Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

On Using Automated Algorithms to Parameterise Molecules for Molecular Dynamics Simulations

and

Investigating Suitable Ensembles for the Simulation of Naphthalimide Monolayers

Ivan Welsh

MASSEY UNIVERSITY Te Kunenga Ki Purehuroa

Institute of Natural and Mathematical Sciences

A thesis submitted to Massey University in Albany, Auckland in fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry.

Massey University Auckland 2017

Abstract

Molecular dynamics simulations provide a means to investigate the spatial and temporal evolution of systems of molecules at atomic resolution. Force fields are used to describe the interactions between atoms contained within the system. A number of such force fields have been developed over the years, with a focus on force fields for use in simulations of biochemical systems, in particular, protein systems. This thesis is primarily focused on extending the range of systems that can be simulated through providing means for automated generation of force field parameters for large novel molecules.

One component of existing force fields that is generally poorly parameterised are the dihedral terms. In combination with the non-bonded terms, the dihedral terms are used to describe the rotational energy profile about bonds, and have a large influence on the conformational properties of a simulated system. A new method for the determination of dihedral parameters is developed, utilising high level quantum mechanical calculations. With the use of local elevation molecular dynamics simulations, this method is applied to the case of protein backbone dihedrals within the GROMOS force field.

When one desires to simulate the interaction of a novel molecule with some biochemical system, the novel molecule must be parameterised in a manner that is compatible with the force field used to describe the biochemical system. However, doing so is a slow, tedious, and error prone process, especially when the novel molecule is large. To combat this, a new algorithm, known as CherryPicker, was developed. CherryPicker is a graph based algorithm which enables rapid parameterisation of large molecules through fragment comparison with a library of previously parameterised small molecules. The algorithm design is discussed and tested on a few simple test cases in part II.

Part III steps away from the parameterisation focus of this thesis and looks at the simulation of naphthalimide monolayers. Naphthalimides have applications in sensing environments as they have absorption and fluorescence emission spectra lying within the UV and visible regions of light. With a long chain alkane substituted at the N-imide site, they become amphiphilic and can form monolayers on the surface of water, and can be transferred to a solid substrate when at a desired compression level. Molecular dynamics simulations can be used to provide insight into the formation of compressed monolayer phase. Here, the effect of different ensembles, namely NVT, NPT, and N γ T are investigated for use in simulating a naphthalimide monolayer.

Acknowledgements

Lets keep this short. First person to thank is Dr Jane Allison, for hiring me as a PhD Student, and paying me, and basically letting me choose what work to do, even though it involved lots of things outside of her area of expertise. Also thanks to Professor Alan Mark and his group at the University of Queensland, particularly Martin and Bertrand, for hosting me a couple of times. To Dr yomcat (little y), thanks for dealing with my stoopid maths questions as they arose. And finally, thanks to the volunteer proofreaders who gave up their time to read my brain dumps. So cheers to Dr Thomas Collier, Bruce Welsh, and Nina Leeb. Nina, I look forward to reciprocating when its your time. Oh and big thanks to my lovely mother who decided to send me fantastic lunches three days a week. Because physics. Finally, because I forgot them in my examination copy, thanks to my group members for all the useful stuff and things over the years, particularly Ashar.

Preface

With a preceding introductory chapter, this thesis is divided into three distinct parts. Part I focuses on the SpinningTop program, which is a program developed for determining dihedral parameters. A brief background to the reasons that such a method is required is given in chapter 2. Chapter 3 outlines the theory and implementation of the fitting method, and investigates some of the considerations that need to be made. Chapter 4 details the methods used to translate the developed fitting method to the case of protein backbone dihedral terms within the GROMOS force field, and chapter 5 discusses the results obtained in this proof of principle work.

