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Abstract

Molecular dynamics simulations provide a means to investigate the spatial and temporal evolu-
tion of systems of molecules at atomic resolution. Force fields are used to describe the inter-
actions between atoms contained within the system. A number of such force fields have been
developed over the years, with a focus on force fields for use in simulations of biochemical sys-
tems, in particular, protein systems. This thesis is primarily focused on extending the range of
systems that can be simulated through providing means for automated generation of force field
parameters for large novel molecules.

One component of existing force fields that is generally poorly parameterised are the dihedral
terms. In combination with the non-bonded terms, the dihedral terms are used to describe the ro-
tational energy profile about bonds, and have a large influence on the conformational properties
of a simulated system. A new method for the determination of dihedral parameters is developed,
utilising high level quantum mechanical calculations. With the use of local elevation molecular
dynamics simulations, this method is applied to the case of protein backbone dihedrals within
the GROMOS force field.

When one desires to simulate the interaction of a novel molecule with some biochemical sys-
tem, the novel molecule must be parameterised in a manner that is compatible with the force
field used to describe the biochemical system. However, doing so is a slow, tedious, and error
prone process, especially when the novel molecule is large. To combat this, a new algorithm,
known as CherryPicker, was developed. CherryPicker is a graph based algorithm which enables
rapid parameterisation of large molecules through fragment comparison with a library of pre-
viously parameterised small molecules. The algorithm design is discussed and tested on a few
simple test cases in part II.

Part III steps away from the parameterisation focus of this thesis and looks at the simulation of
naphthalimide monolayers. Naphthalimides have applications in sensing environments as they
have absorption and fluorescence emission spectra lying within the UV and visible regions of
light. With a long chain alkane substituted at the N-imide site, they become amphiphilic and can
form monolayers on the surface of water, and can be transferred to a solid substrate when at a
desired compression level. Molecular dynamics simulations can be used to provide insight into
the formation of compressed monolayer phase. Here, the effect of different ensembles, namely

NVT, NPT, and NYT are investigated for use in simulating a naphthalimide monolayer.
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Preface

With a preceding introductory chapter, this thesis is divided into three distinct parts. Part I
focuses on the SpinningTop program, which is a program developed for determining dihedral
parameters. A brief background to the reasons that such a method is required is given in chap-
ter 2. Chapter 3 outlines the theory and implementation of the fitting method, and investigates
some of the considerations that need to be made. Chapter 4 details the methods used to translate
the developed fitting method to the case of protein backbone dihedral terms within the GROMOS
force field, and chapter 5 discusses the results obtained in this proof of principle work.

Part II of the thesis focusses on the CherryPicker algorithm, which is a new algorithm de-
veloped to enable easy parameterisation of large biochemical molecules compatible with the
GROMOS force field. As the algorithm is based on the concept of molecular fragmentation, a
brief introduction to the state of computational molecular fragmentation is given in chapter 6.
The design and mathematical background of the algorithm is presented in chapter 7, before a
small amount of proof-of-concept testing is undertaken in chapter 8. As part of the CherryP-
icker algorithm development, a novel means to automatically determine bond order and formal
charges of molecules was developed. This is presented in chapter 9.

Finally, part III presents work undertaken in the determination of suitable ensembles for the
simulation of naphthalimide monolayers.

A large amount of code was developed as part of the work for this thesis. This code is available
on request to j.allison@massey.ac.nz. The code will be provided as is, with no documentation

on system requirements, installation, or usage.
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