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ABSTRACT 

Higher stability, persistence and yield can be achieved through increasing the biodiversity 

of pasture plants. The combination of species with different functional traits confers niche 

differentiation (e.g. different root depth). Otherwise species compete for the same 

resources in the same location and time. In diverse pasture, agricultural needs should 

overlap between species, enhancing species survival during critical periods. Productive 

ecosystems with low complexity (low plant functional diversity) show more the negative 

impacts of climate change, being less stable through the stress periods. 

Bromus valdivianus Phil. is regarded as having high potential for grazing systems, due to 

its high yield and good nutritive quality. It also has high tolerance to periods of soil water 

restriction, maintaining a higher growth rate during summer in comparison to Lolium 

perenne L. Alongside L. perenne, B. valdivianus co-dominates permanent perennial 

pastures in the South of Chile, indicating that it is a good competitor in mixed cool-

temperate pastures. 

However, key parameters associated with recovery from defoliation, such as watersoluble 

carbohydrate (WSC) reserves, growth rate, tiller number and persistence, are unknown 

for B. valdivianus. Therefore, the first step in this thesis was to determine these defoliation 

criteria in relation to similar defoliation criteria of other highly productive species, L. 

perenne and Plantago lanceolata, to determine if and when any overlap occurred. 

This thesis consisted of three main experiments, which cover the physiological, 

morphological and competitive traits of B. valdivianus. The first experiment was designed 

to determine a theoretical optimum defoliation interval for B. valdivianus, and it was 
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concluded that defoliation at leaf stage 4 (LS-4) was the optimum defoliation in terms of 

highest shoot and root growth rates, and accumulation of WSC.  

The second experiment was designed to determine the resilience and tolerance between 

monocultures and mixtures of B. valdivianus, L. perenne and P. lanceolata. All three 

species were defoliated when B. valdivianus reached LS-4, which coincided with 

approximately 3.5 regrowth leaves/tiller for L. perenne, and over 6 leaves/plant for P. 

lanceolata.  Measurements included biomass production across critical periods, botanical 

composition, physiological response against water stress (waterlogging and soil water 

restriction) and water uptake at different depths, and it was concluded that a more diverse 

pasture (B. valdivianus + L. perenne + P. lanceolata) maintained higher biomass under 

soil water restriction and also had a more effective water uptake from the soil profile.  

The third experiment was designed to determine the tiller population dynamics, 

photosynthetic carbon fixation capacity (PCFC) and competitive ability of B. valdivianus 

in relation to L. perenne. It was concluded that L. perenne was a better competitor than 

B. valdivianus, however, B. valdivianus was able to recover its tiller population during a 

period of soil water restriction and reached a full recovery at the end of the experimental 

period. Also, a B. valdivianus + L. perenne mixed pasture had the highest values for PCFC 

during the waterlogging and soil water restriction periods.  

Pasture plants such as B. valdivianus and P. lanceolata can access water from deeper in 

the soil than L. perenne, having a direct effect on their physiological traits. Water 

accessibility (root depth) plays a key role in maintaining their photosynthesis, production, 

and improving their survival, during periods of soil water restriction, relative to L. 

perenne. On the other hand, L. perenne tolerate waterlogging and maintain a relatively 

high growth rates during winter.  



 

 
iii 

 

Pasture establishment and performance, in a climate with dry and wet seasons and in soils 

with a high percentage of silt and/or clay (low gas permeability), is related to species 

tolerance to drought and waterlogging conditions. Thus, increasing species diversity is a 

good strategy that confers stability to the pastoral ecosystem, especially when global 

warming has enhanced droughts and unpredictable rain events.  

Mixtures of L. perenne + T. repens + P. lanceolata or L. perenne + T. repens + B. 

valdivianus can reach higher growth rates during water restriction periods, in comparison 

to L. perenne + T. repens pastures, along with relatively high growth rates during winter. 

Therefore, combining species with the aim of complementary resources uptake, and 

depending on the contribution of each species within the pasture, will change the seasonal 

herbage growth rate under the stress periods. However, to keep a great contribution of the 

desirables pasture species it is essential to use a defoliation criterion that allow them to 

replenish its water soluble carbohydrates, only then, the persistence, survival and yield of 

the pasture and the desirables species within it will be maximized. 
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Chapter 1 General introduction and objectives 

1.1 Introduction 

The current global warming scenario is challenging the traditional management used in 

many agroecosystems. Extreme periods of drought (Lehner et al., 2006; AghaKouchak et 

al., 2015), and waterlogging have become more frequent, due to events such as extreme 

precipitation, increased heat wave frequency (Seneviratne et al., 2012), increased 

temperature variability making the ambient temperature more unstable (Harrison et al., 

2006), and the increasing use of non-renewable water resources for irrigation 

(Vörösmarty et al., 2005). All these factors interact together with a highly intensive use 

of the natural resources (Millennium Ecosystem Assessment 2003; Butler and Soskolne, 

2013), such that, low diversity agroecosystems are less resistant (Tilman and Downing, 

1994; Ulanowicz, 1998; Patsek, 2008) and resilient to environmental stress and 

disturbances (Ulanowicz, 1998; Tilman, 1999; Patsek, 2008; Isbell et al., 2009; 

Ulanowicz et al., 2009). To gain ecosystem stability (resistance plus resilience) in a 

pasture, increasing pasture species diversity has been pointed out as a key factor (Elton, 

1956; Tillman, 1999; Loreau et al., 2000; Isbell et al., 2009), together with an increase in 

functional traits (Hooper and Vitousek, 1997; Hooper and Duke, 2004) and a defoliation 

criterion according to the species within the pasture ecosystem (Donaghy and Fulkerson, 

1998). 

Lolium perenne L. and Trifolium repens L., are species that concentrate a high proportion 

of their roots in the shallow soil layers, between 0 and 20 cm (Crush et al., 2005; Ordóñez 

et al., 2018), because of that, both species are susceptible to water restriction periods 

(Ordóñez et al., 2018), but show a high tolerance to waterlogging conditions (McFarlane 

et al., 2003) and share similar colonisation strategies, classified as ruderal - competitor 
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(Grime et al., 1977). Pasture height has been used as grazing indicator for L. perenne, 

however, neither pasture height nor herbage mass are directly related to phenological 

maturity, nor are they indicators of water soluble carbohydrate (WSC) reserves that have 

refilled as plant regrowth occurs after defoliation (Donaghy and Fulkerson, 1997; 1998). 

It was determined for grasses that leaf stage was a good indicator for when to defoliate, 

as it directly related to plant phenological development (Donaghy and Fulkerson, 1997, 

1998; Turner et al., 2006a,b,c,d), such that, for Lolium perenne defoliation at the 2.5 leaf 

stage encourages regrowth after defoliation and persistence (Donaghy and Fulkerson, 

1998). In cool-temperate climates, L. perenne is one of the most frequently used grass 

species, constituting the base of the sown pastures in New Zealand (Amin and Thomas et 

al., 1996; Kemp et al., 2002). 

Plantago lanceolata has a deep root system that allows it to tolerate soil water restriction 

(Sanderson et al. 2003; Nie et al. 2008). Lee et al. (2015) reported that, for a full water 

soluble carbohydrates reserves recovery after defoliation, the plant needs to accumulate 

532 °C AGDD (accumulated growing degree days).  

Bromus valdivianus Phil. is tolerant to soil water restriction (López et al., 2013; Ordóñez 

et al., 2018), highly productive with high quality forage (López et al., 2013), but its 

defoliation criterion has not been defined according to the energy reserves-leaf stage 

interaction. 

The presence of species with different root distribution within the same pasture 

ecosystem, such as shallow-rooted (L. perenne and T. repens) and deep-rooted species 

(P. lanceolata and B. valdivianus) should provide a higher biomass stability in terms of 

annual pasture herbage mass production and also across seasons. However, the 

defoliation criterion for the drought tolerant B. valdivianus needs to be defined based on 
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its growth physiology, in which leaf stage should be a good indicator parameter. In a 

diverse pasture, a common window opportunity between the species for defoliation is a 

target, as defoliation is tool to encourage species growth. 

According to the background provided, the hypothesis of this thesis is that an increase in 

functional diversity, through combining species tolerant to waterlogging and also soil 

water restriction, which share a common defoliation window opportunity, enhances 

species survival after soil water stress, providing a higher stability and biomass 

production during critical periods than monocultures.  

Therefore, the objectives of this thesis are as follows:1) To determine the defoliation 

criterion for B. valdivianus grass; 2) To determine the botanical composition and herbage 

mass production of pastures containing L. perenne, T. repens, B. valdivianus and P. 

lanceolata as monocultures and mixtures across seasons; 3) To examine the physiological 

parameters for L. perenne, B. valdivianus and P. lanceolata as monocultures and as 

pasture mixtures across seasons; 4) To determine the changes in tiller 

dynamic/population, under intra- and interspecific competition between L. perenne and 

B. valdivianus as monocultures and as pasture mixtures across seasons. 

1.2 Thesis structure 

Seven chapters composed this thesis. Chapter 1 is the introduction, Chapter 2 provides 

the concepts and the current knowledge of the effects of diversity on plants and 

ecosystems.  

Three research chapters are included: Chapter 3, determined the defoliation criterion for 

B. valdivianus, Chapter 4 determined whether B. valdivianus defoliation criterion 

determined in Chapter 3 affected the persistence of B. valdivianus, L. perenne and P. 
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lanceolata, and how the growth dynamics changed over time in monoculture and in mixed 

swards, with varying soil water content. Chapter 5 determined the tiller dynamics and the 

outcome of the competition between L. perenne and B. valdivianus across several seasons 

and estimated the potential photosynthesis for both species as a function of changes in 

tiller population. 

Chapter 6 discusses the main findings of the thesis and Chapter 7 presents the conclusions 

of the thesis.  
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Chapter 2 Literature review 

2.1 General concepts behind the diversity-stability theory  

Several authors have suggested that ecosystem stability increases with a higher species 

diversity (Elton, 1958; Tilman and Downing., 1994; Hooper and Vitousek, 1997; Tilman 

et al., 1997; Tilman, 1999; Loreau et al., 2000; Loreau and Hector 2001; Loreau et al., 

2001; Hooper and Dukes, 2004; Tilman et al., 2006; Isbell et al., 2009; Tilman et al., 

2014). The ecosystem organisms are responsible for different process (Tilman, 1999) led 

by their own species traits (Tilman et al., 1999; Hooper and Vitousek, 1997). This range 

of species traits is a main factor leading to higher stability, higher productivity and better 

nutrient cycling. Thus, different species traits lead to a greater access to available 

resources, or in other words, they are able to explore different ecological niches (Hooper 

and Vitousek, 1997; Loreau and Hector, 2001). Therefore, the complementary resource 

use (Trenbath, 1974; Hooper, 1998) can happen in a common space (e.g., different root 

depth and/or traits) and time (e.g. growth asynchrony; Hooper and Vitousek; 1997; Isbell 

et al., 2009), increasing the harvesting efficiency of the resources (Elton, 1958; Naeem et 

al., 1996; Tilman, 1999; Tilman et al, 2006; Loreau, 2000; Loreau et al., 2001; Hooper 

and Dukes, 2004). 

Three mechanisms have been recognized as responsible for increasing the ecosystem 

stability, and therefore, sustainability (Ulanowicz, 1998; Tilman, 1999; Patzek, 2008; 

Ulanowicz et al., 2009) and they are as follows; portfolio effect (Tilman et al., 1999; Isbell 

et al., 2009), overyielding (Tilman et al., 2009; Isbell et al., 2009; Hooper and Vitousek, 

1997; Hooper and Dukes, 2004) and asynchrony (Loreau et al., 2001; Isbell et al., 2009; 

Zhang et al., 2018). The portfolio effect, a concept originally created as a probabilistic 

financial investment theory and thereafter applied in ecology and evolution disciplines, 



 

 
6 

 

states that the investment in several portfolios produces more stable returns than a simple 

portfolio (Schinder et al., 2015). According to this theory, biological properties are scale-

dependent, which means that the stability of the properties could change in function with 

the scale of the observation (Levin, 1992). For example, in plant ecology the stability of 

a single species is lower than the whole ecosystem stability (Tilman, 1999; Lehman and 

Tilman, 2000; Isbell et al., 2009). Overyielding acts as a stabilising factor within a plant 

community biomass (Lehman and Tilman, 2000; Isbell et al., 2009) and it occurs when 

the community biomass increases together with the biodiversity (Harper, 1977; Tilman et 

al., 1996; Isbell et al., 2009), the overyielding could be explained by niche partitioning 

(complementary resource use) and resource facilitation hypotheses (Trenbath, 1974; 

Hooper, 1998; Hooper and Duke, 2004), caused by the presence of different plants 

functional groups (Hooper and Vitousek, 1997). Asynchrony is when the plants 

development occurs at different times of the year, stabilising the biomass production of 

the ecosystem (Tilman, 1999; Loreau and Hector, 2001; Isbell et al., 2009; Zhang et al., 

2018). 

2.2 Sustainable production: stability related to sustainability 

Ecosystems have been defined as the “basic unit in nature” for which biotic factors are in 

interaction with abiotic factors (Tansley, 1935). The Millennium Ecosystem Assessment 

(2003) divided the services delivered by an ecosystem as follows: provisioning (e.g. 

food), regulating (e.g. soil erosion reduction), culturally enriching (e.g. ancestral links) 

and supporting (e.g. nutrient cycling; Butler and Soskolne, 2013). Human activity has 

been indicated as responsible for the abrupt changes in the ecosystems and species within 

(Soskolne et al., 2008). Butler and Soskolne (2013) reported that the ecosystems services 

have been changed drastically towards provisioning, leaving aside the services related to 
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regulating and supporting, both necessary to build sustainable production. But even if one 

of the causes is agricultural activity, the food, biofuel or medical agents production are 

necessary for the human wellbeing, especially due to the increasing population (over 7 

billion), where natural systems (wild) are unable to provide enough goods to sustain life 

as agriculture does (Butler and Soskolne, 2013).   

To reach a sustainable agriculture it is necessary build ecosystems more stable to 

environmental constraints (Tilman and Downing, 1994; Tilman, 1999; Isbell et al., 2009). 

But there are two concepts inside the word “stability”, one of them is the static aspect 

related to an ecosystem’s continued existence (resistance), and the other is the dynamic 

aspect, or the capacity of the ecosystem to return to its “original state” (resilience) (Gigon, 

1983). Therefore, ecosystem stability means that an ecosystem can maintain and recover 

its integrity and structure after a disturbance/stress has occurred (Holling, 1973). This 

concept is essential to build sustainability in productive systems (resilience and 

resistance). 

To maintain high biomass production (high energy outputs), from an ecosystem through 

time, high energy inputs are required (Odum and Pinkerton, 1955). Odum and Pikerton 

(1955) discussed the application of the thermodynamic theory to agricultural systems, 

which indicates that a maximum input of energy is always less than the greater efficiency 

possible in agroecosystem. Therefore, goods production using high energy inputs, e.g. 

irrigation, high fertiliser dose, soil preparation, pesticides helped to build low efficient 

and unstable agroecosystems. In the same line, Ulanowicz, (1998); Patzek et al., (2008) 

and Ulanowicz et al. (2009) stated that agroecosystem sustainability is achievable if there 

is a right proportion between efficiency in  biomass production and resilience, and also 

indicated that sustainable agroecosystems cannot be achieved without biodiversity, and 
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being disorderly and moderately inefficient. Similar statements have been provided by 

Tilman (1999); Tilman et al. (2006); Isbell et al (2009), arguing that a higher stability 

(due to higher biodiversity) is also related to a low stability for a single species 

(disorderly; portfolio effect). Opposite to the productive systems based on monocultures, 

which are systems with lack of complexity (no disorder) and with a lack of biodiversity 

and therefore lower resilience to disturbance/stress (Patzek, 2008). These could be the 

reasons why an agroecosystem based on just one species is sensitive to any 

stress/disturbance that affect that species, negatively affecting the whole biomass 

production (Tilman et al., 1994; Ulanowicz, 1998; Ulanowicz et al., 2009). 

 

Figure 2.1 Adapted from Patzek et al. (2008) taken from Ulanowicz et al.’s theory. Shows 

the optimum point of sustainability in comparison to the current agricultural management. 

Traditional maize crops were taken as an example of intensive non-sustainable agriculture.  

Figure 2.1 illustrates that to increase the resilience of agroecosystems it is necessary to 

sacrifice biomass production, which also allows the agroecosystem to reach 

sustainability. This indicates that stability and, therefore sustainability, can be achieved 
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at low diversity but with different species functional groups (functional traits) within the 

ecosystems (Hooper and Vitousek, 1997).  

Increasing ecosystem complexity is not just related to an increase in plant species 

diversity or species functional diversity, it is related to all the interactions between the 

different traits of the plants species or biotic factors within the environment or abiotic 

factors. For example, an increase in soil pore continuity and therefore an increase in gas 

diffusion in a pasture ecosystem (Peth et al., 2010; 2008) can result from an increase in 

soil pore continuity at deep soil layers due to deep-rooted species (Uteau et al., 2013). In 

southern Chile, naturalised pasture with a low biomass production and with high plant 

diversity were negatively affected by the diminishment of soil mechanical properties due 

to animal trampling (Zúñiga et al., 2015; Ivelic-Sáez et al., 2015; Ordóñez et al., 2018). 

Also in southern Chile, in fertilised naturalised pastures with a high biomass production 

and with a lower plant biodiversity, in comparison to the non-fertilised naturalised 

pastures, the water uptake between 0-60 cm soil depth was more evenly distributed 

(Ordóñez et al., 2018). The higher water uptake at deep soil layer indicates a greater 

effectiveness for water uptake (Blum, 2009) when different root traits are present in the 

pasture. From these experiments it can be concluded that biodiversity is not enough to 

reach sustainable production. Both, biotic factors (e.g. plant parameters) and abiotic 

factors (e.g. soil water dynamics) and their interaction need to be understood to reach to 

appropriate conclusions related to the ecosystem stability and sustainability. 

2.3 The effect of an increase in plant diversity  

The research by Elton (1954); Tilman (1999); Loreau, 2000; Loreau et al., 2001 and Isbell 

et al. (2009) shows that there is a positive correlation between increasing biodiversity and 

pasture survival, persistence, resilience and production during and after abiotic stress or 
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disturbance (e.g. water restriction). Plants species drive a variety of ecological processes 

by altering the ecosystem according to their own traits (Tilman, 1999), such as nitrogen 

fixation (e.g. legumes) or alteration of soil porosity due to deep-rooted species (e.g. B. 

valdivianus and P. lanceolata). Therefore, plant species can generate changes in an 

ecosystem by modifying soil nutrient status (Fornara and Tilman 2009), soil structure 

(Haynes and Beare, 1997; Kabir and Koide, 2000; Moreno-Espindola et al., 2007) or soil 

water dynamics (Gan et al., 2012; Ordóñez et al., 2018). Along the same line, Petchey et 

al. (2004) indicated that a more diverse pasture raises the probability of an increase in 

traits within the pasture, building a more complex ecosystem, with a stable functioning 

against the impact of environmental constraints. According to the role of each species 

involved, the increase in functional diversity in a productive system may help it to reach 

greater sustainability and stability over time.  

Currently, the use of pastures based on one grass species and one legume species has 

become the most common manner to produce pastures in cultivated soils for grazing 

production systems (Kemp et al., 2002). The research realised until now has indicated 

that a pasture with several species can enhance the resource acquisition, such as, a higher 

presence of soil nitrogen, given by the legumes (Schwinning and Parsons, 1996; Fornara 

and Tilman 2009), high root biomass and root activity (Tilman et al., 1996), positive 

effect of plant nutrient concentration to soil nutrient availability (Fornara and Tilman 

2009), water lifting generated by deep root species (Richards and Coldwell, 1987; 

Caldwell and Richards, 1989; Skinner et al., 2008). 

2.3.1 The effect on plant parameters 

Long-term experiments have shown that pasture biomass and its stability are strongly 

related to an increase in plant diversity, where the stability was assessed in terms of dry 
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mass production, across several years  (Tilman, 1999; Loreau, 2000; Tilman et al., 2006; 

Isbell et al., 2009). But it has been noticed, that contrary to the stability of the ecosystem, 

survival of individual species declined with higher plant diversity, but overall, this led to 

greater stability (Portfolio effect; Tilman et al., 1999; Isbell et al., 2009). Moreover, 

overyielding refers to herbage mass production that exceeds the expectations based on 

the most productive monoculture (Hooper and Duke, 2004), which results from two 

mechanisms, complementary resources use and facilitation (Trenbath 1974; Hooper and 

Duke, 2004). The complementary resources use, could happen in a different space (e.g. 

root depth and leaf canopy architecture), time (e.g. phenology) or resources type (Hooper 

and Duke, 2004), and the facilitation is related to species that can deliver limited 

resources, e.g. legumes ability to fix atmospheric nitrogen (Schwinning and Parsons, 

1996; Hopper and Duke, 2004). In the treatments without legumes, overyielding could 

occur by the different root depth or phenology of the species within. Therefore, in a cool 

temperate climate in which water is a limited resource during the summer period, species 

with different root depths can lead to pasture ecosystem overyielding (Hooper and Duke, 

2004). 

Mueller et al. (2013) in a study of 12 years in Minnesota, USA, with pastures that range 

from 1 to 16 species per treatment, showed that high diverse pastures had a greater 

increase of foliage and root biomass in relation to monoculture pastures. The sampling 

for the aboveground and root biomass evaluations were done during August 2006 (12 

years after the pasture establishment). The above ground production increased from 100 

g m2 (1 species treatment) to 375 g m2 (16 species treatment), and the root biomass from 

500 g m2 (1 species treatments) to over 1500 g m2 (16 species treatment). These findings 

were related to the presence of species with different functional traits in the more diverse 

pasture, such as C4 species and legumes.  
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Liu et al. (2016) in Inner Mongolia, China, determined the effect of a monoculture and 

mixed of two (Medicago sativa L. + Bromus inermis Leyss.) and three (M. sativa, Bromus 

inermis and Elymus nutans Griseb.) pasture species on the production above and below 

ground. The above ground mass production was greater for the mixture of M. sativa + B. 

inermis (over 350 g m2). The below ground mass production was greater for M. sativa 

(over 650 g m2) followed by the mixture M. sativa + B. inermis (over 550 g m2). The root-

shoot ratio was 6.5 times greater for M. sativa monoculture, indicating a superior 

production below ground than above ground. On the other hand, when M. sativa + B. 

inermis mixture was compared, the below ground mass production was 1.5 times greater 

than above ground mass production. Also, they showed differences in net photosynthesis, 

where the Bromus inermis in the mixture had greater photosynthetic rate in comparison 

to Bromus inermis in the monoculture, which makes sense due to the N fixation by the 

M. sativa. Nevertheless, independent of how much root mass M. sativa monoculture 

presented, the transpiration rate and water use efficiency were the same.  

Hooper and Vitousek (1997) indicated that a pasture system increases its production with 

a greater functional group number due to the complementarity of the species. The 

functional group composition in a pasture is more relevant than the species richness by 

itself. This suggests that the combination of the functional properties’ controls yield 

quantity. It has been suggested that in a pasture, a maximum of 4 functional groups 

(Figure 2.2, adapted from Hooper and Vitousek (1997) maximises above ground 

production.  

In New Zealand, little research has been performed on the mechanisms that regulate 

production as function of diversity. In a study with L. perenne, T. repens, Plantago 

lanceolata L. and Trifolium pratense L., with different sowing rate under irrigation (Black 
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et al. (2017)), it was estimated that a greater yield can be achieved when 3 species are 

established, L. perenne, P. lanceolata and T. pratense, all of them with different 

functional traits. This result was supported by T. pratense N fixation and the possible 

niche partitioning involved. 

 

 

Figure 2.2 Adapted from Hooper and Vitousek (1997). Simplified figure of the 

number of functional groups required to reach a greater above ground biomass 

production.  

Woodward et al (2013) evaluated 2 types of pastures; 1) L. perenne with T. repens and 2) 

Bromus willdenowii Kunth. + Cichorium intybus L. + P. lanceolata + M. sativa. No 

statistical differences were assessed, producing in three years an average yield of 14.7 

and 15.3 ton DM ha-1 year-1, respectively. 

Goh and Bruce (2005) evaluated the following pastures: 1) L. perenne + T. repens; 2) 

Festuca arundinacea Schreber + Dactylis glomerata L. + Bromus stamineus E. Desv. + 

Phleum pratense L. + Phalaris aquatica L. + T. pratense + Trifolium ambiguum M. B. + 

T. repens + M. sativa + Hedysarum coronarium L. + C. intybus + P. lanceolata + 
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Sanguisorba minor Scop. + Achillea millefolium L.; 3) M. sativa + F. arundinacea + B. 

stamineus + P. pratense + C. intybus + P. lanceolata + S. minor + A. millefolium; 4) T. 

pratense + T. repens + F. arundinacea + B. stamineus + C. intybus + P. lanceolata + S. 

minor + A. millefolium. The non-irrigated pastures showed no significantly statistical 

differences for the annual yield, between 6.0 and 7.2 ton ha-1 year-1. Nevertheless, the 

pastures presented different biomass production distribution of across the year. 

One of the complications in determining the root mass in the field is that live and dead 

roots are included. Skinner (2008) indicated that C. intybus L. + legume + grass mixture, 

under water stress, had higher production in comparison with the legume + grass mixture, 

nevertheless, the mixture with a higher root mass below 70 cm was the mixture legume 

+ grass. Regarding the soil water content at 25, 50 and 75 cm, the authors did not present 

any differences between the two and three species mixtures, reporting the same water 

uptake. From this it may be assumed; 1) different water use efficiency between the mixes 

and/or photosynthesis rate; 2) no strong relationship between the total root mass with the 

water uptake; 3) no differences on quantity of functional roots between the mixtures. The 

quantity of roots was not reflected in the water uptake indicating that a greater part of root 

mass was not functional, and the three-mixture treatment had less quantity of roots (below 

70 cm), but may have had a higher proportion of live roots. Therefore, one of the 

complications in determining the root mass is that it often includes both live and dead 

roots. From this, it can be concluded that the root mass by itself is not a good indicator 

for water uptake and/or the quantity of functional roots.  

Ordóñez et al. (2018) evaluated the SWC at different depths and showed SWC to be a 

parameter sensitive enough to determine differences in root distribution in the soil profile. 

Therefore, a good methodology to determine root functionality, indirectly, is the 
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evaluation the soil water content (Skinner et al., 2008; Neal et al., 2012; Ordóñez et al., 

2018). 

2.3.2 The effect on water parameters 

Soil water content (SWC) is a function of water infiltration, precipitation, evaporation 

and the water uptake by plants (Simunek et al., 2003). Plant water uptake is proportional 

to plant transpiration (Skinner 2008; Blum, 2009), being directly related to the functional 

roots of the species plus root distribution in the soil (Neal, et al., 2012; Ordóñez et al., 

2018). Neal et al. (2012) indicated that L. perenne had less water uptake in deep soil layers 

compared to B. willdenowii, F. arundinacea, P. lanceolata and P. aquatic. Lolium 

perenne showed a soil water deficit around 13 -19 mm between 1 – 1.5 m soil depth. At 

the same depth soil layer, the other grasses and herbs showed a maximum value between 

34 - 49 mm of water deficit. Thus, L. perenne extracted less water than the other species 

tested but it was able to extract water up to 150 cm soil depth. Therefore, L. perenne has 

the capacity to reach deep soil layers, nevertheless, with low capacity of soil water 

extraction, probably due to few functional roots are able to reach that depth.  

The relationship between diversity and the soil water dynamics was demonstrated by a 

highly productive pasture with high pasture species diversity having a greater water 

uptake at 60 cm soil depth compared to a pasture dominated by L. perenne, especially 

over the periods of water restriction (summer; Ordóñez et al., 2018). Nevertheless, L. 

perenne enhanced water uptake in the first 10 cm of soil, which means that the quantity 

of functional roots developed in the first 10 cm by L. perenne was significantly higher 

(Ordóñez et al., 2018) and/or presented, as a species, better physiological adaptations for 

water restriction (e.g. higher osmotic adjustments), allowing it to increase its water uptake 

at high levels of soil matric potential (Chimenti et al., 2006). Therefore, the pasture soil 
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water dynamics would differ due to the botanical composition of species roots traits and 

physiological traits.  

An evenly water uptake through the soil profile was observed due to a mixing shallow-

rooted species (species with a lower quantity of roots reaching the deep soil layers), and 

deep-rooted species (species with a high quantity of roots reaching the deep soil layers) 

(Ordóñez et al., 2018). Also, water redistribution mechanisms need to be considered, such 

as water lifting (Richard and Caldwell, 1987; Caldwell and Richards, 1989; Caldwell et 

al., 1998; Skinner, 2008) and the soil pore continuity, both of which may play an 

important role related to the water availability in the shallow soil layer.  

Similarly, Skinner et al. (2004) undertook a pasture study that included some mixed 

pastures with and without Cichorium intybus. The results indicated that a shallow-rooted 

species (T. repens) had a higher leaf water potential compared to T. repens in pastures 

without Cichorium intybus, indicating that chicory was aiding the survival of the shallow-

rooted species, possibly by hydraulic lifting generated by Cichorium intybus, a deep-

rooted species (Coldwell and Richards 1989; Caldwell et al., 1998).  

Water lifting, in theory, works when the soil water potential is more negative than the 

root xylem water potential. Once this happens, there must be a movement of water from 

the root to the soil, using the root as a bridge between the bottom of the soil and the top 

(Caldwell et al., 1991). Richards and Caldwell (1987) observed, in an experiment with 

Artemisa tridentata Nutt, that the soil water potential at 35, 50 and 80 cm of soil depth 

had the same daily variation, with increases and decreases, especially during the dry days. 

