Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Development of Assays for Biomarkers of Oxidative Damage to Assess the Efficacy of Fruit-derived Antioxidants

A thesis presented to in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

Laura Evelyn Barnett

Acknowledgements

Lord, thank You for your never-ending Grace in all aspects of my life. Thank You for surrounding me with people who are a true blessing to me in so many ways.

Thank you to Mum and Dad for your continual support, love and encouragement. Thanks to my groovy troovy sister Claire, I have been blessed to have you as my sister. Well done with everything you have achieved and will achieve in the future. Thanks also to Sara, Andy and the rest of my family for encouraging me!!

Thanks heaps to Amanda King (Brp), for supporting me and for just being there. I know you're going to go far and I hope I can be as much of a blessing to you as you have been to me!

Thank you to Daryl Rowan, for the invaluable discussions and for proof-reading my work. Special thanks to Linda Rowan for your advice and guidance in my journey and for always being there to listen.

To Tony McGhie, my supervisor at HortResearch, thank you for supporting and guiding me, and for allowing me to work independently and figure things out for myself.

Kathryn Stowell, my Massey supervisor, thank you for encouraging me and helping me gain confidence in my scientific ability. Thanks too for helping me with all the 'admin stuff'.

Thanks to Adam Matich, for your continuing support, humour and for helping me with calculations, statistics and proof-reading my thesis.

Thanks to Martin Hunt for doing the MDA analysis and for encouraging me and making me laugh when I really needed to!

Thank you to staff of HortResearch, past and present, who have supported and encouraged me from the start. Thank you to HortResearch for the financial support (from The New Zealand Foundation for Research, Science and Technology funding).

Thanks to all involved in organising and looking after the rats at SAPU, especially Anne Broomfield from the Institute of Food, Nutrition and Human Health at Massey University.

To my friends, thank you for the encouragement, support and prayers. God Bless You!.

Abstract

The diet is a very important part of maintaining a healthy lifestyle. Increased consumption of fruits and vegetables is one practice postulated to decrease the incidence of diseases such as cancer, cardiovascular disease and other disorders. Although there are a number of possible beneficial compounds in fruit, it is believed that the antioxidant components found in these foods may decrease the oxidative damage that could lead to such diseases. Oxidative damage to cellular proteins, lipids and DNA is considered to result from an increase in the production of free radicals, which overwhelm the body's defence system.

This research investigated fruit-derived antioxidants, and developed biomarker assays to measure the potential health benefits they may offer. To determine the *in vivo* antioxidant efficacy of berry fruit anthocyanins, oxidative damage to proteins, lipids and DNA was measured in rats fed several combinations of natural and synthetic diets. Mild oxidative damage was induced by the inclusion of fish oil in these diets.

DNA oxidation was determined by measuring urinary 8-hydroxy-2'-deoxyguanosine using reversed-phase high performance liquid chromatography with electrochemical detection. ELISA and colorimetric techniques were used to measure protein carbonyl content of plasma as a reflection of protein oxidation. Oxidation to lipids was assessed by measuring malondialdehyde, which results from lipid peroxidation.

Supplementation with fish oil induced a mild form of dietary oxidative damage, as shown by an increase in lipid and protein oxidation. In most cases the berry fruit extracts had little effect on the level of fish oil-induced oxidative damage, however, boysenberry anthocyanin extract significantly reduced protein oxidation when used in combination with the natural diet. Taken together the results suggest that oxidative damage to biomacromolecules may occur by different pathways of oxidative stress, which selectively target either DNA, protein or lipids at varying levels, and the antioxidant is effective only with selected mechanisms of oxidative damage.

