy rule-based system
A typical fuzzy rule-based system is presented as Figure 3-1. Following this procedure, a

simple FLC could be defined by four steps as follows:
e Fuzzification
The fuzzification translates each input into a set of fuzzy variables via membership
functions, which could be discrete or continuous and defined as triangles or bell-
shaped curves.
e Rules
Rules, or the knowledge base, are the essentia part of afuzzy logic controller, which
are based on expert opinions, operator experience and system knowledge.

e Inference
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By applying fuzzy operators and implication methods to rule base, the fuzzy inputs
would be converted into one fuzzy output.

e Defuzzification

Defuzzification produces a crisp output based one the fuzzy output.

3.2 Fuzzy logic control based ramp metering algorithm
Figure 3.2 shows the layout of the local traffic responsive FLC ramp metering.

Diownstream:

Local: Flow and Speed;
Speed, Flow and Occupaney Bottleneck Capacity
- Stop-Bar; : |
Occupaney, ™, e
On-Ramp: // ':{‘i ®  Traffic Data
- A
Occupancy —
! - Fuzzyfication | _
I 3 "
l ~ * z
\ = Inference -
\ = =
Metering Rate i =)
or A ; ¥ :-_
Cyecle Time = Defuzzyfication |~
S fé{-"

Figure 3.2 thelayout of FLC ramp metering [10]
Local traffic condition could be monitored by four detectors installed at different

locations, which include upstream detector, downstream detector, queue detector and
check-in detector.

The upstream detector is used to collect traffic information including local speed, loca
traffic flow and local occupancy of the upstream of the ramp. The downstream detector
is to detect the downstream speed and flow rate (volume). According this value, the
downstream volume/capacity-ratio (v/c-ratio) is calculated with being divided by the
capacity of the magjor downstream bottleneck, which is the historical measured maximum
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flow rate of mainline. The reason why v/c radio isinvolved in the control logic is because
it is a quite popular measurement for bottleneck behaviour. The detector at the end of the
ramp storage is to detect the queue occupancy, which is also called queue detector. The
check-in detector is the detector located at the ramp metering stop bar and used to detect
the occupancy of the vehicle waiting by the stop bar.

Each detection interva is one minute in order to smooth the input signal while still
keeping a quick response with the change of traffic condition. Since occupancy and speed
are main indicators for the change of traffic condition, they would be detected by most
sensors. Here the occupancy is defined as the time percentage that vehicles occupy at a
detector location during a detection circle.

Finally, the detected information, which reflects the real time local traffic condition, will
be processed to generate a ramp metering rate by the fuzzy logic controller, following

three steps: fuzzification, inference and defuzzification.

3.2.1 Fuzzfication

As generally fuzzification does, each crisp input and output has to be trandlated into a set
of fuzzy class, so each detected input signal would trandlate into a fuzzy set with a
understandable term like “low”, “medium” or “high”. For example, the local occupancy,
local flow and local speed are described by the terms "low", "medium” and "high" and
the degree of activation indicates how true that classison ascale of O to 1.

Totally six inputs and one output need to be fuzzified. Input fuzzy sets are defined as
sigmoid function or Gauss function, and output fuzzy sets are defined as triangular

function that is easy to be defuzzified.
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Table 3.1 lists the fuzzy sets of inputs and of output.
Table 3.1 Input and output fuzzy sets

Fuzzy Sets
Terms of the Fuzzy Sets | Membership function

Local Speed Low | Medium | High Gauss

Local Flow Low | Medium | High Gauss

Local Occupancy Low | Medium | High Gauss
Downstream V/C Very High Sigmoid
Downstream Speed Very Low Sigmoid
Check-In Occupancy Very High Sigmoid
Queue Occupancy Very High Sigmoid

Metering Rate Low | Medium | High Triangular

Local speed is from O to 100 km/h and described as three Gaussian fuzzy set, low,
medium and high, with an overlap of 50%. The parameters (centre point and the sigma

value) are found by Matlab plot function as depicted in Figure 3.3.

- Medium &

0sr-

0er-

07 -

06

05k

04

03r

02

U B S

! I
80 a0 100

Figure 3.3 Fuzzy setsfor the upstream speed
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Loca occupancy is from 0 to 30% and described as three Gaussian fuzzy set, low,
medium and high, with an overlap of 50%. The parameters (centre point and the sigma

value) are found by Matlab plot function as shown in Figure 3.4
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Figure 3.4 Fuzzy setsfor the upstream occupancy
Local flow rate is from 0 to 4000vehs/h and described as three Gaussian fuzzy set, low,

medium and high, with an overlap of 50%. The parameters (centre point and the sigma

value) are found by Matlab plot function as shown in Figure 3.5.
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Figure 3.5 Fuzzy setsfor the upstream flow rate
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The downstream volume-capacity ratio is from 0 to 1 and fully activated at 0.9. A
sigmoid function is used as the membership function. The parameters (centre point and

the sigmavalue) are found by Matlab plot function.

Figure 3.5 the fuzzy set for the downstream volume-capacity ratio
Downstream speed is from 0 to 100 km/h and activated at 50km/h and ended at 80km/h.

A sigmoid function is used as the membership function. The parameters (centre point and

the sigmavalue) are found by Matlab plot.
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Figure 3.6 the fuzzy set for the downstream speed
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Check-in occupancy is from 0 to 50% and activated from 10% to 30%. A sigmoid
function is used as the membership function. The parameters (centre point and the sigma

value) are found by Matlab plot function as shown in Figure 3.7.
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Figure 3.7 the fuzzy set for the check-in occupancy
Queue occupancy is from 0 to 50% and activated from 10% to 30%. A sigmoid function
is used as the membership function. The parameters (centre point and the sigma value)

are found by Matlab plot function as shown in Figure 3-8.
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Figure 3.8 the fuzzy set for the queue occupancy
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Metering rate as the output of fuzzy agorithm has also been converted to fuzzy sets,
which is from 240vehs/h to 900vehs/h and described as three triangular fuzzy set, low,
medium and high, with an overlap of 50%.
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Figure 3.9 Fuzzy setsfor the metering rates
To make the programming easy, the following scaling equation normalizes the output

variables from the (240, 900) range to the (0, 1) range.

Scaled metering rate = (metering rate—L L)/ (HL-LL)
HL (high limit) and LL (low limit) are two scaling parameters. HL is equal to 900 vehs/h
and LL is equal to 240 vehg/h. Therefore, the output fuzzy sets are actualy shown as
Figure 3.10.

Figure 3.10 Fuzzy setsfor the scaled metering rates
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322

I nference

Fuzzy relation between inputs condition and outputs responses will be defined as alist of

if-then pairs, where input condition is a “premise” and output response is a “consequent”.

For example,

IF <premise> THEN<consequent>

IF <premise 1> AND/OR <premise 2> AND/OR <premise 3>.....

<consequent>

THEN

Where, an AND operation is analogous to the intersection of fuzzy sets, which takes the

minimum value of given membership degrees. A OR operation is analogous to the union

of fuzzy sets, which takes the maximum value of given membership degrees.

Rule base for a simple fuzzy ramp metering controller isgiven in Table 3.2.

Table 3.2 Rule base for fuzzy ramp metering

Rule o
Rule _ Rule Condition Rule Outcome
Weight
1 15 If local occupancy isLow Then mieirg;r?g raels
. , Then metering rateis
2 15 If local occupancy is Medium Medium
3 2.0 If local occupancy isHigh Then melt;erlng raels
ow
If local speedisLow AND loca flow is | Then metering rateis
4 2.0 )
High Low
If local speed is Medium AND local Then metering rate is
5 1.0 L :
occupancy isHigh Medium
If local speed is Medium AND Then metering rateis
6 1.0 : ;
local occupancy isLow High
If local speedisHigh AND local flow is | Then metering rateis
7 1.0 ;
Low High
If downstream speed isVery Low AND | Then metering rateis
8 3.0 : :
downstream v/cisVery High Low
9 30 If Check-in occupancy isVery High Then metering rateis
' AND Queue occupancy is Very High High
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Rulel to Rule 3

The purpose of rule 1 through 3 isto form a complete rule base, which means at |east
one of the rules would fire since the whole occupancy rangeis covered.
Rule4toRule7

The rules couple speed with either occupancy or flow to generate metering rates

according to the fundamental diagram of traffic flow shown blown:

g = |
“ i e
 R— i)
Density (veh/km/n) Flow {vehhiin)

Figure 3-11 Fundamental diagrams
Rule 8
The purpose of thisrule isto prevent the formation of downstream congestion rather
than just ssimply react to it. Volume/capacity-ratio (v/c-ratio) calculated with the
historical measured maximum flow rate of downstream can be seen as a prediction of
the downstream bottleneck behavior.
Rule 9
Rule 9 is to prevent the excessive queue formation and to avoid a spillback onto the
arterial street road on the basis of information collected from queue detector.
Rule weights
The rule weight is to stress the priority of each rule. Rule weighting scheme is
flexible for different applications.
Aggregation of fuzzy rules
With different input patterns, at least one rule would generate at least one outcome at
atime. When more than one rulesfiring at same time, a method is going to be needed
to calculate an overal output degree. The additive method, which is to add different
output degrees together, is used in this case. The advantage of additive method is less
sensitive to faulty loop detector data[1].
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3.2.3 Defuzzification

The defuzzification process is to convert a fuzzy output variable into a crisp value
(metering rate). The centroid method is commonly used for the defuzzification process.
The equation of central gravity method shown blow:

[ ()

- 3.1
j f (x)dx .

In practice, adiscrete fuzzy centroid equation is used to replace the continuous centroid

equation since it is easier to calculate.
(3.2

Where:
N isthe numbers of the output classes.
G isthe centroid of the ith output class.
w; isthe results of the aggregation of rules at the ith output class.

li isthe area of theith output class.

3.3 Conclusion

In this chapter, a typical fuzzy logic ramp meter is presented and coded in Microsoft
C++. Rules base is designed by common traffic knowledge and membership functions are
defined as Gaussian function or sigmoid function. The parameters of membership
function are manually found by means of Matlab. Theoretically, this fuzzy ramp control
approach is already able to response to the change of traffic condition, which will be
proved by later ssmulation. However, will such a response maintain the downstream flow
density blow critical point or reasonable range? If not, the parameters of membership
functions could apparently be further tuned for the better performance of the ramp
metering. From this perspective, it seems inevasible to involve a tuning agorithm in this

ramp control approach.
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Chapter 4 Genetic Fuzzy Ramp Metering Algorithm

This chapter presents a genetic tuning process for the optimization of fuzzy control ramp
metering. Genetic algorithm is applied to optimize the fuzzy ramp metering algorithm
that was presented in Chapter 3. The objective of the genetic algorithm is to maximize the
ramp inflow under the restriction of the critical density by tuning the fuzzy parameters.
The evolutionary agorithm has been coded in Microsoft c++ and the part of essential c++

codes will be given with explanation.

4.1 Theframework of genetic fuzzy ramp metering algorithm

Generally, genetic fuzzy system could be concluded into two major approaches. genetic
tuning processes and genetic learning processes [20] [21]. Genetic tuning processes are
targeted at optimizing the performance of a predefined fuzzy system by adjusting the
parameters of membership functions. Genetic learning processes are concerned with
automatically generating a set of fuzzy if-then rules that establishes the appropriate
relationship between input and output states.

Figure 4.1 shows the layout of a general genetic fuzzy system

evolutionary | ftness | griicor |
algorithm trainer
fuzzy fuz2)
gats fﬂu!
- ' — -
data base rule base
[ .
R iFXis ..
Re" || thenYis
_h_l:'}»v-v‘ | N .:'ie_f":}}jni autput '
1 "hca,..:nr—:mhnm ol r-:anon‘ pul environment
fuzzy system

1|rpul

Figure 4.1 the Genetic fuzzy system [20]

Genetic fuzzy ramp metering algorithm is actually a genetic tuning process, so the core of
optimization is to tune the parameters of fuzzy sets and the rule base will not change
during the tuning process. Figure 4.2 shows the framework of a genetic fuzzy ramp
metering approach:
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Figure 4.2 the framework of genetic fuzzy ramp metering algorithm

Basically, ramp metering rate will be generated by fuzzy logic agorithm every minute
according to local traffic condition. The parameters of fuzzy sets will be updated every 5
minutes based on the average values of the last 5 minutes that is collected by all
detectors. Genetic algorithm is used as the evolutionary algorithm to tune the

parameterized membership functions.

4.2 Genetic algorithm

421 Overview of genetic algorithm

Genetic agorithms (GAs) are self-adapting strategies for searching, based on the random
exploration of the solution space coupled with a memory component which enables the
algorithms to learn the optimal search path from experience [22].

As a probabilistic search algorithm, GAs follows the principle of Charles Darwin of
survival of the fittest. First, the standard GA evolves a multiset of elements caled a
population of individuals as a group of possible solutions for a given optimization
problem. Each individual Ai (i =1...n) of the population A represents a possible solution
of the optimization problem to be solved. And each individual is composed of genes
which may take on a number of values restricted to {0, 1}. In other word, these
individuals are represented as binary strings with fixed length, such as, “100010001”.
Then, the fitness of these individual will be computed by the fitness function, the
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objective function of the optimization problem. The individuals with higher fitness could
have more opportunity to transfer their genes to the next generation by means of selection
and crossover. After a numbers of generations, the individual with the highest fitness in
the last generation will be finally considered as the final solution of the optimization

problem. The standard genetic algorithm could be generalized to the following sequence:

Sep 1: Randomly generate an initial population A(0) = (A (0)...A, (0)).

Sep 2: Compute the fitness f (Ai (t)) of each individua Ai (t) of the current population
A(t).

Sep 3: After the fitness of each individual has been calculated, a procedure known
as selection is performed to keep the individuas with higher fitness.

Sep 4. Once selection has occurred, crossover takes place between pairs of selected
individuals. The strings of two individuals are mixed.

Sep 5: The next operation that occurs is mutation, the random changing of bits in
theindividua. Itisgenerally performed with arelatively low probability.

Sep 6: Generate A (t+1)

Sep 7: Repeat step 2 until satisfying solution is obtained.

Where step 3, step 4 and step 5 are commonly used in GA, they are generalized into three
operations: selection, crossover and mutation. The procedures of GA could also be shown

asFigure 4.3.

\ 4
\ 4

Initialization

A
v No

Mutation Best Individual

Objective Function Are Optimization CriteriaMet? —l Yes

\ 4

Selection » Crossover

Generate a new population

Figure 4.3 thelayout of standard genetic algorithm
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4.2.2 Theapplication of genetic algorithm

Genetic algorithm has been applied to optimize the parameters of the membership
functions of the fuzzy ramp metering based on the critical traffic density of the on-ramp
model. The genetic tuning process will be explained in this section, following the
procedures shown in Figure 4.3.

4.2.2.1 Initialization

To generate an initial population, all parameters to be optimized need to be represented as
binary strings. Since there are seven fuzzy inputs that include 13 fuzzy sets in the fuzzy
ramp metering controller and they are defined as Gauss or sigmoid functions, totally 26
parameters (each function includes center point and sigma value) could be optimized. To
shorten the time of computation, only center points will be tuned, so only 13 parameters
will be tuned finally, which also means the shape of membership functions will keep
same during the genetic tuning process. Table 4.1 shows all parameters to be tuned and

the corresponding tuning ranges.

Table 4.1 the fuzzy parametersto betuned

Fuzzy Sets
Parameter Member ship
Initial value Tuning range _
function
Local Speed Low 0 0~100 Gauss
Local Speed Medium 50 0~100 Gauss
Local Speed High 100 0~100 Gauss
Local Flow Low 0 0~4000 Gauss
Local Flow Medium 2000 0~4000 Gauss
Local Flow High 4000 0~4000 Gauss
Local Occupancy Low 0 0~-30 Gauss
Local Occupancy Medium 15 0~30 Gauss
Local Occupancy High 30 0~30 Gauss
Downstream V/C 0.5 0~1 Sigmoid
Downstream Speed 65 0~100 Sigmoid
Check-In Occupancy 20 0~50 Sigmoid
Queue Occupancy 20 0~50 Sigmoid
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Figure 4.4 shows the layout of generating an initial population.
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Figured.4 the layout of generating an initial population

a) Calculate the binary length for each individual

Supposethat N is the length of the binary string of a specific parameter within arange

(a, b). Theinteger number, N, could be found such that:
2N < (b—a) x10Peson < N (4.1)
The relative C++ codes could be shown blow:

int cLength(int precision, double rangeStart, double rangeEnd)
{

i nt | ength=0;

doubl e total =(rangeEnd-rangeStart)*pow 10. 0, preci sion);

whi | e(t ot al >powm 2. 0, | engt h))

{l engt h++; }

return(l ength);

Therefore, the total length of an individual will be the sum of the binary lengths of

all parameters, which could be given by c++ code shown blow:

i nt speed_Lengt h=cLengt h( precision, domain[0], domain[1]);

int flow_Lengt h=cLengt h(precision, domain[2], domain[3]);

i nt occupancy_Lengt h=cLengt h(preci si on, donain[4], donain[5]);
int vc_Lengt h=cLengt h( preci sion, domain[6], domain[7]);

i nt downstream speedLengt h=cLengt h( preci si on, domain[8],
domai n[ 9]);

i nt checki n_Lengt h=cLengt h(preci sion, domain[10], domain[11]);
i nt gocc_Lengt h=cLengt h(precision, domain[12], donain[13]);

int Total _| ength= 3*speedLength +3*fl owLengt h+ 3*occLength +
vcLength + dspeedLength + checkinLength + qocclLengt h;

/* where domain [] is the array defined as the ranges of all
paraneters */
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b) Generating a feasible individual within constrains

As we mentioned before, the general genetic tuning process will keep the rule base
same, which means the center points of fuzzy sets representing the linguistic terms
such as “low”, “medium” and “high” will be monotonically increasing within the
relative range during the tuning process. Take the fuzzy sets of local speed as an

example, the center points of fuzzy sets should maintain the relationship like:
0< Local Speed Low< Loca Speed Medium<Local Speed High<100 4.2

If each center point is coded as the positive distance from the previous center like

Figure 4.5, we could maintain the relationship above by means of an inequality

constrain like:
0<A+B+C<100 or 100 - A-B-C >0 (4.3)
1 T T = T T T T
o~
3
[IR=R o % 3 .
N
5
0er- PER ]
A ¢ -
07 e \r i
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b
06 X 1
2 \\ ——— Medium |
05F i b Loy T
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0.4 - 7 -
7
7
03F y i
e
b
02F > _
.
5.4
0AE -7 i
gle... 3 | | | |

1] 10 20 30 40 a0 60 70 g0 a0 100

Figure 4.5 the sample fuzzy sets of local speed

Certainly, by coding the center points of Local Occupancy and Local Flow in the
same way, we could have other two inequality constrains:

4000- A-B-C=0and 30-A-B-C=0 (4.9
Then each generated individual could be tested by these constrains to find a feasible
individual and finally accumulated to be a feasible population.

Figure 4.6 shows the layout of generating afeasible individual in C++
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Generate random Generate random _ Generate random
binary A, B and C binary A, B and C binary A, B and C for
for Local Speed for Local Flow Local Oceupancy
A 7y y
\ No v No \ No
100-A-B-C=0 4000-A-B-C=0 30-A-B-C=0
A Yes v Yes v Yes

Store the binary
strings as the first
part of afeasible
individual

Store the binary
strings as the second
part of afeasible
individual

Store the binary
strings as the third
part of afeasible
individual

\ 4

\ 4

Generate
random binary
stringsto fill up
therest part of
total individual
length.

