
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

GENETIC FUZZY LOGIC APPROACH TO

LOCAL RAMP METERING CONTROL USING

MICROSCOPIC TRAFFIC SIMULATION

A thesis presented in partial fulfillment of the

requirements for the degree of

Master of Engineering

in

Mechatronics

at

Massey University,

Auckland, New Zealand

Yu Xue Feng

June 2009

II

Abstract

Ramp metering, one of the most effective solutions for improving motorway traffic

flows, is playing increasingly important role in traffic management systems. Because of

its capability to handle nonlinear and non-stationary problems, fuzzy logic based ramp

metering algorithms have been always considered as an extremely suitable control

measures to handle a complex nonlinear traffic system. This thesis proposes a genetic

fuzzy approach to design a traffic-responsive ramp control algorithm for an isolated on-

ramp. For a local ramp meter algorithm, the problem could be described as the inflow

optimization of on-ramp, based on the evaluation of motorway traffic condition. If the

inflow of on-ramp is considered as the decision variable, the ramp control problem could

be treated as a nonlinear optimization problem of maximizing the evaluation function.

The adaptive genetic fuzzy approach is actually a control approach to maximize the

inflow of on-ramp under the restriction of evaluation function.

In this thesis, a well-known fuzzy logic based ramp metering algorithms developed by

Bogenberger is introduced and implemented with an on-ramp congestion model of

Constellation Drive Interchange in a stochastic microscopic traffic simulator, Aimsun. To

improve the performance of fuzzy control system, genetic algorithm is applied to tune the

parameterized membership function of each fuzzy input to maintain the flow density of

motorway blow the estimated congestion density. The performances of the genetic fuzzy

logic control ramp metering are compared with FLC (fuzzy logic control) ramp metering

by means of the percentage change of TTT (Total Travel Time) based on no control

condition in Aimsun. The simulation results show the genetic fuzzy ramp metering has a

more significant improvement on TTT and more strong stability to maintain system flow

density than FLC ramp metering.

III

Acknowledgements

I would like to thank all my supervisors, especially Prof. Peter Xu and Dr. Frakhul Alam,

for their support throughout the duration of the project. Without their guidance and

persistent help， this thesis would not have been possible. Thanks also to Dr. Johan

Potgieter and Dr. Clara Fang for their suggestions, patience and encouragement, which

makes me finally brave enough to start this academic journey from a very beginning level.

I would also like to thank my friends Ben Lin and Van Cao for their advices and help.

The spectacle of we collecting field data in the rain would be the most precious picture in

my memory.

Finally, I want to thank my parents:

谢谢你们在我辞掉工作后的支持，谢谢你们永远尊重我选择生活的权利。

IV

TABLE OF CONTENTS

CHAPTER 1 – INTRODUCTION

1.1 Freeway congestion…………………………………………………………...1
1.2 Ramp Metering……………………………………………………………......2
1.3 Objectives……………………………………………………………………..4
1.4 The thesis contribution ..4

CHAPTER 2 – LITERATURE REVIEW

2.1 Fixed time ramp metering algorithm.....…………………………….………...5
2.2 Local traffic responsive ramp metering algorithm………….............................5

2.2.1 Demands-Capacity Control Strategy…..7
2.2.2 Percent-Occupancy Control Strategy…………...............…...........…8
2.2.3 AlINEA…………………………………………...............………....9

2.3 Coordinated traffic responsive ramp metering algorithm…….............……...10
2.3.1 Competitive algorithms………………………….............………....10
2.3.2 Cooperative algorithms………………………...............………..…11
2.3.3 Integral ramp metering algorithms………………...............…....….11

2.4 The development of FLC based ramp control approaches…………………..12
2.3.1 Advantages of FLC based ramp control approaches………………12
2.3.2 The developing trend of FLC based ramp control approaches.........12

2.5 Conclusion……………………………………………………………….......15

CHAPTER 3 – FUZZY RAMP METERING ALGORITHM

3.1 Overview of fuzzy logic control..17
3.2 Fuzzy logic control based ramp metering algorithm18

3.2.1 Fuzzyfication ..19
3.2.2 Inference...25
3.2.3 Defuzzyfication...27

3.3 Conclusion...27

CHAPTER 4 - GENETIC FUZZY RAMP METERING ALGORITHM

4.1 The framework of genetic fuzzy ramp metering algorithm.............................28
4.2 Genetic fuzzy tuning algorithm...29

4.2.1 Overview of genetic algorithm...29
4.2.2 The application of genetic algorithm..31

V

4.2.2.1 Initialization...31
4.2.2.2 Objective function..35
4.2.2.3 Selection...38
4.2.2.4 Crossover...40
4.2.2.5 Mutation...42
4.2.2.6 Encoding and Decoding...44

4.3 Investigating GA Parameters...45
4.4 Conclusion...47

CHAPTER 5 – SIMULATION STUDY

5.1 Aimsun 6 simulation environment...48
5.2 Simulator enhancements...49
5.3 Study area and model assumption..51

5.3.1 Road section information..51
5.3.2 Vehicle information..52
5.3.3 Detector information...53
5.3.4 Traffic flow assumption...54
5.3.5 The calculation of the objective function in Aimsun........................57

5.4 Simulation results and analysis..58
5.4.1 The simulation results and analysis of Table 5.2..............................59
5.4.2 The simulation results and analysis of Table 5.3..............................69
5.4.3 The simulation results and analysis of Table 5.4..............................78
5.4.4 The simulation results and analysis of Table 5.5..............................87
5.4.5 Overall results analysis...96

5.5 Sensitivity analysis...96
5.6 Conclusion...98

CHAPTER 6 – CONCLUSION AND RECOMMENDATION

6.1 Conclusion...99
6.2 Recommendation...100

REFERENCES

APPENDICES

Appendix A: Fuzzy logic control coding for ramp metering
Appendix B: Genetic fuzzy control coding for ramp metering
Appendix C: Simulation Results-The change of system flow density

VI

LIST OF FIGURE

Figure 1.1 Density-Flow relationship in Greenshield’s Model………………………...…1

Figure 1.2 the Fundamental Diagram …………………………………………………….3

Figure 2.1 A typical local traffic-responsive ramp meter system..6

Figure 2.2 Demands-Capacity Control Strategy..7

Figure 2.3 Percent-Occupancy Control Strategy...8

Figure 2.4 ALINEA...9

Figure 2.5 Bottleneck Flow Charts..10

Figure 2.6 the Genetic Fuzzy Model..14

Figure 2.7 the Neuro-Fuzzy Model..15

Figure 3.1 a typical fuzzy rule-based system...17

Figure 3.2 the layout of FLC ramp metering...18

Figure 3.3 Fuzzy sets for the upstream speed..20

Figure 3.4 Fuzzy sets for the upstream occupancy..21

Figure 3.5 Fuzzy sets for the upstream flow rate..21

Figure 3.5 the fuzzy set for the downstream volume-capacity ratio.................................22

Figure 3.6 the fuzzy set for the downstream speed...22

Figure 3.7 the fuzzy set for the check-in occupancy...23

Figure 3.8 the fuzzy set for the queue occupancy...23

VII

Figure 3.9 Fuzzy sets for the metering rates..24

Figure 3.10 Fuzzy sets for the scaled metering rates...24

Figure 3.11 Fundamental diagrams...26

Figure 4.1 Genetic fuzzy systems..28

Figure 4.2 the framework of genetic fuzzy ramp metering algorithm...............................29

Figure 4.3 the layout of standard genetic algorithm..30

Figure 4.4 the layout of generating an initial population..32

Figure 4.5 the sample fuzzy sets of local speed..33

Figure 4.6 the programming layout of generating a feasible individual...........................34

Figure 4.7 a freeway on-ramp model...35

Figure 4.8 the layout of calculating a fitness value...37

Figure 4.9 the flow chart of Selection..…39

Figure 4.10 Single Point Crossover...40

Figure 4.11 the flow chart of Crossover…..…41

Figure 4.12 the flow chart of Mutation..43

Figure 4.13 Results from GA test in Microsoft C++...46

Figure 5.1 Aimsun environment..48

Figure 5.2 Conceptual structure of Aimsun API application..49

Figure 5.3 Interactions between Aimsun and Aimsun API...50

VIII

Figure 5.4 the southbound on-ramp of Constellation interchange in Aimsun...................51

Figure 5.5 the geometric information of the on-ramp of Constellation Dr in Aimsun…51

Figure 5.6 Vehicle parameters...52

Figure 5.7 the distribution layout of detectors...53

Figure 5.8 Greenshield’s macroscopic stream model..57

Figure 5.9 the percentage change of TTT when ramp demand is 1600 vehs/h.................65

Figure 5.10 the change of average flow density when total demand is 5200 vehs/h.....…66

Figure 5.11 the change of average flow density when total demand is 5400 vehs/h….....67

Figure 5.12 the change of average flow density when total demand is 5600 vehs/h….....67

Figure 5.13 the percentage change of TTT when ramp demand is 1400 vehs/h...............75

Figure 5.14 the change of average flow density when total demand is 5000 vehs/h.....…76

Figure 5.15 the change of average flow density when total demand is 5200 vehs/h….....76

Figure 5.16 the change of average flow density when total demand is 5400 vehs/h….....77

Figure 5.17 the percentage change of TTT when ramp demand is 1200 vehs/h...............84

Figure 5.18 the change of average flow density when total demand is 4800 vehs/h.....…85

Figure 5.19 the change of average flow density when total demand is 5000 vehs/h….....85

Figure 5.20 the change of average flow density when total demand is 5200 vehs/h….....86

Figure 5.21 the percentage change of TTT when ramp demand is 1000 vehs/h...............93

Figure 5.22 the change of average flow density when total demand is 4800 vehs/h.....…94

IX

Figure 5.23 the change of average flow density when total demand is 5000 vehs/h….....94

Figure 5.24 the change of average flow density when total demand is 5200 vehs/h….....95

Figure 5.25 % change of TTT vs. the positions of the upstream detector.........................97

Figure 5.26 % change of TTT vs. the positions of the downstream detector....................97

X

List of tables

Table 2.1 Total time spent (TTS) in system..14

Table 3.1 Input and output fuzzy sets..20

Table 3.2 Rule base for fuzzy ramp metering...25

Table 4.1 the fuzzy parameters to be tuned...31

Table 4.2 the test of GA parameters..45

Table 5.1 Basic road information..52

Table 5.2 Traffic demand data when average ramp demand is 1600vehicles/h................54

Table 5.3 Traffic demand data when average ramp demand is 1400vehicles/h................55

Table 5.4 Traffic demand data when average ramp demand is 1200vehicles/h................55

Table 5.5 Traffic demand data when average ramp demand is 1000vehicles/h................56

Table 5.6 General measures of Effectiveness at traffic demand (3000~1600).................59

Table 5.7 General measures of Effectiveness at traffic demand (3200~1600).................60

Table 5.8 General measures of Effectiveness at traffic demand (3400~1600).................61

Table 5.9 General measures of Effectiveness at traffic demand (3600~1600).................62

Table 5.10 General measures of Effectiveness at traffic demand (3800~1600)...............63

Table 5.11 General measures of Effectiveness at traffic demand (4000~1600)...............64

Table 5.12 General measures of Effectiveness at traffic demand (3200~1400)...............69

Table 5.13 General measures of Effectiveness at traffic demand (3400~1400)...............70

Table 5.14 General measures of Effectiveness at traffic demand (3600~1400)...............71

Table 5.15 General measures of Effectiveness at traffic demand (3800~1400)...............72

Table 5.16 General measures of Effectiveness at traffic demand (4000~1400)...............73

Table 5.17 General measures of Effectiveness at traffic demand (4200~1400)...............74

Table 5.18 General measures of Effectiveness at traffic demand (3200~1200)...............78

XI

Table 5.19 General measures of Effectiveness at traffic demand (3400~1200)...............79

Table 5.20 General measures of Effectiveness at traffic demand (3600~1200)...............80

Table 5.21 General measures of Effectiveness at traffic demand (3800~1200)...............81

Table 5.22 General measures of Effectiveness at traffic demand (4000~1200)...............82

Table 5.23 General measures of Effectiveness at traffic demand (4200~1200)...............83

Table 5.24 General measures of Effectiveness at traffic demand (3200~1000)...............87

Table 5.25 General measures of Effectiveness at traffic demand (3400~1000)...............88

Table 5.26 General measures of Effectiveness at traffic demand (3600~1000)...............89

Table 5.27 General measures of Effectiveness at traffic demand (3800~1000)...............90

Table 5.28 General measures of Effectiveness at traffic demand (4000~1000)...............91

Table 5.29 General measures of Effectiveness at traffic demand (4200~1000)...............92

Chapter 1 Introduction
1.1 Motorway Congestion

Originally, motorways are designed for long distance travel between cities, and high

speed transportation is possible without the disturbance of local traffic. However, during

the past four decades, when the increasingly people move to suburban and are more

depend on automobiles, motorways are constructed for both intercity travel and

commuter traffic especially when surface streets can not satisfy the growth of traffic

demand. Therefore, congestion problem that only exists on surface streets appears on

motorways now.

In order to understand how motorway congestion forms and how it affects traffic

situation, it is important to understand the theory of traffic flow. In this thesis,

Greenshield’s Model is employed to explain the above questions [1].

Figure 1.1 the Density-Flow relationship in Greenshield’s Model

The traffic parameters above are defined as:

qmax is the maximum number of vehicles passing a certain point, which is given as

vehicles per hour (vehs/h).

Kjam is the number of vehicles occupying a certain space when traffic jam formed on a

freeway, which is given as vehicles per kilometer (vehs/km)

Kc is the traffic density when traffic flow is at the maximum value, which is given as

vehicles per kilometer (vehs/km).

- 2 -

Figure 1.1 displays the relationship between traffic density (vehs/km) and traffic flow

(vehs/h). When the traffic density reaches a certain point, the critical density (Kc), the

traffic flow on a motorway reaches its maximum flow (qmax). Then the traffic flow would

actually decrease with the increase of traffic density until flow density reaches the jam

density where no car move any more and traffic flow turns to be zero. In other words,

only when the flow density is below the critical density is traffic flow possible to reach its

maximum value, which means the motorway is not congested.

On the contrary, once traffic density exceeds the critical value, traffic flow drops due to

motorway capacity drop, which means motorway is congested. The fact that many

publication notice traffic congestion degrades the available infrastructure capacity can be

seen as the best evidence for that. Therefore, motorway congestion may form when

traffic density exceeds the critical density.

For an isolated on-ramp, when downstream density exceeds the critical point, congestion

may form and degrade the downstream capacity. Such a capacity drop would make ramp

inflow much less than normal level. For a motorway network, congestion may happen in

some network links where the traffic demand exceeds the motorway capacity; this limited

congestion reduces the motorway capacity and sometimes leads to the increased

congestion, which might lead to further capacity degradation and further expanded

congestion. Finally the motorway network throughput would much less than the normal

motorway capacity.

1.2 Ramp Metering

To alleviate or eliminate motorway congestion, ramp metering, or on-ramp control,

which is used to control the traffic amount allowed to flow into each controlled on-ramp,

has been consider as the most direct and effective way for motorway traffic control. The

potential improvement achieved by ramp metering could be generalized as follows [2]:

 Reduce motorway congestion in space and time

 Increase motorway throughput.

 Reduced congestion spillback to the adjacent urban traffic network or to other

merging motorways.

 Significant improvement of traffic safety due to reduced congestion duration.

- 3 -

To explain how ramp meter works, a typical fundamental diagram is displayed blow.

Figure 1.2 the Fundamental Diagram [2]

As we discussed before, motorway congestion may form when traffic density exceeds the

critical density, so a successful ramp control strategy should be capable of maintaining

traffic density blow the critical point and traffic flow around the maximum flow rate,

motorway capacity or capacity flow (qcap). If ramp metering is too restrictive, the

mainstream throughput could not reach the motorway capacity and ramp metering

actually causes extra delay for traffic flow. If ramp metering is too permissive,

congestion may still happen and causes the capacity drop.

From the drivers’ point of view, they want to shorten the duration of reaching their

respective destinations at the motorway network exits. Ramp metering should be able to

decrease the total travel time (TTT) when drivers driving on motorway s and waiting on

ramps due to the avoidance of capacity drop caused by motorway congestion.

1.3 Objectives

There exist a large number of ramp metering strategies published in literature, such as

demand-capacity, ALINEA and Zone algorithm. Fuzzy logic control based ramp

metering algorithm is considered as one of the most suitable solution for the nonlinear

traffic system by means of its characteristic of handling inaccurate information and

inexact system model. Since fuzzy logic control (FLC) based ramp metering has been

studied for years, some evolutionary algorithms such as neural networks and genetic

algorithm have been applied with FLC based ramp metering to improve the performance

of FLC based ramp meter in many publications. However, most of them focus on

- 4 -

optimizing the coordination of ramp meters for a traffic network; very few evolutionary

algorithms have been applied to optimize an isolated on-ramp as local ramp metering

algorithm.

The aims of this thesis research is to develop a new local traffic responsive ramp

metering algorithm by applying genetic algorithm to a typical FLC ramp metering as an

evolutionary algorithm and to study the difference of the performance between the

genetic fuzzy ramp metering and the conventional FLC ramp metering.

1.4 The thesis contribution

The major contribution of this thesis is to present a genetic fuzzy ramp meter control

approach as a local traffic responsive ramp metering algorithm. The objective function

based on a local on-ramp model is developed to tune the fuzzy parameters to maintain the

system flow density below the critical density. The research results show genetic fuzzy

ramp metering is more effective to control the flow density to prevent the formation of

congestion by means of the objective function. The research results also show the genetic

fuzzy ramp metering has more significant improvement on the change of TTT than the

conventional FLC ramp metering especially when the traffic demand is very high.

- 5 -

Chapter 2 Literature review

This chapter reviews the literature about some existing ramp control strategies and

generalizes the developing trend of FLC based ramp approaches.

Basically, there are three types of ramp-metering schemes based on the level of

complexity of the control approach: fixed time, local traffic responsive and coordinated

traffic responsive ramp metering [4].

2.1 Fixed time ramp metering algorithm

Fixed-timed ramp control normally generates a ramp signal that operates at constant time

cycle for a specific time of day, usually rush hour. For example, from 6:30 A.M. to 8: 00

A.M. during peak hour, a given ramp signal might be set to green cycle on for 5 seconds,

then cycle off for 30 seconds. After 8:00 AM, the ramp meter would be shut down since

the intense decrease of ramp demand would be impossible to cause any congestion for

downstream. The ramp metering rates are preset based upon historical data that could be

years, months, or days old [3].

The disadvantage of fixed time ramp metering is the lack of reaction to the changing

traffic condition such as some irregular change of ramp inflow.

2.2 Local traffic responsive ramp metering algorithm

Local traffic-responsive ramp metering can automatically adjust the ramp metering rate

based on current traffic conditions in the vicinity of the ramp. Local traffic condition will

be detected by loop detectors. Controller electronics and software algorithms can select

an appropriate metering rate based on the occupancy or flow data from the ramp and

mainline detectors; therefore, traffic-responsive ramp-metering systems can generally

deliver better results than fixed time metering [4] [5].

The physical components for local responsive ramp metering normally include:

 Ramp Metering Signal and Controller

The signal is typically located to the drivers left, or on both sides of the ramp.

Each ramp meter typically has one nearby weatherproof control cabinet which

- 6 -

houses the controller, modems, and inputs of each loop. The controller is set to a

specific algorithm, which generates the ramp metering rate.

 Demand detector

The check-in, or demand detector is located at the ramp cordon line. The check-in

detector notifies the controller that a vehicle is waiting on ramp and to activate the

green cycle.

 Merge Detector

The merge detector is an optional component which senses the presence of

vehicles in the primary merging area of the ramp. This prevents waiting vehicle

from passing the ramp signal while the front vehicle still stopping in the merging

area for some unexpected reasons.

 Queue detector

The queue detector is located at the end of a ramp. The queue detector prevents

vehicles from spilling over onto the surface street network.

 Mainline detector

Mainline detectors are located on the motorway upstream and sometimes

downstream. The detector collects the information of upstream or downstream

traffic condition to feedback to ramp controller.

Figure2.1 shows a typical local traffic-responsive ramp meter system. The distribution of

detector loops might be different according to deferent application.

Figure 2.1 A typical local traffic-responsive ramp meter system

Also, to better understand how an adaptive ramp meter work with changing traffic

condition, it is necessary to review several existing popular local traffic responsive ramp

control algorithms.

- 7 -

2.2.1 Demands-Capacity Control Strategy

Demand-capacity control was introduced with the earliest field implementations of

responsive ramp control. Under demand-capacity control, metering rates are based on the

comparison between the upstream flow measured in the previous period, typically 1

minute earlier, and the downstream capacity [29].

Figure 2.2 the Demands-Capacity Control Strategy [29]

The equation is shown blow:

)1()( tqCtR in (2.1)

Where,

R is the number of vehicles allowed entering motorway in period t.

C is the capacity of downstream section, the maximum numbers of vehicles

entering downstream.

qin(t-1) is the upstream flow rate in period t-1.

The upstream flow, qin(t-1), is measured by the loop detectors, and the downstream

capacity, C, is a predetermined value.

The main disadvantage of this strategy is that the generated metering rate will be very

unstable and sensitively oscillate with the change of the upstream flow rate since the

feed-forward strategy is very sensitive to the system disturbances, such as a slow vehicle,

a short shock wave or merging difficulties [2].

- 8 -

2.2.2 Percent-Occupancy Control Strategy

This strategy detects upstream occupancy to identify and measure the potential

congestion. It is assumed that there is a decreasing linear function to describe the

relationship between the commanded metering rates and mainline occupancy, as plotted

in Figure 2.3.

Figure 2.3 Percent-Occupancy Control Strategy

The equation is given as:

)(
180900

900)(lup
lh

oo
oo

kr 



 (2.2)

Where:
r(k) is the meter rate in time interval k.

oh is the high occupancy threshold.

ol is the low occupancy threshold.

oup is the detected upstream occupancy

oh and ol are measured using historical data, by which the ramp metering rates is

generated as a proportional rates. Percent-occupancy control is one of the most

widespread on-ramp metering approaches in the U.S. due to its simplicity of

implementation [6]. The main disadvantage of this strategy is the linearity assumption for

the fundamental diagram which sometimes even causes more inaccurate metering rates

than Demand-Capacity control [2].

- 9 -

2.2.3 AlINEA

Asservissement Linéaire d'Entrée Auotroutière (ALINEA), as a successful local responsive

feedback ramp metering strategy, has been implemented in many cities, such as Paris,

Amsterdam and Glasgow [4]. The algorithm adjusts the metering rate to keep the

occupancy downstream blow a preset value, the critical occupancy. Different with both

demand-capacity and percent-occupancy, ALINEA is a local- feedback control algorithm.

