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Abstract 

The classification and counting of pollen is an important tool in the understanding of processes 

in agriculture, forestry, medicine and ecology. Current pollen analysis methods are manual, 

require expert operators, and are time consuming. Significant research has been carried out into 

the automation of pollen analysis, however that work has mostly been limited to the 

classification of pollen. This thesis considers the problem of automating the classification and 

counting of pollen from the image capture stage. 

Current pollen analysis methods use expensive and bulky conventional optical microscopes. 

Using a solid-state image sensor instead of the human eye removes many of the constraints on 

the design of an optical microscope. Initially the goal was to develop a single lens microscope 

for imaging pollen. In-depth investigation and experimentation has shown that this is not 

possible. Instead a computer microscope has been developed which uses only a standard 

microscope objective and an image sensor to image pollen. The prototype computer microscope 

produces images of comparable quality to an expensive compound microscope at a tenth of the 

cost. 

A segmentation system has been developed for transforming images of a pollen slide, which 

contain both pollen and detritus, into images of individual pollen suitable for classification. The 

segmentation system uses adaptive thresholds and edge detection to isolate the pollen in the 

images. 

The automated pollen analysis system illustrated in this thesis has been used to capture and 

analyse four pollen taxa with a 96% success rate in identification. Since the image capture and 

segmentation stages described here do not affect the classification stage it is anticipated that the 

system is capable of classifying 16 pollen taxa, as demonstrated in earlier research. 
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Preface 

This research began as an investigation into a number of related fields, gradually gathering 

structure as knowledge of theory and practicalities of the various fields, particularly optics, was 

gathered. The aim of the project is to automate the classification and counting of pollen. This 

thesis is one iteration of the product development cycle. The intention in a single iteration is that 

it may deliver the intended results, but at worst it will make significant progress towards 

achieving the aim. I believe that this research has resulted in a useful prototype system for 

capturing pollen images, and a full system that will serve as a valuable basis for future 

development. 

This research encompasses a range of fields including optics, microscopy, image processing, and 

programming. As a result it is not expected that the reader will be familiar with all of these 

fields to a great depth. Therefore the background section of this thesis introduces relevant 

information in each of the fields. That said, some fundamental background knowledge in the 

following areas is expected: 

• High school level optics, although a little revision is given in the background. 

• A general understanding of image processing, as only the specific techniques used in the 

segmentation are presented in the background. 

• Basic programming, ideally with knowledge of C++ and MATLAB™. 

• High-school level statistics, mostly for interpretation of the texture formulae, and the 

mean and variance filter. 

A paper detailing the results of the research into capture (sections 3 and 4) was submitted and 

consequently presented as a poster presentation at the 2003 Image and Vision Computing New 

Zealand Conference held at Massey University, Palmerston North, in November [ 1]. This was 

very well received, and indeed several notable people remarked they while this idea had occurred 

to them, they were not sure of its virtue or correctness, but are now convinced, and may consider 

[I] C. A. Holdaway, R. M. Hodgson, "Rein venting the Microscope in the Age of Digital Imaging" in Image and 

Vis ion Computing New Zealand, 2003, pp.286-290 . 
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applying the idea at their establishments. Additionally a seminar was given to the IIST staff in 

August detailing the progress made on the image capture research, and a short summary of my 

research into Wavefront Coding was distributed to the IIST staff. The latter is attached at the 

appendix of this thesis. 
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1 Introduction 

1.1 Overview 

This thesis is a component of the research conducted by the Pollen Research Group at Massey 

University [2]. An aspiration of this group is to create a system that automatically counts the 

number of each type of pollen present at a site. Such a system would take appropriately prepared 

pollen samples, capture and process images of the pollen, and produce the pollen statistics. The 

aim of this thesis is to create a system that will do this. 

Pollen analysis, Palynology, is widely used in reconstructions for archaeology and palaeo­

ecology, has commercial significance in the search for hydrocarbons and is of importance in 

medical studies [3]. It is also useful in fields that are critical in the New Zealand economy 

including agriculture, forestry and bee keeping. Palynology is however subject to several 

disadvantages: 

• It is time-consuming because preparation of pollen slides is manual 

• A high level of training is needed to obtain accurate identification 

• Identification at lower levels (i.e. within a genus) often requires laborious measurement 

The automation of pollen identification and counting has the prospect of providing the fine 

resolution, speed and objectivity that manual pollen identification cannot [4]. 

The techniques for automating pollen identification suggested in the literature are to use 

Scanning Electron Microscopy (SEM) [5] and, more recently, Optical Microscopy [6]. 

[2] Poll en Research Group, c/o David Fountain, Institute of Molecular Biosciences, Massey University, Palmerston 

North , New Zealand 

[3] P . Li , J .R. Flenley, L. K. Empson , "Classification of 13 types of New Zealand poll en patterns using neural 

networks," in Proc. In ternational Conference on Image and Vision Computing, Auckland, 1998, pp . 120-123. 

[4] E. C . Stillman, J. R. Flenley, "The Needs and Prospects for Automation in Pal yno logy," Quaternary Science 

Reviews, vol. 15 , pp. 1- 5, 1996. 

[5] W. J. Treloar, Digital Image Processing Techniques and their Application to the Automation of Palynology, PhD 

Thesi s, University of Hull , Hull , Great Britain. 

Automation of Pollen Analysis using a Computer Microscope - Craig Holdaway 2004 Page 10 



SEM has the advantage of being able to display the entire pollen grain in focus, however using 

SEM is expensive and time consuming. Optical Microscopy, while unable to produce in focus 

images of an entire pollen grain in a single image, has the advantage of being cheaper, faster and 

more practical for automation. Other means of pollen discrimination, such as DNA analysis, are 

(for the moment) impractical as they are too time consuming. 

1.2 Focus 

1.2.1 Scope 

The overview has already placed some boundaries on the scope of the project encompassed by 

this thesis. 

1. 2.1.1 Boundaries 

The input to the system has been defined as 'appropriately prepared pollen slides' . These are 

prepared using techniques outside the scope of this thesis, but in a repeatable manner so that 

results from different samples can be compared. The needs of the system, particularly the pollen 

classification stage, determine which slide preparation technique should be used. Equilibrium 

Density Gradient Centrifugation is such a technique [7]. 

The output from the system will contain a list of the types of pollen found and a count of how 

many of each type were found . 

1.2. 1.2 Constraints 

The system will use optical microscopy, as it is believed to be more economic than other forms 

of microscopy. The analysis (Section 3) further describes the costs and benefits of the different 

forms of microscopy. This thesis will not consider in detail the most appropriate method for 

presenting the pollen to the system or how that can be automated, although a brief discussion of 

the possibilities is included in section 3.1. Finally, a secondary goal of this project is to create a 

(6] W. J . Treloar, Automation of Palynology using Image Processing and Pattern Recognition Techniques, 

Postdoctoral Research Report , Massey University, 1994 

[7] M . Forster, J. Flenl ey, " Pollen Purification and Fractionation by Equilibrium Density Gradient Centrifugation ," 

Palynology, 17(1993), ppl37-155 
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simpler microscope by designing it only for computer use, eliminating the constraints placed on 

optical microscopes by human needs. This thesis explores the hypothesis that removing these 

constraints will result in significantly reduced cost and give the resulting microscope design 

significant commercial potential. 

1.2.2 System Overview 

The use of image processing as the tool of automation dictates the basic structure of the system. 

In order to process an image there must first be an image, therefore the first sub-system is 

defined, called capture, in which the image of a pollen sample will be acquired. This subsystem 

includes the physical hardware used to capture the image, such as a camera, and the software that 

digitises the image and converts it into a format suitable for processing. 

A raw image contains a great deal of information, however most of it is not directly of interest. 

The second step, segmentation, involves isolating the relevant regions within the image, namely 

the pollen grains, and preparing them in a suitable form for the final stage. 

The final stage, classification, involves extracting the necessary information from the image and 

manipulating into the form dictated by the output requirements (Section 1.2.1 ). This requires the 

classification of the isolated pollen grains so that they can be counted. This step has been 

researched and implemented by Zhang[8]. 

[8] Y. Zhang, Pollen Discrimination Using Image Analysis, Postdoctoral Research Report , Massey Uni versity, New 

Zealand, 2003 
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Prepared Pollen Slides 
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Digitized Pollen Images 
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Individual Pollen 

Classification 

Pollen Statistics 

Figure 1 System Overview 

1.3 Outline 

This thesis is structured as a combination of a traditional research-focused thesis and a computer­

systems development project. 

Chapter 2 provides the background to some of the more advanced concepts used later in the 

thesis. Chapter 3 analyses the conventional optical microscope and considers extensive 

possibilities for simplifying the basic design of a microscope. Chapter 4 selects the most feasible 

of these designs and determines the specifications required of the components within that design. 

Chapter 5 examines the segmentation subsystem. Rather than try to define an arbitrary break 

between the analysis and design of the segmentation block, they are combined into a continuous 

chapter that describes the evolution of the segmentation algorithm. Chapter 6 documents the 

integration of the capture, segmentation and classification stages, and discusses the results of the 

integration relative to the design expectations. The remainder of Chapter 6 concludes the thesis 

by looking at the results of each stage, the results of the full system, and makes recommendations 

for the future development of a system to automate the classification and counting of pollen. 

Much of the project has been implemented in C++ or MATLAB and the source code written for 

this project can be found in the first appendix. A paper presented at IVCNZ 2003 [1] and 
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tutorial notes on Wavefront Coding assembled by the author are also attached as appendices. 

The full working source code, sample images, a copy of this thesis and some relevant 

specifications can be found on the CD attached to this thesis. 
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2 Background 

Frequently in engineering problems, it is necessary to bring together knowledge from different 

and disparate fields. This section of the thesis briefly outlines some important facets of the fields 

relevant to this thesis. For a more detailed understanding of the fields discussed it is suggested 

that you refer to the references provided. 

2.1 Pollen 

A pollen grain is the structure used to transport the male DNA to the female part of a flower. 

Pollen grains are microscopic, usually about 15 to 100 microns in extent, and just a pinch of 

pollen powder contains many thousands of grains [9]. 

Figure 2 Scanning Electron Microscope images of a Grass Pollen grain (left) and an Oak Pollen grain (right) 

(9) 

Each pollen type has a set of characteristics representative of its family, genus or species, which 

implies that the species or plant family can be identified. These characteristics are most evident 

in the outer wall, called the exine, which serves as part of the means for receptive stigmas to 

recognize compatible pollen. The exine is composed of an extremely stable material called 

sporopollenin. This material is so stable that pollen grains many thousands of years old retain 

the same texture and pattern [ l O]. The pattern is to some extent detennined by the number and 

position of its germinal apertures: Spherical grains tend to have one or several o-shaped 

apertures, long grains usually have three or more apertures, and triangular grains three 

[9] J . Emberlin , B. Adams-Groom , "What is Pollen ," http ://pollenuk .worc.ac.uk/aero/pm/WIP.htm 

[10] T. E. Weier, M. G. Barbour, C.R. Stocking, T . L. Rost, Botany, Singapore: John Wiley & Sons, 1982, pp286-

295 
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apetures[l l). Apertures may be long furrows, round pores or a combination of the two 

structures. 

Detailed pollen images are obtained using scanning electron microscopy, two examples of which 

are shown in Figure 2. When lower magnification optical microscopy is used both the three­

dimensional nature and the detail of the pollen is lost. The images obtained using transmission 

optical microscopy are a combination of the pattern of the internal contents and the walls facing 

the microscope, and the walls on the edges of the pollen (from the microscope viewers' 

perspective), which appear more defined. Figure 3 shows four images of pollen grains captured 

using optical microscopy. 

Figure 3 Compound Optical Microscope Images, with the background removed, of (left to right) Alopecurus 

pratensis, Alnus, Cedrus, Acacia dealbata. 

Pollen grains are developed in the anthers of a flower. Upon readiness, the pollen is released to 

be spread, usually by the wind or by insects. These two chief forms of dispersal result in 

different pollen characteristics, for instance pollen dispersed by the wind tends to be smooth and 

non-adhesive, while pollen dispersed by insects involves very specific co-adaptation such as 

adhesives to ensure the pollen will stick to the insect [ 11). 

2.1.1.1 Applications 

As a result of the durability of the exine, ancient pollen can be identified based on the exine 

characteristics, even when all other traces of biological material are lost [ 10). The reconstruction 

of past vegetation types and climates by the use of fossil evidence is called Paleoecology. 

Pollen causes allergic reactions in some humans, causing widespread medical conditions such as 

hay fever and asthma. Gaining insight into the processes of pollen dispersal and human reaction 

[11] R. B. Knox , Pollen and Allergy, Southharnpton: Edward Arnold Publishers, 1979, pp3-8 , 22-24 
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to pollen contributes to the understanding of the health effects of pollen. Significant research is 

being undertaken in this area [12]. 

As part of the reproductive system in plants, pollen grains are vital in horticulture and forestry, 

both of which are large industries in New Zealand. A smaller industry, bee keeping, benefits 

from pollen in a more direct manner. 

2.2 Optical Microscopy 

2.2.1 Light and Optics 

Visible light is a band within the electromagnetic spectrum, with a wavelength ranging from 

about 380nm (violet) to 700nm (red). The propagation of light can be represented by two types 

of models: geometric and wave optics [13]. 

2.2.1.1 Geometric Optics 

Light does not travel at a universally constant velocity. The speed of light depends on the 

material through which the light is passing, called the optical medium. In more optically dense 

media, light travels more slowly. Therefore when light passes from one medium to another it 

changes velocity. This change in velocity causes the direction of the light to bend, a phenomenon 

called refraction. Geometric optics models the transmission, reflection and refraction of light 

usmg rays. 

A lens is typically made up of an optically dense material containing two or more refracting 

surfaces at least one of which is curved. Lenses may be used in an optical system to modify a 

beam of light or to form an image of an object. There are a number of factors that need to be 

considered when characterizing a lens: 

• Diameter: The diameter of a lens, often restricted by an aperture, is typically chosen 

based on the size of the light beam and object that needs to be imaged. It is important for 

controlling the depth of field, diffractive effects, and aberrations. 

[12] D. W. Fountain, "Pollen and Inhalant Al lergy," Biologist, vol. 49 , no . 1, 2002, pp.5-9 

[ 13] H. D. Young, R. A. Freedman, University Physics, Reading, Mass: Addison-Wesley, 1996, pp. l 053-1192 
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• Focal length: The focal point is defined as the point at which parallel rays coming into the 

lens converge. The distance between the centre of the lens and this point is the focal 

length f of the lens. 

The only type of lens relevant to this thesis is the plano-convex lens. This is a lens with a single 

spherical surface and an optically flat surface opposite, as shown (sliced to two-dimensions) in 

Figure 4. 

An object can be represented by its principle rays, shown in Figure 4. The point where these rays 

converge is called the image. The placement of the object with respect to the lens determines the 

properties of the image such as its magnification and its orientation. 

c c 
"6 "6 
Q. Q. 

<ii <ii 
() () 

.2 .2 

( focal length )( focal length > 

object distance image distance 

Figure 4 Simple Plano-Convex Lens System 

2.2.1.2 Limitations - Wavelength and Diffraction 

The wavelength of light imposes the key limitation on the resolving power of optical 

microscopy, because any object that is smaller than the wavelength of light cannot be resolved. 

Thus the smallest object that can be seen using standard optical microscopy has a size of about 

380nm, the wavelength of violet light. 

When a wavefront passes thought an aperture, the light at the edge of that aperture is diffracted. 

For example, assuming a 'perfect' lens, geometric optics determines that a point object will 

converge to a point image. However, in practice the image fonned has a bright central point 

surrounded by a series of concentric rings of rapidly decreasing brightness due to diffraction 
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[14]. An image is made up of many points of varying intensity, and the additive effect of the 

diffraction of all the points causes blurring. 

2. 2.1. 3 Limitations - Aberrations 

Thus a 'perfect' optical system is one which is 'diffraction limited'. However lenses suffer from 

imperfections due to their shape and physical properties. These imperfections result in 

aberrations. A hyperbolic lens can theoretically be crafted to eliminate the aberrations caused by 

shape, however it is very difficult to grind a hyperboloid, but easy to grind a spherical surface. 

Consequently most lenses have spherical surfaces, and therefore suffer from aberrations. 

Spherical Aberration is the result of imperfections in the lens that cause different sections of the 

lens to focus at different focal lengths. Generally an annular section of the lens, which has some 

radius from the lens centre, will focus to one point. Because each annulus focuses to a different 

point the lens exhibits spherical aberration. Spherical aberration causes the image to blur. 

Curvature of field is a result of imaging with a flat image plane when the wavefronts of the light 

from the lens actually form a curved surface. Pincushion and barrel distortion occur because the 

magnification near the edges of the lens is different to the magnification near the centre. 

The refractive index of a material, a measure of optical density, varies with the wavelength of 

light passed through it, resulting in violet light rays bending further than red rays. This causes 

'rainbow edges' in colour images, and blurring in monochromatic images. This is known as 

chromatic aberration. 

To gam a more detailed understanding of all aspects of optics see Pedrotti and Pedrotti's 

Introduction to Optics [15]. 

[14] 8 . Walker, Optical Engineering Fundamentals, McGraw-Hill Inc., 1995, pp.50-53 

[15] F. Pedrotti , L. Pedrotti , Introduction to Optics, Englewood Cliffs, N.J .: Prentice-Hall International , 1993 
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2.3 Optical Systems 

2.3.1 Characteristics 

2.3.1.1 Magnification 

The magnification of an optical system is the ratio of image size to object size. In microscopy 

there is the concept of empty magnification where an increase in the magnifying power of a lens 

system does not result in any greater detail in the image, as the ultimate image resolution has 

been reached at a lower magnification. 

It is important in this research to note the distinction between Optical Magnification and System 

Magnification: 

• Optical magnification is the enlargement of the object achieved by the lens alone. 

• System, or total, magnification is the enlargement between the object and the final 

displayed or reproduced image. 

In a conventional optical microscope, all of the magnification is achieved optically and therefore 

the optical magnification is equal to the system magnification. However in a computer 

microscope some of the magnification is achieved as a consequence of the size difference 

between the image sensor and the display, called Pixel Scaling (section 3.2.3), and therefore the 

optical and system magnification are different. 

2.3.1.2 Depth of Field 

The Depth of Field of an optical system (imager and lens) is the range of distances from the lens 

for which the image of an object is 'in-focus'. An object is considered to be in-focus if the 

image of a point object is smaller than the resolution of the imaging device. 

The Depth of Field can be calculated using the formula presented here [ 16]: 

D F 
= 2Ads0 (s 0 - J)J 2 

.o. . 4 2 2 2 f -A d s
0 

(2.1) 

[ 16] F. Pedrotti , L. Pedrotti , Introduction to Optics , Englewood Cliffs, N .J .: Prentice-Hall International , 1993, 

pp .126-129 
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Where: 

• /is the focal length of the lens. 

A is the aperture variable, calculated from A = f where D is the aperture diameter . 
D 

• 

• s0 is the distance from the lens to the object. 

• d is the blurring factor. This is a measure of the resolution of the image sensor, and 

should therefore be set to the size of a CCD element for digital camera calculations. 

The depth of field for a compound microscope is in the order of 1 µm to 1 Oµm. Given the typical 

size of, say pollen, at 50µm, the entire pollen cannot be in focus at the same time. Consequently 

any images of pollen contain an in-focus slice of pollen, mixed with regions of pollen that are out 

of focus. Figure 5 illustrates this concept of depth in microscopy. 

2.3.2 The Microscope 

Cross Sectjon throygh a Pollen S!jde 

Depth of 
Field= 20µm 

Out of Focus Region 

In-Focus Region 

Out of Focus Region 

Figure S Depth of Field 

In its broadest definition a microscope is some optical device that makes objects visible that 

cannot be seen with the naked eye. In order to view pollen grains optically we need to use a 

microscope with a total magnification between 400x and lOOOx. 

2.3.2.1 Simple Microscope 

At its simplest, a single lens can constitute a microscope. For instance the single lens setup in 

Figure 4 will make the image twice the size of the object enabling us to see parts of the object 

which were too small to resolve unmagnified. 
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There are limits to the magnification that can be achieved with a single lens. These limits are 

due to the effects of diffraction and aberrations. Typically chromatic aberration is the first 

noticeable degradation, and limits simple uncorrected magnification to about 5x [17]. 

2.3.2.2 Compound Microscope 

Invented around 1590, a compound microscope has an objective lens (the lens closest to the 

specimen being viewed) and an eyepiece so mounted that they may conveniently be moved 

relative to the specimen to focus the image [18]. The magnification produced by a compound 

microscope is the product of the magnification of the lenses making up the eyepiece and the 

objective. Standard microscope objectives have magnifications of the values 4 x , lOx, 40x and 

IOOx . Eyepieces generally magnify lOx. 

To achieve the magnification required to view pollen, a combination of lenses are needed at both 

the objective and the eyepiece. At these magnifications aberrations (Section 2.2.1.3) cause 

degradation to the image, and additional lenses are required to correct for these. The corrective 

lenses are primarily located on the objective. 

Lighting becomes more critical as the magnification increases. At high magnifications (> 40 x) 

Kohler illumination is used. Kohler illumination consists of a train of lenses and irises, where the 

final lens, the condenser, provides parallel and evenly distributed illumination of the specimen 

[ 19]. 

An example of a current fully equipped compound microscope is the BX2-51RP, which has over 

25 lenses, spaces for filters , a rotating slide table, and infinity corrected achromatic optics, costs 

[1 7] B. H. Walker, "7.3 A Typical Lens Applicati on," in Optical Engineering Fundamentals, McGraw-Hill , 1995, 

pp .150-154. 

[1 8] "Microscope", Encyclopaedia Britannica. Encyc lopaedi a Britanni ca Premium Service . 2 Mar 2003. 

www.britannica .com 

[ 19] E. M. Slayter, H. S. Sl ayter, "The Li ght Microscope," in Light and Electron Microscopy, Cambridge Uni versity 

Press, 1992, p.13 1-148 
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US$16,853.00 and is shown later in this thesis in Figure 8 [20]. This price does not include cost 

of a camera for capturing images. 