Part II of the thesis focusses on the CherryPicker algorithm, which is a new algorithm developed to enable easy parameterisation of large biochemical molecules compatible with the GROMOS force field. As the algorithm is based on the concept of molecular fragmentation, a brief introduction to the state of computational molecular fragmentation is given in chapter 6. The design and mathematical background of the algorithm is presented in chapter 7, before a small amount of proof-of-concept testing is undertaken in chapter 8. As part of the CherryPicker algorithm development, a novel means to automatically determine bond order and formal charges of molecules was developed. This is presented in chapter 9.

Finally, part III presents work undertaken in the determination of suitable ensembles for the simulation of naphthalimide monolayers.

A large amount of code was developed as part of the work for this thesis. This code is available on request to j.allison@massey.ac.nz. The code will be provided as is, with no documentation on system requirements, installation, or usage.

Contents

Preface							
Lis	st of	Figures	5	xv			
Lis	st of	Tables		xvii			
1.	Intro	oductio	on	1			
	1.1.	Molecu	ular Dynamics	1			
		1.1.1.	Integration	2			
		1.1.2.	Initialisation	2			
	1.2.	Force I	Fields	6			
		1.2.1.	Bonded Terms	8			
		1.2.2.	Non-bonded Terms	11			
	1.3.	Other l	Force Field Types	16			
	1.4.	Free E	nergy	18			
	1.5.	Local l	Elevation	19			
	Bibl	iography	y	20			
I.	Sp	inning	Тор	29			
2.	Intro	oductio	on	31			
3.	Theory and Method Development						
	3.1.	Deriva	tion of Fitting Method	33			
		3.1.1.	Fitting Symmetric Dihedrals	33			
		3.1.2.	Fitting with Phase Shift	35			
	3.2.	Robust	t Regression	37			
	3.3.	Electro	onic Effects of Distance of Substituents from Dihedral	39			
	3.4.	Sampli	ing Density Requirements	42			