A feasible individual

Figure 4.6 the programming layout of generating a feasible individual

The c++ codes are given as blow:

/1l Generate random binary A, B and C for

i nt ispop=0;
int i=1

whi l e(!ispop)
{

for(int j=0;

j <3*speedLengt h;

{ population[i][j]=rand()%;}

//cacul ate A

doubl e Ls=Lspeed(popul ation[i],

//cacul ate B

doubl e Ms=Mspeed( popul ation[i],

//cacul ate C

doubl e Hs=Hspeed(popul ation[i],

i f((100-Ls- Ms- Hs) >=0)

{i spop=1;}
}
i spop=0;

/'l Cenerate random binary A, B and C for

whi l e(!ispop)

for(int j=(3*speedLength-1);

{ population[i][j]=rand()%;}

//cacul ate A

doubl e Lf=Lfl ow popul ation[i],

//cacul ate B

doubl e M =M1 ow popul ation[i],

//cacul ate C

doubl e Hf =Hf | owm( Popul ation[i],

i f ((4000-Lf- M - Hf ) >=0)

{ispop=1;}
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speedLengt h,
speedLengt h,

speedLengt h,

Local Speed

speedLengt h, domai n);
speedLengt h, domai n);

speedLengt h, domain);

Local Fl ow

j <(3*speedlLengt h+3*f| owLengt h); | ++)

fl owLengt h, donain);
fl owLengt h, donain);

fl owLengt h, domai n);




i spop=0;

/1 Cenerate random binary A, B and C for Local Occupancy

whil e(!ispop)

{
for(int j=(3*speedLengt h+3*fl owLength-1);
j <(3*speedLengt h+3*f| owLengt h+3*occLengt h); j ++)
{popul ation[i][]j]=rand()%;}
/lcacul ate A
doubl e Lo=Locc(popul ation[i], speedLength, flowLength, occlLength,
domai n) ;
// cacul ate B
doubl e Mb=Mocc(popul ation[i], speedLength, flowLength, occlLength,
domai n) ;
//cacul ate C
doubl e Ho=Hocc(popul ation[i], speedLength, flowLength, occlLength,
domai n) ;
i f((30-Lo- M- Ho)>=0)
{ispop=1;}

}

i spop=0;

//generate the random binary strings to fill up the total |ength
for(int j=(3*speedLengt h+3*fl owLengt h+3*occLengt h-1);

j <Total _| ength;j ++)
{popul ation[i][]j]=rand()%;}

4.2.2.2 Objective function

Figure 4.7 shows an uncontrolled motorway on-ramp model.
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Figure 4.7 Fundamental diagrams
Where:

Ax (m) isthe length of section.

gu (vehg/h) isthe upstream traffic flow.

g (vehs/h) isthe downstream traffic flow.
r (vehsg/h) isthe ramp inflow.

K (vehsg'km) isthe average flow density of the motorway section.
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If N isthe total number of the vehiclesin the motorway section during atime interval, At,

an equation could be given as:

N(t+ At) = N(t) + At x[q, (t) — q(t) + r(t)] (4.5)
If the equation is divided by Ax on both sides, it could become:

K(t+At) = K(t) + At/ Axx[q, (t) — q(t) + r (t)] (4.6)

This equation shows a basic relationship between traffic density and traffic flow for a
motorway on-ramp model. It is supposed that Kcongesion density, the critical density, is
predefined, which could be expressed as K congestion = Neongestion/AX (Where Neongestion 1S the
number of vehicles staying in motorway section when congestion happens.) Then, we
could obtain an equation to describe the maximum allowed inflow density of the whole
ramp section for the next timeinterval:

K e T+ AL =K - K(t +At)

congestion

= K congestion — At/ Axx[0q, () —q(t) + r ()] - K(t) (4.7)
And if the equation above times Ax on both sides, it becomes
Nmax (t +At) = Ncongestion - Nu + Nd - Nr - N(t) (48)

Where:

Nmax (t+At) is the maximum number of vehicles alowed to get in the motorway

section without causing congestion for the next timeinterval.

Ncongestion 1S the number of vehicles staying in motorway section when congestion
just happens.

N, isthe number of vehicles getting in the motorway section from the ramp.

Ng isthe number of vehicles leaving the motorway section.
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N, is the number of vehicles getting in the motorway section from the upstream

section.
N (t) isthe number of vehicles staying motorway section.
Then, an ideal ramp metering rate for next timeinterval (minutes) could be given as:

Reea (t +At) =60x N, (t+ At)/ At

= 60x (N N, +Ny =N, - N(t))/At (4.9)

congestion

When Ax is appropriately chosen and At is reasonable short, the ideal ramp metering rate
can prevent the motorway section from congestion and fully utilize the road capacity for
next time interval. Based on this assumption, an objective function or fitness function

could be given as:

1/(Rdeal (t + At) - Revolution)2 (410)

Revolution IS @ metering rate generated by FLC controller with the updated parameters (the
feasible individuals), based on the traffic information of last five minutes. The
optimization of fuzzy ramp control approach is actually to find a certain set of fuzzy
parameters, which is able to generate a ramp metering rate close to the Rigeq Of the next
timeinterval. Figure 4.8 shows the programming layout of calculating a fitness value for

afeasible individual by the objective functions above.

The predefined flow Rigea(t+AL) =60%
density (thecritical ™ (Nggngesion - Nu + N - Ny — N(B))/ At
density)
A
v
all detectorsin the fuzzy ramp model > Revoion
y 4
A feasible individual generated by GA. R Calculate the fitness value by
(The binary format of the parameters of = ,
fuzzy sets) Fuzzy logic controller 1/ (Rigea(t+At)-Revoiution)

Figure 4.8 the layout of calculating a fitness value
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4.2.2.3 Selection

When a feasible initial population is generated and each individual’s fitness could be
calculated by a fitness function, we apparently need a selection algorithm to pick up the
individuals with higher fitness as much as possible. A popular selection agorithm,
“Roulette Wheel”, is used in programming. This method works in a way that is
anaogous to aroulette wheel. Each individual in apopulation is allocated a part of a
wheel, and the size of the part is in proportion to the individual’s fitness. A random
generated number is used as a spinning pointer to select the individual that isinvolved to
next generation. The selection continues until the new population is full.

The procedures of “Roulette Wheel” algorithm are shown below:

Stepl. Calculate the total fitness (F) of the last population or initial population

M-1
F=> f(v) (4.11)
i=0
(Where M isthe size of population, f isthe fitness function and v; is aindividual)
Step2. Calculate the probability of a selection p; and the cumulative probability g for

each individua v;.

P = G =>p 1=01L.M-1L (4.12)

(Where gv-1 =1)
Step3. Generate arandom binary number with M bits for the range [0, 1] and given asr;,
Stepd. Select the individua of k+1, when qe<ri<+1.
Step5. Back to step3 until ry isreached,
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Figure 4.9 shows the flow chart of the programming for Selection:

Calculate the total
fitness (F)

\ 4

Calculate the probability
of aselection p;

h 4

Calculate the cumulative
probability g

h 4

Generate arandom
binary number

\ 4

Select the individual of
No k+1, when ge<ri<t.1

\ 4
Reachry ?

'

Figure 4.9 the flow chart of Selection

Yes

4.2.2.4 Crossover

Once selection is finished, the recombination operator called crossover will be applied to
the selected population. Single Point Crossover known as the most basic crossover
algorithm has been used in programming. Since Single Point Crossover will swap two
strings a a random point to create new individuals (Figure 4-8), it is possible for new
individuals not to satisfy constrains such as 4000 — A-B-C = 0 and 30 — A-B-C = 0.
Therefore, different with the standard Single Point Crossover Algorithm, a constraint
checking loop will be added to the standard procedures of Single Point Crossover to

ensure the feasibility of swapped individuals.
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Parent 1 101,11100

Parent 2 110,10010
Child 1 101 10010
Child 2 110 11100

Figure 4.10 the Single Point Crossover
The crossover method used in programming could be show as the following procedure:

Stepl. Set adefault value (0.4) for the probability of crossover.

Step2. Generate a group of random numbers in the range [0, 1] with the same size as that
of the population. Each random number (R;) in the group represents the individua at the
identical position in the population.

Step3. Select al individuals with the corresponding R; less than 0.4 for crossover.

Stepd. Check the numbers of the selected individual. If it is odd, we add one extra
individual with R; <0.4. By doing so, we could pair the select individuals for crossover.
Step5. Choose a pair of selected individuals.

Step6. Backup the pair of individuals and generate a random integer number POS in the
range [0, N-2] (where N is the total length of an individual). The number POS indicates
the position of the crossing point, at which, the par of the backup individuas are
swapped over.

Step7. Check the swapped individuals whether they are within constraints, such as 4000-
A-B-C<0 and 30-A-B-C<0, or not. If yes, we swap the original individuals and go back
to Step8. If not, we go back to Step 6.

Step8. Move to next pair of selected individuals, and repeat Step5 until all selected
individuals are finished.

Figure 4.11 shows the flow chart of the programming for Crossover.
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Figure 4.11 theflow chart of Crossover
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4.2.2.5 Mutation

The next operator, mutation ensures that the probability of searching a given part of the
solution space is never zero, which is performed on a bit-by-bit basis. It generates a
random number for each bit of the population and if the number is less than the specified
mutation probability, the corresponding bit is flipped, i.e., if the bit isa 1, it becomes O
and vice versa. Also, a constraint checking loop is added in programming to filter the
infeasible individuals.

The method of mutation could be generalized in the following steps:

Stepl. Set adefault value (0.01) for mutation.

Step2. Calculate the total bits of the population by NxM, where N is the total length of
oneindividual and M isthe size of population.

Step3. Generate NxM random numbers in the range [0, 1]. Each random number (R;) in
the group represents the bit at the identical position in the population.

Step4. Select abit in the population where the corresponding R; isless than 0.01.

Step5. Calculate which individual the selected bit belongs to in the popul ation

Step6. Backup the corresponding individual .

Step?. Flip the selected bit in the backup individual.

Step8. Check the flipped individuals whether they are within constraints, such as 4000-A-
B-C<0 and 30-A-B-C<0, or not. If yes, we flip the bit in the original individuals and go
back to Step4. If not, recovery the individuals and go back to step 4.
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Figure 4.12 shows the flow chart of the programming for Mutation.
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Figure 4.12 theflow chart of Mutation
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4.2.2.6 Encoding and Decoding

Although Genetic Algorithms can be performed using either binary or rea-valued
encodings, binary encoding is applied in this genetic tuning process since it allows for
greater solution space and for more combinations of alleles.

For binary encoding, each tuned parameter is converted into a binary string with a fixed
length, and the content of the binary string is generated randomly within constraints,
which has been discussed in 4.3.2.1. For binary decoding, which is normally performed
when the best individual is found or when a random individua needs to be ensured
within constraints, the binary strings of the tuned parameters will be converted into real
values. The procedure could be explained by the following example:

Suppose that we have to map the binary string into areal number x with a given range [a,

b] and the binary string is denoted by

Sr1,52---:51,.0
(Where 5y isthe least significant bit (LSB) and s,.; isthe most significant bit (MSB))

We could convert the binary string from base 2 to base 10 by

-1 .

m=)» s2 (4.13)

i=0

Then corresponding real value could be given by
b-a
2" -1

X=a+m

(4.14)

The C++ codes blow shows that the fuzzy parameter, Local Speed Low, has been
converted from abinary string to area number.

doubl e Lspeed(int* chronosone, int speedLength, doubl e* domain)

doubl e n¥0. 0O;

for(int i=0; i<speedLength; i++)

{ mt=chr onosone[ speedLengt h-i-1]*powm 2.0,i);}

doubl e x=domai n[ 0] +n¥ (domai n[ 1] - domai n[ 0] )/ (pow( 2. 0, speedLengt h)-1.0);
return x;

}



4.3 Investigating GA Parameters
The performance of the genetic tuning process has greatly affected by the parameters of

GA, such as population size, mutation probability and crossover probability. It is
necessary to perform an experiment for the investigation of how these factors affect GA.
By doing so, the GA parameters could be found in the suitable range.

For the objective function, 1/(R ., (t + At) = R, uion)’» if Ridea iS defined as 300veh/h

and all inputs of fuzzy logic controller is set to zero, we run the GA program in Microsoft
C++ environment and generate the optimized metering rate based on different GA

parameters. The results are given as the following table (each row in the table has been

run 10 times):
Table 4.2 thetest of GA parameters
Generation Popqlation Cr 0Ssover M utatiqr) The range.of optimized
size Probability | Probability metering rates
400 50 0.25 0.01 293.56~310.87
300 50 0.25 0.01 283.23~307.71
200 50 0.25 0.01 274.01~306.65
150 50 0.25 0.01 220.20~310.65
100 50 0.25 0.01 224.30~337.99
400 60 0.25 0.01 292.03~311.25
400 40 0.25 0.01 290.25~326.26
400 30 0.25 0.01 275.01~307.24
300 60 0.25 0.01 285.23~310.71
300 40 0.25 0.01 269.56~326.75
300 30 0.25 0.01 275.87~310.25
400 50 0.10 0.01 273.98~302.85
400 50 0.20 0.01 284.21~306.21
400 50 0.30 0.01 290.21~310.23
400 50 0.40 0.01 295.12~307.26 (chose)
400 50 0.50 0.01 293.21~305.54

During the test when GA is performed more than 400 generations and the population size
IS more than 60, GA performance could be better, but it is more time-consuming.
Therefore we finally select the GA parameters blow:

Population size: 50
Generation: 400

Crossover rate: 0.4
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Figure 4.13 shows one result generated by GA in Microsoft C++ and we can see the shift

of membership functions (local speed) after tuning the fuzzy parameters.

AWINDOWS\system32\cm

fitness chromosomeB :4.087421e-B06
fitness chromosome?:3.21277e-B05
fitness chromosomelB:3628.2%
fitness chromozomell :@.ABAS38233
fitness chromosomel2:3948.57
fitness chromosomel3:3655.12
fitness chromosomeld:=96.4823
fitness chromosomel5:6.33727e-B05
fitness chromosomel6:3948.57
fitness chromosomel?:8.881 78846
fitness chromosomel8:56.3033
fitness chromosomel?:=3628.29
fitness chromosome2@:29 8461
fitness chromosome21:1_22933
fitness chromosome22:8.383886
fitness chromosome23:4032.74
fitness chromosome24:8.8739899
fitness chromosome25:3628.2%
chromosome26:=577.127
chromosome2?:3562.5
chromozome28:17.9844
fitness chromosome2%:0.8167576
fitness chromosome3A:4080. 05
chromosome31-8.8824415
chromosome32:3748.57
chromosome33:0.817956
chromosome34:1.25854
fitness chromosome35:3.71275
fitness chromosome 36 - 4888 . 85
fitness chromosome3?:2671.2%
fitness chromosome3B-60_8697
fitness chromosome3?:3748.57
fitness chromosome4@:3628.2%
fitness chromosomedl = 2.688193e-A05%
fitness chromosome42:18.952
fitness chromosome43:25_375
fitness chromosome44:8.128287
fitness chromosomed5:3.37762e-B05
fitness chromosome46 = 4888 . 85
fitness chromosome4?7:3655.12
fitness chromosome48:3925_51
fitness of chromosome4%:8.8334285

The maximum fitness: 4886.85
877

(Original fuzzy sets) (Thetuned fuzzy sets)

Figure 4.13 Resultsfrom GA test in Microsoft C++
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4.4 Conclusion

The genetic tuning algorithm presented in this chapter is to optimize atypical fuzzy ramp
metering algorithm as a local traffic responsive ramp metering algorithm. The objective
function of genetic tuning process focuses on the adjustment of ramp metering rates

based on the critical flow density of the on-ramp section.

During the tuning process, the fuzzy parameters will be converted into binary code to
perform the standard GA operators. selection, crossover and mutation. The tuned
parameters will be applied to the fuzzy logic controller to generate optimized metering
rates for next time interval (5 minutes). Meanwhile, the fuzzy logic ramp meter till
generates a ramp metering rate based on local traffic condition every minute as a real
time control approach.

To test and evauate the proposed control approach, computer simulation has no
difficulties and limitations as field implementation, so the genetic fuzzy ramp metering
agorithm would be implemented and evaluated in a stochastic microscopic traffic

simulator, Aimsun.
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Chapter 5 Simulation study

This chapter will present the traffic simulations for the proposed ramp metering
algorithms and the comparison of the performance of FLC and genetic fuzzy ramp
metering will be given and analyzed based on the simulation results. Also, Sensitivity
Analysiswill be introduced in this chapter as the first step of model optimization.

5.1 Aimsun 6 sSimulation environment

With the increase of popularity of traffic simulation software packages, a number of
commercia traffic ssmulation packages, such as such as CORSIM (USA), PARAMICS
(UK), AIMSUN (Spain) and VISSIM (Germany) are developed to analyze and predict
traffic flow conditions.

Aimsun6, as a microscopic, stochastic traffic simulator, is used to be the simulation
environment for testing the algorithms we proposed before. The microsimulator of
Aimsun6 follows a microscopic approach [23] to continuously model each vehicle
behavior in the network according to driver’s behavior model such as car flowing and
lane changing. The traffic smulation provides the collective behavior of al vehicle-
driver units within the range of network geometries. In addition, most traffic equipment
present in areal traffic network is also modeled in the microsimulator like traffic lights,
traffic detectors, VMS (Variable Message Signs) and ramp metering devices, etc.

Figure 5.1 shows the layout of Aimsun environment [24].
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Figure 5.1 Aimsun environment [24]



5.2 Simulator Enhancements

Since Aimsun is unable to implement adaptive traffic control with the standard software
pack, the Aimsun APl module has been used to enable the communication between the
Aimsun simulation model and a user-built control algorithm.

Figure 5.2 illustrates the conceptua structure of how Aimsun working with user

application by means of Aimsun API module:

: EXTERNAL

i APPLICATION
; Aimsun Aimeun APT (Traffic Control
i | SIMULATION |4 > Module or Traffic

! MODEL Management

E System)

i

i

Ammsun NG Environment

Figure 5.2 Conceptual structure of Aimsun API application [25]

The Aimsun APl module provides a set of functions to collect the required data (e.g.
flow, occupancy, etc.) from traffic smulation. Based on the collected information, the
EXTERNAL APPLICATION (user-built control agorithm) makes some control
decisions which will be applied to the simulation. Such a process completes the
communication between the Aimsun simulation model and a user-built control algorithm.
The communication process is guaranteed by eight high level functions defined in
Aimsun APl module: AAPILoad, AAPIInit, AAPIManage, AAPIPostManage,
AAPIFinish, AAPIUnLoad, AAPIEnterVehicle and AAPIEXitVehicle [25].
e AAPILoad (): It is called when the module is loaded by Aimsun.
e AAPIInit (): It is caled when Aimsun starts the simulation and can be used to
initialise whatever the modul e needs.
e AAPIManage (): Thisis caled in every simulation step at the beginning of the
cycle, and can be used to request detector measures, vehicle information and
interact with junctions, metering and VMS in order to implement the control and

management policy.
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e AAPIPostManage (): This is called in every simulation step at the end of the
cycle, and can be used to request detector measures, vehicle information and
interact with junctions, metering and VMS in order to implement the control and
management policy.

e AAPIFinish (): It is caled when Aimsun finish the ssmulation and can be used to
finish whatever the module needs.

e AAPIUNnLoad (): It is called when the module is unloaded by Aimsun.

The scheme of how Aimsun interacts with Aimsun API is shown in Figure 5.3.

Aimsun API Module

Load

Scenario > AAPILoad()

Simulation

I
< P AAPInit()

y

»| AAPIManage(.) |

Simulation Step

" AAPIPostManage(_..) |

Simulation ’[ AAPIFinish()

» AAPIUnLoad() |

Scenario

Figure 5.3 Interactions between Aimsun and Aimsun API [25]

The proposed ramp metering algorithms programmed in Microsoft Visua C++ will be
implemented in Aimsun simulator through AAPIManage () and AAPIPostManage ()
function by means of Microsoft Visua Studio 2005, where a Dynamic Link Library
(DLL) will be generated and integrated to the ssmulator.
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5.3 Study area and model calibration

The study area is located at the southbound on-ramp of Constellation interchange in

Auckland North motorway (Figure 5.4).

Figure 5.4 the southbound on-ramp of Constellation interchangein Aimsun

5.3.1 Road section information

The motorway geometric layout is acquired from the picture of Google map, and detailed
information is obtained from the construction drawing provided by Transit New Zealand.

Figure 5.5 shows the geometric information of the study place.

Ramp bection (408 metars)

merqe lang (52 meters) ~
bro-lanes section ( 228 meters) ong lang-section (160 meters) /

Downstream Section (19 meters)

pstream Section (414 meters )

Figure5.5 the geometric infor mation of the on-ramp of Constellation Dr in Aimsun
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The geometric information of the on-ramp model is defined in Aimsun as follows:
-The length of ramp section: 408 meters.

-The length of downstream motorway section: 191 meters.

-The length of upstream motorway section: 414 meters.

-The length of merge lane section: 52 meters.

Table 5-1 shows the basic road section parameters [ 26] [27]

Table 5.1 Basic road infor mation

Section Type Speed Limit Capacity
Freeway 100km/hour 2500veh/hour/lane
On ramp 90km/hour 1600veh/hour/lane

5.3.2 Vehicleinformation

No bus are used in this simulation because since the mid of 2007, buses travelling to and
from North shore have their own lanes which are independent from the motorway .

No high occupancy vehicles (HOVs) are allocated in this smulation since the presence of
small percentage HOVs will not cause obvious variation of simulation results but
seriously slow down the simulation process especially when genetic algorithm is already
time-consuming.