2.3.2.3 Advanced Techniques 

The resolution of even the most expensive compound microscopes is limited by the information 

that can be transmitted by light. There are however techniques for 'extending' the resolution of 

optical microscopes beyond the theoretical limit of light resolution. The more significant of 

these are described below. 

Fluorescence 

In fluorescence microscopy, near ultra-violet radiation is used to excite fluorescent material 

which emits light of a visible wavelength, allowing objects to be seen that have sizes of the 

wavelength of near UV light (200-400nm) [19]. 

Confocal 

Confocal microscopy uses a laser beam to image very narrow slices of a specimen. These slices 

are then reconstructed into a 3-D image of the specimen. Confocal microscopy offers several 

advantages over conventional optical microscopy, including shallow depth of field, elimination 

of out-of-focus glare, and the ability to collect serial optical sections from thick specimens [21]. 

However, the equipment required is even more expensive than current compound microscopes, 

and the capture process is time intensive. 

2.4 Imaging 

A silicon based digital image sensor is an array of elements, each of which converts incident 

photons (light) into electrons. The number of electrons produced represents the total intensity of 

the light incident over that element integrated for the time it was exposed. The quantity of 

electrons at all the elements in the array can be read electronically, producing a digital 

representation of the light falling on the sensor, otherwise known as a digital image. 

[20] McCrone Microscopes, "Olympus BX2-5 l RP (Transmitted/Refl ected)," www.mccrone.com 

[21] S. W. Paddock, T . J. Fellers, M. W . Davidson , " Introducti on to Confocal Microscopy" 

www .m i croscopyu .com/articles/ con focal / con focal introbasics .htm I 
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Digital image sensors come in two mam varieties. Charged Coupled Devices, CCDs, and 

Complementary Metal Oxide Semiconductor sensors, CMOS. Typical image sensors used today 

range in size from 0.3 to 8 megapixels. Colour imaging is usually achieved by applying a colour 

filter over the sensor, such as a Bayer Tile. As a consequence of their specialized manufacturing 

process, CCDs tend to be used in cameras that focus on high-quality images with lots of pixels 

and excellent light sensitivity. CMOS sensors, manufactured in the same manner as most 

integrated circuits, traditionally have lower quality, lower resolution and lower sensitivity. 

CMOS sensors are just now improving to the point where they reach near parity with CCD 

devices in some applications [22]. 

2.5 Imaging Processing 

2.5.1 Basic Operators 

The lowest level or first stage of image processing, sometimes referred to as pre-processmg, 

involves the enhancement of relevant information in an image and the suppression of irrelevant 

information 

2. 5.1.1 Arithmetic and Logic Operators 

All of the traditional arithmetic (+, -, x, -o-) and logic (AND, OR, NOT) operators have image 

pre-processing equivalents. These are point operators, treating each pixel or corresponding pair 

of pixels independently throughout an image or multiple images. 

These operators are constrained by the number of levels in a greyscale image. For instance in 

subtracting one image from another, some pair of pixels may introduce the subtraction: 45-60. 

The result arithmetically is -15, but this is cannot be represented in a greyscale image where the 

limits are integers in the range [0,255]. To accommodate this and similar underflows and 

overflows from other arithmetic operations special rules must be applied. In the subtraction 

[22) How Stuff Works, "What is the difference between CCD and CMOS image sensors in a di gital camera?," Jan 

2004. http ://www .howstuffworks.com/question3 62 .htm 
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example, the result: could be wrapped around to be 256-15 = 241; could be made absolute to 

equal 15; or saturated to 0. 

Logical operators act as would be expected on binary images, however on greyscale images the 

operator is not well defined. For instance the result of taking the inclusive OR of two pixels 

could add their values, or take the binary representation of the pixel intensities and logically OR 

the binary values (the bitwise OR), or something else altogether. 

2. 5.1. 2 Morphological Operators 

Morphological operators perform actions that alter the form and structure of regions within 

images. Morphological operators are simplest to understand when applied to binary images, but 

are equally applicable in greyscale images. Morphological operators are performed by 

convolving a small matrix, called the structuring element, with the image. The two key operators 

are erosion and dilation. As is implied by the names, erosion removes pixels from the edges of a 

region and dilation adds pixels to the edges of a region. 

More complex morphological operators are mostly a combination of these basic ones. Opening 

consists of erosion followed by dilation and removes narrow connections between objects in the 

image. Its opposite, closing, is composed of dilation followed by erosion and bridges small gaps 

between objects and fills in holes. 

2.5.2 Segmentation 

Segmentation subdivides an image into its constituent regions or objects. Segmentation should 

stop when the objects of interest in an application have been isolated [23]. 

2.5.2. 1 Edge Detection 

Edges are the key attribute of regions that enables their extent to be defined. Gradient operators 

for detecting edges are well developed; the most widely known of these is the Sobel filter 

consisting of two matrices applied to an image which detect vertical and horizontal edges 

[23] Gonzalez R. C., Woods R. E., " I 0 Segmentation" in Digital Image Processing, 2"ct ed ., New Jersey: Prenti ce­

Hall , 200 I , pp .567-642 
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independently. A drawback of edge detection is that it suffers from noise. Small amounts of 

additive noise can introduce errors in a detection system that relies on a small 3x3 matrix such as 

the Sobel operator. 

2.5.2.2 Regional Operations 

An alternative method of segmentation is to make the distinction between regions based on 

discontinuities in the grey-levels of an image, usually by taking a threshold of the image. 

Regional operations are less noise sensitive than edge detection methods. 

2.6 Prior Research 

For many years the automation of pollen analysis has been seen to be desirable and useful [24], 

but until recently it has not been practical. Stillman and Flenley [ 4] identified image processing 

as a tool for automating pollen analysis. In recent years image processing systems have 

increased in performance, which can be attributed both to improved algorithms and a dramatic 

increase in available computing power. 

As pollen grains can be very difficult to classify visually, successful classification methods have 

involved the use of texture. Treloar [6] extended the work of his Ph.D. thesis on classifying SEM 

pollen images to pioneer textural classification of pollen using images captured by an optical 

microscope. More recently Li and Flenley demonstrated the feasibility of using neural network 

classifiers. This work achieved 100% classification of 13 pollen types [25]. Following on from 

that work, Zhang used wavelet features to classify 16 airborne pollen types and to differentiate 

between airborne and non-airborne pollen [8]. 

The literature reviewed thus far considers the difficult problem of classification. Achieving the 

automation of pollen analysis also requires the automation of the other stages of the pollen 

[24] J. R. Flenley, "The problem of Pollen Recognition", in M. B. C lowes and J. P. Penn y, Problems in Picture 

Interpretation, pp 141-145 . CSIRO, Canberra, 1968 

[25] J. R. Flenley, P. Li , L. K. Empson, " Identification of 13 Pollen Types by Neural Network Analysis of Texture 

Data Only," in Proc. Of Image and Vision Computing New Zealand, 1999, pp.295-298 
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analysis process. Until recently this problem had not been addressed. France et al. [26] 

demonstrate a system that deals with the process of 'capture to classification'. The hierarchical 

nature of their system provides a useful means of rejecting detritus, and the techniques used to 

extract objects and features are successful. This method differentiates between only three pollen 

types. 

[26] I. France, A. W. G. Duller, G. A. T. Duller, H. F. Lamb, "A new approach to automated pollen analysis," 

Quaternary Science Reviews, vol.19, 2000, pp.53 7-546 
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3 Capture - Analysis 

This section discusses the alternatives available for a capture system, beginning with a wide 'all­

possibilities' approach, and gradually selecting alternative components until a complete design 

has been determined. 

3.1 Specimen Preparation 

It is a requirement of the capture system that pollen will be present on the slide in the region 

where the microscope is viewing. How the pollen specimen comes to be where it is needed is 

almost outside the scope of this thesis and is a subject worth examining only briefly. 

3.1.1 Slide Scanning 

Currently slides are prepared usmg specialist techniques and then examined under three­

dimensional manual control. The first level of automation on this is to enhance the manual 

controls with computer-controlled servomotors. These are expensive, but are used on high-end 

microscopes, and allow both open and closed loop control of the slide position. 

3.1.1.1 Scanning a Complete Slide 

Capturing an entire slide involves scanning in three dimensions. A slide can be considered to 

consist of a number of levels of depth, where each level has the same depth as the depth of field 

of the microscope (see section 2.3.1.2). For instance to scan all three objects in Figure 6, four 

slices are required. At each level, a plane, the remaining two dimensions, must be captured . 

•• • 
, , One 'slice' through the 

slide has the same depth 
as the Depth of Field for 

the microscope. 

Figure 6 Slide Scanning Example 

While scanning in all three dimensions is a simple method, it is highly time consuming. This 

can be improved by scanning only a few depth levels. Objects which are in nearby depth planes 
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will have a characteristic diffraction blur, and can be investigated by altering the focal depth at 

that position. 

3.1.1.2 Statistical Sample 

Scanning the entire slide is time consuming. Sampling is a statistical technique that permits the 

capturing of a subset of the full slide, which is representative of the contents of the whole slide. 

Unfortunately not all pollen taxon distribute pollen randomly within a slide. Some pollen tends 

to cluster by nature, and others tend to attach to debris present in the slide. Additionally 

sampling makes it less likely that the '1 in 1000 pollen', an aim of Stillman and Flenley [ 4] , will 

be found. 

3.1.1.3 Slide Scanning Trade-Offs 

Any technique other than an exhaustive scan of the slide runs the risk of missing pollen. 

However, as some pollen tend to cluster and can be obscured by both pollen and debris, it is 

impossible to count every single pollen on a slide reliably. 

Thus, given counting every pollen is not possible, it seems sensible to conduct a sample. To 

obtain a more accurate representation of the pollen population it is important that the slides 

themselves reflect a random sample of the population. 

3.1.2 Alternatives 

Breaking away from traditional ideas and using different technology when existing technology 

has not been satisfactory for the job is a theme of this research. The slide is such a technology. 

The slide limits the capture speed because: 

• It is 3-Dimensional 

• It has to be controlled in 3 axes to capture images requiring fine, complicated, and 

expensive x-y-z controls. 

So what alternatives exist to these? The following are only suggestions, and are not founded by 

anything other than possibility: 

• A moving sticky tape that can collect airborne pollen by causing pollen blown onto the 

tape to adhere. The tape can be moved in front of the capturing device and a line scan 

system used relieving the two planar axes of control. 
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• Pollen could be electro-statically charged pulling them onto a single plane, removing the 

depth dimension. 

3.2 Analysis of Current Optical Capture Systems 

Analysis of a capture system involves examining existing capture technologies and considering 

the strengths and weaknesses of each. Typically, constraints on performance, optically and in 

usability, have led to the design decisions made. A changing environment can change the effect 

or validity of existing design constraints. If the constraints applied to previous designs are found 

to no longer be valid, for instance by virtue of improved technology, then there is a potential for 

an innovative design to give better performance or to reduce cost. There are a variety of optical 

technologies that can and have been used to view pollen at or near the resolution we require (as 

detailed in section 2.1 ). The costs and benefits of each are discussed in the following sections. 

3.2.1 Confocal Microscope 

Confocal Microscopes, introduced m Section 2.3.2.3, provide the highest existing optical 

resolution by using fluorescence, with the improvements to image quality provided by the 

narrow depth of field . Controlling the fine acquisition of image slices requires precise control 

and multiple image slices to create a single image. Images generated by a confocal microscope 

contain significantly more depth information than conventional optical microscope images [21]. 

However, Confocal microscopes are extremely expensive, due primarily to the precision required 

in their construction and their operation. It also takes considerable time to acquire a single 

complete image. 

3.2.2 Conventional Microscope with a Camera Attachment 

Conventional compound microscopes, introduced in section 2.3.2.2, provide the greatest 

flexibility of current optical microscopes. Attachments for specialized techniques such as dark­

field illumination, phase-contrast and polarization are readily available [27]. 

To attach a camera additional optics are required to transmit the image at the back focal plane to 

the camera. At low system magnifications, the optical magnification required for the addition of 

(27] E . M. Slayter, H. S. Slayter, Light and Electron Microscopy, Cambridge University Press, 1992 
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a camera is less than 1 x, so the optics required actually diminishes the image. This is a peculiar 

design feature of compound microscope with camera attachments, where an objective magnifies 

the image and further optics then diminish it. This is a significant redundancy in the optical 

components. However, a professional level compound microscope is expensive, usually over 

$10000, and this cost prevents laboratories from having large numbers of the instruments. 

3.2.3 Intel Toy Microscope - QX3 

Unlike regular optical microscopes, the QX3 has no eyepiece, instead it has a built-in camera 

that sends video images of specimens or small objects at IOx, 60x, or 200x magnification to a 

PC via a Universal Serial Bus (USB) connection [28]. 

Figure 7 Intel Toy Computer Microscope QX3 

The key to the magnification is not however from high-powered objectives, in fact the optical 

magnification of the system is 0.2 x, 1.1 x and 4x respectively. The key is the ' pixel scaling'. 

[28] L. Jelinek, G. Peters, J. Okuley, S. McGowan " Dissection of the Intel® Play™ QX3TM Computer Microscope," 

Intel Technology Journal , Q4, 200 1 
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Pixel scaling is the ratio between the size of a pixel in the sensor array, and the size of a pixel in 

the display (it is often easier, and equally valid, to use the size of the entire array and entire 

display to calculate this). 

For example, the pixels on a 15" monitor, running at 800 x 600 resolution, are roughly 270µm x 

270µm. When the 9µm x 9µm pixels of the image sensor are displayed on the monitor, the 

sensor pixels are "magnified" 30 times [28]. 

3.2.3.1 Benefits of the QX3 

The key benefit of the QX3 is its price. The QX3 was designed to cost less than US$ l 00 [28]. 

Most microscopes capable of resolving to about 3µm cost more than this, let alone the 

considerable cost of adding a camera to them. 

3.2.3.2 Costs of the QX3 

The QX3 is designed as a toy, and not a scientific instrument, consequently it is too simple for 

application to pollen analysis. For instance: the specimen table is poorly mounted and cannot be 

finely adjusted; the image integration time is visibly long (to the order of 10 seconds); and its 

magnification is not high enough for our purposes. 

3.2.3.3 Similar Products: the Olympus MIC-D 

During the period of my research Olympus brought out the MIC-D, which improves on the QX3 

by providing a more robust gliding stage and higher optical magnification (up to 9x). This is 

almost the optical magnification required for this research. However the sensor size is quite 

small at 640 x 480 [29]. I have not been able to obtain this microscope for comparison. 

3.2.4 Wavefront Coding 

In wavefront coding aspheric optical elements and digital signal processing techniques are used 

to enhance the performance of imaging systems. Wavefront coding has been applied to imaging 

systems to extend depth of field and to control aberrations. These applications have 

demonstrated an image quality at least equivalent to that of a more expensive traditional optical 

[29] Olympus, "Ol ympus MIC-D Product Information", http ://www.mic-d .com/product/spec.html , 12 Jan . 2004. 
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system, with 4-5 x greater field of view, without changing aperture sizes in the system [30]. For 

further details see the appendix 'Wavefront Coding'. 

An extended depth of field is likely to be useful for classifying pollen as most of the information 

in the optical images comes from the surfaces of the pollen. Extending the depth of field may 

allow the structure of the surface to be seen more easily, as the extended depth of field of 

confocal microscopy has shown [21]. However rather than suffer the expense and long capture 

time of a confocal microscope, wavefront coding can be applied to existing compound 

microscopes. I have not had the equipment or the time to experiment with the possibility of using 

wavefront coding. 

3.3 Constraints 

There are many optical limitations that constrain the design of an optical microscope. These are 

fundamental and cannot be avoided regardless of design. Some constraints are placed on the 

design of a microscope by the characteristics of a specimen slide. For instance a standard slide is 

one inch wide and three inches long, so the design of a microscope must then provide a slide 

table large enough to hold this slide, and the x-y controls needed for fine control of the slide. 

However, none of the above is the most significant constraint on the design of microscopes. The 

major limitation is the human observer. 

3.3.1 Humans 

Microscopes are inherently designed to be used by humans. This observation can be justified by 

studying the components of a, say, compound microscope as the BX2-5 l (quoted in section 

2.3.2.2 and illustrated in Figure 8). 

3.3. 1.1 Optics 

Human eyes contain an integral lens and are not capable of directly viewing microscopic objects 

and therefore require optics to provide magnifications in the range 400x - l OOO x required to 

view pollen grains. To obtain magnification of this magnitude and preserve image quality 

[30] S. C. Tucker, W . T. Cathey, E. R. Dowski, "Extended depth of fie ld and aberration contro l for inexpensive 

di gital microscope systems," Optics Express, vo l. 4 , no. 11 , pp. 467-474, 24 May 1999 
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requires complex optics, as simple optics designed to provide high magnification alone will 

exhibit severe image degradation due to lens aberrations. 

3.3.1.2 Illumination 

Human eyes require a suitably intense and invariable level of illumination. This is achieved in a 

microscope by the illumination train and the condenser. The illumination can be finely adjusted 

by closing an iris under the condenser. 

3.3.1.3 Shape 

Traditional microscopes have been designed to facilitate focusing by means of a knob on the arm 

of the microscope. This is performed while the user is looking through the eyepieces. 

Consequently arm length detennines the distance that can be used, limiting the optical tube 

length and constraining the optical design. This is illustrated in Figure 8 (left) 

Figure 8 Olympus BX2-51 in use (left) and cutaway (right) [31) 

[31 J Olympus Corp. , "BXS! Research System Microscope Brochure", www .olympus.com, January 2004 
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3.3.2 Breaking away from Human Constraints 

3.3.2.1 Eyes 

Human eyes are the primary constraint on the design of a microscope. They dictate the 

magnification, illumination and aberration correction required. Consider the effect of human 

eyes on the optics: A typical laboratory microscope, such as that illustrated in Figure 8, suitable 

for viewing pollen has 8-15 lenses in the objective and 2-5 lenses in each eyepiece. Given that 

every lens added to the microscope adds expense, it is logical to seek a means of replacing 

human eyes with a technology that does not require such high magnification, and is more 

suitable for reliably analysing and classifying microscopic objects. 

3.3.2.2 A Microscopic Sensor 

Of the microscopes analysed in section 3.2, the Intel QX3, at US$100, was the least expensive by 

about two orders of magnitude. This is because it requires only a single lens with low 

magnification imaging onto an image sensor and pixel scaling provides the rest of the 

magnification. 

An image sensor, such as a CCD, is microscopic in nature. The size of an element, a pixel, on 

the sensor is similar in magnitude to the microscopic detail that is of interest. This substitution 

of a digital sensor for the human eye affects the design of the optics: 

• The required magnification is greatly reduced. 

• Reduced magnification reduces the number of lenses required to enlarge the object. 

• Reduced magnification lessens the effect of aberrations, reducing the number of lenses 

required for aberration correction. 

Thus significant savmgs m optics, and therefore cost, can be made by removmg from the 

microscope the optics that are required to meet the needs of human eyes. 

3.3.2.3 Further Benefits of Using a Digital Image Sensor 

The benefits of replacing human eyes with an image sensor are not only a reduction in cost. By 

using an image sensor the design is freed of the illumination and shape constraints discussed 

above. This substitution provides additional benefits. 
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Illumination 

The dynamic range of an optical instrument is the ratio between the maximum and minimum 

intensities that the instrument can detect and process. Although an image sensor has a much 

smaller dynamic range than our eyes, the exposure range can be 'shifted' by altering the 

integration time of the sensor (the time over which the sensor is exposed to light) to suit the 

intensity of the scene. This allows for illumination by sources too intense for human eyes, such 

as a laser. 

Furthermore, human eyes exhibit adaptation, where over a period of time measurable in minutes, 

human eyes become accustomed to a significantly changed illumination level [32]. Unlike 

human eyes, a digital image sensor does not need time to respond to sudden changes in 

illumination level. This allows flashed lighting to be used, where the sensor is synchronized to 

capture as the flash illuminates the specimen. Human eyes, due to their adaptation time and 

range cannot cope with either intense or variable illumination. 

Shape 

Once an image sensor is introduced, human physiology no longer dictates the distance between 

the object and the imaging sensor. This allows optical tubes of any length. Also, the shift from a 

binocular head to a monocular head immediately reduces the number of lenses required if an 

eyepiece is required at all. It is important to note there are benefits to using binocular viewing, 

such as improved depth perception, which are lost using a monocular eyepiece. 

3.3.2.4 Microscope Output 

Replacing human eyes with an image sensor does not remove the need for human interaction. 

Humans are required to focus the microscope, to position the slide using fine x-y controls, and 

humans have to see the final image results for analysis. For these requirements to be met, the 

images captured by the image sensor must be displayed to the human operator in real-time. 

[32] T. N. Cornsweet , Visual Perception, New York: Academic Press Inc ., 1970. pp.7-9 
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This implies the need for a display. Different displays have different properties, such as the pixel 

size and screen resolution. A variation in these properties will result in different magnifications 

due to pixel scaling, and interpolation of images by some displays. This variation will produce 

inconsistent images, and may introduce empty magnification. This inconsistency in image 

production is not a severe disadvantage, but as with conventional microscope usage, the user 

must be aware of the potential to introduce empty magnification by, in computing terms, 

zooming in too far. 

The need for a computer is a constraint on a digital system. However given the widespread usage 

and inexpensiveness of computers, it is not considered to be a problem, rather it represents 

necessary infrastructure for computer microscopes, which is already is place. 

3.4 The Design of a Single Lens Microscope for use with an Image 

Sensor 

The ultimate in minimization of a microscope would be to reduce it to a single lens. If this could 

be done, it would vastly simplify the construction and so reduce the cost. 

3.4.1 Basic Parameters 

3.4.1.1 Magnification 

The magnification needed is calculated from the required resolution r, that is the size of the 

smallest detail in the object that we want to see, and the element size of the image sensors. Then 

the magnification m is: 

2s 
m=- (3.1) 

r 

The 'multiply by 2' is introduced to satisfy the needs of the sampling theorem. Applying this to 

the pollen imaging microscope and using a CCD with an element size of 9µm, and a object 

needing to be resolved to 0.9µm (as discussed earlier) requires an optical system that magnifies 

20 times. 
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It is not possible to produce perfect images. Image fidelity is limited by lens aberrations and 

ultimately, diffraction. However if the degradation cannot be resolved by the sensor or perceived 

by a human then the image can for practical purposes be considered to be perfect. 