This variation in soil water potential, stopped when there was an important addition of 

water, like rain events.  
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Skinner (2008) evaluated the soil water potential and the soil temperature of the 

superficial soil layer in plots under environmental controlled conditions (glasshouse). The 

water potential and the temperature of the superficial soil layer showed the same tendency 

as that reported by Richard and Caldwell (1987), which consisted of a diurnal fluctuation 

in the soil water at 25 cm soil depth, and the water lifting occurring at night-time. In 

addition, there was no significant relationship between the changes in the soil matric 

potential and the temperature (r = -0.03). Therefore, the increase in water potential at 

night time had no relationship with the soil temperature, and was probably due to the 

water lifting mechanism, also called hydraulic lift, discarding the significant effect of the 

temperature over the soil matric potential sensor measurements, as was previously 

indicated by Wiebe and Brown (1979). This mechanism has been also observed in L. 

multiflorum (Meunier et al., 2017), in legumes (Pang et al., 2013), in oak trees (Zapater 

et al., 2011) and in senescent tissue of grasses (Leffler et al., 2004). 

 2.4 Perennial species growth mechanisms  

To understand how to reach a more resilient and resistant ecosystems, the growth and 

development of the different plant’s species need to be understood. Plant growth process 

is stimulated or repressed by the environmental conditions or abiotic factors, such as, 

temperature, light, water and nutrient availability (Bullock et al., 1994). In the vegetative 

stage, a grass grows due to the cell division from the meristematic tissue (Dahl, 1995) 

located at ground level (Glémin and Bataillon, 2009), whereas during the reproductive 

stage the apical meristem goes up the stem until the inflorescence structure develops 

(Dahl, 1995). The change from the vegetative stage to the reproductive stage is dominated 

by temperature and photoperiod (Langer, 1972; Dahl, 1995; Gastal and Durand, 2000). 
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In the reproductive stage the vegetative development (tiller production and leaf 

appearance and growth) stops (Langer 1972; Matthew, 2000). 

In the vegetative stage the leaf growth starts from inside the sheaths, from the 

meristematic cells called phytomeres, and once the new growing leaf is exposed to light 

the photosynthesis starts (Langer, 1972; Dahl, 1995). A new leaf growing immediately 

after defoliation utilises the energy from the reserves of water soluble carbohydrates 

(WSC) located in the stubble (Fulkerson and Slack, 1994a; Donaghy and Fulkerson, 

1997; Turner et al, 2007b), roots, rhizomes (Trlica et al., 1977) or stolon (Inostroza et al., 

2018), until the requirement for growing and development can be fulfilled by 

photosynthesis (Langer, 1972; Fulkerson and Slack, 1994a). 

The senescence starts from the leaf tip and develops towards the base (or from the older 

cells to the youngest ones), and during vegetative development the start of senescence is 

variable according to the species. For example, L. perenne can hold 3 live leaves and 

when the fourth leaf appears, the older leaf starts to senesce (Donaghy and Fulkerson, 

1997,1998; Fulkerson and Donaghy, 2001), whereas Dactylis glomerata L. can hold 4 

live leaves (Turner et al., 2006d). The consequences of the leaf aging are highly correlated 

with an increase in active oxygen species (AOS), compounds that generate the leaf cell 

peroxidation (Cakmak and Horst, 1991; Singh Gill and Tuteja, 2010), decreasing the leaf 

photosynthetic capacity (Langer, 1972; Xu et al. 2011). 

Tillers are considered grass growth units (Matthew et al., 1998), with the shoots derived 

from a vertical growth of an axillary bud (Dahl, 1995). A fully developed tiller is 

potentially an independent unit with leaves, stem and roots (Dahl and Hyder 1977; Dahl 

1995). All daughter tillers are dependent on the main tiller or shoot, for WSC or energy 

(Alberda, 1966; Volaire et al., 1995; Donaghy and Fulkerson, 1998), until they grow their 
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own root system (Dahl, 1995). Tillers maintain their vascular connection with the other 

tillers even after they have developed their own roots, allowing the flow of water, soil 

nutrients and photosynthesis assimilates amongst them (Dahl and Hyder 1977; Dahl 

1995). Therefore, a depletion of the WSC in all plants defoliated (e.g. grasses and herbs 

such as P. lanceolata) will have a negative effect on its the persistence and survival 

(Donaghy and Fulkerson, 1998).  

2.5 Root growth and development  

The root system varies in architecture, expressed as a variation of the distribution of root 

length in space, the dominance of the main axis, the relative sizes of the members of the 

root system and the geometry of the branching pattern. These variations in root form, are 

the result of the genetic-environment interaction (Fitter, 1991).  

The roots perform several functions in the lifespan of a plant (e.g. mechanical support) 

but there are two that are of major importance: the acquisition of soil nutrients and water 

uptake. Roots also have other functions such as storage of resources (e.g. P. lanceolata) 

and some metabolic process (Fitter, 1991).  

In terms of the total production of plants, it has been estimated that approximately 70-

85% of the total mass produced for a plant occurs below ground (Caldwell and Richards, 

1989). Research using C14 showed that around 13 - 25% of the total carbon fixation by 

photosynthesis is transformed into biomass within ten days of the C absorption, being the 

variability caused according to the agronomical managements applied, such as defoliation 

or fertilisation (Wang et al., 2007; Pausch and Kobyakov, 2018). Different carbon 

allocation patterns can be found for different species functional groups, such as tall or 

short grasses species (Siebenkäs et al., 2015) and by differences related to transpiration 

rates and water use efficiency (Poorter and Farquhar, 1994).  
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According to Matthew et al., (1991) one of the variables that affects L. perenne´s root 

mass is grazing. Therefore, grazing management as a function of the defoliation criterion 

could affect the root distribution and the resource uptake during periods of stress, such as 

water uptake during soil water restriction periods, statements that are in line with Wang 

et al. (2007). 

The turnover of the roots likely indicates a relationship between root and tiller appearance 

rate, with seasonal patterns for both (Matthew et al., 1991). Descalzi (2011) showed that 

B. valdivianus tiller appearance and death were more stable during all the seasons 

compared to L. perenne under intensive grazing (defoliation criterion of 2.5 leaf of L. 

perenne).  Therefore, it can be assume, that the root appearance for B. valdivianus may 

be more constant and stable in time than L. perenne’s roots.  

Besides the management, type of species and soil water restriction, another climatic-soil 

condition interaction that highly affects and reduces the quantity of pastures roots is 

waterlogging, resulting in a loss of root mass in response to the lack of oxygen in the soil 

(Drew, 1997). For example for D. glomerata diminishes from 0.10 (control) to 0.075 g g-

1 day-1 (waterlogging) in root mass, showing negative values during the recovery period. 

Bromus catharticus (sin. B. willdenowii) also shows a negative recovery after a 

waterlogging period. On the other hand, species better adapted to this condition, such as 

F. arundinacea and P. aquatica had a positive recovery after the waterlogging, showing 

no statistical differences of root recovery of the control and waterlogging treatments with 

values around 0.05 and 0.025 g g-1 day-1 in root mass, respectively (Ploschuk et al., 2017). 

2.6 Defoliation effect on perennial species  

Defoliation increases the meristem activity and a compensatory physiological process 

(Briske and Richards 1995), due to the removal of photosynthetic tissue (Richards and 
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Caldwell 1985; Chapman and Lemaire 1993; Briske and Richards 1995). Therefore, the 

regeneration of the photosynthetic leaf area is essential for the plant and pasture recovery 

after defoliation (Chapman and Lemaire 1993; Richards, 1993; Langer, 1972; Dahl, 1995; 

Donaghy and Fulkerson, 1998). This restoration is caused by the cell production, 

expansion and thereafter differentiation, in the meristem located in the base of the leaf 

(MacAdam et al. 1989; Schnyder et al. 1990). Research indicated that the leaf elongation 

rate diminishes due to defoliation, affecting negatively the cell size (Schaufele and 

Schnyder, 2000), which also had a direct relationship with the water-soluble 

carbohydrates storage (Lattanzi et a, 2004), as less WSC content, due to the increasing 

defoliation frequency, could lead to a detrimental effect on persistence and survival due 

to a depletion of tiller population (Fulkerson and Donaghy, 2001; Donaghy and 

Fulkerson, 1998; Turner et al., 2006a,b,c,d). 

2.6.1 Water soluble carbohydrates storage  

Defoliation frequency has a direct effect on the WSC storage (Alberda, 1966; Turner et 

al., 2006a,b,c,d; Donaghy and Fulkerson, 1998; Lee et al., 2015) in herbs (e.g. P. 

lanceolata) and grasses (e.g. L. perenne and B. valdivianus). WSC stored is essential for 

tiller and plant regrowth (Donaghy and Fulkerson, 1997,1998; Turner et al., 2001). 

Therefore, the defoliation frequency, in relation to the grass and herb vegetative 

development, will define the content and concentration of the plant WSC stored. If the 

defoliation frequency is too fast, the plant energy reserves will not be fully restored at the 

time for the following defoliation, negatively affecting the plant’s development, survival 

and persistence (Volaire et al., 1995; Donaghy and Fulkerson, 1998), and plant survival 

during water restriction (Volaire et al., 1995) and waterlogging (Ploschuk et al., 2017).  
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It had been determined that every species has an ideal defoliation frequency according to 

its energy storage. For example, for D. glomerata the WSC content varies from 218 to 

1,477 mg plant-1 depending on the defoliation frequency. For L. perenne it has been 

shown that upwards of 160 g WSC kg-1 there was no effect on regrowth (Donaghy and 

Fulkerson, 1997). For B. wildenowii it has an ideal content of 600 mg WSC plant-1 at 

defoliation (Turner et al, 2007c), therefore the variation due to defoliation frequency and 

the effect on WSC is evident, and it varies as a function of the plant species (Turner et 

al., 2006a,b,c,d; Fulkerson and Donaghy 2001). 

 2.6.2 Plant persistence and survival   

It is understood that pastures are dynamic ecosystems, especially when coexist more than 

one dominating species within the pasture. Both, tiller appearance rate and tiller mortality 

rate, are a function of the climatic conditions, season, management (Bullock et al., 1994; 

Hernández-Garay et al., 1997b) and the species genetics (Volaire et al. 1995; Turner et 

al., 2006a,b,c,d). The understanding of tiller dynamic under field conditions would lead 

to a better management strategy to enhance the persistence and survival of the grass 

species (Matthew et al., 2000). At the grass tiller level, the increase in frequency and 

intensity of defoliation decreases tiller development (Donaghy and Fulkerson et al.,1998) 

and this varies with the species, phenological development and its association with 

environmental conditions (Langer, 1972; Bullock et al., 1994; Hernández-Garay et al., 

1997). Also, a low grazing frequency reduces tiller density, however, it increases tiller 

mortality due to the shading generated by the taller tillers (Grant et al., 1983), but with an 

increase in content and/or concentration of WSC in the stubble (Donaghy and Fulkerson 

et al.,1997, 1998). 
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Once soil variables do not constrain plant growth, it is hypothesised that light becomes 

the environmental variable that limits pasture growth, thus light competition increases 

(Tilman and Downing, 1994). In a grazing system this is partially true, due to plant 

defoliation, which reduces light competition, nevertheless once the plants start to increase 

in leaf area the competition for light resource increases. A more frequent defoliation 

causes a photo-morphologic response, triggering shorter leaves and a greater tiller density 

(Matthew, 1996; Lemaire, 2001). In other words, there exists a size/density compensation 

mediated by grazing and defoliation criterion (Matthew, 1996). Therefore, defoliation 

frequency can regulate light competition and light utilisation by species, and it is 

especially important to maximise pasture growth by improving pasture light utilisation 

(Matthew, 1996), but it is necessary to reach a balance between the light utilisation with 

the increase of the plant energy reserves (WSC) to guarantee the plant regrowth. 

Therefore, there is a point in which increasing defoliation frequency and intensity cannot 

be compensated by increasing tiller population, thus the pasture begins to degrade by 

increasing plant death and diminishing tiller density, due to the depletion of the plant 

energy reserves (Donaghy and Fulkerson, 1997, 1998). 

2.7 The effect of water restriction on plants 

Drought has been described as the main abiotic stress that affects plants and crop 

production (Hu and Xiong, 2014) and is defined as the appreciable precipitation 

diminishment over an extended period, followed by a decreasing of soil moisture injuring 

the plants in the ecosystem (Kramer and Boyer, 1995).  

Plants have developed adaptations over time to survive drought conditions, which can be 

inserted in two concepts, drought avoidance and drought tolerance. Drought avoidance 

includes all the adaptations in relation to morphological changes, such as, changes in leaf 
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area, orientation, and also the increasing resistance to water loss through cuticular 

resistance (Morgan, 1984, Zlatev, 2005), stomata control (Quarrie and Jones, 1979; 

Schapendonk et al., 1989; Galmes et al., 2007) and dormancy mechanism (Norton et al., 

2008, 2006). Drought tolerance has been subdivided into two mechanisms, osmotic 

adjustments and changes in cellular elasticity, both mechanisms have the objective to 

maintain the cell turgor, keeping the cell metabolism functioning during drought 

conditions (Munns 1988; Blum, 2005; 2009; 2017). 

Species with a greater root proportion reaching deep soil layers survive better (Blum, 

2009; Neal et al., 2012; Ordóñez et al., 2018) and reach greater biomass production during 

water restrictions due to a higher water availability (Blum, 2009; Ordóñez et al., 2018) to 

fulfil its physiological and growth requirements (Blum, 2009).  

Osmotic adjustments increase the survival during water restriction keeping the metabolic 

functions working during that period (Munns, 1988; Blum, 2005; 2009; 2017; Chimenti 

et al., 2006). The increase of osmotic potential (solute accumulation inside the cell) 

enhances the capacity of the plant to uptake soil water retained to a certain matric potential 

(Chimenti et al., 2006) increasing the available water for the plant. For example, Descalzi 

et al. (2019) showed L. perenne, B. valdivianus, D. glomerata and H. lanatus L. were able 

to survive, persist and grow in severe soil water restriction conditions, over the permanent 

wilting point (PWP; 1.5 MPa) between 0-20 cm of soil depth. This may be caused by 

higher levels of osmotic potentials inside the plant cells, as was indicated by Chimenti et 

al. (2006). The two strategies described allow the plant to survive, persist and increase 

the productivity across the water restriction. Plants have other adaptations as well, such 

as, accumulation of a higher concentration or content of WSC, prolonging the plant 

survival during a long period of water restriction (Volaire et al., 1995). 
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2.8 Water use efficiency during soil water restriction  

Water use efficiency (WUE) is primarily defined as an amount of biomass produced by a 

certain quantity of water (Figure 2.3; Briggs and Shantz, 1913). This concept has become 

more important on agriculture due to the effect of global warming (IPCC, 2014).  

Different levels can be used to evaluate WUE, the leaf, plant or crop levels. The 

evaluation at leaf level, are focus in photosynthesis rate and transpiration (Blum, 2005; 

2009; Poni et al., 2009; Medrano et al., 2015); at plant level, the plant biomass with water 

loss (Medrano et al., 2015); and at crop level, the crop yield together with water utilised 

by the crop are the factors considered (Poni et al., 2009; Medrano et al., 2015). 

Differences between the scale of measurement have been detected (Poni et al., 2009; 

Medrano et al., 2015), but a higher sensitivity to detect stress is necessary (e.g. net 

photosynthesis and stomatal conductance), that way allow the quantification of the water 

stress effect on the plant, and can be detected during the moment that it is occurring as 

opposed to other methods, which are based on yield and biomass production.  

 

Figure 2.3 Adapted from Hatfield and Dold (2019). Water use efficiency concept, as 

the slope between biomass production and evapotranspiration. 
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Basso and Ritchie (2018) and Hatfield and Dold (2019) reported that greater WUE is 

related to a greater biomass production Figure 2.3, therefore, species with traits focus on 

increasing this parameter would increase the biomass production under different soil 

moisture conditions, this affirmation could be true under non-water deficit conditions. 

During water restriction periods an increase of WUE is related to a diminish in stomatal 

conductance and therefore, net photosynthesis. Blum (2009) argued that a higher WUE 

is not related to an increase in production during water restriction, because a higher WUE 

is related to a low stomatal conductance, and therefore, a low soil water uptake by the 

plant, provoking an increase of evaporation from the soil, which is water that will not be 

used by the plant for growth. This whole process finishes with a low biomass production 

during soil water restriction. On the other hand, deep-rooted species have a higher water 

availability (Neal et al., 2012; Ordóñez et al., 2018), and therefore, the stomata will 

remain opened for a longer period, producing more photo-assimilates and faster growth 

during the soil water restriction periods. 

2.9 The effect of waterlogging on plants 

Under flooded soils conditions with a slow drainage (limited gas diffusion), the main 

stress for plants is the lack of oxygen available in the soil for the roots (Drew, 1997). This 

is induced once the soil air pores (between 0 and 6 kPa of matric potential) are filled with 

water. The lack of oxygen, or hypoxia, has a direct effect on the plant metabolism, 

damaging the cell because of cytoplasmatic acidosis and the increase in toxic metabolites 

(Drew, 1997).  

Plants generally have two strategies when are submitted to waterlogging, which generate 

stress by hypoxia. The strategies to survive this stress are divided in hypoxia tolerance 

and hypoxia avoidance (Drew, 1997; Sigua et al., 2012; Ploschuk et al., 2017). Hypoxia 
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tolerance is focus on metabolic adaptations and are different among the species and can 

be observed when the plant decreases its stomatal conductance to stop the leaf water loss, 

causing a decrease in the root hydraulic conductance, slowing down photosynthesis rate 

and respiration (Ploschuk et al., 2017). Hypoxia avoidance focuses on oxygen delivery to 

the root system (Sigua et al., 2012) and can be observed when the plant incorporates a 

structure called aerenchyma, which improves the aeration between and within the roots 

and/or shoots (Colmer, 2014; Takahashi et al., 2014). This structure helps the gas 

diffusion between endodermis and the surrounding environment (Drew, 1997). 

Ploschuk et al. (2017) reported that D. glomerata and Bromus catharticus Vahl. mainly 

had root growth arrest, leaf senescence and a progressive stomata closure, decreasing the 

stomatal conductance, and therefore, photosynthesis when affected by waterlogging. The 

root mass diminishment due to waterlogging (hypoxia) was also observed by Etherington 

(1984), Stewart (1996) and McFarlane et al. (2003), who indicated that the same species 

of Bromus have low tolerance to hypoxic conditions.  

2.10 Species general features 

2.10.1 Bromus valdivianus 

Bromus valdivianus is a native to the Temperate Humid climate regions of the south of 

Chile (Muñoz, 1980; Stewart, 1996; López et al., 1997), being one of the main species in 

the permanent pastures of those regions, which increases the pasture biomass production 

during the summer water restriction period (Lopez et al., 2013; Keim et al., 2015). 

Compared to L. perenne, it has a larger root system with greater rooting depth, i.e. 60 cm 

soil depth (Ordóñez et al., 2018). Annual accumulated herbage mass production of 13.1 t 

DM ha-1 year-1 has been reported (Balocchi and López, 2001), with forage quality 

comparable to L. perenne (López et al., 2013). Bromus valdivianus dominates deep free 
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draining soils, with medium texture and high levels of soil fertility (López et al., 1997). 

It can develop high growth rates during spring and summer, due to its drought tolerance, 

with a moderate growth during winter (Stewart, 1996; Balocchi and López, 2001; Keim 

et al., 2015), but is susceptible to waterlogging (Stewart, 1996). It naturally cohabits 

pastures with fast growing species such as L. perenne, and exhibits good competitive 

ability (Descalzi, 2011; Ordóñez, 2013) with similar nutritional requirements to L. 

perenne, both species competing under similar site and ecosystems conditions (López et 

al., 1997). 

2.10.2 Lolium perenne 

Lolium perenne is a species that grows in cool temperate regions around the world (Lamp 

et al., 1990). Under field conditions, a higher root proportion concentrates in the first 10 

cm soil depth (shallow-rooted species), therefore, it has low growth rates during water 

restriction periods (Crush et al., 2005; Ordóñez et al., 2018), contributing to its energy 

adjustment during water stress periods, a strategy that improves plant survival (Nie and 

Norton, 2009). 

The herbage mass production is around 9 - 15 t DM ha-1 year-1 in Southern Chile (Ruiz, 

1988) and about 13 - 18 t DM ha-1 year-1  in New Zealand (National Forage Variety Trials, 

2010; Crush et al., 2006) depending on the annual rainfall distribution and temperature. 

Lolium perenne grows one leaf at a time, having a maximum number of three live leaves 

at the same time. The defoliation criterion determined for L. perenne that enhances 

production and plant survival is to defoliate between 2 to 3 leaf stage, i.e. 2 or 3 fully 

expanded leaves (Donaghy and Fulkerson, 1997, 1998). The upper limit (defoliation at 3 

leaf stage) was defined as the moment that the fourth leaf appears, and the first leaf starts 

to senesce.  



 

 
29 

 

2.10.3 Plantago lanceolata 

Plantago lanceolata is a perennial dicotyledonous rosette plant (Sagar and Harper 1964) 

with large leaves (Stewart, 1996). Tolerant to drought due to its deep root system, 

combined with its high temperature tolerance (Sagar and Harper 1964; Stewart, 1996; 

Cranston et al., 2016) probably explained by its greater optimal growing temperature (Niu 

et al., 2006). This was observed by Pellissier (2014), reporting that P. lanceolata grew 

better under average temperatures of 20 °C than 12 °C. Its growth suppression by the 

average temperatures of 12 °C, was probably due to the significant diminishment of its 

photosynthesis rate, further down its metabolic optima temperature (Niu et al., 2006). 

Plants suffer photosynthetic inhibition when the temperature reaches extreme values 

upward or downward of their optima temperature (Xu et al. 2011). Plantago lanceolata 

has shown a greater herbage mass production than L. perenne and similar nutritive value 

(Rollo et al. 1998; Glassey et al. 2013; Cranston et al., 2015). The cultivar Tonic (used in 

this thesis) has the capacity to remain erect. 

2.11 Summary  

In the last three decades the ecosystem and pasture stability have gained attention due to 

the current global warming scenario and the negative effects of the intensive agriculture 

over the natural resources (i.e. loss of biodiversity, soil erosion, underwater 

contamination, amongst others). For this reason, the interest in ecological concepts such 

as resilience, resistance and stability started to be applied into the pastoral and agriculture 

productive systems.  

The pastoral productive systems differ from the others agricultural activities due to the 

animal effect over the pasture and all the decisions involved around the grazing and 

pasture management. Besides, the research indicates that the regrowth of the species 
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under a vegetative or reproductive stage of development, the number of species and 

functional groups present in a pasture also are positively or negatively affecting the 

persistence, survival and biomass production of the pasture itself. 

The plant energy reserves used for regrowth after defoliation is a relevant parameter to 

ensure the persistence and survival of the species over time. Thus, using a grazing 

criterion that allows the plants to replenish its energy reserves before the next grazing 

ensures a greater plant population, fast regrowth, greater root growth and persistence of 

the perennial species.  

The functional groups in a pastoral ecosystem can be assessed by defining the functional 

traits of the individual species within the pasture. This parameter is a relevant driver of 

the ecosystem productivity, resilience, and resistance against environmental constraints. 

A higher pasture functional diversity within leads to a niche partitioning of the resources 

and to an asynchrony of growth. Nevertheless, there are few grazing studies on this topic 

performed under productive conditions.  

Water availability for pasture growth and persistence is heading to be a major problem. 

The increasing severity of drought events together with the temperature, making more 

unpredictable the response of the rainfed pasture ecosystems against these conditions. 

Therefore, the understanding of the plant’s capacity to uptake the water from the soil, its 

physiological and morphological responds during water restriction periods are important 

variables to consider in any research related to rainfed pastoral productive systems.  

The literature review gives us several insights about the gaps related to pasture 

ecosystems, such as the lack of knowledge about B. valdivianus, which according to 

previous research, it show to be a good prospect for pasture production specially for 

increase summer pasture production; the lack of knowledge about the potentiality of the 
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species for water uptake under real productive conditions; The misleading concept of 

water use efficiency and how is important to focus on traits that maximize the water 

uptake even if that mean a decrease of water use efficiency; The diversity experiments 

are usually perform without the animal grazing which could lead to a confusing 

conclusions. 

All these insights are considered in the present thesis focus on the species B. valdivianus, 

L. perenne and P. lanceolata. All of them are high productive species and with different 

traits and tolerance mechanisms and abilities to deal with water stress.  
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Chapter 3: Experimental chapter 

 

Physiology of growth and defoliation response of Bromus 

valdivianus Phil. (pasture brome) 
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Summary 

• Increasing summer soil water restriction events are related to climate change. The 

growth physiology of B. valdivianus, a fast growing, high-quality, water restriction 

tolerant grass, was determined. It was also investigated how defoliation, based on leaf 

stage, affected tiller growth and water-soluble carbohydrates (WSC) utilisation and 

accumulation. 

• Defoliation frequencies applied were at leaf stage 2 (LS 2), leaf stage 3 (LS 3), 

leaf stage 4 (LS 4) and leaf stage 5 (LS 5), distributed in a randomised complete block 

design. Measurements were performed on B. valdivianus plants and marked tillers. Tiller 

number per plant, leaf area, leaf and sheath weights and WSC were measured. 

• Bromus valdivianus maintained 6 live leaves with 3 leaves growing 

simultaneously, reflected from LS 4 onwards. The highest shoot growth rate and WSC 

accumulation were reached at LS-4 and LS-5. The highest tiller photosynthetic rate was 

reached between LS-3 and LS-4 while the highest stomatal conductance from LS-3 

onwards. Plant foliage and tiller growth were maximised at LS-4, coincidental with the 

highest root growth rate. 

• In conclusion, B. valdivianus is a ‘six-leaf’ species, with three growing leaves per 

tiller, and leaf senescence beginning at LS-4.25. Performing defoliation at LS-4 did not 

disrupt aerial development, however, defoliation at LS-2 and LS-3 diminished leaf 

expansion rate. 
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3.1 Introduction 

In temperate climates, a decline in rainfall and a concomitant increase in temperature 

during summer cause an increase in the soil matric potential (Descalzi et al., 2019), which 

can be exacerbated by climate change (Harrison et al. 2016). Consequences of that are 

the diminishment of pasture growth rate (Matthew et al., 2000), species survival (Volaire 

and Thomas, 1995; Hernández-Garay, 1997a,b; Volaire, 1998) and pasture persistence 

(Volaire and Thomas, 1995; Hernández-Garay et al., 1997b).  

Therefore, during the summer period, the soil matric potential in the first 10 cm closer to 

the surface can reach values greater than 15430 hPa, which corresponds to the permanent 

wilting point (Hartge and Horn, 2009; Ordóñez et al., 2018). Under these conditions, 

shallow-rooted grasses survival and growth can be compromised, i.e. L. perenne (Neal et 

al., 2012; Ordóñez et al., 2018). Plants with longer roots can access water in deep soil 

layers, increasing its tolerance and resilience to soil water restriction (Barkaoui et al., 

2016).  

Drought-tolerant species (e.g. high deep root distribution species such as B. valdivianus) 

can be incorporated into pastures to both, mitigate the decline in pasture growth under 

dry soil conditions and increase the pasture species diversity (Tilman and Downing, 1994; 

Tilman et al., 2006). Bromus valdivianus, a perennial grass species, with similar 

accumulated herbage mass and nutritive value to L. perenne, dominates pastures in non-

irrigated fertile Andisol soils of southern Chile (López et al., 1997), often coexisting with 

L. perenne. It has been reported that B. valdivianus compared to L. perenne has tillers that 

are twice as heavy, with almost four times greater leaf area per tiller, a longer total lamina 

length per tiller, but only half the tiller number per plant (López et al., 2013). The high 

percentage of both species within the same pasture, measured by botanical composition 



 

 
35 

 

(Ordóñez et al., 2018; Descalzi et al., 2019), suggests that there is a functional 

compatibility between L. perenne and B valdivianus. Probably, the different growth 

strategies that both species shown (Donaghy and Fulkerson, 1997;1998; Ordoñez et al., 

2017) favoured the persistence of B. valdivianus during a soil water restriction, as it can 

obtain water from deep soil layers to continue growing (Keim et al., 2015; Ordóñez et al., 

2018).  

After increasing the diversity in a pasture by including drought-tolerant species, which 

are the defoliation regimes and criteria to sustainable manage a diverse pasture? It is 

possible that a diverse pasture that comprises a number of species may differ in its 

defoliation requirements in relation to L. perenne pasture (e.g. Rawnsley et al., 2002; 

Turner et al., 2006 a,b,c,d; Turner et al., 2007a,b). To have a defoliation regime that 

favours the fast growing species within a pasture (Flores et al., 2017), it is relevant to 

determine defoliation targets based on physiological and morphological principles. Until 

now the defoliation criterion for a diverse pasture containing L. perenne has been based 

on L. perenne research, targeting defoliation between the 2- and 3-leaf L. perenne 

regrowth stage, with the 2-leaf stage representing the point at which plant energy reserves 

are replenished (down limit), and the 3-leaf stage (upper limit) representing the point at 

which leaf senescence begins (Donaghy and Fulkerson, 1997, 1998; Fulkerson and 

Donaghy, 2001). However, for a diverse pasture, the optimal defoliation for individual 

species may differ from that of L. perenne, which at times might negatively impact its 

production or persistence.  

The aim was to determine B. valdivianus growth dynamics and the effects that defoliation 

at different stage of development have on B. valdivianus growth. To accomplish this 

objective, the concentration and content of water soluble carbohydrates (WSC) in the 
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tiller base (bottom 5 cm), along with leaf elongation, leaf number, tiller population, 

herbage mass, root mass, plant leaf mass and tiller weight were determined under different 

leaf regrowth stage (LS) development (expansion of sequential new leaves per tiller). 

Also, the photosynthesis rate and stomatal conductance of B. valdivianus was assessed.  

3.2 Materials and methods 

3.2.1 Experimental conditions and treatments description 

The experiment was carried out in a glasshouse at Massey University’s Plant Growth 

Unit, Palmerston North, New Zealand. The experiment was set up at the end of June 2016 

and treatments were implemented between 28 August 2016 and 25 January 2017.  