The parameters of the general car are shown in Figure 5.6.

Tame Mean Dreviation Min Max Units
4.4 0.43 4 =] reters
Wfidth 1.5 0.1 1.6 2.z meters
Max Desired Speed 3 15.3 70 135 kmih
Max Acceleration 3.5 0.z 3 5 mys2
Mormal Deceleration 4 ] 4 4 mysZ
Max Deceleration & i] [} & mysZ2
Speed Acceptance 1 i] 1 1
Min Distance Yeh 1 ] 1 1 meters
Give Way Time 20 5 0,01 30 Secs
Guidance Acceptance 100 1] 100 100 e
Sensitivity Fackar 1 0 1 1
Minimum Headway i] i] 0 0 Secs

Figure 5.6 Vehicle parameters
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5.3.3 Detector information

To implement the proposed control approaches, severa detectors are installed on the road
section. The detected information includes occupancy, vehicle speed and vehicle count.
The detection interval is 1 minute.

Figure 5.7 shows the distribution of detectorsinstalled on the motorway sections.

Check-in detector Famp meter:

i
#ﬁg— — T
/”/L““‘“h Ramp entrance

(ueue Detector I //
AR —
% Downstream detectar

pstream detector

Figureb5.7 thedistribution layout of detectors

The locations of detectors are set in Aimsun as the following information:
-Ramp Queue detector: 400 meters from on-ramp entrance.

-Ramp Check-in detector: 9 meters from on-ramp entrance.

-Upstream Detector: 200 meters from on-ramp entrance.

-Downstream Detector: 180 metres from on-ramp entrance.
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5.3.4 Traffic Flow assumption

An Aimsun traffic network model could define the traffic demand data in two different
ways, an O/D matrix or the traffic flows at the sections. This ramp model is using the
traffic flows that include upstream traffic demand and ramp traffic demand. These traffic
demands will change each 15 minutes and the duration of the ssmulation is 1 hour.

For an isolated on-ramp model, normally the congestion happens when the sum of the
ramp traffic demand and upstream traffic demand exceeds or nearly reaches the
downstream traffic capacity. Therefore, the total traffic demand (upstream traffic demand
plus ramp traffic demand) will be set around 5000vehicles/hour to test the performance
change of the proposed algorithms under the situation where congestion is going to be or
aready formed because downstream road capacity is 5000 vehicles’hour (lane capacity
times two). By doing so, the simulation is able to find the specific ranges of traffic flow,
within which, the control agorithmswork properly.

Average ramp demand is from 1000vehicles/hour to 1600vehicles/hour (ramp capacity)
with an increase of 200vehicles’hour. Table 5.2 to Table 5.5 shows the traffic demand

information used in the Aimsun on-ramp model.
Table 5.2 Traffic demand data when average ramp demand is 1600vehiclesh

No L ocation 8:00am~ | 8:15am~ | 8:30am~ | 8:45am~ | Average Total
’ (vehiclegh) 8:15am 8:30am 8:45am 9:00am | Demand | Demand

Upstream Demand 4400 3600 4200 3800 4000

1 5600
Ramp Demand 1800 1400 1400 1800 1600
Upstream Demand 4200 3400 4000 3600 3800

2 5400
Ramp Demand 1800 1400 1400 1800 1600
Upstream Demand 4000 3200 3800 3400 3600

3 5200
Ramp Demand 1800 1400 1400 1800 1600
Upstream Demand 3800 3000 3600 3200 3400

4 5000
Ramp Demand 1800 1400 1400 1800 1600
Upstream Demand 3600 2800 3400 3000 3200

5 4800
Ramp Demand 1800 1400 1400 1800 1600
Upstream Demand 3400 2600 3200 2800 3000

6 4600
Ramp Demand 1800 1400 1400 1800 1600
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Table 5.3 Traffic demand data when average ramp demand is 1400vehiclegh

No L ocation 8:00am~ | 8:15am~ | 8:30am~ | 8:45am~ | Average Total
' (vehicles/h) 8:15am 8:30am 8:45am 9:00am | Demand | Demand

Upstream Demand 4600 3800 4400 4000 4200

7 5600
Ramp Demand 1600 1200 1200 1600 1400
Upstream Demand 4400 3600 4200 3800 4000

8 5400
Ramp Demand 1600 1200 1200 1600 1400
Upstream Demand 4200 3400 4000 3600 3800

9 5200
Ramp Demand 1600 1200 1200 1600 1400
Upstream Demand 4000 3200 3800 3400 3600

10 5000
Ramp Demand 1600 1200 1200 1600 1400
Upstream Demand 3800 3000 3600 3200 3400

11 4800
Ramp Demand 1600 1200 1200 1600 1400
Upstream Demand 3600 2800 3400 3000 3200

12 4600
Ramp Demand 1600 1200 1200 1600 1400

Table 5.4 Traffic demand data when average ramp demand is 1200vehiclesh
No L ocation 8:00am~ | 8:15am~ | 8:30am~ | 8:45am~ | Average Total
’ (vehicleg/h) 8:15am 8:30am 8:45am 9:00am | Demand | Demand

Upstream Demand 4600 3800 4400 4000 4200

13 5400
Ramp Demand 1400 1000 1000 1400 1200
Upstream Demand 4400 3600 4200 3800 4000

14 5200
Ramp Demand 1400 1000 1000 1400 1200
Upstream Demand 4200 3400 4000 3600 3800

15 5000
Ramp Demand 1400 1000 1000 1400 1200
Upstream Demand 4000 3200 3800 3400 3600

16 4800
Ramp Demand 1400 1000 1000 1400 1200
Upstream Demand 3800 3000 3600 3200 3400

17 4600
Ramp Demand 1400 1000 1000 1400 1200
Upstream Demand 3600 2800 3400 3000 3200

18 4400
Ramp Demand 1400 1000 1000 1400 1200
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Table 5.5 Traffic demand data when average ramp demand is 1000vehiclesh

No L ocation 8:00am~ | 8:15am~ | 8:30am~ | 8:45am~ | Average Total
' (vehicles/h) 8:15am 8:30am 8:45am 9:00am | Demand | Demand

Upstream Demand 4600 3800 4400 4000 4200

19 5200
Ramp Demand 1200 800 800 1200 1000
Upstream Demand 4400 3600 4200 3800 4000

20 5000
Ramp Demand 1200 800 800 1200 1000
Upstream Demand 4200 3400 4000 3600 3800

21 4800
Ramp Demand 1200 800 800 1200 1000
Upstream Demand 4000 3200 3800 3400 3600

22 4600
Ramp Demand 1200 800 800 1200 1000
Upstream Demand 3800 3000 3600 3200 3400

23 4400
Ramp Demand 1200 800 800 1200 1000
Upstream Demand 3600 2800 3400 3000 3200

24 4200
Ramp Demand 1200 800 800 1200 1000

Totally four ramp demands is used in this simulation: 1000vehicles/hour,
1200vehicles/hour, 1400vehicles/hour and 1600vehicles/hour, which cover the possible
range of ramp demands when the downstream congestion could happen. The situation
about less than 1000vehicels/hour ramp demand will not be discussed in this paper for
two reasons:

a) When average ramp demand is less than 1000vehicles/hour, average upstream
demand should reach more than 4000vehicles’hour to cause downstream
congestion. But from the observation of field data, average upstream demand
barely exceeds 4200vehicles’hour, so this situation is not necessary to be
discussed.

b) When average upstream demand is less than 4000vehicles/hour and average ramp
demand is less than 1000vehicles/hour, the total traffic demand hardly reaches
road capacity (5000 vehicles’hour), so the motorway is under the free flow
condition, where ramp metering will not benefit traffic condition and may cause
extratraffic delay.
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5.3.5 Thecalculation of the objective function in Aimsun

As we discussed in the last chapter, the fuzzy genetic ramp metering control will adjust
the ramp metering rates (Revolution) based on an ideal metering rate (Riges) fOr the ramp

section (Ax) by means of an objective function,1/(R ., (t + At) = R, yuion)
And Rigeq iISQiven as.

R, (t+At) = 60x (N —N, + Ny =N, - N())/ At (5.1)

congestion

Where:

Ncongestion 1S the number of vehicles staying in motorway section when congestion just
happens.
N isthe number of vehicles getting in the motorway section from the ramp.

Ng isthe number of vehicles leaving the motorway section.

N, is the number of vehicles getting in the motorway section from the upstream
section.

N (t) isthe number of vehicles staying motorway section.
In this ssimulation, Ax starts from the upstream detector and ends to the downstream
detector (so the length of Ax is 380meters); At is given by 5 minutes; N, is counted by the
check-in detector; Ny is counted by the downstream detector; N, is counted by the
upstream detector; N (t) is counted by N, + N, + N, + N(t—-1 during the whole
simulation. Since the default jam density in Aimsun is 200vehicles/km, the critical

density could be estimated by Greenshield’s macroscopic stream model (Figure5.8),
which is half of jam density, 100vehicles’km.

ko ky bmaz ko Kjam
density (k) —™

Figure 5.8 Relation between flow and density in Greenshield’s macroscopic stream model
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To further prevent the formation of congestion, the predefined density could be lower
than the critical point, so the congestion density is set to 90vehicles’km. Then Ncongetion
could be given as [(90/1000) x380] =35.
Finally, the equation 5.1 is calculated as:

Ry (t+At) = (35— (N, =N, + N, + N(t))/5) x 60 (5.2

5.4 Simulation resultsand analysis

To evaluate the performance of the proposed ramp metering agorithms, the following
Measures of Effectiveness (MOE) are selected: motorway downstream MOES, ramp
MOEs and system MOEs. The specific measures of effectiveness are:

Motorway Downstream Performance MOEs

1) Total Downstream Travel Time (seconds per vehicle): Tota time
experienced by all vehicle travelling on the motorway downstream section
per kilometre.

2) Average Downstream Delay Time (seconds per vehicle): Average delay
time per vehicle while travelling on the motorway downstream section.

3) Average Downstream Flow Rate (vehicles per hour): The number of
vehicles travelling on the motorway downstream section during the
simulation time (one hour).

4) Average Downstream Speed (kms per hour): Space mean speed for
vehicles travelling one the motorway downstream section.

Ramp MOEs

5) Tota Ramp Travel Time (seconds per vehicle): Tota time experienced by
al vehicle travelling on the ramp section per kilometre.

6) Average Ramp Delay (seconds per vehicle): Average delay time per
vehicle while travelling on the ramp section.

7) Average Flow Rate (vehicles per hour): The number of vehicles travelling
on the ramp section during the simulation (one hour).

System MOEs
8) Tota Travel Time (hours): Tota travel time accumulated by al vehicles

travelling in the Aimsun traffic network.
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9) Average Delay Time (seconds per vehicle per km): Average delay time
per vehicle while travelling in the Aimsun traffic network per kilometre.

To show the difference of the performance of FLC ramp metering and Genetic fuzzy
ramp metering, the simulation results will be given as the percentage change of MOEs
based on the No Metering condition.
Also, since Tota Travel Time (TTT), the time accumulated by all vehicles travelling in
the traffic network, is a very good indicator of the traffic system's overal performance, it
will be used to evaluate the performance of the proposed ramp metering algorithms. The
percentage change of TTT based the No Metering condition will be used to illustrate the
comparison of the performance of FLC and genetic fuzzy approaches.

54.1 Thesmulation resultsand analysisof traffic demand data - Table5.2

Table 5.6 ~ Table 5.11 shows the results of the traffic demand data of Table 5.2.

Table 5.6 General measures of Effectivenessat traffic demand (3000vehs/h~1600vehs/h)

: % Change
1 M easur es of No Fuzzy GFeunZeZt)l/c
Effectiveness Metering | Metering Metering VFS“.ZT\IYO Vg?\lo GFA VS,
Metering | Metering uzzy
e kme | 1185.94 | 72063 | 82093 | -3924% | -3078% | 13.92%
Average Delay o ) o 0
Downstream | (seconds per vehicle 10.26 4.39 5.59 -57.21% | -4552% | 27.33%
MOEs
Average Flow Rate 0 2 Ao
e oo houry | 400225 | 3605.20 | 3706.00 | -9.92% | 7.40% | 280%
Average Speed 0 0 -3.979
(kms per hour) 54.14 68.70 65.97 | 26.89% | 2185% | -3.97%
Total Ramp Travel o 0 1 000
Time (sscontspa kmy | 429925 | 4604.50 | 4512.98 | 7.10% | 497% | -1.99%
Ramp Aver age Ramp Delay 0 0 R 0
MOBs | (somisper venidg | 20315 | 427.17 | 369.76 | 11027% | 8201% | -13.44%
Average Flow Rate o ) 0 0
Todl T T™e | 166,00 | 17140 | 169.60 | 325% | 217% | -105%
System
MOEs Average Delay Time
(seconds per vehicle 126.54 132.04 130.17 4.35% 2.87% -1.42%
per km)
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Table 5-7 General measures of Effectiveness at traffic demand (3200vehs/h~1600vehs/h)

. % Change
2 M easur es of No Fuzzy (?:eunzezt;c
Effectiveness Metering | Metering Metering VFSU.ZT\Jyo ngNo (;’:A VS.
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1212.72 | 77891 | 775.68 | -35.77% | -36.04% | -0.41%
Average Delay
Downsream (seconds per vehicle) 10.20 471 4.66 -53.82% | -54.31% | -1.06%
MOEs
Average Flow Rate
(vehicles per hour) 4108.50 | 3802.50 | 3787.25 | -7.45% | -7.82% | -0.40%
Average Speed 0 0 0
(kms per hour) 54.41 67.00 68.00 23.14% 24.98% 1.49%
Total Ramp Travel o =10 2470
Time (seconds per km) 4631.69 | 4517.49 | 4362.43 | -247% | -581% | -3.43%
Ramp Aver age Ramp Delay 0 0 0
MOEs (seconds per vehicle) 253.04 435.88 459.49 72.26% | 81.59% 5.42%
Average Flow Rate o | o 1 aa0
(vehicles per hour) 973.00 613.50 602.25 | -36.95% | -38.10% 1.83%
T g T | 17106 | 167.97 | 167.60 | -L8w% | -202% | -022%
System
MOEs Average Delay Time
(seconds per vehicle 131.63 128.67 128.30 | -225% | -253% | -0.29%
per km)
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Table 5-8 General measures of Effectiveness at traffic demand (3400vehs/h~1600vehs/h)

. % Change
3 M easur es of No Fuzzy (?:eunzezt;c
Effectiveness Metering | Metering Metering Vngilyo ngNo GFA VS.
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1242.58 | 903.27 | 805.58 | -27.31% | -35.17% | -10.82%
Average Delay
Downream | (seconds per venicle) 9.96 5.86 4.66 -41.16% | -53.21% | -20.48%
MOEs
Average Flow Rate
(vehidies per hour) 4268.25 | 4031.75 | 3933.25 | -554% | -7.85% | -2.44%
Average Speed 0 0 0
(kms per hour) 54.68 62.87 67.53 14.98% | 23.50% 7.41%
Total Ramp Travel o 0 0170
Time (seconds per km) 4405.40 | 4570.63 | 4563.03 | 3.75% 3.58% 0.17%
Ramp Average Ramp Delay o o o
MOEs (seconds per vehicle) 264.45 435.72 491.16 64.76% | 85.73% | 12.72%
Average Flow Rate o | o A EAO
(vehicles per hour) 939.75 606.50 567.07 | -35.46% | -39.66% | -6.50%
T g T | 17861 | 169.45 | 16599 | -513% | -7.0m% | -204%
System
MOEs Average Delay Time
(seconds per vehicle 139.20 | 130.07 | 126.63 | -656% | -9.03% | -2.64%
per km)

-61-




Table 5.9 General measures of Effectiveness at traffic demand (3600vehs/h~1600vehs/h)

. % Change
4 M easur es of No Fuzzy (?:eunzezt;c .
i i i Fuzzy A
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1278.54 054.02 855.66 -25.38% | -33.08% | -10.31%
Average Delay i ) )
Downstream | (seconds per vehicle 9.65 6.15 481 36.27% | -50.16% | -21.79%
MOES [ AverageFlow Rete | 4475 20 | 419475 | 4155.00 | -62% | 7a6% | 095
(vehicles per hour) . : : <70 070 9270
Average Speed
(kms per hour) 55.20 61.45 66.20 11.32% | 19.93% | 7.73%
Total Ramp Travel
Time (oo e kmy | 444947 | 4608.15 | 4450.64 | 357% | 00%% | -342%
Ramp Aver age Ramp Delay
MOES (seconds per vehicle) 267.42 | 44211 | 503.92 | 6532% | 88.44% | 13.98%
Average Flow Rate
Totdl T ™| 19007 | 16929 | 161.60 |-1093% | -1498% | -454%
System
MOEs Average Delay Time
(seconds per vehicle 150.72 130.00 122.36 | -13.75% | -18.82% | -5.88%
per km)
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Table 5.10 General measures of Effectiveness at traffic demand (3800vehs/h~1600vehs/h)

. % Change
5 M easur es of No Fuzzy (?:eunzezt;c - =
H i i uz.
Effectiveness Metering | Metering Metering | vs f\lyo VS. No (;’:A VS.
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1283.42 | 1041.89 | 842.24 | -18.82% | -34.38% | -19.16%
Average Delay
Downstream (seconds per vehicle) 9.48 6.95 4.32 -26.69% | -54.43% | -37.84%
MORS [T AverageFlow Rate |55 00 | 430050 | 427175 | 47 | 5o | 11
(vehicles per hour) : : : 97 oo o
Average Speed
(kms per hour) 55.67 58.98 66.94 5.95% 20.24% 13.50%
Total Ramp Travel
Time (seconds per km) 4453.85 | 4637.15 | 4614.77 | 412% 361% | -0.48%
Ramp Aver age Ramp Delay
MOEs (seconds per vehicle) 282.35 445 .56 572.87 57.80% | 102.89% | 28.57%
Average Flow Rate
(vehicles per hour) 897.25 602.50 501.25 | -32.85% | -44.13% | -16.80%
T g | 19153 | 180.11 | 16154 | 5.96% | -1566% | -1031%
System
MOEs Average Delay Time
(seconds per vehicle 152.20 140.80 121.86 -7.49% | -19.93% | -13.45%
per km)
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Table 5.11 General measures of Effectiveness at traffic demand (4000vehs/h~1600vehs/h)

. % Change
6 M easur es of No Fuzzy (?:eunzezt;c g -
i i i uzzy
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A Vs,
Metering | Metering uzzy
Total Travel Time
(ooondepor kmy | 1285:30 | 1112.00 | 870.21 | -1348% | -3230% | -2L.74%
Average Delay
Downstream | (seconds per vehicle) 9.48 7.40 4.38 -21.94% | -53.80% | -40.81%
MOEs AverageFlow Rate | 4540 o5 | 4478.25 | 4402.50 | -137% | -3.03% | -169%
(vehicles per hour) . : : 2070 070 -0I70
Average Speed
(kms per hour) 55.64 57.83 66.52 3.94% | 1955% | 15.03%
Total Ramp Travel
Time (st pa km) | 4463.06 | 4600.01 | 420291 | 307% | 583% | -B63%
Ramp Aver age Ramp Delay
MOEs (seconds per vehicle) 284.06 442.69 536.25 55.84% | 88.78% | 21.13%
Average Flow Rate
Tord v ™| 19331 | 18616 | 15135 | 370% | -2L71% | -1870%
System
MOEs Average Delay Time
(seconds per vehicle 153.92 146.87 112.29 -458% | -27.05% | -23.54%
per km)
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Analyzing the simulation results of the traffic demand data - Table 5.2
Figure 5.9 shows the comparison of the change of TTT for FLC and genetic fuzzy ramp
metering when the ramp demand is 1600 vehicles/hour.