4.	Met	Method 45				
	4.1.	4.1. Amino Acid Choices				
	4.2.	Dihedral Parameter Fitting	48			
		4.2.1. Quantum Chemical Calculations	48			
		4.2.2. Molecular Dynamics Simulations	49			
		4.2.3. Parameter Fitting	50			
	4.3.	Experimental Comparisons	50			
		4.3.1. Relative Energy Calculation	51			
		4.3.2. Secondary Structure	51			
5.	Res	ults and Discussion	53			
	5.1.	Fitting Outcomes	53			
	5.2.	General Comments	64			
	5.3.	Conclusions	64			
B:	bliog	raphy	65			
ы	DIIOg	арну	05			
П.	Ch	erryPicker	69			
6	Intr	aduction	71			
6.	Intro	oduction	71			
6.	Intr 6.1.	oduction Automated Molecular Parametrisation 6.1.1 Rule Based Approaches	71 71 72			
6.	Intro 6.1.	oduction Automated Molecular Parametrisation 6.1.1. Rule Based Approaches 6.1.2 Quantum Mechanics Based Approaches	71 71 72 72			
6.	Intro 6.1.	Automated Molecular Parametrisation	71 71 72 72 72			
6.	Intro 6.1.	Automated Molecular Parametrisation	71 71 72 72 73 74			
6.	Intro 6.1. 6.2.	Automated Molecular Parametrisation	71 71 72 72 73 74			
б. 7.	Intro 6.1. 6.2. Algo	Automated Molecular Parametrisation	 71 71 72 72 73 74 77 			
6. 7.	Intro6.1.6.2.Algo7.1.	Automated Molecular Parametrisation	 71 71 72 72 73 74 77 77 			
 6. 7. 	Intro6.1.6.2.Algo7.1.	Automated Molecular Parametrisation	 71 71 72 72 73 74 77 77 77 			
6. 7.	Intro 6.1. 6.2. Algo 7.1.	Automated Molecular Parametrisation	 71 71 72 72 73 74 77 77 77 79 			
6.	Intro 6.1. 6.2. Algo 7.1. 7.2.	Automated Molecular Parametrisation	 71 71 72 72 73 74 77 77 79 83 			
6.	Intro 6.1. 6.2. Algo 7.1. 7.2.	Automated Molecular Parametrisation	 71 71 72 73 74 77 77 79 83 84 			
6.	Intro 6.1. 6.2. Algo 7.1. 7.2.	Automated Molecular Parametrisation 6.1.1. Rule Based Approaches 6.1.2. Quantum Mechanics Based Approaches 6.1.3. Novel Force Field Generation Approaches Molecular Fragmentation molecular Fragmentation 7.1.1. Set Definitions 7.1.2. Graph Theoretic Definitions 7.2.1. Vertex Colours 7.2.2. Edge Colours	71 71 72 72 73 74 77 77 79 83 84 85			
6.	Intro 6.1. 6.2. Algo 7.1. 7.2. 7.3.	Automated Molecular Parametrisation 6.1.1. Rule Based Approaches 6.1.2. Quantum Mechanics Based Approaches 6.1.3. Novel Force Field Generation Approaches Molecular Fragmentation molecular Fragmentation 7.1.1. Set Definitions 7.1.2. Graph Theoretic Definitions Condensed Molecular Graph 7.2.1. Vertex Colours 7.2.2. Edge Colours Stereochemical Determination	 71 71 72 73 74 77 77 77 79 83 84 85 86 			
6.	Intro 6.1. 6.2. Algo 7.1. 7.2. 7.3.	Automated Molecular Parametrisation 6.1.1. Rule Based Approaches 6.1.2. Quantum Mechanics Based Approaches 6.1.3. Novel Force Field Generation Approaches Molecular Fragmentation withmic Design and Theory Mathematical Concepts 7.1.1. Set Definitions 7.1.2. Graph Theoretic Definitions 7.1.1. Vertex Colours 7.2.2. Edge Colours 7.3.1. CIP String Generation	71 71 72 72 73 74 77 77 79 83 84 85 86 86			
6.	Intro 6.1. 6.2. Algo 7.1. 7.2. 7.3.	Automated Molecular Parametrisation 6.1.1. Rule Based Approaches 6.1.2. Quantum Mechanics Based Approaches 6.1.3. Novel Force Field Generation Approaches Molecular Fragmentation molecular Fragmentation 7.1.1. Set Definitions 7.1.2. Graph Theoretic Definitions 7.1.1. Vertex Colours 7.2.2. Edge Colours 7.3.1. CIP String Generation 7.3.2. R/S Chirality Determination	71 71 72 72 73 74 77 77 79 83 84 85 86 86 86			

	7.4.	Athena	aeum	87
		7.4.1.	Fragment definition	87
		7.4.2.	Dihedral Fragments	92
	7.5.	Subgra	aph Isomorphism Testing	93
	7.6.	Parame	eterisation	94
		7.6.1.	Condensed Atoms	94
		7.6.2.	Symmetry	95
		7.6.3.	Non-bonded Terms	95
		7.6.4.	Bond and Angle Terms	101
		7.6.5.	Proper and Improper Dihedral Terms	102
		7.6.6.	Unmapped regions	103
8.	Test	ing and	d Discussion	105
	8.1.	Algori	thm Optimisation	105
		8.1.1.	Charge Group Partitioning	105
		8.1.2.	Fragment Generation	110
		8.1.3.	Fragment Size	113
		8.1.4.	Overlap	113
	8.2.	Parame	eterisation Tests	116
		8.2.1.	Structural Minimisation	118
		8.2.2.	Dynamic Stability	119
		8.2.3.	Nuclear Magnetic Resonance	121
	8.3.	Conclu	usion	128
0				100
9.	Bon	d Urde	er and Formal Charge Assignment	129
	9.1.	Introdu		129
	9.2.	Genera		131
		9.2.1.		131
		9.2.2.	Electron Count	132
		9.2.3.	Electron Positioning	132
	9.3.	Energy		133
		9.3.1.	Formal Charge Energies	133
		9.3.2.	Bond Order Energies	137
		9.3.3.	Charged Bonds	140
		9.3.4.	Lookup Tables	140