Abbreviations

80HdG	8-hydroxy-2'-deoxyguanosine
AAPH	2,2'-azobis(2-amidinopropane) dihydrochloride
ABTS	2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid)
AUC	area under curve
BHT	butylated hydroxytoluene
BSA	bovine serum albumin
CHCl ₃	carbon tetrachloride
CoA	coenzyme A
DNA	deoxyribonucleic acid
DNPH	dinitrophenylhydrazine
EDTA	ethylene diamine tetra-acetic acid
ELISA	enzyme-linked immunoabsorbent assay
FPG	formamidopyrimidine DNA N-glycosylase
FO	fish oil
FRAP	free radical antioxidant power
GC-MS	gas chromatography – mass spectrometry
HCl	hydrochloric acid
HPLC	high-performance liquid chromatography
IPA	isopropyl alcohol
LC-MS	liquid chromatography with mass spectrometry
LDL	low density lipoprotein
MDA	malondialdehyde
MeOH	methanol
NaOAc	sodium acetate
ORAC	oxygen radical absorbance capacity
ORAC _{FL}	oxygen radical absorbance capacity assay using fluorescein
PUFA	polyunsaturated fatty acid
RP-HPLC	reversed-phase high-performance liquid chromatography
SBO	soybean oil
SEM	standard error of the mean

SPE	solid phase extraction
TBA	thiobarbituric acid
TCA	trichloroacetic acid
TE	trolox equivalent
TEAC	trolox equivalent antioxidant capacity
Trolox	6-hvdroxv-2.5.7.8-tetramethyl-2-carboxylic acid

Table of Contents

Acknowledgements	ii
Abstract	iv
Abbreviations	ν
List of Figures	xvi
List of Tables	xix

1.1	Introduction	n	1
1.2	Oxidative D	amage	1
1.2.1	Free Radica	als	2
1.2.2	The Biologi	cal Consequences of Oxidative Damage	3
	1.2.2.1	Cellular Consequences	3
	1.2.2.2	Disease Pathogenesis	4
1.3	Antioxidant	ŕs	4
1.3.1	Non-Enzyn	natic Antioxidant Systems	5
	1.3.1.1	Endogenous Antioxidants	5
	1.3.1.2	Dietary Antioxidants	5

Chapter One – Introduction

Page

1.3.2	Enzymatic A	Antioxidant Systems	9
	1.3.2.1	Redox Cycling Enzymes (Phase 2 Enzymes)	9
	1.3.2.2	Repair Enzymes	9
1.4	Methods for	Measuring Oxidative Damage	10
1.4.1	The Concep	t of Biomarkers	10
1.4.2	Oxidative D	amage to DNA	11
	1.4.2.1	80HdG Keto-enol Tautomerism	11
	1.4.2.2	Non-invasive Urinary Analysis	12
	1.4.2.3	Analysis of Cells for Oxidative DNA Damage	13
1.4.3	Oxidative D	amage to Proteins	15
	1.4.3.1	Methodology	15
1.4.4	Oxidative D	amage to Lipids	16
	1.4.4.1	Malondialdehyde Analysis	17
	1.4.4.2	Isoprostane Analysis	18
	1.4.4.3	Volatile Hydrocarbon Analysis	18
1.4.5	Overall Ant	ioxidant Capacity	19
	1.4.5.1	Oxygen Radical Absorbance Capacity Analysis	20
	1.4.5.2	Free Radical Antioxidant Power Analysis	21
	1.4.5.3	Trolox Equivalent Antioxidant Capacity Analysis	21
	1.4.5.4	Comparison of FRAP, ORAC and TEAC	21
146	Ovidativo D	amaga in Mammalian Systems	22
1.7.0	1461	Inducing Oridative Damage	22
	1462	Cell-Based Studies	22
	1.4.6.3	Mammalian Studies	23