3.4.2 Early Development 

The original approach to the development of a computer microscope was an experimental one 

making use of existing cameras and lenses that were available. The focus of the research was to 

investigate problems highlighted by optical theory or to investigate reasons for conventional 

microscope design. 

3.4.2.1 Geometric Distortion 

Geometric distortion (Section 2.2.1.3) is the easiest aberration to identify as it characteristically 

distorts squares, doing so with greatest severity away from the optical axis. 

The test object used to determine distortion was the England Finder, a I mm2 grid, where each 

square is divided into 5 sections: a middle circle and four comer areas. The entire 3" slide is 

covered by these squares. Figure 9 shows one square (suitably magnified). 

Figure 9 A square from an England Finder 

To determine if the distortion was significant a piece of white paper was located vertically in 

place of the camera, as illustrated in Figure 10. Onto this a large image of the England Finder 

was projected. From this the distortion could be evaluated over a much larger area than the 

image sensor. If distortion were not present over this large area then it would be unlikely for it to 

be a problem in the small image sensor area. 
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Figure 10 Distortion Test Setup 

Visually, the grid produced by the England Finder was square up to at least 30mm from the 

centre of the image sensor. This was determined by plotting some comer points from the image 

onto the paper and measuring the angles and dimensions of the lines that connected these points. 

In conclusion, using a 50mm lens and 1 Ox magnification, there is no significant distortion to the 

image. This is as expected because the magnitude of distortion increases as light rays from the 

object are increasingly off-axis [33] and in this case the rays are very close to the optical axis. 

3.4.2.2 Chromatic Aberration 

Chromatic aberration (Section 2.2. l .3) is the most readily recognized optical aberration. It is 

familiar from looking through magnifying glasses. It is therefore an easy target for elimination. 

The effect of chromatic aberration depends on the range of wavelengths in the light. If the range 

of wavelengths can be reduced, then the dispersion will be limited. To do this a narrow-band 

light source is required. 

[33] M. Born, E. Wolf, "5 .3 The primary (Seidel) aberrations" in Principles of Optics , 4 th Ed ., Pergamon Press. 

1970. pp.2 11-218. 
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A means of creating narrow-band light is to filter another light source. However filtering 

reduces the intensity of the original light because it strips away the intensity provided by the 

unwanted wavelengths, so in order for it to be feasible a more intense light source or a longer 

integration time is required. 

To provide adequate light intensity a 250W projector bulb was used. An RG-630 red 630nm 

high-pass (in wavelength) filter was placed in the light path. An IR-Stop filter rejecting 

wavelengths greater than 700nm was placed in front of the camera. This leaves a pass-band 

70nm wide. 

The left image of Figure 11 was taken without the filters in place. This image is slightly 

saturated because of the intensity of the light (despite using a 1110000s shutter speed) and is 

blurred. The image on the right was taken with the filters in place and it can be seen that the 

objects have significantly better contrast, particularly the large ovaloid near the centre. Note the 

shutter speed has been reduced to 1/500s. 

Figure 11 The effect of applying a narrow-band filter 
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3. 4. 2. 3 Scatter 

Light paths in a conventional microscope are shielded by matte black tubing that prevents light, 

other than that from around the specimen, being visible at the eyepiece. This reduces scatter, 

that is spurious light, from interfering with the image. Scatter was removed from the microscope 

design by placing matte black paper inside the optical tubes (made of white down-pipe) and 

shielding the apparatus from stray light with a blackout cloth. 

3.4.2.4 General Problems 

Generally these early experiments did not achieve clear images. While the reason for this was 

not identified at this stage, several contributing elements were: 

• The lighting was not condensed as it is in a conventional microscope 

• The camera introduced noise from a colour sub-carrier as can be seen in the right of 

Figure 11. 

• The equipment was not sufficiently precise to allow fine adjustments of focus and 

equipment position. 

To eliminate the latter two problems an optical bench and equipment was purchased from 

Edmund Optics [34], a Micropix M-1024 monochrome Firewire digital camera was purchased 

from Turnkey Solutions [35], and custom fittings were designed and manufactured by JJ Niven 

Engineering [36]. This required a recalculation of the basic parameters. The Micropix M-1024 

has square elements with a dimension of 4.65µm. Using the formula from section 3.4.1.1 with 

s=4.65µm and r=0.9µm the magnification required is equal to l0.3 x. Generally it is preferable 

to over-sample if the sampler has adequate storage, as the 1024x768 pixel CCD in the M-1024 

has. Therefore a magnification of 12x to 16x would be used in practice. 

[34) Edmund Industrial Optics, 101 East Gloucester Pike, Barrington , New Jersey, + 1 800 363-1992, 

www.edmundoptics.com 

[35) Total Turnkey Solutions, Mona Vale, NSW, Australia, +61 2 9979 5643 , www.turnkey-solutions.com.au 

[36) JJ Niven Engineering, 38 Armstrong St. , Palmerston North. +64 6 3574039. 
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3.4.3 Experiments to Determine Resolution 

Earlier experiments were somewhat ad hoc and it was difficult to determine whether the optical 

system set-up or the poor equipment was causing the image degradation. By acquiring precise 

optics and equipment, it was determined that poor equipment was not the primary fault causing 

unclear images. Therefore further experiments were needed to be conducted into the cause of the 

problems. 

The aim of the first experiment was to: 

• Determine that the basic parameters calculated in theory were equal, within tolerances, to 

those found in practice; and 

• Determine if the degradation in quality is due to this microscope. 

In these experiments the distance was varied between the optical components used to image a 

test slide of a grid made of lOµm squares. The experimental setup is shown in Figure 12. For 

each experimental setup the largest rectangle (on the image of the grid) is used to calculate the 

measured parameters of the system. 

Illumination Red 
Filter 

Lens 

Specimen 

Optical Bench 

Figure 12 Experimental Setup 

There are some measurement errors involved that are estimated. They come from two places: 

• Grid Rotation. Faulty alignment in the test equipment resulted in the largest rectangle on 

the image of the grid to be rotated slightly relative to the image sensor. 

• Line width. The grid lines have considerable width (probably in the order of 2-3µm), 

which is not uniform. Therefore the middle of the line is estimated. 
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The errors are calculated by finding the comer of the largest rectangle that is furthest away from 

a comer of the grid, and counting the number of pixels (in both dimensions) between that grid 

comer and the comer of the rectangle. The estimated measurement error is specified in the 

results of the experiment. 

The magnification values used provide a range that allowed comparison with previous images 

acquired using the setup and camera used to take the images in Figure 11 captured at 20x 

magnification. The magnification needed theoretically is between !Ox and 16x and therefore the 

range of magnifications includes all of these values. 

Note the tolerances of the largest rectangle size are not known, as the manufacturer of the grid 

did not provide a specific error measure. The width of the grid is nominally 1 µm, with an 

unspecified tolerance. 

Pixel Dimension = Dimension Size (µm) I Dimension Pixel Count 

Actual Magnification = 4.65(µm) I Pixel Dimension (µm) where 4.65 µm is the size of the 

sensing elements. 

3.4.3.1 Experimental Results 

20x 

Theoretical Values: 

I Si I 530mm If I 25mm IM I 20.2x 

Measured Results: 

Largest Rectangle 230 x 160 µm tolerances unknown. 

1001 x 713 pixels ± 6 x 14 pixels 

Pixel Width 0.23 µm ±0.5% 

Pixel Height 0.22 µm ±2% 

Actual Magnification: Width 20.2 ± 0.5% 

Actual Magnification: Height 20.7 ± 2% 
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Figure 13 Sections (300 x 300 pixels) oflmages Captured at 20x Magnification 

16x 

Theoretical Values: 

J Si I 430mm If I 25mm IM I 16.2x 

Measured Results: 

Largest Rectangle 280 x 200 µm tolerances unknown. 

999 x 727 pixels ± 8 x 10 pixels 

Pixel Width 0.28 µm ± 1% 

Pixel Height 0.28 µm ±0.8% 

Actual Magnification: Width 16.6 ± 1% 

Actual Magnification: Height 16.6 ± 0.8% 
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Figure 14 Sections (300 x 300 pixels) of Images Captured at 16x Magnification 

13x 

Theoretical Values: 

J Si J 350mm J! J 25mm 

Measured Results: 

Largest Rectangle 340 x 250 µm tolerances unknown. 

976 x 734 pixels ± 7 x 11 pixels 

Pixel Width 0.35 µm ± 0.7% 

Pixel Height 0.34 µm ± 1.5% 

Actual Magnification: Width 13.3 ±0.7% 

Actual Magnification: Height 13.7 ± 1.5% 
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Figure 15 Sections (300 x 300 pixels) of Images Captured at 13x Magnification 

3.4.3.2 Errors 

The results should give the same magnification in both dimensions. For 20x and 13x this is not 

the case, however the pixel width and height in both cases varies by 0.1 µm. As this is also the 

smallest value we use there is inherent error in rounding to this level of significant figure. 

Despite these errors, the values for width and height are very similar. 

3.4.3.3 Comparison to conventional compound microscope 

In order to determine if the degradation in quality is due to this microscope, it is easiest to 

compare images taken using this microscope with those from a high quality conventional 

compound microscope. Figure 16 shows the difference in quality between this microscope and a 

compound microscope. It is valid to use different magnification in this case as it would be 

expected that a high magnification would give a poorer image due to empty magnification. So 

there is clearly a problem given that image captured by this system at 20x is significantly worse 

than that captured at 40x using a compound microscope 

Automation of Pollen Analysis using a Computer Microscope - Craig Holdaway 2004 Page 46 



Figure 16 Microscope Contrast Comparison. Left: 20x Setup. Right: Compound Microscope 40x 

3. 4. 3. 4 Conclusions 

The basic parameters of the system calculated in theory were equal, within tolerances, to those 

found in practice. Secondly the images generated by this system are significantly worse than 

those from a compound microscope. Therefore there are further factors causing image 

degradation. 

Three factors that could introduce the image degradation are: 

• Blurring Aberrations such as spherical aberration and coma 

• Diffraction effects 

• Inadequate lighting as the experimental system does not have a condenser or illumination 

train 

3.4.4 Identifying and Quantifying the sources of Image Degradation 

3. 4. 4. 1 Aberrations 

To study the effect of blurring aberrations requires the analysis of the rays travelling through the 

lens. This is a mathematically difficult operation for all cases, but more so for the off-axis 
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aberrations coma and astigmatism. Therefore spherical aberration will be analysed first, and 

only if it proves not to be a factor will the other blurring aberrations be investigated. 

There are two key factors that affect the spherical aberration: 

1. The aperture size limits the maximum ray divergence from the object, limiting the divergence 

of meridional rays. Therefore spherical aberration is reduced as the aperture is closed. 

2. The refractive index of the lens determines the extent of the refraction at the lens surfaces. A 

smaller refractive index causes less divergence and therefore less spherical aberration. 

The modelling was performed in Excel™ to allow the results of manipulating input variables to 

be studied quickly. The ray-tracing method used is taken from [37]. 

To calculate Spherical Aberration (s.a.) the two most distant points of focus are required. These 

are generated by rays which are very close to the optical axis (paraxial), and rays which originate 

from the optical axis, but diverge to the edge of the aperture, that is are the rays with the greatest 

angle to the optical axis, called meridional rays. The distance between the points at which these 

two rays converge to the optical axis (on the image side) is called the lateral spherical aberration. 

The consequential degradation in the image is how widely they are spread onto the image plane, 

called the transverse spherical aberration. Figure 17 illustrates this concept. 

lateral s.a. 

Figure 17 Spherical Aberration (s.a.) 
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It is important to note that spherical aberration does not result in a unifonn blur, but the effect 

can be considered as a modification to the point spread function. In the case of spherical 

aberration, there is a simple radial blurring. 

[37] Warren J. Smith , Modern Optical E11g i11eeri11g, McGraw-Hill , 1966, Chapters 3 and 10, pp.49-7 1 and247-279 
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Model Parameters 

Lens focal length 25mm 

Distance from focal point to aperture 14mm 

Distance from aperture to lens llmm 

Aperture Radius 0.4mm 

Notes: 

The refractive indices used are those of available lenses and have been taken from the 

relevant glass tables assuming a wavelength of ?=665nm. 

Results 

The ray trace begins with rays emanating from the focal point of the lens on the object 

side. 

Magnification Refractive Index Transverse s.a. (µm) 

20 1.665 30.5 

16 1.665 23 .7 

12 1.665 17.1 

12 1.514 2.5 

These results show that spherical aberration decreases with magnification, as is expected. What 

these results do not show is that changing the aperture size made no difference to the image 

quality. Furthermore, reducing the refractive index of the lens (by using a different glass) should 

have improved the image quality significantly as the results show a reduction in transverse 

spherical aberration by an order of magnitude. However no significant improvement in the 

image quality was seen. 

This leads to the conclusion that spherical aberration is not the pnmary cause of image 

degradation in this optical system. This is not a simple conclusion however. Aberration cannot 

be treated in isolation, and its possible that non-parallel lighting is creating rays with greater 
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angles than we would expect. In other words there could be a confounding relationship between 

aberrations and illumination. 

3.4.4.2 Diffraction 

The second potential cause of degradation is diffraction. It can be shown for far-field diffraction 

that the spread of the central maximum of the diffraction pattern emanating from a point within a 

slit (a 1-D simplification of an aperture) has the following formula: 

W = 2LA 
b 

(1.2) 

Where Wis the maxima width, L is the distance from the slit to the image, b is the slit width, and 

? is the wavelength of the light (38]. 

Application of this equation with the values from the 20x optical setup with maximum aperture 

and standard aperture is displayed below: 

Maximum Aperture: b = 21mm, L = 525mm,? = 700nm gives W= 35µm 

Standard Aperture: b = 4mm, L = 525mm, ? = 700nm gives W = l 84µm 

Both of these values immediately stand out as being much larger than the intended resolution of 

2µm. Diffraction is clearly a major factor in the blurring of the images. 

3.4.4.3 Illumination 

Conventional compound microscopes have an illumination train that provides Kohler 

illumination (section 2.3.2.2). This provides parallel and uniform illumination of the specimen. 

The experimental optical system does not provide this quality of illumination. However as the 

illumination is theoretically not critical at low optical magnifications and as it has been shown 

that spherical aberration and diffraction are a significant problem, the illumination will not be 

addressed unless it is shown that it is the only remaining fault. The reason for this is that 

throughout this analysis the aim has been to design the simplest possible microscope, a single 

lens, and adding optics to provide correct illumination requires adding lenses. 

[38] F. L. Pedrotti . L. S. Pedrotti , " 16-2 Beam Spreading" in /11/roduction to Optics, 2nd Ed. New Jersey: Prentice-

Hall , 1993, pp329-330. 
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3.5 Conclusion 

3.5.1 Feasibility of a Single Lens Microscope 

Correcting for spherical aberration requires that the aperture diameter be decreased. However it 

can be seen from equation (1.2) that decreasing the aperture (parameter b) increases diffraction. 

Thus we have a trade-off between aberration and diffraction. 

Applying equation (1.2) shows that an aperture greater than 21mm is required to reduce the 

effect of diffraction to the desired value of 2µm. However this increase in aperture size increases 

the quantity of non-paraxial rays in the system and increases the magnitude of the aberrations. 

In order to correct for spherical aberration the diameter of the point spread function should be at 

most 2.2µm. To achieve this, an aperture, placed in the same axial position as in the model in 

section 3.4.4.1, with a diameter 0.06lmm is required. At this aperture diameter the effect of 

diffraction would be a point spread function with diameter 12mm, which is greater than the area 

of the imaging sensor! Additionally an aperture of this size would block out 99 .9% of the image. 

This trade-off in the optical system prevents achievement of the optimal resolution. Although 

the values here are for the case of a lens with p25mm, a lens where the diameter of both the 

spherical aberration and beam spread is smaller than 2µm cannot be found. This is despite 

applying ray tracing and beam spread equations to optical systems in which the lens has both 

shorter and longer focal lengths than 25mm. Therefore, a single lens microscope magnifying 

twenty times cannot provide the resolution required for imaging pollen. This explains the 

blurring of the images at 20x magnification, and most likely for those at lesser magnification. 

3.5.2 Alternatives 

Given that a single lens microscope at a magnification of 20x or more is not possible there are 

two alternatives to consider for the basic design of a computer microscope. 

The first option, custom optics, allows design flexibility. Triplets, such as Cooke ' s Triplet, 

composed of two positive outer lenses and a negative inner lens, has just enough degrees of 
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freedom to allow the designer to correct all the primary aberrations [39]. However considerable 

optical and mechanical design is required. 

The second option, a standard finite achromatic microscope objective, is less flexible than 

custom optics as the design does not specifically suit the optical problem it is being used to 

solve. However a standard objective has known design parameters, is mechanically housed, and 

contains corrective optics for all primary aberrations. Importantly, the cost of a standard 

objective and the cost of three lenses plus housing are approximately equal [ 40]. 

As this thesis is essentially an exercise in system integration the standard microscope objective is 

the prudent and expedient option and has been selected for the design. 

[39] W. J . Smith, "The Design of Optical Systems" in Modern Optical Engineering, USA: McGraw-Hill, 1966. 

pp.340-347 

[40] Edm und Optics, Optics and Optical Instruments Catalog, New Jersey. 2002. Online copy ava il ab le at 

www.edmundopt ics.com 
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4 Image Capture System Design 

The microscope now consists of: 

• A CCD camera 

• A tube which screws into the camera using a standard lens mount thread ('C' or 'F' 

mount) 

• A standard microscope objective 

Figure 18 illustrates the microscope within the experimental platform. 

Illumination 
Source 

)~ 
~ 

Optical Bench 

Figure 18 Experimental Setup 

Having selected the general design, this chapter exammes the components required for a 

computer microscope and for viewing pollen. 

4.1 Selecting an Objective 

Standard microscope objectives come in magnification of 1 Ox and 40x, with a standard tube 

length (distance from the objective to the image plane) of 160mm. Some catalogs also list 20x 

objectives that would be most suitable to this application. However as access was immediately 

available to only 1 Ox and 40x objectives, these were used to capture test images. 

The aim of the following experiments is to examine the image quality and magnification of 

certain arrangements of objective and camera. These experiments will help to determine the 

most appropriate setup to use in the final design. 
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Standard lOx Objective 

Theoretical Values: 

Measured Results: 

Largest Rectangle 

Pixel Width 

Pixel Height 

Actual Magnification: 

Width 

Actual Magnification: 

Height 

I Tube Length 180mm ± 1 Omm 

390 x 290 µm tolerances unknown. 

1000 x 73 8 pixels ± 7 x 15 pixels 

0.39 µm ±0.7% 

0.39 µm ±2% 

11.9 ±0.7% 

11.9 ±2% 

Figure 19 Sections(300 x 300 pixels) of images captured with a !Ox Objective setup at a magnification of 12x 

Standard 40x Objective 

Theoretical Values: 

Measured Results: 

I Tube Length l 80mm ± l Omm 
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Largest Rectangle 90 x 60 µm tolerances unknown. 

898 x 611 pixels ± 8 x 14 pixels 

Pixel Width 0.10 µm ±0.9% 

Pixel Height 0.098 µm ±2% 

Actual Magnification: Width 46.5 ±0.9% 

Actual Magnification: Height 46.5 ±2% 

Figure 20 Sections(300 x 300 pixels) of images captured with a 40x Objective setup at a magnification of 46.Sx 

Discussion 

From the above it can be seen that the 46.5 x images are quite blurred due to empty magnification 

from selecting a magnification whose theoretical resolution would exceed the limits of optical 

resolution. The I 2x images are almost as large as are required for classifying pollen and if the 

optical tube length were increased the necessary magnification may be obtained. It is necessary 

to confirm that doing this does not degrade the image quality. 

lOx Objective to Magnify lSx 

Theoretical Values: 

IM I unknown I Tube Length I 220mm ± l Omm 

Measured Results: 
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Largest Rectangle 300 x 230 µm tolerances unknown. 

975 x 745 pixels ± 10 x 16 pixels 

Pixel Width 0.31 µm ± 1% 

Pixel Height 0.31 µm ±2% 

Actual Magnification: Width 15 ± 1% 

Actual Magnification: Height 15 ±2% 

Figure 21 Sections(300 x 300 pixels) of images captured with a lOx Objective setup at a magnification of 15x 

lOx Objective to Magnify 22x 

Theoretical Values: 

IM I unknown I Tube Length I 330mm ± lOmm 

Measured Results: 

Largest Rectangle 210 x 160 µm 

954 x 746 pixels 

Pixel Width 0.22 µm 

Pixel Height 0.21 µm 

Actual Magnification: Width 21 

Actual Magnification: Height 22 

tolerances unknown. 

± 8 x 14 pixels 

± 0.8% 

± 2% 

± 0.8% 

±2% 
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Figure 22 Sections(300 x 300 pixels) of images captured with a I Ox Objective setup at a magnification of 22x 

40x Objective to Magnify 27x 

Theoretical Values: 

IM I unknown I Tube Length I 90mm ± 1 Omm 

Measured Results : 

Largest Rectangle 170 x 120 µm 

975 x 706 pixels 

Pixel Width 0.17 µm 

Pixel Height 0.17 µm 

Actual Magnification: Width 27 

Actual Magnification: Height 27 

tolerances unknown. 

± 9 x 13 pixels 

± 0.9% 

± 2% 

± 0.9% 

± 2% 
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Figure 23 Sections(300 x 300 pixels) of images captured with a 40x Objective setup at a magnification of 27x 

4.1.1.1 Discussion 

At 22x magnification, the highest magnification obtained using the lOx Objective, the quality of 

the image is degraded from what is expected. Similarly, using the 40x Objective to optically 

magnify 27x produces out of focus images. As the image captured at close to the standard 40x 

magnification in Figure 20 is also out of focus, this leads to the conclusion that increasing the 

optical magnification does not improve image quality. 

However from these images it cannot be directly detennined if exceeding the design parameters 

of the microscope objectives is also causing image degradation. If the degradation is from empty 

magnification alone, then reducing the scale of the images in proportion to its magnification 

should produce the same results. Any significant differences in the rescaled images would be 

from the effects of the objective. Minor differences may arise from resampling and general 

capture inconsistency. 