5.00%

Total traffic Demand
0.00% \

4600 NOO 5200 5400 5600
/

|_
}: -5.00%
c \‘\\ /
)
L—U 0
(é -15.00% FLC
20.00% —m— Genetic Fuzzy
- . 0
a
-25.00%

Figure 5.9 the percentage change of TTT when ramp demand is 1600 vehs/h

As Figure 5.9 shows, when total traffic demand is less than about 4700vehicles/hour,
both FLC and genetic ramp metering fail to reduce the TTT, which means both ramp
metering approaches do not work properly and even cause the extra delay for the traffic
condition. And when total traffic demand is from 4600vehicles’hour to 4800
vehicles’hours, the performance of FLC and genetic fuzzy ramp metering is very close.
When the total traffic demand reaches or nearly reaches the road capacity (4800
vehicles/h to 5000vehicles/hour), both FLC and genetic fuzzy ramp metering perform
very well. FLC reduces TTT from -1.81% to -5.13% and genetic fuzzy have more
significant reduction on TTT, which is from -2.02% to -7.07%. The situation keeps going
well until total demand reaches 5200vehicles/h, where FLC reduces TTT to -10.93% and
genetic fuzzy reduces TTT to -14.98%. After that, the performance of FLC turns to be
worse and the corresponding TTT increases from -10.93% to -3.70% while the genetic
fuzzy keeps working well and the relative TTT drops from -14.98% to -21.71%. The
reason for that is because the objective function of genetic fuzzy ramp metering
effectively keeps maintaining the flow density below the predefined density, while FLC

ramp metering without the density restriction finaly fails to prevent the formation of
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congestion when total traffic demand goes too high. The change of traffic flow densities
of the Aimsun traffic network shows the evidence why FLC and genetic fuzzy ramp
metering performs differently at high traffic demand, which is shown in Figure 5.10 to

Figure 5.12 (where NC means no control and GA-FL C means genetic fuzzy ramp metering).
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Figure5.10 the change of average flow density when total demand is 5200 vehs/h
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Figure5.11 the change of average flow density when total demand is 5400 vehsh
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Figure 5.12 the change of average flow density when total demand is 5600 vehs/h
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In Figure 5.10, both FLC and genetic fuzzy ramp metering effectively stabilize the flow
density at about 70vehicles’km when the average flow density under NC situation almost
reaches 80vehicles’/km, so both the performance of FLC and genetic fuzzy metering are
very well, which could be observed by the percentage changes of TTT in Figure 5.9,
-10.93%(FLC) and -14.98%(genetic fuzzy).

In Figure 5.11, when the total traffic demand increases to 5400vehicles/hour, the
oscillation of flow density under FLC is very obvious which means FLC is less effective
to stabilize the flow density than genetic fuzzy ramp metering. Back to the percentage
change of TTT under FLC ramp metering in Figure 5.9, there is a significant increase on
TTT from -1093% to -596% when total traffic demand increases from
5200vehicles/hour to 5400vehicles/hour, while the change of TTT under genetic fuzzy
ramp metering is decreased from -14.98 to -15.66%.

In Figure 5.12, when the total traffic demand increases to 5600vehicles/hour, the change
of the flow density under FLC shows no obvious difference with the change of traffic
flow density under NC situation, which means FLC almost has less effect on controlling
traffic condition and possible fails to prevent the formation of traffic congestion. And
Figure 5.9 shows that the percentage change of TTT under FLC drops to -3%.
Meanwhile, genetic fuzzy ramp metering till effectively maintains and stabilizes the
flow density at about 70vehicles’km and Figure 5.9 shows that the percentage change of
TTT under genetic fuzzy ramp metering increases to -23%.
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5.4.2 Thesmulation resultsand analysiswith traffic demand data - Table 5.3

Table5.12 ~ Table 5.17 shows the results of the traffic demand data of Table 5.3.

Table 5.12 General measures of Effectivenessat traffic demand (3200~1400)

. % Change
7 M easur es of No Fuzzy Glzinzit;c
Effectiveness Metering | Metering Metering VFSU.ZT\IYO Vg'?\lo C?:A VS,
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1214.69 | 822.99 | 756.11 | -32.25% | -37.75% | -8.13%
Average Delay
Downstream | (seconds per vehicle) 10.02 5.35 4.39 -46.61% | -56.19% | -17.94%
WORS [TAverageFlon Rate | 4157 50 | 380075 | 377350 | esew | 02wk | 07
(vehicles per hour) : . : 070 70 e
Average Speed
(kms per hour) 54.56 65.52 68.75 20.09% | 26.01% | 4.93%
Total Ramp Travel
Time (seconds per km) 4286.35 | 4577.50 | 4563.42 | 6.79% | 6.46% | -0.31%
Ramp Average Ramp Delay
MOEs (seconds per vehicle) 244.11 432.61 470.07 71.22% | 92.56% 8.66%
Average Flow Rate
vedespe houry | 98675 | 61150 | 586.75 | -38.03% | -4054% | -4.05%
Todl T T™e | 17083 | 160.89 | 169.11 | -055% | -101% | -046%
System
MOEs Average Delay Time
(seconds per vehicle 131.39 130.57 129.80 -0.62% | -1.21% | -0.59%
per km)
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Table 5.13 General measures of Effectivenessat traffic demand (3400~1400)

. % Change
8 M easur es of No Fuzzy (?:eunzezt;c .
i i i Fuzzy A
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(ooondepor kmy | 124081 | 89826 | 793.02 | -27.61% | 3609% | -1L72%
Average Delay i ) )
Downsiream (seconds per vehicle) 9.82 5.89 459 40.02% | -53.26% | -22.07%
WORS [TAveaeFowRae | o055 | 40035 | 30035 | Geo | 013% | 2500
(vehicles per hour) . : . O 370 U0
Average Speed
(kms per hour) 54.71 62.87 67.8 14.92% | 2393% | 7.84%
Total Ramp Travel
Time (o per kmy | 4368.89 | 4545.18 | 451657 | 404% | 338% | -063%
Ramp Aver age Ramp Delay
MOEs (seconds per vehicle) 250.28 | 432.65 512.2 | 66.87% | 97.55% | 18.39%
Average Flow Rate
Todl T ™ | 177.33 | 16855 | 16457 | -495% | -720% | -236%
System
MOEs Average Delay Time
(seconds per vehicle 137.92 129.20 125.27 | -6.32% | -9.17% | -3.04%
per km)
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Table 5.14 General measures of Effectiveness at traffic demand (3600~1400)

. % Change
9 M easur es of No Fuzzy (?:eunzezt;c g -
i i i uz.
Effectiveness Metering | Metering Metering | vs f\lyo Ve No (?:AVS.
Metering | Metering uzzy
Total Travel Time
(owondeper kmy | 127755 | 97952 | 81557 | -2333% | 3616% | -16.74%
Average Delay
Downstream | (seconds per vehicle) 9.7 6.52 4.4 -32.78% | -54.64% | -32.52%
MOES [T averageFlow Rate | 1107 00 | 4187.75 | 4096.25 | 0 | Boswe | 210
(vehicles per hour) . : : A0 DI 870
Average Speed
(kms per hour) 55.12 60.60 67.73 9.94% | 22.88% | 11.77%
Total Ramp Travel
Time (st pa km) | 4368.88 | 4552.18 | 4633.88 | 420% | 607% | 179%
Ramp Aver age Ramp Delay
MOBe | (oonm vedg | 27293 | 436.81 | 536.18 | 6004% | 9645% | 2275%
Average Flow Rate
e oo hoary, | 90800 | 60325 | 53200 | -3356% | -4141% | -1181%
Todl T ™ | 18604 | 17252 | 164.04 | -72m% | -1183% | -492%
System
MOEs Average Delay Time
(seconds per vehicle 146.67 133.24 124.83 -9.16% | -14.89% | -6.31%
per km)
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Table 5.15 General measures of Effectiveness at traffic demand (3800~1400)

Geneti % Change
10 M easur es of No Fuzzy Feunzzyc g -
i i i uzzy
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(owndspe kmy | 128711 | 1064.36 | 856.90 | -17.31% | -3342% | -19.49%
Average Delay i ) )
Downsream | (Seconds per vehicle) 9.55 7.08 453 25.86% | -52.57% | -36.02%
WORS [TAverageFlon Rate | 46 75 | 438475 | 4260.00 | 212% | 66 | 260
(vehicles per hour) . : : e/ 170 070
Average Speed
(kms per hour) 55.59 58.69 66.39 558% | 19.43% | 13.12%
Total Ramp Travel
Time (sscontspa kmy | 441037 | 455301 | 4637.30 | 323% | 515% | 185%
Ramp Average Ramp Delay
MOES (seconds per vehicle) 280.84 | 438.00 | 566.99 | 55.96% | 101.89% | 29.45%
Average Flow Rate
Todl T ™| 19122 | 179.81 | 16361 | 597 | -1444% | -001%
System
MOEs Average Delay Time
(seconds per vehicle 151.88 140.57 124.34 -7.45% | -18.13% | -11.55%
per km)
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Table 5.16 General measures of Effectivenessat traffic demand (4000~1400)

Geneti % Change
11 M easur es of No Fuzzy Feunzzyc .
i i i Fuzzy A
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(owondeper kmy | 1290133 | 11189 | 87592 | -1335% | -3217% | -21.72%
Average Delay i ) )
Downstream | (seconds per vehicle 9.54 7.39 4.31 22.54% | -54.82% | -41.68%
WORS TAveaseFonRae | 454 o5 | 451425 | 4458.25 | 06 | Lo | Lo
(vehicles per hour) . : : 0e70 0970 870
Average Speed
(kms per hour) 55.67 5791 66.40 402% | 1927% | 14.66%
Total Ramp Travel
Time (oo pes kmy | 4406.09 | 4558.77 | 4495.07 | 347% | 202% | -L40%
Ramp Average Ramp Delay
MOEs (seconds per vehicle) 279.3 438.57 | 568.77 | 57.02% | 103.64% | 29.69%
Average Flow Rate
Todl T ™| 19229 | 18613 | 157.34 | -320% | -18.8% | -1547%
System
MOEs Average Delay Time
(seconds per vehicle 152.92 146.92 118.10 -3.92% | -22.77% | -19.62%
per km)

-73-



Table 5.17 General measures of Effectiveness at traffic demand (4200~1400)

Geneti % Change
12 M easur es of No Fuzzy Feunzz;/c g -
i i i uzzy
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(owndspe kmy | 128282 | 1119.99 | 898.07 | -126%% | -29.99% | -19.81%
Average Delay
Downstream | (seconds per vehicle) 9.43 7.31 4.13 -22.48% | -56.20% | -43.50%
MOES [ AverageFlow Rete | 4213 o5 | 4541 25 | 4656.00 | -0 | 240% | 259
(vehicles per hour) ' : : A0 e70 2370
Average Speed
(kms per hour) 55.81 57.8 66.23 357% | 18.67% | 14.58%
Total Ramp Travel
Time (sscontspa kmy | 4407.08 | 4530.52 | 4327.65 | 280% | -180% | -4.48%
Ramp Aver age Ramp Delay
MOES (seconds per vehicle) 279.83 | 435.71 5775 55.71% | 106.38% | 32.54%
Average Flow Rate
Totd T ™| 19205 | 18490 | 15011 | 372% | -284% | -1882%
System
MOEs Average Delay Time
(seconds per vehicle 152.71 145.61 110.85 -4.65% | -27.41% | -23.87%
per km)
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Analyzing the simulation results of the traffic demand data - Table 5.3

Figure 5.13 shows the comparison of the change of TTT for FLC and genetic fuzzy ramp
metering when the ramp demand is 1400 vehicles/hour.

0.00% : Total Traffic Demand :

4&?\4800 5000 5200 5400 5600
-5.00% \///\.
-10.00% \

-15.00% \-\-\
_e_FLC \'\
-20.00%

—a— Genetic Fuzzy \.

% Change of TTT

-25.00%

Figure5.13 the per centage change of TTT when ramp demand is 1400 vehs/h

As Figure 5.13 shows, both FLC and genetic ramp metering start working properly when
total traffic demand is more than about 4600vehicles. And when total traffic demand is
from 4800vehicles’hour to road capacity (5000 vehiclesshours), both FLC and genetic
fuzzy ramp metering perform very well. FLC reduces TTT from -4.95% to -7.27% and
genetic fuzzy have more significant reduction on TTT, which isfrom -7.20% to -11.83%.
The situation keeps going well until total demand reaches 5200vehicles/h, where FLC
reduces TTT to -5.97% and genetic fuzzy reduces TTT to -14.44%. After that, the
performance of FLC obviously turns to be worse and the corresponding TTT significantly
increases from -5.97% to -3.20% while the genetic fuzzy keeps working well and the
relative TTT drops from -14.44% to -18.18%. The reason for that is because the objective
function of genetic fuzzy ramp metering effectively keeps maintaining the flow density
below the predefined density. Again, the change of traffic flow densities of the Aimsun
traffic network is used to show why FLC and genetic fuzzy ramp metering performs
differently at high traffic demand, which is shown in Figure 5.14 to Figure 5.16 (where

NC means ho control and GA-FL C means genetic fuzzy ramp metering).
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Figure5.14 the change of average flow density when total demand is 5000 vehs/h
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Figure 5.15 the change of aver age flow density when total demand is 5200 vehs/h
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Figure5.16 the change of average flow density when total demand is 5400 vehs/h

In Figure 5.14 and Figure 5.15, genetic fuzzy ramp metering effectively stabilize the flow
density at about 65vehicles’lkm when the average flow density under NC situation nearly
reaches 80vehicles/km while the change of the flow density under FLC is unstable and
the average density is around 70vehicle/hour. Then back to Figure 5.13, we can see the
TTT under FLC increase from -7.27% to -5.97% and the TTT under genetic fuzzy
decrease from -11.83% to -14.44% when total traffic demand increases from
5000vehicles/hour to 5200vehicles/hour. Apparently, genetic fuzzy ramp metering with
the stable flow density performs better than FLC although FLC also works well.

In Figure 5.16, when the total traffic demand increases to 5400vehicles’hour, the change
of the flow density under FLC shows no obvious difference with the change of traffic
flow density under NC situation, which means FLC almost has less effect on controlling
traffic condition and possibly fails to prevent the formation of traffic congestion. And
Figure 5.13 shows that the percentage change of TTT under FLC drops to -3.20%.
Meanwhile, genetic fuzzy ramp metering still effectively maintains and stabilizes the
flow density at about 70vehicles’km and Figure 5.13 shows that the percentage change of

TTT under genetic fuzzy ramp metering increases to -18.18%.

-77 -



5.4.3 Thesmulation resultsand analysiswith traffic demand data - Table 5.4

Table 5.18 ~ Table 5.23 shows the results of the traffic demand data of Table 5.4.

Table 5.18 General measures of Effectiveness at traffic demand (3200~1200)

Gengti % Change
13 M easur es of No Fuzzy Finzz;c
Effectiveness Metering | Metering Metering VFSU.ZT\Jyo Vg'?\lo ?:A VS.
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1207.78 | 803.77 780.36 | -33.45% | -35.39% | -2.91%
Average Delay
Downstream (seconds per vehicle) 10.16 5.15 4.68 -49.31% | -53.94% | -9.13%
MOEs
Average Flow Rate
veiaespe oy | 4099.00 | 378150 | 3798.25 | 7% | 7.34% | 0.44%
Average Speed
(kms per hour) 5459 66.08 67.70 21.05% 24.02% 2.45%
Total Ramp Travel
Time (seconds per km) 4191.24 | 4487.78 | 4587.8 7.08% 9.46% 2.23%
Ramp Average Ramp Delay
MOEs (seconds per vehicle) 240.99 420.58 464.76 74.52% 92.85% 10.50%
Average Flow Rate
(vehicles per hour) 971.25 614.75 599.25 | -36.71% | -38.30% | -2.52%
T g T | 166.67 | 167.37 | 169.63 | 042 | 178% | 135%
System
MOEs Average Delay Time
(seconds per vehicle 127.24 128.09 130.28 0.67% 2.39% 1.71%
per km)
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Table 5.19 General measures of Effectiveness at traffic demand (3400~1200)

Geneti % Change
14 M easur es of No Fuzzy Feunzzyc .
i i i Fuzzy A
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1248.66 | 867.21 | 79555 | -30.55% | -36.29% | -8.26%
Average Delay i ) )
Downstream | (seconds per vehicle 9.96 5.46 451 45.18% | -54.72% | -17.40%
MOES [T AverageFlonRate | joaa 5 | 39855 | 3946.75 | rome | -reme | o7
(vehicles per hour) . : : DI 2170 2170
Average Speed
(kms per hour) 54.64 64.11 67.82 | 17.33% | 24.12% | 5.79%
Total Ramp Travel
Time (seconds per km) 4200.48 | 4456.94 | 4594.77 | 6.11% | 9.39% | 3.09%
Ramp Average Ramp Delay
MOEs (seconds per vehicle) 251.72 422.54 492.63 67.86% | 95.71% | 16.59%
Average Flow Rate
Todl T ™ | 17599 | 16584 | 165.75 | 571% | -582% | -005%
System
MOEs Average Delay Time
(seconds per vehicle 136.61 126.53 126.44 -7.38% -7.44% -0.07%
per km)
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Table 5.20 General measures of Effectiveness at traffic demand (3600~1200)

Geneti % Change
15 M easur es of No Fuzzy Feunzzyc .
i i i Fuzzy A
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(owondeper kmy | 127087 | 989.62 | 83517 | -2213% | -3428% | -1561%
Average Delay i ) )
Downstream | (seconds per vehicle) 9.62 6.55 4.75 31.91% | -50.62% | -27.48%
MOES ™ AverageFlow Rete | 1151 5| 421675 | 407325 | -5z | -es0% | -340%
(vehicles per hour) . : : <70 U0 70
Average Speed
(kms per hour) 55.21 60.39 66.72 9.38% | 20.85% | 10.48%
Total Ramp Travel
Time (soconts per km) | 428146 | 4544.07 | 4677.74 | 613% | 9.26% | 294%
Ramp Aver age Ramp Delay
MOEs (seconds per vehicle) 265.41 434.81 537.59 63.83% | 102.55% | 23.64%
Average Flow Rate
(vehicles per hour) 011.75 | 604.25 | 530.00 | -33.73% | -41.87% | -12.29%
Todl T e | 18325 | 17282 | 167.66 | -560% | -851% | -299%
System
MOEs Average Delay Time
(seconds per vehicle 143.85 133.57 128.40 -7.15% | -10.74% | -3.87%
per km)
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Table 5.21 General measures of Effectiveness at traffic demand (3800~1200)

Geneti % Change
16 M easur es of No Fuzzy Feunzzyc .
i i i Fuzzy A
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(owondeper kmy | 1280.18 | 1060.81 | 848.93 | -17.14% | -3369% | -19.97%
Average Delay i ) )
Downstream | (seconds per vehicle) 9.49 7.08 45 25.40% | -52.58% | -36.44%
MOES [ AverageFlow Rete | 451675 | 43635 | 424105 | -3 | 610% | -200%
(vehicles per hour) ' : : 2970 70 -eUv0
Average Speed
(kms per hour) 55.69 58.55 66.67 514% | 19.72% | 13.87%
Total Ramp Travel
Time (oo per kmy | 4307.97 | 449207 | 44218 | 42r% | 264% | -156%
Ramp Average Ramp Delay
MOES (seconds per vehicle) 277.36 | 431.75 | 545.61 | 5566% | 96.72% | 26.37%
Average Flow Rate
(vehicles per hour) 881.5 601.75 5035 | -31.74% | -42.88% | -16.33%
Todl T ™| 18862 | 17863 | 15841 | 530% | -1602% | -11.32%
System
MOEs Average Delay Time
(seconds per vehicle 149.26 139.34 119.15 -6.65% | -20.17% | -14.49%
per km)
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Table 5.22 General measures of Effectiveness at traffic demand (4000~1200)

Geneti % Change
17 M easur es of No Fuzzy Feunzzyc g -
i i i uzzy
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(owondeper kmy | 1287.12 | 110858 | 861.39 | -1387% | -33.08% | -2230%
Average Delay i ) )
Downstream | (seconds per vehicle) 9.48 7.25 4.28 23.52% | -54.85% | -40.97%
MOEs AverageFlow Rate | g543 75 | 4508.25 | 4397.25 | -0.78% | -322% | -2.46%
(vehicles per hour) ' : : 1670 ee”o 070
Average Speed
(kms per hour) 55.66 58 66.9 420% | 20.19% | 15.34%
Total Ramp Travel
Time (sscontspa kmy | 433971 | 4456.42 | 4430.3 | 269% | 209% | -05%%
Ramp Aver age Ramp Delay
MOBs | (sonisper vehidg | 276:99 | 42842 | 565.08 | 5467% | 10401% | 3190%
Average Flow Rate
Tord T '™ | 19035 | 18356 | 15448 | 357 | -1884% | -1584%
System
MOEs Average Delay Time
(seconds per vehicle 150.99 | 14426 | 11522 | -446% | -23.69% | -20.13%
per km)
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Table 5-23 General measures of Effectiveness at traffic demand (4200~1200)

Geneti % Change
18 M easur es of No Fuzzy Feunzz;/c
Effectiveness Metering | Metering Metering VFS“.ZEYO ngl\\lo (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(owondeper kmy | 128653 | 1111.96 | 910.67 | -1357% | -2022% | -1810%
Average Delay
Downstream | (seconds per vehicle) 9.49 7.2 4.20 -24.13% | -55.74% | -41.67%
MOES [ AverageFlow Rete | 4ea7 oo | 4541 25 | 460825 | oowo | as% | saon
(vehicles per hour) . : : 970 o970 070
Average Speed
(kms per hour) 55.78 58.09 65.69 4.14% | 17.77% | 13.08%
Total Ramp Travel
Time (st pa km) | 433914 | 4492.83 | 4200.68 | 354% | -319% | -650%
Ramp Aver age Ramp Delay
MOEs (seconds per vehicle) 279.26 | 432.04 | 558.01 | 54.71% | 99.82% | 29.16%
Average Flow Rate
(vehidies per hour) 875.75 | 60150 | 477.25 | -31.32% | -45.50% | -20.66%
Tordl T ™| 19035 | 18373 | 147.20 | 348w | -2267% | -1988%
System
MOEs Average Delay Time
(seconds per vehicle 150.95 144.41 107.94 -4.33% | -28.49% | -25.25%
per km)
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Analyzing the simulation results of the traffic demand data - Table 5.4

Figure 5.17 shows the comparison of the change of TTT for FLC and genetic fuzzy ramp
metering when the ramp demand is 1200 vehicles/hour.
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Figure5.17 the per centage change of TTT when ramp demand is 1200 vehs/h

As Figure 5.17 shows, when total traffic demand is less than about 4400vehicles/hour,
both FLC and genetic ramp metering fail to reduce the TTT, which means both ramp
metering approaches do not work properly and even cause the extra delay for the traffic
condition. And when total traffic demand is from 4400vehicles’hour to 4600
vehicles’hours, the performance of FLC and genetic fuzzy ramp metering is very close.
When the total traffic demand reaches or nearly reaches the road capacity (4600
vehicles/h to 5000vehicles/hour), both FLC and genetic fuzzy ramp metering perform
very well. FLC reduces TTT from -5.77% to -5.30% and genetic fuzzy have more
significant reduction on TTT, which is from -5.82% to -16.02%. After that, the
performance of FLC turns to be worse and the corresponding TTT increases from -5.30%
to -3.57% while the genetic fuzzy keeps working well and the relative TTT drops from -
16.02% to -18.84%. The change of traffic flow densities of the Aimsun traffic network
shows why FLC and genetic fuzzy ramp metering performs differently at high traffic
demand, which is shown in Figure 5.18 to Figure 5.20 (where NC means no control and GA-

FL C means genetic fuzzy ramp metering).