The temperature in the glasshouse was evaluated with 1-hour frequency at the same height 

level as the pots. The extreme temperatures were prevented by using the two temperature 

control systems of the glasshouse, temperatures higher than 25 °C automatically activated 

the glasshouse windows opening and also the ventilation system functioning. 

A total of 68 pots of 10 L volume capacity were utilised. The pot substrate used was a 

mix of 50% soil (Manawatu silt loam) and 50% sand. All the pots were automatically 

irrigated 3 times per day with a tube system, meeting the water requirements of all plants, 

keeping the pots at field capacity (25% of the volumetric soil water content).  

The plants were fertilised to maintain an adequate nutrient status; a short-term fertiliser 

was added at a rate of 100 g pot-1 with a concentration of 15% nitrogen (N), 6.0% 

phosphorus (P), 11.6% potassium (K), 1.5% magnesium (Mg), 6.0% sulphur (S), 2.0% 

iron (Fe) and 0.5% manganese (Mn), along with a long-term fertiliser at a rate of 100 g 

pot-1 and containing 15% N, 2.2% P, 8.3% K, 0.2% Mg, 1.5% S, 1.5% Fe, 0.3% Mn and 

0.2% zinc (Zn). 
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The study had 4 treatments and 17 blocks, however, only 6 blocks were evaluated for all 

the continuous variables measurements, i.e. lamina extension. The other 11 blocks were 

managed and grown under the same conditions as those 6 blocks and used only as extra 

blocks at the end of the study when a large amount of herbage material was required, i.e. 

WSC content evaluation. The pots within each block had similar light and humidity 

conditions. In order to avoid incident light and temperature differences between 

treatments, within blocks the pots were randomly moved every two weeks. 

In each individual pot, two B. valdivianus seeds were located at equidistance positions, 

six closed to the edge and two in the centre. After germination, only one plantlet at each 

position was left to grow. The evaluated variables at plant and tiller level were performed 

on plants located in the centre of the pots: lamina length, number of leaves, leaf area per 

tiller, leaf mass per tiller, tiller number per plant and herbage mass per plant. 

To stimulate tillering, the plants were defoliated two times before the experimental period 

began (Turner et al., 2012). Each defoliation was performed when the plants reached an 

average of 15 cm height from the ground level. After the third defoliation, the 28 August 

2016, the following treatments were applied: 1) defoliation at leaf stage 2 (LS-2), 2) 

defoliation at leaf stage 3 (LS-3), 3) defoliation at leaf stage 4 (LS-4) and 4) defoliation 

at leaf stage 5 (LS-5).  

In L. perenne for example the “one leaf stage” (1 LS) was identified as a total fully 

expanded leaf (100%), the “two leaf stage” (2 LS) as a total of two fully expanded leaf 

(100%) and so on (Fulkerson and Donaghy, 2001; Turner et al., 2006a). But unlike L. 

perenne, B. valdivianus expands three leaves simultaneously (Ordóñez et al., 2017). The 

leaves in expansion are a fraction of the fully expanded leaf size (100% of expansion or 

1 LS). The scores used for those leaves in expansion were: 0.25 LS (25% of expansion), 
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0.5 LS (50% of expansion) and 0.75 LS (75% of expansion). Two of these three leaves 

began its growth during the prior defoliation; thus, one of them due to its limited growth 

was not considered in the analysis, and the other one growth until a 75% or 0,75 LS, thus, 

was not considered as a fully expanded leaf.   

As the present research was centred on B. valdivianus growth and development, the effect 

of defoliation frequency on L. perenne growth was not considered due to the existence of 

previous publications that had clarified the effect of the defoliation frequency over its 

performance and water soluble carbohydrates content (Fulkerson and Slack, 1994a,b; 

Donaghy and Fulkerson, 1997; 1998; Fulkerson and Donaghy, 2001; Turner et al., 2001; 

2006a,b). However, extra pots of L. perenne were grown under the same conditions as 

those of B. valdivianus and used as known parameter for the LS development. The 

defoliation of L. perenne was performed at the same time as the B. valdivianus LS-5 

treatment.  

When the LS-5 treatment occurred for the third time, the other treatments were 

sequentially defoliated according to their corresponding leaf stage and the experimental 

period ended. For this reason, every treatment had different total accumulated growing 

days. The final harvest began with LS-5 on 30 December 2016 (124 days of growth from 

start of experiment), followed by LS-2 on 5 January 2017 (130 days of growth), LS-3 on 

7 January 2017 (132 days of growth) and LS-4 on 26 January 2017 (151 days of growth). 

The leaf expansion and all the frequency defoliation cycles were calculated based on the 

accumulated growing degree days (C° day) with a base temperature of 5°C (McMaster 

and Wilhelm, 1997).  
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3.2.2 Evaluated variables  

At the beginning of the experimental period, three tillers in the centre of each plant (two 

plants giving a total of six marked tillers per pot) were marked by placing a small coloured 

wire at their base (Poff et al., 2011) and every two days the leaf appearance, leaf number, 

lamina elongation and senescence were recorded. A new leaf was recorded as appearing 

when the tip of the new lamina was visible within the previous leaf sheath (Wilhelm and 

McMaster, 1995), and a leaf was considered fully expanded when its growth stopped, 

reaching its maximum length. The lamina length was measured as the distance between 

the lamina tip and collar section. For lamina length, only the green part of a lamina was 

considered, thus when a lamina began senescence, by decolouring from the tip to the 

ligule, the decoloured part of the lamina was not considered for lamina length 

measurements, in this way it was possible to determine lamina senescence rate (Duru and 

Ducrocq, 2000).  

When a treatment reached the desired LS, the marked tillers were evaluated. First they 

were cut to 5 cm height above ground level and individually evaluated for leaf area using 

a LI-3100C area meter (LI-COR, Nebraska, USA; Accuracy between 1 – 5% using a 

resolution of 0,1 mm2) and dry leaf mass, after drying in an oven at 70°C for 48 hr. 

Following this, the remainder of the plant containing marked tillers (the two plants in the 

centre) was cut to 5 cm height and herbage collected, dried in an oven at 70°C for 48 

hours to obtain mass on a dry matter (DM) basis. The plants located close to the edge of 

the pots were also cut to 5 cm height, and the herbage discarded.  

At the final harvest, the number of tillers/plant were counted and recorded, and then the 

marked tillers were cut first to 5 cm height as previously described, and then to ground 

level (tiller base) and dried at 70°C for 48 hr. The 11 extra blocks ensured that the 
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minimum amount of dry matter herbage from tiller bases required was reached to measure 

WSC. Therefore, at the final harvest of the study, the tiller base of all non-marked tillers 

along with the tiller bases from the additional plants maintained in the 44 extra pots were 

harvested to ground level. WSC was analysed using Gas-Liquid chromatography 

(Holligan and Drew, 1970). To assess the root mass the soil was washed from the roots. 

Afterwards the roots of the two centre plants were dried at 70°C for 48 hr and weighed. 

Net photosynthesis (An) and stomatal conductance (Gs) were evaluated in the LS-5 

treatment using four fully expanded leaves and one growing leaf prior to the defoliation 

of LS-5 treatment in order to assess the effect of leaf age. For this evaluation leaf 1 was 

the oldest leaf and leaf 5 the youngest leaf. The evaluation used a LICOR-6400XT (LI-

COR, Nebraska, USA), with a 6400-02B LED light source chamber (LI-COR, Nebraska, 

USA). The photosynthetic photon flux density at the leaf surface was set at 1,000 µmol 

photons m-2 s-1, leaf temperature was stabilised at 25°C, a flow rate of 500 µmol s-1 was 

set and the ambient CO2 concentration of the incoming gas stream was set up at 400 µmol 

s-1. Net photosynthesis (An) and stomatal conductance (Gs), were determined in two dates, 

10 November 2016 and 22 December 2016, just before the harvests. For each of these 

variables, two leaves of the same age were set inside the chamber and leaf area was 

determined for each one using a digital calliper.  

In order to assess the effect of defoliation frequency on plant regrowth rates of the 

following parameters were determined, leaf elongation, leaf area growth, shoot growth 

and root growth. For the latest three parameters named, accumulated growth was divided 

by the total growing days for each treatment as follow: LS-2 (130 days of growth), LS-3 

(132 days of growth) and LS-4 (151 days of growth), LS-5 (124 days of growth). 1) Leaf 

elongation: The elongation rate was determined with the first expanded leaf of each 
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treatment (leaf 3). For leaf elongation quadratic equations were determined. The slope 

determined which defoliation treatments had a faster leaf elongation after the third day 

post-defoliation. The calculation of the slope for all the equations was done considering 

50 accumulated growing degree days (third day), as this is the moment when WSC have 

a greater influence on leaf regrowth (Donaghy and Fulkerson 1997: Turner et al., 2001). 

2) Leaf area growth rate: The accumulated leaf area of all the defoliations was divided 

by the total of growing days for each treatment, allowing determination of the growing 

rate of the tiller leaf area (cm2 day-1). 3) Shoot growth rate: The accumulated plant 

herbage mass harvested in each defoliation event (above 5 cm) was divided by the total 

growing days of each treatment, allowing determination of the shoot growth rate (g day-

1). 4) Root growth rate: The total root mass was divided by the total number of growing 

days of each treatment, allowing determination of the root growth rate (g day-1).  

In order to evaluate the phyllochron and the growing degree days required for a fully 

expanded leaf, the leaf length data collected every two days were used. An average 

between each leaf appearance was determined and the phyllochron calculated. As B. 

valdivianus leaf 4 is the first fully expanded leaf (Ordóñez et al., 2017), this leaf was used 

to calculate the growing degree days necessary for a leaf to reach full expansion.  

3.2.3 Experimental design and statistical analysis  

The experiment was laid out as a randomised complete block design (4 treatments x 6 

blocks). The normality of the data was evaluated using the Shapiro-Wilk test (p≤0.05). 

Tiller weight and tiller leaf area were normalised by using natural logarithm function, and 

together with normal distributed data, such as phyllochron, leaf area growth rate, tiller 

leaf weight, net photosynthesis, stomatal conductance and intercellular carbon 

concentration, were analysed using an analysis of variance (ANOVA). Treatments effects 
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were separated by applying Fisher’s least significance difference test (LSD) (p≤0.05). It 

was not possible to normalised tiller number, plant shoot growth rate, root growth rate, 

and plant and tiller WSC (fructose, glucose and starch), using functions transformation, 

therefore non-parametric statistics were applied (box diagrams, mean, median, 

percentiles, and standard deviation) and the Kruskal-Wallis’s test (p≤0.05) was used to 

compare the treatment means. Canonical variate analysis (CVA) was performed to 

explain the differences between the treatments and their variation, based on the joint 

analysis of all the variables and data. It was undertaken on the standardised data, thus 

each variable had average zero and standard deviation equal one (Marsh and Elliott, 

2008).  

3.3 Results 

3.3.1 Bromus valdivianus growth dynamic 

When the treatment LS-5 reached the third defoliation, all the following treatments were 

consecutively harvested as they were achieving its corresponding LS development. LS-2 

completed 8 cycles; LS-3, 6 cycles; LS-4, 5 cycles; and LS-5, 3 cycles (Figure 3.2).  

Bromus valdivianus maintained six live leaves simultaneously: three fully-grown leaves 

(Figure 3.1: leaf 2, 3 and 4; Figure 3.2), and three actively growing leaves (Figure 3.1: 

leaf 5, 6 and 7; Figure 3.2). The first leaf (Leaf 1), indicated in Figure 3.1, is considered 

a ‘residual leaf’, being the last expanding leaf at the time of the prior defoliation event 

and was not included in this analysis. Leaf 2 was a younger ‘residual leaf’ than Leaf 1 

from the prior defoliation event, it grew until 75% of the total length of a complete normal 

lamina, being considered with a score of 0.75 LS. The other two leaves that reached full 

expansion were leaf 3 and leaf 4, scored as 1 LS each.  
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Figure 3.1 Leaf growth dynamic and regrowth periods for each defoliation 

treatment for B. valdivianus. Defoliation at LS-2 (A); Defoliation at LS-3 (B); 

Defoliation at LS-4 (C); Defoliation at LS-5 (D). Bars indicate the standard error of 

the mean (n = 6).  
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When leaf 8 appeared, the oldest leaf (Leaf 2) started to senescence. As senescence began, 

the tillers had three completely expanded leaves, second, third and fourth leaf (0.75 LS + 

1LS + 1 LS) and three expanding leaves, fifth, sixth and seventh leaf (0.75 LS, 0.5 LS 

and 0.25 LS). Thus, B. valdivianus leaf senescence started at 4.25 LS (Figure 3.1). 

Phyllochron was not affected by the defoliation frequency (p>0.05) and on average it took 

96°Cd for one leaf to appear. The leaves reached full expansion at 431°Cd accumulated 

growing degree days after leaf appearance, but with 3 leaves growing at the same time.  

 

Figure 3.2 Scheme of the leaf expansion cycles based of AGDD for the LS-5 

treatment of B. valdivianus and the extra treatment of L. perenne based on the B. 

valdivianus (LS-5) defoliation frequency.  

Figure 3.2 shows the differences between B. valdivianus and L. perenne in leaf stage 

development, lamina length expansion and leaf appearance over time, expressed as 

accumulated growing degree days. Also, from Figure 3.2 can be extracted the 

accumulated growing degree days needed for a full expanded leaf. 
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Figure 3.3 Growth rate of the first fully expanded lamina (Leaf 3) from each 

defoliation frequency: leaf stage 2 (Dark blue line; filled circle), leaf stage 3 (brown 

line; empty circle), leaf stage 4 (clear blue line; filled triangle) and leaf stage 5 (red 

line; empty triangle). The equations are for LS-2) y = -0.0001x2 + 0.1045x - 1.0023 

(R2 = 0.71); LS-3) y = -0.0002x2 + 0.135x - 2.3488 (R2 = 0.83); LS-4) y = -0.0002x2 + 

0.1489x - 2.4398 (R2 = 0.87); LS-5) y = -0.0002x2 + 0.1456x - 5.3445 (R2 = 0.80). 

When defoliation was performed at LS-5, B. valdivianus presented 9 leaves; and when its 

7th leaf appeared the 2nd leaf started to senesce (Figure 3.1). Lolium perenne under the 

same frequency of defoliation, that was dependent on B. valdivianus reaching LS-5, 

generated 6 leaves (Figure 3.2) and when its 4th leaf appeared the 1st leaf began to 

senesce.  

The effect of defoliation frequency on plant and tiller growth was evaluated through the 

following variables:  
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1) Leaf elongation: Figure 3.3 shows the first fully expanded leaf (Leaf 3 in Figure 3.1). 

The growth rate of Leaf 3 was retarded at the beginning of its growth, by the more 

frequently defoliation criterion. The derivation of the quadratic equations (Figure 3.3) 

replacing the X as AGDD (accumulated growing degree days) with 50 AGDD (third day 

after a defoliation event), ordered the slopes as follow: LS-4 (0.1289) > LS-5 (0.1256) > 

LS-3 (0.115) > LS-2 (0.0945).  

Table 3.1 Plant parameters at the final harvest and the accumulated over all the 

defoliations under different defoliation frequencies. 

  Final harvest results Sum of all defoliations 

Defoliation 

treatments 

Tiller leaf area        

(cm2 tiller-1) 

Tiller weight                       

(g tiller-1) 

Tiller leaf weight      

(g tiller-1) 

Tiller leaf area 

growth rate                

(cm2 tiller-1day-1) 

Phyllochron                                   

(°C Day) 

LS-2 3.56 c (12.7 cm2) 0.24 d (0.134 g) 0.11 d 38.76 101.4 

LS-3 4.85 c (23,9 cm2) 0.33 c (0.25 g) 0.22 c 39.93 92.9 

LS-4 5.30 b (28.4 cm2) 0.49 b (0.48 g) 0.30 b 44.98 94.4 

LS-5 6.62 a (44.3 cm2) 0.57 a (0.60 g) 0.35 a 35.97 95.5 

p-value ≤0.001 ≤0.001 ≤0.001 >0.05 >0.05 

SEM 

LS-2 0.058 0.004 0.006 2.5 2.4 

LS-3 0.281 0.027 0.008 3.1 4.2 

LS-4 0.260 0.018 0.009 3.5 2.0 

LS-5 0.286 0.034 0.027 1.8 2.5 

 Note: Final harvest data was collected during that specific harvest: Sum of all defoliation is the 

accumulated outcome considering all defoliation of each treatment. The data in parenthesis is the value 

without normalization. SEM is the standard error of the mean (n = 6) with 6 subsamples per repetition. LS-

2 (defoliation at leaf stage 2); LS-3 (defoliation at leaf stage 3); LS-4 (defoliation at leaf stage 4); LS-5 

(defoliation at leaf stage 5). 

2) Leaf area growth rate: no statistical differences between the treatments were found 

(p>0.05; Table 3.1).  
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3) Plant shoot growth rate: Statistical differences were determined (p≤0.001; Figure 3.4), 

where the results of shoot growth rate were as follows (mean ± sem): LS-5 0.23 g day-1 

(±0.017g) = LS-4 0.23 g day-1 (±0.017g) > LS 3 0.18 g day-1 (±0.013g) = LS-2 0.13 g day-

1 (±0.008g).  

4) Root growth rate: Statistical differences were determined (p≤0.001; Figure 3.4) and 

were as follow (mean ± sem): LS-5 0.049 g day-1 plant-1 (±0.007 g) > LS-4 0.018 g day-1 

plant-1 (± 0.003 g) = LS-3 0.011 g day-1 plant-1 (± 0.002 g) = LS-2 0.008 g day-1 plant-1 (± 

0.001 g). 

3.3.2 Water soluble carbohydrates reserves  

Defoliation frequency resulted in significant differences (p≤0.001) in the tiller and plant 

WSC content. Glucose and fructose decreased with a more frequent defoliation (Figure 

3.5). The median of the glucose content was as follows: LS-5 109.3 mg plant-1 LS-4 56.3 

mg plant-1, LS-3 30.1 mg plant-1 and LS-2 17.24 mg plant-1; while the median of the 

fructose contents were as follow: LS-5 206.1 mg plant-1, LS-4 113.2 mg plant-1, LS-3 

42.06 mg plant-1 and LS-2 26.69 mg plant-1. The median of the starch content followed a 

different pattern than glucose and fructose: LS-4 11.81 mg plant-1, LS-5 8.95 mg plant-1, 

LS-3 3.00 mg plant-1 and LS-2 2.57 mg plant-1. The median of the total WSC content 

followed a similar pattern as the glucose and fructose: LS-5 329 mg plant-1, LS-4 209.03 

mg plant-1, LS-3 82.14 mg plant-1 and LS-2 50.02 mg plant-1.  

As general trend, the treatments LS-5 and LS-4 had the same content of WSC and starch 

per tiller and per plant. The total WSC showed that the treatments LS-5 and LS-4 were 

statistically similar. Such a result was also obtained between LS-4 and LS-3. However, 

LS-3 was lower than LS-5, and similar to LS-2. 
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Figure 3.4 Tiller number (A), shoot growth rate (B) and root growth rate (C). 

Lowercase letters indicate difference between treatments. Lowercase letters indicate 

difference between treatments. + indicates the mean, bars and boxes the distribution 

of the population (quartiles) (n = 12).  
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Figure 3.5 Water soluble carbohydrates (WSC), mg of glucose per tiller (A) mg of 

fructose per tiller (B), mg of starch per tiller (C), mg of total WSC per tiller (D), mg 

of glucose per plant (E), mg of fructose per plant (F), mg of starch per plant (G) and 

mg of total WSC per plant (H). The WSC content per plant was determined by 

multiplying the quantity of the WSC per tiller by the average of tiller population per 

plant determined at the end of the experiment. Lowercase letters indicate difference 

between treatments. + indicates the mean, bars and boxes the distribution of the 

population (quartiles) (n = 17). 
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3.3.3 Net photosynthesis and stomatal conductance 

Table 3.2 Net photosynthesis (An) and stomatal conductance (Gs) for B. valdivianus 

during two evaluation dates at different leave ages for the LS-5 treatment. 

  11 October 2017 22 December 2017 

Leaf number 

An                        

(µmol cm2 s-1) 

Gs                         

(µmol cm2 s-1) 

An                         

(µmol cm2 s-1) 

Gs                                 

(µmol cm2 s-1) 

Leaf 1 7.56 c 0.039 c 7.04 c 0.088 c 

Leaf 2 9.49 b 0.055 b 9.28 b 0.126 b 

Leaf 3 10.93 a 0.083 a 11.41 a 0.192 a 

Leaf 4 11.00 a 0.086 a 11.83 a 0.197 a 

Leaf 5 8.97 b 0.098 a 10.37 b 0.160 a 

P value ≤0.001 ≤0.05 ≤0.001 ≤0.05 

SEM 

Leaf 1 0.43 0.009 0.24 0.014 

Leaf 2 0.66 0.007 0.39 0.012 

Leaf 3 0.11 0.011 0.66 0.024 

Leaf 4 0.87 0.018 0.53 0.014 

Leaf 5 0.49 0.003 0.65 0.007 

Note: An is net photosynthesis and Gs stomatal conductance of the last expanded leaf for the LS-5 treatment 

(defoliation at leaf stage 5). leaves are from 1 tiller per pot. SEM is the standard error of the mean (n = 6).  

The analysis of net photosynthesis (An) showed that there were statistical differences in 

leaf ageing (p≤0.001), but not differences between dates, 11 October and 22 December 

of 2017 (p>0.05). An decreased as leaf age increased, the exception being leaf 5 (the 

youngest leaf) with a lower net photosynthesis than leaf 4. Stomatal conductance (Gs) 

declined significantly with increasing leaf age (p≤0.05; Table 3.2). There was no 

significant interaction between date and Gs (p>0.05).  

3.3.4 Canonical variate analysis  

The canonical variate analysis (CVA) shows the relationships between the measured 

variables and the defoliation regimes (Figure 3.6; Figure 3.7). The first two canonical 
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variates explained 98% of the differences between treatments (Wilk’s Lambda: p≤0.001). 

The first canonical variate (CAN 1; p≤0.001) explained 74% of the differences between 

the treatments and the second canonical variate (CAN 2; p≤0.001) explained 24%.  

 

Figure 3.6 The effect of defoliation frequency over the plant leaf stage development 

evaluated through over plant growth and physiological parameters.  

Accumulated herbage mass, lamina area growth rate, tiller number and shoot growth rate 

were positively associated to CAN 1, while root growth rate was negatively associated. 

Accumulated herbage mass, plant lamina weight, tiller weight, shoot growth rate, root 

growth rate and total sugars were positively associated to CAN 2, but no plant parameter 

was positively associated with CAN 2 in its negative direction.  

The longer defoliation treatments LS-4 and LS-5 were more positively associated with 

the most of parameters related to plant growth than LS-2 and LS-3. Root growth rate and 

total sugars were more related to LS-5 than LS-4. All the positive plant parameters 

correlated with CAN 1 were more related to LS-4 than LS-5. 
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Figure 3.7 The differences between the treatments explained in the Figure 3.6. 

defoliation at Leaf stage 2 (LS-2), 3 (LS-3), 4 (LS-4) and 5 (LS-5). 

3.4 Discussion 

3.4.1 Leaf growth dynamic 

The current study determined that B. valdivianus maintains six live leaves tiller-1, with 

three of these totally expanded, and the remaining three simultaneously expanding. This 

is a major growth physiology difference between B. valdivianus and L. perenne, as L. 

perenne has only one expanding leaf at a time and maintains a total of three live leaves 

tiller-1 (Fulkerson et al., 1994a; Fulkerson and Donaghy, 2001). Dactylis glomerata L. 

(cocksfoot) and Bromus willdenowii Kunth. (prairie grass) can maintain five live leaves 

tiller-1 and grow two leaves simultaneously, when the first leaf reaches 75% of its total 

expansion length the next leaf appears (Turner et al., 2007b). For B. valdivianus, when 

the first leaf reached its maximum expansion, the second leaf had reached 75% of its 

maximum expansion, the third leaf had reached 25% of its expansion, and the fourth leaf 

is starting to grow. Leaf senescence began with the leaf number 2 and started when tillers 

had accumulated 7 live leaves (i.e. LS-4.25).  
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A new B. valdivianus leaf appeared every 96ºCd (Table 3.1) and each individual leaf 

required 431ºCd for full expansion (Figure 3.1; Figure 3.2; Figure 3.3). These results 

contrasted with leaf parameters determined for other species, such as L. perenne, in which 

a new leaf appeared every 117ºCd (Davies and Thomas, 1983). It is important to consider 

that, even though B. valdivianus required a longer period to fully expand a leaf (431ºCd), 

three leaves expand at the same time. The strategy of B. valdivianus appears to be focused 

on leaf number, and tiller and leaf size more than tillering itself, a major difference of 

growth strategy if we compare B. valdivianus with L. perenne. It has been reported that 

L. perenne grown in a subtropical environment and defoliated with 3 live leaves at 5 cm 

height, had a tiller weight of 0.036 g, and plants averaged 86 tillers (Fulkerson and Slack, 

1994b), leaf area around 2.7 cm2 and had four times more tillers than B. wildenowii, when 

defoliated to 6 cm height (Hume, 1991). These results are opposite regarding to B. 

valdivianus, where, after several defoliations, the tiller population reached 41 tillers plant-

1, a tiller weight between 0.134 g - 0.6 g and leaf area between 12.7 cm2 - 44.3 cm2. The 

current study describes the growth strategy of B. valdivianus in terms of the number of 

live leaves maintained per tiller, the size and the lifespan of individual leaves, and the low 

tiller number per plant, which are all different strategies to those exhibited by L. perenne. 

These strategies have been successful in the south of Chile on Andisol soils, where 

according to Balocchi et al. (1996), both species coexist in the same grassland 

ecosystems, with both B. valdivianus and L. perenne strongly contributing to the pasture 

production. 

3.4.2 Net photosynthesis and stomatal conductance related to leaf ageing 

The total photosynthesis accomplished for the whole tiller for B. valdivianus, an average 

of An between the five measured leaves (Table 3.2) were determined, and it was 17.15 
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µmol CO2 m
2 s-1 and according to the results the leaf area per tiller at LS-4 was 24.8 cm2, 

giving a total An per tiller of 0.0425 µmol s-1. This value is 8 times greater than L. perenne, 

assuming a leaf area of approximately 2.7 cm2 tiller-1 at LS-3 (Hume, 1991), and an 

average An of 20 µmol m2 s-1 (Ainsworth et al., 2003), giving a total photosynthesis per 

tiller of 0.0054 µmol s-1. This greater B. valdivianus An per tiller over L. perenne could 

be one of the advantages of B. valdivianus in a mixed sward with L. perenne. For example, 

B. valdivianus could allocate more WSC to root growth, resulting in a higher survival rate 

during summer in comparison to L. perenne (López et al., 2013), due to a higher water 

extraction from deeper soil layers (Ordóñez et al., 2018).  

The decrease in both An and Gs as leaf age increased (Table 3.2), has also been reported 

in potato leaves (Haimeirong and Kubota, 2003) and in maize leaves (Xu et al. 2008; 

2011). This decrease in photosynthetic capacity has been related to several causes, such 

as the electron transport rate (Iacono and Sommer 2000; Xu et al., 2011), chlorophyll 

content (Ge et al., 2011) and carotenoids (Yoo et al., 2003). Negative effects that could 

be related to a lipid peroxidation induction by active oxygen species (AOS) (Cakmak and 

Horst, 1991; Gill and Tuteja, 2010). The increase of AOS is determined by the 

concentration of malondialdehyde (MDA; Xu et al., 2011) and the physical damage of 

cell membranes, evaluated through ion leakage (Xu et al., 2009; 2011). The cell damage 

generated by AOS increases with leaf age (Xu et al., 2009; 2011) and it could be one 

explanation for why photosynthetic capacity decreases with leaf age. 

3.4.3 Effect of defoliation frequency on non-structural carbohydrates reserves 

The current study supports that the defoliation frequency has a direct impact on the 

storage of WSC (Turner et al., 2006 a,b,c,d; Donaghy and Fulkerson, 1998) and on 
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subsequent plant regrowth (leaf growth rate) within the first three days after defoliation 

(Donaghy and Fulkerson 1997: Turner et al., 2001) on B. valdivianus. 

Non-structural carbohydrates vary with day/night temperature, amount of daylight, levels 

of nutrients and water availability, which act to alter the relationship between respiration 

and photosynthesis (Fulkerson and Donaghy, 2001), for different grass species (Turner et 

al., 2006a,b,c,d; Turner et al., 2007a,b). Many researchers have investigated defoliation 

interval and its effect on WSC storage and subsequent regrowth and survival of various 

grass species (e.g. Alberda, 1966; White, 1973; Donaghy and Fulkerson 1997; Thornton 

and Millard 1997; Turner et al., 2001). Alberda (1966) postulated that 60 g WSC kg-1 

may be a critical value to maintain the cellular function of L. perenne. Donaghy and 

Fulkerson (1997) indicate that above 160 g WSC kg-1, there is no longer an effect on 

regrowth of L. perenne. Turner et al. (2006a) recommend defoliation at LS-4 for D. 

glomerata, with a content of 218 mg WSC plant-1, equivalent to 236 g WSC kg-1. Turner 

et al. (2006d), also for D. glomerata, recommend defoliation frequency between LS-2 

and LS-4, which corresponds to 70 mg WSC plant-1 and 1,477 mg WSC plant-1, 

respectively. Turner et al. (2007c) recommend defoliation at LS-4 for B. wildenowii, 

where the content of WSC was around 600 mg plant-1. These results indicate how difficult 

an ‘optimum’ level of WSC is to define, especially when the grasses species have a 

different growth strategy. According to the current study, WSC reached levels of 

concentrations around 60 g kg-1 through LS-2 to LS-4, increasing to 140 g WSC kg-1 at 

LS-5. However, several authors have reported that WSC content (expressed as either mg 

tiller-1 or mg plant-1) is more significant than WSC concentration (expressed as % or g 

kg-1), in regrowth and survival (e.g. Fulkerson and Slack, 1994b; Donaghy and Fulkerson, 

1998; Turner et al., 2006d). The latter is supported by the present study, where the WSC 
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content increases as a response of a more infrequent defoliation, together with the growth 

plant parameters.   