Figure 24 shows the results of this. The only image to show significant degradation is the image 

captured at 22x magnification. The degradation in this image could be either from poor focus or 

exceeding the design limitations of the objective. However given that the quality of the 

Automation of Pollen Analysis using a Computer Microscope - Craig Holdaway 2004 Page 58 



remaining images is consistent then it seems reasonable to put the poor quality of the image 

captured at 22x magnification down to poor image focus during capture. 

In conclusion, it is acceptable to use the standard microscope objectives at different optical tube 

lengths from 160mm. From these experiments, the acceptable optical tube length of the 1 Ox 

objective is at least the range 160-330rnm, and the 40x objective 90-180mm. 

~ 

m 
. 

. 

Figure 24 Comparative Image Quality of images at different magnifications. All the images are scaled to 12x 

magnification. 

4.1.1.2 Conclusion 

Based on the quality of the images presented in the preceding 6 figures, the 12x magnification is 

the most appropriate magnification to use, as the images obtained using that setup contain crisp 

edges and high contrast. As the magnification increases beyond this the images became 

progressively more blurred and reduced in contrast due to empty magnification. 
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4.2 Camera Requirements 

A key parameter of the design is the element size of the image sensor. This value was factored 

into the design at earlier stages of the development (section 3.4). A smaller element size 

proportionally reduces the optical magnification required. However if the optical magnification 

is increased then effects associated purely with optical magnification could become a problem, 

such as the need for critical illumination. 

To test the effect of increasing the element size a second camera, with element size 9.0µm, has 

been introduced to the system. The increased element size of this camera requires an increase in 

the optical magnification to achieve the same system magnification. This will require an 

increased optical tube length. The aim of this experiment is to determine if there are differences 

in the quality of the images at the same magnification. 

Standard 40x Objective - Increased Camera Element Size 

Theoretical Values: 

I Tube Length I l 40mm ± 1 Omm 

Measured Results: 

Largest Rectangle 220 x 170 µm 

1000 x 800 pixels 

Pixel Width 0.22 µm 

Pixel Height 0.21 µm 

Optical Magnification: Width 41 

Optical Magnification: Height 43 

Tolerances unknown. 

± 17 x 22 pixels 

±2% 

±3% 

± 2% 

± 3% 
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Figure 25 Image captured at different optical magnifications having the same system magnification. 

4.2.1.1 Discussion 

A 40x objective was necessary to generate an image with a suitable size for imaging pollen, as 

set in section 4.1. The images shown in Figure 25 compare those taken with a camera of element 

size 4.65µm and an optical magnification of 22x (Figure 25 left) with those taken with a camera 

of element size 9.0µm and an optical magnification of 42x (Figure 25 right). The image of the 

left is superior to that on the right, however at such a high optical magnification the image is 

very difficult to focus. More importantly, at this optical magnification the lighting becomes 

critical which may also account for the degradation of the image on the right. Regardless of the 

cause of the degradation, including correct illumination for a high powered objective in the 

system would require additional optics, which detracts from the aim of achieving simplicity in 

the design. 

In conclusion, a small element size in the image sensor is important, as it reduces the optical 

magnification, which removes the criticality of the illumination, and makes the microscope 

easier to operate. 

Automation of Pollen Analysis using a Computer Microscope - Craig Holdaway 2004 Page 61 



4.3 Selecting Illumination 

4.3.1 Optical Wavelength 

The effect of chromatic dispersion on the quality of an image has been discussed in section 

3.4.2.2. This led to the addition of a narrow-band optical filter to the system. One question that 

remains from that section is why the narrow-band filter was placed at the red end of the 

spectrum. After all if the aim to see small objects, it would seem sensible to use the smallest 

wavelengths of light possible. 

The choice is affected by three factors: 

• The spectral response of the CCD 

• The wavelength filters available 

• The quality of the correction by the objective 

The spectral response of the CCD in the Micropix M-1024 is shown in Figure 26. This would 

suggest using a filter centred around 500nm where the sensitivity of the CCD is greatest. 

However from the equipment available two potential filters are possible: the first 500nm -

600nm pass band, but with high transmittance (>20%) in the stop bands; or 630nm - 700nm pass 

band with less than 4% transmittance in the stop bands. The response of the CCD is still 

reasonable at 700nm, and the second filter has a smaller bandwidth than the first. Therefore the 

second filter was selected. 

As noted above, the third factor is the quality of the correction by the objective. The 630nm -

700nm filtered image was compared with an image captured with only the 700nm IR-cut filter in 

place. The difference in image quality was barely perceptible. Therefore a narrow-band filter is 

not essential in this computer microscope design. 
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Figure 26 Spectral Response of the CCD in the M1024 camera 

4.3.2 Illumination Source 

A filtered light source requires a high intensity and high power white light source, and then 

removes most of the light intensity because it is not a useful wavelength. The alternative to 

doing this is to find suitable illumination that is already of the correct wavelength. Such sources 

are considered narrow-band light sources and come in three practical types: LEDs, arc lamps and 

lasers. 

4.3.2. I LEDs 

A light emitting diode (LED) is a semiconductor junction that emits light and heat when 

sufficient current is passed through it. The LEDs used to test the effectiveness of this form of 

illumination had a bandwidth of 660 ± 20 nm [41]. Unlike incandescent sources, LEDs are 

directional, concentrating most of the light energy within I 0° of the centre axis. 

Nine LEDs arranged in a 3x3 grid arrangement were used to illuminate the specimen. This 

number of LEDs was used as their physical size made placing more LEDs impractical within the 

area necessary for illuminating the specimen. The light path was surrounded by a piece of white 

plastic down-pipe to ensure stray white light did not mix with the narrow-band light, and that 

divergent light from the LED's was reflected back into the tube. 

[41) Dick Smith Electronics Catalogue Number Z4074. Light output: 3.6mcd at 20mA 
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The pattern of the LEDs was evident at the camera. Rather than a single 'mass' of light, there 

were 9 separate points. This is not useful as in effect only the centre LED is providing 

illumination. To merge the separate points a condenser lens, possible with one or more ancillary 

lenses, is required. 

4.3.2.2 Lasers 

A laser is a coherent light source producing a very intense and very narrow band of light. Due to 

mass production lasers are also very economical as a packaged laser diode retails for around $2, 

with the added advantage of having an appropriate wavelength for a CCD sensor. Lasers present 

one problem in this application: coherence. The coherent nature of the laser light causes it to 

form interference patterns when it travels around objects, resulting in an image containing high 

contrast artefacts. It may be possible to deconvolve the image, but that is of far greater 

complexity than is practical. An attempt was made to remove the coherence by applying a 

prepared transparent surface etched with a fine abrasive in an endeavour to provide path 

differences of the order of? 14. This quick and crude experiment was not successful. 

4.3.2.3 Arc Lamps 

The scientific mercury arc lamp that I was able to obtain was of insufficient intensity to 

illuminate the source adequately, both due to its lack of intensity and the lack of a dark housing 

that would normally be found with an arc lamp in a conventional microscope. Furthermore, an 

arc lamp operates at high voltage requiring a bulky step-up transformer or the switch-mode 

equivalent, both of which limit the flexibility of the design. However the key drawback of arc 

lamps, particularly when compared to LEDs and lasers, is its expense, prohibiting its use in this 

design. 

4.3.2.4 Conclusion 

LEDs or a laser provide the most economic solution. LEDs have the advantage of being the 

most flexible, in that they can be flashed, or 'ganged up' relatively easily. Lasers have the 

advantage of being the most intense. However both of these options require extra lenses to either 

form the light from the LEDs into a single beam, or to disperse and remove the coherence of the 

laser. Either solution would therefore detract from the aim of design simplicity. 
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It has been found that a standard 75W incandescent light bulb provides sufficient light intensity 

and an adequately uniform field to be used as a light source, even with the 70nm-wide filter in 

place. The light bulb was placed 25cm behind the specimen slide in the experimental setup. This 

is the illumination scheme used in the final design. 

4.4 Mechanical Discussion 

It is worth briefly mentioning the mechanical components of the design. In the experimental 

setup an old microscope slide table was used for x-y controls, and a translation stage driven by a 

screw thread was used for fine focus. Both were mounted onto an optical rail. This was shown in 

Figure 18. Both are bulky and impractical for a system designed to be flexible. It is important to 

note that this section, like section 3 .1 , was not researched in detail, but is rather a collection of 

ideas that may assist the researcher who is faced with this implementation problem. 

Section 3.1 discussed potential means of presenting the specimen to the microscope. The 

selection of a presentation mechanism constrains the requirements for the mechanical 

components of the microscope. Section 3 .1.1 , Slide Scanning, requires the conventional 

attachments of a slide table with x-y controls and a means of moving the entire table in the z­

direction (toward or away from the objective) for focusing. This requires considerable 

mechanical precision, however that technology is in widespread use. Section 3.1.2, Alternatives, 

discussed ideas for removing some of the axes of control that are performed by the x-y and focus 

controls in a conventional microscope. Removing some axes of control reduces the complexity 

of the mechanical controls. Also, if the system had enhanced depth of field introduced by 

wavefront coding (section 3.2.4), then fine focus may not be needed. 

Flexibility is a theme of this research, and perhaps the most suitable design would be to install a 

mechanical interface on the microscope, probably around the side of the optical tube, so that 

presentation mechanisms designed with a known interface, and can be interchanged. The 

challenge would be to achieve this at low cost. 

Automation of Pollen Analysis using a Computer Microscope - Craig Holda way 2004 Page 65 



4.5 Final Design of a Computer Microscope 

Illumination 
+ I 

t ~ 10x 

Aperture Object Objective 

180mm 

Optical Tube 

IEEE1394 Link 

I ~H~1 D_ 
0000001 

Camera Display 

Figure 27 Design of a Computer Microscope to optically magnify 12x 

The selected design for a computer microscope, shown in Figure 27, is much simpler than a 

conventional compound microscope. By replacing the human eye with a digital image sensor 

many simplifications to the design have been able to be made. In particular the magnification is 

greatly reduced, and achieved with an inexpensive standard objective. Reduced optical 

magnification removes the need for the complex condenser optics, and allows a cheap source of 

illumination to be used, such as an incandescent light bulb. 

This design is more flexible than a conventional compound microscope as it is not bulky or fixed 

in place, making it suitable for fieldwork. Its cost is still significantly cheaper than a 

conventional microscope as both the conventional microscope and this microscope require a 

camera, and the comparative cost remains in the optics and illumination system. Importantly it 

stands apart from existing entry level computer microscopes such as the QX3 by providing 

significantly higher magnification. 
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5 Segmentation 

The second block in the pollen identification system of Figure 1 is Segmentation. As noted in 

the introduction, segmentation involves isolating the regions within the image where there are 

likely to be pollen and preparing them in a suitable form for classification. It is important to note 

that development of the segmentation algorithm was carried out using available archive images 

captured on a conventional compound microscope with a camera attachment prior to the 

commencement of this research. This was done because the classification was developed to use 

those pollen images. Subsequently, as reported in Chapter 6.3.1, the segmentation algorithm was 

successfully trialled on pollen images captured using the computer microscope. 

5.1 Segmentation Environment 

5.1.1 Constraints 

In image processing we must take a pragmatic approach to problem solving. We cannot 

investigate all possible cases, rather capture representative images and base our algorithms on 

these samples. The purpose of the segmentation algorithm is to take captured images of sections 

of pollen slides and select individual pollen, ideally producing a set of images containing all the 

pollen on the slide. As with all blocks in a classification system, the segmentation process is 

constrained by the requirements of the processes up and down stream of it. 

5.1.1.1 Classification 

The feature calculation module of the classification system has the input requirements 

summarized here: 

• Images must be monochromatic 

• Images must contain only one significant item (a pollen or debris), which must be 

surrounded by a 'plain' background. 

The second of these requirements has serious implications. If overlapped pollen cannot be 

classified, and therefore counted, then the count is no longer accurate. The accuracy of statistical 

sampling is also lost as deliberately leaving out clusters of pollen that cannot be classified would 

significantly alter the final counts, particularly as, from observation, some pollen types tend to 

cluster. This has implications for the scanning system (section 3.1 ), where a full slide scan was 
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one of the techniques proposed for automating the acquisition of pollen images. If some of the 

pollen data is going to be ignored because it is in clusters then it is inappropriate to conduct a full 

slide scan. A sample is appropriate. 

Given the second point above, that the square region containing segmented pollen grain may not 

contain any other parts of objects, then the aim of the segmentation algorithm is to segment only 

those pollen grains that are isolated on a clear background. Any pollen that is clustered will be 

immediately surrounded by other pollen and are not directly suitable for classification. These 

pollen cannot be completely ignored however as they are part of the sample of the environment 

which a slide represents. Thus it may be possible, for instance, to construct a false background 

around a pollen from a cluster. However isolating a pollen grain within a cluster will require a 

significantly different algorithm from isolating an individual pollen grain, and consequently the 

segmentation algorithm will initially target the isolation of individual pollen grain, as the results 

from this will directly satisfy the classification subsystem requirements. 

5.1.1.2 Capture 

The capture subsystem provides an image of part of a pollen slide that may or may not contain 

pollen and detritus. 

5.1.2 Scene Analysis 

To develop an image processing algorithm the expected contents of a scene must be known and 

categorized. A generic pollen slide scene is made up from seven components: 

5.1.2. l Background 

The background predominates an image of a pollen slide. The background is generally very 

white, and does not exhibit any great or rapid changes in intensity. An example is shown on the 

left of Figure 28. 
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Figure 28 Example images of Background and a Pollen Grain 

5.1.2.2 Isolated Pollen 

Isolated pollen grains generally have a circular or round-cornered triangle shape. The 

appearance of pollen depends on its taxon. The region within the boundary of the pollen is 

generally filled with a stochastic texture (see section 5.2.2). The edges of a pollen grain are 

usually defined, but can be similar in intensity to the background or very thin, at times making 

them difficult to see. An example of a single pollen grain is shown on the right of Figure 28. 

5.1.2.3 Clustered Pollen 

Clustered pollen grains occur where pollen grams are overlapping and thus have the 

characteristics of incomplete isolated pollen grains. Two examples of clusters are shown in 

Figure 29. 

Figure 29 Example images of Pollen Grain Clusters 

Automation of Pollen Analysis using a Computer Microscope - Craig Holdaway 2004 Page 69 



5.1.2.4 Touching Pollen 

There is a transitional stage between clustered and isolated pollen, where the pollen grains are 

touching at a few edges but not overlapping. The left image of Figure 29 contains mostly 

touching pollen grains, with the exception of the top left pair, whereas the right image of Figure 

29 contains completely overlapping pollen grains which could never be optically separated. 

5.1.2.5 Bubbles 

Bubbles are the result of air being trapped in the slide gel. These are almost always circular, 

with very dark and light bands. Bubbles can be larger or smaller than pollen grains. The left 

image in Figure 30 shows the edge of a bubble. 

Figure 30 Example images of Optical Effects 

5.1. 2. 6 The effects of Diffraction 

These are the result of objects that are not in focus at this plane, and take the form of either Airy 

(mis-focus) disks or general blurs. The edges of diffractive effects are not usually well defined, 

and they tend to meld with the background. The right image in Figure 30 shows a diffractive spot 

due to a significant! y out of focus object. 

5.1.2. 7 Debris 

All other image elements are considered to be debris. Debris comes in all sizes, shapes and 

geometries, however some examples are more common than others. For instance 'branch-like' 

structures were observed to be common in the images used for development; as are small, dark, 

high contrast debris. Figure 3 l shows several examples of debris. 
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Figure 31 Example images of Debris 

5.2 Initial Approaches 

For these investigations a test set containing nine images of pollen grains was generated from a 

collection of compound microscope images. Each image features different pollen type and 

encompasses all seven elements of the scene identified in section 5.1.2 above. The pollen used 

differs considerably in texture and definition. Figure 32 shows three types of pollen from the test 

image set. 

Figure 32 Three Pollen Types used in the test set (left to right): Fabaceae Sophora (2 pollen grains), 

Magnoliaceae Michelia doltsopa (2 pollen grains), Lamiaceae Salvia 

5.2.1 Basic Methods 

A characteristic of the pollen is that, on average, they have a different intensity to the 

background of the image they are part of. Therefore subtracting the image containing pollen 
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from an image representing the background, and applying an appropriate threshold, will reveal 

the positions of objects in the image. The problem is that no background images are available 

for this test set, and an artificial background has to be created by taking a global average. This 

algorithm was applied with different global thresholds. The resulting regions defined by this 

algorithm either contained too much background or lost significant portions of the objects. The 

most effective of these is included in the appendix as prog5.vip (section 7.1.1). 

Pollen grains have two walls and these show clearly on optical microscopy images (section 2.1 ). 

This suggests that edge detection may be a useful approach for identifying the location of pollen 

grains. A variety of simple edge filters were applied to the development images. The outlines 

of the pollen grains were visible in the resulting images, however the edges did not form a 

complete loop. Without a complete loop or a reasonable approximation of one it is difficult to 

locate the pollen algorithmically. Additionally the edge detection methods generated significant 

noise. 

Much of the image manipulation in the above experiments used morphological operators (section 

2.5.1.2), particularly for merging disparate sections of processed pollen grains. These are the 

small blobs created by regional or edge processing that are closely located but are not connected. 

The immediately obvious approach to consolidating these into a pollen region is to use 

morphological closing. However there is an inherent problem in using morphological closing. 

In order to successfully merge the small blobs that may make up a pollen grain region a large 

window size is needed. The problem with a large window size is that it increases the probability 

of merging regions that represent different objects and therefore should not be merged. Such 

merging would introduce the problem of multiple objects per region, and prevents the use of 

simple statistical tests for screening suitable for pollen, such as a compactness test. 

The basic methods applied in these experiments highlighted the complexity of the problem, in 

that no simple solution could be found. The most promising approach is to reduce the 

complexity of the problem by creating a mask that contains the pollen as well as non-pollen. 

This is best implemented by either the region or edge methods above. However the best results 
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of these experiments were not successful on all of the nine development images, most often 

failing on images 4 and 5. 

5.2.2 Texture 

As the basic methods have been found to be inadequate, more complex approaches are 

necessary. Texture has been identified as a potential technique for screening regions of the 

image for pollen grains because texture methods have proven successful in the classification of 

pollen [7]. Texture can be quantified using techniques that analyse the probability of a transition 

between different grey levels. There are many basic measures of texture including contrast, 

entropy, uniformity/energy and inertia [42-43]. Texture, as a region-based method, may be a 

more reliable approach as it is less sensitive to noise than an edge-based method. 

A texture window filter would analyse the content of the window, performing calculations to 

establish the texture. If the texture content met the texture constraints of 'a pollen grain' then the 

region of the window would be considered part of a pollen grain. The same filter could be 

applied in a rejection mode. For instance bubbles have low entropy and could be eliminated in 

this way. 

In order for this approach to be feasible, a basic textural model of a 'general' pollen grain must 

be identified. A texture data set was generated using a 7x7 window passed over samples of 

internal pollen texture taken from the nine test images. The Energy, Homogeneity and Inertia 

properties were measured, using the SGLDM and equations employed in [42] with d=l and 

angle=0°. The statistics gathered are presented in the following table: 

Statistic Minimum Maximum Mean 

Energy 0.000432 0.126 0.00755 

[42] R. M. Hodgson , E. J. Wood , "Texture Analysis - A New Measurement Tool For Inspection and Quality 

Control," in AIM89 - Australian Instrumentation and Measurement Conference, Adelaide, November 1989. pp270-

274. 

[43] Gonzalez R. C., Woods R. E., " 11.3.3 Texture" in Digital Image Processing, 2"d ed., Prentice-Hall , New Jersey: 

2001 , pp.665-671 
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Homogeneity 0.0655 0.452 0.201 

Inertia 5.07 913 160 

Using a qualitative inspection, it appears that all three measures have a range of about two orders 

of magnitude, and are reasonably compact and balanced in 'power-space'. Therefore these 

ranges can be used to determine if a window is likely to contain part of a pollen grain. 

A 7x7 textural window was passed over the image, and the textural statistics within that window 

calculated and compared with the general statistics. However this method has not proven 

successful as the complexity of the algorithm (O(N6
)) has made it impractical to use. The source 

code to this is attached as an appendix, 7.1.2. 

To reduce the computational complexity it may be possible to apply the texture filter after some 

regionalization has been done such as that suggested in section 5.2.1. The aim of applying the 

texture filter at this point would be to further reduce the regions within the image where pollen 

grains are suspected to be. However any application of this texture algorithm at this stage would 

still require significant processing time. 

5.2.3 Optical Density Sub-sectioning 

The Integrated Optical Density, IOD, is a measure of the average grey level within an image or a 

window, and is equal to the sum of pixel grey level values divided by the number of pixels [44]. 

Pollen will have a different IOD to the background. By setting a threshold to determine this 

difference locally, the edges of optically dense areas can be pinpointed. The approach taken here 

was to use a recursive search, starting with an area larger than a typical pollen size to identify 

general areas of different optical density (i.e. the presence of something other than background), 

then reducing the window size, searching only within areas where a larger object was believed to 

be. 

[44] Im aging Research Inc., " Dens itometry," Dec 3 2003, www.im agingresearch.com/applicati ons/densitometry. asp 
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This technique is extremely fast, however is dependent on the threshold used to select or reject 

blocks. This algorithm, a complicated recursion algorithm, was implemented in C++ and the 

software listing is attached as an appendix, 7 .1.3. 

5.2.4 Initial Approaches: Summary 

The simplest morphological and edge-based approaches work on some images, but cannot 

adequately isolate only objects. 

The texture approach suffers two drawbacks: 

1. The values that define the statistical range of the pollen are difficult to set robustly. 

2. It is impractical from the point of processor time. A small image (~40KB) takes about 12 

minutes to process. A full image (~lMB) would take hours. 

The IOD approach localizes and isolated the objects well for some images, and it is very fast. 

However it is extremely sensitive to the threshold value it uses, and unless an adaptive means 

were determine for setting this reliably then it is not a reliable method. 

Generally none of these methods have been even close to successful across the full test image set 

and consequently there is need for deeper analysis. 