-84-



@
a

=l
[=]

w o
a =]

Density (veh/km)
oy
o

w
[=]

(=)
=]

]
=]
L

NC )

1 1
0301 &M 03:11 AWM 03:21 AWM 03:31 AM 03341 AM 02:51 AM 02501 AM 03:01 &M 03:11 4M 0321 4M 03:314M 0B:41 4M 02:51 4M 09:01 AM
Time Time
M Density AYG Experiment &:00 (WC) (veh/lkm) W Density AWS Experiment &:00 (FLC) (vehfkm)

=l
[=}

i}
[}

N
(=}

Density (veh/km)
g

w
s}

n
o

GA-FLC

1
0301 &M 0811 4M 02:21 AM 08131 AWM 08141 &AM 02:51 &M 09:01 AM
Time
W Density AYG Experiment 8:00 (GA-FLC) (veh/km)

Figure5.18 the change of average flow density when total demand is 4800 vehs/h
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Figure 5.19 the change of average flow density when total demand is 5000 vehsh
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Figure5.20 the change of average flow density when total demand is 5200 vehs/h

In Figure 5.18 and Figure 5.19, genetic fuzzy ramp metering effectively stabilize the flow
density at about 66vehicles/km when the average flow density under NC situation nearly
reaches 80vehicles’/km, while the change of the flow density under FLC is unstable and
the average flow density is around 70vehicles/hour. Then back to Figure 5.17, we can see
the TTT under FLC dlightly increases from -5.69% to -5.30% and the TTT under genetic
fuzzy decrease from -8.51% to -16.02% when total traffic demand increases from
4800vehicles/hour to 5000vehicleshour. Apparently, genetic fuzzy ramp metering with
the stable flow density performs better than FLC although FLC also works well.

In Figure 5.20, when the total traffic demand increases to 5200vehicles’hour, the change
of the flow density under FLC shows no obvious difference with the change of traffic
flow density under NC situation, which means FLC almost has less effect on controlling
traffic condition and possibly fails to prevent the formation of traffic congestion. And
Figure 5.17 shows that the percentage change of TTT under FLC drops to -3.57%.
Meanwhile, genetic fuzzy ramp metering still effectively maintains and stabilizes the
flow density at about 70vehicles’km and Figure 5.17 shows that the percentage change of

TTT under genetic fuzzy ramp metering increases to -18.84%.
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5.4.4 Thesmulation resultsand analysiswith traffic demand data - Table 5.5

Table 5.24 ~ Table 5.29 shows the results of the traffic demand data of Table 5.5.

Table 5.24 General measures of Effectiveness at traffic demand (3200~1000)

Gengti % Change
19 M easur es of No Fuzzy Finzzyc .
; i i Fuzzy A
Effectiveness Metering | Metering Metering | VS. No | VS No ?:A VS.
Metering | Metering uzzy
Total Travel Time
(owndsper kmy | 1127.07 | 825.83 | 77599 | -2673% | -3115% | -6.04%
Aver age Delay ) ) )
Downstream (seconds per vehicle) 9.18 5.40 475 41.18% | -48.26% 12.04%
MORS [T AverageFlow Rate | 435 75, | 380,50 | 375225 | 5o | 7o | 1o
(vehicles per hour) : : : PR o 7
Average Speed
(kms per hour) 56.24 65.03 67.86 1563% | 20.66% | 4.35%
Total Ramp Travel
Time (seconds per km) 1607.10 | 4347.38 | 4435.97 | 17051% | 176.02% | 2.04%
Ramp Average Ramp Delay
MOEs (seconds per vehicle) 78.93 407.38 448.81 416.13% | 468.62% | 10.17%
Average Flow Rate
(vehidies per hour) 948.00 613.25 594.75 -35.31% | -37.26% | -3.02%
T g | 100425 | 164.65 | 166.21 | 6395% | 6551% | 0.95%
System
MOEs Average Delay Time
(seconds per vehicle 60.99 125.31 126.88 | 10546% | 108.03% | 1.25%
per km)
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Table 5.25 General measures of Effectiveness at traffic demand (3400~1000)

Geneti % Change
20 M easur es of No Fuzzy Feunzz;/c g -
i i i uzzy
Effectiveness Metering | Metering Metering | vS No | VS No (;,:A VS,
Metering | Metering uzzy
Total Travel Time
(owondeper kmy | 122116 | 885.44 | 784.05 | -27.4%% | 35.79% | -11.45%
Average Delay
Downstream | (seconds per vehicle 9.75 577 447 -40.82% | -54.15% | -22.53%
WORS TAveageFowRae | 4010 50 | 397125 | 3804.00 | 65 | 8ame | Lo
(vehicles per hour) . : : 070 2070 9970
Average Speed
(kms per hour) 55.21 63.23 68.37 | 1453% | 2384% | 8.13%
Total Ramp Travel
Time (oo per Ky | 243523 | 4395.76 | 4407.18 | 8051% | 80.98% | 0.26%
Ramp Aver age Ramp Delay
MOES (seconds per vehicle) 139.98 | 417.21 | 482.36 | 198.05% | 244.59% | 15.62%
Average Flow Rate
Todl T ™ | 13224 | 16531 | 16251 | 2501 | 228 | -169%
System
MOEs Average Delay Time
(seconds per vehicle 92.87 125.96 123.32 35.63% | 32.79% | -2.10%
per km)

-88-




Table 5.26 General measures of Effectivenessat traffic demand (3600~1000)
. % Change
271 M easur es of No Fuzzy GFinZezt;c - =
; i i uzzy
Effectiveness Metering | Metering Metering | vs No | Vs No GFA VS,
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1274.74 | 984.69 | 834.76 | -2275% | -34.52% | -15.23%
Aver age Delay ) ) )
Downstream (seconds per vehicle) 9.74 6.46 4.64 33.68% | -52.36% | -28.17%
MORS [T AverageFlow Rate | 1435 5 | 420550 | 4100.50 | 47 | e | 290
(vehicles per hour) : : : 97 Rk w7
Average Speed
(kms per hour) 55.24 60.50 66.83 9.52% | 20.98% | 10.46%
Total Ramp Travel
Time (seconds per km) 2782.72 | 4356.58 | 4440.46 | 56.56% | 59.57% | 1.93%
Ramp Aver age Ramp Delay
MOEs (seconds per vehicle) 166.50 416.32 514.59 150.04% | 209.06% | 23.60%
Average Flow Rate
(vehicles per hour) 904.25 603.25 531.50 | -3329% | -41.22% | -11.89%
T g | 150.61 | 16827 | 16270 | 1173% | 803% | -331%
System
MOEs Average Delay Time
(seconds per vehicle 111.24 128.98 123.43 15.95% | 10.96% | -4.30%
per km)
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Table 5.27 General measures of Effectivenessat traffic demand (3800~1000)

Gengi % Change
22 M easur es of No Fuzzy Feunzz;/c .
; i i Fuz A
Effectiveness Metering | Metering Metering | vs. f\lyo VS. No (;’:A VS.
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1280.26 | 1053.94 | 845.14 | -17.68% | -33.99% | -19.81%
Average Delay
Downream | (seconds per venicle) 7.13 4.45 941 -37.59% | 31.98% | 111.46%
WORS TAveageFowRae | 4nag 75 | 4301 75 | 4230.25 | 470 | 6o0% | 21
(vehicles per hour) : : : HO7 oo e
Average Speed
(kms per hour) 55.92 58.72 66.67 5.01% 19.22% 13.54%
Total Ramp Travel
Time (seconds per km) 2883.02 | 4362.24 | 4406.52 | 5131% | 52.84% | 1.02%
Ramp Aver age Ramp Delay
MOEs (seconds per vehicle) 176.74 418.34 549.49 136.70% | 210.90% | 31.35%
Average Flow Rate
(vehicles per hour) 888.75 601.50 500.25 | -32.32% | -43.71% | -16.83%
T g | 157.62 | 17482 | 158.75 | 1001% | 072% | -91%%
System
MOEs Average Delay Time
(seconds per vehicle 118.28 135.54 119.46 14.59% 1.00% | -11.86%
per km)

-90-




Table 5.28 General measures of Effectivenessat traffic demand (4000~1000)

Gengi % Change
23 M easur es of No Fuzzy F?anz;/c
Effectiveness Meteri ng | Meter i ng Meteri ng VFSu.Zf\lyo Vg’T\IO C;:A VS,
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1288.18 | 1117.27 | 861.05 | -1327% | -33.16% | -22.93%
Average Delay
Downream | (secondsper venicle) 9.50 7.39 4.23 -22.21% | -55.47% | -42.76%
MOEs AverageFlow Rate | 1540 00 | 4503.25 | 4406.75 | -081% | -294% | -2.14%
(vehicles per hour) : : : O SR 0
Average Speed 0 0 )
(kms per hour) 55.65 57.89 66.98 4.03% | 20.36% | 15.70%
Total Ramp Travel 0 0 0
Time (seconds per km) 3365.25 | 4389.20 | 4480.10 | 3043% | 3313% | 2.07%
Ramp Aver age Ramp Delay 0 0 9
MOEs (seconds per vehicle) 209.73 421.71 564.42 101.07% | 169.12% | 33.84%
Average Flow Rate o | o | 0
(vehicles per hour) 885.75 600.75 49575 | -32.18% | -44.03% | -17.48%
T g T | 169.75 | 18217 | 15656 | 7.32% | -7.77% | -14.06%
System
MOEs Average Delay Time
(seconds per vehicle 130.37 142.89 117.29 9.60% | -10.03% | -17.92%
per km)
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Table 5.29 General measures of Effectivenessat traffic demand (4200~1000)

Gengi % Change
24 M easur es of No Fuzzy F?anz;/c .
P i i Fuz A
Effectiveness M etering M etering M etering VS T\lyo VS. No C;:A M
Metering | Metering uzzy
Total Travel Time
(seconds per km) 1286.26 | 1113.46 | 906.25 | -13.43% | -29.54% | -18.61%
Average Delay
Downsream (seconds per vehicle) 9.44 7.29 4.27 -22.78% | -54.77% | -41.43%
MOES [T Average Flow Rate | 4019 50 | 4520 25 | 4647.05 | oo | 205% | 276%
(vehicles per hour) : : : o7 270 (P70
Average Speed
(kms per hour) B5.78 57.89 65.57 3.78% 17.55% 13.27%
Total Ramp Travel
Time (seconds per km) 3526.81 | 4357.19 | 4059.71 | 2354% | 15.11% | -6.83%
Ramp Aver age Ramp Delay
MOEs (seconds per vehicle) 222.03 418.53 530.26 88.50% | 138.82% | 26.70%
Average Flow Rate
(vehicles per hour) 882.00 600.75 480.25 | -31.89% | -45.55% | -20.06%
T g T | 17243 | 18210 | 144.96 | 561% | -159%% | -2040%
System
MOEs Average Delay Time
(seconds per vehicle 133.08 142 .27 105.67 6.91% | -20.60% | -25.73%
per km)
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Analyzing the simulation results of the traffic demand data - Table 5.5

Figure 5.21 shows the comparison of the change of TTT for FLC and genetic fuzzy ramp
metering when the ramp demand is 1000 vehicles/hour.

70.00%
60.00% MY Total Traffic Demand

- 50.00% \

C \ FLC

t 40.00% ——

8 30.00% \ —a Genetic Fuzzy

2 20.00% )

s \

5 10.00% i\; —,

X 0.00% , : , : :
-10.00% 4200 4400 4600 4800\5®Q\52.00
-20.00%
-30.00%

Figure5.21 the per centage change of TTT when ramp demand is 1000 vehgh

In Figure 5.21, FLC ramp metering causes the extra delay for the traffic flow and the
percentage changes of TTT under FLC are al positive values, while genetic fuzzy ramp
metering starts working efficiently when total traffic demand nearly reaches road
capacity (5000vehicles/hour) where the reduction of TTT is from -7.77% to -15.93%.
The reason why FLC failsto reduce TTT is because ramp demand is relative low and the
motorway is under free flow condition in most cases. Although total traffic demand could
sometimes exceeds the road capacity and cause traffic delay, low ramp demand hardly
continuoudly interrupt the traffic platoon to make congestion finally formed. FLC
metering unable to response the change of traffic flow density could generate a strict
metering rate that cause extra traffic delay and finally make the traffic condition worse.
The change of traffic flow densities of the Aimsun traffic network shows why FLC and
genetic fuzzy ramp metering performs differently when total traffic demand is around
road capacity, which is shown in Figure 5.22 ~ Figure 5.24 (where NC means no control
and GA-FL C means genetic fuzzy ramp metering).
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Figure5.22 the change of average flow density when total demand is 4800 vehs/h
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Figure 5.23 the change of average flow density when total demand is 5000 vehsh
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Figure 5.24 the change of average flow density when total demand is 5200 vehsh

In Figure 5.22, both genetic fuzzy and FLC ramp metering generate a higher average
flow density (70vehicles’km) than NC situation (66vehicles’km), which means both of
them generate too strict metering rates to benefit traffic condition. Back to Figure 5.21,
we can see the fact that the percentage change of TTT under both of the ramp metering
approaches is positive (10.91% and 0.72%). In this case, ramp metering will not be

necessary since motorway is under free flow condition.

In Figure 5.23 and Figure 5.24, the average flow density under FLC (78vehicleskm) is
much higher than the average traffic flow density (72vehicels/km) under NC situation,
which means FLC generates the too strict metering rates and already causes extra delay
for the traffic flow. And Figure 5.21 shows that the percentage changes of TTT under
FLC are positive (7.32% and 5.61%). Meanwhile, genetic fuzzy ramp metering till
effectively maintains and stabilizes the flow density at about 70vehicles’km and Figure
5.21 shows that the percentage changes of TTT under genetic fuzzy ramp metering
increase to -7.77% and -15.93%.
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545 Overall Result Analysis

So far, the performances of FLC and genetic fuzzy ramp metering have been compared
when ramp demand ranges from 1100vehicles/hour to 1600vehicles/hour. Basically, both
genetic fuzzy and FLC ramp metering perform well when total traffic demand reaches or
nearly reaches road capacity. Once total traffic demand is much higher than road capacity
(5400vehiclesshour ~5600vehicles’hour), FLC becomes less efficient to prevent traffic
congestion while genetic fuzzy ramp metering sill keep working well due to the objective
function based on density-flow relationship. Besides, when ramp demand is relative low
(about 1000vheciles/hour), FLC ramp metering can not benefit traffic condition and may
cause extratraffic delay, while genetic fuzzy ramp metering still response well when total
traffic demand exceeds road capacity.

5.5 Senditivity Analysis

Sengitivity analysis is the study to show how “sensitive” a model is to the changes of the
parameters of the model and to the changes of the structure of the model. In this section,
we focus on the parameter sensitivity of the proposed on-ramp moded in Aimsun.
Parameter sensitivity analysis is usualy performed as a series of tests in which the
modeler sets different parameter values to study how the model behaves in response to
the changes of the parameter values. OFAT (One-Factor-At-aTime), as one of the
simplest ways of investigating the parameter sensitivity of a model, has been applied to
the proposed on-ramp model in Aimsun.

Since the all fuzzy parameters in the on-ramp model will be updated by genetic algorithm
periodicaly, it appears unnecessary to analyze them. Therefore, the positions of detectors
will be main parameters to be discussed in this section, the current values of which are
given by:

The position of the upstream detector: 200m (the distance to the ramp entrance)

The position of the downstream detector: 180m (the distance to the ramp entrance)

The positions of check-in detector and ramp detector are fixed at the end and beginning
of the ramp, so they will not be analyzed.

To visualize the effects of the change of detector positions, the positions of detectors that

are currently used in the ssimulation model are considered as base values. The curves of
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parameter sensitivity are developed by the percentage change of STTT (System Total
Travel Time) based on those values. The small threshold value of 0.5% is used to screen
the parameters.

Figure 5.25 and Figure 5.26 shows the sensitivity curve of the parameters.

System TTT vs the Positions of the upstream
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5.6 Conclusion

In this chapter, both FLC and genetic fuzzy ramp metering are programmed and tested in
Aimsun environment, and totally twenty four traffic scenarios have been simulated to
analyze the performance change of the proposed algorithms in different traffic demand.
From the comparison of simulation results, genetic fuzzy ramp metering shows more
significant improvement on TTT when total traffic demand exceeds 4% of road capacity
(about 5200vehicles/hour), while FLC ramp metering tends to be less effective when total
traffic demand is much higher than road capacity. The change of system traffic flow
density shows the reason why genetic fuzzy perform better than FLC ramp meter in the
situation of high traffic demand, which is because the objective function of genetic fuzzy
based on the traffic flow-density relationship effectively maintain and stabilize the flow

density around the predefined value to avoid the formation of congestion.
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Chapter 6 Conclusions and recommendation
6.1 Conclusion
This research proposes a genetic fuzzy approach to design a traffic-responsive ramp
control algorithm for an isolated on-ramp. A traditional fuzzy ramp meter is based on the
theory of fuzzy logic control, which resembles the approximate reasoning characteristics
of human decision making by means of a traffic knowledge base in the form of if-then
rules. The common limitation of FLC ramp metering is the dependence on how good the
rules could be made by human experts. Therefore, the optimization of FLC ramp
metering is actually the optimization of rule-base. Instead of making new rules, tuning
fuzzy parameters for fuzzy sets is easy to be implemented due to the avoidance of
changing the structure of fuzzy rule-base, so genetic algorithm is used as an evaluation
algorithm to optimize the fuzzy parameters based on given evaluation criteria.
The simulation in Aimsun on-ramp model shows significant improvement on TTT when
fuzzy parameters are properly tuned, and some conclusions for the achievement of such
improvement could be summarized as follows:

a) Although fuzzy logic control based on inexact input information do not need a
mathematic model, to properly tune fuzzy parameters, the objective function must
have an exact mathematic expression. In this report, a function derived from
traffic flow-density relationship of an isolated on-ramp model is used as objective
function.

b) To prevent the ramp metering rate neither to be too permissive nor to be too
restrictive, a macroscopic traffic model should be taken into consideration. The
assumption of Greenshield’s macroscopic stream model isinvolved in the Aimsun
on-ramp mode of this paper.