1.5	Hypothesis	and Aims	24
1.5.1	Hypothesis		24
1.5.2	Aims		24
Chap	oter Two - N	Iethod Development	25
2.1	80HdG Ass	ay to Measure Oxidative Damage to DNA	25
2.1.1	Standard P	reparation	26
2.1.2	Sample Pre	paration by Solid Phase Extraction	26
	2.1.2.1	Preliminary Method Development:	
		Is Solid Phase Extraction Necessary?	26
	2.1.2.2	Solid Phase Extraction Protocol	28
	2.1.2.3	pH control of 80HdG to Optimise Recovery	29
	2.1.2.4	Intra-sample Variation	32
	2.1.2.5	Implementation of Quality Controls for Sample	
		Recovery Analysis – Inter-batch Variation	32
2.1.3	High Perfo	rmance Liquid Chromatography Analysis	32
	2.1.3.1	HPLC Columns and Solvent Programmes	32
	2.1.3.2	Detection of 80HdG	35
	2.1.3.3	Inter- and Intra-assay Variation Associated	
		with HPLC	36
2.1.4	Summary		36

2.2 Protein Carbonyl Assay to Measure Oxidative Damage to Proteins 37

2.2.1	Colorimetr	ic Determination of Carbonyl Content	37
	2.2.1.1	Initial Methodology Used	37
	2.2.1.2	Final Methodology Used	38
2.2.2	Determinat	tion of Carbonyl Content Using an Enzyme-linked	
	Immuno-ac	lsorbent Assay (ELISA)	38
2.2.3	Compariso	n of ELISA and Colorimetric Methods for	
	Determinat	ion of Protein Carbonyl Content of Plasma	39
Char	tou Thurson	Materials and Matheda	41
Cnap	oter I nree -	Materials and Methods	41
3.1	Rat Feeding	g Experiments	41
3.1.1	General Pr	otocol	41
	3.1.1.1	Animals	41
	3.1.1.2	Diets	41
	3.1.1.3	Sample Collection	43
3.2	Sample Pre	paration and Analysis	43
3.2.1	80HdG As	say to Measure Oxidative Damage to DNA	44
	3.2.1.1	Sample Preparation: Solid Phase Extraction to	
		Clean-up Samples and Concentrate 80HdG	44
	3.2.1.2	Reversed-Phase High Performance Liquid	
		Chromatography	44
	3.2.1.3	Quantification of 80HdG in Urine	47
3.2.2	Protein Ca	rbonyl Assay to Measure Oxidative Damage to Proteins	47

х

	3.2.2.1	Colorimetric Method	47
	3.2.2.2	ELISA Method	49
3.2.3	Malondialde	hyde Assay to Measure Oxidative Damage to Lipids	49
	3.2.3.1	Standard Preparation	49
	3.2.3.2	Sample Preparation	50
	3.2.3.3	Determination of MDA Concentration	50
3.2.4	ORAC _{FL} Ass	ay to Measure the Overall Antioxidant Capacity	51
	3.2.4.1	Sample Preparation	51
	3.2.4.2	Procedure	51
	3.2.4.3	Determination of Trolox Equivalent ORAC Value	51
3.2.5	α-tocopherol	Assay	52
	3.2.5.1	Sample Preparation	52
	3.2.5.2	RP-HPLC Analysis	52
	3.2.5.3	Determination of α -tocopherol Concentration	53
3.2.6	Statistical A	nalysis	53

Chap	ter Four – Fish Oil Feeding Trial Results and Discussion	54
4.1	Overall Observations	54
4.1.1	Rat Weight Gain	55
4.2	Biomarkers of Oxidative Damage	56
4.2.1	Oxidised DNA	56

4.2.2	Oxidised Protein	57
4.2.3	Oxidised Lipid	57
4.2.4	Plasma Antioxidant Status	57
4.3	Discussion	58
4.3.1	Increasing Oxidative Damage with Increasing Fish Oil	59
Chap	ter Five – Fruit-derived Antioxidant Feeding Trials	
	#1 and #2 Results and Discussion	61
5.1	Overall Observations	62
5.1.1	Rat Weight Gain	62
5.1.2	Dietary Consumption	64
5.2	Biomarkers of Oxidative Damage	66
5.2.1	Oxidised DNA	67
5.2.2	Oxidised Protein	68
5.2.2 5.2.3	Oxidised Protein Oxidised Lipid	68 69