5.3 Deeper Analysis 

5.3.1 Test Image Statistics 

At this point it became important to conduct a more analytical survey of the test images. A total 

of 31 cross-sections were taken through the 9 images, each cross section containing at least one 

object, typically more than one. The objects of interest included pollen, out-of-focus pollen and 

diffraction effects, bubbles, spots, debris and background. The cross-sections were analysed for 

gradient by measuring the difference between adjacent pixels. 

5.3.2 Mean and Variance Filter 

The first striking feature of the cross-sections was the characteristics of the noise. The variation 

in the noise is reasonably consistent across the cross-sections as shown in Figure 33 for a typical 
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plot, and the presence of any objects resulted in a significantly greater deviation from the mean 

local intensity than the noise level. Given this consistency then basic statistics are an appropriate 

tool for characterizing the background. 

The slight parabola present over the whole image is the result of non-uniform illumination at the 

image capture stage. In the development images the non-uniformity was not significant enough 

to warrant correction, but correction may need to be considered if there was greater non­

uniformity. 
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Figure 34 Cross-section through a pollen grain 

The most important observation is that any objects present have intensities well outside the range 

of the background as shown in Figure 34. This provides a tool for constructing a 'filter'. The 

statistics chosen are the mean and variance. It was determined that a suitable filter would retain 

the pixels whose greyscale value was more than one variance level away from the mean. In 

practice, given the consistency of the noise variation across all test images, the background 

displayed above (test image l) was used to calculate a test-set wide value for the variance. The 

mean was calculated as a global average for each image. 

Filter summary: 

Kij = l where lij > (µ+var) or Ii.i < (µ-var) where µ is the greyscale mean of the test image, and 

var=26.72, as calculated from test image l. The Matlab function for performing this is listed in 

appendix 7.1.4. 

This approach successfully allowed the isolation of every non-background item in the test image 

set. However, as the pollen grains have some regions that are similar in intensity to the 
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background (due to their translucency) they are not complete blobs, whereas diffraction effects, 

which tend to be of a low intensity gradient, are complete blobs. This can been seen in Figure 35 

where the out-of-focus pollen in the top right of the original image has the most defined blob in 

the processed image. 

The mean and vanance filter was successful in identifying where objects are in these 

development images. However all the development images were captured under the same 

illumination conditions, and altering the illumination would alter the statistics of the captured 

images and cause the algorithm to fail to identify objects. An adaptive variance threshold would 

assist robustness. 

5. 3.2.1 Alternatives 

An alternative, but similar, technique was suggested by Associate Professor Phil Bones of 

Canterbury University, called H-Domes (and their 'partner' H-Basins) [45]. This technique 

would probably provide similar performance to the above technique, as both require a threshold 

level to be set. 

5.3.2.2 Background Subtraction 

As noted at the beginning of the chapter, the test images that are being used for this analysis 

were captured prior to this research being conducted and unfortunately no independent 

background image is available so background subtraction was not an option. In order to 

integrate existing images into the classification the above mean and variance filter is required. 

However when integrating capture and segmentation it was found that a mean and variance filter 

can be replaced with a simple background subtraction and threshold, as will be detailed in 

chapter 6. 

5.3.3 Edge Statistics and Enhancements 

The cross-sections also show that pollen grains have a much greater slope than non-pollen 

objects. The slope is the difference in greyscale level between neighbouring pixels. Treating the 

[45] L. Vincent , " Morphologica l G rayscale Reconstructi on in Image Analys is: Applicati ons and Effi cient 

Algorithms", IEEE Transactions on Image Processing, Vol.2 , No.2, April 1993 
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cross-sections as a sample of the whole image set, it was determined that a slope between 

neighbouring pixels of greater than 20 could be used as a means of identifying the edges of 

pollen grains. This provides a means of separating pollen grains from non-pollen objects. From 

the 31 cross sections it was found that if the slope between neighbouring pollen grains is greater 

than or equal to 20 greyscale levels then 2 false positives are generated and 1 pollen grain is 

missed. This is acceptable given the sampling nature of the experiment, for instance the sampled 

cross-sections may have missed high slopes by only one or two pixels due to local anomalies. 

What is important is that none of the non-pollen objects had sizable areas of high slope large 

enough that they would be included as a pollen grain by the slope threshold operation. 

However the only region within the pollen grain that has sharp edges are the walls of the pollen. 

Consequently these have to be consolidated using a closing operator (9x9 window). A closing 

operator is not ideal for use in this algorithm, as the degree of closing required to consolidate the 

pollen grain region would cause neighbouring pollen grains to merge. The edges are a strong 

indication that a pollen is present in that region. Therefore if there exists a region in the 'mean 

and variance mask' image in which an edge is present, then it is likely that that region contains a 

pollen grain. The MATLAB function for performing the edge detection is listed in appendix 

7.1.5. 

5.3.4 Region Matching 

The region matching algorithm is explained below. To illustrate this an example from the 

development images is used. The image used was particularly difficult because of the weak 

edges on the pollen grains and the mixture of in focus and out of focus pollen and debris. Figure 

35 shows part of the original image, and the results of applying the mean and variance mask to 

that image. Note that all the objects are at least partially selected by the mean and variance filter, 

however the strongest regions are actually the regions that have to be rejected. This example 

shows the need for the edge detection to select pollen grains from non-pollen objects. 
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Figure 35 (left to right) Original image; image with mean and variance filter applied. 

Figure 36 shows the results of the edge detection and the consolidation of the edges. Note that in 

the right-hand image a small section of the out-of-focus object at the top right has survived. This 

will eventually be removed by thresholds that remove regions too small to be pollen grains. 

Figure 36 (left to right) image with edge detection applied; consolidated edge detection image 

Region matching is the algorithm which associates the small pockets of detected edges which 

indicate where pollen grains are, with the mask generated by the mean and variance filter. The 
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drawback in associating these images is that the detected edges represent a small part of the 

pollen grain, an area which is not at its centre and consequently simple operations, such as 

dilation, cannot be used to isolate the pollen grain area accurately. 

The approach finally selected for the region matching was a simple one. Since there are two 

binary masks, and one should be a subset of the other, then the two masks can be AND-ed 

together, as demonstrated in Figure 37 (left). A pollen grain is expected to have edges on all 

sides. Typically at least two areas of edges on opposite sides of a pollen grain are identified by 

the edge detection stage. The two areas of edges are sufficient to isolate a pollen grain that is 

between those edges by using low-level consolidation techniques. The techniques used are: a 

dilation to 'complete' the outer edge ring of the pollen, a fill to fill in the pollen grain, and an 

erosion of equal magnitude to the previous dilation so that the original boundaries of the pollen 

grain are approximately restored. To complete the extraction of the pollen grain the small 

regions are removed. The final result is shown in Figure 37 (right). 

Figure 37 (left to right) image after the AND operation; image after consolidation and removal of small 

regions. 

5.4 Final Algorithm 

The final algorithm, mostly illustrated immediately above, has the flow chart shown in Figure 

38. The full MATLAB code is listed in appendix 7.1.6. 
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Figure 38 Segmentation Algorithm 

This algorithm performed satisfactorially on eight of the nine test images. The major failure of 

this algorithm on the images within the test set is where the pollen grains are too close together 

and the algorithm merges these into a large blob. This is acceptable as the target is isolated 

pollen grains. Additionally objects that are too small to be pollen grains are being isolated. A 

region size threshold can easily remove these. 

Figure 39 illustrates one of the problems with the segmentation: the pollen at the bottom-left of 

the image is only partially in focus, probably because it is sitting across several depths-of-field, 

and the left edges of the image of the pollen have insufficient slope for that edge to be detected. 

The ideal result from the segmentation would be to reject the pollen grains outright as it is not 

suitable for classification, however the partial but strong right and bottom edges prevent this. 
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Figure 39 Image four from the development set: The final result with two pollen grains successfully 

identified, two large non-pollen objects rejected, and one pollen grain incorrectly identified. 
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6 Integration 

System integration is often regarded as a straightforward task by those uninitiated in the field of 

software engineering. Failures at the integration stage arise from problems in interfacing units 

that independently function correctly [ 46]. It is also worth noting that a 90% success rate in each 

unit within a system does not result in a 90% success rate for the whole system. In my 

experience such success rates are multiplicative, and the 10% erroneous output from each unit 

can cause exponential damage to the rest of the system. Thus careful integration is an important 

step in any software development. 

This project does not involve complex software engineering, so many aspects of formal software 

engineering processes have been omitted. However some aspects are important in the 

determination of the design of the system. The user interface defines how people interact with 

the software and therefore constrains the design of the software. User interface considerations 

are considered in section 6.1. Sections 6.2 and 6.3 describe the integration process, firstly the 

verification of the classification algorithm, followed by the combination of the three units: 

capture, segmentation and classification. Section 6.4 summarizes the results of this research and 

recommends avenues to pursue to reach the aim of the Pollen Research Group, to automate the 

counting of pollen. 

6.1 Analysis of Operator Interaction 

It is expected that a pollen classification and counting system will require an operator. The 

operator would provide human input where it would be extremely difficult to provide automation 

or where the system would be greatly simplified by having operator input. The degree to which 

the operator interacts with the system affects the software design, as different levels of 

automation, and therefore user input, provide different information for the system. 

6.1.1 Full Automation 

The ideal automated system requires no human interaction. It is ideal from a software engineer's 

perspective because humans introduce unknowns, are a source of errors, and are the most 

[46] R. S. Pressman, Software Engineering, A Practitioner's Approach, 5•h Ed. , McGraw-Hill , 2001. p.488 
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variable factor in a system. A voiding the uncertainties introduced by humans is a strong case for 

full automation. Full automation, however, is extremely difficult to achieve. Humans possess 

intuition and flexibility in judgement which is very difficult to program into a computer. 

Consider the effects of fully automating the segmentation process. The segmentation process 

relies on knowing the intensity gradient (section 5.3.3) of a pollen grain for determining if a 

region is likely to contain pollen. The gradient threshold for selecting pollen is determined by 

sampling the difference between neighbouring pixels and comparing the results for pollen grains 

and non-pollen objects. Thus to find the gradient threshold automatically requires knowing 

where the pollen grains are, which in turn requires knowing the gradient threshold, and gives rise 

to a 'Hole in the Bucket' scenario [ 47]. Furthermore, under full automation, the segmentation 

process would have to work with a wide range of illumination, low contrast, and non-uniform 

illumination. Designing and testing an algorithm to cater for all potential cases is verging on the 

impossible. 

Additionally, from an economic perspective, full automation, at this time, is not necessary. In 

current microscopy an operator is needed to load and focus the specimen slides, so requiring a 

human to assist in the operation of some parts of the processing will not necessitate expensive 

additional staff. 

6.1.2 Calibration by Example 

There is an operator interaction continuum ranging from full automation and no operator 

interaction at one end to no automation and the operator manually analysing the slides at the 

other. Full automation has been shown to be currently impractical, so an automation solution 

must be found which is near to full automation on the continuum, but with concessions made to 

operator interaction where it is more practical to do so. 

The example in the previous section illustrated the problem of needing to know where pollen are 

to determine some global conditions of the system. An operator could provide this infonnation 

[47] Referring to th e Scouts ' song There 's a Hole in My Bucket, whi ch illustrates a cyc le of requirements where in 

order to repair the ho le in the bucket it is eventua ll y shown th at we req uire the bucket. 

Automation of Pol/en Analysis using a Comp uter Microscope - Craig Holdaway 2004 Page 85 



by, say, drawing a box around a pollen grain in the captured image, from which information can 

be gathered. This provides data unique to that situation, both in terms of the capture conditions 

such as the illumination, and in terms of the characteristics of a particular taxon of pollen 

present. This approach is not without its faults. Firstly, the assumption has been made that the 

first pollen grain found is representative of the remainder. This will be the case frequently, as 

pollen grains have been shown to exhibit differentiating characteristics from other objects on the 

slide, but not universally. Secondly, this approach relies on the correctness of the operator, as 

there would be no straightforward means of checking. If there were, an operator probably 

wouldn't be required! 

Operator interaction will also allow a background image to be captured separately, a step which 

saves considerable complexity by removing the mean and variance filter as shown in Figure 38. 

A background image also allows analysis of the illumination conditions under which the images 

are captured. The information gathered from this analysis can be used to correct for illumination 

faults. 

6.1.3 Summary 

The process where an operator identifies and isolates a pollen grain from a captured image by 

drawing a box around it has been selected as the level of operator interaction. The pollen 

isolated by this process will henceforth be referred to as the 'reference pollen' . 

6.2 Classification 

As stated in section 1.2.2, the classification sub-system is the result of the research carried out by 

Zhang[8]. Zhang's research demonstrated a 92% success rate in classifying 16 different taxa of 

pollen. The classification itself was performed by a neural network. The data used to train the 

network and the data input for classification are vectors describing an image of a pollen grain by 

its size, shape, and textural features. 

It is important to confirm that the classification subsystem performs as expected before it is 

integrated into the full system. The images used to test the classification are the same as those 

used by Zhang, and a classification rate of 91 % has been achieved. This is similar to the 92% 
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achieved by Zhang, where the discrepancy between the results is due to the weights of the neural 

network being initialised with random values. Some of the source code for the classification is 

attached as an appendix (section 7 .1. 7). The training and testing systems associated with the 

classification are summarized diagrammatically in Figure 40. For further detail, Zhang's report 

is recommended [8]. 

Neural Network Classifier - Training System (trainingsystem.m) 

Read Image 
of Individual 
Pollen Grain 

Calculate 
Features 

repeat while more training 
images are needed 

Normalize 
Feature 
Vectors 

Normalized Vectors 
of all the training data 

Read 
Feature 
Vectors 

Select 
Features 

Select 
Features 

Neural Network Classifier - Testing System (testingsystem.m) 

Figure 40 Classification Sub-System 

6.3 Integration 

Train 

Classify 

There are two paths through the full system, which is shown in Figure 41. The first of these is 

the training system, which gathers a sufficient number of pollen images of each taxon so that a 

neural network can be trained to identify that genus in the presence of other pollen. The second 

of these paths is the classification of a single pollen grain using the classification parameters 

established by the training system to classify the pollen. 
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The complete source code for the integration is listed in sections 7.1.7 and 7.1.8. 

6.3.1 Testing 

To confirm that the integrated system is functioning correctly testing is required. The 

appropriate test for this system is to capture images of pollen slides using the computer 

microscope, segment them, train a neural network using the segmented images, and then test the 

whole system by processing segmented images through the classification. The test set used for 

this testing consists of approximately 70 images captured using the computer microscope, 

intended to contain 120 individual pollen images, 30 of each taxon. 16 of each taxon will be 

used to train the neural network, and all 30 of each taxon will be used to test the neural network. 

Unfortunately enough time had passed between the development of the capture process and the 

integration that some of the pollen that had originally been successfully captured, appear to have 

died or dehydrated and become opaque. As most of the pollen had become less transparent the 

camera was set to saturate the image so that the contrast of the pollen was enhanced. The benefit 

of doing this is that the images captured, of pollen and debris on a completely white background, 

were more comparable to the images that had been used during the development of the 

classification, than the images previously captured using the computer microscope. 

Initial failures in the system occurred in the segmentation process. The four taxa used in the 

integration testing varied in size significantly from the large Pinus radiata to the small Rumex 

obtusifolius. The fixed thresholds in the segmentation used for rejecting regions based on their 

size were not suitable for these extremes and adaptive thresholds were introduced. The values 

Automation of Pollen Analysis using a Computer Microscope - Craig Holdaway 2004 Page 88 



for these size thresholds were based on the area of the reference pollen. A second failure was the 

rejection of a large number of pollen grains in the images based on their proximity to other 

pollen grains or debris. This was corrected by introducing a further subdivision algorithm that 

separates a local cluster of objects into individual regions and ignores close neighbours. 

6.3.2 Results 

6. 3.2.1 Segmentation 

To confirm that the segmentation process was functioning correctly, the images containing 

pollen grains were segmented. The threshold values here are included for future reference as to 

what might be expected for these values. Visual inspection has confirmed the number of pollen 

grains present should be at least approximately 30 for each taxa. The errors record regions 

which should not have been present in the segmented image set. 

Betula pendula 
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RegionArea Threshold 4278 

RegionSelectLower 
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Image Count 

Errors 

Cyathea dealbata 
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Figure 42 Betula pendula 

Figure 43 Cyathea dealbata 
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Pinus radiata 

Gradient Threshold 30 

RegionArea Threshold 31080 

RegionSelectLower 9324 

Threshold 

Image Count 24 
Figure 44 Pinus radiata 

Errors 0 

Rumex obtusifolius 

Gradient Threshold 33 

RegionArea Threshold 6156 

RegionSelectLower 1846 

Threshold 

Image Count 51 
Figure 45 Rumex obtusifolius 

Errors 5 

The image count for Pinus radiata is a little low. This is due to the elongated shape of some 

pollen grains, which has caused a failure of in the compactness test. Increasing the compactness 

threshold subtly corrects this problem without introducing too many errors elsewhere. 

The five errors for Rumex obtusifolius are due to two pollen grains being almost directly on top 

of each other. The segmentation system was designed to separate objects with the general size 

and shape characteristics of pollen grains, and two pollen grains almost completely on top of 

each other have these characteristics and therefore cannot be rejected at segmentation. Thus the 

five errors are not failures in terms of the design specifications of the segmentation, but may not 

be classified correctly. 
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6.3.2.2 Pollen Classification System 

Images containing 64 individual pollen grains, 16 of each tax.on, were used to train the neural 

network. A total of 120 images containing pollen were then used to test the neural network. The 

results are as follows: 

Pollen Correctly Classified 115 

Pollen Incorrectly Classified 5 

Success Rate 96% 

Two failures occurred where Betula pendula were incorrectly classified as Rumex obtusifolius, 

and three failures occurred where Rumex obtusifolius were incorrectly classified as Betula 

pendula. 

6.4 Conclusions and Recommendations 

At each stage pleasing results have been obtained, however all of the modules in the system 

could be improved and there are areas where completely new solutions could enhance the 

performance of the prototype. The system as it stands is essentially a working prototype and a 

suitable basis for system improvement. 

6.4.1 Capture 

The computer microscope developed during this thesis can produce images at a resolution and of 

a quality comparable to advanced and expensive compound optical microscopes. By my 

estimates, the computer microscope is also about a tenth of the price of the microscopes its 

performance was compared with. However to be effective the computer microscope needs some 

improvements. Firstly the operating controls and environment of the prototype microscope was 

not satisfactory. The microscope was difficult to focus and difficult to capture still images from 

because it was mechanically unstable and therefore exhibited wobble. Wobble is alleviated in 

some microscopes by the use of a granite bench, however once again this is expensive, and more 

economic solutions may be possible while retaining the flexibility of the computer microscope. 

Automation of Pollen Analysis using a Computer Microscop e - Craig Holdaway 2004 Page 91 



At this stage, the major gap m the automation of pollen counting is the collection and 

presentation of the pollen to the microscope. This was considered in section 3 .1. It should be 

noted that using servomotors to automate the control of a slide, while removing a laborious task 

for the operator, does not meet the aim of automation as the slides still have to be prepared. The 

alternatives suggested in section 3 .1.2 identify means of eliminating the slide preparation stage 

and are worth some consideration. 

Finally the effect of the illumination on the system is not well understood. It is known that 

microscope objectives with a high numerical aperture, which increases with magnification, 

require correct Kohler illumination. The computer microscope does not have high optical 

magnification, so simple illumination such as an incandescent light has been used. Although 

this illumination appears adequate, it may not be the optimum. 

6.4.2 Segmentation 

The segmentation is the most complex aspect of the system. This is the result of the difficulty in 

segmenting images where the objects have similar intensities to the background, and a result of 

the evolving nature of the development of the segmentation module. The results of the 

segmentation are excellent, achieving the segmentation of isolated pollen and pollen that are in 

close proximity but are not touching each other. The segmentation algorithm was never intended 

to be perfect, ideally the classification module will identify unknown objects, and set them aside 

for manual classification or rejection. Thus the segmentation module meets the standards it was 

designed to meet. 

Speaking with a colleague recently I suggested that the ideal image processing system should use 

no fixed thresholds. Whether this can be justified or not I do not know, however I am certain 

that making some of the thresholds in the segmentation adaptive, based on the reference pollen, 

was the key factor in making the segmentation system operational. However there are still 

thresholds in the early processing which are not adaptive, such as those which reject non-pollen 

objects on the basis of size, and while these did not appear to create failures, they remain an 

inflexibility in the system. Additionally the limit of the ability of the system to adapt to pollen 
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grains of different shapes and sizes is not completely known, and future pollen grains outside of 

these limits may or may not cause problems. 

Finally neither the segmentation nor classification can deal with tightly clustered pollen. 

Touching pollen however are possible to work with, provided an artificial white background is 

constructed around them as dictated by the requirements for the classification module. Such a 

separation of touching pollen using region-based processing could be included in the subdivide 

function (see section 7.1.8.6). 

6.4.3 Classification 

Zhang's[8] research was able to classify 16 pollen taxa, and this full system segmented and 

classified four taxa. Both of these numbers are sufficient to prove the concept that a system can 

be implemented to automatically classify pollen, but neither take into consideration the important 

real-world matter of classifying unknown objects. At some stage an 'unknown' class needs to be 

introduced into the neural network training data so that objects which are not pollen grains, or 

not pollen grains known to the system can be rejected, or set aside for manual investigation. 

Manual analysis of unknown objects has the additional benefit of enabling the system, which 

includes the operator, to find the 'one in a thousand ' pollen that Stillman and Flenley identified 

as desirable [4]. 

There are improvements to be made to the classification system. During this research twelve 

vectors have been used in the classification. Zhang selected these twelve vectors on a pragmatic 

'trial and error' basis. An analysis method needs to be introduced so that the best features can be 

selected for classifying the pollen. This experimental design problem is shortly to be 

investigated by the Pollen Research Group. Furthermore the neural network training itself needs 

to be more flexible, and the source code for training and classifying the neural network may 

benefit from being replaced by library functions which would allow the parameters to be set 

more flexibly. 

6.4.4 User Interface 

The user interface does not appear in any system diagrams for a reason: so far there is no user 

interface. However to be a practical and marketable solution, an automated pollen counting 
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system will require a user-friendly interface. MATLAB does not lend itself to the design of 

sophisticated user interfaces so another language, such as C# or Delphi which have a better mix 

of user interface design tools and low level mathematical operators, should be used. 