The previous time metering rate will be used as the input for the next iteration. This

smoothes the generated metering rates and avoids the wide swings between short time

intervals [7]. Figure 2.4 shows a typical ALINEA algorithm.

Figure 2.4 ALINEA

The equation is given as:

)]([)1()(tOOKtrtr outc  (2.3)

Where:

r(t) is the meter rate in time interval k.

K is a tunable parameter (weighting factor) greater than zero.

Oout is downstream occupancy

Oc is the preset occupancy valve (Paris: 29%; Amsterdam: 18%; Glasgow: 26%)

The main disadvantage of ALINEA is the control strategy does not consider ramp queue

spill-back situation, which generally generates over-restrictive metering rates, so it is

very hard to balance motorway congestion and ramp queue length. In addition, ALINEA

must take occupancy measurements collected from the downstream at a specific location

where potential merge congestion is possible to be detected. Such a position will not be

easily found [7].

- 10 -

2.3 Coordinated traffic responsive ramp metering algorithm

In order to improve the efficiency of ramp control approaches, coordinated traffic

responsive ramp metering algorithms are designed to optimize traffic flow over a section

of the motorway rather than just a single ramp, which could be further divided into three

classes: cooperative algorithms, competitive algorithms and integral ramp metering

algorithms [8].

2.3.1 Competitive algorithms

Under competitive algorithms, two metering rates would be generated for a single ramp.

One is based on local traffic condition and other one is based on traffic network

condition. The restrictive one would be finally applied to the ramp.

The famous implemented competitive algorithms include Bottleneck (Seattle), Compass

(Toronto) and SWARM (Lo Angeles) [4]. Figure 2.5 shows Bottlenect Algorithm flow

charts.

Figure 2.5 Bottleneck Flow Charts [4]

- 11 -

2.3.2 Cooperative algorithms

Under cooperative algorithms, ramp metering rates are first computed with the local

traffic condition, and then adjusted with the traffic conditions of the whole network. The

famous implemented algorithms include Helper (Denver) and Linked-ramp algorithm

(San Diego) [4].

Take Denver algorithm as an example, the ramp controlled area has been divided into six

zones, and one to seven ramp meters are assigned to each zone. The meter rate is first

generated by local traffic condition of each ramp and then adjusted with the motorway

traffic condition or zone traffic condition monitored by the central computer.

2.3.3 Integral ramp metering algorithms

Under integral ramp-metering algorithms, metering rates is generated by considering

local traffic conditions and system-wide traffic conditions at the same time [8]. The

famous implemented algorithms include Linear Programming or LP (Kobe, Japan) and

METALINE (Paris) algorithm [4].

Take LP algorithm as an example, the algorithm considers a motorway network as the

Linear Programming formula consisting of a number of tunable parameters and

weighting factors for a series of ramps. To find the optimal ramp flow rate for each ramp,

the objective function will be maximized under certain constraint equations.

The objective function is:

)(......)22()11(UiAiUAUAZ  (2.3)

Where:

Ai is the weighting factor for the ith ramp.

Ui is the ramp flow for the ith ramp.

The function is subject to the following constraints:

a) Ramp queue plus ramp demand minus ramp flow must be less than or equal to the

maximum queue length.

b) Ramp demand plus ramp queue must be less than or equal to the ramp flow rate.

c) The metering rate must be between the maximum and minimum values.

Finally, the ramp meter rates will be solved simultaneously for all ramp locations by

optimizing the Linear Programming function model.

- 12 -

2.4 The development of FLC based ramp control approaches

2.4.1 Advantages of FLC based ramp control approaches

The traditional ramp metering algorithms we mentioned before are all based on the

assumption of the existence of some certain traffic mathematical models, such as

ALENEA and Linear Programming equation. In other words, the more accurate the

mathematical models would be, the better the performance of the ramp metering would

be. Unfortunately, because of the complexity and nonlinear and non-stationary behaviour

of the traffic system, obtaining an accurate control model is extremely difficult [10].

Under this background, fuzzy logic control has been involved in ramp metering control.

The reasons why FLC is better suited for ramp metering than traditional approach have

been generalized to four main reasons by Taylor and Meldrum [9][16].

a) It can utilize incomplete or inaccurate data.

b) It can generate more smooth outputs rather than oscillatory metering rate.

c) It does not require extensive system modelling.

d) It is easy to tune by changing weighting factor and the parameters of membership

functions.

2.4.2 The developing trend of FLC based ramp control approaches

As we have reviewed so far, there have been three control approaches in the development

of ramp metering strategies: pre-timed, local traffic responsive and coordinated traffic

responsive.

The disadvantage of pre-timed approach is its lack of response to current traffic

conditions, either changes in demands or capacities. A local traffic responsive ramp

metering plan is developed based on current traffic information obtained from upstream

or downstream and ramp detectors, so it apparently overcomes the drawbacks the pre-

timed one has, but the disadvantage of this approach is its lack of coordination between

ramps in order to optimize the motorway network. Therefore, based on local traffic

information, a system-wide approach is to be developed to utilize all local information to

work toward systemic optimization of the motorway network, which is what we call

coordinated traffic responsive.

- 13 -

Following the trend of development of ramp metering algorithm, FLC (fuzzy logic

control) ramp metering has also been developed from a local design to a coordinated

approach.

FLC has been used for local ramp metering strategies in two previous applications,

Seattle, Washington/ Zoetermeer, Netherlands [11] [12].

In America, FLC ramp metering has been under development at the University of

Washington for a number of years. This algorithm was installed in early 1999 by

WsDOT, controlling 15 metered ramps along I-405. Early evaluation results have shown

a promising improvement when comparing more traditional Seattle Bottleneck algorithm

[13].

In Netherlands, FLC metering was first installed in 1989 and nine ramp meters were in

place by 1995. The evaluation focused on the A12 motorway between Utrecht and

Hague, and for the 11 km study area, it showed 3% increase in bottleneck capacity. Other

positive results included higher speeds during congested hours, and 13% shorter travel

times. Although ramp travel time had about 20 seconds increase, total system effects

were acceptable. Along the A12 near Zoetermeer, a comparative study between three

different local metering algorithms RWS strategy, ALINEA and Fuzzy-Logic had been

implemented and the results showed FLC appears more beneficial than other two [12].

Based on local FLC ramp metering algorithm, adaptive fuzzy control concept had been

used in a proposed structure of a coordinated FLC ramp metering by K. Bogenberger in

1999 [4]. There was two kinds of coordinated FLC ramp metering algorithms that had

been proposed, Genetic algorithm based and neuro-fuzzy based [14][15][17].

In 2001, these two kinds of algorithms had been generalized into a new model family,

ACCEZZ (Adaptive and Coordinated Control of Entrance Ramps with Fuzzy Logic), and

expanded to five versions: neuro-fuzzy online, neuro-fuzzy offline, GA fuzzy online, GA

fuzzy offline and GA fuzzy reality. The performance of the new model was assessed in a

simulation context with a microscopic traffic flow model and compared with the results

of five different standard ramp metering algorithms: demand-capacity, occupancy

strategy, ALINEA, Denver’s HELPER algorithm and Minnesota’s Zone approach [10].

The total time spent (TTS) in the system was used to evaluate the overall system

- 14 -

performance of a strategy, and the final results showed ACCEZZ model better than

others. Table2.1 shows the table of compared results.

Table 2.1 Total time spent (TTS) in system [10]

Figure 2.6 and Figure 2.7 show the structures of Neuro-Fuzzy and Genetic Fuzzy Model.

Figure 2.6 the Neuro Fuzzy Model [10]

- 15 -

Figure 2.7 the Genetic Fuzzy Model [10]

2.5 Conclusion

From the research on the existing ramp metering approaches and the development of FLC

based ramp metering, the information to design a FLC based local traffic responsive ramp

meter could be generalized as flows:

a) Local traffic responsive ramp metering is actually a specific algorithm that reacts

to local traffic condition periodically, so the installation of loop detectors is

essential to collect real time traffic information.

b) The positions to place detectors are not fixed, which normally should include the

upstream and downstream of on-ramp, the entrance of on-ramp and the position

of the ramp meter.

c) Different with the traditional ramp control approaches, a typical FLC ramp

metering algorithm does not need an exact traffic model or mathematical formula,

but the rules of FLC must be based on the knowledge of traffic system.

d) Evolutionary algorithms such as Neuro-Fuzzy and Genetic Fuzzy could be used to

improve the performance of FLC ramp metering, but it will not be unnecessary

- 16 -

for FLC ramp metering to select a proper traffic model since the objective

function of evolutionary algorithms needs a exact mathematical expression.

e) For an isolated metered on-ramp, generalized ramp metering rates should be able

to maintain the downstream traffic volume (occupancy or flow density) close to

but no more than the critical value.

f) To evaluate the performance of FLC ramp metering, a traffic simulation

environment will be involved to implement and analyse the ramp control

algorithm.

- 17 -

Chapter 3 Fuzzy ramp metering algorithm

This chapter will present the outline of a simple fuzzy logic ramp meter proposed by

Bogenberger [4]. The control logic has been coded in both Matlab and Microsoft C++ for

test.

3.1 Overview of fuzzy logic control

Fuzzy logic is more like human language than traditional logical systems. Rather than

forcing a yes or no, on or off response, fuzzy logic utilizes the linguistic variables like

small, very small, big, very big and normal. To process the approximate and inexact

information for the real world, the fuzzy logic controller is actually a set of linguistic

control rules related by the dual concepts of fuzzy implication and the compositional rule

of inference [18] [19].

Figure 3.1 a typical fuzzy rule-based system

A typical fuzzy rule-based system is presented as Figure 3-1. Following this procedure, a

simple FLC could be defined by four steps as follows:

 Fuzzification

The fuzzification translates each input into a set of fuzzy variables via membership

functions, which could be discrete or continuous and defined as triangles or bell-

shaped curves.

 Rules

Rules, or the knowledge base, are the essential part of a fuzzy logic controller, which

are based on expert opinions, operator experience and system knowledge.

 Inference

Fuzzification Defuzzification

Rules

Inference

Input Output

- 18 -

By applying fuzzy operators and implication methods to rule base, the fuzzy inputs

would be converted into one fuzzy output.

 Defuzzification

Defuzzification produces a crisp output based one the fuzzy output.

3.2 Fuzzy logic control based ramp metering algorithm

Figure 3.2 shows the layout of the local traffic responsive FLC ramp metering.

Figure 3.2 the layout of FLC ramp metering [10]

Local traffic condition could be monitored by four detectors installed at different

locations, which include upstream detector, downstream detector, queue detector and

check-in detector.

The upstream detector is used to collect traffic information including local speed, local

traffic flow and local occupancy of the upstream of the ramp. The downstream detector

is to detect the downstream speed and flow rate (volume). According this value, the

downstream volume/capacity-ratio (v/c-ratio) is calculated with being divided by the

capacity of the major downstream bottleneck, which is the historical measured maximum

- 19 -

flow rate of mainline. The reason why v/c radio is involved in the control logic is because

it is a quite popular measurement for bottleneck behaviour. The detector at the end of the

ramp storage is to detect the queue occupancy, which is also called queue detector. The

check-in detector is the detector located at the ramp metering stop bar and used to detect

the occupancy of the vehicle waiting by the stop bar.

Each detection interval is one minute in order to smooth the input signal while still

keeping a quick response with the change of traffic condition. Since occupancy and speed

are main indicators for the change of traffic condition, they would be detected by most

sensors. Here the occupancy is defined as the time percentage that vehicles occupy at a

detector location during a detection circle.

Finally, the detected information, which reflects the real time local traffic condition, will

be processed to generate a ramp metering rate by the fuzzy logic controller, following

three steps: fuzzification, inference and defuzzification.

3.2.1 Fuzzification

As generally fuzzification does, each crisp input and output has to be translated into a set

of fuzzy class, so each detected input signal would translate into a fuzzy set with a

understandable term like “low”, “medium” or “high”. For example, the local occupancy,

local flow and local speed are described by the terms "low", "medium" and "high" and

the degree of activation indicates how true that class is on a scale of 0 to 1.

Totally six inputs and one output need to be fuzzified. Input fuzzy sets are defined as

sigmoid function or Gauss function, and output fuzzy sets are defined as triangular

function that is easy to be defuzzified.

- 20 -

Table 3.1 lists the fuzzy sets of inputs and of output.

Table 3.1 Input and output fuzzy sets

Fuzzy Sets

Terms of the Fuzzy Sets Membership function

Local Speed Low Medium High Gauss

Local Flow Low Medium High Gauss

Local Occupancy Low Medium High Gauss

Downstream V/C Very High Sigmoid

Downstream Speed Very Low Sigmoid

Check-In Occupancy Very High Sigmoid

Queue Occupancy Very High Sigmoid

Metering Rate Low Medium High Triangular

Local speed is from 0 to 100 km/h and described as three Gaussian fuzzy set, low,

medium and high, with an overlap of 50%. The parameters (centre point and the sigma

value) are found by Matlab plot function as depicted in Figure 3.3.

Figure 3.3 Fuzzy sets for the upstream speed

- 21 -

Local occupancy is from 0 to 30% and described as three Gaussian fuzzy set, low,

medium and high, with an overlap of 50%. The parameters (centre point and the sigma

value) are found by Matlab plot function as shown in Figure 3.4

Figure 3.4 Fuzzy sets for the upstream occupancy

Local flow rate is from 0 to 4000vehs/h and described as three Gaussian fuzzy set, low,

medium and high, with an overlap of 50%. The parameters (centre point and the sigma

value) are found by Matlab plot function as shown in Figure 3.5.

Figure 3.5 Fuzzy sets for the upstream flow rate

- 22 -

The downstream volume-capacity ratio is from 0 to 1 and fully activated at 0.9. A

sigmoid function is used as the membership function. The parameters (centre point and

the sigma value) are found by Matlab plot function.

Figure 3.5 the fuzzy set for the downstream volume-capacity ratio

Downstream speed is from 0 to 100 km/h and activated at 50km/h and ended at 80km/h.

A sigmoid function is used as the membership function. The parameters (centre point and

the sigma value) are found by Matlab plot.

Figure 3.6 the fuzzy set for the downstream speed

- 23 -

Check-in occupancy is from 0 to 50% and activated from 10% to 30%. A sigmoid

function is used as the membership function. The parameters (centre point and the sigma

value) are found by Matlab plot function as shown in Figure 3.7.

Figure 3.7 the fuzzy set for the check-in occupancy

Queue occupancy is from 0 to 50% and activated from 10% to 30%. A sigmoid function

is used as the membership function. The parameters (centre point and the sigma value)

are found by Matlab plot function as shown in Figure 3-8.

Figure 3.8 the fuzzy set for the queue occupancy

- 24 -

Metering rate as the output of fuzzy algorithm has also been converted to fuzzy sets,

which is from 240vehs/h to 900vehs/h and described as three triangular fuzzy set, low,

medium and high, with an overlap of 50%.

Figure 3.9 Fuzzy sets for the metering rates

To make the programming easy, the following scaling equation normalizes the output

variables from the (240, 900) range to the (0, 1) range.

Scaled metering rate = (metering rate –LL)/ (HL-LL)

HL (high limit) and LL (low limit) are two scaling parameters. HL is equal to 900 vehs/h

and LL is equal to 240 vehs/h. Therefore, the output fuzzy sets are actually shown as

Figure 3.10.

Figure 3.10 Fuzzy sets for the scaled metering rates

- 25 -

3.2.2 Inference

Fuzzy relation between inputs condition and outputs responses will be defined as a list of

if-then pairs, where input condition is a “premise” and output response is a “consequent”.

For example,

IF <premise> THEN<consequent>

IF <premise 1> AND/OR <premise 2> AND/OR <premise 3>..... THEN

<consequent>

Where, an AND operation is analogous to the intersection of fuzzy sets, which takes the

minimum value of given membership degrees. A OR operation is analogous to the union

of fuzzy sets, which takes the maximum value of given membership degrees.

Rule base for a simple fuzzy ramp metering controller is given in Table 3.2.

Table 3.2 Rule base for fuzzy ramp metering

Rule
Rule

Weight
Rule Condition Rule Outcome

1 1.5 If local occupancy is Low
Then metering rate is

High

2 1.5 If local occupancy is Medium
Then metering rate is

Medium

3 2.0 If local occupancy is High
Then metering rate is

Low

4 2.0
If local speed is Low AND local flow is

High
Then metering rate is

Low

5 1.0
If local speed is Medium AND local

occupancy is High
Then metering rate is

Medium

6 1.0
If local speed is Medium AND

local occupancy is Low
Then metering rate is

High

7 1.0
If local speed is High AND local flow is

Low
Then metering rate is

High

8 3.0
If downstream speed is Very Low AND

downstream v/c is Very High
Then metering rate is

Low

9 3.0
If Check-in occupancy is Very High
AND Queue occupancy is Very High

Then metering rate is
High

- 26 -

Rule1 to Rule 3

The purpose of rule 1 through 3 is to form a complete rule base, which means at least

one of the rules would fire since the whole occupancy range is covered.

Rule 4 to Rule 7

The rules couple speed with either occupancy or flow to generate metering rates

according to the fundamental diagram of traffic flow shown blown:

Figure 3-11 Fundamental diagrams

Rule 8

The purpose of this rule is to prevent the formation of downstream congestion rather

than just simply react to it. Volume/capacity-ratio (v/c-ratio) calculated with the

historical measured maximum flow rate of downstream can be seen as a prediction of

the downstream bottleneck behavior.

Rule 9

Rule 9 is to prevent the excessive queue formation and to avoid a spillback onto the

arterial street road on the basis of information collected from queue detector.

Rule weights

The rule weight is to stress the priority of each rule. Rule weighting scheme is

flexible for different applications.

Aggregation of fuzzy rules

With different input patterns, at least one rule would generate at least one outcome at

a time. When more than one rules firing at same time, a method is going to be needed

to calculate an overall output degree. The additive method, which is to add different

output degrees together, is used in this case. The advantage of additive method is less

sensitive to faulty loop detector data [1].

- 27 -

3.2.3 Defuzzification

The defuzzification process is to convert a fuzzy output variable into a crisp value

(metering rate). The centroid method is commonly used for the defuzzification process.

The equation of central gravity method shown blow:




dxxf

dxxxf

)(

)(
 (3.1)

In practice, a discrete fuzzy centroid equation is used to replace the continuous centroid

equation since it is easier to calculate.








N

i
ii

N

i
iii

cw

Icw

1

1 (3.2)

Where:

N is the numbers of the output classes.

ci is the centroid of the ith output class.

wi is the results of the aggregation of rules at the ith output class.

Ii is the area of the ith output class.

3.3 Conclusion

In this chapter, a typical fuzzy logic ramp meter is presented and coded in Microsoft

C++. Rules base is designed by common traffic knowledge and membership functions are

defined as Gaussian function or sigmoid function. The parameters of membership

function are manually found by means of Matlab. Theoretically, this fuzzy ramp control

approach is already able to response to the change of traffic condition, which will be

proved by later simulation. However, will such a response maintain the downstream flow

density blow critical point or reasonable range? If not, the parameters of membership

functions could apparently be further tuned for the better performance of the ramp

metering. From this perspective, it seems inevasible to involve a tuning algorithm in this

ramp control approach.

- 28 -

Chapter 4 Genetic Fuzzy Ramp Metering Algorithm

This chapter presents a genetic tuning process for the optimization of fuzzy control ramp

metering. Genetic algorithm is applied to optimize the fuzzy ramp metering algorithm

that was presented in Chapter 3. The objective of the genetic algorithm is to maximize the

ramp inflow under the restriction of the critical density by tuning the fuzzy parameters.

The evolutionary algorithm has been coded in Microsoft c++ and the part of essential c++

codes will be given with explanation.

4.1 The framework of genetic fuzzy ramp metering algorithm

Generally, genetic fuzzy system could be concluded into two major approaches: genetic

tuning processes and genetic learning processes [20] [21]. Genetic tuning processes are

targeted at optimizing the performance of a predefined fuzzy system by adjusting the

parameters of membership functions. Genetic learning processes are concerned with

automatically generating a set of fuzzy if-then rules that establishes the appropriate

relationship between input and output states.

Figure 4.1 shows the layout of a general genetic fuzzy system

Figure 4.1 the Genetic fuzzy system [20]

Genetic fuzzy ramp metering algorithm is actually a genetic tuning process, so the core of

optimization is to tune the parameters of fuzzy sets and the rule base will not change

during the tuning process. Figure 4.2 shows the framework of a genetic fuzzy ramp

metering approach:

- 29 -

Figure 4.2 the framework of genetic fuzzy ramp metering algorithm

Basically, ramp metering rate will be generated by fuzzy logic algorithm every minute

according to local traffic condition. The parameters of fuzzy sets will be updated every 5

minutes based on the average values of the last 5 minutes that is collected by all

detectors. Genetic algorithm is used as the evolutionary algorithm to tune the

parameterized membership functions.

4.2 Genetic algorithm

4.2.1 Overview of genetic algorithm

Genetic algorithms (GAs) are self-adapting strategies for searching, based on the random

exploration of the solution space coupled with a memory component which enables the

algorithms to learn the optimal search path from experience [22].

As a probabilistic search algorithm, GAs follows the principle of Charles Darwin of

survival of the fittest. First, the standard GA evolves a multiset of elements called a

population of individuals as a group of possible solutions for a given optimization

problem. Each individual Ai (i =1…n) of the population A represents a possible solution

of the optimization problem to be solved. And each individual is composed of genes

which may take on a number of values restricted to {0, 1}. In other word, these

individuals are represented as binary strings with fixed length, such as, “100010001”.

Then, the fitness of these individual will be computed by the fitness function, the

Traffic
environmental

Ramp metering rate
(every minute)

Real-time traffic information detected by sensors

Genetic Algorithm

Tuned parameters
(every 5 minutes)

Average traffic information during last 5minutes

- 30 -

objective function of the optimization problem. The individuals with higher fitness could

have more opportunity to transfer their genes to the next generation by means of selection

and crossover. After a numbers of generations, the individual with the highest fitness in

the last generation will be finally considered as the final solution of the optimization

problem. The standard genetic algorithm could be generalized to the following sequence:

Step 1: Randomly generate an initial population)).0()...0((:)0(1 nAAA 

Step 2: Compute the fitness f (Ai (t)) of each individual Ai (t) of the current population

A(t).

Step 3: After the fitness of each individual has been calculated, a procedure known

as selection is performed to keep the individuals with higher fitness.

Step 4: Once selection has occurred, crossover takes place between pairs of selected

individuals. The strings of two individuals are mixed.

Step 5: The next operation that occurs is mutation, the random changing of bits in

the individual. It is generally performed with a relatively low probability.

Step 6: Generate A (t+1)

Step 7: Repeat step 2 until satisfying solution is obtained.

Where step 3, step 4 and step 5 are commonly used in GA, they are generalized into three

operations: selection, crossover and mutation. The procedures of GA could also be shown

as Figure 4.3.