Regarding starch, it is recognised that starch is the main storage product of many seeds, 

e.g. grasses (Tetlow et al, 2004). The seeds are developed in the stubble of the grasses, 

which explains the constant increase of starch until the treatment at LS-4, as the seeds 

were being developed from the first 5 cm of the plant. The LS-5 starch concentration 

diminishment was due its movement from the stubble to the inflorescence, which was 

occurring at that moment for that treatment (data not shown).  

3.4.4 Effect of defoliation frequency on plant regrowth 

In the current study, although there was no statistical difference in tiller number (p>0.05), 

at LS-5, B. valdivianus had a greater tiller leaf area, tiller weight and tiller leaf weight 

than all other treatments. When leaf expansion was analysed, the derivative of the 

growing curve at the third day of the growing period showed that LS-4 had a higher slope 

than LS-5. However, the growth rate at LS-5 was similar to LS-4 as shown in Figure 3.4B. 

Figure 3.4B also shows how defoliation at LS-4 resulted in the maximum growth rate, 

therefore, any earlier defoliation will negatively affect the biomass production (Hume, 

1991) and probably plant persistence (Fulkerson and Donaghy, 2001). 

In the current study, a decrease in WSC when defoliation frequency increased to LS-2 or 

LS-3 indicated a detrimental effect on plant recovery and plant shoot growth rate, root 

growth rate, tiller leaf weight and tiller leaf area. A similar effect of defoliation frequency 

on WSC levels has been reported for L. perenne (Fulkerson and Donaghy, 2001). It is 

important to highlight that LS-4 did not show a detrimental effect on WSC content (mg 

plant-1 or mg tiller-1) and was statistically similar to LS-5. These results are also supported 

in the CVA, that show a high association between most of plant parameters evaluated are 
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highly related to LS-4 and LS-4 (CAN 1). The total sugars (in CAN 2) showed a high 

correlation with LS-5 followed by LS-4. 

The impact of the frequent defoliations, besides the depletion of WSC in the stubble, also 

generate a slower regrowth in leaves, roots and tillers, affecting negatively its persistence 

within the pasture (Donaghy and Fulkerson, 1997,1998). The allocation patterns defined 

for L. perenne, after defoliation, were as follow, leaf regrowth, root regrowth and then 

tiller initiation. Therefore, tiller initiation and population (Donaghy and Fulkerson 1998) 

should be the first parameter to be affected. Contrarily, tiller number was not affected by 

the defoliation regimes (Figure 3.4A; Figure 3.6; Figure 3.7), whereas, root growth rate 

and shoot growth rate were affected by defoliation regimes. From this it could be 

hypothesized for B. valdivianus that, 1) allocation patterns can be managed by the 

defoliation criteria applied and 2) allocation patterns are different in comparison to L. 

perenne (Donaghy and Fulkerson, 1998). The latter is based on that tiller population was 

not affected by the defoliation frequencies used; however, to reach further conclusions 

more research is needed.  

3.5 Conclusions 

Bromus valdivianus is a ‘six-leaf’ species, with three leaves growing simultaneously, and 

leaf senescence beginning at LS-4.25. Bromus valdivianus has a greater leaf area and tiller 

size, but a lower tiller number per plant, compared with L. perenne.  

Shoot growth rate and total WSC levels indicated that LS-4 and LS-5 were the defoliation 

intervals that encouraged herbage mass accumulation.  

Root growth rate was highly affected by defoliation frequency; LS-5 was the defoliation 

interval that most encouraged root growth rate. 
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Bromus valdivianus photosynthesis rate was not significantly different to that reported 

for other grasses (e.g. L. perenne) but its advantage, from the tiller point of view, was the 

higher leaf area, generating higher total photosynthesis per tiller.  
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Chapter 4: Experimental chapter 

 

Soil - Plant - Atmosphere continuum: Different species traits 

and their effect on soil water content, plant growth and plant 

physiology in field conditions under monoculture and mixture 

swards 
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Summary 

• Under the current climate change scenario, increasing the functional traits in a 

pasture may bring stability during water stress periods. This could be achieved by 

including species with tolerances to different environmental stresses. The botanical 

composition and herbage mass production in pastures, and physiological growth 

parameters of L. perenne, T. repens, B. valdivianus and P. lanceolata were determined as 

monocultures and mixtures across seasons. 

• The treatments were: T1) B. valdivianus; T2) L. perenne + T. repens; T3) P. 

lanceolata; T4) B. valdivianus + L. perenne + T. repens; T5) B. valdivianus + L. perenne 

+ T. repens + P. lanceolata.  Herbage mass, photosynthesis, leaf water relations and soil 

water content at 10, 40 and 70 cm soil depth were analysed. The evaluations were 

performed seasonally for 2 years including three summer periods within.  

• T5 showed to produce more herbage mass during the soil water restriction and T2 

during waterlogging in comparison to the other treatments. T1 and T3 showed a higher 

uptake at 40 cm and T1 at 70 cm soil depth due to the high proportion of B. valdivianus 

and P. lanceolata and both species showed the lowest osmotic potentials and leaf water 

potential and higher net photosynthesis and stomatal conductance during water restriction 

periods than L. perenne. In T5, P. lanceolata was dominant in 5 seasons and, L. perenne 

co-dominant in 4 seasons. 

• The inclusion of species that differ in their physiological and morphological traits 

(roots depth) confer a higher herbage mass production during water restriction periods. 

Higher tolerance to water restriction was shown by B. valdivianus and P. lanceolata due 

to deeper soil water extraction than L. perenne. Lolium perenne had higher herbage mass 

production during the spring and P. lanceolata during summer in T5.  
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4.1 Introduction 

Ecosystem stability as a function of biodiversity has been widely studied since the 1950s 

and it is proposed that greater plant diversity builds ecosystems that are more resilient to 

environmental stress (Elton, 1958; Tilman et al., 1994; Tilman et al., 1998; Tilman, 1999; 

Loreau et al., 2000: Hooper and Duke, 2004; Tilman et al., 2006; Isbell et al, 2009; Tilman 

et al., 2014). The main factors behind this greater stability include an increase in plant 

traits inside the ecosystem (Hooper and Vitousek, 1997; Isbell et al, 2009) and the growth 

asynchrony between species (Tilman, 1999; Isbell et al., 2009; Zhang et al., 2018).  Both 

factors are important concepts for building more sustainable and stable grazing systems, 

especially in light of the current global warming, for which has been predicted that 

droughts may become more frequent (Lehner et al., 2006) and the temperature variability 

may increase (Zhang et al., 2018). Any variation of the climatic variables, e.g. 

temperature and rainfall, will make plant production more uncertain (Tubiello et al., 

2007), which will be a threat for rain-fed pastoral systems. 

Lolium perenne is the most widely sown pasture grass in temperate pastoral systems 

(Amin and Thomas et al., 1996; Kemp et al., 2002), however, it is a species with a shallow 

root distribution between 0-20 cm (Evans, 1978; Crush et al., 2005). Ordóñez et al. (2018) 

reported that L. perenne had a greater water extraction between 0-10 cm soil depth, a 

reflection of the quantity of functional roots in that zone. At a greater depth L. perenne 

diminished its water extraction in comparison to a highly diverse pasture comprising by 

L. perenne, B. valdivianus, D. glomerata, H. lanatus, T. repens, other clovers, low quality 

grasses and broad leaf species. Similar findings for L. perenne were reported by Neal et 

al. (2012), indicating that the roots depth reached up to 150 cm of soil depth, but the water 

extraction was minor compared to other perennial grasses, e.g. D. glomerata. In a pastoral 
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ecosystem, the functional traits (e.g. root depth) of each individual species constitute a 

variable as important as the quantity of species in a pasture (Hooper and Vitousek, 1997; 

Isbell et al, 2009). The interaction between these functional traits can be a tool to provide 

sustainable management at a low diversity of species (Hooper and Vitousek, 1997; 

Petchey et al., 2004) and it may improve pasture productivity in the long term and during 

stress periods. Previous studies have highlighted the importance of species traits in the 

ecosystem, such as, the soil water dynamics through deeper root traits (Gan et al., 2012; 

Ordóñez et al., 2018) and soil water redistribution (Skinner et al., 2004; Skinner et al., 

2008). Therefore, increasing plant functional traits in a pasture increases complexity in 

an ecosystem, improving its stability to the impact of environmental constraints, e.g. soil 

water restriction or waterlogging (Tilman et al., 1997; Petchey et al., 2004).  

Zhang et al. (2018) stated that growth asynchrony between species during their 

development improves pasture stability to environmental constraints, thus the lack of 

asynchrony between species could negatively affect pasture production and persistence. 

Therefore, species asynchrony, along with species diversity with different functional 

traits (e.g. different root depth) are desired characteristics within a pasture, this can be 

evaluated through the different species growth rates across different seasons.  

Considering the latter argument, the following species have dissimilar attributes: L. 

perenne is a species with a shallow root distribution (Shallow-rooted species; Crush et 

al., 2005; 2009) with a lower water extraction from soil layers deeper than 10 cm soil 

depth, compared to other grasses (Ordóñez et al., 2018), high growth rate during spring 

and winter, but a low growth rate in summer (Callow et al., 2003; Descalzi et al., 2019) 

due to low soil water content (Ordóñez et al., 2018; Descalzi et al., 2019); Trifolium 

repens is a legume with shallow-rooted distribution (Nichols et al., 2016), which has a 
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high growth rate during spring, but a low growth rate during summer and winter 

(Scheneiter et al., 2009). The lower growth rate in winter is due to its higher optimum 

temperature for growth (24 °C) in comparison to L. perenne  (18 – 21 °C; Brock et al., 

1989); B. valdivianus is a drought tolerant species (López et al., 2013), which may be due 

to its ability to access water from deep soil layers (Ordóñez et al., 2018). Bromus 

valdivianus has similar forage quality to L. perenne (Balocchi and López, 1996), a larger 

leaf area and higher tiller weight (López et al., 2013; Ordóñez et al., 2017), a greater 

number of live leaves per tiller but a lower tiller density (Ordóñez et al., 2017) and a high 

growth rate during summer, spring and autumn (Keim et al., 2015); Plantago lanceolata, 

a deep-rooted herb, up to 0.97 m length (Sanderson et al. 2003; Nie et al. 2008) and a 

high growth rate in late spring, summer and early autumn, but with a low growth rate 

during seasons with low temperatures (Pellissier, 2014). These four species have 

structural, physiological and functional differences; soil water extraction at different soil 

depths is correlated with functional roots distribution (Neal et al., 2012; Ordóñez et al., 

2018), linked to physiological traits (Blum, 2009). When these species are grown together 

may perform asynchrony, improving pasture stability to environmental stress. However, 

this aspect needs to be investigated, along with the mechanisms that allow plant survival 

and growth under environmental stress, such as waterlogging or water restriction.  

A relevant aspect to investigate is to what extent species with different functions are 

relevant to facilitate individual species survival within the same pasture. For example, do 

shallow-rooted species benefit, through increased water availability for example, by 

having deeper-rooted species as companions? Is there an effect on soil water dynamics 

due to different levels of functional diversity? The present research was designed to 

answer these questions using the deep-rooted species B. valdivianus and P. lanceolata 

together with shallow-rooted L. perenne and T. repens sown as mixed pasture.  
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The aim of the present study was to evaluate the effect of different levels of functional 

diversity, provided by its tolerance to different water stresses and its different growth 

strategies, on the changes in the plant community, plant physiology and soil water status, 

in pastures grown in the field and subjected to annual climatic fluctuation and grazing 

management. To accomplish this aim, leaf water relations, photosynthesis, stomatal 

conductance, soil water dynamics, herbage mass production and the pasture botanical 

composition changes across growing seasons were determined for B. valdivianus Phil, L. 

perenne L. and P. lanceolata L., grown at the establishment under monocultures and 

mixed swards.  

4.2 Materials and Methods 

4.2.1 Geographic location and weather description 

The study was performed at Massey University’s Number One Dairy Farm, Palmerston 

North (40°22'55.8"S 175°36'23.8"E). The soil was a Manawatu silty loam and was 

originated from a weathered fluvial recent soil (Hewitt 1998). The topsoil was a silty loam 

texture and the subsoil a sandy loam texture, very similar to the Manawatu fine sandy 

loam soil (Sanarath, 2003). The bulk density of the topsoil ranges between 1.1 and 1.2 

Mg m3 and around to 1.3 Mg m3 over the 15 cm soil depth, and the low water storage 

capacity associated to the sandy textural properties in the subsoil (Senarath, 2003).  

Regarding the field capacity (matric potential at 10 kPa), at 10 cm soil depth fluctuated 

between 42 – 43 % SWC; at 40 cm soil depth 32 - 33% SWC; and at 70 cm soil depth 13 

– 14% SWC. The permanent wilting point (matric potential at 1500 kPa) at 10 cm soil 

depth ranged between 19 – 20% SWC; at 40 cm soil depth 19% SWC; and at 70 cm soil 

depth 7 – 8% SWC (Senarath, 2003).  
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The climate was temperate humid; the daily average air temperature, water atmospheric 

demand and the rainfall during the study are shown in Figure 4.1 and were extracted from 

a weather station located at 200 m from the experimental site (Agent number 21963; 

authorship to AgResearch). 

The monthly rainfall deficit was determined based on the total monthly rainfall and the 

monthly mean potential evapotranspiration. The mean temperature was determined 

hourly and the average calculated using all the measurements between 0 and 23 hr.  

 

Figure 4.1 Rainfall, mean monthly air temperature and mean monthly potential 

evapotranspiration estimated with the Penman Monteith equation during the 

experimental period, between September 2016 and March 2019.  

Rainfall, monthly mean temperature and monthly mean potential evapotranspiration for 

the evaluated period are shown in Figure 4.1. The total rainfall for the years 2017 and 

2018 were 1,053 mm and 1,176 mm, respectively. The Penman-Monteith equation (Allen 
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et al., 1998) was used to observe the periods where the atmospheric water demand was 

higher than the rainfall.  

4.2.2 Treatments description 

The pastures were sown on the 20 October 2016 and the experiment commenced on 08 

January 2017 and finalised by the end of March 2019. The experiment consisted in five 

types of pastures with 20 plots in total, established in 110 m2 (10 x 11 meters) plots 

according to a randomised complete block design of 5 treatments x 4 blocks) The blocks 

were laid out perpendicular to the slope of the experimental site. All the pastures were 

sown after seedbed preparation, which consisted in ploughing and harrowing. Soil 

preparation was focus on the first 20 cm soil depth. After the sowing, the experimental 

site was rolled to increase the soil-seed contact. The species and sowing rate for each 

treatment were: T1) B. valdivianus (cv. Bareno; 30 kg ha-1); T2) L. perenne (cv. Rohan; 

25 kg ha-1) + T. repens (cv. Weka; 3 kg ha-1); T3) P. lanceolata (cv. Tonic; 14 kg ha-1); 

T4) B. valdivianus (20 kg ha-1) + L. perenne (12 kg ha-1) + T. repens (3 kg ha-1); T5) B. 

valdivianus (20 kg ha-1)  + L. perenne (12 kg ha-1) + T. repens (3 kg ha-1) + P. lanceolata 

(2 kg ha-1). Plantago lanceolata cv. Tonic was chosen because, at that time, was the 

cultivar of P. lanceolata most used by farmers; B. valdivianus cultivars cv. Bareno is the 

only cultivar of this species available in market in New Zealand (Agriseeds, 2013); and 

Lolium perenne cv. Rohan, because is coming from a Spanish genetic line, which has 

attributes for water restriction tolerance and a high capacity to produce tillers, filling up 

the empty spaces between the sowing rows faster than the other L. perenne cultivars 

(Agriseeds, 2014).  Sowing rates were based on industry recommendations for either 

monocultures or mixtures of the relevant species (Agricom, 2017).  
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Figure 4.2 Grazing dates for the whole experimental period. 

The grazing was performed to all treatments when B. valdivianus reached leaf stage 4.0. 

That meant a tiller with 6 live leaves, in which the 6th leaf had a leaf stage score of 0.25 

(Ordóñez et al., 2017; Chapter 3). At the moment of the defoliation, L. perenne reached 

3.5 leaf stage (Chapter 3) and P. lanceolata had over six leaves per plant. Each plot was 

grazed as a unit, being two blocks grazed at the same time. Each grazing was performed 

using 5 male sheep per plot, equivalent to a stocking density of 454 sheep ha-1, with a 

grazing period of two days.  

The grazing events performed during the experimental period are shown in Figure 4.2. 

Previous to each grazing event, there were taken into account; a) morpho-physiological 

development of B. valdivianus according to the defoliation criteria described in the 

Section 4.2.2, explained above; and b) the soil moisture conditions in order do not harm 

the pasture growth and the soil conditions as a consequence of the animal trampling.  

4.2.3 Soil water content dynamics 

In order to determine soil water uptake, especially during the stress periods, soil water 

content (SWC) was determined for all the treatments at three different soil depths: 10, 40 

and 70 cm, using CS616 soil moisture sensors (sensor length: 30 cm; Campbell Scientific, 
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Logan, Utah, USA) connected to a CR1000 data logger (Campbell Scientific, Logan, 

Utah, USA) with a 16/32B multiplexer (Campbell Scientific, Logan, Utah, USA) 

installed. There were two soil moisture sensors at each soil depth. Sensors were installed 

at the 10 and 40 cm soil depths on the 11th October 2017, and at the 70 cm soil depth on 

the 29th October 2018. 

In order to determine the severity of the soil water restriction matric potential sensors 

(model 229, Campbell Scientific, Logan, Utah, USA) were installed at the 10 and 40 cm 

soil depths on the 15th October 2018 and connected to the same data logger as the soil 

moisture sensors. As with the soil moisture sensors, two temperature and matric potential 

sensors were placed at each soil depth. Data was recorded every 30 min from installation 

date until the end of the study on the 30th March 2019.  

The calibrations of the matric potential sensors were performed using 3 undisturbed soil 

samples according to the manual of these sensors (model 229, Campbell Scientific). The 

sensors where inserted and fixed into the undisturbed soil samples, then the samples were 

saturated from beneath for 48 h and then equilibrated at matric potential values of −1, −2, 

−3, −6 kPa in shelves with different height and all the samples where covered with plastic 

to avoid losses by evaporation. Then the samples were equilibrated at −15, −33, −50 and 

-1500 kPa (in pressure chambers). For each matric potential the sensors were connected 

to the datalogger when the soil samples reached the equilibrium (Campbell Scientific, 

Logan, Utah, USA). The soil matric potential was evaluated with a frequency of 10 

minutes for one hour. Any matric potential was evaluated with a frequency of 10 minutes 

per 1 hour. 
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4.2.4 Leaf water potential and leaf osmotic potential  

In order to determine the physiological response of B. valdivianus, L. perenne and P. 

lanceolata to the different soil water contents, leaf water potential and leaf osmotic 

potential were evaluated in all the treatments on the following dates: 10/03/2017; 

17/03/2017; 22/11/2017; 16/01/2018; 26/04/2018; 01/08/2018; 28/09/2018; 22/11/2018; 

28/01/2019. Both variables were measured simultaneously on the last fully expanded leaf, 

with the same leaf utilised to determine both variables. The plant material was collected 

before sunrise and at midday during the indicated dates. 

Leaf water potential was evaluated with a Scholander pressure bomb (Soil Moisture 

Equipment Crop., Santa Barbara. CA). For osmotic potential, leaf samples were 

immersed into liquid nitrogen for 20 seconds to break the cellular wall. Immediately after 

that, the samples were stored in an insulated container with liquid nitrogen to maintain 

the temperature below 0°C until all samples had been collected. Samples were then taken 

to a freezer and stored at -80°C. To determine leaf osmotic potential, the samples were 

defrosted and immediately evaluated with a HR-33T Dew Point Microvoltmeter (Wescor, 

Logan, Utah, USA) using C-52 chambers (Wescor, Logan, Utah, USA) and following the 

methodology described by Turner et al. (1978). Chambers were calibrated before 

measurements started, with NaCl solutions at 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 molar 

as indicated by the Wescor C-52 chambers manual (Wright et al., 1983), in order to 

convert μV to bars.   

4.2.5 Gas exchange  

In order to determine the species performance under different weather conditions net 

photosynthesis (An), stomatal conductance (Gs), intercellular carbon concentration (Ci) 

and water use efficiency (WUE) were determined for B. valdivianus, L. perenne and P. 
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lanceolata by placing the last expanded leaves of two tillers per species for the grasses 

and one full healthy leaf of P. lanceolata inside the chamber. Evaluations were performed 

during the following dates: 10/03/2017; 17/03/2017; 22/11/2017; 26/04/2018; 

01/08/2018; 08/08/2018; 05/10/2018; 28/01/2019. These variables were evaluated in the 

daily hour of highest atmospheric water demand, between 11:00 and 14:00. Therefore, 

the differences between species will reflect the root exploration in the soil and its water 

access. The gas exchange was evaluated using a LICOR-6400XT (LI-COR, Nebraska, 

USA) chamber, with a 6400-02B LED light source (LI-COR, Nebraska, USA). The 

photosynthetic photon flux density at the leaf surface was set at 1,000 µmol photons m-2 

s-1, leaf temperature was stabilised to 25°C, the flow rate at 500 µmol s-1 and the ambient 

CO2 concentration of the incoming gas stream was set at 400 µmol s-1.  

WUE = An / Gs (eq. 4.1) 

Where: 

WUE = Water use efficiency (µmol m2 CO2 mol-1 H2O) 

An = net photosynthesis (µmol m2 s-1). 

Gs = Gs is the stomatal conductance (µmol m2 s-1). 

Both, An and Gs, comes from the same evaluation, on the same leaf and at the same time.  

4.2.6 Herbage mass and botanical composition 

In order to determine the effect weather and defoliation by grazing, botanical composition 

was evaluated seasonally. In a temperate humid climate, each season, spring (1 September 

– 1 December), summer (1 December – 1 March), autumn (1 March – 1 June) and winter 

(1 of June – 1 September), is characterised by a particular weather.  
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The botanical composition sampling was done according to Radcliffe et al. (1968). For 

each evaluation event, two pasture samples of 0.1 m2 quadrat per plot were taken once a 

season before a grazing event, cut down to ground level using a sheep shearing handpiece 

and a portable battery during the second month of each season, from summer (February), 

2017 until summer (February) 2019. From this pasture sample all the species were 

manually separated and identified as plants of B. valdivianus, L. perenne, T. repens, P. 

lanceolata, broad leaf species, and other grasses, each species were placed in individual 

bags and oven dried at 70ºC for two days to obtain dry weight. With the dry weight of the 

whole sample and the dry weight of each species or group of species within the whole 

sample, the percentage of participation in the botanical composition of the pasture was 

calculated.  

Species % = DWspecies * 100 / DWsample (eq. 4.2) 

Where: 

Species % = Participation, in percentage, of each species or groups of species within 

the whole pasture sample.   

DWspecies = Herbage mass (g DM) of each species or group of species indicated. 

DWsample = Herbage mass (g DM) of the whole pasture sample. 

100 = Mathematical constant to transform the values to percentages.   

The herbage mass was evaluated before and after grazing (Earle and McGowan 1979), 

two 0.1 m2 samples per plot were cut down to ground level, dried at 70ºC for two days, 

and weighed. 

The accumulated herbage mass was determined as follow: 
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(eq. 4.3) 

Where: 

Σ = Sum of dry weight (kg ha-1) from the subtraction of DWpre and DWpost of each 

grazing. 

n = Total number of grazing across the whole experimental period.  

i = Initial grazing. 

DWpre = Dry weight before the grazing (kg ha-1) 

DWpost = Dry weight after the grazing (kg ha-1) 

To determine the growth rates of each season, the average of growth rates between 

several grazing events within the same seasons was calculated. 

The growth rates were determined as follow: 

Growth rate = DW pre n - DWpost n -1 (eq. 4.4) 

Where: 

Growth rate = Accumulated herbage mass between the post grazing herbage dry 

weight from the previous grazing event (n-1) and the pre grazing herbage dry weight of 

the following grazing event (n).  

n = any grazing event. 

n -1 = previous grazing event in relation to grazing event (n). 
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DW post n – 1 = Herbage dry weight of the post grazing from the previous grazing event 

in relation to grazing event (n). 

DW pre n = Herbage dry weight of the pre grazing evaluation from grazing event (n). 

4.2.7 Experimental design and statistical analysis  

The experiment was laid out according to a randomised complete block design (5 

treatments x 4 blocks). The normality of the data was evaluated using the Kolmogorov-

Smirnov test (p≤0.05). Analysis of variance (ANOVA) was applied to the normally 

distributed data. Fisher’s least significance difference test (LSD) (p≤0.05) was used to 

separate treatment means (Steel et al. 1997). When data were not normally distributed, 

mathematical functions were applied to normalise them. This was the case for stomatal 

conductance (normalised with root square function), leaf osmotic potential (normalised 

with cube-root) and water use efficiency (normalised with natural logarithm). When data 

transformation was not able to confer normality to the data, such as intercellular carbon 

concentration (Ci), or if the objective was to show the population distribution of the data, 

such as water use efficiency (WUE), non-parametric statistics were applied (box 

diagrams, mean, median, percentiles, and standard deviation), and the Kruskal-Wallis’s 

test (p≤0.05) was used to compare the treatment mean.  

4.3 Results 

4.3. Soil water dynamics  

The effect of plant water uptake and evaporation is reflected on the soil water dynamics 

across all the evaluation period (Figure 4.3; low SWC reflect a high water uptake)  where 

two variables changed the soil water dynamics and showed opposite trends, are indicated 

as follows; 1) the effect of water atmospheric demand diminished with soil depth and 2) 
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the SWC differences between treatments increased with soil depth  may be due to the 

differences in root depth distribution of the sown species.  

 

Figure 4.3 Soil water content for all the treatments at three depths, at 10 (A) cm and 

40 cm (B) between October 2017 and March 2019; and at 70 cm (C) soil depth 

between October 2018 and April 2019. T1 (B. valdivianus); T2 (L. perenne + T. 

repens); T3 (P. lanceolata); T4 (B. valdivianus + L. perenne + T. repens); T5 (B. 

valdivianus + L. perenne + T. repens + P. lanceolata). Bars indicate standard error of 

the mean (n= 48). Red lines indicate the estimated permanent wilting point at 10 cm 

(20% SWC; A) and at 40 cm soil depth (19% SWC; B), and at 70 cm soil depth (8% 

SWC; C) determined according to Senerath (2003). 

At 10 cm soil depth, SWC was difficult to determine, due to the variables involved, i.e. 

root abundance and atmospheric demand, resulting in SWC being unstable over time. 



 

 
75 

 

However, the treatments with lower SWC at 10 cm soil depth were T1, T4 and T5 (Figure 

4.3A) during almost all year, especially during the water restrictions periods. On the other 

hand, the treatments T2 and T3 tend to have a higher SWC during almost all the 

evaluation period, with some exceptions.  

At 40 cm soil depth the soil water dynamics were more easily to identify the treatments 

differences, registering that T1 and T5 had the lowest SWC values during almost soil 

water restriction. T1 on the other hand during non-water restriction periods showed 

similar values than T2 and T3. During the soil water restriction periods T3 showed a 

higher water extraction compared to T2 and T4, but during autumn, winter and early 

spring is one of the treatments with the higher SWC (Figure 4.3B).  

At 70 cm soil depth there were differences over the last water deficit period (Figure 4.3C), 

such that treatment T1, followed by T3, showed the lowest values. T5 and T4 

experimented significantly higher water extraction than T2. The most probable 

explanation is the differences in the functional roots distribution, for which the root 

number and density that reached that soil depth have a significant influence on SWC. For 

example, T3 (P. lanceolata) could have had a deeper root system but its root density was 

not enough to overcome the water extraction done by B. valdivianus at that soil depth.  

The calibration of the 229 sensors shown that the permanent wilting point at 10 cm soil 

depth was about 20% SWC and at 40 cm soil depth about 19% SWC, results that agreed 

with Senerath (2003). For the subsoil layer at 70 cm soil depth the permanent wilting 

point was based on the data presented by Senerath (2003). 
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4.3.2 Daily variation in soil water content during soil water restriction  

Significant SWC daily variation at 10 cm soil depth (p≤0.001; Table 4.1) were assessed 

and registered every 30 minutes. The pattern of a daily SWC variation commenced when 

the SWC was below 16%, or when it exceeded the 2000 kPa of soil matric potential 

(Figure 4.3). This situation occurred in three periods across all the period of evaluation 

and were the following: 28/12/2017 until 04/01/2018; 02/02/2018 until 06/03/2018; 

09/02/2019 until 09/03/2019. This pattern constantly reached its minimum daily SWC at 

08:00, while the maximum was detected at 17:00 (p≤0.05). 

Table 4.1 Differences in soil water content, at 08:00 (minimum) and 17:00 

(maximum) for the three periods of water deficit (below 16% of soil water content) 

for all the treatments. 