6.4.5 Conclusion 

This project necessitated the capture of detailed images of pollen grains having diameters of 

between 15µm and lOOµm, with feature sizes in the order of lµm or more. Early work on the 

project demonstrated experimentally and theoretically that whereas a single lens microscope is 

not possible, a three lens system is like to be sufficient when using a digital image sensor. In 

practice the use of a standard microscope objective and no other lenses was demonstrated to be 

cost-effective. 

Tests on the final version of the integrated system described resulted in a rate of 96% success for 

the classification of the selected pollen. In the tests the pollen were presented on prepared slides 

containing both pollen and detritus. The system performed image capture, using the computer 

microscope, and segmentation prior to classification performed using Zhang' s software. It is 

concluded that these results clearly demonstrated that an automated pollen counting and 

classification system is an attainable goal. The final stage to be developed is a system for 

sampling and presentation of airborne and/or ancient pollen. 
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7 Appendices 

7.1 Source Code 

7 .1.1 Basic Methods 

This program is the last of a senes that investigated the potential of creating artificial 

backgrounds and using simple morphological operators. This is written in VIPS, kindly 

provided by Dr Donald Bailey. 

program 01 

This relies too heavily on consistent background illumination . 
With more generously set thresholds it could be a regionalizer . 

delete p5 * 
clear 
set auto /on 

declare string p5 filename 

let p5_filename = %string(#l) & " .bmp " 
load /bmp ' p5 filename ' pS orig 

invert pS_orig 

box average pS orig pS_smooth orig 3x3 
box average pS_orig pS_background 127xl27 

stat pS_smooth_orig 0 255 pS_dummy p5 meanl pS_sdl 
stat pS_background 0 255 p5 dummy p5_mean2 pS sd2 

let pS_thl 
let pS th2 

%integer(p5_meanl) + %integer(p5_sdl) + %integer (p5 sdl) 
%integer(p5_mean2) + %integer(p5 sd2) + %integer(p5 sd2) 

end 

threshold pS smooth_orig ' pS_thl ' 
threshold pS_background ' p5 th2 ' 

or pS_smooth_orig pS_background 
and pS smooth_orig pS_orig 

7.1.2 Texture Filtering 

Similar code was used to determine the texture statistics. This code applies the texture filter to 

the image. 
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The bmp.h and bmp.cpp files are not included as they are implementations which I coded of a 

standard OS/2 or Windows bitmap. 

7.1.2.1 main.cpp 

#include <stdio .h> 
#inc lude <conio .h> 
#include <math.h> 

#include "textur efilter .h" 
#include "bmp.h " 

int main(void) 

cha r szFilename [] " aO la.bmp"; 
cons t int Ng = 256 , angle = 0 ; 

CTextureFilter txtfilt(Ng); 
CBmp * pBmp ; 
byte ** img = O; 
int height = 0 , width O; 

pBmp =new CBmp(); 
if(pBmp- >readFile(szFilename) != 0) 
{ 

printf( "File %s could not be read\n ", szFilename) ; 
get ch () ; 
delete pBmp ; 
return - 1 ; 

//Current Pollen Image Data and Palette 
byte** oldimg = pBmp - >getIMGpal() ; 
RGBQUAD * oldPalette = pBmp - >getPalette() ; 

//generate new image and set i t black (so edge pix els are set) ; 
BITMAPINFOHEADER bmi pBmp- >getinfoHeader() ; 
width= bmi . biWidth ; 
height = bmi . biHeight; 

//note : newIMG contains int ensities , not palette entries . 
byte** newimg =new byte*[he i ght] ; 
for(int i=O ; i<height ; i++ ) 
{ 

newimg[i] =new byte[width] ; 
for(int j=O ; j<width ; j++) newimg[i] [j] 0 ; 

//windowing - 7x7 
byte** window= new byte*[7] ; 
for(int i=O ; i<7 ; i++) window[i] 

double energy , homoge , inerti ; 

new byte[7]; 

//set pixel to 1 if it contains pollen like texture within a window. 
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fo r (i n t i =3 ; i<(height - 3) ; i++) 
{ 

for(int j=3 ; j < (wi dth - 3) ; j++) 
{ 

for(int d i=- 3 ; d i <=3 ; di++) 
fo r (int dj =- 3 ; dj<=3 ; d j++ ) 

window [3+di ] [ 3+dj] = 
oldPalette [ oldimg[i+di] [j+dj] ] . rgbBl ue ; 

txtfilt . generateSGLDM(window, 7 , 7 , angle) ; 
txtfilt . normalizeSGLDM(7 , 7 , angle) ; 

energy 
homoge 
i ner t i 

tx t fi lt . getEnergy() ; 
txtfilt . getHomogenei ty( ) ; 
t x t fil t . getinertia() ; 

if((ener gy > 0 . 00432) && (ene r gy< 0 . 125) && 
(homoge > 0 . 06551) && (homoge < 0 . 452) && 
(inert i > 5 . 07457) && (inerti < 913 . 0)) 

newimg[i ] [j] = 255 ; 

else 

newimg [ i ] [ j ] 0 ; 

printf( " . " ) ; 

printf( " %d ", i) ; 

//newimg now contains 255 where texture is good , 0 elsewhere . 
//creating a new image , largely copying old one . 
BITMAPFILEHEADER bfh = pBmp- >getFileHeader() ; 
BITMAPINFOHEADER bih = pBmp- >getinfoHeader() ; 
int paletteSize = 1 << b i h . biBitCount ; 
RGBQUAD * bmpPalette =new RGBQUAD[paletteSize ]; 
for(int i=O ; i<paletteS i ze ; i++) 
{ 

bmpPalette - >rgbBlue = i ; 
bmpPalette - >rgbGreen = i ; 
bmpPalette - >rgbRed = i ; 

//reusing pointer : ) 
delete pBmp ; 
pBmp =new CBmp() ; 
pBmp - >setFileHeader(bfh) ; 
pBmp - >setinfoHeader(bih) ; 
pBmp - >setPalette(bmpPalette , paletteSize) ; 
pBmp - >setIMGpal(newimg , height , width) ; 
pBmp- >wri teFile ( " aOlamask. bmp " ) ; 

for(int j=O ; j <height ; j++) delete [] img[j] ; 
delete [] img; 
img = O; 
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printf(" %s processed\n", szFilename) ; 

printf("Complete. Press any key . \n "); 
getch () ; 
return 0 ; 

7.1. 2. 2 texturefilter. h 

typedef unsigned char byte ; 

//note : only distance of 1 (d=l) is programmed :) 
//angle : is a choice of 0 , 45 , 90, 135 . Anything else gets rejected . 

//CTextureFilter does not copy the image or the palette. 
//the only memory it owns is the SGLDM . 
class CTextureFilter 

public : 
CTextureFilter(int Ng) ; 
-CTextureFilter(); 

//sgldm methods 
void generateSGLDM(byte ** img , int Nx , int Ny , int ang) ; 
void normalizeSGLDM(int Nx , int Ny , int ang) ; 

//output methods 
double getEnergy() ; 
double getHomogeneity() ; 
double getinertia() ; 
void printMatrix(FILE * f out) ; 

private : 

} ; 

int generateO(byte ** img , int Nx , int Ny , inti , int j); 
int generate45(byte ** img, int Nx, int Ny , inti , int j) ; 
int generate90(byte ** img , int Nx, int Ny , int i , int j) ; 
int generate135(byte ** img, int Nx , int Ny , inti, int j) ; 

double normalizeO(int Nx , int Ny) ; 
double normalizeDiag(int Nx , int Ny); 
double normalize90(int Nx , int Ny) ; 

double ** SGLDM ; //SGLDM matrix 
int _Ng ; //Number of graylevels 

7.1.2.3 texturefilter.cpp 

#include <stdio . h > 
#include <math . h > 
#include " texturefilter.h " 

CTextureFilter : :CTextureFilter(int Ng) 
{ 

//set graylevels 
_Ng Ng; 
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//al locate SGLDM : 
SGLDM =new double*[_Ng) ; 

for(int a=O ; a <_Ng ; a++) _SGLDM[a) 

CTextureFilter :: -CTextureFilter() 
{ 

// destroy SGLDM 

new double [_Ng] ; 

for(int a=O ; a <_Ng ; a++) delete [] SGLDM[a] ; 
delete [] SGLDM ; 

// ---------- SGLDM METHODS ----------------------------------
void CTextureFilter :: generateSGLDM(byte ** img , int Nx , int Ny , int ang) 

//generating S(i , j , 1 , 0) 
int count = 0 ; 
for(int i =O ; i <_Ng; i ++) 
{ 

fo r( int j =O ; j<_Ng ; j++ ) 
{ 

switch(ang) 
{ 

cas e 

case 

case 

cas e 

0 : 
count 
break ; 

4 5 : 
count 
break ; 

90: 
count 
break ; 

135 : 

= 

= 

generateO(img , Nx , Ny , i ' j ) ; 

generate45 (img , Nx , Ny , i , j ) ; 

g ene r ate90( img , Nx , Ny , i ' j ) ; 

count = gene r atel35(img , Nx , Ny , i ' j) ; 
break ; 

defau l t : 
pr int f ( " Invalid Angle . Use 0 , 45 , 90 or 135\n" ) ; 

SGLDM [ i] [ j ] (double)count ; 

// printf ( " %d ", i) ; 

void CTextureFilter :: normaliz e SGLDM(int Nx , int Ny, int ang) 

doubl e normFact = l ; 
switch(ang) 
{ 

case 0 : 
normFact 
b r eak ; 

case 45 : 

normalizeO(Nx , Ny) ; 
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case 135 : 
normFact 
break; 

case 90: 
normFact 
break ; 

default: 

normalizeDiag(Nx , Ny); 

normalize90(Nx , Ny) ; 

printf( " Invalid Angl e . Use 0, 45 , 90 or 135\ n " ) ; 

for(int i=O; i<_Ng; i++) 
for(int j=O ; j<_Ng; j++) 

SGLDM[i] [j] /= normFact ; 

// ---------- OUTPUT METHODS---- -----------------------------­
double CTextureFilter :: getEnergy() 
{ 

double energy= 0 . 0 ; 
for(int i=O ; i <_Ng; i++) 

for(int j=O ; j<_Ng ; j++) 
energy += ( SGLDM[i] [j] * SGLDM[i] [j]) ; 

return energy ; 

doubl e CTextureFilter :: getHomogeneity() 
{ 

double homogeneity= 0 . 0 ; 
for (int i=O ; i<_Ng ; i++) 

for(int j=O; j<_Ng ; j++) 
homogeneity += ( SGLDM[i ] [j] I (l+(i - j) * (i - j))) ; 

retu rn homogenei ty ; 

double CTextureFi lter: : getinertia() 
{ 

double inertia = 0 . 0; 
for( int i=O; i <_Ng ; i++ ) 

for(int j=O ; j< Ng ; j++ ) 
inertia+= ( SGLDM[i] [j] * (i - j)*(i-j)); 

return inertia; 

void CTextu r eFilte r:: printMatrix(FILE * f out) 

for( in t x=O ; x<_Ng ; x++) 
{ 

for(int y=O ; y< Ng ; y++) 
f printf(f_out , " %f " 

fp rintf( f out , " \n " ) ; 

fprintf (f_out , " \n " ) ; 

SGLDM[x] [y]); 

// --------- - PRIVATE METHODS ----------------------------------
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int CTextureFilter :: generateO(byte ** img , int Nx , int Ny , inti , int j) 

//heading : right , left 
int count = O; 
for(int x=O ; x<Nx ; x++) 

for(int y=O ; y<Ny- 1 ; y++) 
{ 

if ( ( img [ x) [ y l 
if( (img[x ) [y) 

return count ; 

i) && ( img [x) [y+l) 
j) && (img [x) [y+l) 

j)) count++ ; 
i)) count++ ; 

int CTextureFilter :: generate45(byte ** img , int Nx , int Ny , inti , int j) 

//heading : down - left , up - right 
int count = 0 ; 
for(int x=O ; x<Nx- 1 ; x++) 

for(int y= l ; y<Ny ; y++) 
{ 

if ( (img [x) [y) 
if ( ( img [ x) [ y l 

return count ; 

i) & & ( img [ x+ l) [ y- 1) 
j ) & & ( img [ x + l ) [ y- 1 ) 

j)) count++ ; 
i)) count++ ; 

int CTextureFilter :: generate90(byte ** img , int Nx , int Ny , inti , int j) 

//heading: down , up 
int count = O; 
for(int x=O ; x<Nx - 1 ; x++) 

for(int y=O ; y<Ny ; y++) 
{ 

if ( (img [x) [y) 
if ( (img[x) [y) 

return count ; 

i) && (img[x+l)[y) 
j) && (img[x+l)[y) 

j)) count++ ; 
i)) count++ ; 

int CTextureFilter :: generate135(byte ** img , int Nx , int Ny , inti , int j) 

//heading : down- right , up- left 
int count = O; 
for(int x=O ; x<Nx - 1 ; x++) 

for(int y=O ; y<Ny- 1 ; y++) 
{ 

if( (img[x) [y) 
if ( (img[x) [y) 

return count ; 

i) && (img[x+l) [y+l) 
j) && (img[x+l) [y+l) 

double CTextureFilter ::normalizeO(int Nx , int Ny) 
{ 

//normalization factor R(l , 0) = 2Ny(Nx - l) 
return 2*(double)Ny*((double )Nx - 1) ; 
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double CTextureFilter :: normalizeDi ag(int Nx, int Ny) 
{ 

//normalization factor R(l , 45) = R(l , 135) = 2(Nx-l ) (Ny- 1) 
return 2*((double)Ny- l)*((double)Nx- l) ; 

double CTextureFilter :: normalize90(int Nx , int Ny) 
{ 

//normalization factor R(l , 90) = 2Nx(Ny- l) 
return 2*(double)Nx*((double )Ny- l) ; 

7 .1.3 Optical Density 

As for the texture filter, bmp.h and bmp.cpp files are not included as they are implementations 

which I coded of a standard OS/2 or Windows bitmap. 

#include <stdio . h> 
#include <conio.h> 
#include <string . h> 
#include "bmp . h " 

const double IODthold = 180.0 ; 

byte ** newlmage(int height , int width) 
{ 

byte** img =new byte*[height] ; 
for(int i=O ; i<height; i++) 
{ 

img[i] =new byte[width]; 
//initalization to 0 
for(int j=O ; j<width ; j++) img[i] [j] O; 

return img ; 

void deletelmage(byte ** img , int height) 

for(int i=O ; i<height; i++) 
delete [] img[i]; 

delete [] img ; 

//input : img 
//output : imgOut 
void passl(byte ** img, int dim , int vertOffset , int horzOffset , 
int imgHeight , int imgWidth , byte ** imgOut) 

if(dim < 8) 
{ 

for(int i=vertOffset; i<imgHeight ; i++) 
for(int j=horzOffset ; j<imgWidth ; j++) 

imgOu t [ i] [ j ] = 2 5 5 ; 
return ; 
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int sum; double IOD; 
for(int i=vertOffset; i <=(imgHeight-dim); i+=dim) 
{ 

for(i n t j=horzOffset ; j<=(imgWidth- dim) ; j+=dim) 
{ 

//window average 
sum = 0 ; 
for(int di=O ; di<dim ; di++) 

for(int dj=O ; dj<dim; dj++) 
sum+= img[i+di] [j+dj] ; 

IOD = (double) sum I (double) (dim*dim) ; 

if(IOD < IODthold) 
passl(img , dim/2 , i , j , i+dim, j+dim, imgOut) ; 

void pass2(byte ** img , int 
imgHeight , int imgWidth , byte ** 
{ 

dim , int 
imgOut) 

vertOffset , 

//pass 2 needs to start such that the bottom-right 
//square of size dim*dim , sits in the bottom right 
//of the area searched 

int 

int nVertBoxes imgHeight I dim ; //integer division . 
int nHorzBoxes = imgWidth I dim ; 

int height = nVertBoxes * dim ; 
int width = nHorzBoxes * dim ; 

v ertOff set 
horzOf f set 

imgHeight height ; 
imgWidth - width ; 

horzOffset , 

passl(img , dim, vertOffset , horzOffset , height , width , imgOut) ; 

//OR . Bitwise . Range of 0-255 

int 

void imgOR(byte ** imgl , byte ** img2 , byte ** imgOut , int height , int width) 

for(int i=O ; i <height ; i++) 
for(int j=O ; j<width ; j++) 

imgOut [i] [j] = imgl [i] [j] I img2 [i] [j] ; 

//AND . Bitwise . Range of 0 - 255 
void imgAND (byte * * imgl , byte 
width) 
{ 

** 

for(int i=O ; i<height ; i++) 
for(int j=O ; j<width ; j++) 

img2 , byte ** imgOut , 

imgOut [i] [j] = imgl [i] [j] & img 2 [i] [j] ; 

int main(void) 
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char szFilename[256] ; 
char szTemp [256] ; 

//assuming paletted (256) for now : ) 
CBmp bmp ; 

printf( "Enter file name to analyse :" ) ; 
gets(szFilename); 

if(bmp . readFile(szFilename) != 0) 
{ 

printf( "File not found\n " ) ; 
getch() ; 
return -1; 

BITMAPFILEHEADER bmpFileHeader = bmp . getFileHeader() ; 
BITMAPINFOHEADER bmpinfoHeader = bmp . getinfoHeader() ; 
int height = bmpinfoHeader . biHeight ; 
int width = bmpinfoHeader.biWidth ; 
RGBQUAD * bmpPalette = bmp . getPalette() ; 
byte** oldimg = bmp . getIMGpal() ; 

//allocate temp images 
byte** img = newimage(height , width) ; 
byte** passlMask newimage(height , width) ; 
byte** pass2Mask newimage(height , width) ; 
byte** finalMask newimage(height , width) ; 

//copy intensites from oldimg - > img 
for(int i=O ; i <height ; i++) 

for(int j=O ; j<width ; j++) 
img[i] [j] = bmpPalette[ oldimg[i] [j] ] . rgbBlue ; 

//replace palette with standard grayscale : 
int paletteSize = 1 << bmpinfoHeader . biBitCount ; 
bmpPalette =new RGBQUAD[paletteSize] ; 
for(int i=O ; i <paletteSize ; i++) 
{ 

bmpPalette[i] . rgbBlue = i ; bmpPalette[i] . rgbGreen = i; 
bmpPalette[i] . rgbRed = i ; bmpPalette[i].rgbReserved = 0 ; 

bmp . setPalette(bmpPalette , paletteSize) ; 

//region dimension 
const int dim = 64; 

//Two - pass Integrated Optical Density Search 
passl(img , dim , 0 , 0 , height , width , passlMask) ; 
pass2(img , dim , 0 , 0 , height , widt h , pass2Mask) ; 

//Image Processing Ops 
imgOR (passlMask , pass2Mask , finalMask , height , width) ; 
imgAND(finalMask , img , img , height , width) ; 

//Copy back and Save 
bmp . setIMGpal(img , bmpinfoHeader . biHeight , bmpinfoHeader . biWidth) ; 
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spr intf (szTemp , "out_%s ", szFilename) ; 
bmp.writeFile(szTemp) ; 

//delete pointers 
deleteimage(img , height) ; 
deleteimage(passlMask , height) ; 
deleteimage(pass2Mask , height) ; 
deleteimage(fina l Mask , height) ; 

printf( " Done . Press a key to end . \n " ) ; 
getch () ; 
return 0 ; 

7.1.4 Mean and Variance Filter 

The remainder of the code is written in MATLAB. 

function img = variancemask(img , mean , var) 
%function img = variancemask(img , mean , var) 
%applies the mean and var iance filter to input img . 