Figure 4.3 the layout of standard genetic algorithm

Initialization Objective Function Are Optimization Criteria Met? Yes

Best Individual

Generate a new population

Selection Crossover Mutation

No

- 31 -

4.2.2 The application of genetic algorithm

Genetic algorithm has been applied to optimize the parameters of the membership

functions of the fuzzy ramp metering based on the critical traffic density of the on-ramp

model. The genetic tuning process will be explained in this section, following the

procedures shown in Figure 4.3.

4.2.2.1 Initialization

To generate an initial population, all parameters to be optimized need to be represented as

binary strings. Since there are seven fuzzy inputs that include 13 fuzzy sets in the fuzzy

ramp metering controller and they are defined as Gauss or sigmoid functions, totally 26

parameters (each function includes center point and sigma value) could be optimized. To

shorten the time of computation, only center points will be tuned, so only 13 parameters

will be tuned finally, which also means the shape of membership functions will keep

same during the genetic tuning process. Table 4.1 shows all parameters to be tuned and

the corresponding tuning ranges.

Table 4.1 the fuzzy parameters to be tuned

Fuzzy Sets

Parameter
Initial value Tuning range

Membership

function

Local Speed Low 0 0~100 Gauss

Local Speed Medium 50 0~100 Gauss

Local Speed High 100 0~100 Gauss

Local Flow Low 0 0~4000 Gauss

Local Flow Medium 2000 0~4000 Gauss

Local Flow High 4000 0~4000 Gauss

Local Occupancy Low 0 0~-30 Gauss

Local Occupancy Medium 15 0~30 Gauss

Local Occupancy High 30 0~30 Gauss

Downstream V/C 0.5 0~1 Sigmoid

Downstream Speed 65 0~100 Sigmoid

Check-In Occupancy 20 0~50 Sigmoid

Queue Occupancy 20 0~50 Sigmoid

- 32 -

Figure 4.4 shows the layout of generating an initial population.

Figure4.4 the layout of generating an initial population

a) Calculate the binary length for each individual

Suppose that N is the length of the binary string of a specific parameter within a range

(a, b). The integer number, N, could be found such that:

NprecisionN ab 210)(2 1  (4.1)

The relative C++ codes could be shown blow:

……..
int cLength(int precision, double rangeStart, double rangeEnd)
{
int length=0;
double total=(rangeEnd-rangeStart)*pow(10.0,precision);
while(total>pow(2.0,length))
{length++;}
return(length);
}

Therefore, the total length of an individual will be the sum of the binary lengths of

all parameters, which could be given by c++ code shown blow:

……….

int speed_Length=cLength(precision, domain[0], domain[1]);
int flow_Length=cLength(precision, domain[2], domain[3]);
int occupancy_Length=cLength(precision, domain[4], domain[5]);
int vc_Length=cLength(precision, domain[6], domain[7]);
int downstream_speedLength=cLength(precision, domain[8],
domain[9]);
int checkin_Length=cLength(precision, domain[10], domain[11]);
int qocc_Length=cLength(precision, domain[12], domain[13]);

int Total_length= 3*speedLength +3*flowLength+ 3*occLength +
vcLength + dspeedLength + checkinLength + qoccLength;
/* where domain [] is the array defined as the ranges of all
parameters */

Calculate the
binary length of

an individual

Generate a random
individual

Within constrains?
Store as a feasible
individual to the
initial population

Yes
No

Is the population
full?

No Yes The initial
population

- 33 -

b) Generating a feasible individual within constrains

As we mentioned before, the general genetic tuning process will keep the rule base

same, which means the center points of fuzzy sets representing the linguistic terms

such as “low”, “medium” and “high” will be monotonically increasing within the

relative range during the tuning process. Take the fuzzy sets of local speed as an

example, the center points of fuzzy sets should maintain the relationship like:

0≤ Local Speed Low< Local Speed Medium<Local Speed High≤100 (4.2)

If each center point is coded as the positive distance from the previous center like

Figure 4.5, we could maintain the relationship above by means of an inequality

constrain like:

0≤A+B+C≤100 or 100 – A-B-C ≥ 0 (4.3)

Figure 4.5 the sample fuzzy sets of local speed

Certainly, by coding the center points of Local Occupancy and Local Flow in the

same way, we could have other two inequality constrains:

4000 – A-B-C ≥ 0 and 30 – A-B-C ≥ 0 (4.4)

Then each generated individual could be tested by these constrains to find a feasible

individual and finally accumulated to be a feasible population.

Figure 4.6 shows the layout of generating a feasible individual in C++

- 34 -

Figure 4.6 the programming layout of generating a feasible individual

The c++ codes are given as blow:

// Generate random binary A, B and C for Local Speed
int ispop=0;
int i=1
while(!ispop)
{

for(int j=0; j<3*speedLength; j++)
{ population[i][j]=rand()%2;}
//caculate A
double Ls=Lspeed(population[i], speedLength, domain);
//caculate B
double Ms=Mspeed(population[i], speedLength, domain);
//caculate C
double Hs=Hspeed(population[i], speedLength, domain);
if((100-Ls-Ms-Hs)>=0)
{ispop=1;}

}
ispop=0;

// Generate random binary A, B and C for Local Flow
while(!ispop)
{

for(int j=(3*speedLength-1); j<(3*speedLength+3*flowLength); j++)
{ population[i][j]=rand()%2;}
//caculate A
double Lf=Lflow(population[i], speedLength, flowLength, domain);
//caculate B
double Mf=Mflow(population[i], speedLength, flowLength, domain);
//caculate C
double Hf=Hflow(Population[i], speedLength, flowLength, domain);
if((4000-Lf-Mf-Hf)>=0)
{ispop=1;}

}

Store the binary
strings as the first
part of a feasible

individual

Generate random
binary A, B and C
for Local Speed

100 – A-B-C ≥ 0

Yes

No

Store the binary
strings as the second

part of a feasible
individual

Generate random
binary A, B and C

for Local Flow

4000 – A-B-C ≥ 0

Yes

No

Store the binary
strings as the third
part of a feasible

individual

Generate random
binary A, B and C for

Local Occupancy

30 – A-B-C ≥ 0

Yes

No

A feasible individual

Generate
random binary

strings to fill up
the rest part of
total individual

length.

- 35 -

ispop=0;

// Generate random binary A, B and C for Local Occupancy
while(!ispop)
{

for(int j=(3*speedLength+3*flowLength-1);
j<(3*speedLength+3*flowLength+3*occLength); j++)
{population[i][j]=rand()%2;}
//caculate A
double Lo=Locc(population[i], speedLength, flowLength, occLength,
domain);
//caculate B
double Mo=Mocc(population[i], speedLength, flowLength, occLength,
domain);
//caculate C
double Ho=Hocc(population[i], speedLength, flowLength, occLength,
domain);
if((30-Lo-Mo-Ho)>=0)
{ispop=1;}

}
ispop=0;

//generate the random binary strings to fill up the total length
for(int j=(3*speedLength+3*flowLength+3*occLength-1);
j<Total_length;j++)
{population[i][j]=rand()%2;}

4.2.2.2 Objective function

Figure 4.7 shows an uncontrolled motorway on-ramp model.

Figure 4.7 Fundamental diagrams

Where:

∆x (m) is the length of section.

qu (vehs/h) is the upstream traffic flow.

q (vehs/h) is the downstream traffic flow.

r (vehs/h) is the ramp inflow.

K (vehs/km) is the average flow density of the motorway section.

- 36 -

If N is the total number of the vehicles in the motorway section during a time interval, ∆t,

an equation could be given as:

)]()()([)()(trtqtqttNttN u  (4.5)

If the equation is divided by ∆x on both sides, it could become:

)]()()([/)()(trtqtqxttKttK u  (4.6)

This equation shows a basic relationship between traffic density and traffic flow for a

motorway on-ramp model. It is supposed that Kcongestion density, the critical density, is

predefined, which could be expressed as Kcongestion = Ncongestion/∆x (where Ncongestion is the

number of vehicles staying in motorway section when congestion happens.) Then, we

could obtain an equation to describe the maximum allowed inflow density of the whole

ramp section for the next time interval:

)()(max ttKKttK congestion 

)()]()()([/ tKtrtqtqxtK ucongestion  (4.7)

And if the equation above times ∆x on both sides, it becomes

)()(max tNNNNNttN rducongestion  (4.8)

Where:

Nmax (t+∆t) is the maximum number of vehicles allowed to get in the motorway

section without causing congestion for the next time interval.

Ncongestion is the number of vehicles staying in motorway section when congestion

just happens.

Nr is the number of vehicles getting in the motorway section from the ramp.

Nd is the number of vehicles leaving the motorway section.

- 37 -

Nu is the number of vehicles getting in the motorway section from the upstream

section.

N (t) is the number of vehicles staying motorway section.

Then, an ideal ramp metering rate for next time interval (minutes) could be given as:

tttNttRideal  /)(60)(max

ttNNNNN rducongestion  /))((60 (4.9)

When ∆x is appropriately chosen and ∆t is reasonable short, the ideal ramp metering rate

can prevent the motorway section from congestion and fully utilize the road capacity for

next time interval. Based on this assumption, an objective function or fitness function

could be given as:

2))(/(1 evolutionideal RttR  (4.10)

Revolution is a metering rate generated by FLC controller with the updated parameters (the

feasible individuals), based on the traffic information of last five minutes. The

optimization of fuzzy ramp control approach is actually to find a certain set of fuzzy

parameters, which is able to generate a ramp metering rate close to the Rideal of the next

time interval. Figure 4.8 shows the programming layout of calculating a fitness value for

a feasible individual by the objective functions above.

Figure 4.8 the layout of calculating a fitness value

A feasible individual generated by GA.
(The binary format of the parameters of

fuzzy sets) Fuzzy logic controller

The predefined flow
density (the critical

density)

Rideal(t+∆t) =60×
(Ncongestion - Nu + Nd - Nr – N(t))/ ∆t

Revolution

Calculate the fitness value by

 1/ (Rideal(t+∆t)-Revolution)
2

Average values of last 5 minutes from
all detectors in the fuzzy ramp model

- 38 -

4.2.2.3 Selection

When a feasible initial population is generated and each individual’s fitness could be

calculated by a fitness function, we apparently need a selection algorithm to pick up the

individuals with higher fitness as much as possible. A popular selection algorithm,

“Roulette Wheel”, is used in programming. This method works in a way that is

analogous to a roulette wheel. Each individual in a population is allocated a part of a

wheel, and the size of the part is in proportion to the individual’s fitness. A random

generated number is used as a spinning pointer to select the individual that is involved to

next generation. The selection continues until the new population is full.

The procedures of “Roulette Wheel” algorithm are shown below:

Step1. Calculate the total fitness (F) of the last population or initial population

)(:
1

0






M

i
ivfF (4.11)

(Where M is the size of population, f is the fitness function and vi is a individual)

Step2. Calculate the probability of a selection pi and the cumulative probability qi for

each individual vi.

F

vf
P i

i

)(
: , 




i

k
ki pq

0

: .1...1,0  MI (4.12)

(Where qM-1 =1)

Step3. Generate a random binary number with M bits for the range [0, 1] and given as ri.

Step4. Select the individual of k+1, when qk<ri<qk+1.

Step5. Back to step3 until rM is reached.

- 39 -

Figure 4.9 shows the flow chart of the programming for Selection:

Figure 4.9 the flow chart of Selection

4.2.2.4 Crossover

Once selection is finished, the recombination operator called crossover will be applied to

the selected population. Single Point Crossover known as the most basic crossover

algorithm has been used in programming. Since Single Point Crossover will swap two

strings at a random point to create new individuals (Figure 4-8), it is possible for new

individuals not to satisfy constrains such as 4000 – A-B-C ≥ 0 and 30 – A-B-C ≥ 0.

Therefore, different with the standard Single Point Crossover Algorithm, a constraint

checking loop will be added to the standard procedures of Single Point Crossover to

ensure the feasibility of swapped individuals.

Calculate the total
fitness (F)

Calculate the probability
of a selection pi

Calculate the cumulative
probability qi

Generate a random
binary number

Select the individual of
k+1, when qk<ri<qk+1

Reach rM ?

No

Yes

- 40 -

Figure 4.10 the Single Point Crossover

The crossover method used in programming could be show as the following procedure:

Step1. Set a default value (0.4) for the probability of crossover.

Step2. Generate a group of random numbers in the range [0, 1] with the same size as that

of the population. Each random number (Ri) in the group represents the individual at the

identical position in the population.

Step3. Select all individuals with the corresponding Ri less than 0.4 for crossover.

Step4. Check the numbers of the selected individual. If it is odd, we add one extra

individual with Ri <0.4. By doing so, we could pair the select individuals for crossover.

Step5. Choose a pair of selected individuals.

Step6. Backup the pair of individuals and generate a random integer number POS in the

range [0, N-2] (where N is the total length of an individual). The number POS indicates

the position of the crossing point, at which, the pair of the backup individuals are

swapped over.

Step7. Check the swapped individuals whether they are within constraints, such as 4000-

A-B-C<0 and 30-A-B-C<0, or not. If yes, we swap the original individuals and go back

to Step8. If not, we go back to Step 6.

Step8. Move to next pair of selected individuals, and repeat Step5 until all selected

individuals are finished.

Figure 4.11 shows the flow chart of the programming for Crossover.

- 41 -

Figure 4.11 the flow chart of Crossover

Set a default value for the
probability of crossover

Generate a group of random
numbers

Select all individuals with
proper Ri.

Check if the numbers of the
selected individual is odd

Add one extra
individual

Choose a pair of selected
individuals.

Backup the pair of individuals and
swap them over at a random position.

Check the swapped individuals whether they
are within constraints.

Move to next pair of
selected individuals

All selected individuals are
finished?

Swap the original
individuals

No

Yes

No

Yes

No

Yes

- 42 -

4.2.2.5 Mutation

The next operator, mutation ensures that the probability of searching a given part of the

solution space is never zero, which is performed on a bit-by-bit basis. It generates a

random number for each bit of the population and if the number is less than the specified

mutation probability, the corresponding bit is flipped, i.e., if the bit is a 1, it becomes 0

and vice versa. Also, a constraint checking loop is added in programming to filter the

infeasible individuals.

The method of mutation could be generalized in the following steps:

Step1. Set a default value (0.01) for mutation.

Step2. Calculate the total bits of the population by N×M, where N is the total length of

one individual and M is the size of population.

Step3. Generate N×M random numbers in the range [0, 1]. Each random number (Ri) in

the group represents the bit at the identical position in the population.

Step4. Select a bit in the population where the corresponding Ri is less than 0.01.

Step5. Calculate which individual the selected bit belongs to in the population

Step6. Backup the corresponding individual.

Step7. Flip the selected bit in the backup individual.

Step8. Check the flipped individuals whether they are within constraints, such as 4000-A-

B-C<0 and 30-A-B-C<0, or not. If yes, we flip the bit in the original individuals and go

back to Step4. If not, recovery the individuals and go back to step 4.

- 43 -

Figure 4.12 shows the flow chart of the programming for Mutation.

Figure 4.12 the flow chart of Mutation

Set default value (0.01)
for mutation

Calculate the total bits for
one generation

Generate a random numbers in
the range [0, 1] for each bit

Select a bit with the random
number less than 0.01

Find which individual the bit
belongs to

Backup the individual and flip the
selected bit in the backup individual

Check the flipped individual
whether it is within constrains

Flip the bit in the original
individuals

All bits checked?

Yes

No

Yes

No

- 44 -

4.2.2.6 Encoding and Decoding

Although Genetic Algorithms can be performed using either binary or real-valued

encodings, binary encoding is applied in this genetic tuning process since it allows for

greater solution space and for more combinations of alleles.

For binary encoding, each tuned parameter is converted into a binary string with a fixed

length, and the content of the binary string is generated randomly within constraints,

which has been discussed in 4.3.2.1. For binary decoding, which is normally performed

when the best individual is found or when a random individual needs to be ensured

within constraints, the binary strings of the tuned parameters will be converted into real

values. The procedure could be explained by the following example:

Suppose that we have to map the binary string into a real number x with a given range [a,

b] and the binary string is denoted by

sn-1,sn-2….s1,s0

(Where s0 is the least significant bit (LSB) and sn-1 is the most significant bit (MSB))

We could convert the binary string from base 2 to base 10 by







1

0

2
N

i

i
ism (4.13)

Then corresponding real value could be given by

12 



n

ab
max (4.14)

The C++ codes blow shows that the fuzzy parameter, Local Speed Low, has been

converted from a binary string to a real number.

double Lspeed(int* chromosome, int speedLength, double* domain)
{
double m=0.0;
for(int i=0; i<speedLength; i++)
 {m+=chromosome[speedLength-i-1]*pow(2.0,i);}
double x=domain[0]+m*(domain[1]-domain[0])/(pow(2.0,speedLength)-1.0);
return x;
}

- 45 -

4.3 Investigating GA Parameters

The performance of the genetic tuning process has greatly affected by the parameters of

GA, such as population size, mutation probability and crossover probability. It is

necessary to perform an experiment for the investigation of how these factors affect GA.

By doing so, the GA parameters could be found in the suitable range.

For the objective function, 2))(/(1 evolutionideal RttR  , if Rideal is defined as 300veh/h

and all inputs of fuzzy logic controller is set to zero, we run the GA program in Microsoft

C++ environment and generate the optimized metering rate based on different GA

parameters. The results are given as the following table (each row in the table has been

run 10 times):

Table 4.2 the test of GA parameters

Generation Population
size

Crossover
Probability

Mutation
Probability

The range of optimized
metering rates

400 50 0.25 0.01 293.56~310.87

300 50 0.25 0.01 283.23~307.71

200 50 0.25 0.01 274.01~306.65

150 50 0.25 0.01 220.20~310.65

100 50 0.25 0.01 224.30~337.99

400 60 0.25 0.01 292.03~311.25

400 40 0.25 0.01 290.25~326.26

400 30 0.25 0.01 275.01~307.24

300 60 0.25 0.01 285.23~310.71

300 40 0.25 0.01 269.56~326.75

300 30 0.25 0.01 275.87~310.25

400 50 0.10 0.01 273.98~302.85

400 50 0.20 0.01 284.21~306.21

400 50 0.30 0.01 290.21~310.23

400 50 0.40 0.01 295.12~307.26 (chose)

400 50 0.50 0.01 293.21~305.54

During the test when GA is performed more than 400 generations and the population size

is more than 60, GA performance could be better, but it is more time-consuming.

Therefore we finally select the GA parameters blow:

Population size: 50

Generation: 400

Crossover rate: 0.4

- 46 -

Figure 4.13 shows one result generated by GA in Microsoft C++ and we can see the shift

of membership functions (local speed) after tuning the fuzzy parameters.

 (Original fuzzy sets) (The tuned fuzzy sets)

Figure 4.13 Results from GA test in Microsoft C++

- 47 -

4.4 Conclusion

The genetic tuning algorithm presented in this chapter is to optimize a typical fuzzy ramp

metering algorithm as a local traffic responsive ramp metering algorithm. The objective

function of genetic tuning process focuses on the adjustment of ramp metering rates

based on the critical flow density of the on-ramp section.

During the tuning process, the fuzzy parameters will be converted into binary code to

perform the standard GA operators: selection, crossover and mutation. The tuned

parameters will be applied to the fuzzy logic controller to generate optimized metering

rates for next time interval (5 minutes). Meanwhile, the fuzzy logic ramp meter still

generates a ramp metering rate based on local traffic condition every minute as a real

time control approach.

To test and evaluate the proposed control approach, computer simulation has no

difficulties and limitations as field implementation, so the genetic fuzzy ramp metering

algorithm would be implemented and evaluated in a stochastic microscopic traffic

simulator, Aimsun.

- 48 -

Chapter 5 Simulation study

This chapter will present the traffic simulations for the proposed ramp metering

algorithms and the comparison of the performance of FLC and genetic fuzzy ramp

metering will be given and analyzed based on the simulation results. Also, Sensitivity

Analysis will be introduced in this chapter as the first step of model optimization.

5.1 Aimsun 6 simulation environment

With the increase of popularity of traffic simulation software packages, a number of

commercial traffic simulation packages, such as such as CORSIM (USA), PARAMICS

(UK), AIMSUN (Spain) and VISSIM (Germany) are developed to analyze and predict

traffic flow conditions.

Aimsun6, as a microscopic, stochastic traffic simulator, is used to be the simulation

environment for testing the algorithms we proposed before. The microsimulator of

Aimsun6 follows a microscopic approach [23] to continuously model each vehicle

behavior in the network according to driver’s behavior model such as car flowing and

lane changing. The traffic simulation provides the collective behavior of all vehicle-

driver units within the range of network geometries. In addition, most traffic equipment

present in a real traffic network is also modeled in the microsimulator like traffic lights,

traffic detectors, VMS (Variable Message Signs) and ramp metering devices, etc.

Figure 5.1 shows the layout of Aimsun environment [24].

Figure 5.1 Aimsun environment [24]

- 49 -

5.2 Simulator Enhancements

Since Aimsun is unable to implement adaptive traffic control with the standard software

pack, the Aimsun API module has been used to enable the communication between the

Aimsun simulation model and a user-built control algorithm.

Figure 5.2 illustrates the conceptual structure of how Aimsun working with user

application by means of Aimsun API module:

Figure 5.2 Conceptual structure of Aimsun API application [25]

The Aimsun API module provides a set of functions to collect the required data (e.g.

flow, occupancy, etc.) from traffic simulation. Based on the collected information, the

EXTERNAL APPLICATION (user-built control algorithm) makes some control

decisions which will be applied to the simulation. Such a process completes the

communication between the Aimsun simulation model and a user-built control algorithm.

The communication process is guaranteed by eight high level functions defined in

Aimsun API module: AAPILoad, AAPIInit, AAPIManage, AAPIPostManage,

AAPIFinish, AAPIUnLoad, AAPIEnterVehicle and AAPIExitVehicle [25].

 AAPILoad (): It is called when the module is loaded by Aimsun.

 AAPIInit (): It is called when Aimsun starts the simulation and can be used to

initialise whatever the module needs.

 AAPIManage (): This is called in every simulation step at the beginning of the

cycle, and can be used to request detector measures, vehicle information and

interact with junctions, metering and VMS in order to implement the control and

management policy.

- 50 -

 AAPIPostManage (): This is called in every simulation step at the end of the

cycle, and can be used to request detector measures, vehicle information and

interact with junctions, metering and VMS in order to implement the control and

management policy.

 AAPIFinish (): It is called when Aimsun finish the simulation and can be used to

finish whatever the module needs.

 AAPIUnLoad (): It is called when the module is unloaded by Aimsun.

The scheme of how Aimsun interacts with Aimsun API is shown in Figure 5.3.

Figure 5.3 Interactions between Aimsun and Aimsun API [25]

The proposed ramp metering algorithms programmed in Microsoft Visual C++ will be

implemented in Aimsun simulator through AAPIManage () and AAPIPostManage ()

function by means of Microsoft Visual Studio 2005, where a Dynamic Link Library

(DLL) will be generated and integrated to the simulator.