   First period SEM first period 

hour  T1 T2 T3 T4 T5 p- value T1 T2 T3 T4 T5 

08:00 16.497b 15.421a 15.809b 14.285a 15.685b ≤0.05 0.203 0.322 0.104 0.269 0.252 

17:00 17.053a 15.869a 16.397a 14.704a 16.054a  0.208 0.330 0.119 0.263 0.265 

   Second period SEM second period 

08:00 14.470a 16.059b 14.791b 14.685b 14.114b ≤0.05 0.161 0.124 0.081 0.156 0.117 

17:00 14.739a 16.539a 15.009a 15.089a 14.517a  0.157 0.125 0.079 0.151 0.113 

   Third period SEM third period 

08:00 13.550a 13.879a 16.070b 13.120b 15.328b ≤0.05 0.371 0.169 0.217 0.048 0.123 

17:00 13.913a 14.185a 16.649a 13.501a 15.629a  0.336 0.171 0.183 0.064 0.130 

Note: Data analysed was considering the SWC readings between 30 minutes. SEM is the standard error of 

the mean, for the first period n = 8; second period n = 32; third period n = 29. First period between 

28/12/2017 - 04/01/2018; second period between 02/02/2018 - 06/03/2018; third period between 

09/02/2019 - 09/03/2019. T1 (B. valdivianus); T2 (L. perenne + T. repens); T3 (P. lanceolata); T4 (B. 

valdivianus + L. perenne + T. repens); T5 (B. valdivianus + L. perenne + T. repens + P. lanceolata).  
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Figure 4.4 Leaf osmotic potential for B. valdivianus, L. perenne and P. lanceolata 

during all the periods of evaluation (A). Leaf water potential for B. valdivianus, L. 

perenne and P. lanceolata (B). Bars indicate standard error of the mean (n= 3). 

The daily SWC pattern fluctuation is presented in Table 4.1. The fluctuation occurred 

without any addition of water by any source and was between (mean ± sem) 0.12% SWC 

(±0.054%) and 0.58% SWC (±0.068%), reaching the daily maximum at 17:00 and the 

daily minimum at 08:00. T3 showed differences in all three periods, exhibiting the largest 

differences in daily SWC variation during the first period, registering a SWC change of 

0.59%. The largest variation for T2 was registered during the second period with a SWC 

change of 0.58%. However, T2 did not show statistical differences for daily variation in 
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SWC during either the first or third periods named before. The largest daily variation in 

SWC during the third period was for T3, with a value of 0.58%. 

4.3.3 Leaf osmotic potential and leaf water potential  

Statistical differences were found for leaf osmotic potential (p≤0.001) and leaf water 

potential (p≤0.001) for B. valdivianus, L. perenne and P. lanceolata, with a significant 

interaction between species x date for leaf water potential (p≤0.05) and for leaf osmotic 

potential (p≤0.01). No statistical differences were found when the same species was 

compared in different treatments (p>0.05).  

Lolium perenne had higher osmotic potential values during the soil water restriction 

periods (Figure 4.4A) compared to B. valdivianus and P. lanceolata, the situation 

described as follows: L. perenne showed a higher leaf osmotic potential in 5 over 9 

measurements, the maximum value was accomplish by L. perenne as well, reaching over 

-4.0 MPa in three dates (mean ± sem): 10/03/2017 (-4.17 ± 0.85 MPa), 22/11/2018 (-4.27 

± 0.45 MPa) and 30/01/2019 (-4.09 ± 0.26 MPa). The maximum values for B. valdivianus 

were over -3.0 MPa in three dates: 10/03/2017 (-3.05 ± 0.25 MPa), 01/08/2018 (-3.17 ± 

0.33 MPa) and 30/01/2019 (-3.22 ± 0.28 MPa). The maximum values for P. lanceolata 

were over -2.0 MPa in three dates: 17/03/2017 (-2.01 ± 0.14 MPa), 22/11/2018 (-2.04 ± 

0.18 MPa) and 30/01/2018 (-2.50 ± 0.26 MPa).  

4.3.4 Gas exchange: net photosynthesis, stomatal conductance, intercellular 

carbon concentration and water use efficiency  

Statistical differences for net photosynthesis (An; p≤0.001) and stomatal conductance (Gs; 

p≤0.001), and water use efficiency (WUE; p≤0.05), and no differences for intercellular 

carbon concentration (Ci; p>0.05) were assessed. Significant interactions were found 



 

 
79 

 

between species x date for An (p≤0.001) and Gs (p≤0.001). No interactions were found 

between species x date for Ci (p>0.05) and WUE (p>0.05). During the periods without 

soil water restriction, An reached its highest value. Lolium perenne had the highest An, 

with (mean ± sem) 30.3 µmol m2 s-1 (±3.7) on 17/03/2017 and 26.6 µmol m2 s-1 (±1.7) on 

01/08/2018 (Figure 4.5A). Also P. lanceolata and B. valdivianus reached higher An 

compared to L. perenne for the following dates: 22/11/2017, 05/10/2018 and 30/01/2019.  

 

Figure 4.5 Gas exchange for net photosynthesis (An) for B. valdivianus, L. perenne 

and P. lanceolata during the period of evaluation (A). Stomatal conductivity (Gs) for 

B. valdivianus, L. perenne and P. lanceolata during the period of evaluation (B). Bars 

indicate standard error of the mean (n= 3). 
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Figure 4.6 Water use efficiency (An/Gs; WUE) (A) and intercellular carbon 

concentration (Ci) (B) for B. valdivianus, L. perenne and P. lanceolata during all 

period of evaluation. Lowercase letters indicate statistically differences. + indicates 

the mean, bars and boxes the distribution of the population (quartiles) (n=72).   

For Gs (Figure 4.5B), P. lanceolata showed higher Gs than L. perenne in 6 over 8 

evaluations and higher than B. valdivianus in 4 over 8 evaluations. The maximum value 

of (mean ± sem) 0.822 mol m2 s-1 (±0.081) was reached by P. lanceolata during 

01/08/2018. The highest value for B. valdivianus was (mean ± sem) 0.585 mol m2 s-1 

(±0.060) on 01/08/2018 and for L. perenne (mean ± sem) 0.622 mol m2 s-1 (±0.0082) on 

08/08/2018. Generally, especially during soil water restrictions periods, P. lanceolata and 

B. valdivianus had higher Gs than L. perenne. 
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Significant differences (p≤0.05) in WUE were measured between the species (Figure 

4.6A). Lolium perenne and B. valdivianus recorded a higher median, 54.26 µmol m2 CO2 

mol-1 H2O and 43.48 m2 CO2 mol-1 H2O, respectively, in contrast to P. lanceolata with 

33.02 m2 CO2 mol-1 H2O. 

For Ci, no significant differences (p>0.05) were found, with a median for B. valdivianus, 

L. perenne, and P. lanceolata of 299,9 µmol mol-1, 293.7 µmol mol-1 and 314.8 µmol 

mol-1, respectively (Figure 4.6B). 

4.3.5 Herbage mass and seasonal botanical composition 

In table 4.2 statistical differences for growth rate (p≤0.05) between Autumn 2017 and 

summer 2019 were found and with significant interaction between treatments x date 

(p≤0.001) for growth rate. In table 4.3 regarding to accumulated herbage mass, no 

differences were found (p>0.05) nor interaction between treatments x year (p>0.05). 

However, differences between years were founded (p≤0.01), where the second year was 

statistically higher than the first year of growth (Table 4.2).  

The seasonal growth rates for each pasture treatment showed that T5 had higher growth 

rates in 5 out of 8 seasons: T5 = T3 (autumn 2017); T5 = T2 = T4 = T1 (spring 2017); T5 

> T1, T2, T3, T4 (summer 2018); T5 = T1 = T2 = T4 (spring 2018); T5 > T1, T2, T3, T4 

(summer 2019). During the two winter periods (2017 and 2018), T2 showed higher 

growth rates as shown in Table 4.9: T2 = T1 = T3 (winter 2017); T2 > T1, T3, T4, T5 

(winter 2018). 

There were significant differences (p≤0.05) in the botanical composition between and 

within the treatments across seasons (Figure 4.7). At the beginning of the study, T1 

(Figure 4.7A) comprised (mean ± sem) 73.2% (±6.1) B. valdivianus, which decreased to 
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a minimum of 55% (±5.7) by the end of winter 2017. This decrease in B. valdivianus was 

associated to an increase of unsown L. perenne, which was not present at the beginning 

of the evaluation in T1, but during the spring 2017 L. perenne reached 24.6% (±3.7) of 

T1 dry matter (DM) production.  

Table 4.2 Seasonal growth rate of the herbage mass (kg DM ha-1 day-1) for the two 

years of evaluation (between autumn 2017 and summer 2019). 

  2017 2018 2019 

Treatments Autumn Winter Spring Summer Autumn Winter Spring Summer 

T1 40.8 b 18.8 ab 60.7 ab 44.1 b 60.2 a 17.1 d 120.6 a 73.3 b 

T2 41.4 b 26.9 a 73.4 a 44.2 b 48.5 b 27.1 a 99.5 a 42.9 d 

T3 58.4 a 22.1 ab 53.8 b 33.9 b 35.9 c 20.9 bc 85.6 b 64.2 c 

T4 41.5 b 14.4 b 66.0 ab 36.9 b 60.7 a 18.3 cd 107.5 ab 47.5 d 

T5 63.8 a 13.0 b 71.9 a 60.4 a 46.8 bc 22.4 b 89.9 ab 91.4 a 

p-value ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 

SEM 

T1 5.4 4.2 12.3 6.6 7.9 1.4 14.4 3.4 

T2 6.5 6.0 11.1 3.2 3.4 2.1 6.0 3.0 

T3 6.3 8.5 6.7 9.1 5.8 2.2 5.6 3.0 

T4 6.8 4.2 12.4 5.5 4.9 2.3 17.3 7.2 

T5 10.0 2.2 6.5 6.4 5.6 1.1 15.2 14.3 

Note: Lowercase letters indicate statistical differences between treatments (n = 8) (p≤0.001). SEM is 

standard error of the mean (n = 4). T1 (B. valdivianus); T2 (L. perenne + T. repens); T3 (P. lanceolata); 

T4 (B. valdivianus + L. perenne + T. repens); T5 (B. valdivianus + L. perenne + T. repens + P. lanceolata).  

T2 botanical composition (Figure 4.7B) comprised (mean ± sem) 76.3% (±0.1) L. 

perenne. After that, consistently increased to a peak of 95% (±1.7%) in autumn 2018. By 

summer 2019, L. perenne declined in T2 to 76.9% (±1.4%). Trifolium repens reached 
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around 20% (±0.7%) during Autumn 2017, there on onwards showed sharp decline with 

no significant participation within the pasture production.  

Table 4.3 Accumulated herbage mass (kg DM ha-1 year-1) for the two years of 

evaluation (between summer 2017 and summer 2019) of all the treatments. 

Treatments Year 1 Year 2 SEM Year 1 SEM Year 2 

T1 13,227 18,741 1,327 940 

T2 15,675 16,832 2,509 392 

T3 14,024 15,697 1,941 747 

T4 13,445 17,373 953 605 

T5 17,264 18,981 1,317 399 

p-value >0.05 >0.05   

Year average 14,727b 17,525a 852 426 

p-value ≤0.01   

Note: SEM is the standard error of the mean (n = 4). T1 (B. valdivianus); (B) T2 (L. perenne + T. repens); 

(C) T3 (P. lanceolata); (D) T4 (B. valdivianus + L. perenne + T. repens); (E) T5 (B. valdivianus + L. 

perenne + T. repens + P. lanceolata). 

In T3, Plantago lanceolata (Figure 4.7C) contributed around (mean ± sem) 90% (±4.2%) 

of pasture DM composition for the first 18 months of the field evaluation (summer 2017 

to winter 2018), and then declined towards the end of the study to 79.3% (±4.8%; spring 

2018 and summer 2019). This decline was associated with an increase in T. repens from 

1.1% (±0.8%) in winter 2018 to 14.3% (±3.6%) in summer 2019.  

Despite that all three sown species in the T4 pasture (Figure 4.7D) started during summer 

2017 with a high contribution of L. perenne (mean ± sem) (39.6±6.1%), T. repens 

(30.9±8.5%) and B. valdivianus (22.8±2.6%), by the spring 2017 L. perenne was 

dominating (81.8±4.7%) the pasture, with T. repens being 13% (±5.4) and B. valdivianus 
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3.4% (±1.1). By the end of the study period, B. valdivianus increased to 30.7% (±5.0), L. 

perenne dropped to 47.1% (±9.7) and T. repens 5.2% (±1.4), of pasture DM.   

 

Figure 4.7 Botanical composition (% of dry matter); between summer 2017 and 

summer 2019. T1 (B. valdivianus) (A); T2 (L. perenne + T. repens) (B); T3 (P. 

lanceolata) (C); T4 (B. valdivianus + L. perenne + T. repens) (D); T5 (B. valdivianus 

+ L. perenne + T. repens + P. lanceolata) (E). Bars indicate standard error of the 

mean (n= 4). 

In T5, the pasture comprising all 4 sown species, P. lanceolata dominated the 

composition (59.0 ± 8.5%), over L. perenne (19.5 ± 5.6%), T. repens (10.6 ± 1.4%) and 
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B. valdivianus (5.7 ± 2.9%) until summer 2018, when the composition of P. lanceolata 

declined to 28.1% (± 15.6) the composition of L. perenne increased to 51.3% (± 14.1). At 

the end of the study (summer 2019), P. lanceolata again dominated the pasture with 

71.3% (± 14.3), while L. perenne declined until 7.5% (± 1.5). On the other hand, T. repens 

and B. valdivianus showed a low contribution in the botanical composition with 8.7% (± 

1,1) and 10.2% (± 4,5), respectively. 

4.4 Discussion 

4.4.1 Soil - plant - atmosphere continuum  

Ecosystem stability is driven by functional diversity (Hooper and Vitousek, 1997), 

growth asynchrony, overyielding and portfolio effect (Tilman, 1999; Isbell, 2009; Loreau, 

2010; Zhang et al., 2018). Asynchrony are associated with plant physiological processes, 

due to niche differentiation, temporal differentiation (e.g. different moments of growth 

and therefore different moments resources uptake) and space differentiation (e.g. different 

soil depth water uptake: Hooper and Duke, 2004). This is all reflected in the pasture 

botanical composition, seasonal growth and water uptake of the different species in a 

pastoral ecosystem. In climates with water restriction, water uptake in the deep soil layers 

(niche differentiation) (Hooper and Duke, 2004) would lead to an increase in Gs and An, 

increasing the production across the water restriction periods (Blum, 2009). 

Increasing osmotic adjustments in plants is an adaptive response to water restriction 

(Blum, 2005; 2009; 2017), enabling the maintenance of cellular turgor, which allows the 

continuation of stomatal conductance under leaf water deficit (Sellin et al., 2001) and 

improves the water uptake at high soil matric potentials (Chimenti et al., 2006).  
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In other studies L. perenne reached values between a range of -1.6 to -6.0 MPa of osmotic 

potential (Thomas, 1987; Amin and Thomas, 1996, Volaire et al., 1998, He, 2016, Cyriac 

et al., 2017), meanwhile across this experiment the values of L. perenne reached a top of 

-4.2 MPa. This raises the question, of whether L. perenne’s greater capacity to increase 

its osmotic potential as an adaptation to soil water restriction is driven by genetics, or due 

to a response to its superficial water uptake capacity (between 0-10 cm; Crush et al., 2005; 

Ordóñez et al., 2018)? Either way, this mechanism allows it to enhance soil water uptake 

from soil water stored at a high matric potential at that depth (-6.0 MPa is four times the 

permanent wilting point), water that is used by the plant during transpiration (Chimenti 

et al., 2006; Blum, 2009). On the other hand, B. valdivianus and P. lanceolata registered 

a lower osmotic potential, and for P. lanceolata, a lower leaf water potential as well. This 

showed that both species were less stressed by the soil water restriction probably due to 

a higher water availability, due to deeper soil exploration than L. perenne (Nie et al., 

2008; Neal et al., 2012, López et al., 2013; Ordóñez et al., 2018). 

In the present study, L. perenne and B. valdivianus had similar values for An and the 

differences presented related to An and Gs indicate the response to the weather conditions 

i.e. soil water restriction or waterlogging. Plantago lanceolata was the species with the 

highest An and Gs during the soil water restriction periods followed by B. valdivianus, 

which along with a higher water uptake at deep soil layers (up to 70 cm), as a consequence 

of a deeper root distribution. High Gs values for P. lanceolata have been reported also by 

Dubbert et al. (2017). These results were positively related to the leaf water relations and 

soil water uptake. Even though, P. lanceolata had higher An and Gs and lower WUE, 

could be interacting with a lower stomata control, this assumption is done by the data 

collected and the morphological conditions of the plant during the sampling under water 

restrictions periods. Probably under heavy water restriction periods, if P. lanceolata do 
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not have access to enough water for its survival, its abundance would heavily decrease in 

time due its hypothetical lower stomata control.  

Blum (2009) discussed whether WUE was the correct parameter to evaluate species and 

cultivars under conditions of limited water supply. The argument behind is that WUE, as 

a measure, does not comprehensively consider soil water uptake. The continuation of 

biomass production under a water restriction can be accomplished by maximising the 

water uptake from the soil (effectiveness of water use), such as osmotic adjustment 

(Blum, 2005; Chimenti et al., 2006) and how deep a root system is (Kobata et al., 1996; 

Pinheiro et al., 2005; Kirkegaard et al., 2007) as the strategy is to use the water stored in 

the soil, creating a water flows from the soil towards the plant due to transpiration 

mechanism and not allowing the water be loss by evaporation. Therefore, a higher Gs and 

a greater CO2 fixation (An) improve the effective use of water (EUW) opposite to WUE, 

which increase as Gs and An diminish (Blum, 2009).  

The latter could be the case of P. lanceolata (in T3 and T5), a species with low WUE, a 

higher soil water uptake than T2 (L. perenne; at 40 and 70 cm soil depth) and T1 (B. 

valdivianus; at 40 cm soil depth) and in T5 that was mainly dominated by P. lanceolata, 

had a greater performance during water restriction periods than T3 (P. lanceolata 

monoculture). The co-dominance between L. perenne and P. lanceolata in T5 showed 

how both species are good competitors complementing well with each other.  

The results of the present study indicate that P. lanceolata had the lowest WUE but also 

a mayor EUW compared to L. perenne due to its greater An, Gs and water uptake during 

soil water restriction. On the other hand, B. valdivianus displayed a similar WUE than L. 

perenne, it also extracted more soil water at deeper depths, which resulted in a higher 
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EUW. The results obtained for B. valdivianus relating to WUE and EUW indicate that 

there are good opportunities for genetic improvement in both aspects. 

The present study unfolded how L. perenne, B. valdivianus and P. lanceolata differ in 

their seasonal growth and their physiological behaviour during the seasons. Across 

periods of soil water restriction, the pasture dominated by B. valdivianus and P. 

lanceolata, grew faster than the ones dominated by L. perenne. Plantago lanceolata, in 

T5, was able to co-dominate the pasture botanical composition together with L. perenne, 

as measured during the summer of 2017 and 2019. Besides in T5, the higher growth rates 

during the water restriction period supports Hooper and Vitousek (1997) statement, that 

stability is achievable at low diversity but with species with different functional traits. 

However, B. valdivianus (T1) was more effective than P. lanceolata (T3 and T5) taking 

up the water at 70 cm soil depth. These results can be interpreted as: 1) B. valdivianus 

effectively had a deeper root system than P. lanceolata; or 2) For this experiment, the 

quantity of functional roots of B. valdivianus reaching 70 cm soil depth was higher than 

P. lanceolata, which does not mean that B. valdivianus has a deeper root system. 

Bromus valdivianus strategy is to generate a large number of leaves alive per tiller, a large 

leaf area per tiller and a high tiller size, and as a trade-off, few tillers per plant (Chapter 

3). Moreover, it is proposed that B. valdivianus, due to its greater leaf area (Chapter 3), 

similar An, and greater water uptake at 40 and 70 soil cm, allocates more photo-

assimilates to the root system than L. perenne. 

In relation to B. valdivianus EUW, results from the present study strongly suggest that B. 

valdivianus, from the data collected in relation to the treatment T1, had a higher soil water 

extraction at deep soil horizons, as it was measured up to 70 cm soil depth, being this an 

indication that B. valdivianus root system is deeper than L. perenne and possibly deeper 



 

 
89 

 

than P. lanceolata. Furthermore, roots lifespan determine the root growth period and how 

much resources are received to keep on growing, extending the time for the soil 

exploration and resources uptake. These issues remain not known for B. valdivianus and 

P. lanceolata.  

Lolium perenne root lifespan was reported as 15 weeks, less than Arrhenatherum elatius 

(around 40 weeks), Molinia caerules (over 50 weeks) and Nordus stricta (over 55 weeks) 

as indicated by Van Der Krift and Berendse (2002). Watson et al. (2000) showed how 

climate affected the roots survival for L. perenne. Two locations were evaluated (sites in 

UK and Italy). The trial performed in Italy showed that L. perenne lost 90% of its roots 

after 42 days, while root loss in the UK was 50% after 42 days. However, after 15 weeks 

in the UK trial, L. perenne lost 70% of its roots. This evidence may explains why L. 

perenne has a shallow root distribution: most of the root system does not remain alive 

long enough to reach the deeper soil layers, being a minimum root percentage from the 

total root biomass, the one that grow deep in the soil, explaining the low water uptake of 

L. perenne reported by Neal et al. (2012). 

In relation to waterlogging, in August 2018, the SWC was around 36% which was close 

to saturation (around 43% SWC). Therefore, the soil had at about 7% of oxygen in the 

first 10 cm of soil depth, with a maximum environmental temperature at midday of 14 

°C. Under these conditions, L. perenne Gs was significantly higher than both P. lanceolata 

and B. valdivianus, indicating L. perenne tolerance of waterlogging due to the presence 

of aerenchyma in its root system (Naceur et al., 2003). The lower B. valdivianus and P. 

lanceolata Gs during that time may be a sign of waterlogging sensitivity (Ploschuk et al., 

2017; McFarlane et al., 2003), which could meant, low tolerance to low oxygen 

conditions (Drew, 1997). This argument is supported by the low B. valdivianus (T1 Table 



 

 
90 

 

4.3) growth rate during winter and Stewart (1996) statement about the low tolerance of 

B. valdivianus towards waterlogging conditions.  

It is relevant to consider that B. valdivianus originated from an allophanic (Andisols) soils 

region, which are flat, deep and well-drained soils with medium texture (López et al., 

1997), therefore B. valdivianus development always have been over soils with a great air 

capacity (Dorner et al., 2013).  

Plantago lanceolata winter low growth rates could be also related to its temperature 

requirements, which are higher than those required by grasses (Niu et al., 2006; Pellissier 

et al., 2014). 

4.4.2 Interaction between botanical composition and soil water dynamics 

Soil water content is the outcome of several processes, such as rainfall, evaporation, water 

infiltration and plant water uptake (Simunek et al., 2003). The most relevant parameters 

during soil water restriction that define soil water content are the evaporation (French and 

Schultz, 1984; Siddique et al., 1990) and soil water uptake by plants (Simunek et al., 

2003; Ordóñez et al., 2018), therefore the pasture water uptake is dynamic across seasons, 

lined up with the successional changes of the pasture botanical composition, as indicated 

by Dörner et al. (2013) and Ordóñez et al. (2018). Therefore, SWC has a close relationship 

with species root traits, functional roots, roots density and stomatal enclosure of the 

species (Blum, 2009). 

Species succession has been defined as a change of species within a community, being 

related to abundance and spatial pattern distribution (Frankland, 1998). Disturbance and 

environmental stress may modify the botanical composition of plant communities. In a 

pasture, stress and/or disturbance may result in bare ground areas (Pickett and White, 
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1985), allowing other species to colonise these gaps, changing the botanical composition 

and the structure of the plant community (Crawley and May, 1987). Increasing bare 

ground spaces in a pasture and the colonisation by other species also increases (Marriot 

et al., 1997). Therefore, the diminishment of the original plant community species due to 

environmental stress may change the plant community structure and species composition. 

This was the case for B. valdivianus, which showed low tolerance the waterlogging 

condition occurred during winter (Stewart, 1996). In T1, after the waterlogging, B. 

valdivianus had a sharp decreased down to 50% of pasture DM, leaving empty spaces 

within the pasture, opportunity taken by unsown L. perenne and T. repens to growth and 

develop, increased up to 25%, and 15% of pasture DM contribution. The diminishment 

of B. valdivianus was reflected in the high SWC (low water uptake) at 40 cm soil depth 

for T1, between October and December of 2017.  

In relation to T. repens, it did not have a great participation in any of the treatments in 

terms of botanical composition. For example, T2, was sown with L. perenne + T. repens 

and the maximum percentage of T. repens in botanical composition was around 18% 

during autumn 2016, in T1 (unsowed T. repens) reached same values during summer 

2016, but in both treatments from that peak onwards it diminished constantly until it 

accounted by less than 10% during the winter 2016 (Figure 4.7). For this reason, L. 

perenne in T2 was considered as a monoculture across this thesis. Related to the presence 

of T. repens in T3, it participation was close to 15% of the pasture DM during summer 

2019. In T4, T. repens was 30% of the botanical composition at the beginning of the 

study, but by winter 2017 it was less than 10%. In T5, T. repens across all seasons was 

insignificant as percentage of the pasture DM. 
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In T4, B. valdivianus made up to 40% of the botanical composition before winter, after 

the waterlogging it diminished down to 3%, leaving L. perenne to colonize the gaps, 

dominating the pasture during all the following seasons. However, during the soil water 

restriction, summer 2019, B. valdivianus increased its DM participation up to 30%, 

although the contribution of B. valdivianus was low after the waterlogging, however, was 

important enough to uptake more water (lower SWC) at 40 and 70 soil depth than T2. 

This shows the higher capacity of colonisation by L. perenne, described by Marriot et al. 

(1997) in comparison to B. valdivianus. The recovery of B. valdivianus reflected its high 

tolerance to water restriction periods (López et al., 2013; Ordóñez et al., 2018) and a 

proper regrowth due to the replenish of its water-soluble carbohydrates (Chapter 3).   

In T5 pasture that was dominated by L. perenne and P. lanceolata, where B. valdivianus 

and T. repens had an exceptionally low participation in the pasture. In 5 of the 9 evaluated 

seasons were dominated by P. lanceolata; the other 4 seasons were co-dominated by L. 

perenne and P. lanceolata. When L. perenne population increased in T5 pasture, the water 

uptake at 10 cm soil depth also increased. These results were in line with those reported 

by Neal et al. (2012), which stated that L. perenne extracted less water at deeper soil 

horizons compared to Bromus wildenowii, Phalaris aquatica and Lolium arundinacea. 

Crush et al. (2005) indicated that L. perenne had a higher concentration of roots at 10 cm 

compared to Dactylis glomerata. This also explains the low water uptake by L. perenne 

at deep soil horizons in the present study. This co-dominance may have been due to the 

contrasting traits presented of both species, physiologically and roots traits differences. 

When P. lanceolata diminished its contribution to the pasture as a consequence of 

environmental constraints, i.e. low growth rate during low temperatures periods, autumn 

and winter (Teramura, 1978; Teramura et al., 1981), added to a low net photosynthesis 

(Sanderson et al., 2003), it was the increase of L. perenne presence, causing that T5 had 
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the highest water uptake at 10 cm of soil depth, this differences about growths rates are 

clearer when T2 (L. perenne) and T3 (P. lanceolata) are compared. However, when soil 

water restriction became a major environmental constraint, P. lanceolata increased in the 

pasture (Summer 2017; spring and summer, 2019), replacing the contribution of L. 

perenne and T. repens due to their depressed growth rate. It must be remarked that P. 

lanceolata dominated in both, T3 and T5, indicating a great capacity of persist, survive, 

and compete during the whole experimental period. This may be related to the grazing 

criterion used, where the grazing frequency was over 500 AGDD, the point where B. 

valdivianus replenished its WSC at leaf stage 4. Lee et al. (2015) indicated, that the 

replenish of WSC for P. lanceolata was at 532 AGDD, therefore the success of P. 

lanceolata during the experimental period, in T3 and T5, could be related to the WSC 

content at the moment of the grazing.  

Lolium perenne dominated in T2 and T4, and co-dominate in T5. In T2 was expected to 

reach lower SWC values at 10 cm soil depth, as was showed by Ordóñez et al. (2018), 

situation that did not happen. Probably L. perenne phenotypic plasticity explains T2 

SWC, which linked to the 3.5 leaf stage defoliation and the greater root intraspecific 

competition within L. perenne plants in T2, were the leading factors of a change in L. 

perenne root distribution, increasing root depth, being redistributed between the 10 and 

30 cm soil depth.  

The soil water dynamics, from the surface up to 70 cm soil depth, directly reflected the 

botanical composition of the pasture. Functional species traits explain SWC variation at 

40 and 70 cm soil depth  (i.e. root traits) (Neal, 2012; Ordóñez et al., 2018) and probably 

differences in physiological traits (i.e. stomatal conductance) (Blum, 2009). A diverse 

pasture provides a wide range of root traits, hence a more effective soil water extraction 
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than a pasture based on L. perenne and T. repens (Ordóñez et al. 2018). The pastures with 

higher deep-rooted species abundance were more effective using soil water across the 

seasons.  

Across the soil water restriction periods, fluctuations in soil water content were assessed, 

as an indication of a possible redistribution of water in the soil profile. Water lifting 

results in water movement from the roots to the soil, due to a large difference in soil 

matric potential between the root and the soil which may occur when the soil surface has 

a high matric potential (Richards and Caldwell, 1987; Caldwell and Richards, 1989; 

Caldwell et al., 1991; Caldwell et al., 1998; Skinner, 2004; Skinner et al., 2009). In the 

present study, when the soil reached less than 16% of SWC (around 2000 kPa of soil 

matric potential) at 10 cm soil depth, a variation in SWC occurred, between the 08:00 and 

17:00 hours, reached a maximum difference of 0.58% of SWC. However, the 

quantification of the water lifted is complex, because it is the outcome of several 

processes involved, in this case, evaporation and transpiration (Simunek et al., 2003). 

Therefore, it is possible to assume that the quantity of water lifted by the plants is higher 

than that observed in the present study. Further research needs to be undertaken on this 

subject to determine if the input of water generated by the “water lifting” has any 

ecological and productive outcomes. 