[xdim, ydim] = size(img) ; 

for x=l : xdim 

e nd 

for y=l : ydim 

end 

if (img(x , y) > 
img(x , y) 

else 
img(x , y) 

end 

7 .1.5 Edge Detection 

(mean + var)) 
255 ; 

0 ; 

(img(x , y) < (mean - var)) 

function [iout , ivd , ihd] = edgescreen(img) 
%function iout = edgescreen(img) 
%Return s edges in img whose gradi ent is greater or equal to 2 0 . 

imgHt 
imgWt 

size(img , l) ; 
size(img , 2) ; 

img = double(img) ; 

%create vertical difference(gradient) image 
ivd = img(2 : imgHt , : ) - img(l : (imgHt - 1) , : ) ; 

%create horizontal difference(gradient) image 
ihd = img(: , 2 : imgWt) - img( :, l : (imgWt -1 )) ; 

%if grad>= 20 then keep : ) 
ivd abs(ivd) >= 20 ; 
ihd = abs(ihd) >= 20 ; 
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%make square and l ogically OR 
ivd [ ivd ; zeros(l , imgWt) ]; 
ihd = [ ihd ' ; zeros(l , imgHt) ] '; 

iout = ivd I ihd ; 

7.1.6 Complete Segmentation Algorithm 

%runscript : general stuff 
clear all 
region_thres = 50 ; 
region thres two 200 ; 

for i=l : 9 

img = imread([ ' imgO ' , int2str(i) , ' . bmp ' ]) ; 
[ydim, xdim] = size(img) ; 

%Appl y mean and variance filter to the image to create main mask 
il = variancemask(img , mean(mean(img)) , 26 .72) ; 
%apply edge method to original image 
i2 = edgescreen(img) ; 

%consolidate regi ons 
i3 = imclose(i2 , ones(l3 , 13)) ; 

%remove smal l regi ons 
[L , n] = bwlabel(i3 , 8) ; 

for a =l : n 

end 

[r , c ] = find(L==a) ; 
if(size(r , l) < region_thres) 

i3(r(l : size(r , 1)) , c(l : size(r , 1))) 0 ; 
end 

%combine masks . 
i4 = and(il , i3) ; 
%consolidate - close with a fill 
i5 imdilate(i4 , ones(29 , 29)) ; 
i6 imfill (i5 , ' holes ' ) ; 
i7 imerode(i6 , ones(29 , 29)) ; 

%remove regions touching the edges of the image 
i8 = removeEdgeRegions(i7) ; 

%remove smal l regions 
[L , n] = bwlabel(i8 , 8) ; 
for a=l : n 

end 

[r , c] = find (L==a) ; 
if( size( r , l) < region thres_two) 

i8(r(l : size(r , l)) , c(l :size( r , l))) 0 ; 
end 
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%too lazy to find out the sizes : ) 
finalmask = i8*0; 

[L , n) = bwlabel(i8 , 8) ; 
%find statistics 
centstats regionprops(L , ' Centroid ' ) ; 
axisstats = regionprops(L , ' MajorAxisLength ' ) ; 
for a=l : n 

%create a box about the centroid using the radius 
cent = [centstats(a) . Centroid) ; 
r = [axisstats(a) .MajorAxisLength) ; 
%q => [centroid row, centroid height] 
cen c cent(l , l) ; 
cen r = cent(l , 2) ; 

%bounding box : (for now) 
ul c round(cen_ c (r/2)) ; 
ul r = round(cen r - (r/2)) ; 

%place onto finalmask 
for i=O : r -1 

for j=O : r - 1 
xcoord ul c + i ; 
ycoord ul r + j ; 
%check point is within image . 

if((xcoord > 0) && (xcoord <= xdim) && (ycoord > 0) && (ycoord <= ydim)) 
finalmask(ycoord , xcoord) = l; 

end 
end 

end 

end 

%overlay and output 
%i9 = immultiply(logical(finalmask) , img) ; %straight overlay .. hides 
%rest of image 

end 

%draws a box around objects masked . 
fl imdilate(finalmask , ones(9 , 9)) ; 
f2 imsubtract(fl , finalmask) ; 
f3 imcomplement(f2) ; 

i9 immultiply(f3 , im2double(img)) ; 

figure , imshow(i9) ; 

7. 1. 6.1 removeEdgeRegions Function 

function iout = removeEdgeRegions(img) 
%function iout = removeEdgeRegions(img) 
%img must be binary 
%removes regions which touch the edges of the image , and would therefore be 
%only part of an object . 
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%create a positive mask that contains only 2 rows of edge . 
[ydim, xdim] = size(img) ; 

mask= zeros(ydim, xdim) ; 
vertedge ones(ydim , 2) ; 
horzedge = ones(2 , xdim) ; 

mask(: , 1 : 2) = ve rtedge ; 
mask( :, xdim-l:xdim) = vertedge ; 
mask(l : 2 , : ) = horzedge ; 
mask(ydim- l : ydim , : ) = horzedge ; 

%combine mask with binary img . 
ixl = and(mask , img); 

%At this stage the only objects will be regions who have some pixels within 
%a two pixel width border. 
%ge t a list of coords of all white points 
[r , c] = find(ixl) ; 

if(size(r)<l) 

%use select to find the regions in the img (check that we haven ' t already 
%0 ' d it) 

i2 = bwselect(img , c , r , 8) ; 
i3 = xor(ones(ydim, xdim) , i2) ; %invert i2 
iout and(img , i3) ; %and with original image , thus removing the 

regions 
%we had selected from the original img . 

else 
iout img; 

end 

7.1.7 Training and Testing Systems (v2.01) 

7. 1. 7. 1 TrainingSystem.m 

% This m- file is the high- level script for training a neural network to 
% classify pollen images . 
% To update the classifer the input images should be changed here . Running 
% the script will then generate new al a2 diffman and collectmean . mat 
% files which are the variables required to normalize and lcassify a pollen 
% image . 
% 
% Craig Holdaway . Last updated 12 2 04 Version 1 . 99 

clear all 

%select images to be procssed for training - this would be changed for 
%different images 
subdirectories = char ( ' BP ', ' CD ', ' PR ', ' RO ' ) ; 
rootpath = ' H: \integration - micro seg '; 

%adjust the size of this to suit the number of vectors 
number of images = 4*30 ; 
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features= ze r os(number of images , 46) ; 

for i=1 :4 %4 = number of subdirectories 
path= [rootpath ' \ ' deblank(subdirectories(i ,: )) ) ; 
fprintf ( 1 , ' Processing %s ', deb lank (subdirectories ( i , : ) ) ) ; 

for j=l : 30 %30 
if j <= 9 

suffix 

number of image files to process in each subdirector y 

[ ' 0 ' int2str(j)] ; 
else 

suffix int2str(j) ; 
end 

suffix '. bmp ' ) , ' bmp ' ) ; img = imread([path ' \a ' 
features (30* (i - 1) + j , : ) = polFeatureCal culation ( img) ; %30 

j . 

fprintf (1 , '. ' ) ; 

end 
fprintf(l , ' \n ' ) ; 

end 

%normalize 
out= polNormalize(features) ; 

save out out 

%training with a reduced data set of 16 of each pollen type and 12 
%features to give a training set of size 256x12 
trainset = [ l ; 
trainset = [trainset ; out ( 1 : 16 , : ) out( 31 : 46 , : ) out( 61 : 
out( 91 : 106 , : ) l ; 
trainset = [trainset ; out ( 1 : 16 , : ) out( 31 : 4 6 , : ) out( 61 : 
out( 91 : 106 , : ) l; 
trainset = [trainset ; out ( 1 : 1 6 , : ) out( 31 : 4 6 , : ) out( 61 : 
out( 91 : 106 , : ) l ; 
trainset = [trainset ; out ( 1 : 16 , : ) out( 31 : 4 6 , : ) out( 61 : 
out( 91 : 106 , : ) l ; 

total 

76 , : ) 

76 , : ) 

76 , : ) 

76 , : ) 

trainset2 [ trainset ( :, 1) , trainset ( :, 2) , trains et ( :, 4) , trainset ( :, 5) , 
trainset( :, 18) , trainset( :, 20) , 

trainset ( :, 24) , trainset ( :, 25) , trainset ( :, 32) , trainset ( :, 35) , 
tr a inset ( : , 41) , trainset ( : , 4 6) ) ; 

po1Training(trainset2 ' ) ; 

7. 1. 7. 2 TestingSystem.m 

% System for testing the correctness of the trained nerual network using 
% all of the reference pollen normalized during TrainingSystem . m 
% 
% Craig Holdaway . Last updated 12 2 04 Version 1 . 99 

clear all 
%normalized pollen vectors : 480 x 46 
load out out 
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test set 

test set 

[out( :, 1) , out( :, 2) , out( :, 4) , out( :, 5) , out( :, 18) , out( :, 20) , 
out( :, 24) , out( :, 25) , out( :, 32) , out( :, 35) , out( :, 41) , out( :,46 ) ); 

testset '; 

correct 0 ; incorrect 0 ; 
for i=l :l 20 

%NN 
load al al %weight matrix 
load a2 a2 %weight matrix 
test_hiddenl = sig(testset( :, i) , al) ; 
test_output = sig(test hiddenl,a2) ; 

k = find(test output==max(test output)) ; 

%outputs : 1 = 5 = 9 = 13, 2 = 6 = 10 = 14. etc . 
k = mod(k , 4) ; 
if (k==O) 

k = 4 ; 
end 

%stats : 
expected_result = ceil(i/30) ; 
if(expected_result == k) 

correct = correct + l ; 
else 

incorrect 
fprintf(l , 

expected result) ; 
end 

end 

incorrect + l ; 
' Result %d . 

fprintf(l , ' Correct= %d\n ', correct) ; 
fprintf(l , ' Incorrect= %d\n ', incorrect) ; 

7.1. 7.3 polFeatureCalculation.m 

Expected Result %d\n If k , 

This function is not my work. It has been extracted directly from Zhang's source code. See the 

attached CD for the full listing. Below is the interface and first few lines of the source. 

function vFeature = polFeatureCalculation(img) 
%function vFeature = polFeatureCalculation(img) 
%Calculates a feature vector from the image ' imagename ' 
% Parameters : 
% imagename: A string containing the path of the image to process 
% Return Value : 
% vFeature = Feature Vector representing the input image . Size = 46xl 
% 
% Dr Yongping Zhang . Last updated 12 2 04 Version 1 . 99 
if nargin -= 1 

error( ' An image is required ' ) 
end 

if isa(img , ' uint8 ' ) I isa(img , ' uint72 ' ) 
img = im2double(img) ; 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %%%%% 
%%% Pre - processing of images: segmentation and changing the grey level 

M = size(img , l) ; % obtain the size of image 
N = size(img , 2) ; 
I=ones(M , N) ; 

7. 1.7.4 po/Normalize.m 

function out = polNormalize(polVectors) 
% function out = polNo rmalize(polVectors) 
% Normalises feature vectors based on previous normaliztion data. 
% Parameters : 
% P : Matrix of vec tors to be normalized . Size= [width , 46] ; 
% Return Val ue : 
% out : Normalized vectors . Same size as input. 
% 
% Dr Yongping Zhang and Craig Holdaway . Last updated 1 2 2 04 Version 2 . 01 

[nVectors , nFeatures] size(polVectors) ; 

if nFeatures -= 46 
e rror( ' Feature ve c t ors should be 46 columns wide. ' ) ; 

end 

collectionMean=mean(polVector s) ; 
collectionMax=max(polVectors) ; 
collectionMin=min(polVectors) ; 

acolumn = ones(nVectors , 1) ; 
meanFeatures = [] ; 
for i= l : nFeatures 

meanFeatures = [meanFeatures , coll e ctionMean( i ) . *acolumn] ; 
end 

%diff : absolute difference b etween the feature value for each pollen a nd 
%the feature value for that feature . 
diff = abs(polVectors - meanFeatures) ; 
diffmax = max(diff) ; 

%difference between the maximum value and the mean for each feature . lx46 
save diffmax46 d i ffmax ; 
%mean value of each feature . lx46 
save collectmean46 collectionMean ; 

maximumDifferences=[] ; 
for i=l : 46 

maximumDifferences 
end 

[maximumDifferences , diffmax(i) . *acolumn] ; 

% normalize the feature vectors 
out=(polVecto rs - meanFeatures) . / maximumDifferences ; 
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7.1. 7. 5 po/Training.m and sig.m 

These functions are not my work. They have been reproduced directly from Dr Zhang's source 

code. See the attached CD for the full listing. Below is the interface and comments to the 

source. 

function polTraining(P) 
% function polTra i ning(P) 
% training a 12 - 25 - 16 MLP 
% 
% Dr Yongping Zhang . Last updated 12 2 04 Vers ion 1 . 99 

function y = sig(A , W) 
%function y = sig(A, W) 
% compute the output of NN for given inputs A and weight matrix W 
% 
% Dr Yongping Zhang . Last updated 2003 Version 1 . 99 

7.1.8 Complete Integration Algorithm (v2.02) 

Some of the low level functions which are repeated unchanged from the Training and Testing 

systems are not included here. See section 7 .1. 7 immediate! y above. 

7.1. 8. 1 Runscript. m 

This is the high level function which controls the segmentation and classification processes. It is 

specific to the four pollen used to test the integrated system. 

function runscript(dir) 
%function runscript(dir) 
% dir is a string with the directory name . 
%Use '.' for the current directory . 
% 
% Craig Holdaway . Last updated 24 2 04 Version 2 . 02 
% Derived from scriptsplit . m in version 2.00 

later . %Defaults : Some are modified 
CDF_Percentage_Cut = 96 ; 
grad_thres = 20 ; 
RegionSizeLowerThreshold 

%slope cut needed for est . See cst . m for details 
%a default value - calling est will overwrite it 

3000 ; %actual region not square enclosing region 

%overwriting arg for now . 
dir = 'H : \integration - micro seg\RO '; 

%Get slope threshold 
filename = [dir , ' \01.bmp ' ] ; 
img = imread(filename) ; 
[grad_thres , dummy , regionarea] = cst(img , CDF_Percentage Cut) ; 
fprintf( ' Threshold = %d\n ', grad_thres) ; 

fprintf( ' RegionArea = %d\n ', regionarea) ; 

RegionSizeLowerThreshold = regionarea * 0 . 3 
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%Open background file 
fileback [dir , ' \background . bmp ' ] ; 
img_bgnd = imread(fileback) ; 

count = l; 
%Process the Images 
for j=l : 13 

%Read image from file 
if(j < 10) 

jfile [ ' 0 ', int2str(j) ]; 
else 

jfile int2str(j) ; 
end 
filename= [dir , ' \ ', jfile , '. bmp ' ] ; 

img = imread(filename) ; 
%Process Image . Arg four : 2 , so a masked image is returned . 

img_regionized = processimage(img , img_ bgnd , grad_thres , 2) ; 

%if some regions containing pollen have been selected . 
if( max(max(img_regionized)) > 0) 

img_binary = im2bw(img_regionized , l/256) ; 
img labeled= bwlabel(img_binary , 4) ; %4 - connectivity 

%classification data struct . class coords 
%format : [ topleft_col topleft row width height ; ... ] 
class coords = [] ; 

%Perform checks on each region 
total_regions = max(max(img labeled)) ; 
for i=l : total regions 

%count the corners 
ilO double(img_labeled 
h= 11 ; 11] ; 

i) ; %select one region 

end 

ill imfilter(ilO , h) ; 
i l 2 (ill== l) ; 
corner count= sum(sum(il2)); 

if(corner_count >= 4) 
coords = subdivide(ilO , img , 

RegionSizeLowerThreshold) ; 
class coords [class_coords ; coords] ; 

%else corner count < 4 then on edges so discard . 
end 

%Classify 
[r , c] = size(img) ; 
for i=l : size(class_coords ,l ) 

%create region from coords . 
%format : [ topleft_col topleft row width height ; ... ] 

topleft_col =class coords(i , l) - 20 ; 
topleft_row = class_coords(i , 2) - 20 ; 
width= class coords(i , 3) +40 ; 
height= class coords(i , 4) +40 ; 
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end 

end 

%check the image edges haven ' t been exceeded 
if(topleft_ col <= 0) 

topleft_co l = 1 ; 
end 
if(topleft_row <= 0) 

topleft row = 1 ; 
end 

while(topleft col+width > c) 
width = width - 2 ; 

end 
while(topleft row+ h eight > r) 

height = height - 2 ; 
end 

region img(topleft_row : topleft_row + height - 1 , 
topleft col : topleft_col +width - 1) ; 

region_processed = removeEdgeRegions2(region , 
RegionSizeLowerThreshold) ; 

result = OnePollenClassify(region_processed) 
%imwrite(result , [dir ' \a ' int2st r(count) '. bmp ' ]) ; 

count = count + 1 ; 

end %(max(max(img regionized)) > 0) 
fprintf( ' processed\n ' ) ; 

7. 1.8.2 Cst.m 

function [result , distn , regionarea] = cst(img , CDF_Percentage Cut) 

%function [result , distn , regionarea] = cst(img , CDF_Percentage Cut) 
% 
% This function generates the slope distribution within the image img , and 
% returns the cut - slope for a single-pixel difference edge detector . 
% 
%At this stage there still exists the problem that the GUI interaction is 
%limited . For instance if there were no (good) poll en on the first slide 
%then we ' d have a problem ... Also it would be nice to get data from 
%multiple pollen . Once everything else works then I ' ll consider (the pain 
%of) using the MATLAB GUI tools. 
% 
% Craig Holdaway . Last updated 13 2 04 Version 2 . 00 

if((CDF Percentage_Cut > 100) I I (CDF_Percentage_Cut < 0)) 
error( ' CDF_Percentage Cut must be between 0 and 100 ' ) ; 

end 

%msgbox([ ' Draw a diagonal line across a pollen in the image (that is about to 
appear) 
% ' Press enter when both points have been entered .' 
% ' This should have ends at the opposite verticies of a tight -
fitting box .' ] , ' Pollen Identiki t ', ' help ' ) 
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[BW , xi , yi] = ro i poly(img) ; 
if( (s i ze(xi, l) < 2) 11 (size(yi , l) < 2) ) 

error( ' Pol ygon must have at l east t wo ver t icies ' ) ; 
end 

%establish the square 
xl round(min(xi)) ; 
yl round(min(yi)) ; 
x2 round(max(xi)) ; 
y2 round(max(yi)) ; 

%third return val . 
regiona r ea = (x2 -x l)*(y2 - yl) ; 

%process rows 
itr = l ; 
diffsR = zeros(y2 - yl , x2 - xl) ; 
for r = yl : y2 

end 

rowR = double(img(r , xl : x2)) ; 
width= size(rowR , 2) ; 
diffsR(itr , : ) = rowR(l , 2 : width) - rowR(l , l : width - 1) ; 
itr = itr + l ; 

%process cols 
itr = l ; 
diffsC = ze r os(x2 - xl , y2 - yl) ; 
for c = xl : x2 

end 

colC = double(img(yl : y2 , c)) ; 
height= size(colC , l) ; 
diffsC(itr , : ) = (colC(2 : height , 1) - colC(l : height - 1 , 1)) '; 
itr = itr + l ; 

%The elements in diffsC and diffsR are the slope between adjacent pixels 
%We need a distribution o f these statistics . 
distn = zeros(256 , 1) ; 
%note offset of 1 : 
%i.e. row 1 is the count of how many times 0 was the slope , 
%i . e . row 2 is the count of how many times 1 was the slope , etc . 
[r , c] = size(diffsR) ; 
for x=l : r 

for y=l : c 
distn( abs(diffsR(x , y))+l , 1) distn( abs(diffsR(x , y))+l , 1) + 1 ; 

end 
end 

[r , c] = size(diffsC) ; 
for x=l : r 

for y=l : c 
distn( abs(diffsC(x , y))+l , 1) 

end 
end 

%find the Xth percentile index : 
cnt = sum(distn) ; 

distn( abs(diffsC(x , y))+l , 1) + l ; 
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cutpoint 

itr = 1 ; 
CDF = 0 ; 

cnt * CDF_Percentage_Cut/100 ; 

while(CDF < cutpoint) 

end 

CDF CDF + distn(itr) ; 
itr = itr + 1; 

%itr is the index of the slope value above the cutpoint. 
%Recalling there is an offset of 1 , then we treat itr as the slope value 
%which will be used for the edge detector 
result = itr ; 

7. 1. 8. 3 processlmage. m 

function i9 = processimage(img , img_bgnd , grad_thres , for_display) 
%function i9 = processimage(img , img_bgnd , grad_thres) 
% img is the image to process 
% img_bgnd is the background image 
% grad_thres is for edge detection 
% for display selects an output format : 0 for binary mask of pollen areas 
% 1 for boxes drawn 
around pollen areas 
% 
% Craig Holdaway . Last updated 13 2 04 Version 2 . 00 

%minimum intensity difference between an object and the background 
backgnd_sub_thresh = 60 ; 
%screens for removing regions which are too small to be pollen 
region_thres = 50 ; 
region thres two = 200 ; 
%minimum dimension for the final bounding box 
bounding box thold 50; 

[ydim, xdim] size(img) ; 

%background subtraction 
%img_bgnd - img as background is lighter than objects of interest 
iO = imsubtract(img_bgnd , img) ; 

%threshing 
il = im2bw(i0 , backgnd_sub thresh/256) ; 

%apply edge method to original image 
i2 = edgesc reen(img , grad thres) ; 

%consolidate regions 
i3 = imclose(i2 , ones(13 , 13) ) ; 

%remove small regions 
[L , n] = bwlabel(i3 , 8) ; 

for a=l : n 
[r , c] = find(L==a) ; 
if(size(r , 1) <region thres) 

i3(r(l : size(r , 1)) , c(l : size(r , 1))) 0 ; 
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end 
end 

%combine masks . 
i4 = and(il , i3); 
%consolidate - close with a fill 
i5 imdila t e(i4 , ones(29 , 29)) ; 
i6 imfill(i5 , ' holes ' ) ; 
i 7 imerode (i6 , ones (29 , 29)) ; 

%remove regions touching the edges of the image 
iB = removeEdgeRegions(i7) ; 

%remove small regions 
[L , n] = bwlabel(i8 , 8) ; 
for a=l : n 

[r , c] = find(L==a) ; 
if(size(r , l) <region thres_two) 

iB(r(l : size(r , l)) , c(l : size(r , l))) 0 ; 
end 

end 

%too lazy to find out the sizes : ) 
finalmask = iB*O ; 

[L , n] = bwlabel(i8 , 8) ; 
%find statistics 
centstats regionprops(L , ' Centroid ' ) ; 
axisstats = regionprops(L , ' MajorAxisLength ' ) ; 
for a=l : n 

%create a box about the centroid using the radius 
cent= [centstats(a) . Centroid] ; 
r = [axisstats(a) . MajorAxisLength] ; 

if(r >bounding box_thold) 

cen c 
cen r 

cent (1 , 1) ; 
cent ( 1 , 2) ; 

%bounding box : (for now) 
ul c round(cen_c (r/2)) ; 
ul r = round(cen r - (r/2)) ; 

%place onto finalmask 
for i=O : r-1 

for j=O : r - 1 
xcoord = ul c + i ; 
ycoord = ul r + j ; 
%check point is within image . 
if((xcoord > 0) && (xcoord <= xdim) && (ycoord > 0) 

&& (ycoord <= ydim)) 
finalmask(ycoord , xcoord) = l; 

end 
end 

end 
end 
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end 

if(for_display == 0) 
%binary mask 
i9 = finalmask ; 

elseif(for_display == 1 ) 
%draws a box a round objects masked . 
fl imdilate(finalmask , ones(9 , 9)) ; 
f2 imsubtract(f l, finalmask) ; 
f3 imcomplement(f2) ; 

i9 immultiply(f3 , im2double(img)) ; 
elseif(for_display == 2) 

%original image within mask 
i9 = immul tiply( l ogical(finalmask) , i mg ) ; 

else 
error ( ' for_display argument is invalid . Select 0 for binary 

mask ; 1 for display boxes ' ) ; 
end 

7. 1. 8.4 EdgeScreen.m 

Called by runscript.m to select the edges in the image. See section 7 .1. 5. 

7. 1.8.5 removeEdgeRegions.m 

Called by runscript.m to remove regions in a binary mask which are touching the edges of the 

image. See section 7.1.6.1. 