- 51 -

5.3 Study area and model calibration

The study area is located at the southbound on-ramp of Constellation interchange in

Auckland North motorway (Figure 5.4).

Figure 5.4 the southbound on-ramp of Constellation interchange in Aimsun

5.3.1 Road section information

The motorway geometric layout is acquired from the picture of Google map, and detailed

information is obtained from the construction drawing provided by Transit New Zealand.

Figure 5.5 shows the geometric information of the study place.

Figure 5.5 the geometric information of the on-ramp of Constellation Dr in Aimsun

- 52 -

The geometric information of the on-ramp model is defined in Aimsun as follows:

-The length of ramp section: 408 meters.

-The length of downstream motorway section: 191 meters.

-The length of upstream motorway section: 414 meters.

-The length of merge lane section: 52 meters.

Table 5-1 shows the basic road section parameters [26] [27]

Table 5.1 Basic road information

Section Type Speed Limit Capacity

Freeway 100km/hour 2500veh/hour/lane

On ramp 90km/hour 1600veh/hour/lane

5.3.2 Vehicle information

No bus are used in this simulation because since the mid of 2007, buses travelling to and

from North shore have their own lanes which are independent from the motorway .

No high occupancy vehicles (HOVs) are allocated in this simulation since the presence of

small percentage HOVs will not cause obvious variation of simulation results but

seriously slow down the simulation process especially when genetic algorithm is already

time-consuming.

The parameters of the general car are shown in Figure 5.6.

Figure 5.6 Vehicle parameters

- 53 -

5.3.3 Detector information

To implement the proposed control approaches, several detectors are installed on the road

section. The detected information includes occupancy, vehicle speed and vehicle count.

The detection interval is 1 minute.

Figure 5.7 shows the distribution of detectors installed on the motorway sections.

Figure 5.7 the distribution layout of detectors

The locations of detectors are set in Aimsun as the following information:

-Ramp Queue detector: 400 meters from on-ramp entrance.

-Ramp Check-in detector: 9 meters from on-ramp entrance.

-Upstream Detector: 200 meters from on-ramp entrance.

-Downstream Detector: 180 metres from on-ramp entrance.

- 54 -

5.3.4 Traffic Flow assumption

An Aimsun traffic network model could define the traffic demand data in two different

ways, an O/D matrix or the traffic flows at the sections. This ramp model is using the

traffic flows that include upstream traffic demand and ramp traffic demand. These traffic

demands will change each 15 minutes and the duration of the simulation is 1 hour.

For an isolated on-ramp model, normally the congestion happens when the sum of the

ramp traffic demand and upstream traffic demand exceeds or nearly reaches the

downstream traffic capacity. Therefore, the total traffic demand (upstream traffic demand

plus ramp traffic demand) will be set around 5000vehicles/hour to test the performance

change of the proposed algorithms under the situation where congestion is going to be or

already formed because downstream road capacity is 5000 vehicles/hour (lane capacity

times two). By doing so, the simulation is able to find the specific ranges of traffic flow,

within which, the control algorithms work properly.

Average ramp demand is from 1000vehicles/hour to 1600vehicles/hour (ramp capacity)

with an increase of 200vehicles/hour. Table 5.2 to Table 5.5 shows the traffic demand

information used in the Aimsun on-ramp model.

Table 5.2 Traffic demand data when average ramp demand is 1600vehicles/h

No.
Location

(vehicles/h)
8:00am~
8:15am

8:15am~
8:30am

8:30am~
8:45am

8:45am~
9:00am

Average
Demand

Total
Demand

Upstream Demand 4400 3600 4200 3800 4000
1

Ramp Demand 1800 1400 1400 1800 1600
5600

Upstream Demand 4200 3400 4000 3600 3800
2

Ramp Demand 1800 1400 1400 1800 1600
5400

Upstream Demand 4000 3200 3800 3400 3600
3

Ramp Demand 1800 1400 1400 1800 1600
5200

Upstream Demand 3800 3000 3600 3200 3400
4

Ramp Demand 1800 1400 1400 1800 1600
5000

Upstream Demand 3600 2800 3400 3000 3200
5

Ramp Demand 1800 1400 1400 1800 1600
4800

Upstream Demand 3400 2600 3200 2800 3000
6

Ramp Demand 1800 1400 1400 1800 1600
4600

- 55 -

Table 5.3 Traffic demand data when average ramp demand is 1400vehicles/h

No.
Location

(vehicles/h)
8:00am~
8:15am

8:15am~
8:30am

8:30am~
8:45am

8:45am~
9:00am

Average
Demand

Total
Demand

Upstream Demand 4600 3800 4400 4000 4200
7

Ramp Demand 1600 1200 1200 1600 1400
5600

Upstream Demand 4400 3600 4200 3800 4000
8

Ramp Demand 1600 1200 1200 1600 1400
5400

Upstream Demand 4200 3400 4000 3600 3800
9

Ramp Demand 1600 1200 1200 1600 1400
5200

Upstream Demand 4000 3200 3800 3400 3600
10

Ramp Demand 1600 1200 1200 1600 1400
5000

Upstream Demand 3800 3000 3600 3200 3400
11

Ramp Demand 1600 1200 1200 1600 1400
4800

Upstream Demand 3600 2800 3400 3000 3200
12

Ramp Demand 1600 1200 1200 1600 1400
4600

Table 5.4 Traffic demand data when average ramp demand is 1200vehicles/h

No.
Location

(vehicles/h)
8:00am~
8:15am

8:15am~
8:30am

8:30am~
8:45am

8:45am~
9:00am

Average
Demand

Total
Demand

Upstream Demand 4600 3800 4400 4000 4200
13

Ramp Demand 1400 1000 1000 1400 1200
5400

Upstream Demand 4400 3600 4200 3800 4000
14

Ramp Demand 1400 1000 1000 1400 1200
5200

Upstream Demand 4200 3400 4000 3600 3800
15

Ramp Demand 1400 1000 1000 1400 1200
5000

Upstream Demand 4000 3200 3800 3400 3600
16

Ramp Demand 1400 1000 1000 1400 1200
4800

Upstream Demand 3800 3000 3600 3200 3400
17

Ramp Demand 1400 1000 1000 1400 1200
4600

Upstream Demand 3600 2800 3400 3000 3200
18

Ramp Demand 1400 1000 1000 1400 1200
4400

- 56 -

Table 5.5 Traffic demand data when average ramp demand is 1000vehicles/h

No.
Location

(vehicles/h)
8:00am~
8:15am

8:15am~
8:30am

8:30am~
8:45am

8:45am~
9:00am

Average
Demand

Total
Demand

Upstream Demand 4600 3800 4400 4000 4200
19

Ramp Demand 1200 800 800 1200 1000
5200

Upstream Demand 4400 3600 4200 3800 4000
20

Ramp Demand 1200 800 800 1200 1000
5000

Upstream Demand 4200 3400 4000 3600 3800
21

Ramp Demand 1200 800 800 1200 1000
4800

Upstream Demand 4000 3200 3800 3400 3600
22

Ramp Demand 1200 800 800 1200 1000
4600

Upstream Demand 3800 3000 3600 3200 3400
23

Ramp Demand 1200 800 800 1200 1000
4400

Upstream Demand 3600 2800 3400 3000 3200
24

Ramp Demand 1200 800 800 1200 1000
4200

Totally four ramp demands is used in this simulation: 1000vehicles/hour,

1200vehicles/hour, 1400vehicles/hour and 1600vehicles/hour, which cover the possible

range of ramp demands when the downstream congestion could happen. The situation

about less than 1000vehicels/hour ramp demand will not be discussed in this paper for

two reasons:

a) When average ramp demand is less than 1000vehicles/hour, average upstream

demand should reach more than 4000vehicles/hour to cause downstream

congestion. But from the observation of field data, average upstream demand

barely exceeds 4200vehicles/hour, so this situation is not necessary to be

discussed.

b) When average upstream demand is less than 4000vehicles/hour and average ramp

demand is less than 1000vehicles/hour, the total traffic demand hardly reaches

road capacity (5000 vehicles/hour), so the motorway is under the free flow

condition, where ramp metering will not benefit traffic condition and may cause

extra traffic delay.

- 57 -

5.3.5 The calculation of the objective function in Aimsun

As we discussed in the last chapter, the fuzzy genetic ramp metering control will adjust

the ramp metering rates (Revolution) based on an ideal metering rate (Rideal) for the ramp

section (∆x) by means of an objective function, 2))(/(1 evolutionideal RttR 

And Rideal is given as:

ttNNNNNttR rducongestionideal  /))((60)((5.1)

Where:

Ncongestion is the number of vehicles staying in motorway section when congestion just
happens.

Nr is the number of vehicles getting in the motorway section from the ramp.

Nd is the number of vehicles leaving the motorway section.

Nu is the number of vehicles getting in the motorway section from the upstream
section.

N (t) is the number of vehicles staying motorway section.

In this simulation, ∆x starts from the upstream detector and ends to the downstream

detector (so the length of ∆x is 380meters); ∆t is given by 5 minutes; Nr is counted by the

check-in detector; Nd is counted by the downstream detector; Nu is counted by the

upstream detector; N (t) is counted by)1( tNNNN rdu during the whole

simulation. Since the default jam density in Aimsun is 200vehicles/km, the critical

density could be estimated by Greenshield’s macroscopic stream model (Figure5.8),

which is half of jam density, 100vehicles/km.

Figure 5.8 Relation between flow and density in Greenshield’s macroscopic stream model

- 58 -

To further prevent the formation of congestion, the predefined density could be lower

than the critical point, so the congestion density is set to 90vehicles/km. Then Ncongetion

could be given as [(90/1000) ×380] ≈35.

Finally, the equation 5.1 is calculated as:

60)5/))((35()( tNNNNttR rduideal (5.2)

5.4 Simulation results and analysis

To evaluate the performance of the proposed ramp metering algorithms, the following

Measures of Effectiveness (MOE) are selected: motorway downstream MOEs, ramp

MOEs and system MOEs. The specific measures of effectiveness are:

Motorway Downstream Performance MOEs

1) Total Downstream Travel Time (seconds per vehicle): Total time

experienced by all vehicle travelling on the motorway downstream section

per kilometre.

2) Average Downstream Delay Time (seconds per vehicle): Average delay

time per vehicle while travelling on the motorway downstream section.

3) Average Downstream Flow Rate (vehicles per hour): The number of

vehicles travelling on the motorway downstream section during the

simulation time (one hour).

4) Average Downstream Speed (kms per hour): Space mean speed for

vehicles travelling one the motorway downstream section.

Ramp MOEs

5) Total Ramp Travel Time (seconds per vehicle): Total time experienced by

all vehicle travelling on the ramp section per kilometre.

6) Average Ramp Delay (seconds per vehicle): Average delay time per

vehicle while travelling on the ramp section.

7) Average Flow Rate (vehicles per hour): The number of vehicles travelling

on the ramp section during the simulation (one hour).

System MOEs

8) Total Travel Time (hours): Total travel time accumulated by all vehicles

travelling in the Aimsun traffic network.

- 59 -

9) Average Delay Time (seconds per vehicle per km): Average delay time

per vehicle while travelling in the Aimsun traffic network per kilometre.

To show the difference of the performance of FLC ramp metering and Genetic fuzzy

ramp metering, the simulation results will be given as the percentage change of MOEs

based on the No Metering condition.

Also, since Total Travel Time (TTT), the time accumulated by all vehicles travelling in

the traffic network, is a very good indicator of the traffic system's overall performance, it

will be used to evaluate the performance of the proposed ramp metering algorithms. The

percentage change of TTT based the No Metering condition will be used to illustrate the

comparison of the performance of FLC and genetic fuzzy approaches.

5.4.1 The simulation results and analysis of traffic demand data - Table 5.2

Table 5.6 ~ Table 5.11 shows the results of the traffic demand data of Table 5.2.

Table 5.6 General measures of Effectiveness at traffic demand (3000vehs/h~1600vehs/h)

% Change

1 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1185.94 720.63 820.93 -39.24% -30.78% 13.92%

Average Delay
(seconds per vehicle) 10.26 4.39 5.59 -57.21% -45.52% 27.33%

Average Flow Rate
(vehicles per hour) 4002.25 3605.20 3706.00 -9.92% -7.40% 2.80%

Downstream
MOEs

Average Speed
(kms per hour) 54.14 68.70 65.97 26.89% 21.85% -3.97%

Total Ramp Travel
Time (seconds per km) 4299.25 4604.50 4512.98 7.10% 4.97% -1.99%

Average Ramp Delay
(seconds per vehicle) 203.15 427.17 369.76 110.27% 82.01% -13.44%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 1032.75 620.75 706.00 -39.89% -31.64% 13.73%

Total Travel Time
(hours) 166.00 171.40 169.60 3.25% 2.17% -1.05%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

126.54 132.04 130.17 4.35% 2.87% -1.42%

- 60 -

Table 5-7 General measures of Effectiveness at traffic demand (3200vehs/h~1600vehs/h)

% Change

2 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1212.72 778.91 775.68 -35.77% -36.04% -0.41%

Average Delay
(seconds per vehicle) 10.20 4.71 4.66 -53.82% -54.31% -1.06%

Average Flow Rate
(vehicles per hour) 4108.50 3802.50 3787.25 -7.45% -7.82% -0.40%

Downstream
MOEs

Average Speed
(kms per hour) 54.41 67.00 68.00 23.14% 24.98% 1.49%

Total Ramp Travel
Time (seconds per km) 4631.69 4517.49 4362.43 -2.47% -5.81% -3.43%

Average Ramp Delay
(seconds per vehicle) 253.04 435.88 459.49 72.26% 81.59% 5.42%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 973.00 613.50 602.25 -36.95% -38.10% -1.83%

Total Travel Time
(hours) 171.06 167.97 167.60 -1.81% -2.02% -0.22%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

131.63 128.67 128.30 -2.25% -2.53% -0.29%

- 61 -

Table 5-8 General measures of Effectiveness at traffic demand (3400vehs/h~1600vehs/h)

% Change

3 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1242.58 903.27 805.58 -27.31% -35.17% -10.82%

Average Delay
(seconds per vehicle) 9.96 5.86 4.66 -41.16% -53.21% -20.48%

Average Flow Rate
(vehicles per hour) 4268.25 4031.75 3933.25 -5.54% -7.85% -2.44%

Downstream
MOEs

Average Speed
(kms per hour) 54.68 62.87 67.53 14.98% 23.50% 7.41%

Total Ramp Travel
Time (seconds per km) 4405.40 4570.63 4563.03 3.75% 3.58% -0.17%

Average Ramp Delay
(seconds per vehicle) 264.45 435.72 491.16 64.76% 85.73% 12.72%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 939.75 606.50 567.07 -35.46% -39.66% -6.50%

Total Travel Time
(hours) 178.61 169.45 165.99 -5.13% -7.07% -2.04%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

139.20 130.07 126.63 -6.56% -9.03% -2.64%

- 62 -

Table 5.9 General measures of Effectiveness at traffic demand (3600vehs/h~1600vehs/h)

% Change

4 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1278.54 954.02 855.66 -25.38% -33.08% -10.31%

Average Delay
(seconds per vehicle) 9.65 6.15 4.81 -36.27% -50.16% -21.79%

Average Flow Rate
(vehicles per hour) 4475.50 4194.75 4155.00 -6.27% -7.16% -0.95%

Downstream
MOEs

Average Speed
(kms per hour) 55.20 61.45 66.20 11.32% 19.93% 7.73%

Total Ramp Travel
Time (seconds per km) 4449.47 4608.15 4450.64 3.57% 0.03% -3.42%

Average Ramp Delay
(seconds per vehicle) 267.42 442.11 503.92 65.32% 88.44% 13.98%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 907.75 603.25 539.75 -33.54% -40.54% -10.53%

Total Travel Time
(hours) 190.07 169.29 161.60 -10.93% -14.98% -4.54%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

150.72 130.00 122.36 -13.75% -18.82% -5.88%

- 63 -

Table 5.10 General measures of Effectiveness at traffic demand (3800vehs/h~1600vehs/h)

% Change

5 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1283.42 1041.89 842.24 -18.82% -34.38% -19.16%

Average Delay
(seconds per vehicle) 9.48 6.95 4.32 -26.69% -54.43% -37.84%

Average Flow Rate
(vehicles per hour) 4535.00 4320.50 4271.75 -4.73% -5.80% -1.13%

Downstream
MOEs

Average Speed
(kms per hour) 55.67 58.98 66.94 5.95% 20.24% 13.50%

Total Ramp Travel
Time (seconds per km) 4453.85 4637.15 4614.77 4.12% 3.61% -0.48%

Average Ramp Delay
(seconds per vehicle) 282.35 445.56 572.87 57.80% 102.89% 28.57%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 897.25 602.50 501.25 -32.85% -44.13% -16.80%

Total Travel Time
(hours) 191.53 180.11 161.54 -5.96% -15.66% -10.31%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

152.20 140.80 121.86 -7.49% -19.93% -13.45%

- 64 -

Table 5.11 General measures of Effectiveness at traffic demand (4000vehs/h~1600vehs/h)

% Change

6 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1285.30 1112.00 870.21 -13.48% -32.30% -21.74%

Average Delay
(seconds per vehicle) 9.48 7.40 4.38 -21.94% -53.80% -40.81%

Average Flow Rate
(vehicles per hour) 4540.25 4478.25 4402.50 -1.37% -3.03% -1.69%

Downstream
MOEs

Average Speed
(kms per hour) 55.64 57.83 66.52 3.94% 19.55% 15.03%

Total Ramp Travel
Time (seconds per km) 4463.06 4600.01 4202.91 3.07% -5.83% -8.63%

Average Ramp Delay
(seconds per vehicle) 284.06 442.69 536.25 55.84% 88.78% 21.13%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 890.25 601.50 493.50 -32.43% -44.57% -17.96%

Total Travel Time
(hours) 193.31 186.16 151.35 -3.70% -21.71% -18.70%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

153.92 146.87 112.29 -4.58% -27.05% -23.54%

- 65 -

Analyzing the simulation results of the traffic demand data - Table 5.2

Figure 5.9 shows the comparison of the change of TTT for FLC and genetic fuzzy ramp

metering when the ramp demand is 1600 vehicles/hour.

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

4600 4800 5000 5200 5400 5600

Total traffic Demand

%
 C

ha
ng

e
of

 T
TT

FLC
Genetic Fuzzy

Figure 5.9 the percentage change of TTT when ramp demand is 1600 vehs/h

As Figure 5.9 shows, when total traffic demand is less than about 4700vehicles/hour,

both FLC and genetic ramp metering fail to reduce the TTT, which means both ramp

metering approaches do not work properly and even cause the extra delay for the traffic

condition. And when total traffic demand is from 4600vehicles/hour to 4800

vehicles/hours, the performance of FLC and genetic fuzzy ramp metering is very close.

When the total traffic demand reaches or nearly reaches the road capacity (4800

vehicles/h to 5000vehicles/hour), both FLC and genetic fuzzy ramp metering perform

very well. FLC reduces TTT from -1.81% to -5.13% and genetic fuzzy have more

significant reduction on TTT, which is from -2.02% to -7.07%. The situation keeps going

well until total demand reaches 5200vehicles/h, where FLC reduces TTT to -10.93% and

genetic fuzzy reduces TTT to -14.98%. After that, the performance of FLC turns to be

worse and the corresponding TTT increases from -10.93% to -3.70% while the genetic

fuzzy keeps working well and the relative TTT drops from -14.98% to -21.71%. The

reason for that is because the objective function of genetic fuzzy ramp metering

effectively keeps maintaining the flow density below the predefined density, while FLC

ramp metering without the density restriction finally fails to prevent the formation of

- 66 -

congestion when total traffic demand goes too high. The change of traffic flow densities

of the Aimsun traffic network shows the evidence why FLC and genetic fuzzy ramp

metering performs differently at high traffic demand, which is shown in Figure 5.10 to

Figure 5.12 (where NC means no control and GA-FLC means genetic fuzzy ramp metering).

Figure 5.10 the change of average flow density when total demand is 5200 vehs/h

- 67 -

Figure 5.11 the change of average flow density when total demand is 5400 vehs/h

Figure 5.12 the change of average flow density when total demand is 5600 vehs/h

- 68 -

In Figure 5.10, both FLC and genetic fuzzy ramp metering effectively stabilize the flow

density at about 70vehicles/km when the average flow density under NC situation almost

reaches 80vehicles/km, so both the performance of FLC and genetic fuzzy metering are

very well, which could be observed by the percentage changes of TTT in Figure 5.9,

-10.93%(FLC) and -14.98%(genetic fuzzy).

In Figure 5.11, when the total traffic demand increases to 5400vehicles/hour, the

oscillation of flow density under FLC is very obvious which means FLC is less effective

to stabilize the flow density than genetic fuzzy ramp metering. Back to the percentage

change of TTT under FLC ramp metering in Figure 5.9, there is a significant increase on

TTT from -10.93% to -5.96% when total traffic demand increases from

5200vehicles/hour to 5400vehicles/hour, while the change of TTT under genetic fuzzy

ramp metering is decreased from -14.98 to -15.66%.

In Figure 5.12, when the total traffic demand increases to 5600vehicles/hour, the change

of the flow density under FLC shows no obvious difference with the change of traffic

flow density under NC situation, which means FLC almost has less effect on controlling

traffic condition and possible fails to prevent the formation of traffic congestion. And

Figure 5.9 shows that the percentage change of TTT under FLC drops to -3%.

Meanwhile, genetic fuzzy ramp metering still effectively maintains and stabilizes the

flow density at about 70vehicles/km and Figure 5.9 shows that the percentage change of

TTT under genetic fuzzy ramp metering increases to -23%.

- 69 -

5.4.2 The simulation results and analysis with traffic demand data - Table 5.3

Table 5.12 ~ Table 5.17 shows the results of the traffic demand data of Table 5.3.