5.3	Discussion	70
5.3.1	Fish Oil-Induced Oxidative Damage	70
5.3.2	Reduction of Oxidative Damage by Berry fruit Anthocyanins	71
Chap	ter Six – Fruit-derived Antioxidant Feeding Trial #3	
	Results and Discussion	74
6.1	Overall Observations	75
6.1.1	Rat Weight Gain	75
6.1.2	Dietary Consumption	76
6.2	Biomarkers of Oxidative Damage	78
6.2.1	Oxidised DNA	79
6.2.2	Oxidised Protein	82
6.2.3	Oxidised Lipid	83
6.2.4	Plasma Antioxidant Status	84
6.3	Discussion	85
6.3.1	Fish Oil-Induced Oxidative Damage	85

6.3.2	Reduction	of Oxidative Damage by Berry fruit Anthocyanins	86
Chap	ter Seven -	Summary and Future Direction	91
7.1	Overall Sun	nmary	91
7.2	Future Plan	25	92
7.2.1	Biomarker	Assays	93
	7.2.1.1	Oxidised DNA Assay	94
	7.2.1.2	Additional Biomarker Analyses	96
7.2.2	Future Fee	ding Trials	97
	7.2.2.1	Animal Trials	97
	7.2.2.2	Human Trials	98
7.2.3	Mechanisti	c Studies	99
	7.2.3.1	Mechanisms of Oxidative Stress	99
	7.2.3.2	Mechanisms of Anthocyanin Antioxidant Action	99
Appe	ndices		102
Apper	ndix One -	Calibration Curve for 80HdG Analysis	102
Аррен	ndix Two -	Calibration Curve for Determination of Protein Content (Bradford Method)	103

Appendix Three -	Example of Raw Data and Data Manipulation for the 80HdG Assay	104	
Appendix Four -	Example of Raw Data and Data Manipulation for the Colorimetric Protein Carbonyl Assay		105
Appendix Five -	Example of Raw Data and Data Manipulation for the ELISA Protein Carbonyl Assay		106
Appendix Six -	Example of Raw Data and Data Manipulation for the MDA Assay		107
Appendix Seven -	Example of Raw Data and Data Manipulation for the ORAC Assay		108
Appendix Eight -	Example of Raw Data and Data Manipulation for α -tocopherol Analysis		110

References

List of Figures

		Page
Figure 1.1	Generalised structure of an anthocyanin molecule.	8
Figure 1.2	8-hydroxy-2'-deoxyguanosine keto-enol tautomerism.	12
Figure 2.1	Chromatograms for 100 μ L injections of: 80HdG standard (A), urine that has not been through SPE (B), and urine that has been through SPE (C).	27
Figure 2.2	Percentage recoveries for 1 μ g/mL 8OHdG standard through different SPE cartridges to determine which cartridge produces the optimum recovery of 8OHdG.	29
Figure 2.3	Percentage recoveries for 1 μ g/mL 80HdG standards prepared in either pH 3.5 or pH 7.5 buffer.	30
Figure 2.4	Percentage recoveries for spiked urine samples where the pH had been changed to 3-4 with 2 mol/L HCl prior to storage compared to urine where the pH had not been altered.	31
Figure 2.5	Example chromatogram of 1 μ g/mL 80HdG standard where the mobile phase conditions were pH 5.5.	33
Figure 2.6	Comparison of the ELISA and colorimetric (at 370 nm) methods for determination of protein carbonyl content for fruit-derived antioxidant feeding trials #1 and #2.	39