C) To proper tune the fuzzy parameters, a proper evolutionary agorithm should be
selected. Genetic algorithm has been proved to be an easy-implementing and
simple effective way to optimize the FLC ramp metering, and the genetic fuzzy
ramp metering shows the stronger stability of maintaining system traffic flow
density especialy when handling high traffic demand situation.
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6.2 Recommendation

Although the genetic fuzzy ramp metering shows better performance to control the
mainstream traffic condition in Aimsun simulation, the simulation results also show it
might cause longer ramp delay time than FLC or NC. The reason for that is because the
objective function only focuses on the mainstream flow density. In other words, the
consideration about the mainstream traffic condition is the first priority for the ramp
control algorithm, and the limit of ramp queue length is out of consideration in the
objective function and only restricted by fuzzy rules. Certainly, a long ramp queue will
not affect the traffic condition on freeway, but it might cause the congestion on surface
streets due to the spill-back of the long ramp queue, so a ramp queue control function is
recommended to be involved in the objective function if the simulation scenario is not a
isolated on-ramp model but a complete traffic network.

Also, for a motorway network including several on-ramps, the genetic fuzzy ramp
metering algorithm, as a local traffic responsive ramp metering algorithm, might not be
able to optimize traffic condition for the whole network. Then a system objective
function is going to be necessary for the system optimization to tune the fuzzy
parameters. The objective function could be derived by a second order traffic model
representing the traffic network, which could be found in many publications[1] [15] [28].
With this system objective function, the fuzzy genetic ramp metering algorithm could be
tuned as a coordinated ramp metering algorithm to calculate a system metering rate for
each ramp. Meanwhile, the fuzzy genetic agorithm could also work as a loca traffic
responsive ramp meter to calculate alocal ramp metering rate based on the local traffic
condition as we proposed before. The more restrictive one between the local and system
metering rate could be finally applied to the corresponding ramp meter. Thisiswhat we
cal the competitive ramp metering algorithm. It must be very interesting to see the

feasibility of genetic fuzzy agorithm working on such an assumption.
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Appendix A: Fuzzy logic control coding for ramp metering
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e AAPI.CXX

#i ncl ude " AKI Proxi e. h"

#i ncl ude "Cl Proxie. h"

#i ncl ude " ANGConPr oxi e. h"

#i ncl ude "AAPI . h"

#i ncl ude <stdio. h>

#i ncl ude "FLC. h"

/'l Procedures could be nodified by the user
char astring[128];

i nt AAPI Load()

/1 AKIPrintString("LQOAD");

return O;
}
int AAPIInit()
{
[l AKIPrintString("\tlnit");
ANGConnEnabl eVehi cl esl nBat ch(true);
return O,
}
i nt AAPI Manage(doubl e time, double tineSta, double tinrans, double
acicle)
{

/ldetectors setup
float Dv_s, Dup_flow, D down flow, D up occ, D up_speed, D down_speed,
D queue_occ, D checkin_occ;

/lread detecor

D up_occ=(fl oat) ( AKI Det Get Ti neQccupedAggr egat edbyl d(248, NULL) ) ;

D up_speed=(fl oat) ( AKI Det Get SpeedAggr egat edbyl d(248, NULL) ) ;

D up_fl ow=(fl oat) (60*( AKI Det Get Count er Aggr egat edbyl d(248, NULL)));

D _down_speed=(fl oat) ( AKI Det Get SpeedAggr egat edbyl d( 250, NULL) ) ;

D queue_occ=(fl oat) (AKI Det Get Ti mreOccupedAggr egat edbyl d(249, NULL) ) ;

D checki n_occ=(fl oat) ( AKI Det Get Ti neCccupedAggr egat edbyl d( 247, NULL) ) ;
D down_fl ow=(fl oat) (60*( AKI Det Get Count er Aggr egat edbyl d( 250, NULL)));
D v_s=(float) (D down_flow 3990);

/I readi ng display

/*sprintf_s(astring,"D up_occ is %\n", D up_occ);

AKI PrintString(astring);

sprintf_s(astring,"D up_speed is %\n", D up_speed);

AKI PrintString(astring);

sprintf_s(astring,"D up_flowis %\n",D up_flow);
AKIPrintString(astring);

sprintf_s(astring,"D down_speed is %\n", D down_speed);
AKI PrintString(astring);

sprintf_s(astring,"D queue_occ is %\n", D queue_occ);
AKI PrintString(astring);

sprintf_s(astring,"D checkin_occ is %\n", D checkin_occ);
AKI PrintString(astring);

sprintf_s(astring,"D down flow is %\n",D down_flow);
AKIPrintString(astring);

sprintf_s(astring,"DV.Sis %\n",DVv_s);
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AKIPrintString(astring);*/

/linitialize the inputs
float local _occ[7], |ocal _speed[7], local flow 7], downstreamvc|3],
downst ream speed[ 3], checkin_occ[3], queue_occ|[3];
/linput 1
i f(D_up_speed>=0)
{local speed[ 0] =D _up_speed;}
el se
{local _speed[0] = 0;}
| ocal _speed[ 1] =21.5; | ocal _speed][2]=0;
| ocal _speed[ 3] =21.5; | ocal _speed|[4]=50;
| ocal speed[5]=21.5; |ocal _speed[6]=100;
[1input 2
i f(D_up_fl ow>=0)
{local _flow 0] =D up_flow }
el se
{local flow 0] = 0;}
| ocal _flow 1] =850; | ocal _fl ow 2] =0;
| ocal _flow 3]=850; |ocal _flow 4]=2000;
| ocal _flow 5]=850; |ocal flow 6]=4000;
/1input 3
i f(D_up_occ>=0)
{l ocal _occ[0] =D up_occ;}
el se
{local occ[0] = 0;}
| ocal _occ[ 1] =6. 4f; | ocal _occ][ 2] =0;
| ocal _occ[ 3] =6. 4f; | ocal _occ][ 4] =15;
| ocal _occ[5] =6. 4f; | ocal _occ][ 6] =30;
/linput 4
i f(D v_s>=0)
{downstream vc[0]=D v_s;}
el se
{downstream vc[0] = 0;}
downstream vc[ 1] =6.5; downstream vc][ 2] =0.5;
/linput 5
i f(D_down_speed>=0)
{downst r eam speed[ 0] =D_down_speed; }
el se
{downstream speed[0] = O;}
downst ream speed[ 1] =- 0. 25; downstream speed[ 2] =65;
/linput 6
i f(D_checkin_occ>=0)
{checki n_occ[ 0] =D _checki n_occ; }
el se
{checkin_occ[0] = 0;}
checki n_occ[ 1] =0. 4f; checki n_occ][ 2] =20;
[linput 7
i f(D_queue_occ>=0)
{queue_occ[ 0] =D_queue_occ;}
el se
{queue_occ[0] = 0;}
gueue_occ[ 1] =0. 4f; queue_occ| 2] =20;

/lcalculating FLC netering rate
float flow rate;
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flow rate=fl cMeterRat e(l ocal _occ, |ocal_speed, |ocal_flow downstreamvc,
downst ream speed, checki n_occ, queue_occ);

static int i=1;
i f(i==80)

ECI ChangePar anet er skl owet eri ngByl d(245,tineSta, fl ow rate,
flowrate,flow rate);
i =0;
}

i =i +1;

/lsprintf_s(astring,"neter rate is %\n",flowrate);
/1 AKIPrintString(astring);

return O;

i nt AAPI Post Manage(doubl e time, double tinmeSta, double tinmlrans, double
acicl e)

/1 AKIPrintString("\tPostManage");
return O,

}
i nt AAPI Fi ni sh()

/1 AKIPrintString("\tFinish");
return O;

}
i nt AAPI UnLoad()

/1 AKIPrintString("UNLOAD");
return O;

- 107 -



e FLC
#1 ncl ude <stdi o. h>
#1 ncl ude <i ostreanr
#i ncl ude <nmmt h. h>
#i ncl ude "FLC. h"

[linputl definition
float |ocal _speed_ned(float |ocal_speed, float q /*initial value 25.5*/,
float c/*intial value 60*/)
{ doubl e u;
float v;
i f(1ocal _speed<0)
{return(0);}
i f(local speed>100)
{return(0);}
i f(local speed>=0&&I ocal speed<=100)
{v=-((local _speed-c)*(local _speed-c))/(2*qg*q);
u=exp(doubl e(v));
return (float(u));}
return -1;

—h

oat | ocal speed_high(float |ocal _speed, float q, float c)
{ doubl e u;
float v;
i f(local _speed<0)
{return(0);}
i f(local speed>100)
{return(1);}
i f(1ocal _speed>=0&& ocal _speed<=100)
{v=-((local _speed-c)*(local _speed-c))/(2*q*q);
u=exp(doubl e(v));
return (float(u));}
return -1;

oat | ocal _speed_|owfloat |ocal _speed, float g, float c)
doubl e u;
float v;
i f(local _speed<0)
{return(1);}
i f(local _speed>100)
{return(0);}
i f(local _speed>=0&& ocal _speed<=100)
{v=-((local _speed-c)*(local _speed-c))/(2*q*Qq);
u=exp(doubl e(v));
return (float(u));}
return -1;

~ —h

}

[linput2 definition
float local flow ned(float local flow, float g/*initial value 850 */,
float c/*intial value 2000*/)
{ doubl e u;
float v;
i f(local flow0)
{return(0);}
i f(local flow>4000)
{return(0);}

- 108 -



i f(local _flow=0&& ocal _fl ow<=4000)
{v=-((local _flowc)*(local _flowc))/(2*g*q);
u=exp(doubl e(v));
return (float(u));}

return -1;

oat local _flow high(float |ocal _flow, float q, float c)
doubl e u;
float v;
i f(local _flow0)
{return(0);}
i f(local _flow=4000)
{return(1);}
i f(local flow=0&& ocal fl ow=4000)
{v=-((local _flowc)*(local _flowc))/(2*q*q);
u=exp(doubl e(v));
return (float(u));}
return -1;

~ —h

—

oat local _flow |low(float local flow, float g, float c)
{ doubl e u;
float v;
i f(local _flow<0)
{return(l);}
i f(local _flow>4000)
{return(0);}
i f(local _flow=0&& ocal _f| owck=4000)
{v=-((local _flowc)*(local _flowc))/(2*qg*q);
u=exp(doubl e(v));
return (float(u));}
return -1;

}

/1input3 definition
float local _occ _ned(float |ocal _occ, float g/*initial value 6.4 */,
float c/*intial value 15*/)
{ doubl e u;
float v;
i f(local _occ<0)
{return(0);}
i f(local _occ>30)
{return(0);}
i f(local _occ>=0&& ocal _occ<=30)
{v=-((local _occ-c)*(local _occ-c))/(2*g*q);
u=exp(doubl e(v));
return (float(u));}
return -1;

—h

oat |ocal _occ_high(float local _occ, float q, float c)
{ doubl e u;
float v;
i f(local _occ<0)
{return(0);}
i f(local _occ>30)
{return(1);}
i f(local _occ>=0&& ocal _occ<=30)
{v=-((local _occ-c)*(local _occ-c))/(2*g*q);

- 109 -



u=exp(doubl e(v));
return (float(u));}

return -1;

}
float local _occ_|ow(float |ocal _occ, float g, float c)
{ doubl e u;

float v;

i f(local _occ<0)
{return(1);}

i f(local _occ>30)
{return(0);}

i f(local _occ>=0&& ocal _occ<=30)
{v=-((local _occ-c)*(local _occ-c))/(2*g*q);
u=exp(doubl e(Vv));
return (float(u));}

return -1;

}
/[1input4d definition
float downstream vc_hi gh(fl oat downstreamvc, float g/ *initial value
6.5*/, float c)
{doubl e u;
float v;
i f (downstream vc<0)
{return(0);}
i f (downstream vc>1)
{return(1);}

i f (downstream vc>=0&&downst r eam vc<=1)
{v=-g*(downst ream vc-c);
u=1/ ( 1+exp(doubl e(v)));
return (float(u));}

return -1;

}

[linput5 definition
float downstream speed | ow(fl oat downstream speed, float q/*initial
val ue -0.25*/, float c)
{doubl e u;
float v;
i f (downstream speed<0)
{return(l);}
i f (downstream speed>100)
{return(0);}
i f (downst ream speed>=0&&downst r eam speed<=100)
{v=-g*(downst ream speed-c);
u=1/ ( 1+exp(doubl e(v)));
return (float(u));}
return -1;
}
/1input6 definition
fl oat checkin_occ_hi gh(float checkin_occ, float g/*initial value 0.4*/,
float c)
{doubl e u;
float v;
i f (checki n_occ<0)
{return(0);}
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i f (checki n_occ>50)
{return(l);}
i f (checki n_occ>=0&&checki n_occ<=50)
{v=-g*(checki n_occ-c);
u=1l/ (1+exp(doubl e(v)));
return (float(u));}
return -1;

[1input?7 definition
fl oat queue_occ_hi gh(fl oat queue_occ, float g/ *initial value 0.4*/,
float c)
{doubl e u;
float v;
i f (queue_occ<0)
{return(0);}
i f (queue_occ>50)
{return(1);}
i f (queue_occ>=0&&queue_occ<=50)
{v=-qg*(queue_occ-c);
u=1/ (1+exp(doubl e(v)));
return (float(u));}
return -1;

}

/'l FLC code

float flcMeterRate(float *local _occ, float *local _speed, float

*| ocal _flow, float *downstreamvc, float *downstream speed, fl oat
*checki n_occ, float *queue_occ)

/I eval uate each rule
float rule[9];
rul e[ 0] =l ocal _occ_I| ow(*l ocal _occ, *(l ocal occ+1),*(local occ+2));
rul e[ 1] =l ocal _occ_ned(*!l ocal _occ, *(I1 ocal _occ+3), *(l ocal _occ+4));
rul e[ 2] =l ocal _occ_hi gh(*I ocal _occ, *(| ocal _occ+5), *(1 ocal _occ+6));
rul e[ 3] =M N(I| ocal _speed_| owm *I ocal _speed, *(1 ocal _speed+1), *(| ocal _speed
+2)),l ocal _flow high(*local flow *(local flowt5),*(local flowt6)));
rul e[ 4] =M N(| ocal _speed_ned(*I| ocal _speed, *(| ocal speed+3), *(| ocal _speed
+4)),1 ocal _occ_hi gh(*l ocal occ, *(l ocal _occ+5), *(l ocal _occ+6)));
rul e[ 5] =M N(| ocal _speed_med(*I| ocal _speed, *(1 ocal _speed+3), *(| ocal _speed
+4)),1 ocal _occ_Il ow(*l ocal _occ, *(l ocal _occ+1),*(local _occ+2)));
rul e[ 6] =M N(| ocal _speed_hi gh(*I| ocal _speed, *(| ocal _speed+5), *(| ocal _spee
d+6)),local _flow |ow *local flow *(local _flowtl),*(local _flowt2)));
rul e[ 7] =M N(downst r eam speed_I| owm *downst r eam speed, *( downst r eam speed+1
), *(downst r eam speed+2)), downst r eam vc_hi gh(*downst ream vc, *(downst ream
_vc+l), *(downstream vc+2)));
rul e[ 8] =MAX( checki n_occ_hi gh(*checki n_occ, *(checki n_occ+1), *(checki n_oc
c+2)), queue_occ_hi gh(*queue_occ, *(queue_occ+1), *(queue_occ+2)));
//the wei ghted sum of each rule class outcone
/Imeter_rate_high is 0, nmeter_rate lowis 1, nmeter _rate ned is 2
float neter _rate class[3];
nmeter_rate_class[0]=rul e[0]*(3/2)+rul e[5]*1+rul e[ 6] *1+rul e[ 8] *3;
meter_rate_class[1]=rul e[2]*2+rul e[ 3] *2+rul e[ 7] *3
neter_rate_class[2] =rul e[ 1] *(3/2) +rul e[ 4] * 1,
/1 defuzzification (discreted centroids nethod)
fl oat base=0.5;
float centroid=0
fl oat area=0;
fl oat num=O;
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fl oat den=0;
float LL=240;
float HL=900;
float neter_rate;

for(int i=0;i<3;i++)
{
i f(i==0)
{ area=base/ 2;
centroi d=1- base/ 3;}
el se if(i==1)
{ area=base/ 2;
centroi d=base/ 3; }
el se
{ area=base;
centroi d=base; }
numt=net er _rate_cl ass[i] *area*centroi d;
den+=neter _rate class[i]*area

/1 calculate netering rate and rescale to LL and HH range
neter_rate = (HL-LL)*(num den+LL/(HL-LL));

/lstd::cout << "neter_rate\t"<< neter_rate << std::endl
return(neter_rate);
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e AAPI.CXX

/1l Genetic fuzzy control coding for ranp netering

/'l Yu Xue Feng - MASTER STUDENT OF ENG NEERI NG | N MECHATRONI CS
/| SEAT - MASSEY UNI VERSI TY - AUCKLAND - NEW ZEALAND

/1 2008-2009 - All rights reserved

#i ncl ude " AKI Proxie. h"
#i ncl ude "Cl Proxie. h"
#i ncl ude " ANGConPr oxi e. h"
#i ncl ude " AAPI . h"
#i ncl ude <stdio. h>
#i ncl ude "FLC. h"
#include "GA fuzzy. h"
#i ncl ude <nmat h. h>
#i ncl ude <tine. h>
/'l Procedures could be nodified by the user
char astring[128];
int up_count, down_count, ranp_count;
fl oat average_count;
// detectors setup
float Dv_s=0, D up _flow=0, D down_flow=0, D up_occ=0, D up_speed=0,
D down_speed=0, D gqueue_occ=0, D checkin_occ=0;
/I average val ue
float V_C=0, Upflow=0, Downfl ow=0, Upocc=0, Upspeed=0, Downspeed=0,
Queueocc=0, Checki nocc=0;
[linitialize the inputs
float |ocal _occ[7], |ocal _speed[7], local _flow 7], downstream vc][3],
downst ream speed[ 3], checki n_occ[3], queue_occ[3];
doubl e L_speed=0, M speed=50, H speed=100,
L _flow=0, M flow=2000, H flow=4000,
L _occ=0, M occ=15, H occ=30, V_c=0.5,
D speed=65, Check_i n=20, Q_occ=20;
doubl e *Ls=&L speed, *Ms=&M speed, *Hs=&H speed
*Lf=&L flow, *M=&M flow, *Hf =&H fl ow,
*Lo=&L_occ, *My=&M occ, *Ho=&H occ, *Vc=&V_c,
*Ds=&D speed, *Checki n=&Check_in, *Qocc=&Q occ;

i nt AAPI Load()

/1 AKIPrintString("LOAD");
return O;

}
int AAPIInit()

/1 AKIPrintString("\tlnit");
ANGConnEnabl eVehi cl esl nBat ch(true);
return O;

}

i nt AAPI Manage(doubl e time, double tineSta, double tinTrans, double
acicle)

/1 AKIPrintString("\tManage");
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/lread detecor

D up_occ=(fl oat) (AKI Det Get Ti meCccupedAggr egat edbyl d(248, NULL) ) ;

D up_speed=(fl oat) ( AKI Det Get SpeedAggr egat edbyl d( 248, NULL) ) ;

D up_fl ow=(fl oat) (60*( AKI Det Get Count er Aggr egat edbyl d(248, NULL)));
up_count =AKI Det Get Count er Aggr egat edbyl d( 248, NULL) ;

D _down_speed=(fl oat) ( AKI Det Get SpeedAggr egat edbyl d( 250, NULL) ) ;

D _queue_occ=(fl oat) (AKI Det Get Ti meCccupedAggr egat edbyl d( 249, NULL) ) ;
D checki n_occ=(fl oat) ( AKI Det Get Ti mreCccupedAggr egat edbyl d(247, NULL) ) ;
D down_fl ow=(fl oat) (60* ( AKI Det Get Count er Aggr egat edbyl d( 250, NULL)));
down_count =AKI Det Get Count er Aggr egat edbyl d( 250, NULL) ;

r anp_count =AKI Det Get Count er Aggr egat edbyl d( 247, NULL) ;

D v_s=(float) (D _down_fl ow 4200);

/I readi ng display

[*sprintf_s(astring,"D up_occ is %\n",D up_occ);

AKI PrintString(astring);

sprintf_s(astring,"D up_speed is %\n", D up_speed);
AKIPrintString(astring);

sprintf_s(astring,"D up flowis %\n",D up_flow);