Table 5.12 General measures of Effectiveness at traffic demand (3200~1400)

% Change

7 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1214.69 822.99 756.11 -32.25% -37.75% -8.13%

Average Delay
(seconds per vehicle) 10.02 5.35 4.39 -46.61% -56.19% -17.94%

Average Flow Rate
(vehicles per hour) 4157.50 3800.75 3773.50 -8.58% -9.24% -0.72%

Downstream
MOEs

Average Speed
(kms per hour) 54.56 65.52 68.75 20.09% 26.01% 4.93%

Total Ramp Travel
Time (seconds per km) 4286.35 4577.50 4563.42 6.79% 6.46% -0.31%

Average Ramp Delay
(seconds per vehicle) 244.11 432.61 470.07 77.22% 92.56% 8.66%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 986.75 611.50 586.75 -38.03% -40.54% -4.05%

Total Travel Time
(hours) 170.83 169.89 169.11 -0.55% -1.01% -0.46%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

131.39 130.57 129.80 -0.62% -1.21% -0.59%

- 70 -

Table 5.13 General measures of Effectiveness at traffic demand (3400~1400)

% Change

8 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1240.81 898.26 793.02 -27.61% -36.09% -11.72%

Average Delay
(seconds per vehicle) 9.82 5.89 4.59 -40.02% -53.26% -22.07%

Average Flow Rate
(vehicles per hour) 4295.5 4003.5 3903.5 -6.80% -9.13% -2.50%

Downstream
MOEs

Average Speed
(kms per hour) 54.71 62.87 67.8 14.92% 23.93% 7.84%

Total Ramp Travel
Time (seconds per km) 4368.89 4545.18 4516.57 4.04% 3.38% -0.63%

Average Ramp Delay
(seconds per vehicle) 259.28 432.65 512.2 66.87% 97.55% 18.39%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 947.25 607.75 540.75 -35.84% -42.91% -11.02%

Total Travel Time
(hours) 177.33 168.55 164.57 -4.95% -7.20% -2.36%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

137.92 129.20 125.27 -6.32% -9.17% -3.04%

- 71 -

Table 5.14 General measures of Effectiveness at traffic demand (3600~1400)

% Change

9 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1277.55 979.52 815.57 -23.33% -36.16% -16.74%

Average Delay
(seconds per vehicle) 9.7 6.52 4.4 -32.78% -54.64% -32.52%

Average Flow Rate
(vehicles per hour) 4457.00 4187.75 4096.25 -6.04% -8.09% -2.18%

Downstream
MOEs

Average Speed
(kms per hour) 55.12 60.60 67.73 9.94% 22.88% 11.77%

Total Ramp Travel
Time (seconds per km) 4368.88 4552.18 4633.88 4.20% 6.07% 1.79%

Average Ramp Delay
(seconds per vehicle) 272.93 436.81 536.18 60.04% 96.45% 22.75%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 908.00 603.25 532.00 -33.56% -41.41% -11.81%

Total Travel Time
(hours) 186.04 172.52 164.04 -7.27% -11.83% -4.92%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

146.67 133.24 124.83 -9.16% -14.89% -6.31%

- 72 -

Table 5.15 General measures of Effectiveness at traffic demand (3800~1400)

% Change

10 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1287.11 1064.36 856.90 -17.31% -33.42% -19.49%

Average Delay
(seconds per vehicle) 9.55 7.08 4.53 -25.86% -52.57% -36.02%

Average Flow Rate
(vehicles per hour) 4525.75 4384.75 4269.00 -3.12% -5.67% -2.64%

Downstream
MOEs

Average Speed
(kms per hour) 55.59 58.69 66.39 5.58% 19.43% 13.12%

Total Ramp Travel
Time (seconds per km) 4410.37 4553.01 4637.30 3.23% 5.15% 1.85%

Average Ramp Delay
(seconds per vehicle) 280.84 438.00 566.99 55.96% 101.89% 29.45%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 893.00 602.25 508.5 -32.56% -43.06% -15.57%

Total Travel Time
(hours) 191.22 179.81 163.61 -5.97% -14.44% -9.01%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

151.88 140.57 124.34 -7.45% -18.13% -11.55%

- 73 -

Table 5.16 General measures of Effectiveness at traffic demand (4000~1400)

% Change

11 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1291.33 1118.9 875.92 -13.35% -32.17% -21.72%

Average Delay
(seconds per vehicle) 9.54 7.39 4.31 -22.54% -54.82% -41.68%

Average Flow Rate
(vehicles per hour) 4542.25 4514.25 4458.25 -0.62% -1.85% -1.24%

Downstream
MOEs

Average Speed
(kms per hour) 55.67 57.91 66.40 4.02% 19.27% 14.66%

Total Ramp Travel
Time (seconds per km) 4406.09 4558.77 4495.07 3.47% 2.02% -1.40%

Average Ramp Delay
(seconds per vehicle) 279.3 438.57 568.77 57.02% 103.64% 29.69%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 891.25 602.00 494.75 -32.45% -44.49% -17.82%

Total Travel Time
(hours) 192.29 186.13 157.34 -3.20% -18.18% -15.47%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

152.92 146.92 118.10 -3.92% -22.77% -19.62%

- 74 -

Table 5.17 General measures of Effectiveness at traffic demand (4200~1400)

% Change

12 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1282.82 1119.99 898.07 -12.69% -29.99% -19.81%

Average Delay
(seconds per vehicle) 9.43 7.31 4.13 -22.48% -56.20% -43.50%

Average Flow Rate
(vehicles per hour) 4543.25 4541.25 4656.00 -0.04% 2.48% 2.53%

Downstream
MOEs

Average Speed
(kms per hour) 55.81 57.8 66.23 3.57% 18.67% 14.58%

Total Ramp Travel
Time (seconds per km) 4407.08 4530.52 4327.65 2.80% -1.80% -4.48%

Average Ramp Delay
(seconds per vehicle) 279.83 435.71 577.5 55.71% 106.38% 32.54%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 891.25 602.00 475.00 -32.45% -46.70% -21.10%

Total Travel Time
(hours) 192.05 184.90 150.11 -3.72% -21.84% -18.82%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

152.71 145.61 110.85 -4.65% -27.41% -23.87%

- 75 -

Analyzing the simulation results of the traffic demand data - Table 5.3

Figure 5.13 shows the comparison of the change of TTT for FLC and genetic fuzzy ramp

metering when the ramp demand is 1400 vehicles/hour.

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%
4600 4800 5000 5200 5400 5600

Total Traffic Demand
%

 C
ha

ng
e

of
 T

TT

FLC
Genetic Fuzzy

Figure 5.13 the percentage change of TTT when ramp demand is 1400 vehs/h

As Figure 5.13 shows, both FLC and genetic ramp metering start working properly when

total traffic demand is more than about 4600vehicles. And when total traffic demand is

from 4800vehicles/hour to road capacity (5000 vehicles/hours), both FLC and genetic

fuzzy ramp metering perform very well. FLC reduces TTT from -4.95% to -7.27% and

genetic fuzzy have more significant reduction on TTT, which is from -7.20% to -11.83%.

The situation keeps going well until total demand reaches 5200vehicles/h, where FLC

reduces TTT to -5.97% and genetic fuzzy reduces TTT to -14.44%. After that, the

performance of FLC obviously turns to be worse and the corresponding TTT significantly

increases from -5.97% to -3.20% while the genetic fuzzy keeps working well and the

relative TTT drops from -14.44% to -18.18%. The reason for that is because the objective

function of genetic fuzzy ramp metering effectively keeps maintaining the flow density

below the predefined density. Again, the change of traffic flow densities of the Aimsun

traffic network is used to show why FLC and genetic fuzzy ramp metering performs

differently at high traffic demand, which is shown in Figure 5.14 to Figure 5.16 (where

NC means no control and GA-FLC means genetic fuzzy ramp metering).

- 76 -

Figure 5.14 the change of average flow density when total demand is 5000 vehs/h

Figure 5.15 the change of average flow density when total demand is 5200 vehs/h

- 77 -

Figure 5.16 the change of average flow density when total demand is 5400 vehs/h

In Figure 5.14 and Figure 5.15, genetic fuzzy ramp metering effectively stabilize the flow

density at about 65vehicles/km when the average flow density under NC situation nearly

reaches 80vehicles/km while the change of the flow density under FLC is unstable and

the average density is around 70vehicle/hour. Then back to Figure 5.13, we can see the

TTT under FLC increase from -7.27% to -5.97% and the TTT under genetic fuzzy

decrease from -11.83% to -14.44% when total traffic demand increases from

5000vehicles/hour to 5200vehicles/hour. Apparently, genetic fuzzy ramp metering with

the stable flow density performs better than FLC although FLC also works well.

In Figure 5.16, when the total traffic demand increases to 5400vehicles/hour, the change

of the flow density under FLC shows no obvious difference with the change of traffic

flow density under NC situation, which means FLC almost has less effect on controlling

traffic condition and possibly fails to prevent the formation of traffic congestion. And

Figure 5.13 shows that the percentage change of TTT under FLC drops to -3.20%.

Meanwhile, genetic fuzzy ramp metering still effectively maintains and stabilizes the

flow density at about 70vehicles/km and Figure 5.13 shows that the percentage change of

TTT under genetic fuzzy ramp metering increases to -18.18%.

- 78 -

5.4.3 The simulation results and analysis with traffic demand data - Table 5.4

Table 5.18 ~ Table 5.23 shows the results of the traffic demand data of Table 5.4.

Table 5.18 General measures of Effectiveness at traffic demand (3200~1200)

% Change

13 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1207.78 803.77 780.36 -33.45% -35.39% -2.91%

Average Delay
(seconds per vehicle) 10.16 5.15 4.68 -49.31% -53.94% -9.13%

Average Flow Rate
(vehicles per hour) 4099.00 3781.50 3798.25 -7.75% -7.34% 0.44%

Downstream
MOEs

Average Speed
(kms per hour) 54.59 66.08 67.70 21.05% 24.02% 2.45%

Total Ramp Travel
Time (seconds per km) 4191.24 4487.78 4587.8 7.08% 9.46% 2.23%

Average Ramp Delay
(seconds per vehicle) 240.99 420.58 464.76 74.52% 92.85% 10.50%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 971.25 614.75 599.25 -36.71% -38.30% -2.52%

Total Travel Time
(hours) 166.67 167.37 169.63 0.42% 1.78% 1.35%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

127.24 128.09 130.28 0.67% 2.39% 1.71%

- 79 -

Table 5.19 General measures of Effectiveness at traffic demand (3400~1200)

% Change

14 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1248.66 867.21 795.55 -30.55% -36.29% -8.26%

Average Delay
(seconds per vehicle) 9.96 5.46 4.51 -45.18% -54.72% -17.40%

Average Flow Rate
(vehicles per hour) 4288.5 3985.5 3946.75 -7.07% -7.97% -0.97%

Downstream
MOEs

Average Speed
(kms per hour) 54.64 64.11 67.82 17.33% 24.12% 5.79%

Total Ramp Travel
Time (seconds per km) 4200.48 4456.94 4594.77 6.11% 9.39% 3.09%

Average Ramp Delay
(seconds per vehicle) 251.72 422.54 492.63 67.86% 95.71% 16.59%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 938.75 608.75 565.00 -35.15% -39.81% -7.19%

Total Travel Time
(hours) 175.99 165.84 165.75 -5.77% -5.82% -0.05%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

136.61 126.53 126.44 -7.38% -7.44% -0.07%

- 80 -

Table 5.20 General measures of Effectiveness at traffic demand (3600~1200)

% Change

15 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1270.87 989.62 835.17 -22.13% -34.28% -15.61%

Average Delay
(seconds per vehicle) 9.62 6.55 4.75 -31.91% -50.62% -27.48%

Average Flow Rate
(vehicles per hour) 4451.5 4216.75 4073.25 -5.27% -8.50% -3.40%

Downstream
MOEs

Average Speed
(kms per hour) 55.21 60.39 66.72 9.38% 20.85% 10.48%

Total Ramp Travel
Time (seconds per km) 4281.46 4544.07 4677.74 6.13% 9.26% 2.94%

Average Ramp Delay
(seconds per vehicle) 265.41 434.81 537.59 63.83% 102.55% 23.64%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 911.75 604.25 530.00 -33.73% -41.87% -12.29%

Total Travel Time
(hours) 183.25 172.82 167.66 -5.69% -8.51% -2.99%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

143.85 133.57 128.40 -7.15% -10.74% -3.87%

- 81 -

Table 5.21 General measures of Effectiveness at traffic demand (3800~1200)

% Change

16 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1280.18 1060.81 848.93 -17.14% -33.69% -19.97%

Average Delay
(seconds per vehicle) 9.49 7.08 4.5 -25.40% -52.58% -36.44%

Average Flow Rate
(vehicles per hour) 4516.75 4363.5 4241.25 -3.39% -6.10% -2.80%

Downstream
MOEs

Average Speed
(kms per hour) 55.69 58.55 66.67 5.14% 19.72% 13.87%

Total Ramp Travel
Time (seconds per km) 4307.97 4492.07 4421.8 4.27% 2.64% -1.56%

Average Ramp Delay
(seconds per vehicle) 277.36 431.75 545.61 55.66% 96.72% 26.37%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 881.5 601.75 503.5 -31.74% -42.88% -16.33%

Total Travel Time
(hours) 188.62 178.63 158.41 -5.30% -16.02% -11.32%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

149.26 139.34 119.15 -6.65% -20.17% -14.49%

- 82 -

Table 5.22 General measures of Effectiveness at traffic demand (4000~1200)

% Change

17 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1287.12 1108.58 861.39 -13.87% -33.08% -22.30%

Average Delay
(seconds per vehicle) 9.48 7.25 4.28 -23.52% -54.85% -40.97%

Average Flow Rate
(vehicles per hour) 4543.75 4508.25 4397.25 -0.78% -3.22% -2.46%

Downstream
MOEs

Average Speed
(kms per hour) 55.66 58 66.9 4.20% 20.19% 15.34%

Total Ramp Travel
Time (seconds per km) 4339.71 4456.42 4430.3 2.69% 2.09% -0.59%

Average Ramp Delay
(seconds per vehicle) 276.99 428.42 565.08 54.67% 104.01% 31.90%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 883.25 601.5 487.75 -31.90% -44.78% -18.91%

Total Travel Time
(hours) 190.35 183.56 154.48 -3.57% -18.84% -15.84%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

150.99 144.26 115.22 -4.46% -23.69% -20.13%

- 83 -

Table 5-23 General measures of Effectiveness at traffic demand (4200~1200)

% Change

18 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1286.53 1111.96 910.67 -13.57% -29.22% -18.10%

Average Delay
(seconds per vehicle) 9.49 7.2 4.20 -24.13% -55.74% -41.67%

Average Flow Rate
(vehicles per hour) 4537.25 4541.25 4698.25 0.09% 3.55% 3.46%

Downstream
MOEs

Average Speed
(kms per hour) 55.78 58.09 65.69 4.14% 17.77% 13.08%

Total Ramp Travel
Time (seconds per km) 4339.14 4492.83 4200.68 3.54% -3.19% -6.50%

Average Ramp Delay
(seconds per vehicle) 279.26 432.04 558.01 54.71% 99.82% 29.16%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 875.75 601.50 477.25 -31.32% -45.50% -20.66%

Total Travel Time
(hours) 190.35 183.73 147.20 -3.48% -22.67% -19.88%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

150.95 144.41 107.94 -4.33% -28.49% -25.25%

- 84 -

Analyzing the simulation results of the traffic demand data - Table 5.4

Figure 5.17 shows the comparison of the change of TTT for FLC and genetic fuzzy ramp

metering when the ramp demand is 1200 vehicles/hour.

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

4400 4600 4800 5000 5200 5400

Total Traffic Demand

%
 C

ha
ng

e
of

 T
TT

FLC
Genetic Fuzzy

Figure 5.17 the percentage change of TTT when ramp demand is 1200 vehs/h

As Figure 5.17 shows, when total traffic demand is less than about 4400vehicles/hour,

both FLC and genetic ramp metering fail to reduce the TTT, which means both ramp

metering approaches do not work properly and even cause the extra delay for the traffic

condition. And when total traffic demand is from 4400vehicles/hour to 4600

vehicles/hours, the performance of FLC and genetic fuzzy ramp metering is very close.

When the total traffic demand reaches or nearly reaches the road capacity (4600

vehicles/h to 5000vehicles/hour), both FLC and genetic fuzzy ramp metering perform

very well. FLC reduces TTT from -5.77% to -5.30% and genetic fuzzy have more

significant reduction on TTT, which is from -5.82% to -16.02%. After that, the

performance of FLC turns to be worse and the corresponding TTT increases from -5.30%

to -3.57% while the genetic fuzzy keeps working well and the relative TTT drops from -

16.02% to -18.84%. The change of traffic flow densities of the Aimsun traffic network

shows why FLC and genetic fuzzy ramp metering performs differently at high traffic

demand, which is shown in Figure 5.18 to Figure 5.20 (where NC means no control and GA-

FLC means genetic fuzzy ramp metering).

- 85 -

Figure 5.18 the change of average flow density when total demand is 4800 vehs/h

Figure 5.19 the change of average flow density when total demand is 5000 vehs/h

- 86 -

Figure 5.20 the change of average flow density when total demand is 5200 vehs/h

In Figure 5.18 and Figure 5.19, genetic fuzzy ramp metering effectively stabilize the flow

density at about 66vehicles/km when the average flow density under NC situation nearly

reaches 80vehicles/km, while the change of the flow density under FLC is unstable and

the average flow density is around 70vehicles/hour. Then back to Figure 5.17, we can see

the TTT under FLC slightly increases from -5.69% to -5.30% and the TTT under genetic

fuzzy decrease from -8.51% to -16.02% when total traffic demand increases from

4800vehicles/hour to 5000vehicles/hour. Apparently, genetic fuzzy ramp metering with

the stable flow density performs better than FLC although FLC also works well.

In Figure 5.20, when the total traffic demand increases to 5200vehicles/hour, the change

of the flow density under FLC shows no obvious difference with the change of traffic

flow density under NC situation, which means FLC almost has less effect on controlling

traffic condition and possibly fails to prevent the formation of traffic congestion. And

Figure 5.17 shows that the percentage change of TTT under FLC drops to -3.57%.

Meanwhile, genetic fuzzy ramp metering still effectively maintains and stabilizes the

flow density at about 70vehicles/km and Figure 5.17 shows that the percentage change of

TTT under genetic fuzzy ramp metering increases to -18.84%.

- 87 -

5.4.4 The simulation results and analysis with traffic demand data - Table 5.5

Table 5.24 ~ Table 5.29 shows the results of the traffic demand data of Table 5.5.

Table 5.24 General measures of Effectiveness at traffic demand (3200~1000)

% Change

19 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1127.07 825.83 775.99 -26.73% -31.15% -6.04%

Average Delay
(seconds per vehicle) 9.18 5.40 4.75 -41.18% -48.26% -12.04%

Average Flow Rate
(vehicles per hour) 4038.75 3800.50 3752.25 -5.90% -7.09% -1.27%

Downstream
MOEs

Average Speed
(kms per hour) 56.24 65.03 67.86 15.63% 20.66% 4.35%

Total Ramp Travel
Time (seconds per km) 1607.10 4347.38 4435.97 170.51% 176.02% 2.04%

Average Ramp Delay
(seconds per vehicle) 78.93 407.38 448.81 416.13% 468.62% 10.17%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 948.00 613.25 594.75 -35.31% -37.26% -3.02%

Total Travel Time
(hours) 100.425 164.65 166.21 63.95% 65.51% 0.95%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

60.99 125.31 126.88 105.46% 108.03% 1.25%

- 88 -

Table 5.25 General measures of Effectiveness at traffic demand (3400~1000)

% Change

20 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1221.16 885.44 784.05 -27.49% -35.79% -11.45%

Average Delay
(seconds per vehicle) 9.75 5.77 4.47 -40.82% -54.15% -22.53%

Average Flow Rate
(vehicles per hour) 4249.50 3971.25 3894.00 -6.55% -8.37% -1.95%

Downstream
MOEs

Average Speed
(kms per hour) 55.21 63.23 68.37 14.53% 23.84% 8.13%

Total Ramp Travel
Time (seconds per km) 2435.23 4395.76 4407.18 80.51% 80.98% 0.26%

Average Ramp Delay
(seconds per vehicle) 139.98 417.21 482.36 198.05% 244.59% 15.62%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 913.25 606.75 560.50 -33.56% -38.63% -7.62%

Total Travel Time
(hours) 132.24 165.31 162.51 25.01% 22.89% -1.69%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

92.87 125.96 123.32 35.63% 32.79% -2.10%

- 89 -

Table 5.26 General measures of Effectiveness at traffic demand (3600~1000)

% Change

21 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1274.74 984.69 834.76 -22.75% -34.52% -15.23%

Average Delay
(seconds per vehicle) 9.74 6.46 4.64 -33.68% -52.36% -28.17%

Average Flow Rate
(vehicles per hour) 4435.25 4225.50 4100.50 -4.73% -7.55% -2.96%

Downstream
MOEs

Average Speed
(kms per hour) 55.24 60.50 66.83 9.52% 20.98% 10.46%

Total Ramp Travel
Time (seconds per km) 2782.72 4356.58 4440.46 56.56% 59.57% 1.93%

Average Ramp Delay
(seconds per vehicle) 166.50 416.32 514.59 150.04% 209.06% 23.60%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 904.25 603.25 531.50 -33.29% -41.22% -11.89%

Total Travel Time
(hours) 150.61 168.27 162.70 11.73% 8.03% -3.31%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

111.24 128.98 123.43 15.95% 10.96% -4.30%

- 90 -

Table 5.27 General measures of Effectiveness at traffic demand (3800~1000)

% Change

22 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1280.26 1053.94 845.14 -17.68% -33.99% -19.81%

Average Delay
(seconds per vehicle) 7.13 4.45 9.41 -37.59% 31.98% 111.46%

Average Flow Rate
(vehicles per hour) 4538.75 4321.75 4230.25 -4.78% -6.80% -2.12%

Downstream
MOEs

Average Speed
(kms per hour) 55.92 58.72 66.67 5.01% 19.22% 13.54%

Total Ramp Travel
Time (seconds per km) 2883.02 4362.24 4406.52 51.31% 52.84% 1.02%

Average Ramp Delay
(seconds per vehicle) 176.74 418.34 549.49 136.70% 210.90% 31.35%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 888.75 601.50 500.25 -32.32% -43.71% -16.83%

Total Travel Time
(hours) 157.62 174.82 158.75 10.91% 0.72% -9.19%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

118.28 135.54 119.46 14.59% 1.00% -11.86%

- 91 -

Table 5.28 General measures of Effectiveness at traffic demand (4000~1000)

% Change

23 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1288.18 1117.27 861.05 -13.27% -33.16% -22.93%

Average Delay
(seconds per vehicle) 9.50 7.39 4.23 -22.21% -55.47% -42.76%

Average Flow Rate
(vehicles per hour) 4540.00 4503.25 4406.75 -0.81% -2.94% -2.14%

Downstream
MOEs

Average Speed
(kms per hour) 55.65 57.89 66.98 4.03% 20.36% 15.70%

Total Ramp Travel
Time (seconds per km) 3365.25 4389.20 4480.10 30.43% 33.13% 2.07%

Average Ramp Delay
(seconds per vehicle) 209.73 421.71 564.42 101.07% 169.12% 33.84%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 885.75 600.75 495.75 -32.18% -44.03% -17.48%

Total Travel Time
(hours) 169.75 182.17 156.56 7.32% -7.77% -14.06%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

130.37 142.89 117.29 9.60% -10.03% -17.92%

- 92 -

Table 5.29 General measures of Effectiveness at traffic demand (4200~1000)

% Change

24 Measures of
Effectiveness

No
Metering

Fuzzy
Metering

Genetic
Fuzzy

Metering
Fuzzy

VS. No
Metering

GA
VS. No

Metering

GA VS.
Fuzzy

Total Travel Time
(seconds per km) 1286.26 1113.46 906.25 -13.43% -29.54% -18.61%

Average Delay
(seconds per vehicle) 9.44 7.29 4.27 -22.78% -54.77% -41.43%

Average Flow Rate
(vehicles per hour) 4549.50 4522.25 4647.25 -0.60% 2.15% 2.76%

Downstream
MOEs

Average Speed
(kms per hour) 55.78 57.89 65.57 3.78% 17.55% 13.27%

Total Ramp Travel
Time (seconds per km) 3526.81 4357.19 4059.71 23.54% 15.11% -6.83%

Average Ramp Delay
(seconds per vehicle) 222.03 418.53 530.26 88.50% 138.82% 26.70%

Ramp
MOEs

Average Flow Rate
(vehicles per hour) 882.00 600.75 480.25 -31.89% -45.55% -20.06%

Total Travel Time
(hours) 172.43 182.10 144.96 5.61% -15.93% -20.40%

System
MOEs Average Delay Time

(seconds per vehicle
per km)

133.08 142.27 105.67 6.91% -20.60% -25.73%

- 93 -

Analyzing the simulation results of the traffic demand data - Table 5.5

Figure 5.21 shows the comparison of the change of TTT for FLC and genetic fuzzy ramp

metering when the ramp demand is 1000 vehicles/hour.