Figure 3.1	Schematic diagram of switching valve positions used to	
	isolate $8OHdG$ in the 1 mL loop and apply to column B	
	for analysis by RP-HPLC with CoulArray® detection.	45
Figure 3.2	Example chromatogram from UV detection (at 260 nm)	
	of a 5 μ g/mL 80HdG standard prior to a sample run.	46
Figure 4.1	Study design for fish oil feeding trial to determine which	
	level of fish oil is most effective at inducing oxidative stress	
	to a measurable level.	54
Figure 4.2	Cumulative weight gain of rats fed diets supplemented with	
	the given percentages of fish oil (FO) and soybean oil (SBO).	55
Figure 4.3	MDA concentration (ng/mL) in plasma samples from rat	
	feeding experiment where the diets were supplemented	
	with the given percentages of fish oil in order to increase	
	oxidative damage.	58
Figure 5.1	Study design for fruit-derived antioxidants feeding trial #1.	61
Figure 5.2	Cumulative weight gain in trial #1.	62
Figure 5.3	Cumulative weight gain in trial #2.	63
Figure 5.4	A representation of a chromatogram for a typical urine	
	sample, after solid phase extraction and concentration, for	
	80HdG analysis by HPLC with electrochemical detection.	67
Figure 5.5	80HdG concentration (ng/mL) in urine taken from rats	
	at the end of the trial, for fruit-derived antioxidants	
	feeding trial #1.	68

Figure 6.1	Study design for fruit-derived antioxidant feeding trial #3.	74
Figure 6.2	<i>Cumulative weight gain for fruit-derived antioxidant feeding trial #3.</i>	76
Figure 6.3	80HdG concentration for each diet throughout trial #3.	79
Figure 6.4	Comparison of the 80HdG concentration ng/mL (A) nmol 80HdG/kg body weight/24 hours (B) and nmol 80HdG/mmol creatinine (C).	81
Figure 6.5	Protein carbonyl concentration (nmol/mg protein) from ELISA analysis of plasma from trial #3.	83
Figure 6.6	MDA concentration in plasma samples from trial #3.	84
Figure 6.7	Vitamin E content, as measured by plasma α -tocopherol concentration (μ g/mL) from samples from trial #3.	85
Figure 7.1	Markers for development of methodology to assess the efficacy of functional food.	93
Figure 7.2	Chromatogram for 5 μ g/mL 8OHdG standard from column A showing switching valve times currently used, and proposed switching times.	96

List of Tables

		Page
Table 1.1	Active oxygen and related species.	2
Table 3.1	Constituents of the natural and synthetic diets used in rat feeding trials.	42
Table 3.2	Composition of boysenberry anthocyanin powder used in trial #3, and blackcurrant powder used in trial #1.	43
Table 3.3	Solvent gradient used by Jasco pump for column B in the assay for urinary 80HdG using a dual column, switching valve method with HPLC and CoulArray® detection.	46
Table 4.1	Mean concentrations of 80HdG, oxidised protein from colorimetric analysis, MDA, ORAC _{FL} value and vitamin E for samples from the fish oil rat trial.	56
Table 5.1	Concentration (mg/g extract) of anthocyanin at A_{530} and total phenolics at A_{280} of the extracts used in trials #1 and #2.	64
Table 5.2	Total concentration (mg/feed) of anthocyanin at A_{530} phenolics at A_{280} and ORAC value.	65
Table 5.3	Mean concentrations of 80HdG, oxidised protein from ELISA analysis, MDA, ORAC _{FL} value and vitamin E for samples from rat trials #1 and #2.	66

Table 6.1	Concentration (mg/g extract) of anthocyanin at A_{530} and total phenolics at A_{280} of the boysenberry extract	
	used in trial #3.	77
Table 6.2	Concentration (mg/g of feed) of anthocyanin at A_{530} and total phenolics at A_{280} .	77
Table 6.3	Concentration of 80HdG, oxidised protein from ELISA analysis, MDA and vitamin E for samples from rat trial # 3.	78
Table 6.4	Mean volume of urine excreted over 24 hours from rats in trial #3.	82
Table 7.1	Suggested alterations to solvent gradient used by Jasco pump for column B in the assay for urinary 80HdG using a dual column, switching valve method of HPLC	
	with CoulArray® detection.	95