7. 1.8.6 subdivide. m 

function coords = subdivide(regionmask , original img , 
RegionSizeLowerThreshold) 

%function coords = subdivide(img , original_img , RegionSizeLowerThreshold) 
% Takes an image containing only one region which maybe non - rectangular 
% and needs to be analyzed and divided into sub areas depending on 
% whether or not objects are present . 
% returns a co - ordinate list of regions ready for classification in the 
% format : [ topleft_col topleft row width height ; 
% 
% Craig Holdaway. Last updated 23 2 04 Version 2 . 02 

compactnessThreshold 15 ; 

coords = [) ; 

%1 . apply mask ******************** 
img = im2double(original_img); 
blackmasked = regionmask . * img ; 
whited= blackmasked + double(-regionmask) ; 

%2 . regionalize 
%threshold : 

******************* 
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level= graythresh(whited) ; 
il = im2bw(whited , level); 

%3 . fil l ************************** 
%this assumes that the pollen has complete edges after threholding . 
%this is a reasonable assumption because if they weren ' t then the pollen 
%would e ither be out of focus or broken , and rejectable anyhow . 
i2 = imfill(~il , 8 , 'holes ' ) ; %Inversion to get black bkgnd ; 8 connectivity. 

%4 . get region statistics ********* 
i3 = bwlabel(i2 , 8) ; %8 connectivity 
total regions= max(max(i3)) ; 

for i=l : tota l regions 
i4 = double(i3 == i) ; %select one region 
%boundary smoothing 
se strel( ' square ', 3) ; 
i5 = imclose(i4 , se) ; 

%extract properties 
temp= regionprops(i5 , ' Centroid ' ) ; 
cent temp . Centroid ; %cent : 1st element is horz(x) , 2nd ele . is 

vert(y) 
area= bwarea(i5) ; 
iPerim = bwperim(i5) ; 
perim = sum(sum(double(iPerim == 1)) ) ; %pixel count 

%compactness 
%min : circle 

perimeter . perimeter I area . 
12 . 6 , square = 16 , equ triangle 20 . 78 , 9 : 1 rectangle 

44 
compactness = perim*perim I area ; 

%if its less than the compactness thold then we believe it could be a 
pollen . 

if ((compactness < compactnessThreshold) && (a rea > 
RegionSizeLowerThreshold) ) 

end 
end 

tempbounds = regionprops(i5 , ' BoundingBox ' ) ; 
boundingbox = ceil(tempbounds . BoundingBox) ; 
coords = [coords ; boundingbox] ; 

7.1.8. 7 remo veEdgeRegions2.m 

Wrapper around the original removeEdgeRegions.m to provide some additional functionality. 

function result= removeEdgeRegions2(region , RegionSizeLowerThreshold) ; 
%function result= removeEdgeRegions2(region , RegionSizeLowerThreshold) ; 
% Removes the edge regions from a regionalized pollen . 
% Includes preprocessing then calls removeEdgeRegions . 
% Arg : Region to be processed 
% Returns : Region with edge regions diminished. 
% 
% Craig Holdaway . Last updated 24 2 04 Version 2 . 02 

%binarize 
level = graythresh(region) ; 
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il = im2bw(region , l eve l ) ; 
se = st r el( ' square ', 7) ; 
%make t h e b l ack bi t s bi gge r:) 

i2 = double(-il) ; 
i 3 = bwlabe l (i2 , 8) ; %8 connect i vity 
or i ginal_total_regions = max( max(i3)) ; 
total region s = origina l _total_regions ; 

%dilate unti l (but not i n c l uding) a merge occurs ... 
while(total_regions <ori g i nal total_regions) 

end 

i3 = imdi l ate(i2 , se) ; 
i4 = bwlabel( i 3 , 8) ; %8 connectivity 
tota l regions= max( max( i 4)) ; 
if(-(total regions< ori gi na l _total_regions)) 
%if no merge has occu red , al l ow dilate : 

i2 = i3 ; 
end 

img i2 ; 

%% copied from removeEdgeRegions . m 
[ydim , xdim) = size(img) ; 
mask= zeros(ydim , xdim) ; 
vertedge = ones(ydim, 2) ; 
horzedge = ones(2 , xdim) ; 
mask( :, 1 : 2) = vertedge ; 
mask( :, xdim-l : xdim) = vertedge ; 
mask(1 : 2 , : ) = horzedge ; 
mask(ydim- l : ydim , : ) = horzedge ; 
ixl = and(mask , img) ; 

[r , c) = find(ixl) ; 

if(size(r)>O) 
%create black image 
[m , n) = size(img) ; 
iout = zeros(m, n) ; 

%identify regions connected to edges 
i2 = bwselect(img , c , r , 8) ; 
i3 = bwlabel(i2 , 8) ; %8- connectivity 
total_regions = max(max(i3)) ; 
for i=l : total_regions 

area= bwarea(double(i3 == i)) ; 
if(area < RegionSizeLowerThreshold) 
%if this is an area to be eliminated then add it to the mask 

iout = or(iout , (i3 == i)) ; 
end 

end 
e lse 

iout = img ; 
end 

i3 = imfill(-iout , 8 , ' holes ' ) ; 

result = im2double(region) * i3 ; 
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result = r esult + double(- i 3) ; 

7.1.8.8 OnePollenClassify.m 

This function performs the classification of a region within an image containing some pollen. 

function result = OnePollenClassify(img) 
% function result = OnePollenClassify(img) 
% OnePollenClassify . m 
% Prepares and classifies a single pollen presented to the system . 
% Notes : img must be square . 
% 
% Cra i g Holdaway . Last updated 12 2 04 Version 1. 99 

%calculate features 
featureVector = polFeatureCal culation(img) ; 

%normalize 
load diffmax46 diffmax 
load collectmean46 collectionMean 
normVector=(featureVector - collectionMean) ./ d i ffmax ; 

%reduce 
final Vector [normVector ( 1) , normVector ( 2) , normVector ( 4) , normVector ( 
5) , normVector(l8) , normVector(20) 

normVector(24) , normVecto r (25) , normVector(32) , 
normVector(35) , normVector(41) , normVector(46)] ; 

%classify 
load al al %weight matrix 
load a2 a2 %weight matrix 
hiddenl = sig(finalVector ', al) ; 
output = sig(hiddenl , a2) ; 

nnoutput = find(output==max(output)) '; 

switch nnoutput 
case {l , 5 , 9 , 13) 

result = ' BP ' 
case (2 , 6 , 10 , 14) 

result = ' CD ' 
case (3 , 7 , 11 , 15) 

result = ' PR ' 
case (4 , 8 , 12 , 16 ) 

result = ' RO ' 
otherwise 

error( ' Invalid Result ' ) ; 
end 
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Abstract 

Human requirements place many constraints on compound microscopes making them complex and expensive 
instruments. By replacing human eyes with an image sensor a simpler design can be used. This paper 
considers the design of a microscope with an image sensor which optically magnifies an object 20 times using a 
single lens to achieve a real magnification of over 500 times. A single lens design is analyzed but found to be 
inadequate so a standard microscope objective is used. 

Keywords: microscope, pollen, image sensor 

1 Introduction 

Pollen identification is important to agriculture, 
horticulture and healthcare, but is time consuming 
because the extraction and modification of pollen is 
done by manual preparation and analysis [I]. Some 
research has been done into automating the 
identification of pollen [2 ,3], based on the use of the 
texture features on images of pollen [4]. While this 
research shows promise, it does not address the 
problem of image acquisition. In current techniques, 
pollen slides are analysed under a microscope and a 
trained researcher will take 2-10 hours to analyse a 
slide[ 5]. 

Imaging pollen introduces some application specific 
constraints. Pollen analysed this study range in size 
from 20µm to 80µm. To be useful for texture based 
classification the images must contain as much useful 
texture information as possible. The finest texture on 
a pollen grain is much smaller than can be can be 
imaged using visual light, so it is necessary to settle 
for the image provided by magnifying the pollen to 
the limits of optical resolution, calculated using 
Raleigh 's criterion and approximated to 900nm. To 
obtain visible images of objects of this size a 
compound microscope is conventionally required. 

2 Analysis 

The design of modem compound microscopes 1s 
constrained by its intended user, that is the human 
being. Humans place demands on the magnification, 
image quality, illumination levels and packaging of a 
microscope. In particular our eyes, with their integral 
lens, are not biologically designed to view 
microscopic images and therefore require optics to 
provide magnifications in the range 400x - 1 OOOx in 

order to view pollen. To obtain magnification of this 
magnitude and preserve image quality requires 
complex optics, as simple optics designed to provide 
high magnification alone will exhibit severe image 
degradation due to lens aberrations. 

A typical laboratory microscope suitable for viewing 
pollen has 8-15 lenses in the objective and 2-5 lenses 
in each eyepiece. Given that every lens added to the 
microscope adds expense, it is logical to seek a means 
of replacing our eyes with a technology that does not 
require such high magnification, and is more suitable 
for analysing and classifying microscopic objects. If 
the intention is to use digital image processing 
methods and a solid state camera to replace the 
human, then many lenses and features of the modem 
precision microscope can be dispensed with. 

An image sensor, such as a CCD, is microscopic in 
nature. The size of an element, a pixel, on the sensor 
is similar in magnitude to the microscopic detail that 
is of interest. This substitution of a sensor for the 
human eye reduces the magnification required, and 
has two effects on the design of the optics: 

I. Reduced magnification reduces the number of 
lenses required to enlarge the object 

2. Reduced magnification reduces the number of 
lenses required to correct for aberrations introduced 
by high magnification. 

Thus significant savings in optics, and therefore cost, 
can be made by removing from the microscope the 
optics that are required to meet the needs of human 
eyes. However this is not the limit of the possible 
simplification. If a microscope could be built using 
just a single lens it would vastly simplify the 
construction and so reduce the cost. 
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3 Feasibility of a Single Lens 
Microscope 

The concept of a single lens microscope coupled to an 
image sensor has been implemented at low 
magnifications by Intel. The Intel QX3™ Toy 
Microscope has an integrated camera that captures 
images of specimens at lOx, 60x and 200x 
magnification. The optical magnification for the 
200x magnification is performed by a single custom 
lens which magnifies 4x [6]. 

The QX3 has limitations which prevent it being used 
as a scientific instrument. Its highest magnification, 
nominally 200x, is inadequate for resolving the 
textural detail in pollen that is required for 
classification. Additionally the sensor used in image 
capture contains only 320x240 elements, which gives 
a restricted view of the scene. 

In order to overcome these limitations the power of 
the optical system used in the QX3 would need to be 
increased. This would push the system into optical 
limitations such as aberrations and diffraction. 

3.1 Resolution 

The fundamental optical limitation is the resolution of 
the optical system. Under incoherent light this is 
given by: 

d. = 0.6U 
mm . (1) 

nsma 

where ? is the wavelength of radiation, n is the 
refractive index and a is the aperture angle of the lens 
[7]. 

To calculate this the fixed parameters of the system 
must be known. They are the lens focal length(/) and 
the sensor size(Rimg), the latter represented as a 
maximum distance from the centre of the sensor to 
and edge, which is also the maximum extent of the 
lens needed for imaging. Figure 1 shows these 
parameters. 

Focal 
Point 

Aperture 

Image Sensor 

Lens 

Figure 1: The parameters used for calculating a. 

Using the largest unfiltered wavelength, ?=700nrn, 
and a refractive index, n = 1.6641

, the resolution is 
calculated as dmm=2.17µm . 

It is not possible to produce perfect images. Image 
fidelity is limited by lens aberrations and ultimately, 
diffraction. However if the degradation cannot be 
resolved by the sensor or perceived by a human then 
the image can for practical purposes be considered to 
be perfect. 

3.2 Aberrations 

All spherical lenses produce aberrations, phenomena 
that degrade the image. The most obvious of these is 
chromatic aberration, where light of different 
wavelengths is refracted differently causing 'rainbow 
edges' in colour images, and blurring in 
monochromatic images. Using white light at 20 times 
magnification the blurring from chromatic aberrations 
will be in the order of 20µm. This means that two 
overlapping objects less than 40µm will blend with 
each other. 

Spherical aberration is caused by different regions of 
the lens focusing light at different distance from the 
lens and causes general blurring to an image. 
Spherical aberration can be calculated using ray­
tracing techniques such as those explained in [8] . 
There are two key factors that affect the spherical 
aberration: 

1. The aperture size limits the maximum ray 
divergence from the object, limiting the divergence of 
meridional rays. Therefore the spherical aberration is 
reduced as the aperture is closed. 

2. The refractive index of the lens determines the 
severity of the refraction at the surfaces. A smaller 
refractive index causes less divergence and therefore 
less spherical aberration. 

3.3 Diffraction 

Diffraction also limits the resolution. An aperture has 
been introduced into the system to control the 
illumination and spherical aberration. As the aperture 
is a limiting edge it is a barrier which light diffracts 
around. Using a single-dimension simplification, it 
can be shown that the spread of the central maximum 
of the diffraction emanating from a point within a slit 
has the following formula: 

W= 2LA­
b 

(2) 

where W is the width of the central maxima, L is the 
distance from the slit to the image, b is the slit width, 
and ? is the wavelength of the light[9]. 

1 The lens with these parameters is A45-097 from 
Edmund Optics [ 11]. 
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Figure 2: Effect of applying a narrowband filter to the light source. 

3.4 Correcting Aberrations 

Correction of chromatic aberration typically requires 
an achromatic doublet, which introduces a negative 
lens with a high refractive index. An alternative 
solution is to limit the wavelength of the source. 
During early experimentation a filter was applied 
consisting of a Near-IR Cut Filter on the camera 
transmitting ? < 700nm, and a red filter on the source 
transmitting ? > 630nm. Thus the illumination has a 
bandwidth of 70nm, compared to the bandwidth of 
white light at - 320nm. The effect is to improve the 
detail in the image as shown in Figure 2. 

This is an acceptable limitation for our application, 
and many image processing applications, where 
colour information is not used. 

Correcting for spherical aberration requires that the 
aperture diameter be decreased. However it can be 
seen from equation 2 that decreasing the aperture 
(parameter b) increases diffraction. Thus we have a 
trade-off between aberration and diffraction. 

Applying equation 2 shows that an aperture greater 
than 21 mm is required to reduce the effect of 
diffraction to the desired value of 2µm . However this 
increase in aperture size increases the quantity of non­
paraxial rays in the system and increases the 
magnitude of the aberrations. 

In order to correct for spherical aberration the 
diameter of the point spread function (p.s.f.) should 
be at most 2.2µm. To achieve this an aperture of 
diameter 0.061 mm is required. At this aperture 
diameter the effect of diffraction would be a p.s.f. 
with diameter l 2mm or about the half the area of the 
imaging sensor. Additionally an aperture of this size 
would block out 99 .9% of the image. 

3.5 Conclusion 

This trade-off between aberrations and diffraction in 
the optical system prevents achievement of the 
optimal resolution. Although the values here are for 
the case of a lens withf=25 , a lens where the diameter 
of both the spherical aberration and beam spread is 
smaller than 2µm cannot be found by applying the ray 
tracing and beam spread equations to lenses with both 
shorter and longer focal lengths. 

Therefore, a single lens microscope magnifying 
twenty times cannot provide the resolution required 
for imaging pollen. 

4 Design of a Computer Microscope 

4.1 Design Alternatives 

There are two likely alternatives for the basic design 
of a computer microscope. 

The first option, custom optics, allows greater design 
flexibility. Triplets, such as Cooke 's Triplet[ 1 O] , can 
adequately correct for all primary aberrations and 
chromatic aberration. However they require 
considerable optical and mechanical design. 

The second option, a standard finite achromatic 
microscope objective, is less flexible than custom 
optics, but has known design parameters, is 
mechanically housed, and contains corrective optics 
for all primary aberrations. Importantly, the cost of a 
standard objective and the cost of three lenses plus 
housing is approximately equal[ 11]. 

As this is an integration application the standard 
microscope objective is the prudent and expedient 
option and has been selected. 
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Figure 3: Design of a Computer Microscope to optically magnify 12 x 

4.2 Selected Design 

The selected design for a computer microscope, 
shown in Figure 3, is vastly simpler than a 
conventional compound microscope. Most 
importantly the optical magnification has been greatly 
reduced. At lower magnifications illumination is not 
as critical as it is for higher magnifications. This 
removes the need for complex and expensive 
condenser optics and illumination train and allows a 
cheap source of illumination to be used, such as an 
incandescent light bulb. 

This computer microscope is more flexible than a 
conventional compound microscope as it is not bulky 
or fixed in place, making it suitable for field work. 

This computer microscope stands apart from existing 
entry level computer microscopes such as the QX3 by 
providing significantly higher magnification. 

Figure 4: Image of a calibration grid and two pollen 
captured using the computer microscope at l 2x 

optical magnification 

5 Results 

A standard 1 Ox achromatic objective lens was used to 
acquire the images. By using different optical tube 
lengths magnifications in the range I 0-22x we 
obtained. It was found that above about 12x 
increasing the magnification did not increase the 
resolution. Furthermore, the 12 x images, displayed 
in Figure 4, contain pollen of about the right size and 
of sufficient detail to be classified using the existing 
classification algorithm. 

The contrast of the images captured could be 
improved by correction and, expensive, illumination. 
However this degradation is not critical and can be 
improved in software by using contrast expansion 
algorithms. 

6 Conclusion 

If an optical microscope is not designed for direct 
human viewing, then the need for complicated optics 
is eliminated. This makes it possible to construct a 
simple microscope using only a standard microscope 
objective and a digital image sensor. As a 
consequence of the direct use of a solid state sensor 
having microscopic elements to image an object, the 
resulting microscope has lower optical magnification 
than a conventional microscope. Additionally the 
computer microscope does not need expensive 
illumination systems and can be positioned flexibly. 
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Introduction 

7 .3 An Introduction to Wavefront Coding 
Craig Holdaway 

Institute of Information Sciences and Technology 
Massey University 

Wavefront coding uses aspheric optical elements and digital signal processing to enhance the 
performance of imaging systems. Wavefront coding has been applied to imaging systems to extend 
depth of field and to control aberrations. These applications have demonstrated at least an equivalent 
image quality as a more expensive traditional optical system, with 4-Sx greater field of view without 
changing aperture sizes in the system[l]-[4]. 

Background 
Depth of field has traditionally been extended by altering the exit pupil definitions,. Usually by 
stopping down the aperture until the desired focal depth has been reached. However this creates some 
problems[3]: 

• The illumination through the system is reduced, which in turn requires an increase in the 
exposure and increases the likelihood that the object will move during imaging. 

• A smaller aperture loses the high frequency information encoded in the more widely 
diffracted rays, blurring the image 

Wavefront coding introduces a phase plate into the aperture stop of the optical system. The phase 
plate is designed to generate a known blur that creates invariance to many optical aberrations 
including: spherical aberration; astigmatism; field curvature; chromatic aberration and; defocus.[ 1] 

The blurred intermediate image captured by the image sensor is processed by digital signal processing 
that removes the blur and changes the phase of the spatial frequencies. The system as a whole is 
illustrated in Figure 1. 

Digital Processor 

----~-
Example image at I 
Aspheric detector f 
Surface Final l'mage 

Figure 1 Wavefront coded imaging system[l) 

Current design methods for optical systems using wavefront coding involve careful mathematical 
design of the phase plate to achieve aberration invariance, then selection of a signal processing 
algorithm to restore the original image. The design approach treats the object as a 2-D signal source 
and the mathematics is generally done in the spatial frequency domain, by manipulating the OTF of 
the subsystems, as the optical wavefronts can be considered to be convolved with the optical 
elements. 

Optics 
Figure 2a shows a ray diagram for a traditional imaging system. The image plane must be located 
precisely, at the 50mm mark, for the image to be in focus. Figure 2b shows a ray diagram for the same 
system after a cubic phase plate is inserted at the aperture stop. Moving the image plane within the 
boundaries of Figure 2b does not affect the resulting image greatly. Looking at this conversely, for a 
fixed image plane, in a wavefront coded optical system, many object planes will generate a coded 

Automation of Pollen Analysis using a Computer Microscope - Craig Holdaway 2004 Page 130 



image that can be digitally processed from a single image plane. Thus the depth of field of the 
wavefront coded system is much greater than the traditional system. 
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a 

~0~~=1 

50 
mm 

(a) 

50.5 51 

0_8 

0_6 

!o-4 
0-2 

0 

-0_2 
49 495 50 

mm 

(b) 

Figure 2: Ray-based explanation of Wavefront Coding. [4] 

50-5 51 

The PSF generated by an optical system with a cubic phase inserted is shown in Figure 3. The 
invariance to defocus can be seen in Figure 3, where the effect of ten waves of defocus on the 
standard PSF (Figure 3a) generates significant blur (Figure 3b ), whereas the effect of ten waves of 
defocus on the PSF of a wavefront coded system (Figure 3c) is minimal (Figure 3d). 

w-

~ 
1 ,_ 

,_,,_, __ ~-----~' 
(a) (b) (c) (d) 

Figure 3 Images of standard PSFs with (a) zero waves of defocus, (b) ten waves of defocus, next to images 
of cubic phase play system PSFs with (c) zero waves defocus and (d) ten waves of defocus[2]. 

Results 
The improvement in depth of field is visible in Figure 4, where the background hairs which are 
blurred in Figure 4a) are sharp in Figure 4c). There is also greater detail of the contents within the 
hairs. 
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(a) (b) (c) 

Figure 4 Images of human hair with average thickness 65µm taken using (a) a standard optical system, 
(b) the intermediate cubic phase plate system image, and (c) the processed cubic phase plate system 

image[2]. 

Application to Microscopy 
Applying wavefront coding to microscopy provides higher quality images for low power microscopes 
due to the invariance to degrading primary aberrations. This application also reduces the time needed 
for some laboratory work where under a traditional microscope multiple image slices had to be taken 
to get an image with the depth that is achieved by a microscope using wavefront coding. 

However application of wavefront coding to high magnification microscopes is more difficult due to 
the precision needed to located the apertures, high system resolution, and the optimization of digital 
processing algorithms.[2] 

Conclusion 
Wavefront coding is a cheaper means of improving the performance of an optical system. By 
carefully designing the system parameters, the effect of aberrations can be removed and the depth of 
field significantly increased compared to conventional optical systems of the same power and 
numerical aperture. 

Glossary 
PSF - Point Spread Function. The spatial domain representation of the effect of the optical system on 
the input. 
OTF - Optical Transfer Function. The spatial frequency representation of the effect of the optical 
system on the Fourier transform of the input. 
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