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

4200 4400 4600 4800 5000 5200

Total Traffic Demand

%
 C

ha
ng

e
of

 T
TT FLC

Genetic Fuzzy

Figure 5.21 the percentage change of TTT when ramp demand is 1000 vehs/h

In Figure 5.21, FLC ramp metering causes the extra delay for the traffic flow and the

percentage changes of TTT under FLC are all positive values, while genetic fuzzy ramp

metering starts working efficiently when total traffic demand nearly reaches road

capacity (5000vehicles/hour) where the reduction of TTT is from -7.77% to -15.93%.

The reason why FLC fails to reduce TTT is because ramp demand is relative low and the

motorway is under free flow condition in most cases. Although total traffic demand could

sometimes exceeds the road capacity and cause traffic delay, low ramp demand hardly

continuously interrupt the traffic platoon to make congestion finally formed. FLC

metering unable to response the change of traffic flow density could generate a strict

metering rate that cause extra traffic delay and finally make the traffic condition worse.

The change of traffic flow densities of the Aimsun traffic network shows why FLC and

genetic fuzzy ramp metering performs differently when total traffic demand is around

road capacity, which is shown in Figure 5.22 ~ Figure 5.24 (where NC means no control

and GA-FLC means genetic fuzzy ramp metering).

- 94 -

Figure 5.22 the change of average flow density when total demand is 4800 vehs/h

Figure 5.23 the change of average flow density when total demand is 5000 vehs/h

- 95 -

Figure 5.24 the change of average flow density when total demand is 5200 vehs/h

In Figure 5.22, both genetic fuzzy and FLC ramp metering generate a higher average

flow density (70vehicles/km) than NC situation (66vehicles/km), which means both of

them generate too strict metering rates to benefit traffic condition. Back to Figure 5.21,

we can see the fact that the percentage change of TTT under both of the ramp metering

approaches is positive (10.91% and 0.72%). In this case, ramp metering will not be

necessary since motorway is under free flow condition.

In Figure 5.23 and Figure 5.24, the average flow density under FLC (78vehicles/km) is

much higher than the average traffic flow density (72vehicels/km) under NC situation,

which means FLC generates the too strict metering rates and already causes extra delay

for the traffic flow. And Figure 5.21 shows that the percentage changes of TTT under

FLC are positive (7.32% and 5.61%). Meanwhile, genetic fuzzy ramp metering still

effectively maintains and stabilizes the flow density at about 70vehicles/km and Figure

5.21 shows that the percentage changes of TTT under genetic fuzzy ramp metering

increase to -7.77% and -15.93%.

- 96 -

5.4.5 Overall Result Analysis

So far, the performances of FLC and genetic fuzzy ramp metering have been compared

when ramp demand ranges from 1100vehicles/hour to 1600vehicles/hour. Basically, both

genetic fuzzy and FLC ramp metering perform well when total traffic demand reaches or

nearly reaches road capacity. Once total traffic demand is much higher than road capacity

(5400vehicles/hour ~5600vehicles/hour), FLC becomes less efficient to prevent traffic

congestion while genetic fuzzy ramp metering sill keep working well due to the objective

function based on density-flow relationship. Besides, when ramp demand is relative low

(about 1000vheciles/hour), FLC ramp metering can not benefit traffic condition and may

cause extra traffic delay, while genetic fuzzy ramp metering still response well when total

traffic demand exceeds road capacity.

5.5 Sensitivity Analysis

Sensitivity analysis is the study to show how “sensitive” a model is to the changes of the

parameters of the model and to the changes of the structure of the model. In this section,

we focus on the parameter sensitivity of the proposed on-ramp model in Aimsun.

Parameter sensitivity analysis is usually performed as a series of tests in which the

modeler sets different parameter values to study how the model behaves in response to

the changes of the parameter values. OFAT (One-Factor-At-a-Time), as one of the

simplest ways of investigating the parameter sensitivity of a model, has been applied to

the proposed on-ramp model in Aimsun.

Since the all fuzzy parameters in the on-ramp model will be updated by genetic algorithm

periodically, it appears unnecessary to analyze them. Therefore, the positions of detectors

will be main parameters to be discussed in this section, the current values of which are

given by:

The position of the upstream detector: 200m (the distance to the ramp entrance)

The position of the downstream detector: 180m (the distance to the ramp entrance)

The positions of check-in detector and ramp detector are fixed at the end and beginning

of the ramp, so they will not be analyzed.

To visualize the effects of the change of detector positions, the positions of detectors that

are currently used in the simulation model are considered as base values. The curves of

- 97 -

parameter sensitivity are developed by the percentage change of STTT (System Total

Travel Time) based on those values. The small threshold value of 0.5% is used to screen

the parameters.

Figure 5.25 and Figure 5.26 shows the sensitivity curve of the parameters.

System TTT vs the Positions of the upstream
detector

-0.50%
0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
3.50%
4.00%

20
0

18
0

16
0

14
0

12
0

10
0 80 60 40

The distance to the ramp entrence

%
 c

ha
ng

e
of

 S
TT

T

Figure 5.25 % change of TTT vs. the Positions of the upstream detector

System TTT vs the positions of the downstream
detector

-1.00%
-0.50%
0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
3.50%
4.00%

180 160 140 120 100 80 60 40 20

The distance to the ramp entrence

%
 c

ha
ng

e
of

 S
TT

T

Figure 5.26 % change of TTT vs. the Positions of the downstream detector

- 98 -

5.6 Conclusion

In this chapter, both FLC and genetic fuzzy ramp metering are programmed and tested in

Aimsun environment, and totally twenty four traffic scenarios have been simulated to

analyze the performance change of the proposed algorithms in different traffic demand.

From the comparison of simulation results, genetic fuzzy ramp metering shows more

significant improvement on TTT when total traffic demand exceeds 4% of road capacity

(about 5200vehicles/hour), while FLC ramp metering tends to be less effective when total

traffic demand is much higher than road capacity. The change of system traffic flow

density shows the reason why genetic fuzzy perform better than FLC ramp meter in the

situation of high traffic demand, which is because the objective function of genetic fuzzy

based on the traffic flow-density relationship effectively maintain and stabilize the flow

density around the predefined value to avoid the formation of congestion.

- 99 -

Chapter 6 Conclusions and recommendation
6.1 Conclusion

This research proposes a genetic fuzzy approach to design a traffic-responsive ramp

control algorithm for an isolated on-ramp. A traditional fuzzy ramp meter is based on the

theory of fuzzy logic control, which resembles the approximate reasoning characteristics

of human decision making by means of a traffic knowledge base in the form of if-then

rules. The common limitation of FLC ramp metering is the dependence on how good the

rules could be made by human experts. Therefore, the optimization of FLC ramp

metering is actually the optimization of rule-base. Instead of making new rules, tuning

fuzzy parameters for fuzzy sets is easy to be implemented due to the avoidance of

changing the structure of fuzzy rule-base, so genetic algorithm is used as an evaluation

algorithm to optimize the fuzzy parameters based on given evaluation criteria.

The simulation in Aimsun on-ramp model shows significant improvement on TTT when

fuzzy parameters are properly tuned, and some conclusions for the achievement of such

improvement could be summarized as follows:

a) Although fuzzy logic control based on inexact input information do not need a

mathematic model, to properly tune fuzzy parameters, the objective function must

have an exact mathematic expression. In this report, a function derived from

traffic flow-density relationship of an isolated on-ramp model is used as objective

function.

b) To prevent the ramp metering rate neither to be too permissive nor to be too

restrictive, a macroscopic traffic model should be taken into consideration. The

assumption of Greenshield’s macroscopic stream model is involved in the Aimsun

on-ramp mode of this paper.

c) To proper tune the fuzzy parameters, a proper evolutionary algorithm should be

selected. Genetic algorithm has been proved to be an easy-implementing and

simple effective way to optimize the FLC ramp metering, and the genetic fuzzy

ramp metering shows the stronger stability of maintaining system traffic flow

density especially when handling high traffic demand situation.

- 100 -

6.2 Recommendation

Although the genetic fuzzy ramp metering shows better performance to control the

mainstream traffic condition in Aimsun simulation, the simulation results also show it

might cause longer ramp delay time than FLC or NC. The reason for that is because the

objective function only focuses on the mainstream flow density. In other words, the

consideration about the mainstream traffic condition is the first priority for the ramp

control algorithm, and the limit of ramp queue length is out of consideration in the

objective function and only restricted by fuzzy rules. Certainly, a long ramp queue will

not affect the traffic condition on freeway, but it might cause the congestion on surface

streets due to the spill-back of the long ramp queue, so a ramp queue control function is

recommended to be involved in the objective function if the simulation scenario is not a

isolated on-ramp model but a complete traffic network.

Also, for a motorway network including several on-ramps, the genetic fuzzy ramp

metering algorithm, as a local traffic responsive ramp metering algorithm, might not be

able to optimize traffic condition for the whole network. Then a system objective

function is going to be necessary for the system optimization to tune the fuzzy

parameters. The objective function could be derived by a second order traffic model

representing the traffic network, which could be found in many publications [1] [15] [28].

With this system objective function, the fuzzy genetic ramp metering algorithm could be

tuned as a coordinated ramp metering algorithm to calculate a system metering rate for

each ramp. Meanwhile, the fuzzy genetic algorithm could also work as a local traffic

responsive ramp meter to calculate a local ramp metering rate based on the local traffic

condition as we proposed before. The more restrictive one between the local and system

metering rate could be finally applied to the corresponding ramp meter. This is what we

call the competitive ramp metering algorithm. It must be very interesting to see the

feasibility of genetic fuzzy algorithm working on such an assumption.

- 101 -

REFERENCES

[1] Kachroo, P., Ozbay, K., (2003), “Feedback Ramp Metering in Intelligent

Transportation Systems,” Kluwer Academic 2003, 38-45.

[2] Deliverable D7.5 Handbook of Ramp Metering, IBI Group UK Ltd, 2004.

[3] Guang, Y. X., Lei, N., (2006), “Research on Evaluation of Expressway Ramp Isolated

Metering Strategy in Shanghai,” ITS Telecommunications Proceedings, 2006 6th

International Conference.

[4] Bogenberger, K., and May, A.D., (1999), “Advanced Coordinated Traffic Responsive

Ramp Metering Strategies,” Berkeley.

[5] Nadeem, A., Zongzhong, T., Messer, C. J., and Chu, C. L., (2003), “Ramp Metering

Algorithms and Approaches for Texas,” Texas Transportation Institute.

[6] Horowitz, R., May, A.D., Skabardonis, A., Varaiya, P., Zhang, M., Gomes, G.,

Muñoz, L., Sun, X.T., Sun, D.F., (2005), “Field Implementation and Evaluation of

Adaptive Ramp Metering Algorithms,” Research Report, University of California.

[7] Joseph, R., (2003), “Evaluation of Coordinated and Local Ramp Metering Algorithms

using Microscopic Traffic Simulation”, Master Thesis, University of Rhode Island.

[8] Jin, W. L., Zhang, M., (2000), “Evaluation of On-ramp Control Algorithms”, Interim

Report, University of California at Davis.

[9] Taylor, C., and Meldrum, D., (1995), “Simulation testing of a Fuzzy Neural Ramp

Metering Algorithm,” final technical report, Washington State Department of

Transportation, National Technical Information Service, WA-RD 395.1.

[10] Bogenberger, K., (2000), “Adaptive Fuzzy Systems for Traffic Responsive and

Coordinated Ramp Metering,” Ph.D. Thesis at the Fachgebiet.

[11] Taylor, C., Meldrum, D., Jacobson, L., (1995), “Fuzzy Ramp Metering - Design

Overview and Simulation Results”, Transportation Research Record 1634,

Washington.

[12] Tale, H., Slager, J., Rosloot, J., (1996), “The Assessment of Ramp Metering Based

on Fuzzy Logic,” 3rd ITS World Congress in Orlando.

[13] Taylor, C., and Meldrum, D., (2000), “Evaluation of a Fuzzy Logic Ramp Metering

Algorithm: A Comparative Study between Three Ramp Metering Algorithms used in

- 102 -

the Greater Seattle Area,” WA-RD Technical Report to be published, Washington

State Department of Transportation, National Technical Information Service.

[14] Bogenberger, K., Keller, H., (2001), “An Evolutionary Fuzzy System for

Coordinated and Traffic Responsive Ramp Metering,” Annual Hawaiian International

Conference on System Sciences, USA.

[15] Bogenberger, K., Vukanovic, S., Keller, H., (2001), “A Neuro-Fuzzy Algorithm for

Coordinated Traffic Responsive Ramp Metering,” IEEE 4th International Conference

on Intelligent Transportation Systems, California.

[16] Taylor, C., and Meldrum, D., (2000), “Algorithm Design, User Interface, and

Optimization Procedure for a Fuzzy Logic Ramp Metering Algorithm: A Training

Manual for Motorway Operations Engineers,” WA-RD Technical Report to be

published, Washington State Department of Transportation, National Technical

Information Service.

[17] Roger, J.-S., (1993), “ANFIS: Adaptive-Network-Based Fuzzy Inference Systems,”

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 03, pp 665-685.

[18] Lee, C., (1990), “Fuzzy logic in control systems: fuzzy logic controller-part 1 and

2,” IEEE Transactions on Systems, Man, and Cybernetics.

[19] Fuzzy Logic Toolbox User’s Guide, The MathWorks, 2008.

[20] Hoffmann, F., (2001), “Evolutionary Algorithm for Fuzzy Control System Design,”

Proceedings of the IEEE, VOL.89, NO. 9.

[21] Mohammadian, M., Stonier, R. J., (1994), “Tuning and Optimisation of Membership

functions of Fuzzy Logic Controllers by Genetic Algorithm”, IEEE International

Workshop on Robot and Human Communication 0-7803-2002-6/94.

[22] Steeb, W.-H., (2002), “The Nonlinear Workbook,” Singapore: World Scientific

Publishing Co. Pte. Ltd.

[23] Sun, X.T., (2005), “Modelling, Estimation, and Control of Motorway Traffic,” Ph.D.

Thesis at the University of California, Berkeley.

[24] Microsimulator and Mesosimulator in Aimsun 6 User’s Manual, TSS-Transport

Simulation Systems, 2008,

[25] Aimsun6 API Manual, TSS-Transport Simulation Systems, 2008.

- 103 -

[26] Hughes, J., (1998), “Intensive Traffic Data Collection for Simulation of a Congested

Auckland Motorway ,” Proceedings 19th ARRB Transport Research Conference,

Sydney, Australia, 15pp.

[27] Hughes, J., (2000), “AIMSUN2 Simulation of a Congested Auckland Freeway,”

Master thesis at the University of Auckland.

[28] Ghods, A.H., Kian, A. R., Tabibi, M., (2007), “A Genetic-Fuzzy Control

Application to Ramp Metering and Variable Speed Limit Control,” IEEE

International conference on Systems, Man and Cybernetics, ISIC.

[29] Papageorgiou, M., and Kotsialos, A., (2002), “Motorway ramp metering: An

overview,” IEEE Transactions on Intelligent Transportation Systems.

- 104 -

Appendix A: Fuzzy logic control coding for ramp metering

- 105 -

 AAPI.CXX

#include "AKIProxie.h"
#include "CIProxie.h"
#include "ANGConProxie.h"
#include "AAPI.h"
#include <stdio.h>
#include "FLC.h"
// Procedures could be modified by the user
char astring[128];

int AAPILoad()
{

// AKIPrintString("LOAD");
return 0;

}

int AAPIInit()
{

// AKIPrintString("\tInit");
ANGConnEnableVehiclesInBatch(true);
return 0;

}

int AAPIManage(double time, double timeSta, double timTrans, double
acicle)
{
//detectors setup
float D_v_s, D_up_flow, D_down_flow, D_up_occ, D_up_speed, D_down_speed,
D_queue_occ, D_checkin_occ;

//read detecor
D_up_occ=(float)(AKIDetGetTimeOccupedAggregatedbyId(248,NULL));
D_up_speed=(float)(AKIDetGetSpeedAggregatedbyId(248,NULL));
D_up_flow=(float)(60*(AKIDetGetCounterAggregatedbyId(248,NULL)));
D_down_speed=(float)(AKIDetGetSpeedAggregatedbyId(250,NULL));
D_queue_occ=(float)(AKIDetGetTimeOccupedAggregatedbyId(249,NULL));
D_checkin_occ=(float)(AKIDetGetTimeOccupedAggregatedbyId(247,NULL));
D_down_flow=(float)(60*(AKIDetGetCounterAggregatedbyId(250,NULL)));
D_v_s=(float)(D_down_flow/3990);

//reading display
/*sprintf_s(astring,"D_up_occ is %f\n",D_up_occ);
AKIPrintString(astring);
sprintf_s(astring,"D_up_speed is %f\n",D_up_speed);
AKIPrintString(astring);
sprintf_s(astring,"D_up_flow is %f\n",D_up_flow);
AKIPrintString(astring);
sprintf_s(astring,"D_down_speed is %f\n",D_down_speed);
AKIPrintString(astring);
sprintf_s(astring,"D_queue_occ is %f\n",D_queue_occ);
AKIPrintString(astring);
sprintf_s(astring,"D_checkin_occ is %f\n",D_checkin_occ);
AKIPrintString(astring);
sprintf_s(astring,"D_down_flow is %f\n",D_down_flow);
AKIPrintString(astring);
sprintf_s(astring,"D_V_S is %f\n",D_v_s);

- 106 -

AKIPrintString(astring);*/

//initialize the inputs
float local_occ[7], local_speed[7], local_flow[7], downstream_vc[3],
downstream_speed[3], checkin_occ[3], queue_occ[3];

//input 1
if(D_up_speed>=0)
{local_speed[0]=D_up_speed;}
else
{local_speed[0] = 0;}
local_speed[1]=21.5; local_speed[2]=0;
local_speed[3]=21.5; local_speed[4]=50;
local_speed[5]=21.5; local_speed[6]=100;
//input 2
if(D_up_flow>=0)
{local_flow[0]=D_up_flow;}
else
{local_flow[0] = 0;}
local_flow[1]=850; local_flow[2]=0;
local_flow[3]=850; local_flow[4]=2000;
local_flow[5]=850; local_flow[6]=4000;
//input 3
if(D_up_occ>=0)
{local_occ[0]=D_up_occ;}
else
{local_occ[0] = 0;}
local_occ[1]=6.4f; local_occ[2]=0;
local_occ[3]=6.4f; local_occ[4]=15;
local_occ[5]=6.4f; local_occ[6]=30;
//input 4
if(D_v_s>=0)
{downstream_vc[0]=D_v_s;}
else
{downstream_vc[0] = 0;}
downstream_vc[1]=6.5; downstream_vc[2]=0.5;
//input 5
if(D_down_speed>=0)
{downstream_speed[0]=D_down_speed;}
else
{downstream_speed[0] = 0;}
downstream_speed[1]=-0.25; downstream_speed[2]=65;
//input 6
if(D_checkin_occ>=0)
{checkin_occ[0]=D_checkin_occ;}
else
{checkin_occ[0] = 0;}
checkin_occ[1]=0.4f; checkin_occ[2]=20;
//input 7
if(D_queue_occ>=0)
{queue_occ[0]=D_queue_occ;}
else
{queue_occ[0] = 0;}
queue_occ[1]=0.4f; queue_occ[2]=20;

//calculating FLC metering rate
float flow_rate;

- 107 -

flow_rate=flcMeterRate(local_occ, local_speed, local_flow,downstream_vc,
downstream_speed, checkin_occ, queue_occ);

static int i=1;
if(i==80)
{

ECIChangeParametersFlowMeteringById(245,timeSta,flow_rate,
flow_rate,flow_rate);

i=0;
}
i=i+1;

//sprintf_s(astring,"meter_rate is %f\n",flow_rate);
//AKIPrintString(astring);

return 0;
}

int AAPIPostManage(double time, double timeSta, double timTrans, double
acicle)
{

// AKIPrintString("\tPostManage");
return 0;

}

int AAPIFinish()
{

// AKIPrintString("\tFinish");
return 0;

}

int AAPIUnLoad()
{

// AKIPrintString("UNLOAD");
return 0;

}

- 108 -

 FLC
#include <stdio.h>
#include <iostream>
#include <math.h>
#include "FLC.h"

//input1 definition
float local_speed_med(float local_speed, float q /*initial value 25.5*/,
float c/*intial value 60*/)
{ double u;
float v;
if(local_speed<0)

{return(0);}
if(local_speed>100)

{return(0);}
if(local_speed>=0&&local_speed<=100)

{v=-((local_speed-c)*(local_speed-c))/(2*q*q);
u=exp(double(v));
return (float(u));}

return -1;
}
float local_speed_high(float local_speed, float q, float c)
{ double u;
float v;
if(local_speed<0)

{return(0);}
if(local_speed>100)

{return(1);}
if(local_speed>=0&&local_speed<=100)

{v=-((local_speed-c)*(local_speed-c))/(2*q*q);
u=exp(double(v));
return (float(u));}

return -1;
}
float local_speed_low(float local_speed, float q, float c)
{ double u;
float v;
if(local_speed<0)

{return(1);}
if(local_speed>100)

{return(0);}
if(local_speed>=0&&local_speed<=100)

{v=-((local_speed-c)*(local_speed-c))/(2*q*q);
u=exp(double(v));
return (float(u));}

return -1;
}

//input2 definition
float local_flow_med(float local_flow, float q/*initial value 850 */,
float c/*intial value 2000*/)
{ double u;
float v;
if(local_flow<0)