4.5 Conclusions 

Bromus valdivianus and P. lanceolata have a higher tolerance to soil water restriction 

than L. perenne. Both species have structural and physiological mechanisms that allow 

them to generate a higher herbage mass production during the soil water restriction and 

are more effective extracting water from deeper soil layers than L. perenne. The 

photosynthesis rate, leaf osmotic and leaf water potentials were indications that B. 
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valdivianus and P. lanceolata were under less stress during soil water restriction periods 

than L. perenne. 

Bromus valdivianus low herbage mass contribution in T4 was enough to increase the soil 

water uptake at 40 and 70 cm soil depth in comparison to L. perenne grown as 

monoculture (T2). Bromus valdivianus showed a low capacity to compete against L. 

perenne and P. lanceolata.  

The soil water dynamics was reflection of the species root traits and its contribution 

within each treatment. Differences in SWC were more clearer during soil water restriction 

periods and when soil depth was greater. 

Pasture species that differed in their ecosystem function, conferred a higher biomass 

production during the seasons and across water restriction periods (e.g. T5 growth rate 

compared to T2 during summer; T5 growth rate compared to T3 during autumn and 

spring), which was shown by changes in the botanical composition of P. lanceolata and 

L. perenne throughout the study. 

Signs of “water lifting” were recorded during the soil water restriction periods, which was 

consistent across the three consecutive soil water restrictions periods measured. Further 

research on this topic needs to be undertaken, to understand its importance in plant 

survival and growth, and in plant communities with higher functional diversity. 
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Chapter 5 Experimental chapter 

 

Chapter 5 Tiller population dynamics and photosynthetic 

carbon fixation capacity for Lolium perenne L. and Bromus 

valdivianus Phil. under monoculture and intra specific 

competition in field conditions. 
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Summary 

• The partition of the resources in grasses is directed to leaf, root and tiller 

appearance and growth. In L. perenne is suggested that tillering has a low priority, 

therefore any tiller population changes reflects the interaction between the environmental 

conditions and the defoliation management due to grazing. The present study determined 

the tiller population dynamics (vegetative reproduction), competition ability and potential 

carbon fixation capacity for B. valdivianus and L. perenne. 

• The treatments were : T1) B. valdivianus; T2) L. perenne + T. repens and T3) B. 

valdivianus + L. perenne + T. repens. Grazing events were performed when B. 

valdivianus reaches a leaf stage 4. Tiller populations of B. valdivianus and L. perenne in 

all treatments were measured within fixed quadrat positions, besides leaf area and tiller 

weight evaluated. Leaf area index and photosynthetic carbon fixation capacity (PCFC) 

were estimated.  

• Bromus valdivianus tiller population diminished during the winter, however by 

the end of the summer period B. valdivianus had recovered in T1 and T3. Lolium perenne 

was sensitive to soil water restriction having a high tiller mortality during the summer 

period. During all critical periods, was estimated that B. valdivianus + L. perenne mixed 

pasture (T3) generally reached higher values of PCFC than T1 and T2. 

• Bromus valdivianus tiller population diminished during the soil water restriction 

post waterlogging, but was tolerant to soil water restriction. Lolium perenne tolerated 

winter waterlogging but not the summer soil water restriction period. When the soil water 

restriction stress was released, L. perenne experimented a fast recovering. Both species 

showed asynchrony in their tiller population growth due to their different critical periods. 

T3 showed a higher soil water uptake than T2 but less than T1. 
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5.1 Introduction 

Plant stress  has been defined as an excess or deficit of solar radiation, water, nutrients or 

an excess of toxins in the environment that negatively affects plant physiology and 

development (Grime, 1977). A plant community can be formed by many individual plants 

of different species, as is the case of a pastures, where competition is a process that alters 

and determines plant community structure and ecological dynamics (Hortal et al., 2017). 

The competition outcome is a function of the stress intensity, as mediated by nutrient and 

water availability, and the environmental disturbance, independently of their origin 

(Tilman, 1988; Pugnaire et al., 2004). The effects of stress on plant traits negatively 

affects the survival and persistence of plants. A more diverse pasture increases the 

probability that stress-tolerant traits are present, increasing the resistance to 

environmental constraints (Petchey et al., 2015; DeClerck et al., 2016). Therefore, 

different plants traits drive different ecological processes (Tilman et al., 1999; Isbell et 

al., 2009), and through their action they may alter the ecosystem, for example, affecting 

the soil water conductivity (Moreno-Espindola et al., 2007) or soil water dynamics (Gan 

et al., 2012; Ordóñez et al., 2018).  

A deep root system is a key trait for increasing plant species tolerance and survival to 

water stress periods (Blum, 2009), therefore, species with deeper root distribution, such 

as B. valdivianus in comparison to L. perenne (Lopez et al., 2013; Ordóñez et al., 2018; 

Descalzi et al., 2019; Chapter 4) should have greater survival during water restriction 

periods. A functionally diverse pasture, in terms of root traits, creates a more even water 

uptake through the soil profile, due to a more thorough soil exploration due to deeper 

roots (Ordóñez et al., 2018; Descalzi et al., 2019). Therefore, in a temperate humid 

climate, which normally has a water deficit period in summer, perennial pasture species 
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with deep root distribution have a greater chance of surviving the deficit. On the other 

hand, shallow-rooted species in a pasture, such as L. perenne, help to increase nitrogen 

uptake (Crush et al., 2005; Crush et al., 2009) and if a species is well adapted to 

waterlogging (Etherington, 1984; McFarlane et al., 2003; Jurczyk et al., 2016) it will help 

to maintain high levels of production in climates with well-marked rainfall seasons. 

Mixing the species according to the different root traits, such as shallow and deep root 

traits, could be a valid strategy to increase the functional diversity of the pasture and 

increase pasture stability at a low plant diversity (Hooper and Vitousek, 1997; Chapter 4) 

under different water stress periods (waterlogging and water restriction). 

Bromus valdivianus naturally grows in free-draining volcanic soils (Andisols) with high 

fertility levels, being able to compete with L. perenne in pastoral systems in the south of 

Chile (López et al., 1997). In relation to L. perenne, B. valdivianus has greater water 

uptake at both 40 cm and 70 cm soil depth, lower leaf osmotic potential, lower leaf water 

potential, similar annual accumulated herbage mass production, similar photosynthesis 

rate under field conditions (Chapter 4), similar forage quality (Balocchi and López, 1996), 

higher leaf area and tiller weight (López et al., 2013; Ordóñez et al., 2017; Chapter 3) and 

a higher number of live leaves per tiller at any one time, but with fewer tillers per area 

(Ordóñez et al., 2017; Chapter 3). Bromus valdivianus expressed its low tolerance to 

waterlogging (Stewart, 1996; Chapter 4), on the other hand , it had  a greater growth under 

dry conditions than L. perenne (López et al., 2013; Ordóñez et al., 2018; Chapter 4). In 

contrast, L. perenne grew better under waterlogging and low temperatures than B. 

valdivianus (Chapter 4). These insights indicate that B. valdivianus is a species suitable 

for dairy, beef and sheep production systems, with the advantage that it can increase 

production and confer greater pasture stability during drought periods (Keim et al., 2014).  
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Individual tiller appearance and tiller density are an essential part of the pasture growth 

(Milthorpe and Davidson, 1966). Therefore, tiller population dynamics over time are an 

indication of the environmental conditions-pasture species relationship (Hernández-

Garay et al., 1997b), especially because changes in tiller population can be rapid in 

response to changing environmental conditions (Bullock et al., 1994).   

Commonly, pasture grasses have been grazed according to L. perenne defoliation criteria, 

which are based on leaf stages, between 2.5 and 3 leaf stage (Fulkerson and Slack, 

1994a,b; Donaghy and Fulkerson, 1997,1998; Turner et al., 2006a), or on time frequency 

(Tainton, 1974; Motazedian and Sharrow, 1987) as was indicated by Fulkerson and Slack 

(1994a,b), with the common output being the encouragement of L. perenne persistence 

(Donaghy and Fulkerson, 1997,1998). Either way leaf stage and herbage mass production 

have been related (Chapman et al., 2011), and farmers defoliate pastures according to 

herbage mass criteria or the leaf stage criterion recommended by Donaghy and Fulkerson 

(1997,1998). However, the current managements and criteria for pasture do not consider 

the plant total carbon fixation (root plus shoot; Wang et al., 2007; Pausch and Kuzyakov, 

2018), which should be considered by both researchers and farmers, especially when an 

important objective by the COP21 and UN (2030 agenda for sustainable development) is 

to look for sustainable ways for food production. 

Two species were selected according to their contrasting root traits: L. perenne as a 

species with shallow root distribution and B. valdivianus as a species with deep root 

distribution (Chapter 4). The aim of this study was to determine the above-ground growth 

and total carbon fixation of B. valdivianus and L. perenne in relation to fluctuations in 

annual environmental conditions under monoculture and in mixed swards. To accomplish 
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this objective, tiller population dynamics, tiller leaf area, accumulated herbage mass, 

botanical composition, soil water content and photosynthesis were measured.  

5.2  Materials and methods 

5.2.1 Geographic location and weather description 

 

Figure 5.1 Rainfall, mean monthly air temperature and mean monthly potential 

evapotranspiration estimated with the Penman Monteith equation during the experimental 

period, between September 2016 and August 2018. 

The study was performed at Massey University Dairy One Farm, Palmerston North 

(40°22'55.8"S 175°36'23.8"E), in a Manawatu fine sandy loam soil (Dystric Fluventric 

Eutrochrept), a Weathered Fluvial Recent Soil (Hewitt, 1998). Plots were sown on the 

20th October 2016, and the experimental period was performed between 01/03/2017 and 

19/07/2018. Weather data were collected from a weather station located 200 meters from 

the experimental site (Agent number 21963; authorship to AgResearch), where soil water 

content (SWC) at 20 cm depth, soil temperature, radiation are shown in Figure 5B. Air 
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temperature, rainfall and evapotranspiration were recorded during the experimental 

period (September 2016 to August 2018) are shown in Figure 5.1.  

5.2.2 Treatments description 

The experiment consisted of three types of pastures, T1) B. valdivianus (cv. Bareno; sown 

at 30 kg ha-1); T2) L. perenne (cv. Rohan; sown at 25 kg ha-1) + Trifolium repens (cv. 

Weka; sown at 3 kg ha-1); T3) B. valdivianus (sown at 20 kg ha-1) + L. perenne (sown at 

12 kg ha-1) + T. repens (sown at 3 kg ha-1), established in 110 m2 plots according to a 

randomised complete block design (4 blocks x 3 treatments). The soil bed preparation 

consisted of soil ploughing and harrowing after which the pastures were sown using a 

direct seed drill. Defoliation was undertaken with 5 sheep grazing per plot, equivalent to 

a stocking density of 454 sheep ha-1. The grazing interval was at leaf stage 4 of B. 

valdivianus plants (Chapter 3; Ordóñez et al., 2017).  

5.2.3 Botanical composition and herbage mass 

Herbage mass was measured before and after grazing according to the methodology 

described by Earle and McGowan (1979). Eight herbage samples of 0.1 m2 quadrat per 

treatment were collected (2 samples per plot) by cutting the pasture down to ground level 

before and after grazing. The samples were oven dried at 70ºC for two days and then 

weighed to express yield on a dry matter (DM) basis. Chapter 4 describes further details 

regarding to herbage mass measurements and determination. 

Botanical composition was measured using the method described by Radcliffe et al. 

(1968). For each botanical composition event, two pasture samples of 0.1 m2 quadrat per 

plot were cut down to at ground level once a season, from summer 2017 until summer 

2019 (The second month of each season). The species (B. valdivianus, L perenne, T, 
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repens, other gasses, broad leaf species) were manually separated, placed into individual 

bags, oven dried at 70ºC for two days or until reaching constant weight, and then weighed. 

The contribution of B. valdivianus (in T1 and T3) and L. perenne (in T2 and T3) for the 

pasture accumulated herbage mass was determined, allowing to evaluate the competition 

index (see section 5.2.5 and equation 5.2) for both species in terms of herbage dry mass. 

Chapter 4 describes further details regarding botanical composition measurements.  

5.2.4 Tiller population dynamics 

All the measurements related to tiller population, leaf area and photosynthesis were done 

for B. valdivianus monoculture (T1) and mixture (T3) and L. perenne in monoculture (T2) 

and mixture (T3) in the 4 blocks. Three metallic rings (10 cm diameter, equating to 78.5 

cm2) were placed in fixed positions per plot, according to each treatment, visually 

targeting a species cover of 100% of B. valdivianus (T1), 100% L. perenne (T1) and 50% 

of each species in the mixture (T3), leaving off weeds or any other species. The alive tiller 

number contained within each ring was counted every two weeks. The rings were 

considered subsamples within each plot.  

Each ring had three metallic 1.5 cm legs welded underneath, and a 150 x 6.0 mm flat head 

galvanised nail was inserted in the soil to indicate each ring leg position. A cleft was made 

to each nail head, so that each ring leg perfectly fitted. After finishing recording a ring 

tiller population, the ring was removed, and its position remained permanently marked 

by the three nails inserted in the ground. At any measuring event, the nails were found by 

using a metal detector (F22 Metal Detector, Fisher Research Labs, USA) and the ring was 

place in position, so its legs matched the three nail head clefts. Therefore, at every 

measuring event the same tiller population was evaluated, allowing the tiller population 

changes over time to be captured. This method provided a minimum degree of disturbance 
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to the sampling location, and tiller counting occurred every 2 weeks. The evaluation were 

independent of the grazing events. Grazing events are shown in the figure 4.2.  

The results of the competition intensity between L. perenne and B. valdivianus were 

obtained by contrasting B. valdivianus and L. perenne in T3 with T1 and T2, respectively, 

over time. The collected data were treated following the methodology of Bullock et al. 

(1994) and Flores et al. (2017), which meant that the population recorded in the first 

evaluation was considered as 100% and all the population density changes over time were 

expressed as a percentage in relation to the initial population.  

5.2.5 Competition index 

Competition intensity was determined by using the relative competition indices, which 

are shown in equation 5.1 and 5.2 (RCI; Wilson and Tilman, 1993; Grace, 1995). 

Equation 5.1 describes the RCI related to tiller populations and equation 5.2 describes the 

RCI related to herbage mass accumulation. The two equations provided complementary 

approaches to explain the fluctuations in tiller population and herbage mass (Chapter 4) 

through the evaluation period due to competition. The following equations described 

these relationships:  

RCIT = (PTM - PTC)/PTM (eq. 5.1) 

RCIH = (PHM - PHC)/PHM (eq. 5.2) 

Where: 

RCIT = relative competition index for tiller population per season. 

PTM = tiller population under the monoculture treatments for B. valdivianus (T1) or L. 

perenne (T2). 
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PTC = tiller population for B. valdivianus or L. perenne in the mixture (T3). 

RCIH = relative competition index for accumulated herbage mass per season. 

PHM = accumulated herbage mass under the monoculture treatments for B. valdivianus 

(T1) or L. perenne (T2). 

PHC = total accumulated herbage mass for B. valdivianus or L. perenne in the mixture 

(T3). 

A relative competition index (RCI) of zero means that the monoculture and mixture 

provided the same number of tillers, or herbage mass, while a negative RCI means that 

one of the species had a higher contribution in the mixture (T3) than in the monoculture, 

T1 or T2, indicating that intraspecific competition is greater than the interspecific 

competition. 

5.2.6 Tiller weight and tiller leaf area  

To determine tiller structural differences between B. valdivianus and L. perenne, five 

tillers were harvested, in five different periods in each plot, 30/03/2017; 14/04/2017; 

30/04/2017; 20/07/2017; 28/07/2017. The tillers harvested were of similar development, 

with no signs of stress and avoiding the daughter tillers of each species. Tiller leaf area, 

tiller weight and leaf stage development were determined. 

Due to the sampling of tillers using a fixed location the real tiller population per m2 may 

have been overestimated (Hernández-Garay et al., 1997b; Bullock et al., 1994; Flores et 

al., 2017). During August 2019, 4 pasture cores of 100 cm2 with 15 cm of depth were 

randomly collected in each plot in order to determine in laboratory the tiller population 

inside each core, leaf stage and leaf area for both species within the core (Mitchell and 

Glenday, 1958), afterwards all plant material was oven dried at 70°C for 48 hr and the 
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tiller dry matter was obtained. The aim of this was to relate the tiller population within 

the core against the tiller population within the fixed positions. The leaf area of the 

individual tillers along with the leaf area within the cores, were determined using a LI-

3100C area meter (LI-COR, Nebraska, USA) for both species.  

5.2.7  Soil water content dynamics 

To determine the relationship between soil water content (SWC) and tiller population 

dynamic of the species evaluated, SWC sensors (Campbell scientific; model 616) were 

installed at 10 and 40 cm soil depth and monitored with a datalogger (Campbell scientific 

CR1000) together with a multiplexer (Campbell scientific; model 16/32B). Thus, two 

sensors of each type were placed at each soil depth. The average SWC was determined 

between every tiller population evaluation. The SWC and tiller population dynamics 

relationships were explored between 11/10/2017 and 19/07/2018.    

5.2.8 Photosynthetic carbon fixation capacity 

Photosynthetic carbon fixation capacity (PCFC) was estimated using the equation 

developed by Zheng et al. (2011) as follows: 

PCFC = (An * LAI * 12 * 10,000 * 3,600) * 10-6/1,000 (eq. 5.3) 

Where: 

PCFC = photosynthetic carbon fixation capacity 

An = is the net photosynthesis (µmol m2 s-1) determined during different seasons under 

different weather conditions (Chapter 4).  

LAI = leaf area index, estimated with the total tiller population per m2 and leaf area of 

every leaf stage (equation 4; Table 2).  
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10,000 = mathematical constant that transforms collected information from m2 to ha. 

3,600 = mathematical constant that transform information from seconds to hour.  

10-6 = mathematical constant to transform from µmol to mol.  

12 = atomic mass of C used to transform data from mol to grams.  

1,000 = allowed to transform from grams to kilograms. 

5.2.9 Tiller population correction and estimated leaf area 

When tiller population is evaluated using a fixed location (as in this study), tiller density 

may be overestimated, because the empty spaces between plants and between sown lines 

are not included in the fixed location (Bullock et al., 1994; Hernández-Garay et al., 1997b; 

Descalzi, 2011; Ordóñez, 2013). As one of the objectives was to determine the tiller 

population dynamics due to both changing environmental conditions and intra and 

interspecific competition, it makes sense not to include the empty pasture spaces. The 

problem is an overestimation of tiller population when the data are translated to m2. 

Therefore, the steps to estimate the changing leaf area index (LAI) between every tiller 

population measurement were as follows: 1) A tiller population correction factor was 

determined for B. valdivianus and L. perenne comparing the tiller population within the 

fixed quadrats and the tiller population within the core (eq. 5.5; Table 5.1); 2) tiller leaf 

area and leaf stage inside the core were determined (Table 5.1) and compared. With the 

information of leaf development presented in the Figure 5.2, with the leaf development 

(leaf stage) as a function of accumulated growing degree days (AGDD) it was possible 

to; 1)  Determine the leaf stage development in function of AGDD for both species 

(Figure 5.2); 2) Using the information within the Table 5.1, where the leaf area is related 

to the leaf stage, a relationship between the leaf area development and AGDD was 
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developed, resulting in the equations showed in Table 5.2, where the leaf area 

development was estimated with the accumulated growing degree days determined with 

temperature data from the climatic station (Agent number 21963; authorship to 

AgResearch).   

Table 5.1 Tiller number, leaf area per tiller in each core of 100 cm2 taken during 

August 2019. 

 

The LAI for both species was estimated according to the following equation:  

LAI = TPc * TLA (eq. 5.4) 

Where: 

LAI = leaf area index.  

TPc = corrected tiller population per m2.  

TLA = tiller leaf area, according to the different leaf stage development given by AGDD. 

Equations are shown in Table 5.2.  

Species Leaf stage 
Tiller number 

(100 cm2)  

SEM Tiller 

number (100 cm2) 

Tiller leaf area 

(cm2 tiller-1) 

SEM Tiller leaf 

area (cm2 tiller-1) 

B. valdivianus 2.0 56.7 48.2 6.3 3.4 

  2.5 35.6 7.7 5.3 1.5 

  2.75 40.8 20.4 10.7 3.8 

  3.0 43.5 15.7 8.1 1.9 

  3.5 29.0 14.5 13.0 6.5 

L. perenne 2.0 75.3 30.6 3.1 0.3 

  2.5 54.9 13.2 3.9 0.8 

  2.75 60.6 9.6 3.7 0.5 

 3.0 75.5 11.0 3.9 0.3 
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Figure 5.2 Tiller leaf growth dynamics and lamina length for B. valdivianus (A; 

Chapter 3) and L. perenne (B). Bars indicate standard error of the mean (n=6). Base 

temperature 0° C. 

Tiller population correction factor (TPCF) was estimated according to the following 

equation: 

TPCF = TPfl / TPcore  (eq. 5.5) 

Where: 

TPCF = tiller population correction factor for the tiller population. 

TPfl = tiller population within the fixed locations per m2 from the winter evaluations. 

TPcore = tiller population within the cores per m2, the samples collected in August.  

Tiller population correction (TPCF) was used for every tiller population evaluation, 

keeping the proportions of the original data of the fixed locations but with a realistic tiller 

population per m2.  

The corrected tiller population (TPc) was estimated according to the following equation: 
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TPc = TPfl / TPCF (eq. 5.6) 

Where: 

TPc = corrected tiller population for every measurement translated to m2.  

TPfl = original tiller population inside the fixed location (or inside the ring) per m2.  

TPCF = tiller population correction factor estimated in the equation 5. 

Using the equation 5.5, where the tiller population from August from the fixed quadrats 

(TPfl) and tiller population from the cores (TPcores) resulted in factor of 3, in other words, 

the fixed quadrats overestimate the tiller population per m2 by 3. According to the 

literature, L. perenne population were between 4 and 8 thousand tillers per m2, depending 

the season (Hernández-Garay et al., 1997a,b; Matthew et al., 2000; Hendriks et al., 2016).  

5.2.10 Relationship between the leaf stage development and leaf area index  

Using the equations presented in Table 5.2 and the tiller population corrected, the LAI 

was estimated. The strength of this estimation made it possible to estimate the changes in 

LAI according to tiller population dynamics and the tiller leaf development after every 

grazing. Therefore, LAI is equal to tiller population per tiller leaf area development. The 

LAI estimated in this research was similar to the results reached by King et al. (1984), 

suggesting a reliable estimation of this variables (Figure 5.7B). 

5.2.11 Net photosynthesis values for the estimation of photosynthetic carbon 

fixation capacity  

The net photosynthesis values used for the PCFC estimation were taken from the Chapter 

4 and an average per season was calculated. The values were; summer (water restriction): 

7.9 µmol m2 s-1 for B. valdivianus and 5.6 µmol m2 s-1 for L. perenne; autumn: 23.3 µmol 
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m2 s-1 for B. valdivianus and 28.4 µmol m2 s-1 for L. perenne; winter: 15.5 µmol m2 s-1 for 

B. valdivianus and 15.7 µmol m2 s-1 for L. perenne; early spring: 23.3 µmol m2 s-1 for B. 

valdivianus and 28.4 µmol m2 s-1 for L. perenne; late spring: 11.2 µmol m2 s-1 for B. 

valdivianus and 7.12 µmol m2 s-1. This variable were evaluated between 11 am - 2 pm, to 

evaluate the species during the higher level of atmospheric water demand, reflecting 

differences between species due to the different effectiveness of soil water uptake (Blum, 

2009). The gas exchange was evaluated using a LICOR-6400XT (LI-COR, Nebraska, 

USA), chamber 6400-02B LED light source (LI-COR, Nebraska, USA). The 

photosynthetic photon flux density at the leaf surface was set at 1,000 µmol photons m-2 

s-1, leaf temperature was stabilised to 25°C, CO2 flow rate of 500 µmol s-1 and the CO2 

concentration ambient of incoming gas stream set at 400 µmol s-1. The days chosen for 

the field measurements had no rainfall or risk of rainfall forecast. Therefore, PCFC is 

equal to LAI per net photosynthesis (An) of B. valdivianus and L. perenne across every 

evaluation done. 

Table 5.2 Equations relating the tiller leaf area (Table 5.1) with the accumulated 

growing degree days (Figure 5.2A and 5.2B) for B. valdivianus and L. perenne. The 

“x” is the accumulated growing degree day (base temperature 0 °C) and “y” is the 

tiller leaf area at a given accumulated growing degree day. 

species     Equations r2 

B. valdivianus  y = 0.00002x2 + 0,0129x + 0,0313 0.88 

L. perenne  y =-0,000009x2 + 0,0119x - 0,0072 0.99 

Note: The maximum “x” value for the equation is 445 growing degree days, the time for B. valdivianus to 

reach leaf stage 4 and for L. perenne reach leaf stage 3.5 under field conditions using base temperature of 

0 °C (McMaster and Wilhelm, 1997). These are the higher leaf stages for grazing in each species. 
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5.2.12 Experimental design and statistical analysis  

The study was designed according to a randomised complete block design (3 treatments 

x 4 blocks) and the blocks were set up according to the slope of the experimental site. 

Normality of the data was determined by using the Shapiro Wilk´s test and the 

homogeneity of variance. The ANOVA analysis was performed on normally distributed 

data. Fisher´s LSD test was applied to separate the treatment means. For Non-normal 

data, the median was compared, with Kruskal-Wallis analysis (total tiller population). 

Pearson correlation was used to analyse the association between tillering and climatic 

variables. 

Tiller population, LAI and PCFC were compared using the standard error of the mean (± 

sem). The initial tiller population was considered as 100%, thus comparing each 

individual measuring event with the initial population captured the successive 

fluctuations through time.  

5.3  Results 

5.3.1  Relative changes in tiller population dynamics related to soil water content 

dynamics 

The relative tiller population changes (starting from an assumed baseline of 100%) are 

shown in Figure 5.3. In late winter 2017 (August), the B. valdivianus monoculture (T1) 

tiller population peak was 146% (±12; Figure 5.3A), while the tiller population of B. 

valdivianus in the mixture (T3) increased up to 221% (±25). During winter, the soil 

reached saturation, with (mean ± sem) 43.5% SWC (Figure 5.3B). Once soil saturation 

was reached, it fluctuated between 43.5% and 41.7% SWC until October 2017 (Figure 

5.3B; Figure 5.3C; Figure 5.3D). During the saturation period, B. valdivianus relative 
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tiller population started to decrease, starting in October 2017 until December 2017 

reaching the lowest values of 47% (±18) in T1 and 49% (±28) in T3, matching with the 

lower SWC (14.6%) on December (18/12/2017; Figure 5.3B). Between December and 

March, B. valdivianus tiller population recovered reaching 106% (±13) for T1 and 88% 

(±36) for T3. 

Table 5.3 Pearson correlation coefficient for soil water content (SWC), air 

temperature (Air °C), soil temperature (Soil °C) and rainfall related to tiller number 

for B. valdivianus in T1 and T3, L. perenne in T1 and T3. 

  Species 

  

B. valdivianus 

(T1) 

B. valdivianus 

(T3) 

L. perenne            

(T2) 

L. 

perenne 

(T3) 

SWC 0.715 0.814 0.632 -0.305 

p-value <0.0001 <0.0001 <0.0001 0.0894 

Air °C -0.484 -0.669 -0.535 0.227 

p-value 0.0049 <0.0001 0.0016 0.210 

Soil °C -0.554 -0.690 -0.534 0.219 

p-value 0.0013 <0.0001 0.0017 0.227 

Rainfall 0.237 0.066 0.135 0.104 

p-value 0.1907 0.719 0.461 0.567 

 

Lolium perenne in the monoculture (T2) reached a peak in October 2017 of (mean ± sem) 

214% (±24.4) and for L. perenne in the mixture (T3) a peak in November 2011 of 240% 

(±49). The large decrease in SWC, reaching 14.6% SWC (Figure 5.3B and 5.3C) in 

December 2017 (18/12/2017; Figure 5.3B), matched the greatest decrease in L. perenne 

tiller populations, 100% (±28) in T2 and 188% (±28) in T3. However, after  rain at the 

end of December 2017, L. perenne tiller populations increased sharply; L. perenne in T3 

reached a peak of 343% (±12) in January 2018 (26/01/2018). Although, immediately after 

reaching the peak, the relative tiller population of L. perenne had a sharply decrease,  

matching with the diminishment of SWC (Figure 5.3).  
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During March 2018 an increase in SWC (over 30%) and lower atmospheric demands 

(Figure 5.2), L. perenne tiller populations increased reaching, at the end of the evaluation 

on the 19/07/2018, 148.3% (±9.5) in T1 and 240.8% (±52.6) in T3.  

 

Figure 5.3 Relative tiller population dynamics for B. valdivianus in T1 and T3 

treatments and L. perenne in T2 and T3 treatments (A). Soil temperature, soil water 

content at 20 cm (SWC) and radiation (B). Soil water content (SWC) at 10 cm for 

T1 (B. valdivianus), T2 (L. perenne) and T3 (B. valdivianus + L. perenne mixture (C). 

Soil water content (SWC) at 40 cm for T1 (B. valdivianus), T2 (L. perenne) and T3 

(B. valdivianus + L. perenne mixture (D).  Bars indicate standard error of the mean, 

for A (n=3) and for B (n=96). 

Significant differences between were assessed (Figure 5.3A). Relative tiller population 

was higher (p≤0.05) for B. valdivianus in T3 compared to T1 until November 2017. 

Subsequently relative tiller population for B. valdivianus in T1 and T3 were similar 
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(p>0.05). During the first winter until the beginning of October (during the soil water 

saturation), the relative tiller populations for L. perenne were statistically similar 

(p>0.05). However, there was a significant increase compared to L. perenne in T2, from 

November 2017 until the end of the evaluation 19/07/2018. 