AKI PrintString(astring);

sprintf_s(astring,"D down_speed is %\n", D down_speed);
AKI PrintString(astring);

sprintf_s(astring,"D queue_occ is %\n", D queue_occ);
AKIPrintString(astring);

sprintf_s(astring, "D checkin_occ is %\n",D checkin_occ);
AKI PrintString(astring);

sprintf_s(astring, "D down_flowis %\n", D down_flow);
AKIPrintString(astring);

sprintf_s(astring,"DV.Sis %\n",DVv_s);

AKI PrintString(astring);*/

//input 1

i f(D_up_speed>=0)

{l ocal _speed[ 0] =D_up_speed;}

el se

{l ocal speed[0] = 0;}

| ocal speed[1]=21.5; |ocal speed[?2]=float(L_speed);
| ocal _speed[ 3] =21.5; I|ocal _speed[4]=fl oat (M speed);
| ocal _speed[5]=21.5; |ocal _speed[6]=fl oat (H speed);
/linput 2

i f(D_up_fl ow>=0)

{local _flow 0] =D up_flow}

el se

{local flow 0] = 0;}

| ocal _flow 1] =850; | ocal flow 2]=float(L_fl ow);

| ocal _flow 3] =850; |ocal _flow 4]=float(Mflow);

| ocal _fl ow 5] =850; | ocal flow 6]=float(H_flow);
/linput 3

i f(D_up_occ>=0)

{local _occ[0] =D _up_occ;}

el se

{local _occ[0] = 0;}

| ocal occ[1]=6.4f; |ocal _occ[2]=float(L_occ);

| ocal occ[3]=6.4f; |ocal occ[4]=float(M occ);

| ocal _occ[5] =6.4f; |ocal occ[6]=float(H occ);
/1input 4

i f(D_v_s>=0)
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{downstreamvc[0]=D v_s;}

el se

{downstream vc[0] = 0;}

downstream vc[ 1] =6.5; downstreamvc[2]=float(V_c);
/linput 5

i f(D_down_speed>=0)

{downst r eam speed[ 0] =D_down_speed; }

el se

{downst ream speed[ 0] = 0;}

downst ream speed[ 1] =- 0. 25; downstream speed[ 2] =f | oat (D_speed);
/linput 6

i f (D_checki n_occ>=0)

{checki n_occ[ 0] =D _checki n_occ; }

el se

{checkin_occ[0] = 0;}

checki n_occ[ 1] =0. 4f; checki n_occ[ 2] =f | oat (Check_i n);
/1input 7

i f(D_queue_occ>=0)

{queue_occ[ 0] =D_queue_occ;}

el se

{queue_occ[0] = 0;}

gqueue_occ[ 1] =0. 4f; queue_occ[ 2] =f | oat (Q _occ);

/lcalculating FLC netering rate
i f (average_count >15)

{
float flow rate;
flow rate=fl cMeterRate(l ocal _occ, |ocal _speed,|ocal _flow,
downstream vc, downstream speed, checkin_occ, queue_occ);
static int i=1;
i f(i==80)
{
ECI ChangePar anet er sFl owvet eri ngByl d(245,ti meSta, fl ow_
rate,flowrate, flowrate);
i =0;
/lsprintf_s(astring, "neter_rate is %\n",flow rate);
[ AKI PrintString(astring);
}
i =i +1;
}
el se
{
float flow rate;
fl ow_rat e=800;
ECI ChangePar anet er skl owet eri ngByl d(245,tineSta, fl ow rate,
flowrate,flow rate);
[Isprintf_s(astring,"neter_rate is %\n",flowrate);
[1AKIPrintString(astring);
}
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}

i nt AAPI Post Manage(doubl e time, double tinmeSta, double timlrans,
aci cle)

{

return O;

static int j=1,k=1;
static float cars=0,total cars=0;

i f(j==80)

{

[linput 1

i f(D_up_speed>=0)
{Upspeed=Upspeed+D up_speed;}

/1input 2
i f(D_up_flow>=0)
{ Upf | ow=Upf | ow+D _up_fl ow; }

/1input 3
i f(D_up_occ>=0)
{Upocc=Upocc+D up_occ;}

[/input 4
i f(D v_s>=0)
{V.C=V_C+D v_s;}

/linput 5
i f(D_down_speed>=0)
{ Downspeed=Downspeed+D _down_speed; }

/linput 6
i f(D_checkin_occ>=0)
{ Checki nocc=Checki nocc+D _checki n_occ; }

[linput 7
i f(D_queue_occ>=0)
{ Queueocc=Queueocc+D _queue_occ; }

i f (up_count <0&& anp_count <0&&down_count <0)
cars=0

el se
{cars=car s+(up_count +ranp_count - down_count ) ;
total cars=cars+total _cars;}

/lcalcualte the average inputs in 5 mnutes
i f(k==5)
{
| ocal _speed[ 0] =Upspeed/ 5;
[ ocal _fl owf 0] =Upf | ow 5;
| ocal _occ[ 0] =Upocc/ 5;
downstream vc[ 0] =V_C/ 5;
downst r eam speed[ 0] =Downspeed/ 5;
checki n_occ[ 0] =Checki nocc/ 5;
gueue_occ[ 0] =Queueocc/ 5;
average_count =total _cars/5;
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}

Upspeed=0;
Upf | ow=0;
Upocc=0;
V_C=0;
Downspeed=0;
Checki nocc=0;
Queueocc=0;

t ot al

_cars=0;

/1l genetic tuning process to update the fuzzy paraneters

doubl e fl ow,
i f (average_count >=15&& aver age_count <=30)
{
fl ow=60*( 30- aver age_count);
GA(l ocal _occ, | ocal _speed, | ocal _fl ow, downstream vc,
downst r eam speed, checki n_occ, queue_occ, fl ow, Ls, Ms, Hs, Lf, M,
Hf , Lo, Mo, Ho, Vc, Ds, Checki n, Qocc);
[lsprintf_s(astring,” the tuned flowrate is %\n",flow);
[T AKIPrintString(astring);
}
i f (average_count >30)
{
fl ow=240;
GA(l ocal _occ, | ocal _speed, | ocal _fl ow, downstream vc, downstrea
m speed, checki n_occ, queue_occ, fl ow, Ls, M5, Hs, Lf, M, Hf , Lo, Mo,
Ho, Vc, Ds, Checki n, Qocc) ;
[lsprintf_s(astring,"flowrate is %\n",flow;
[ AKIPrintString(astring);
}
k=0;
}
k=k+1;
i =0
}
j =i+
/1 AKIPrintString("\tPostManage");
return O,

i nt AAPI Fi ni sh()

}

/1 AKI

PrintString("\tFinish");

return O;

i nt AAPI UnLoad()

/1 AKI

PrintString("UNLOAD");

return O;
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o GA-FLC.cpp

/'l Genetic fuzzy control coding for ranp netering

/'l Yu Xue Feng - MASTER STUDENT OF ENG NEERI NG | N MECHATRONI CS
/'l SEAT - NMASSEY UNI VERSI TY - AUCKLAND - NEW ZEALAND

/1 2008-2009 - All rights reserved

#i ncl ude <mat h. h>

#i ncl ude <stdlib. h>
#i ncl ude <tinme. h>

#i ncl ude <i ostreanr
#i ncl ude "FLC. h"

#i ncl ude "GA fuzzy. h"

double f(float* local _occ, float* |ocal _speed, float* |ocal _fl ow,
float* downstreamvc, float* downstream speed, float* checkin_occ,
float* queue_occ, doubl e flow, doubl e Lspeed, doubl e Mspeed, doubl e
Hspeed, doubl e Lfl ow, doubl e M| ow, doubl e Hf | ow, doubl e Locc, doubl e
Mocc, doubl e Hocc, doubl e Vc, doubl e Dspeed, doubl e Checkin, doubl e Qocc)
{

[linput 1

*(1 ocal _speed+2) =f | oat (Lspeed);

*(1 ocal _speed+4) =f | oat (Mspeed+Lspeed);

*(1 ocal _speed+6) =f | oat ( Hspeed+Mspeed+Hspeed) ;

/1input 2

*(local _fl owt+2) =f| oat (Lfl ow);

*(l ocal _fl ow+4) =f| oat (M | owtLf | ow) ;

*(1 ocal _fl owt6)=fl oat (Hf | ow+M | ow+Lf | ow) ;

/1input 3

*(1 ocal _occ+2)=fl oat (Locc);

*(1 ocal _occ+4)=f| oat (Mocc+Locc);

*(1 ocal _occ+6)=f| oat (Hocc+Mocc+Locc) ;

/1input 4

*(downstream vc+2) =f | oat ( Vc) ;

/linput 5

*(downst r eam speed+2) =f | oat ( Dspeed) ;

/linput 6

*(checki n_occ+2) =f | oat ( Checki n) ;

/1input 7

*(queue_occ+2) =f | oat (Qocc) ;

float flow rate=flcMeterRate(local _occ, |ocal _speed, |ocal flow,

downstream vc, downstream speed, checkin_occ, queue_occ);

return (1/((flowflowrate)*(flowflowrate)));

}

int cLength(int precision, double rangeStart, doubl e rangeEnd)

{
i nt | ength=0;
doubl e total =(rangeEnd-rangeStart)*pow 10. 0, preci sion);
whi | e(t ot al >pow 2. 0, | engt h))
{l engt h++;}
return(l ength);
}

doubl e Lspeed(int* chronosone, int speedLength, doubl e* donmain)

{
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doubl e m=0. O;

for(int i=0; i<speedLength; i++)

{ mt=chr onosone[ speedLengt h-i -1] *pow(2.0,i);}

doubl e x=dorai n[ 0] +n* (donai n[ 1] - donai n[ 0] )/ (pow 2. 0, speedLengt h) -
1.0);

return x;

}

doubl e Mspeed(int* chronosone, int speedLength, doubl e* donain)
{
doubl e m=0. O;
for(int i=0; i<speedLength; i ++)
{ mt=chr onbsone[ 2*speedLengt h-i - 1] *pow(2.0,i);}
doubl e x=donmi n[ 0] +n* (donmi n[ 1] -donai n[ 0] )/ (pow 2. 0, speedLengt h) -
1.0);
return x;

}

doubl e Hspeed(int* chronosone, int speedLength, doubl e* domain)
{
doubl e nm=0. 0O;
for(int i=0; i<speedLength; i++)
{mr=chr onosone[ 3*speedLengt h-i-1]*pow(2.0,i);}
doubl e x=donwmi n[ 0] +nt (domai n[ 1] - domai n[ 0] )/ (pow 2. 0, speedLengt h) -

1.0);
return x;
}
doubl e Lflow(int* chronmobsone, int speedLength, int flowLength, double*
domai n)
{
doubl e n¥0. 0;
i nt | engt h=3*speedLengt h+f| owLengt h;
for(int i=0; i<flowLength; i++)
{mt=chr omosone[ | ength-i-1]*powm 2.0,i);}
doubl e x=donmai n[ 2] +n* (donai n[ 3] -domai n[ 2] )/ (pow 2. 0, f| owLengt h) -
1.0);
return x;
}

double MIowint* chronosone, int speedLength, int flowLength, double*
dormai n)

{
doubl e m=0. 0O;
i nt | ength=3*speedLengt h+2*f| owLengt h;
for(int i=0; i<flowLength; i++)
{ mt=chr onmosone[ |l engt h-i-1]*powm 2.0,i);}
doubl e x=donmi n[ 2] +n* (donai n[ 3] -donai n[ 2] )/ (pow 2. 0, f| owLengt h) -
1.0);
return x;
}

doubl e Hfl ow(i nt* chronosone, int speedLength, int flowLength, double*
domai n)

doubl e nm=0. O;
i nt | engt h=3*speedLengt h+3*f| owLengt h;
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}

for(int i=0; i<flowLength; i++)

{mt=chr onosone[ |l ength-i-1] *pow2.0,i);}

doubl e x=domai n[ 2] +n* (donai n[ 3] -donai n[ 2] )/ (pow 2. 0, f| owLengt h) -
1.0);

return x;

doubl e Locc(int* chronosonme, int speedLength, int flowlLength, int
occlLengt h, doubl e* dormai n)

{

}

doubl e m=0. O;

i nt | ength=3*speedLengt h+3*f| owLengt h+occLengt h;

for(int i=0; i<occLength; i++)
{mt=chromosone[ | engt h-i-1]*powm2.0,i);}

doubl e x=domai n[ 4] +n* (domai n[ 5] - dorai n[ 4] )/ (pow 2. 0, occLengt h) -
1.0);

return x;

doubl e Mocc(int* chronmosome, int speedLength, int flowLength, int
occlLengt h, doubl e* dormai n)

{

}

doubl e nm=0. O;

i nt | engt h=3*speedLengt h+3*f | owlLengt h+2* occLengt h;

for(int i=0; i<occLength; i++)

{ mt=chr onosone[ | engt h-i-1] *pow(2.0,i);}

doubl e x=dormai n[ 4] +nt (donai n[ 5] -donai n[ 4] )/ (pow 2. 0, occLengt h) -
1.0);

return x;

doubl e Hocc(int* chronpbsone, int speedLength, int flowLength, int
occlLengt h, doubl e* domai n)

{

}

doubl e m=0. O;

i nt | ength=3*speedLengt h+3*f| owLengt h+3*occLengt h;

for(int i=0; i<occLength; i++)

{ mt=chr onosone[ | engt h-i-1] *pow( 2. 0,i);}

doubl e x=dorai n[ 4] +nt (donai n[ 5] - domai n[ 4] )/ (pow 2. 0, occLengt h) -
1.0);

return x;

doubl e vec(int* chronosone, int speedLength, int flowLength, int
occLengt h, int vclLength, double* domai n)

{

}

doubl e m=0. O;

i nt | ength=3*speedLengt h+3*f| owLengt h+3*occlLengt h+vclLengt h;
for(int i=0; i<vcLength; i++)

{ mt=chr onmosone[ | engt h-i-1]*powm 2.0,i);}

doubl e x=dormai n[ 6] +nt (domai n[ 7] - domai n[ 6] )/ (pow( 2. 0, vcLengt h) -
1.0);

return x;

doubl e dspeed(int* chronosone, int speedLength, int flowLength, int
occlLength, int vclLength, int dspeedLength, double* domain)
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{
doubl e n¥O0. O;

int | ength=3*speedLengt h+3*f| owLengt h+3* occLengt h+vcLengt h+dspeedLengt h;

for(int i=0; i<dspeedLength; i++)

{m+=chr onosone[ | ength-i-1] *pow(2.0,i);}

doubl e x=donmi n[ 8] +n (domai n[ 9] - domai n[ 8] )/ (pow 2. 0, dspeedLengt h)-1.0);
return x;

}

doubl e checkin(int* chronmosone, int speedLength, int flowLength, int
occLength, int vclLength, int dspeedLength, int checkinLength, double*
domai n)

{

doubl e m=0. 0;

i nt

| engt h=3*speedLengt h+3*f | owLengt h+3* occLengt h+vcLengt h+dspeedLengt h+
checki nLengt h;

for(int i=0; i<checkinLength; i++)

{mt=chr onosone[ | ength-i-1] *pow(2.0,i);}

doubl e x=domai n[ 10] +n* (donai n[ 11] - donmai n[ 10] )/ (pow( 2. 0, checki nLengt h) -
1.0);

}

doubl e qocc(int* chronmpbsone, int speedLength, int flowLength, int
occlLength, int vclLength, int dspeedLength, int checkinLength, int
gocclLengt h, doubl e* domai n)

return x;

doubl e m=0. 0;

i nt

| engt h=3*speedLengt h+3*f | owLengt h+3* occLengt h+vcLengt h+dspeedLengt h+che

cki nLengt h+gocclLengt h;

for(int i=0; i<qgoccLength; i++)

{mt=chr onosone[ | engt h-i-1] *pow(2.0,i);}

doubl e x=domai n[ 12] +m* (domai n[ 13] - domai n[ 12] )/ (pow 2. 0, goccLength)-1.0);
return x;

}

voi d setup(int**farm int size, int length, int speedLength, int
fl owLength, int occLength, int vcLength, int dspeedLength, int
checki nLength, int goccLength, doubl e* domain)
{

time_t t;

srand((unsigned) tine(&t));

for(int i=0; i<size; i++)

{
int ispop=0;
whi l e(!i spop)
{
for(int j=0; j<3*speedLength; j++)
{ farnfi][j]=rand()%;}

doubl e Ls=Lspeed(farnii], speedLength, donain);
doubl e Ms=Mspeed(farnii], speedLength, donain);

-122 -



doubl e Hs=Hspeed(farnii], speedLength, domain);
i f((100-Ls- Ms- Hs)>=0)
{ispop=1;}

}

i spop=0;

whi |l e(!ispop)

{
for(int j=(3*speedLength-1); j<(3*speedLength+3*flowlLength); j++)
{ farnfi][j]=rand()%;}
doubl e Lf=Lflow(farnfi], speedLength, flowlLength, donain);
double M=MIlow(farnfi], speedLength, flowLength, domain);
double H =Hfl owm(farnfi], speedLength, flowLength, donain);
i f ((4000-Lf-M -Hf)>=0)
{ispop=1;}
}
i spop=0;
whi |l e(!ispop)
{

for(int j=(3*speedLengt h+3*fl owLengt h-1);
j <(3*speedLengt h+3*f| owLengt h+3*occLengt h); j ++)
{farnfi][j]=rand()%;}
doubl e Lo=Locc(farnfi], speedLength, flowLength,
occlLengt h, domai n);
doubl e Mo=Mbcc(farnii], speedLength, flowLength,
occlLengt h, domain);
doubl e Ho=Hocc(farn{i], speedLength, flowLength,
occlLengt h, domain);
i f((30-Lo- M- Ho) >=0)
{ispop=1;}
}
i spop=0;
for(int j=(3*speedLengt h+3*fl owLengt h+3*occLengt h-
1);j <l ength;j++)
{farni][j]=rand()%;}

}
}
void printFarm(int**farm int length, int size)
{
for(int i=0; i<size; i++)
{
std::cout<<"\n";
for(int j=0; j<length; j++)
{std::cout<<farnfi][j];}
}
}

doubl e fitnessVal ue(double (*f)(float*, float*, float*, float* ,

float* , float* , float* ,double, double, double, double, double, double,
doubl e, doubl e, doubl e, doubl e, doubl e, doubl e, doubl e, doubl e), fl oat *

| ocal _occ, float* |ocal_speed, float* |ocal _flow, float* downstream vc,
fl oat* downstream speed, float* checkin_occ, float* queue_occ ,int*
chronosone, int |ength, double* dommin, int speedLength, int flowLength,
int occLength, int vcLength, int dspeedLength, int checkinLength, int
gocclLength, double flow)

doubl e Ls=Lspeed(chronmosone, speedLength, domain);
doubl e Ms=Mspeed(chronmpbsone, speedLength, donain);
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doubl e Hs=Hspeed(chronobsone, speedLength, donmin);

doubl e Lf=Lfl ow( chronosone, speedLength, flowLength, domain);
doubl e M =M1 ow chronmosone, speedLength, flowLength, donain);
doubl e Hf =Hf | ow( chr ombsone, speedLength, flowLength, donmin);

doubl e Lo=Locc(chronosone, speedlLength, flowLength, occLength, domain);
doubl e Mo=Mocc(chronosone, speedlLength, flowLength, occlLength, domain);
doubl e Ho=Hocc(chronosome, speedLength, flowLength, occLength, domain);

doubl e Vc=vc(chronosone, speedLength, flowLength, occLength, vcLength,
domai n) ;

doubl e Ds=dspeed(chronmosone, speedLength, flowLength, occlLength,
vclLengt h, dspeedLength, domain);

doubl e Check=checki n(chronosome, speedLength, flowLength, occlLength,
vclLengt h, dspeedLength, checki nLength, domain);

doubl e Qo=qocc(chronosone, speedLength, flowLength, occlLength,
vcLengt h, dspeedLength, checki nLength, qocclLength, domain);

doubl e resul t;
resul t=f (1 ocal _occ, | ocal _speed, | ocal _fl ow, downstream vc,
downst ream speed, checkin_occ,
gueue_occ, fl ow, Ls, Ms, Hs, Lf, M, Hf , Lo, Mo, Ho, Vc, Ds, Check, Qo) ;
return(result);
}
void roulette(float* local _occ, float* |ocal _speed, float* |ocal _flow,
float* downstreamvc, float* downstream speed, float* checkin_occ
float* queue_occ ,int** farm int length, int size, double* donmain, int
speedLength, int flowLength, int occLength, int vcLength, int
dspeedLengt h, int checkinLength, int gocclLength, double flow)

int i, j;

doubl e* fitnessVector=NULL;

fitnessVector = new doubl e[ si ze];

for(i=0; i<size; i++)
{fitnessVector[i]=fitnessVal ue(f, | ocal _occ, |ocal_speed,

| ocal _fl ow, downstream vc, downstream speed, checkin_occ,
gueue_occ ,farnf{i], | ength,donmain, speedLength, flowLength,
occLengt h, vcLength, dspeedLength, checki nLength,
goccLength, flow);}

doubl e total Fi tness=0. 0;
for(i=0; i<size; i++)
{total Fitness += fitnessVector[i];}

doubl e* probabilityVector=NULL;

probabilityVector = new doubl e[size];

for(i=0; i<size; i++)
{probabilityVector[i]=fitnessVector[i]/total Fitness;}

doubl e cunul ati veProb = 0.0;

doubl e* cum prob_Vector = NULL;

cum prob_Vector = new doubl e [size];

for(i=0; i<size; i++)