{return(0);}
if(local_flow>4000)

{return(0);}

- 109 -

if(local_flow>=0&&local_flow<=4000)
{v=-((local_flow-c)*(local_flow-c))/(2*q*q);
u=exp(double(v));
return (float(u));}

return -1;
}
float local_flow_high(float local_flow, float q, float c)
{ double u;
float v;
if(local_flow<0)

{return(0);}
if(local_flow>4000)

{return(1);}
if(local_flow>=0&&local_flow<=4000)

{v=-((local_flow-c)*(local_flow-c))/(2*q*q);
u=exp(double(v));
return (float(u));}

return -1;
}
float local_flow_low(float local_flow, float q, float c)
{ double u;
float v;
if(local_flow<0)

{return(1);}
if(local_flow>4000)

{return(0);}
if(local_flow>=0&&local_flow<=4000)

{v=-((local_flow-c)*(local_flow-c))/(2*q*q);
u=exp(double(v));
return (float(u));}

return -1;
}

//input3 definition
float local_occ_med(float local_occ, float q/*initial value 6.4 */,
float c/*intial value 15*/)
{ double u;
float v;
if(local_occ<0)

{return(0);}
if(local_occ>30)

{return(0);}
if(local_occ>=0&&local_occ<=30)

{v=-((local_occ-c)*(local_occ-c))/(2*q*q);
u=exp(double(v));
return (float(u));}

return -1;
}
float local_occ_high(float local_occ, float q, float c)
{ double u;
float v;
if(local_occ<0)

{return(0);}
if(local_occ>30)

{return(1);}
if(local_occ>=0&&local_occ<=30)

{v=-((local_occ-c)*(local_occ-c))/(2*q*q);

- 110 -

u=exp(double(v));
return (float(u));}

return -1;
}
float local_occ_low(float local_occ, float q, float c)
{ double u;
float v;
if(local_occ<0)

{return(1);}
if(local_occ>30)

{return(0);}
if(local_occ>=0&&local_occ<=30)

{v=-((local_occ-c)*(local_occ-c))/(2*q*q);
u=exp(double(v));
return (float(u));}

return -1;
}
//input4 definition
float downstream_vc_high(float downstream_vc, float q/*initial value
6.5*/, float c)
{double u;
float v;
if(downstream_vc<0)

{return(0);}
if(downstream_vc>1)

{return(1);}
if(downstream_vc>=0&&downstream_vc<=1)

{v=-q*(downstream_vc-c);
u=1/(1+exp(double(v)));
return (float(u));}

return -1;
}

//input5 definition
float downstream_speed_low(float downstream_speed, float q/*initial
value -0.25*/, float c)
{double u;
float v;
if(downstream_speed<0)

{return(1);}
if(downstream_speed>100)

{return(0);}
if(downstream_speed>=0&&downstream_speed<=100)

{v=-q*(downstream_speed-c);
u=1/(1+exp(double(v)));
return (float(u));}

return -1;
}
//input6 definition
float checkin_occ_high(float checkin_occ, float q/*initial value 0.4*/,
float c)
{double u;
float v;
if(checkin_occ<0)

{return(0);}

- 111 -

if(checkin_occ>50)
{return(1);}

if(checkin_occ>=0&&checkin_occ<=50)
{v=-q*(checkin_occ-c);
 u=1/(1+exp(double(v)));
return (float(u));}

return -1;
}
//input7 definition
float queue_occ_high(float queue_occ, float q/*initial value 0.4*/,
float c)
{double u;
float v;
if(queue_occ<0)

{return(0);}
if(queue_occ>50)

{return(1);}
if(queue_occ>=0&&queue_occ<=50)

{v=-q*(queue_occ-c);
 u=1/(1+exp(double(v)));
return (float(u));}

return -1;
}
// FLC code
float flcMeterRate(float *local_occ, float *local_speed, float
*local_flow, float *downstream_vc, float *downstream_speed, float
*checkin_occ, float *queue_occ)
{
//evaluate each rule
float rule[9];
rule[0]=local_occ_low(*local_occ,*(local_occ+1),*(local_occ+2));
rule[1]=local_occ_med(*local_occ,*(local_occ+3),*(local_occ+4));
rule[2]=local_occ_high(*local_occ,*(local_occ+5),*(local_occ+6));
rule[3]=MIN(local_speed_low(*local_speed,*(local_speed+1),*(local_speed
+2)),local_flow_high(*local_flow,*(local_flow+5),*(local_flow+6)));
rule[4]=MIN(local_speed_med(*local_speed,*(local_speed+3),*(local_speed
+4)),local_occ_high(*local_occ,*(local_occ+5),*(local_occ+6)));
rule[5]=MIN(local_speed_med(*local_speed,*(local_speed+3),*(local_speed
+4)),local_occ_low(*local_occ,*(local_occ+1),*(local_occ+2)));
rule[6]=MIN(local_speed_high(*local_speed,*(local_speed+5),*(local_spee
d+6)),local_flow_low(*local_flow,*(local_flow+1),*(local_flow+2)));
rule[7]=MIN(downstream_speed_low(*downstream_speed,*(downstream_speed+1
),*(downstream_speed+2)),downstream_vc_high(*downstream_vc,*(downstream
_vc+1),*(downstream_vc+2)));
rule[8]=MAX(checkin_occ_high(*checkin_occ,*(checkin_occ+1),*(checkin_oc
c+2)),queue_occ_high(*queue_occ,*(queue_occ+1),*(queue_occ+2)));

//the weighted sum of each rule class outcome
//meter_rate_high is 0, meter_rate_low is 1, meter_rate_med is 2
float meter_rate_class[3];
meter_rate_class[0]=rule[0]*(3/2)+rule[5]*1+rule[6]*1+rule[8]*3;
meter_rate_class[1]=rule[2]*2+rule[3]*2+rule[7]*3;
meter_rate_class[2]=rule[1]*(3/2)+rule[4]*1;
//defuzzification (discreted centroids method)
float base=0.5;
float centroid=0;
float area=0;
float num=0;

- 112 -

float den=0;
float LL=240;
float HL=900;
float meter_rate;

for(int i=0;i<3;i++)
{

if(i==0)
{ area=base/2;
 centroid=1-base/3;}
else if(i==1)
{ area=base/2;
 centroid=base/3;}
else
{ area=base;
 centroid=base;}
 num+=meter_rate_class[i]*area*centroid;
 den+=meter_rate_class[i]*area;
 }

// calculate metering rate and rescale to LL and HH range
 meter_rate = (HL-LL)*(num/den+LL/(HL-LL));
//std::cout << "meter_rate\t"<< meter_rate << std::endl;
return(meter_rate);

}

- 113 -

Appendix B: Genetic fuzzy control coding for ramp metering

- 114 -

 AAPI.CXX

// Genetic fuzzy control coding for ramp metering
// Yu Xue Feng - MASTER STUDENT OF ENGINEERING IN MECHATRONICS
// SEAT - MASSEY UNIVERSITY - AUCKLAND - NEW ZEALAND
// 2008-2009 - All rights reserved

#include "AKIProxie.h"
#include "CIProxie.h"
#include "ANGConProxie.h"
#include "AAPI.h"
#include <stdio.h>
#include "FLC.h"
#include "GA_fuzzy.h"
#include <math.h>
#include <time.h>
// Procedures could be modified by the user
char astring[128];
int up_count, down_count, ramp_count;
float average_count;
//detectors setup
float D_v_s=0, D_up_flow=0, D_down_flow=0, D_up_occ=0, D_up_speed=0,
D_down_speed=0, D_queue_occ=0, D_checkin_occ=0;
//average value
float V_C=0, Upflow=0, Downflow=0, Upocc=0, Upspeed=0, Downspeed=0,
Queueocc=0, Checkinocc=0;
//initialize the inputs
float local_occ[7], local_speed[7], local_flow[7], downstream_vc[3],
downstream_speed[3], checkin_occ[3], queue_occ[3];
double L_speed=0, M_speed=50, H_speed=100,

 L_flow=0, M_flow=2000, H_flow=4000,
 L_occ=0, M_occ=15, H_occ=30, V_c=0.5,
 D_speed=65, Check_in=20, Q_occ=20;

double *Ls=&L_speed, *Ms=&M_speed, *Hs=&H_speed,
 *Lf=&L_flow, *Mf=&M_flow, *Hf=&H_flow,
 *Lo=&L_occ, *Mo=&M_occ, *Ho=&H_occ, *Vc=&V_c,

 *Ds=&D_speed, *Checkin=&Check_in, *Qocc=&Q_occ;

int AAPILoad()
{

// AKIPrintString("LOAD");
return 0;

}

int AAPIInit()
{

// AKIPrintString("\tInit");
ANGConnEnableVehiclesInBatch(true);
return 0;

}

int AAPIManage(double time, double timeSta, double timTrans, double
acicle)
{

//AKIPrintString("\tManage");

- 115 -

//read detecor
D_up_occ=(float)(AKIDetGetTimeOccupedAggregatedbyId(248,NULL));
D_up_speed=(float)(AKIDetGetSpeedAggregatedbyId(248,NULL));
D_up_flow=(float)(60*(AKIDetGetCounterAggregatedbyId(248,NULL)));
up_count=AKIDetGetCounterAggregatedbyId(248,NULL);
D_down_speed=(float)(AKIDetGetSpeedAggregatedbyId(250,NULL));
D_queue_occ=(float)(AKIDetGetTimeOccupedAggregatedbyId(249,NULL));
D_checkin_occ=(float)(AKIDetGetTimeOccupedAggregatedbyId(247,NULL));
D_down_flow=(float)(60*(AKIDetGetCounterAggregatedbyId(250,NULL)));
down_count=AKIDetGetCounterAggregatedbyId(250,NULL);
ramp_count=AKIDetGetCounterAggregatedbyId(247,NULL);
D_v_s=(float)(D_down_flow/4200);

//reading display
/*sprintf_s(astring,"D_up_occ is %f\n",D_up_occ);
AKIPrintString(astring);
sprintf_s(astring,"D_up_speed is %f\n",D_up_speed);
AKIPrintString(astring);
sprintf_s(astring,"D_up_flow is %f\n",D_up_flow);
AKIPrintString(astring);
sprintf_s(astring,"D_down_speed is %f\n",D_down_speed);
AKIPrintString(astring);
sprintf_s(astring,"D_queue_occ is %f\n",D_queue_occ);
AKIPrintString(astring);
sprintf_s(astring,"D_checkin_occ is %f\n",D_checkin_occ);
AKIPrintString(astring);
sprintf_s(astring,"D_down_flow is %f\n",D_down_flow);
AKIPrintString(astring);
sprintf_s(astring,"D_V_S is %f\n",D_v_s);
AKIPrintString(astring);*/

//input 1
if(D_up_speed>=0)
{local_speed[0]=D_up_speed;}
else
{local_speed[0] = 0;}
local_speed[1]=21.5; local_speed[2]=float(L_speed);
local_speed[3]=21.5; local_speed[4]=float(M_speed);
local_speed[5]=21.5; local_speed[6]=float(H_speed);
//input 2
if(D_up_flow>=0)
{local_flow[0]=D_up_flow;}
else
{local_flow[0] = 0;}
local_flow[1]=850; local_flow[2]=float(L_flow);
local_flow[3]=850; local_flow[4]=float(M_flow);
local_flow[5]=850; local_flow[6]=float(H_flow);
//input 3
if(D_up_occ>=0)
{local_occ[0]=D_up_occ;}
else
{local_occ[0] = 0;}
local_occ[1]=6.4f; local_occ[2]=float(L_occ);
local_occ[3]=6.4f; local_occ[4]=float(M_occ);
local_occ[5]=6.4f; local_occ[6]=float(H_occ);
//input 4
if(D_v_s>=0)

- 116 -

{downstream_vc[0]=D_v_s;}
else
{downstream_vc[0] = 0;}
downstream_vc[1]=6.5; downstream_vc[2]=float(V_c);
//input 5
if(D_down_speed>=0)
{downstream_speed[0]=D_down_speed;}
else
{downstream_speed[0] = 0;}
downstream_speed[1]=-0.25; downstream_speed[2]=float(D_speed);
//input 6
if(D_checkin_occ>=0)
{checkin_occ[0]=D_checkin_occ;}
else
{checkin_occ[0] = 0;}
checkin_occ[1]=0.4f; checkin_occ[2]=float(Check_in);
//input 7
if(D_queue_occ>=0)
{queue_occ[0]=D_queue_occ;}
else
{queue_occ[0] = 0;}
queue_occ[1]=0.4f; queue_occ[2]=float(Q_occ);

//calculating FLC metering rate
if(average_count>15)
{

float flow_rate;
flow_rate=flcMeterRate(local_occ, local_speed,local_flow,
downstream_vc, downstream_speed, checkin_occ, queue_occ);

static int i=1;
if(i==80)
{

ECIChangeParametersFlowMeteringById(245,timeSta,flow_
rate,flow_rate,flow_rate);
i=0;
//sprintf_s(astring,"meter_rate is %f\n",flow_rate);
//AKIPrintString(astring);

}
i=i+1;

}
else
{

float flow_rate;
flow_rate=800;
ECIChangeParametersFlowMeteringById(245,timeSta,flow_rate,
flow_rate,flow_rate);
//sprintf_s(astring,"meter_rate is %f\n",flow_rate);
//AKIPrintString(astring);

}

- 117 -

return 0;
}

int AAPIPostManage(double time, double timeSta, double timTrans, double
acicle)
{

static int j=1,k=1;
static float cars=0,total_cars=0;

if(j==80)
{
//input 1
if(D_up_speed>=0)
{Upspeed=Upspeed+D_up_speed;}

//input 2
if(D_up_flow>=0)
{Upflow=Upflow+D_up_flow;}

//input 3
if(D_up_occ>=0)
{Upocc=Upocc+D_up_occ;}

//input 4
if(D_v_s>=0)
{V_C=V_C+D_v_s;}

//input 5
if(D_down_speed>=0)
{Downspeed=Downspeed+D_down_speed;}

//input 6
if(D_checkin_occ>=0)
{Checkinocc=Checkinocc+D_checkin_occ;}

//input 7
if(D_queue_occ>=0)
{Queueocc=Queueocc+D_queue_occ;}

if(up_count<0&&ramp_count<0&&down_count<0)
cars=0;

else
{cars=cars+(up_count+ramp_count-down_count);
 total_cars=cars+total_cars;}

//calcualte the average inputs in 5 minutes
if(k==5)
{
 local_speed[0]=Upspeed/5;
 local_flow[0]=Upflow/5;
 local_occ[0]=Upocc/5;
 downstream_vc[0]=V_C/5;
 downstream_speed[0]=Downspeed/5;
 checkin_occ[0]=Checkinocc/5;
 queue_occ[0]=Queueocc/5;
 average_count=total_cars/5;

- 118 -

 Upspeed=0;
 Upflow=0;
 Upocc=0;
 V_C=0;
 Downspeed=0;
 Checkinocc=0;
 Queueocc=0;
 total_cars=0;

 // genetic tuning process to update the fuzzy parameters
 double flow;
if(average_count>=15&& average_count<=30)
 {

flow=60*(30-average_count);
GA(local_occ,local_speed,local_flow,downstream_vc,
downstream_speed,checkin_occ,queue_occ,flow,Ls,Ms,Hs,Lf,Mf,
Hf,Lo,Mo,Ho,Vc,Ds,Checkin,Qocc);
//sprintf_s(astring," the tuned flow rate is %f\n",flow);
//AKIPrintString(astring);

 }
if(average_count>30)
 {

 flow=240;

GA(local_occ,local_speed,local_flow,downstream_vc,downstrea
m_speed,checkin_occ,queue_occ,flow,Ls,Ms,Hs,Lf,Mf,Hf,Lo,Mo,
Ho,Vc,Ds,Checkin,Qocc);
//sprintf_s(astring,"flow rate is %f\n",flow);
//AKIPrintString(astring);

 }

 k=0;
}
k=k+1;
j=0;
}
j=j+1;

// AKIPrintString("\tPostManage");
return 0;

}

int AAPIFinish()
{

// AKIPrintString("\tFinish");
return 0;

}

int AAPIUnLoad()
{

// AKIPrintString("UNLOAD");
return 0;

}

- 119 -

 GA-FLC.cpp

// Genetic fuzzy control coding for ramp metering
// Yu Xue Feng - MASTER STUDENT OF ENGINEERING IN MECHATRONICS
// SEAT - MASSEY UNIVERSITY - AUCKLAND - NEW ZEALAND
// 2008-2009 - All rights reserved

#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <iostream>
#include "FLC.h"
#include "GA_fuzzy.h"

double f(float* local_occ, float* local_speed, float* local_flow,
float* downstream_vc, float* downstream_speed, float* checkin_occ,
float* queue_occ,double flow,double Lspeed,double Mspeed,double
Hspeed,double Lflow,double Mflow,double Hflow,double Locc,double
Mocc,double Hocc,double Vc,double Dspeed, double Checkin,double Qocc)
{

//input 1
*(local_speed+2)=float(Lspeed);
*(local_speed+4)=float(Mspeed+Lspeed);
*(local_speed+6)=float(Hspeed+Mspeed+Hspeed);
//input 2
*(local_flow+2)=float(Lflow);
*(local_flow+4)=float(Mflow+Lflow);
*(local_flow+6)=float(Hflow+Mflow+Lflow);
//input 3
*(local_occ+2)=float(Locc);
*(local_occ+4)=float(Mocc+Locc);
*(local_occ+6)=float(Hocc+Mocc+Locc);
//input 4
*(downstream_vc+2)=float(Vc);
//input 5
*(downstream_speed+2)=float(Dspeed);
//input 6
*(checkin_occ+2)=float(Checkin);
//input 7
*(queue_occ+2)=float(Qocc);
float flow_rate=flcMeterRate(local_occ, local_speed, local_flow,
downstream_vc, downstream_speed, checkin_occ, queue_occ);
return (1/((flow-flow_rate)*(flow-flow_rate)));

}
int cLength(int precision, double rangeStart, double rangeEnd)
{

int length=0;
double total=(rangeEnd-rangeStart)*pow(10.0,precision);
while(total>pow(2.0,length))

{length++;}
return(length);

}

double Lspeed(int* chromosome, int speedLength, double* domain)
{

- 120 -

double m=0.0;
for(int i=0; i<speedLength; i++)
{m+=chromosome[speedLength-i-1]*pow(2.0,i);}
double x=domain[0]+m*(domain[1]-domain[0])/(pow(2.0,speedLength)-
1.0);
return x;

}

double Mspeed(int* chromosome, int speedLength, double* domain)
{

double m=0.0;
for(int i=0; i<speedLength; i++)
{m+=chromosome[2*speedLength-i-1]*pow(2.0,i);}
double x=domain[0]+m*(domain[1]-domain[0])/(pow(2.0,speedLength)-
1.0);
return x;

}

double Hspeed(int* chromosome, int speedLength, double* domain)
{

double m=0.0;
for(int i=0; i<speedLength; i++)
{m+=chromosome[3*speedLength-i-1]*pow(2.0,i);}
double x=domain[0]+m*(domain[1]-domain[0])/(pow(2.0,speedLength)-
1.0);
return x;

}

double Lflow(int* chromosome, int speedLength, int flowLength, double*
domain)
{

double m=0.0;
int length=3*speedLength+flowLength;
for(int i=0; i<flowLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[2]+m*(domain[3]-domain[2])/(pow(2.0,flowLength)-
1.0);
return x;

}

double Mflow(int* chromosome, int speedLength, int flowLength, double*
domain)
{

double m=0.0;
int length=3*speedLength+2*flowLength;
for(int i=0; i<flowLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[2]+m*(domain[3]-domain[2])/(pow(2.0,flowLength)-
1.0);
return x;

}

double Hflow(int* chromosome, int speedLength, int flowLength, double*
domain)
{

double m=0.0;
int length=3*speedLength+3*flowLength;

- 121 -

for(int i=0; i<flowLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[2]+m*(domain[3]-domain[2])/(pow(2.0,flowLength)-
1.0);
return x;

}

double Locc(int* chromosome, int speedLength, int flowLength, int
occLength, double* domain)
{

double m=0.0;
int length=3*speedLength+3*flowLength+occLength;
for(int i=0; i<occLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[4]+m*(domain[5]-domain[4])/(pow(2.0,occLength)-
1.0);
return x;

}

double Mocc(int* chromosome, int speedLength, int flowLength, int
occLength, double* domain)
{

double m=0.0;
int length=3*speedLength+3*flowLength+2*occLength;
for(int i=0; i<occLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[4]+m*(domain[5]-domain[4])/(pow(2.0,occLength)-
1.0);
return x;

}

double Hocc(int* chromosome, int speedLength, int flowLength, int
occLength, double* domain)
{

double m=0.0;
int length=3*speedLength+3*flowLength+3*occLength;
for(int i=0; i<occLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[4]+m*(domain[5]-domain[4])/(pow(2.0,occLength)-
1.0);
return x;

}

double vc(int* chromosome, int speedLength, int flowLength, int
occLength, int vcLength, double* domain)
{

double m=0.0;
int length=3*speedLength+3*flowLength+3*occLength+vcLength;
for(int i=0; i<vcLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[6]+m*(domain[7]-domain[6])/(pow(2.0,vcLength)-
1.0);
return x;

}

double dspeed(int* chromosome, int speedLength, int flowLength, int
occLength, int vcLength, int dspeedLength, double* domain)

- 122 -

{
double m=0.0;
int length=3*speedLength+3*flowLength+3*occLength+vcLength+dspeedLength;
for(int i=0; i<dspeedLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[8]+m*(domain[9]-domain[8])/(pow(2.0,dspeedLength)-1.0);

return x;
}

double checkin(int* chromosome, int speedLength, int flowLength, int
occLength, int vcLength, int dspeedLength, int checkinLength, double*
domain)
{
double m=0.0;
int
length=3*speedLength+3*flowLength+3*occLength+vcLength+dspeedLength+
checkinLength;
for(int i=0; i<checkinLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[10]+m*(domain[11]-domain[10])/(pow(2.0,checkinLength)-
1.0);

return x;
}

double qocc(int* chromosome, int speedLength, int flowLength, int
occLength, int vcLength, int dspeedLength, int checkinLength, int
qoccLength, double* domain)
{

double m=0.0;
int
length=3*speedLength+3*flowLength+3*occLength+vcLength+dspeedLength+che
ckinLength+qoccLength;
for(int i=0; i<qoccLength; i++)
{m+=chromosome[length-i-1]*pow(2.0,i);}
double x=domain[12]+m*(domain[13]-domain[12])/(pow(2.0,qoccLength)-1.0);

return x;
}

void setup(int**farm, int size, int length, int speedLength, int
flowLength, int occLength, int vcLength, int dspeedLength, int
checkinLength, int qoccLength, double* domain)
{

time_t t;
srand((unsigned) time(&t));
for(int i=0; i<size; i++)
{

int ispop=0;

while(!ispop)
{

for(int j=0; j<3*speedLength; j++)
{ farm[i][j]=rand()%2;}
double Ls=Lspeed(farm[i], speedLength, domain);
double Ms=Mspeed(farm[i], speedLength, domain);