Soil water content (SWC) is an indication of soil water uptake and are inversely 

proportional. Figure 5.3D shows that B. valdivianus (T1) and the B. valdivianus + L. 

perenne mixture (T3) extracted more water at 40 cm soil depth compared to L. perenne 

(T2), especially when SWC reached less than 20%, between December 2017 and April 

2018, with two sharp SWC decreases, one in December and the other during February. In 

December B. valdivianus + L. perenne mixture (T3) had the lowest values, followed by 

L. perenne (T2) and B. valdivianus (T1). Between February and April 2018 B. valdivianus 

(T1) had the lowest values, followed by B. valdivianus + L. perenne (T3) and thereafter 

L. perenne (T2), indicating a higher water uptake by T1. This may indicate full recovery 

in B. valdivianus (T1) functional roots, it is assumed because it matches with tiller 

populations recovery.  

For B. valdivianus (T1) the highest values of SWC at 40 cm soil depth were recorded 

between October 2017 and the beginning of December 2017. Matches with its high death 

rates and a sharp population diminish. On the other hand, between mid-December 2017 

and April 2018, B. valdivianus (T1) tiller populations started to increase, as well as the 

SWC at 40 cm depth reached the lowest values (higher water uptake). From April and 

onwards B. valdivianus + L. perenne (T3) had the lowest SWC. 
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5.3.2 Tiller population variation and its relation to environmental factors 

 

Figure 5.4 Tiller total population for B. valdivianus in T1 and T3, L. perenne in T2 

and T3 and the total tiller population of T3 (sum of B. valdivianus in T3 and L. 

perenne in T3). Lowercase letters indicate statistical differences. Boxes and bars 

indicate quartiles and median, + indicate the mean of the population (n=288).  

The variation in the total tiller population per m2, in the fixed positions, for the whole 

evaluation, 01/03/2017 and 19/07/2018 is shown in Figure 5.4. Differences were 

significant, between species (p≤0.001) and when B. valdivianus (p≤0.05) monoculture 

and the mixture were compared. Bromus valdivianus had lower tiller numbers than L. 

perenne with a median of 4791 vs. 12545 tillers m-2 in monoculture and 2309 vs. 8638 

tillers m-2 in the mixture (p≤0.01), respectively. The coefficient of variation for 

monocultures was lower in comparison to the mixtures, in such a way that for the B. 

valdivianus monoculture was 28.8% and for L. perenne was 30.5 %, compared to B. 
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valdivianus in the mixture at 45.1% and L. perenne 44.1%. The coefficient of variation 

for the B. valdivianus + L. perenne mixture (T3) was 34.0%.  

 

Figure 5.5 Leaf area per tiller at different leaf stages. Bromus valdivianus in T1 (in 

monoculture), B. valdivianus in T3 (in mixture), L. perenne in T2 (in monoculture) 

and L. perenne in T3 (in mixture). Columns indicate different leaf stage (LS) for, B. 

valdivianus: 1.75 LS ( ); 2.75 LS ( ); 3.5 LS ( ); 4.0 LS ( ), and for L. 

perenne 1.75 LS ( ); 2.25 LS ( ); 2.6 LS ( ); 3.5 LS ( ). Bars indicate 

standard error of the mean (n=15). Lowercase letters indicate significant differences 

between leaf stages. 

The tiller population was correlated with environmental variables, such as air 

temperature, soil temperature at 10 cm soil depth, soil water content at 20 cm, rainfall and 

radiation (Table 5.3). The tiller populations of B. valdivianus in monoculture and in 

mixture were positively correlated to SWC, air temperature and soil temperature, but 
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negatively correlated to radiation. In contrast, the tiller population of L. perenne in 

monoculture was highly correlated to SWC, but negatively correlated to air temperature 

and soil temperature. The tiller population of L. perenne in the mixture was only strongly 

correlated to radiation. 

5.3.3 Tiller leaf area and weight at different leaf stage development 

Figure 5.5 shows leaf area for L. perenne and B. valdivianus at different leaf regrowth 

stages during March and May 2018. Bromus valdivianus tillers had a higher leaf area 

(p≤0.001) and a higher tiller weight (p≤0.001) compared to L. perenne tillers, at all 

regrowth stages and treatments. In relation to the comparison between monocultures and 

mixtures within species no differences were found (p>0.05). On average, in this 

evaluation, B. valdivianus had 3.8 times higher leaf area per tiller (cm2) than L. perenne. 

These results are in line with the results from core sampling, which indicated that B. 

valdivianus had 3.3 times more leaf area per tiller than L. perenne (Table 3.1). 

5.3.4 Relative competition indices  

The relative competition index (RCI) of B. valdivianus and L. perenne are shown in 

Figure 5.6A. The RCI were similar at the start of the evaluation period, March 2017, until 

October 2017, prior the first water restriction period (Figure 5.3). The RCI for both 

species diminished to values close to 0 during the water restriction period in December, 

indicating a similar effect of intraspecific and interspecific competition on the evaluated 

parameter, however, when the values became negative it indicated that intraspecific 

competition was more relevant to the outcome of competition, a situation reported for L. 

perenne (T2) between December 2017 and April 2018. The latter was due to the higher 

relative tiller population of L. perenne in the mixture than in the monoculture. However, 

after the water restriction of December, B. valdivianus increased its RCI, indicating a 



 

 
119 

 

higher competition intensity and reached values between 0.39 and 0.69, showing the 

effect of L perenne over B. valdivianus in tiller population. The L. perenne RCI after the 

water restriction period fluctuated between -0.19 (08/01/2018) and 0.18 (30/05/2018), 

suggesting that is a better competitor than B. valdivianus. 

 

Figure 5.6 Relative competition indices for the tiller population (A) and for the 

seasonal herbage mass (B) for B. valdivianus and L. perenne during the evaluation 

period. Bars indicate standard error of the mean, for A (n=3) and B (n=4). 

In Figure 5.6B, L. perenne had a lower RCI than B. valdivianus in all seasons apart from 

autumn and winter 2017, suggesting a better performance under competition than B. 

valdivianus. When L. perenne reached values close to 0 which meant that at that time the 

performance was similar between the monoculture and the mixture. Even though L. 

perenne always had a lower RCI (Figure 5.6B). 

5.3.5 Estimated leaf area index and photosynthesis carbon fixation capacity  

The photosynthesis carbon fixation capacity (PCFC) is in function of LAI (Figure 5.7A) 

and net photosynthesis (described in the methodology). Values for LAI and PCFC reach 

of 0 or close to 0, indicate that a grazing would have occurred close to that date (Figure 
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4.2). After the grazing occurred, the increasing PCFP is related to the increasing LAI of 

the pasture. Therefore, the maximum LAI measured in both species was reached at pre-

defoliation (mean ± sem); 2.7 (±0.7) for B. valdivianus monoculture (13/04/2017), 3.0 

(±0.4) for L. perenne monoculture (22/09/2017); 1.5 (±0.1) for B. valdivianus in the 

mixture (22/09/2017); 2.4 (±0.3) for L. perenne in the mixture (08/01/2018); and 3.0 

(±0.1) for the B. valdivianus + L. perenne mixture (T3) as a whole (22/09/2017).  
L
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Figure 5.7 Estimation of the leaf area index (LAI) (A) and total carbon fixation 

capacity (PCFC) (B) for B. valdivianus in T1 and T3, L. perenne in T1 and T3 and 

for the total tiller population of T3 (sum of B. valdivianus in T3 + L. perenne in T3). 

Bars indicate standard error of the mean (n=3). 
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This analysis will be focus on the species LAI (Figure 5.7A). The mixed pasture, B. 

valdivianus + L. perenne (T3), tended to have the maximum values during almost all the 

evaluation period in comparison to B. valdivianus (T1) and L. perenne (T2) which were 

negatively affected during their critical periods, water restriction for L. perenne, and 

waterlogging and probable loss of functional roots for B. valdivianus. The diminishment 

of LAI during the winter and early water restriction period (November 2017 – December 

2017) for B. valdivianus (T1) diminished its PCFC (Figure 5.7B) and L. perenne (T1) 

diminished its LAI during water restriction periods, therefore decreasing the PCFC 

(Figure 5.7B). 

For PCFC, the peaks of each species and treatment will be analysed. The PCFC included 

the carbon transformed in biomass (above and below ground), the carbon losses by 

respiration and the release of organic compounds. Bromus valdivianus (T1) had a higher 

PCFC (mean ± sem) at the beginning of the evaluation period, between 01/03/2017 and 

13/04/2017, and reached a maximum PCFC of 24.0 kg C ha-1 hour-1 (±6.0), followed by 

B. valdivianus + L. perenne (T3), and L. perenne (T2). Between the 14/05/2017 and 

21/06/2017, B. valdivianus monoculture (T1) and T3 (B. valdivianus + L. perenne 

mixture) had significantly higher PCFC (mean ± sem) than L. perenne monoculture (T2). 

This trend changed between the 3/08/2017 - 08/10/2017 where L. perenne monoculture 

(T2) and B. valdivianus + L. perenne mixture (T3) were the treatments with the higher 

PCFC (mean ± sem) having a maximum of 31.8 kg C ha-1 hour-1 (±4.1) and 29.1 kg C ha-

1 hour-1 (±1.0). This pattern indicates that the PCFC values diminished for L. perenne 

during the water restriction periods and for B. valdivianus after the waterlogging due to 

the loss of tillers and therefore the loss of functional roots. Thus, the B. valdivianus + L. 

perenne mixture (T3) tended to have higher numbers during all the critical periods due to 

a compensation growth between the two species. 
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When the B. valdivianus + L. perenne mixture (T3) was analysed as separate species, it 

was observed that B. valdivianus had a higher PCFC than L. perenne from the start of the 

evaluation until the 22/09/2018, where PCFC shifted between the species. The higher 

values for L. perenne were maintained during almost all the following measurement dates, 

reaching maximum values of 16.2 kg C ha-1 hour-1 (±2.4) on 08/10/2017.  

5.4 Discussion 

5.4.1 Tiller population dynamics  

Leaf regrowth stage is a measure of physiological development for grasses, and reflects 

the water soluble carbohydrate (WSC) reserve levels of individual tillers, and so can be 

used as a defoliation criterion for grasses (Fulkerson and Slack, 1994a,b; Donaghy and 

Fulkerson, 1997,1998; Ordóñez et al., 2017; Chapter 3). For B. valdivianus, the leaf 

regrowth stage to optimise shoot growth rate, tiller population, production and survival 

has previously been determined to be at around leaf stage 4 (Ordóñez et al., 2017; Chapter 

3), which in a temperate environment is equivalent to L. perenne leaf stage of 3.5 (Chapter 

3). The WSC reserves for both species, at those leaf regrowth stages, have recovered post-

defoliation to levels close to those prior to defoliation (Donaghy and Fulkerson, 

1997,1998; Ordóñez et al., 2017; Chapter 3).Therefore, the tiller population dynamics 

results from the interaction between climatic conditions, grazing events (Figure 4.2) and 

the competition between the species. 

The relationship between tiller appearance rate, leaf appearance rate and leaf elongation 

duration has been reported by Allard et al. (1991) and Bahmani et al. (2000). The 

probability of a tiller bud developing into a tiller is evaluated as the proportion between 

the number of tillers in relation to the number of leaves, is called ‘site filling’ (Davies, 

1974), afterwards tiller survival, in high productive pastures, will depend on the 
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environmental conditions (Matthew et al., 2000). Bromus valdivianus showed a 

phyllochron of 94°C day, which was slightly faster than L. perenne (Chapter 3). However, 

B. valdivianus needs to accumulate more growing degree days  to complete the leaf 

elongation (Chapter 3; Ordóñez et al., 2017). Over all grazing events (Figure 4.2), B. 

valdivianus was defoliated with 6 leaves (leaf stage 4) and L. perenne with 4 leaves (leaf 

stage 3.5; Chapter 3). Bromus valdivianus tiller population was less dense than L. 

perenne, suggesting that B. valdivianus had a lower site filling than L. perenne.  

All the morphological and architectural traits can be modified by the environment 

(Nelson, 2000) and management (Mathew et al., 2000; Hernández-Garay et al., 1997b), 

however, is known that the plasticity traits (e.g. site filling) are species-specific (Huber et 

al., 1999). Therefore, the changes due to environment conditions are defined by the 

genetics of each species. Diggle (1994) reported that tiller growth has different responses 

due to the canopy removal and the changes in light properties (red/far red relationship). 

Gautier et al. (1999) reported an increase in tiller number when the main axis increased 

the quantity of fully expanded leaves. Also, there is a change in the site filling according 

to grazing and no grazing conditions, and therefore the light properties.  

Bahmani et al., (2000) showed differences related to site filling between cultivars for L. 

perenne under shade and no shade treatments. Thus, post-grazing biomass is an important 

variable that affects the site filling of the species. Genetically improving a species by 

choosing an ecotype with higher site filling traits may be a good strategy to improve tiller 

populations and above ground production. However, from the point of view of resource 

allocation, if the plants of a single species, are selected just considering their higher site 

filling values, the ecotypes chosen could decrease the root exploration due to a 

prioritization of resources towards the shoot.  
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Soil moisture (Davies and Thomas, 1983; Bahmani et al.,2000; Matthew et al., 2000), 

light (Allard et al., 1991; Kays and Harper, 1994; Bahmani et al.,2000; Matthew et al., 

2000) and temperature (Bahmani et al., 2000; Matthew et al., 2000) are environmental 

variables involved in tiller emergence and survival. However, it has been suggested that 

the site filling of a species might be independent of the environmental conditions (Davies 

and Thomas, 1983).  

 The effect of environmental conditions (e.g. soil moisture, soil temperature) over tiller 

population, is a relationship that is hard to assess, because all environmental parameters 

are related to each other (Davies and Thomas, 1983). For example, the increasing soil 

temperature, from 8°C (July) to 24°C (December), produced a negative effect on tiller 

populations (p≤0.01). However, it must be clear, that soil thermic properties are modified 

by the soil water content (Tyson et al., 2001), in such way that they are inversely 

proportional. In the present study the minimum soil temperature reached (7.5°C) did not 

restrict tiller population growth, indicating that the soil temperature was not a limiting 

variable to tiller appearance. However, tiller appearance strongly responds to soil water 

content, especially during spring and summer periods, when water become a limiting 

factor for both, pasture and tiller population growth diminished. 

High temperatures tend to reduce tillering through a reduction in plant WSC reserves 

(Matthew et al., 2000) and occur in late spring and summer periods, in which soil water 

restriction is also a common factor. One of the causes of the  decline in tillering is the low 

WSC reserves due to high temperatures causing higher plant respiration during the day 

and night (Fulkerson and Donaghy, 2001) and also is linked to the plant’s capacity and 

ability to fix enough carbon to maintain its development during stress periods (e.g. 

waterlogging as well as water restriction). Therefore, it is expected that plant 
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physiological response to soil water restriction or waterlogging would differ according to 

each species, due to their own specific traits. For example, species for which growth is 

negatively affected by high temperatures and low SWC are species with reduced access 

to soil water storage, e.g. L. perenne (Crush et al., 2005; Ordonez et al., 2018), T. repens 

(Chapter 4), and Agrostis capillaris (Crush et al., 2005). In the present study, the tiller 

population of L. perenne was highly affected by the high temperatures (Matthew et al., 

2000) in interaction with low SWC, probably by a diminishment of the WSC, possibly 

by its low soil exploration capacity (Figure 5.3A; Chapter 4). Contrarily, for B. 

valdivianus, tiller population was recovered during the dry summer due to its higher soil 

exploration capacity, supported by the SWC values at 40 cm soil depth during summer 

and its tiller population increase during the same period, between December and March 

(Figure 5.3). 

Hernández-Garay et al. (1997b) showed a large decrease in tiller population during 

winter, from 15000-20000 tillers per m2, down to 10000-15000 tillers per m2 (in fixed 

quadrats). In contrary, the present study showed a constant increase in L. perenne relative 

tiller population during the winter period, which could have being related to the grazing 

criteria applied allowing sufficient WSC to accumulate in the stubble to support  tiller 

population growth (Donaghy and Fulkerson, 1997,1998; Volaire and Lilievre, 1997; 

Fulkerson and Donaghy, 2001). 

Plant survival from waterlogging is greater when WSC concentration is high (Jurczyk et 

al., 2016). In the present study, the constant increase in L. perenne tiller population under 

waterlogging also suggests that it has a high tolerance to low soil oxygen content 

(McFarlane et al., 2003). The high WSC concentration (Chapter 3) could explain B. 

valdivianus’ survival and its tiller population stability during the waterlogging periods. 
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However, waterlogging had negative effects on B. valdivianus tiller population which was 

verified when the waterlogging period ended. The sudden change in environmental 

conditions from waterlogging (winter until early October 2017) to a drought period 

(November 2017 - December 2017), in around 4 weeks after the waterlogging ended, may 

have caused a functional root decrease, due to the low soil oxygen content (Chapter 4). 

The effect of waterlogging on the functional roots has been reported for several species 

including Bromus catharticus (Ploschuk et al., 2017), L. perenne (McFarlane et al., 2003), 

Dactylis glomerata (Etherington, 1984; Ploschuk et al., 2017), and Festuca arundinacea 

(Ploschuk et al., 2017). Stewart (1996) indicated that B. valdivianus also has a low 

tolerance to a lack of oxygen in the soil due to waterlogging. This suggests that B. 

valdivianus may have lost functional roots due to waterlogging during the winter, 

explaining the decrease in tiller population during the following water restriction 

(November 2017 – December 2017). The decreased B. valdivianus functional roots is 

confirmed with the SWC data between October 2017 and December 2017, where the 

SWC of B. valdivianus (T1) at 40 cm was similar to L. perenne (T2) suggesting the same 

water uptake. However, during the period that the B. valdivianus tiller population started 

to recover (January 2018 – March 2018), the SWC was the lowest, suggesting a higher 

soil water uptake suggesting a recovering of functional roots, and as a consequence of 

this the recovering of its tiller population. Therefore, during the first water restriction 

period (between November 2017 - December 2017), B. valdivianus lost the competitive 

ability provided by its deeper root system, but accomplished a recovery, starting during 

the second water restriction period (end of January 2018 – March 2018).  

Regarding L. perenne (T2), its lower water uptake at 40 cm soil depth (derived from SWC 

data) could explain the high tiller mortality during the first water restriction period 
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(November 2017 – December 2017) and the second restriction period (end of January 

2018 - March 2018), showing it to be an unstable species during water restriction periods.  

Tiller mortality and appearance rate are associated with climatic variation, grazing 

(Bullock et al., 1994) and reproductive development (Hernández-Garay et al., 1997b). 

When B. valdivianus tiller populations decreased by half (between November and 

December) light competition may have diminished.  

Thus, the increase of L. perenne (T3) could have been due to an interaction of, bare soil 

colonisation and the decrease in light competition. During that period, L. perenne tillering 

capacity was encouraged by the low tiller density of the pasture (Marriot et al., 1997), 

resulting in a significant L. perenne tiller population increase, reaching higher relative 

values than L. perenne (T2), changing the plant community structure (Crawley and May, 

1987; Tilman et al., 1988). This increase in L. perenne tiller population in T3 affected the 

Pearson correlation. This does not mean that L. perenne (T3) was non-dependent of 

environmental conditions or grazing, it just indicate that the L. perenne tiller populations 

could have been closely related to the tiller density diminishment of the pasture (Bullock 

et al., 1994) and  encouraged by the light reaching L. perenne buds. This resulted in a L. 

perenne relative tiller population increase from 200% to 350% in two weeks, but also 

with a significant decline between the soil water restriction period between end of January 

2019 - March 2019.   

Reproductive stage in grasses generates a diminishment in tiller population (Hernández-

Garay et al., 1997b; Nelson, 2000) and the appearance of new tillers stops (Nelson, 2000). 

It has been reported tiller mortality during the reproductive stage, before seed head 

removal (Hernández-Garay et al., 1997b). Have been suggested that this could be in 

relation to hormonal changes (Clifford and Langer, 1975), formation of the inflorescence 
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(Clifford, 1977) and a change in carbon distribution within the plant (Ryle, 1970). The 

stem extension in L. perenne may reduce the growth of tillers and roots because the 

photoassimilates could be absorbed by the stem, becoming the stem the major sink (Ryle, 

1970).  

However, the sink of the resources changes again towards the vegetative tillers during the 

last stages of seed production (Hampton et al., 1987). Furthermore, the flowering 

development in grasses could be an important variable for the post-flowering tillering in 

L. perenne, due to the carbon movement from the flowering towards the daughter tillers 

(Matthew, 2002). During the reproductive stage, lax grazing followed by a hard grazing 

leaded to an increase in tiller population (Xia et al., 1990). Therefore, heading date of the 

species and cultivar, and the grazing management during the reproductive stage are 

important variables to increase the number of daughter tillers during summer/autumn 

seasons.  

Lolium perenne cv. Rohan has a late heading (Agriseeds, 2014). Bromus valdivianus has 

a medium late heading (Stewart, 1996). In Southern Chile, according to IDE (1996), the 

heading is between November – January. The cultivar Bareno (B. valdivianus) has been 

described as a cultivar with a heading of  +19 days after than the cultivar Gala (B. 

stamineus), an early heading cultivar (Agriseeds, 2013). Descriptions that for both species 

matches with a reproductive stage around late spring - beginning of summer. Therefore, 

if it is considering the low frequency of the grazing management (4.0 LS for B. 

valdivianus; 3.5 LS for L. perenne), the grazing realized in late spring 24/11/2017 (Figure 

4.2) and the sharp increase of L. perenne tiller population between December - January, 

the mobilisation of resource described by Matthew (2002) probably was a mechanism 

involved. This could contribute to explain the major mortality of tillers during summer, 
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since daughter tillers did not have had the proper water supply conditions to survive 

during summer due to the soil reaching permanent wilting point.  

As B. valdivianus and the cultivar Bareno have been described as a mid-late heading, the 

sharp decrease between October-December could have been a late consequence of the to 

the waterlogging over the loss of functional roots during the winter rather than the 

reproductive stage. In mid-December, three weeks after the last grazing (24/11/2017) B. 

valdivianus started to recover its tiller population, however it seems that was more related 

to an increase in the soil water uptake at 40 soil cm depth. Either way the parameters 

related to the environmental conditions, cultivar development stage and agricultural 

management must be considered in tiller population dynamics. For future research for B. 

valdivianus, it must be considered a separation of vegetative and reproductive tillers to 

determine the reproductive tiller replacement and if resources mobilisation mechanism 

described for L. perenne (Matthew ,2002) is also happening for B. valdivianus.  

5.4.2 Tiller growth strategy  

The integration of data provided by the cores (Table 5.1) and the individual tillers 

harvested (Figure 5.5) determined that B. valdivianus tiller leaf area, at a leaf stage 3.5 - 

4.0, is at least 3.3 times higher than L. perenne at a leaf stage 3.0 - 3.5,  but had a lower 

tiller population.  

The results obtained from the SWC may indicated that a deeper soil root system could be 

an indication of a high photo-assimilates allocation for B. valdivianus root system in 

comparison to L. perenne, however this needs to be quantified. Given the higher B. 

valdivianus photosynthesis per tiller due its greater leaf area and longer leaf lifespan 

(Chapter 3), the amount of resources allocated per root should be higher than L. perenne. 

This would explain why B. valdivianus had a higher water uptake at the deep soil layers 
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compared to L. perenne (T1) after its recovery. Therefore, the results of the present study 

suggest that the growth strategy of B. valdivianus is focused on biomass production per 

tiller (including both, shoot and root) with a few numbers of them, contrasting with L. 

perenne, which is centred on small tillers, with a faster tiller appearance getting a greater 

tiller population. These attributes of L. perenne allow it to rapidly colonise empty spaces 

in the pasture (Marriot et al., 1997), under the favourable conditions, temperature and 

non-limited water supply compared to B. valdivianus (Figure 5.3; Figure 5.4; Chapter 4). 

However, this faster tillering may have a consequence of a lower allocation of photo-

assimilates to the root system, making the species highly sensitive to water restriction, 

and the latter was reflected in the high mortality rates during the two periods of water 

restriction (Figure 5.3). 

The morphological traits of B. valdivianus and L. perenne (Chapter 3; López et al., 2013), 

along with their growth strategy (Chapter 3) and root exploration traits (Chapter 4; 

Ordóñez et al., 2018), allow them to uptake resources from different soil ecological 

niches, allowing them to share the same pasture ecosystem, as has been observed in the 

south of Chile (López et al., 1997).  

5.4.3 Competitive ability  

In an ecosystem where resources are limited, their uptake and utilisation by plants are key 

factors determining competition outcome (Lehman and Tilman, 2000; DeClerck et al., 

2006). The uptake rate of resources, the level of environmental stress and ecosystem 

perturbation did not vary the intensity of the competitive interaction, but changed the 

dynamics of the ecosystem and the outcome of the competitive process between species 

(Tilman, 1988; Grace, 1995). In the present study, waterlogging followed by soil water 

restriction negatively affected growth traits of B. valdivianus, and consequently its 
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competitive ability (e.g. death of functional roots) which observed by the low water 

uptake at 40 cm soil depth (higher SWC content) between October 2018 - mid December 

2018).  

The RCI evaluated the competition by comparing the performance of the target species 

in intraspecific and interspecific competition. Values close to 0 it means that the intra and 

interspecific competition had the same effect over the target species’ growth. Values close 

to 1 means that the target species is highly affected by the interspecific competition 

produced by the other species. Negative values mean that intraspecific competition is 

more significant than the interspecific competition. The RCI reached zero during 

December 2017 indicating that for both species had similar values in both, intra and 

interspecific competition, therefore, there was no competition effect related to tiller 

populations between L. perenne and B. valdivianus. When the waterlogging conditions 

followed by the water restriction period occurred, L. perenne kept values close to 0 while 

B. valdivianus RCI increased, showing how the environmental stress affected the 

outcome of the competition between both species (Tilman, 1988) and how L. perenne, 

under this study conditions, was a better competitor than B. valdivianus in both indices,  

tiller population and herbage mass per season. Thus, the competition with B. valdivianus 

did not affect the variation of the tiller population for L. perenne. 

Within the competitive ability of a plant, two concepts can be distinguished: 1) the plant’s 

capacity to resist the suppression wielded by other plant species, and 2) the plant’s 

capacity to supress growth of other plants (Golberg and Landa, 1996; Golberg, 1996). 

The results presented in Figure 5.6 showed how L. perenne had a great capacity to supress 

the growth of B. valdivianus, maybe due to the loss of functional roots, as previously 

mentioned. Although, apparently B. valdivianus did not supress L. perenne growth, it did 
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show a competitive response against the suppression capacity of L. perenne, this is 

supported by the constant increase in population in both, B. valdivianus in T1 and T3 

from January until the end of experimental period. As a result of this, by the end of the 

summer drought period the tiller population of B. valdivianus had almost recovered its 

original status; B. valdivianus in T1 reached 106% and T3 reached 88% in comparison to 

the original population. 

5.4.4 Carbon fixation capacity 

The estimation of PCFC considered B. valdivianus in T1 and in the T3, L. perenne in T2 

and in T3  and the pasture mixture (T3) considering B. valdivianus plus L. perenne. 

Although the contribution by other species (e.g. white clover, other grasses and weeds) 

was not considered, both measured species were dominant in their respective treatments 

(see botanical composition in Chapter 4), consequently the results reflected the PCFC of 

each species. The objective of these calculations was to compare both species in respect 

to PCFC.  

Grazing and fertilization affect the allocation of photo-assimilates (Wang et al., 2007). 

For example, under grazing conditions, after 10 days of plant growth, plant respiration 

was about 50 - 70% of the carbon fixation due to photosynthesis, allocated about 13 - 

25% of the carbon towards the shoots and 18 - 40% towards the roots (Wang et al., 2007; 

Pausch and Kuzyakov, 2018). Although, from the present results, it is possible to 

hypothesise that the differences in above-ground biomass could be due to differences 

between carbon allocation patterns, considering of course that main driver of carbon 

fixation is the light interception. Chapter 4 showed how L. perenne tended to have a 

higher accumulated herbage mass during the whole first year of evaluation. Therefore, it 

is highly probable there were differences related to photo-assimilated allocations patterns 
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in both species. Figure 5.7B shows that B. valdivianus (T1) had higher PCFC than L. 

perenne (T2) at specific dates, which should have been reflected in the accumulated 

herbage mass production or growth rate (Chapter 4), but it was not.  

Poorter et al. (1994) reported that species with higher transpiration rates and low water 

use efficiency are correlate with higher root carbon allocation, which could be also 

associated with longer root length. This makes sense, since a high transpiration rate is 

highly correlated to a higher soil water availability, and therefore, a deeper soil 

exploration by roots (Chapter 4; Blum, 2009). The allocation of carbon between the plant 

structures (e.g. roots vs shoots) changes the function of the plant species’ growth strategy 

(Poorter et al., 1994, 2012; Siebenka et al., 2015). A higher root carbon allocation by B. 

valdivianus would explain its higher capacity for water extraction from deep soil layers, 

higher than P. lanceolata at 70 cm (Chapter 4). Siebenkäs et al. (2015) indicated that the 

functional group of tall grasses, including Dactylis glomerata, had a higher allocation of 

carbon towards the root system. Currently, most defoliation management only considers 

above-ground biomass production, with no consideration of the total pasture ecosystem 

biomass production (shoots plus roots), which is an important parameter (root) to include 

to reach sustainable management of pastures in climates with dry seasons. Therefore, this 

estimation raises the question regarding the differences in photo-assimilate allocation 

between these two species, and it can be hypothesised that B. valdivianus allocated a 

higher percentage and quantity of its photo-assimilated towards its roots than L. perenne. 