{cunmul ati veProb += probabilityVector[i];
cum prob_Vector[i] = cunul ati veProb;}

doubl e* randonVector = NULL;
randonVect or = new doubl e[ si ze] ;
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time t t;

srand((unsigned) tinme(&t));

for(i=0; i<size; i++)

randonVector[i] = rand()/doubl e( RAND_MAX) ;

int count;

int** newFarm = NULL;
newFarm = new i nt*[si ze];
for(i=0; i <size; i++)
newFarn{i]= new int[length];
for( i=0; i<size; i++)

{
count =0;
whi | e(randonVector[i]>cum prob_Vector[count]) count++;
for(j=0; j<length; j++)
{newFarnfi][j] =farnmfcount][j];}
}

for(i=0; i<size; i++)
for(j=0; j<length; j++)
farn{i][j] = newFarn{i][j];

del ete[] fitnessVector

del ete[] probabilityVector
del ete[] cum prob_Vect or
del ete[] randonVect or
for(i=0; i<size; i++)
delete[] newFarnii];

del ete[] newkFarm

}

void crossing(int** farm int size, int |ength,double* domain, int
speedLength, int flowLength, int occlLength)

{
int i, j, k, m
int count = O;
int* chosen = NULL;
int ispop=0;

chosen = new int[size];

doubl e* randomVect or = NULL;

randonVect or = new doubl e [size];

time_t t;

srand((unsigned) tine(&t));

for(i=0; i<size; i++)

randonVector[i] = rand()/doubl e( RAND MAX) ;

for(i=0; i<size; i++)

{
i f(randonVector[i]<0.4)
{chosen[ count] =i
count ++; }
}

if((count%2 !'= 0) || (count==1))

i nt i ndex=0;
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whi | e(randomVect or [ i ndex] <0. 4) i ndex++;

count ++;
chosen[ count-1] = index;

}

int** tenp = NULL;
temp = new int*[2]
for(i=0; i<2; i++)
{temp[i] = new int[length];}

for(i=0;i<count;i=i+2)

{

doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

i f

}

whi | e(!i spop)
{

for(j=0;j<length;j++)

{temp[O] [j]=farn]chosen[i]][]j];
tenp[1][j]=farnichosen[i+1]][j];}
srand((unsigned) tinme(&t));
int position=rand()% ength;
for(k=position; k<length; k++)
{tenmp[ 0] [K] =farnichosen[i+1]][K];
temp[ 1] [ k] =farnf chosen[i]][k];}

LsO=Lspeed(tenp[ 0], speedLength, domain);
MsO=Mspeed(tenp[ 0], speedLength, domain);
HsO=Hspeed(t enp[ 0], speedLengt h, domain);
Lf O=Lfl om(tenp[ O], speedLength, flowLength,
M O=M | ow(t enp[ 0], speedLength, flowLength,
Hf O=Hf | om(t enp[ 0], speedLength, fl owLength,
LoO=Locc(tenp[ 0], speedLength, flowLength,
MoO=Mocc(tenp[ 0], speedLength, flowlLength,
HoO=Hocc(tenp[ 0], speedLength, flowlLength,
Lsl=Lspeed(tenp[ 1], speedLength, domain);
Ms1=Mspeed(tenp[ 1], speedLength, domain);
Hsl=Hspeed(tenp[ 1], speedLength, domain);
Lf 1=Lfl owm(tenp[ 1], speedLength, flowLength,
M 1=M 1| ow(tenp[ 1], speedLength, flowLength,
Hf 1=Hf | ow(t enp[ 1], speedLength, flowLength,
Lol=Locc(tenp[ 1], speedLength, flowLength,
Mol=Mocc(tenp[ 1], speedLength, flowLength,
Hol=Hocc(tenp[ 1], speedLength, flowLength,

donai n) ;
domai n) ;
domai n) ;
occlLengt h,
occlLengt h,
occlLengt h,

donmai n) ;
donmai n) ;
domai n) ;
occlLengt h,
occlLengt h,
occlLengt h,

domai
donai
donai

donai
donmai
donmai

((100- LsO- Ms0- Hs0) >=08&&( 4000- Lf 0- M 0- Hf 0) >=0&&( 30- L0o0- MbO-
Ho0) >=08&&( 100- Ls1- Ms1- Hs1) >=0&&( 4000- Lf 1- M 1- Hf 1) >=0&8&( 30- Lo1-
Mb1- Hol) >=0)

{i spop=1;}
}
i spop=0;
for(me0; nxlength; mt+)
{farm chosen[i]][n =tenp[0][M;
farnichosen[i+1]][mM=tenmp[1][mM;}

del ete[] chosen

del ete[] randomVect or
for(i=0; i<2; i++)
delete[] tenpl[il;
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delete[] tenp;

void mutate(int** farm int size, int |ength,double* domain, int
speedLength, int flowLength, int occlLength)

int i,j;

int total bits=size*l ength;

doubl e* randomVect or= NULL;

int** tenp = NULL;

tenmp = new int*[1]

for(i=0; i<l; i++)

{temp[i] = new int[length];}
randonVect or = new doubl e[total bits];
time t t;

srand((unsigned) tinme(&t));

for(i=0; i<totalbits; i++)
randonVector[i] =rand()/ doubl e( RAND_NMAX) ;

int a,b;
for(i=0; i<totalbits; i++)
{
i f(randonVector[i]<0.01)
{
i f(i>=length)
{a=i/length; b=i%ength;}
el se
{a=0; b=i;}

for(j=0;j<length;j++)
{tenp[O][j]=farnfa][j];}
i f(tenp[ 0] [b] ==0)

tenp[ 0] [ b] =1;

el se

t enp[ 0] [ b] =0;

doubl e LsO=Lspeed(tenp[ 0], speedLength, domain);

doubl e MsO=Mspeed(tenp[0], speedLength, donmin);

doubl e HsO=Hspeed(tenp[ 0], speedLength, donmin);

doubl e LfO=Lflow(tenp[ 0], speedLength, flowLength, domain);
doubl e M O=M1|ow(tenp[ 0], speedLength, flowL,ength, domain);
doubl e Hf O=Hf | om(t enp[ 0], speedLength, flowLength, donain);
doubl e LoO=Locc(tenp[ 0], speedLength, flowlLength, occlLength,

domai n) ;
doubl e MbO=Mocc(tenp[ 0], speedLength, flowlLength, occlLength,
donmai n) ;
doubl e HoO=Hocc(tenp[ 0], speedLength, flowlLength, occlLength,
domai n) ;

if ((100-Ls0O-Ms0-Hs0)>=0&&(4000- Lf 0- M 0- Hf 0) >=0&&( 30- Lo0- Mb0- Ho0) >=0)

for(j=0; j<length; j++)
{farnfa][j]=temp[O][j];}
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del ete[] randomVect or
del ete[] tenp[O0];
del ete[] tenp;

}

void printResult(float* |ocal _occ, float* |ocal _speed, float*
| ocal _flow, float* downstreamvc, float* downstream speed, float*
checkin_occ, float* queue_occ ,int** farm int length, int size,
doubl e* domain, int speedLength, int flowlLength, int occLength, int
vclLengt h, int dspeedLength, int checkinLength, int qgoccLength, int
iterations, double flow)
{ o

Int 1;

doubl e* fitnessVector=new doubl e[ si ze];

for(i=0; i<size; i++)
fitnessVector[i]= fitnessVal ue(f,local _occ,|ocal _speed, |ocal _fl ow,

downstreamvc, downstream speed, checkin_occ, queue_occ ,farnfi], | ength,

domai n, speedLength, flowLength, occLength, vclLength, dspeedLength,
checki nLengt h, gocclLength, fl ow);

i nt pos=0;
doubl e max=fitnessVector[0];
for(i=1; i<size; i++)

i f(fitnessVector[i]>nmax)
{max= fitnessVector[i];
pos=i ; }

}
doubl e Ls=Lspeed(farnipos], speedLength, domain);
doubl e Ms=Mspeed(farnipos], speedLength, domain);
doubl e Hs=Hspeed(farnipos], speedLength, domain);
doubl e Lf=Lflowfarnfpos], speedLength, flowLength, domain);
doubl e M =M1 ow farnfpos], speedLength, flowLength, domain);
doubl e Hf =Hf | ow( f ar nf pos], speedLength, flowLength, domain);
doubl e Lo=Locc(farnipos], speedLength, flowLength, occlLength,

domai n) ;
doubl e Mb=Mocc(farnipos], speedLength, flowLength, occlLength,
domai n) ;
doubl e Ho=Hocc(farnfpos], speedLength, flowLength, occLength,
dorai n) ;

doubl e Vc=vc(farnfpos], speedLength, flowLength, occlLength,
vclLengt h, domain);

doubl e Ds=dspeed(farnfpos], speedLength, flowlLength, occlLength,

vclLengt h, dspeedLength, domain);

doubl e Check=checki n(farnipos], speedLength, flow,ength,
occLengt h, vcLength, dspeedLength, checkinLength, domain);
doubl e Qo=qocc(farnipos], speedLength, flowLength, occlLength,
vclLengt h, dspeedLength, checki nLength, gocclLength, domain);

std::cout<<"\n\n After"<<iterations<<"iterations the fitness are: \n"

for(i=0; i<size; i++)

{

std::cout<<"\n fitness of chronpbsone"<<i<<":"<<fitnessVector[i];

std::cout<<"\n\n The maxi nrum fitness: "<< maX;
std::cout<<"\n Ls:"<<Ls;
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std::cout<<"\n Ms:"<<Ms+Ls;
std::cout<<"\n Hs:"<<Hs+Ms+Ls;
std::cout<<"\n Lf:"<<Lf;
std::cout<<"\n M:"<<M +Lf;
std::cout<<"\n Hf:"<<Hf +M +Lf;
std::cout<<"\n Lo:"<<Lo;
std::cout<<"\n M:"<<Md+Lo;
std::cout <<"\n Ho:"<<Ho+Mb+Lo;
std::cout<<"\n Vc:"<<\Vc;
std::cout<<"\n Ds:"<<Ds;

std:: cout <<"\ n Check: "<<Check
std::cout<<"\n Qo:"<<Q;

float |ocal _occ[7], l|ocal _speed[7], local _flow7],
downstream vc[ 3], downstream speed[ 3], checkin_occ[3],
gueue_occ[ 3] ;

/linput 1

| ocal speed[0] = O;

| ocal _speed[ 1] =21. 5f; | ocal _speed[ 2] =fl oat (Ls);

| ocal _speed[ 3] =21. 5f; | ocal _speed[ 4] =fl oat (Ms+Ls);

| ocal _speed[ 5] =21.5f; |ocal speed[ 6] =f| oat (Hs+Ms+Hs) ;
/1input 2

| ocal _flow 0] = O;

| ocal _flow 1] =850; | ocal flow 2]=float(Lf);

| ocal _flow 3]=850; |ocal _flow 4]=float(M +Lf);

| ocal _fl ow 5]=850; |ocal _flow 6]=float (Hf +M +Lf);
/1input 3

| ocal _occ][ 0] 0;

| ocal _occ[ 1] =6. 4f; 1 ocal _occ[ 2] =fl oat (LO);

| ocal _occ[3]=6.4f; |ocal _occ[ 4] =fl oat (M+L0);

| ocal _occ[5]=6.4f; |ocal occ[6]=fl oat (Ho+Mo+L0);
/1input 4

downstreamvc[0] = O;

downstream vc[ 1] =6. 5f; downstream vc[ 2] =f| oat (Vc);
/linput 5

downstream speed[ 0] = O;

downst ream speed[ 1] =- 0. 25; downstream speed[ 2] =f | oat (Ds) ;
/1input 6

checki n_occ[0] = O;

checki n_occ[ 1] =0. 4f ; checki n_occ[ 2] =f | oat ( Check) ;
/linput 7

queue_occ[0] = 0;

gueue_occ[ 1] =0. 4f; queue_occ[ 2] =f | oat ( Qo) ;

float flow rate=flcMeterRate(local _occ, |ocal_speed, |ocal _flow,
downstream vc, downstream speed, checki n_occ, queue_occ);

std::cout<<"\n flow rate:"<<flow rate;
std::cout<<"\n";

del ete[] fitnessVector;

void GA(float* | ocal _occ, float* |ocal _speed, float* |local flow, float*
downstreamvc, float* downstream speed, float* checkin_occ, float*
gqueue_occ, double flow, double* L_speed, doubl e* M speed, doubl e*

H speed, doubl e* L_fl ow, doubl e* M fl ow, doubl e* H fl ow, doubl e*
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L_occ, doubl e* M occ, doubl e* H occ, doubl e* V_c, doubl e* D speed, doubl e*
Check_in, doubl e* Q occ)
{
int size=50;
i nt precision=1;
int iter=400;
doubl e domai n[ 14] ;
doubl e
speedl, speed2, fl owl, fl ow2, occl, occ2, vcl, vc2, dspeedl, dspeed2, check
i n1, checki n2, qocc1, qocc?2
speed1=0; speed2=100;
f I owl=0; f | ow2=4000;
occ1=0; occ2=30;
vcl=0; vc2=1;
dspeed1=0; dspeed2=100;
checki n1=0; checki n2=50;
gocc1=0; qocc2=50;

domai n[ 0] =speedl; domai n[ 1] =speed?2;

domai n[ 2] =f | owl; domai n[ 3] =f | ow2;
donai n[ 4] =occ1; domai n[ 5] =occ2;
donai n[ 6] =vcl; donmin[7]=vc2;
domai n[ 8] =dspeedl; domai n[ 9] =dspeed?2;
dormai n[ 10] =checki nl; dormai n[ 11] =checki n2;
domai n[ 12] =qoccl; domai n[ 13] =qocc?2;

nt speedLengt h=cLengt h( preci sion, domain[0], domain[1]);

nt fl owLengt h=cLengt h(precision, domain[2], domain[3]);

nt occlLengt h=cLengt h( preci si on, domain[4], donmain[5]);

nt vclLengt h=cLengt h(precision, domain[6], domain[7]);

nt dspeedLengt h=cLengt h(preci sion, donain[8], domain[9]);

nt checki nLengt h=cLengt h(precision, donmain[10], domain[11l]);
nt gocclLengt h=cLengt h( precision, domain[12], donain[13]);

nt | engt h=3*speedLengt h+3*f| owLengt h+3*occLengt h+vcLengt h+
dspeedLengt h+checki nLengt h+gocclLengt h;

/1std::cout<<"\n the chronosone length is: "<<length;

int** farmeNULL;
farmenew i nt*[ si ze] ;
for(int i=0; i<size; i++)
{farnfi]= newint[length];}
setup(farm size, |length, speedLength, flowLength, occlLength,
vclLengt h, dspeedLengt h, checki nLengt h, goccLengt h, donai n) ;
//std::cout<<"\n\n The initial farm \n"
[lprintFarm(farmlength, size);
/lprintResult(local _occ, |ocal _speed, |ocal _flow,
downst ream vc, downst r eam speed, checki n_occ, queue_occ ,farm
| ength, size, domain, speedLength, flowLength, occlLength,
vclLengt h, dspeedLength, checki nLength, qoccLength, iter, flow);
std:: cout<<std::endl;

for(int t=0; t<iter; t++)
{

roul ette(local _occ, local _speed, |ocal fl ow,
downstream vc, downst r eam speed, checkin_occ,

gqueue_occ ,farmlength, si ze, domai n, speedLengt h, fl owlLengt h,
occlLengt h, vclLength, dspeedLength, checki nLength,
gocclLength, flow);
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crossi ng(farm si ze, | ength, domai n, speedLengt h, f1 owlLengt h,
occlLengt h);
roul ette(l ocal _occ, |ocal _speed, |ocal fl ow,
downst ream vc, downst ream speed, checki n_occ,
gueue_occ ,farmlength, size, domai n, speedLengt h, flowLength,
occLengt h, vclLength, dspeedLength, checki nLength,
goccLength, flow);
mut at e(f arm si ze, | engt h, domai n, speedLengt h, f| owLengt h,
occlLengt h);
}
/lprintResult(local _occ, |ocal _speed, |ocal flow,
downst ream vc, downst ream speed, checkin_occ, queue_occ ,farm
| ength, size, domain, speedLength, flowlLength, occlLength,
vcLengt h, dspeedLength, checki nLength, gocclLength, iter, flow);

int i;
doubl e* fitnessVector=new doubl e[ si ze] ;

for(i=0; i<size; i++)

fitnessVector[i]= fitnessVal ue(f, | ocal _occ, | ocal _speed,

| ocal _flow, downstreamvc, downstream speed, checkin_occ
gqueue_occ ,farnfi],length, domain, speedLength, flowLength,
occLengt h, vcLength, dspeedLength, checkinLength,
gocclLength, fl ow) ;

i nt pos=0;
doubl e max=fitnessVector[0];
for(i=1;, i<size; i++)

if(fitnessVector[i]>max)
{max= fitnessVector[i];
pos=i;}

}
doubl e Ls=Lspeed(farnipos], speedLength, donain);
doubl e Ms=Mspeed(farnipos], speedLength, donmin);
doubl e Hs=Hspeed(farnipos], speedLength, donmmin);
doubl e Lf=Lflow(farnipos], speedLength, flowLength, domain);
doubl e M =M1 ow farn]pos], speedLength, flowLength, domain);
doubl e Hf =Hf | ow(f ar n] pos], speedLength, flowLength, domain);
doubl e Lo=Locc(farnfpos], speedLength, flowLength, occlLength,

dorai n) ;
doubl e Mo=Mocc(farnfpos], speedLength, flowLength, occlLength,
domai n) ;
doubl e Ho=Hocc(farnipos], speedLength, flowLength, occlLength,
domai n) ;

doubl e Vc=vc(farn]pos], speedLength, flowLength, occlLength,
vclLengt h, domai n);

doubl e Ds=dspeed(farnfpos], speedLength, flowlLength, occlLength,
vcLengt h, dspeedlLength, donmin);

doubl e Check=checki n(farnipos], speedLength, flow,ength,
occLengt h, vcLength, dspeedLength, checkinLength, domain);
doubl e Qo=qocc(farnipos], speedLength, flowL,ength, occlLength,
vclLengt h, dspeedLength, checki nLength, goccLength, donain);

*L_speed=Ls;

*M speed=Ms+Ls;
*H speed=Hs+Ms+Ls;
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*L_fl ow=Lf;

*M f | ow=Lf +M ;

*H fl ow=Lf +M +Hf ;
*L_occ=Lo;

*M occ=Lo+M;

*H occ=Lo+Mdy+Ho;
*V_c=Vc;

*D speed=Ds;
*Check_i n=Check;
*Q _occ=Qo;

del ete[] fitnessVector;
for(int k=0; k<size; k++)
delete[] farnik];
delete[] farm
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Appendix C: Simulation Results-The change of system flow density
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Density (veh/km)
& 484 2 42 B3

13}
o

08:01 40 02:11 M 08:21 M 08:31 M 08:41 M 08:51 &AM 09:01 &M
Time
B Density AYG Experiment 8:00 (NC) {wehykm)

Density (veh/km)
& 8 2 4 B

(18]
()

08:01 &M 08:11 46 08:21 M 05:31 AM 03:41 AM 03:51 AWM 09:01 AM
Time
W Density AWG Experiment 8:00 (FLC) (weh/lkm)

Density (veh/km)

(18]
()

20

1
09:01 AW 08:11 M 08:21 AWM  089:31 AWM 08:41 AM  08:51 AM  09:01 AM
Time

M Density AYG Experiment §:00 (GA-FLC) (vehfkm)

-139-



Total demand: 3200-1400 vehs/h
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Total demand: 3800-1400 vehs/h
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Total demand: 3200-1200 vehs/h
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Total demand: 3600-1200 vehs/h
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