- 123 -

double Hs=Hspeed(farm[i], speedLength, domain);
if((100-Ls-Ms-Hs)>=0)
{ispop=1;}

}
ispop=0;
while(!ispop)
{

for(int j=(3*speedLength-1); j<(3*speedLength+3*flowLength); j++)
{ farm[i][j]=rand()%2;}
double Lf=Lflow(farm[i], speedLength, flowLength, domain);
double Mf=Mflow(farm[i], speedLength, flowLength, domain);
double Hf=Hflow(farm[i], speedLength, flowLength, domain);

if((4000-Lf-Mf-Hf)>=0)
{ispop=1;}

}
ispop=0;
while(!ispop)
{

for(int j=(3*speedLength+3*flowLength-1);
j<(3*speedLength+3*flowLength+3*occLength); j++)
{farm[i][j]=rand()%2;}
double Lo=Locc(farm[i], speedLength, flowLength,
occLength, domain);
double Mo=Mocc(farm[i], speedLength, flowLength,
occLength, domain);
double Ho=Hocc(farm[i], speedLength, flowLength,
occLength, domain);
if((30-Lo-Mo-Ho)>=0)
{ispop=1;}

}
ispop=0;
for(int j=(3*speedLength+3*flowLength+3*occLength-
1);j<length;j++)
{farm[i][j]=rand()%2;}

}
}
void printFarm(int**farm, int length, int size)
{

for(int i=0; i<size; i++)
{

std::cout<<"\n";
for(int j=0; j<length; j++)
{std::cout<<farm[i][j];}

}
}

double fitnessValue(double (*f)(float*, float*, float*, float* ,
float* , float* , float* ,double,double, double,double, double,double,
double,double, double,double, double,double,double, double),float*
local_occ, float* local_speed, float* local_flow, float* downstream_vc,
float* downstream_speed, float* checkin_occ, float* queue_occ ,int*
chromosome, int length, double* domain, int speedLength, int flowLength,
int occLength, int vcLength, int dspeedLength, int checkinLength, int
qoccLength, double flow)
{
double Ls=Lspeed(chromosome, speedLength, domain);
double Ms=Mspeed(chromosome, speedLength, domain);

- 124 -

double Hs=Hspeed(chromosome, speedLength, domain);
double Lf=Lflow(chromosome, speedLength, flowLength, domain);
double Mf=Mflow(chromosome, speedLength, flowLength, domain);
double Hf=Hflow(chromosome, speedLength, flowLength, domain);
double Lo=Locc(chromosome, speedLength, flowLength, occLength, domain);
double Mo=Mocc(chromosome, speedLength, flowLength, occLength, domain);
double Ho=Hocc(chromosome, speedLength, flowLength, occLength, domain);
double Vc=vc(chromosome, speedLength, flowLength, occLength, vcLength,
domain);
double Ds=dspeed(chromosome, speedLength, flowLength, occLength,
vcLength, dspeedLength, domain);
double Check=checkin(chromosome, speedLength, flowLength, occLength,
vcLength, dspeedLength, checkinLength, domain);
double Qo=qocc(chromosome, speedLength, flowLength, occLength,
vcLength, dspeedLength, checkinLength, qoccLength, domain);

double result;
result=f(local_occ,local_speed,local_flow,downstream_vc,
downstream_speed, checkin_occ,
queue_occ,flow,Ls,Ms,Hs,Lf,Mf,Hf,Lo,Mo,Ho,Vc,Ds,Check,Qo);
return(result);

}
void roulette(float* local_occ, float* local_speed, float* local_flow,
float* downstream_vc, float* downstream_speed, float* checkin_occ,
float* queue_occ ,int** farm, int length, int size, double* domain, int
speedLength, int flowLength, int occLength, int vcLength, int
dspeedLength, int checkinLength, int qoccLength,double flow)
{

int i, j;
double* fitnessVector=NULL;
fitnessVector = new double[size];
for(i=0; i<size; i++)
{fitnessVector[i]=fitnessValue(f,local_occ, local_speed,
local_flow,downstream_vc, downstream_speed, checkin_occ,
queue_occ ,farm[i],length,domain, speedLength, flowLength,
occLength, vcLength, dspeedLength, checkinLength,
qoccLength,flow);}

double totalFitness=0.0;
for(i=0; i<size; i++)
{totalFitness += fitnessVector[i];}

double* probabilityVector=NULL;
probabilityVector = new double[size];
for(i=0; i<size; i++)
{probabilityVector[i]=fitnessVector[i]/totalFitness;}

double cumulativeProb = 0.0;
double* cum_prob_Vector = NULL;
cum_prob_Vector = new double [size];
for(i=0; i<size; i++)
{cumulativeProb += probabilityVector[i];
 cum_prob_Vector[i] = cumulativeProb;}

double* randomVector = NULL;
randomVector = new double[size];

- 125 -

time_t t;
srand((unsigned) time(&t));
for(i=0; i<size; i++)
randomVector[i] = rand()/double(RAND_MAX);

int count;
int** newFarm = NULL;
newFarm = new int*[size];
for(i=0; i <size; i++)
newFarm[i]= new int[length];
for(i=0; i<size; i++)
{

count=0;
while(randomVector[i]>cum_prob_Vector[count]) count++;
for(j=0; j<length; j++)
{newFarm[i][j] =farm[count][j];}

}

for(i=0; i<size; i++)
for(j=0; j<length; j++)
farm[i][j] = newFarm[i][j];

delete[] fitnessVector;
delete[] probabilityVector;
delete[] cum_prob_Vector;
delete[] randomVector;
for(i=0; i<size; i++)
delete[] newFarm[i];
delete[] newFarm;

}

void crossing(int** farm, int size, int length,double* domain, int
speedLength, int flowLength, int occLength)
{

int i, j, k, m;
int count = 0;
int* chosen = NULL;
int ispop=0;
chosen = new int[size];

double* randomVector = NULL;
randomVector= new double [size];
time_t t;
srand((unsigned) time(&t));
for(i=0; i<size; i++)
randomVector[i] = rand()/double(RAND_MAX);

for(i=0; i<size; i++)
{

if(randomVector[i]<0.4)
{chosen[count]=i;
 count++;}

}

if((count%2 != 0) || (count==1))
{

int index=0;

- 126 -

while(randomVector[index]<0.4) index++;
count++;
chosen[count-1] = index;

}

int** temp = NULL;
temp = new int*[2];
for(i=0; i<2; i++)
{temp[i] = new int[length];}

for(i=0;i<count;i=i+2)
{

while(!ispop)
{

for(j=0;j<length;j++)
{temp[0][j]=farm[chosen[i]][j];
 temp[1][j]=farm[chosen[i+1]][j];}
 srand((unsigned) time(&t));
int position=rand()%length;
for(k=position; k<length; k++)
 {temp[0][k]=farm[chosen[i+1]][k];
 temp[1][k]=farm[chosen[i]][k];}

double Ls0=Lspeed(temp[0], speedLength, domain);
double Ms0=Mspeed(temp[0], speedLength, domain);
double Hs0=Hspeed(temp[0], speedLength, domain);
double Lf0=Lflow(temp[0], speedLength, flowLength, domain);
double Mf0=Mflow(temp[0], speedLength, flowLength, domain);
double Hf0=Hflow(temp[0], speedLength, flowLength, domain);
double Lo0=Locc(temp[0], speedLength, flowLength, occLength, domain);
double Mo0=Mocc(temp[0], speedLength, flowLength, occLength, domain);
double Ho0=Hocc(temp[0], speedLength, flowLength, occLength, domain);
double Ls1=Lspeed(temp[1], speedLength, domain);
double Ms1=Mspeed(temp[1], speedLength, domain);
double Hs1=Hspeed(temp[1], speedLength, domain);
double Lf1=Lflow(temp[1], speedLength, flowLength, domain);
double Mf1=Mflow(temp[1], speedLength, flowLength, domain);
double Hf1=Hflow(temp[1], speedLength, flowLength, domain);
double Lo1=Locc(temp[1], speedLength, flowLength, occLength, domain);
double Mo1=Mocc(temp[1], speedLength, flowLength, occLength, domain);
double Ho1=Hocc(temp[1], speedLength, flowLength, occLength, domain);

if ((100-Ls0-Ms0-Hs0)>=0&&(4000-Lf0-Mf0-Hf0)>=0&&(30-Lo0-Mo0-
Ho0)>=0&&(100-Ls1-Ms1-Hs1)>=0&&(4000-Lf1-Mf1-Hf1)>=0&&(30-Lo1-
Mo1-Ho1)>=0)

 {ispop=1;}
}
ispop=0;
for(m=0; m<length; m++)
{farm[chosen[i]][m]=temp[0][m];
 farm[chosen[i+1]][m]=temp[1][m];}

}

delete[] chosen;
delete[] randomVector;
for(i=0; i<2; i++)
delete[] temp[i];

- 127 -

delete[] temp;
}

void mutate(int** farm, int size, int length,double* domain, int
speedLength, int flowLength, int occLength)
{

int i,j;
int totalbits=size*length;
double* randomVector= NULL;
int** temp = NULL;
temp = new int*[1];
for(i=0; i<1; i++)
{temp[i] = new int[length];}
randomVector= new double[totalbits];
time_t t;
srand((unsigned) time(&t));
for(i=0; i<totalbits; i++)
randomVector[i]=rand()/double(RAND_MAX);

int a,b;
for(i=0; i<totalbits; i++)
{

if(randomVector[i]<0.01)
{

if(i>=length)
{a=i/length; b=i%length;}
else
{a=0; b=i;}
for(j=0;j<length;j++)
{temp[0][j]=farm[a][j];}
if(temp[0][b]==0)
temp[0][b]=1;
else
temp[0][b]=0;

double Ls0=Lspeed(temp[0], speedLength, domain);
double Ms0=Mspeed(temp[0], speedLength, domain);
double Hs0=Hspeed(temp[0], speedLength, domain);
double Lf0=Lflow(temp[0], speedLength, flowLength, domain);
double Mf0=Mflow(temp[0], speedLength, flowLength, domain);
double Hf0=Hflow(temp[0], speedLength, flowLength, domain);
double Lo0=Locc(temp[0], speedLength, flowLength, occLength,
domain);
double Mo0=Mocc(temp[0], speedLength, flowLength, occLength,
domain);
double Ho0=Hocc(temp[0], speedLength, flowLength, occLength,
domain);

if ((100-Ls0-Ms0-Hs0)>=0&&(4000-Lf0-Mf0-Hf0)>=0&&(30-Lo0-Mo0-Ho0)>=0)
{
for(j=0; j<length; j++)

 {farm[a][j]=temp[0][j];}
}

}
}

- 128 -

delete[] randomVector;
delete[] temp[0];
delete[] temp;

}

void printResult(float* local_occ, float* local_speed, float*
local_flow, float* downstream_vc, float* downstream_speed, float*
checkin_occ, float* queue_occ ,int** farm, int length, int size,
double* domain, int speedLength, int flowLength, int occLength, int
vcLength, int dspeedLength, int checkinLength, int qoccLength, int
iterations, double flow)
{

int i;
double* fitnessVector=new double[size];

for(i=0; i<size; i++)
fitnessVector[i]= fitnessValue(f,local_occ,local_speed, local_flow,
downstream_vc, downstream_speed, checkin_occ, queue_occ ,farm[i],length,
domain, speedLength, flowLength, occLength, vcLength, dspeedLength,
checkinLength, qoccLength,flow);

int pos=0;
double max=fitnessVector[0];
for(i=1; i<size; i++)
{

if(fitnessVector[i]>max)
{max= fitnessVector[i];
 pos=i;}

}
double Ls=Lspeed(farm[pos], speedLength, domain);
double Ms=Mspeed(farm[pos], speedLength, domain);
double Hs=Hspeed(farm[pos], speedLength, domain);
double Lf=Lflow(farm[pos], speedLength, flowLength, domain);
double Mf=Mflow(farm[pos], speedLength, flowLength, domain);
double Hf=Hflow(farm[pos], speedLength, flowLength, domain);
double Lo=Locc(farm[pos], speedLength, flowLength, occLength,
domain);
double Mo=Mocc(farm[pos], speedLength, flowLength, occLength,
domain);
double Ho=Hocc(farm[pos], speedLength, flowLength, occLength,
domain);
double Vc=vc(farm[pos], speedLength, flowLength, occLength,
vcLength, domain);
double Ds=dspeed(farm[pos], speedLength, flowLength, occLength,
vcLength, dspeedLength, domain);
double Check=checkin(farm[pos], speedLength, flowLength,
occLength, vcLength, dspeedLength, checkinLength, domain);
double Qo=qocc(farm[pos], speedLength, flowLength, occLength,
vcLength, dspeedLength, checkinLength, qoccLength, domain);

std::cout<<"\n\n After"<<iterations<<"iterations the fitness are: \n";
for(i=0; i<size; i++)
{
std::cout<<"\n fitness of chromosome"<<i<<":"<<fitnessVector[i];
}
std::cout<<"\n\n The maximum fitness: "<< max;
std::cout<<"\n Ls:"<<Ls;

- 129 -

std::cout<<"\n Ms:"<<Ms+Ls;
std::cout<<"\n Hs:"<<Hs+Ms+Ls;
std::cout<<"\n Lf:"<<Lf;
std::cout<<"\n Mf:"<<Mf+Lf;
std::cout<<"\n Hf:"<<Hf+Mf+Lf;
std::cout<<"\n Lo:"<<Lo;
std::cout<<"\n Mo:"<<Mo+Lo;
std::cout<<"\n Ho:"<<Ho+Mo+Lo;
std::cout<<"\n Vc:"<<Vc;
std::cout<<"\n Ds:"<<Ds;
std::cout<<"\n Check:"<<Check;
std::cout<<"\n Qo:"<<Qo;

float local_occ[7], local_speed[7], local_flow[7],
downstream_vc[3], downstream_speed[3], checkin_occ[3],
queue_occ[3];
//input 1
local_speed[0] = 0;
local_speed[1]=21.5f; local_speed[2]=float(Ls);
local_speed[3]=21.5f; local_speed[4]=float(Ms+Ls);
local_speed[5]=21.5f; local_speed[6]=float(Hs+Ms+Hs);
//input 2
local_flow[0] = 0;
local_flow[1]=850; local_flow[2]=float(Lf);
local_flow[3]=850; local_flow[4]=float(Mf+Lf);
local_flow[5]=850; local_flow[6]=float(Hf+Mf+Lf);
//input 3
local_occ[0] = 0;
local_occ[1]=6.4f; local_occ[2]=float(Lo);
local_occ[3]=6.4f; local_occ[4]=float(Mo+Lo);
local_occ[5]=6.4f; local_occ[6]=float(Ho+Mo+Lo);
//input 4
downstream_vc[0] = 0;
downstream_vc[1]=6.5f; downstream_vc[2]=float(Vc);
//input 5
downstream_speed[0] = 0;
downstream_speed[1]=-0.25; downstream_speed[2]=float(Ds);
//input 6
checkin_occ[0] = 0;
checkin_occ[1]=0.4f; checkin_occ[2]=float(Check);
//input 7
queue_occ[0] = 0;
queue_occ[1]=0.4f; queue_occ[2]=float(Qo);
float flow_rate=flcMeterRate(local_occ, local_speed, local_flow,
downstream_vc, downstream_speed, checkin_occ, queue_occ);

std::cout<<"\n flow_rate:"<<flow_rate;
std::cout<<"\n";

delete[] fitnessVector;
}

void GA(float* local_occ, float* local_speed, float* local_flow, float*
downstream_vc, float* downstream_speed, float* checkin_occ, float*
queue_occ, double flow, double* L_speed,double* M_speed,double*
H_speed,double* L_flow,double* M_flow,double* H_flow,double*

- 130 -

L_occ,double* M_occ,double* H_occ,double* V_c,double* D_speed, double*
Check_in,double* Q_occ)
{

int size=50;
int precision=1;
int iter=400;
double domain[14];
double
speed1,speed2,flow1,flow2,occ1,occ2,vc1,vc2,dspeed1,dspeed2,check
in1,checkin2,qocc1,qocc2;
speed1=0;speed2=100;
flow1=0;flow2=4000;
occ1=0;occ2=30;
vc1=0;vc2=1;
dspeed1=0;dspeed2=100;
checkin1=0;checkin2=50;
qocc1=0;qocc2=50;

domain[0]=speed1; domain[1]=speed2;
domain[2]=flow1; domain[3]=flow2;
domain[4]=occ1; domain[5]=occ2;
domain[6]=vc1; domain[7]=vc2;
domain[8]=dspeed1; domain[9]=dspeed2;
domain[10]=checkin1; domain[11]=checkin2;
domain[12]=qocc1; domain[13]=qocc2;

int speedLength=cLength(precision, domain[0], domain[1]);
int flowLength=cLength(precision, domain[2], domain[3]);
int occLength=cLength(precision, domain[4], domain[5]);
int vcLength=cLength(precision, domain[6], domain[7]);
int dspeedLength=cLength(precision, domain[8], domain[9]);
int checkinLength=cLength(precision, domain[10], domain[11]);
int qoccLength=cLength(precision, domain[12], domain[13]);
int length=3*speedLength+3*flowLength+3*occLength+vcLength+
dspeedLength+checkinLength+qoccLength;
//std::cout<<"\n the chromosone length is: "<<length;

int** farm=NULL;
farm=new int*[size];
for(int i=0; i<size; i++)
{farm[i]= new int[length];}
setup(farm, size, length, speedLength, flowLength, occLength,
vcLength, dspeedLength,checkinLength,qoccLength,domain);
//std::cout<<"\n\n The initial farm: \n";
//printFarm(farm,length,size);
//printResult(local_occ, local_speed, local_flow,
downstream_vc,downstream_speed, checkin_occ, queue_occ ,farm,
length, size, domain, speedLength, flowLength, occLength,
vcLength, dspeedLength, checkinLength, qoccLength, iter, flow);
std::cout<<std::endl;

for(int t=0; t<iter; t++)
{

roulette(local_occ, local_speed, local_flow,
downstream_vc,downstream_speed, checkin_occ,
queue_occ ,farm,length,size,domain,speedLength, flowLength,
occLength, vcLength, dspeedLength, checkinLength,
qoccLength, flow);

- 131 -

crossing(farm,size,length, domain,speedLength,flowLength,
occLength);
roulette(local_occ, local_speed, local_flow,
downstream_vc,downstream_speed, checkin_occ,
queue_occ ,farm,length,size,domain,speedLength, flowLength,
occLength, vcLength, dspeedLength, checkinLength,
qoccLength, flow);
mutate(farm,size,length,domain,speedLength,flowLength,
occLength);

}
//printResult(local_occ, local_speed, local_flow,
downstream_vc,downstream_speed, checkin_occ, queue_occ ,farm,
length, size, domain, speedLength, flowLength, occLength,
vcLength, dspeedLength, checkinLength, qoccLength, iter, flow);

int i;
double* fitnessVector=new double[size];

for(i=0; i<size; i++)
fitnessVector[i]= fitnessValue(f,local_occ,local_speed,
local_flow, downstream_vc, downstream_speed, checkin_occ,
queue_occ ,farm[i],length, domain, speedLength, flowLength,
occLength, vcLength, dspeedLength, checkinLength,
qoccLength,flow);

int pos=0;
double max=fitnessVector[0];
for(i=1; i<size; i++)
{

if(fitnessVector[i]>max)
{max= fitnessVector[i];
 pos=i;}

}
double Ls=Lspeed(farm[pos], speedLength, domain);
double Ms=Mspeed(farm[pos], speedLength, domain);
double Hs=Hspeed(farm[pos], speedLength, domain);
double Lf=Lflow(farm[pos], speedLength, flowLength, domain);
double Mf=Mflow(farm[pos], speedLength, flowLength, domain);
double Hf=Hflow(farm[pos], speedLength, flowLength, domain);
double Lo=Locc(farm[pos], speedLength, flowLength, occLength,
domain);
double Mo=Mocc(farm[pos], speedLength, flowLength, occLength,
domain);
double Ho=Hocc(farm[pos], speedLength, flowLength, occLength,
domain);
double Vc=vc(farm[pos], speedLength, flowLength, occLength,
vcLength, domain);
double Ds=dspeed(farm[pos], speedLength, flowLength, occLength,
vcLength, dspeedLength, domain);
double Check=checkin(farm[pos], speedLength, flowLength,
occLength, vcLength, dspeedLength, checkinLength, domain);
double Qo=qocc(farm[pos], speedLength, flowLength, occLength,
vcLength, dspeedLength, checkinLength, qoccLength, domain);

*L_speed=Ls;
*M_speed=Ms+Ls;
*H_speed=Hs+Ms+Ls;

- 132 -

*L_flow=Lf;
*M_flow=Lf+Mf;
*H_flow=Lf+Mf+Hf;
*L_occ=Lo;
*M_occ=Lo+Mo;
*H_occ=Lo+Mo+Ho;
*V_c=Vc;
*D_speed=Ds;
*Check_in=Check;
*Q_occ=Qo;

delete[] fitnessVector;
for(int k=0; k<size; k++)
delete[] farm[k];
delete[] farm;

}

- 133 -

Appendix C: Simulation Results-The change of system flow density

- 134 -

Traffic demand: 3000-1600 vehs/h

- 135 -

Total demand: 3200-1600 vehs/h

- 136 -

Total demand: 3400-1600 vehs/h

- 137 -

Total demand: 3600-1600 vehs/h

- 138 -

Total demand: 3800-1600 vehs/h

- 139 -

Total demand: 4000-1600 vehs/h

- 140 -

Total demand: 3200-1400 vehs/h

- 141 -

Total demand: 3400-1400 vehs/h

- 142 -

Total demand: 3600-1400 vehs/h

- 143 -

Total demand: 3800-1400 vehs/h

- 144 -

Total demand: 4000-1400 vehs/h

- 145 -

Total demand: 4200-1400 vehs/h

- 146 -

Total demand: 3200-1200 vehs/h

- 147 -

Total demand: 3400-1200 vehs/h

- 148 -

Total demand: 3600-1200 vehs/h

- 149 -

Total demand: 3800-1200 vehs/h

- 150 -

Total demand: 4000-1200 vehs/h

- 151 -

Total demand: 3200-1000 vehs/h

- 152 -

Total demand: 3400-1000 vehs/h

- 153 -

Total demand: 3600-1000 vehs/h

- 154 -

Total demand: 3800-1000 vehs/h

- 155 -

Total demand: 4000-1000 vehs/h

- 156 -

Total demand: 4200-1000 vehs/h