The diversity-stability hypothesis states that a higher species diversity brings stability to 

an ecosystem (Elton, 1958; Tilman and Downing, 1994; Hooper and Vitousek, 1997; 

Tilman, 1999; Isbell et al., 2009). However, functional diversity (Hooper and Vitousek, 

1997; Tilman, 1999; Hooper and Duke, 2004; Tilman et al., 2006; Isbell, 2009), different 
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ecosystem niche exploration (Trenbath, 1974; Hooper and Vitousek, 1997; Hooper, 1998; 

Loreau and Hector, 2001; Hooper and Duke, 2004) and growth asynchrony (Loreau, 

2010; Thibaut and Connolly, 2013; Zhang et al., 2018) have recently become regarded as 

more relevant than simply ‘species richness’. It seems that B. valdivianus + L. perenne 

(T3), in relation to PCFC and LAI, responded better to critical periods due to its higher 

functional diversity, where niche differentiation played an important role. This is visible 

during the peaks before every grazing and is a result of by their physiological and 

morphological differences in shoot growth and root development (Chapter 3; Chapter 4; 

López et al., 2013. Ordóñez et al., 2017). When all these attributes are considered 

together, such as niche differentiation evaluated through their soil water uptake (Chapter 

4), photosynthesis carbon fixation capacity PCFC and LAI of the mixed pasture (T3) is 

the one that presented higher values in each critical period. For example, PCFC was 

higher in the mixture (T3) than in the T1 and T2 after the waterlogging occurred (October 

2017 - December 2017) negatively affecting B. valdivianus growth, and during summer 

period (December 2017 - February 2018) negatively affecting L. perenne growth. Even 

if the stability was not evaluated, growth compensation was observed. When two species 

hit their critical periods, one diminished, while the other increased its presence in the 

pasture, consistent with the stability-diversity theory (Tilman, 1999), creating more stable 

production systems under environmental constraints. 

The evaluations of soil water dynamics gave an insight of the different mechanisms for 

water uptake of B. valdivianus and L. perenne. There are several other factors that need 

to be studied to gain a better understanding of the interaction between species and 

environment, and to make inferences regarding mixes versus monocultures, such as how 

the different root traits affect soil pore continuity (Peth et al., 2008; Peth et al., 2010; 

Uteau et al., 2013), and therefore the water redistribution and water lifting (Richards and 
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Coldwell, 1987; Coldwell and Richards, 1991; Coldwell et al., 1998; Skinner, 2004; 

Skinner et al., 2009; Chapter 4). Also the allocation differences of the photo assimilate 

,i.e. between grass species (Poorter et al., 1994, 2012) and pasture management (Wang et 

al., 2017), is an important variable to consider to create more sustainable productive 

ecosystems, because it would help to understand how to manipulate the dynamic of photo 

assimilate distribution between shoot and root, through the pasture management.  

5. 5 Conclusions 

Bromus valdivianus is a species that grows and develops better than L. perenne under soil 

water restriction, but it is sensitive to waterlogging. Bromus valdivianus tolerates the 

suppression exerted by L. perenne development especially during the soil water 

restriction period. 

Lolium perenne, based on its higher tillering capacity, colonises pasture gaps left by other 

species and dominates the pasture during periods when other species are growing slowly, 

seen in the T3 treatment. Due to its shallow soil exploration, L. perenne is sensitive to 

soil water restriction, resulting in declining tiller numbers over summer. 

Lolium perenne tiller population was shown to be highly resilient, and during favourable 

conditions related to temperature and soil moisture overcomes B. valdivianus tiller 

population. Bromus valdivianus higher leaf area and root exploration (derived from WSC 

data) allowed it to successfully compete and recover itself when it was competing with L. 

perenne.  

The mixture of B. valdivianus and L. perenne (T3) was shown to be more stable during 

the study period for all the evaluated parameters than were the individual species as 
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monocultures. The mixture had a higher PCFC and tiller population during all the critical 

periods, such as the waterlogging and soil water restriction periods. 
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Chapter 6 General discussion 

6.1 The current challenge for pastoral agriculture  

Sustainability in pastoral agricultural systems is an important objective, due to increasing 

food demand and environmental issues related to intensive use of ecosystem resources 

(Butler and Soskolne, 2013), where intensive use of natural resources and land 

management results in negative ecosystem effects (Leng et al., 2014; Gigon, 1983; Wild 

and Cameron, 1980; OECD, 1982; Ellies, 1988; Di and Cameron, 2002; Cameron et al., 

2013; Butler and Soskolne, 2013; Li et al., 2017), with practices that exceed the 

ecosystem services that the land and environment can cope with (Millennium Ecosystem 

Assessment, 2003).  

Current traditional agricultural managements and practices must be challenged to secure 

sustainable production for the future. One of the strategies to reach sustainability is the 

development of more stable agricultural productive systems (Patzek et al., 2008; 

Ulanowicz et al., 2009) and one way to do it, is by increasing plant diversity within 

pastoral agricultural ecosystems (Tilman, 1999; Hooper and Vitousek, 1997) together 

with a suitable defoliation interval (Fulkerson and Donaghy, 1998), both being the main 

drivers of this doctoral thesis.  

6.2 The main differences between B. valdivianus, L. perenne and P. lanceolata 

Hooper and Vitousek (1997) stated that to understand the species behaviour according to 

their own traits, it is necessary to design experiments that compare species under 

conditions of both monoculture and mixture, in order to not confuse the results with other 

variables, e.g. interspecific competition. That approach was considered for the current 

research, where B. valdivianus, L. perenne and P. lanceolata were compared both as 
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monocultures and as mixtures and the subsequent changes in the botanical composition 

within the pasture through time.  

The morphological traits observed in Chapter 3, 4 and 5, tiller number, weight, 

photosynthetic carbon fixation capacity, root growth (through soil water uptake), leaf 

area, number of leaves and leaf expansion indicated that B. valdivianus has a different 

growth strategy to that of L. perenne, being the growth and survival of single tillers, with 

more number of leaves, each with higher leaf area and a deep root system, known 

indirectly by the soil water content measured from the deep soil layers, compared with 

the production of multiple tillers, each with smaller leaf area and a shallow root system 

for L. perenne. Even though L. perenne was a stronger competitor in the mixtures than B. 

valdivianus (T4 and T5), due to greater resilience after the environmental stress.  

Bromus valdivianus produced more photoassimilates per tiller (Chapter 3 and 5), and 

prioritised the allocation of resources to the leaf area production and root system, with a 

greater tiller survival, tiller appearance rate and growth during the periods of water 

restriction (Chapter 3 and 5). Contrary to what was expected, P. lanceolata extracted less 

water than B. valdivianus at 70 cm soil depth, but throughout the evaluation period, P. 

lanceolata maintained a high plant contribution, over 70% of botanical composition in 

the monoculture pasture  (T3 in Chapter 4) and becoming the dominant species in the full 

mix pasture (T5 in Chapter 4) over L. perenne, proving itself to be a good competitor in 

a pastures mixtures.  

As water restriction progressed, the major physiological response in species was 

observed, with L. perenne, a species with a relative shallow distribution of roots, 

exhibiting lower rates of photosynthesis, higher osmotic potential and lower stomatal 

conductance than B. valdivianus and P. lanceolata. However, high levels of osmotic 
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potential are associated with increased water uptake when soil water tension is high 

(Chimenti et al., 2006; Blum 2009). This poses the question of whether the main reason 

for L. perenne having a high osmotic potential is driven more by genetics, or by its 

relatively shallow root distribution in the soil. It was also observed that P. lanceolata had 

the lowest stomatal conductance, and this was maintained during conditions of high 

temperature with low water availability, even though P. lanceolata increased its herbage 

mass during periods of water restriction, however, the higher photosynthesis and higher 

stomatal conductance could also be linked to a low stomata control in comparison to L. 

perenne and B. valdivianus. For example, differences related to the morphology and speed 

reaction of different stomata structures have been assessed, being the graminoid-type 

(Triticum aestivum L.) with a faster reaction (opening and closing). This could be 

explained by differences in the geometry of the cell guard and the osmotic shuttling (Fran 

and Farquhar, 2007).  

6.3 Why do complex productive ecosystems reach higher stability and 

sustainability?  

Figure 2.1 illustrates that to reach sustainable production, it is necessary to forego 

maximum production, and in return the ecosystem gains resilience and complexity 

through a higher functional diversity (Patsek et al., 2008). The complexity of an 

ecosystem is related to both biotic (e.g. plant species) and abiotic factors (e.g. soil water 

content), as well as the interactions between them (Hooper and Duke, 2004). For example, 

an increase in soil pore continuity due to root traits (Peth et al., 2008, 2010; 2008; Uteau 

et al., 2013), the relationship between below-ground biomass production and soil 

resilience following mechanical stress (i.e. trampling; Zúñiga et al., 2015; Ivelic-Saéz et 

al., 2015; Ordóñez et al., 2018), and an increase in water uptake due to pasture diversity 
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increased (Blum, 2009; Ordóñez et al., 2018), or the possible water lifting realised by the 

deep-rooted species (Richards and Coldwell, 1987; Caldwell and Richards, 1989; Skinner 

et al., 2008; Chapter 5). 

DeClerk et al. (2016) and Tilman and Downing (1994) indicated that an ecosystem resists 

environmental stress if the dominant species is resistant to that stress, with the result that 

herbage mass production will not be greatly affected. This was verified in the current 

study, where P. lanceolata increased herbage mass during summer and L. perenne 

increased herbage mass during winter and spring within the mixture (T5 in Chapter 4). A 

similar result was obtained for B. valdivianus; increased herbage mass during summer 

and increased tiller population in both monoculture and mixture with L. perenne (Chapter 

4 and Chapter 5). Therefore, if pasture mixes are designed to blend species with tolerance 

towards different critical climatic periods, then an exchange of dominance between 

species is likely to occur across the seasons, providing stability in herbage mass, and 

resulting in a more complex ecosystem, which is one of the important goals for achieving 

sustainability (Patzek et al., 2008; Ulanowicz et al., 2009). 

The interaction between biotic and abiotic factors was identified, through evaluating 

plant-related parameters (e.g. productive, morphological, and physiological parameters) 

and soil water dynamics. Changes in soil water content indirectly reflected the quantity 

of functional roots and the water uptake by plants, and a decrease in soil water content 

between species was associated with a higher effectiveness in water absorption (Blum, 

2009; Neal et al., 2012; Ordóñez et al., 2018), considering that evaporation was equal for 

all treatments. The T5 mixed pasture in Chapter 4, dominated by P. lanceolata and L. 

perenne, displayed the highest growth rates and the highest water uptake at 40 cm soil 

depth during water restriction periods, and at 70 cm soil depth, the water uptake almost 
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matched that of the most effective treatments T1 and T3 (Chapter 4), which were both 

monocultures, B. valdivianus and P. lanceolata, respectively. These monocultures were 

characterized by a greater composition of deep-rooted species compared to the T5 mixture 

(Chapter 4). On the other hand, during winter, the T5 mixed pasture had a higher water 

uptake than the T1, T2 and T3 monocultures, due to a high proportion of L. perenne 

(Chapter 4). These results are consistent with those of Ordóñez et al. (2018), suggesting 

that higher pasture diversity had a greater water uptake at 60 cm (due to the presence of 

deep-rooted species) and L. perenne had a higher water uptake at 10 cm soil depth. This 

greater water uptake can be explained by the exploration of different ecological niches 

(Hooper and Duke, 2004). For example, species with a deeper root distribution explore 

niches where the water is protected from evaporation, and this enhances production 

during periods of water restriction as was observed in Chapter 4 and Chapter 5. 

Furthermore, Chapter 5 showed that as B. valdivianus regained its potentiality for water 

uptake at 40 cm depth (may due to functional roots recovery), shown by the middle of 

December 2018. This recovery was reflected by its constant tiller population increase 

during the summer. On the other hand, incorporating species with tolerance to 

waterlogging (e.g. L. perenne), even if they have less tolerance to water restriction, helps 

to enhance herbage production during winter.  

Even though water restriction is a major stress that affects productive ecosystems, simply 

evaluating water dynamics and pasture stability is not enough to determine the 

sustainability of the productive system. This is because there are changes in the pastoral 

ecosystem generated by management and biodiversity, which it may include a 

redistribution of water (Richards and Coldwell, 1987; Coldwell and Richards, 1991) due 

to the presence of deep-rooted species within the pasture, where inconclusive data were 

generated in Chapter 4, a soil porosity interconnection between the surface soil and the 
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deep soil layers may be found (Peth et al., 2008, 2010), an increase in functional diversity 

generating a positive effect in ecosystem food webs (Reiss et al., 2009; Lavorel et al., 

2013) and a change in plant photoassimilate distribution due to a longer defoliation 

interval (Donaghy and Fulkerson, 1998; Chapter 3). Many factors need to be included in 

pastoral science if the aim is to create a model to accomplish sustainable production 

systems.  

6.4 The key to reach sustainability, diversity-stability hypothesis   

The differences between species related to physiology, morphology and growth strategy 

were the factors that influence asynchrony and portfolio effect (Tilman, 1999; Hooper 

and Duke, 2004; Loreau and de Mazancourt, 2008; Isbell et al., 2009) in the present thesis. 

The higher leaf area and lower tiller number of B. valdivianus compared to L. perenne 

(Chapter 3 and 5) or the probable differences in their root life span (Van Der Krift and 

Berendse, 2002; Watson et al., 2000) and photoassimilates distribution (Poorter and 

Farquhar, 1994; Chapter 4 and 5), may explain the differences for their growth rate, 

survival and recovery after the environmental stress. For P. lanceolata, the interaction 

between a higher temperature requirement (Lee et al., 2015) and deeper root traits 

(Chapter 4) determined its growth rate during water restriction. For trait differences 

constitute the elements that lead to niche differentiation, such as space differentiation 

(different root depth) and time differentiation (different growing rates and therefore 

different resources uptake rates; Hooper and Duke, 2004). 

Thus, the presence of species with different critical growth periods diminished the effect 

of seasonality and weather on the pasture growth rates, especially in T5 (the full mixture 

in Chapter 4). The latter was aligned with Hooper and Vitousek (1997) and Hooper and 

Duke (2004) that reported that different functional groups explain ecosystem stability, 
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rather than the functional richness by itself. Therefore, it can be suggested that the 

ecosystem stabilising mechanisms could be driven mainly by the functional traits of the 

species and grazing management. This statement is supported by the results of Chapter 4 

and Chapter 5. 

6.5 Gaps behind the theory of diversity-stability 

The concepts previously discussed (portfolio effect, asynchrony and overyielding) 

reported by Tilman (1999), Hooper and Duke (2004), Tilman et al. (2006), Isbell et al. 

(2009) and Yang et al. (2011), came from long-term experiments based on the annual 

accumulated herbage mass, where plants were defoliated using a lawnmower once per 

year. This situation is far removed from practical grazing management. The direct effect 

of grazing animals on soil and pasture species communities, combined with multiple 

seasonal defoliations per year and the defoliation criterion applied, plays an important 

role in the growth dynamic of pasture species, along with species succession and grazing 

selection of individual plants or plant parts (Perotti et al., 2018; Grace et al., 2019), 

nutrient incorporation through urine (Di and Cameron, 2002; Cameron et al., 2013), and 

dung (Jarvis et al., 1989), trampling effect (Ellies et al., 1988; Dörner et al., 2013), and 

change of carbon allocation due to defoliation and fertiliser addition (Wang et al., 2007). 

Also, the regrowth and development of pasture species is modified by the opportunity of 

each particular defoliation event in relation to the physiological development of each 

individual plant (Alberda, 1966; White, 1973; Donaghy and Fulkerson, 1997, 1998; 

Turner et al., 2006a, b, c, d; Turner et al., 2007a, b; Ordóñez et al., 2017; Chapter 3) and 

the intensity or height of defoliation (Fulkerson and Donaghy, 1998), all these factors 

interact affecting the species persistence, survival and its proportion in the pasture. None 

of these important pastoral ecosystem variables were considered in the studies of Hooper 
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and Vitousek (1997), Hooper and Duke (2004), Tilman et al. (2006), Loreau et al. (2001) 

and Isbell et al. (2009). 

DeClerck et al. (2006) reported that a greater diversity in a pine tree ecosystem (up to 4 

different pine tree species: Pinus contorta ssp. Murrayana, Pinus monticola, Abies 

magnifica, and Tsuga mertensiana), tended to both decrease the ecosystem resistance 

under soil water restriction, and increase the coefficient of variance, failing to prove that 

higher diversity brings a higher stability (the portfolio effect). The significant role of 

ecosystem stability and functioning was driven by the presence of stress-tolerant or stress-

sensitive species. Therefore, to create ecosystems that are resistant to environmental 

constraints, stress-tolerant species must dominate the ecosystem (Lehman and Tilman 

2000; DeClerck et al., 2006). DeClerck et al. (2006) hypothesised that two different 

mechanisms drive the ecosystem resilience and resistance: 1) resource partitioning (niche 

partitioning), positively related to diversity; and 2) competition for limiting resources, 

where the dominant species should be more tolerant than the other species to the 

environmental constraint levels, an attribute that is negatively related to the diversity 

effect (portfolio effect). 

In the present study, the effectiveness of water uptake from the treatment co-dominated 

by P. lanceolata and L. perenne (T5 in Chapter 4) provided higher herbage mass 

throughout the water restriction periods, although there were no differences in the annual 

accumulated herbage mass. Thus, ecosystem resilience and resistance, as major factors to 

attain stability, are driven by the specific environmental variables that constitute a 

constraint to plant survival or growth. In order to build complex productive systems that 

are resistant and resilient to stresses, the interactions between ecosystem attributes, 

species traits and defoliation management must be understood. In this study, resistance 
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and resilience during periods of soil water stress (waterlogging and soil water restriction; 

see Chapter 4 and 5), were driven by the species traits that allowed tolerance of water 

restriction (e.g. root depth, osmotic potential), waterlogging (e.g. aerenchyma), 

physiological features (e.g. optimum growth temperatures), morphological features (e.g. 

root size, leaf area) and the longer interval between grazing. 

Bromus valdivianus, L. perenne (Chapter 4 and 5) and P. lanceolata (Chapter 4) were 

shown to be highly competitive, with a good survival and recoveries after environmental 

stress. Chapter 5 explored how a mixture between two grasses achieved stability 

regarding photosynthetic carbon fixation capacity and tiller population. Regarding to 

photosynthetic carbon fixation capacity, was shown differences between L. perenne and 

B. valdivianus, therefore it can be hypothesized differences related to photoassimilates 

distribution throughout the plant, considering that the accumulated herbage mass was the 

same for all the treatments.  

In previous research, also in a temperate humid climate (Valdivia, Chile), it was shown 

how L. perenne water uptake was mainly from the first 10 cm of the soil depth, under a 

defoliation criterion of the 2.5-leaf stage (Ordóñez et al., 2018). In the present thesis, L. 

perenne (T2 in Chapter 4) was not the treatment with higher water uptake at 10 cm soil 

depth, as in Ordóñez et al. (2018), it is possible that the root system of L. perenne was 

deeper in response to the interaction of both a longer defoliation interval [3.5 leaf stage 

in the current study, compared to 2.5 leaf stage used by Ordóñez et al. (2018)] and 

intraspecific competition,  allowing L. perenne to explore a deeper soil layer, between 20 

and 30 cm soil depth. 

Grazing alters pasture components and soil attributes, and needs to be considered when 

overyielding and portfolio effects may affect ecosystem stability (Tilman et al., 1997; 



 

 
146 

 

Tilman, 1999; Isbell et al., 2009). However, overyielding has not yet been reported in a 

grazing system with perennial species (Flores et al; 2017; Ordóñez et al., 2018; Grace et 

al. 2019; Chapter 4). In contrast, a negative effect on the herbage mass of a mixed pasture 

has been reported, due to plant selection by grazing animals, which detrimentally affected 

growth in the selected species, breaking the synergic effect between species, and resulting 

in decreased herbage mass produced by the mixture compared to the monocultures (Grace 

et al., 2019). This was also reported by Flores et al. (2017), Ordóñez et al. (2018) and in 

Chapter 4, where no statistical differences were found related to accumulated herbage 

mass between the species pasture evaluated. Also, an increase in plant diversity is not 

always related to an overyielding (Flores et al., 2017; Ordóñez et al., 2018) or a greater 

ecosystem stability such as soil mechanical resistance and resilience (Zúñiga et al., 2015; 

Ivelic-Saéz et al., 2015; Ordóñez et al., 2018).  

The mechanism described by Tilman (1999) and Isbell et al. (2009) explained the pasture 

ecosystem stability under different grades of plant diversity, although this has not been 

tested in long-term pasture experiments, which would include multiple grazing events 

during the year along with fertiliser application. In the present thesis, less fluctuation of 

herbage mass was recorded, deduction that is born from the growth rates obtained during 

critical periods in comparison to monocultures, however, no overyielding was obtained. 

6.6 Reconciling intensive production systems with sustainability: greater 

ecosystem stability at low diversity 

For decades it has been recognised that intensive pastoral grazing systems are positively 

correlated with a production of greater herbage mass (Hudson, 1929; Gammon, 1978; 

Hernández-Garay et al., 1997a,b; Holecheck et al, 1999; Donaghy and Fulkerson, 1998), 

within some boundaries to agricultural managements imposed by nature, for example 
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post-grazing pasture defoliation height (Donaghy and Fulkerson, 1998). Most of the 

research undertaken regarding the efficiency of the grazing systems has been based on 

biomass production and the defoliation criteria applied, either according to the above-

ground herbage mass or time based. Thus, the carbon fixation of plants, both above and 

below ground, in field conditions under grazing with different defoliation frequencies, 

has not been evaluated, and it has not been determined if grass plants change their carbon 

allocation according to the pastoral management (Wang et al., 2007). Chapter 3 results 

showed that leaf stage 4 was defined as the best criterion to encourage B. valdivianus 

regrowth, equivalent to the 3.5-leaf stage for L. perenne and overcoming the AGDD 

needed by P. lanceolata to encourage its regrowth, i.e. 532 °C days (Lee et al., 2015). 

Bromus valdivianus defoliation criterion allowed them to recover the WSC reserves and 

was applied to all the treatments in Chapters 4 and 5, decision that was based by the 

criterion of WSC and above ground plant parameters for the herbs and grasses.  

Incorporating root biomass production as a pasture management parameter could lead to 

the development of defoliation criteria to achieve the highest total biomass production 

(root plus shoot), which would increase the resilience of the pastoral system when 

subjected to water stress. Therefore, as a first approach can be hypothesised, from the 

results obtained in Chapter 3 and from the Chapter 4, that longer grazing interval will 

enhance the growth of the root system, improving the species survival during soil water 

restrictions.  

Lower defoliation frequency did not reduce the final pasture yield, according to the 

literature (Hernández-Garay et al., 1997a), and could have been the reason for the high 

species survival (see botanical composition in Chapter 4) and great tiller population 

recovery after environmental stress (Chapter 5), due to a higher WSC levels (Chapter 3 
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and 5). However, several questions could be raised from the effects of the longer intervals 

of defoliation, such as the effect on species survival, persistence and phenotypic plasticity. 

For example, L. perenne and B. valdivianus tiller population dynamics (Chapter 5); may 

be assume that the longer interval of defoliation was an important variable that allowed 

them to recover tiller populations after the stress for both species. Or the fact that L. 

perenne in other studies showed clearly a greater water uptake at 10 cm soil depth in field 

condition in comparison to others species (Ordóñez et al., 2018), and considering to the 

data presented in this thesis, that result was not observed, raising the question of whether 

such differences in root depth are mainly caused by climatic and soil conditions, or by the 

management applied. In fact, when defoliation interval was longer (see Chapter 3) the 

root growth was higher, therefore, it can be assumed a similar behaviour for L. perenne 

and P. lanceolata.  

Bromus valdivianus and P. lanceolata are species with deep soil exploration and a fast 

root development, resulting in higher water uptake at 70 cm soil depth [i.e. T1 (B. 

valdivianus) > T3 (P. lanceolata) > T5 (B. valdivianus + L. perenne + P. lanceolata); 

Chapter 5]. The reason of the shallow root traits of L. perenne could be linked to its short 

period of life (Watson et al., 2000), having a root death up to 90% after 42 days (Van Der 

Krift and Berendse, 2002), or a root life span for L. perenne of 15 weeks, the lowest 

values in comparison to other species, such as, Molinia caerules, Arrhenatherum elatius, 

Nordus stricta for example. 

6.7 The future of water supply on productive systems   

There are three sources of water supply for agricultural activity, 1) water from local 

rainfall, 2) surface water such as rivers, lakes, wetlands and groundwater, 3) non-

renewable groundwater and non-local water resources (Vörösmarty et al., 2005). 
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Recently research in hydrology indicates that irrigation systems are unsustainable 

especially in light of global warming (Gleeson et al., 2010; Wada et al., 2012; Leng et al., 

2015). Ground water supply utilisation has tripled between 1960 – 2000 (Wada et al., 

2012). If groundwater sources recharge is less than the groundwater extraction over 

extensive periods of time, groundwater depletion will occur (Gleeson et al., 2010).  

Pastoral agricultural systems must be aligned to the ecosystem services at a local scale, 

in order to reach sustainability considering both biotic and abiotic factors. One strategy 

that can contribute to the water scarcity is to integrate ecological theory into agricultural 

system management, and in this manner the efficiency of the resource utilisation can be 

maximised, however this does not mean that production will increase (Patzek et al., 2008), 

but that it will be more stable and therefore, sustainable. In this sense the results of the 

present thesis have shown the value of increasing functional diversity in pasture species 

used in grazing systems by mixing shallow-rooted species with deep-rooted species, to 

achieve greater tolerance of critical soil water stress periods through increasing the 

effectiveness of soil water uptake (Blum, 2009) and through the inclusion of species 

tolerant to waterlogging, the two major stresses identified during this study, using grazing 

interval that allow the full replenish of WSC in all the species involve within the pasture. 

Therefore, the development of more complex ecosystems, considering the interaction and 

integration of functional diversity, resource utilisation and production efficiency, are the 

key in this novel approach to reach long-term sustainability of pastoral systems. 
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Chapter 7 Conclusions 

Key conclusions regarding individual species were: 

The defoliation criterion at 4-leaf stage was determined to be the appropriate one to 

enhance B. valdivianus above ground growth and its non-structural carbohydrates storage. 

Coincidentally, the defoliation frequency based on B. valdivianus at 4-leaf stage had a 

positive effect on the production, stress survival and recovery of itself, L. perenne and P. 

lanceolata. Waterlogging during the winter months negatively impacted B. valdivianus, 

decreasing tiller population, functional roots and its contribution to the pasture botanical 

composition. Defoliating B. valdivianus at the 4-leaf stage resulted in a recovery after 

waterlogging to close to its initial population. Lolium perenne dominated the monoculture 

and the mixture with B. valdivianus, only decreasing its tiller population during the water 

restriction periods, while P. lanceolata maintained and dominated the botanical 

composition when sown as a monoculture and as a mixture with either B. valdivianus and 

L. perenne.  

Although B. valdivianus displayed physiological and water uptake adaptations to resist 

the water restriction, it has a low tolerance to winter, i.e. waterlogging. In contrast, L. 

perenne has low resistance to water restriction, but greater resilience than B. valdivianus 

when the environmental conditions favour its development.  

Key conclusions regarding to the increase of the functional diversity within the pasture 

were: 

Combining species with both a shallow and a deep distribution of roots increased the 

functional diversity in pasture and resulted in a higher production of herbage mass during 

the majority of the seasons evaluated (5 of 9), particularly during periods of restricted soil 
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water, compared to monoculture pastures. Such a pasture can be considered as highly 

stable. 

In the diverse pastures, the species contribution varied throughout the year according to 

the environmental factor that was limiting plant growth, such that P. lanceolata 

dominated the diverse pasture during the summer drought periods and co-dominated with 

L. perenne during the wetter and colder winter-spring. 

Mixing species according to complementary root and physiological traits (P. lanceolata, 

L. perenne and B. valdivianus) and environmental stress tolerance, and then exploring 

optimal defoliation ‘windows’ to determine a period of overlap that encourages the 

regrowth of all species in the mixture, was shown to be a feasible strategy to promote 

persistence while maintaining stable herbage mass, resulting in a more balanced and 

stable pastoral system. 

Independent of the differences found related to the physiological and morphological 

parameters of the species, or the differences related to the botanical composition and 

water uptake between monocultures and mixtures pastures, no treatment differences were 

found in annual accumulated herbage mass.  
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Appendices 

Appendix 1 General view of the B. valdivianus leaf stage trial described in the 

experimental chapter 3. 
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Appendix 2 Distribution of the plants per pot as described in the experimental chapter 3.  
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Appendix 3 Pastures under evaluation as described in the experimental chapter 4 and 5.  
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Appendix 4 Field set up for the leaf water potential and osmotic potential evaluations as 

described in experimental chapter 4 (A). Close up of the Scholander pressure bomb and 

its lid (B y C).  
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Appendix 5 General views of the LICOR-6400XT (LI-COR, Nebraska, USA; A) and the 

chamber 6400-02B LED light source (LI-COR, Nebraska, USA; B) used for the 

photosyntehsys evaluations as described in the experimental chapters 3,4 and 5.  
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Appendix 6 General view of the HR-33T Dew Point Microvoltmeter (Wescor, Logan, 

Utah, USA; A) and the C-52 chamber (Wescor, Logan, Utah, USA; B) used for the 

osmotic potential evaluations as described in the experimental chapter 4.  
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Appendix 7 Close up of the CE-8 Excitation Module (Campbell scientific, Logan, Utah, 

USA), CR1000 data logger (Campbell scientific, Logan, Utah, USA) and 16/32B 

multiplexer (Campbell scientific, Logan, Utah, USA) used for the evaluation of soil water 

content and soil matric potential as described in the experimental chapter 4 and 5 (A). 

General view of the field set up as described in experimental chapter 4 and 5 (B). 
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Appendix 8 Setting up of the sensors (CS-616 and 229) at 10 and 40 cm soil depth as 

described in the chapter 4 and 5. 
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Appendix 9 Portable metallic rings (A, B and C) demarking fixed areas to determine tiller 

number as described in the experimental chapter 5.  
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