9.4.	Optimis	sation Methods	141
	9.4.1.	Local Optimisation	141
	9.4.2.	Genetic Algorithm	142
	9.4.3.	A*	145
	9.4.4.	Fixed Parameter Tractable (FPT)	147
	9.4.5.	Evaluation	152
9.5.	Conclus	sion	157
Bibliogr	raphy		158
III. Mo	onolaye	ers	167
10.Intro	oduction	n	169
10.1.	Naphtha	alimides	169
10.2.	Monola	ayers	170
	10.2.1.	Monolayer Simulation	171
11.Met	hods		173
11.1.	Paramet	terisation	173
11.2.	Comput	tational Details	173
	11.2.1.	System Construction	173
	11.2.2.	Simulation Conditions	174
	11.2.3.	NPT Simulations	174
	11.2.4.	N γ T Simulations	174
	11.2.5.	NVT Simulations	174
11.3.	Surface	Pressure Calculation	175
12.Resi	ults and	Discussion	177
12.1.	Monola	yer Structural Properties	178
12.2.	Conclus	sion	182
Bibliogr	raphy		183
13.Sum	mary ar	nd Future Endeavours	187
13.1.	Spinnin	ngTop	187
13.2.	CherryF	Picker	188
13.3.	Monola	iyers	189

Contents

IV. Appendices	191
A. Dihedral Energy Profiles	193
B. Sampling Density RMSD Values with Different Sample Sets	199
C. PDB Ramachandran Plots	205
D. Raw Energy Surfaces	213
E. Naphthalimide Parameters	219
F. ATB Molecules in SRC9064	227
G. Bond Order Assignment Validation Molecules	251
H. Electron Position Probabilities	281
Glossary	283

List of Figures

1.1.	Periodic boundary conditions as applied to a box of water	4
1.2.	Diagrammatic representation of force field terms	7
1.3.	Affect of symmetry on calculated partial atomic charges of benzene	15
2.1.	Schematic of the Φ and Ψ amino acid backbone dihedrals	31
3.1.	Diagramatic representation of addition of vectors and their projection onto the	
	<i>x</i> -axis	36
3.2.	Using robust regression to fit to data with outliers	39
3.3. 3.4.	3-ethyl hexane	40
	stituted energy profile	41
4.1.	Structures of the capped amino acids used for dihedral parametrisation	48
5.1.	Fitted terms and Φ/Ψ surface plots for glycine dipeptide $\ldots \ldots \ldots \ldots$	54
5.2.	Fitted terms and Φ/Ψ surface plots for alanine dipeptide $\ldots \ldots \ldots$	55
5.3.	Fitted terms and Φ/Ψ surface plots for valine dipeptide $\ldots \ldots \ldots \ldots$	57
5.4.	Fitted terms and Φ/Ψ surface plots for serine dipeptide \ldots	58
5.5.	Fitted terms and Φ/Ψ surface plots for cysteine dipeptide	59
5.6.	Fitted terms and Φ/Ψ surface plots for glutamine dipeptide	60
5.7.	Fitted terms and Φ/Ψ surface plots for phenylalanine dipeptide	61
5.8.	Fitted terms and Φ/Ψ surface plots for aspartic acid dipeptide $\ldots \ldots \ldots$	62
5.9.	Fitted terms and Ψ profile plots for proline dipeptide $\ldots \ldots \ldots \ldots$	63
6.1.	Components of a phospholipid	75
7.1.	Schematic representation of the CherryPicker algorithm.	78
7.2.	Venn diagrams of set operations	79
7.3.	An example graph	80
7.4.	A graph G with subgraphs G' and $G'' \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	80

7.5. A path $P = P^6$ in <i>G</i>	81
7.6. A cycle	81
7.7. A three component graph	82
7.8. A tree with root r .	82
7.9. Bit string representation of the vertex colour 32-bit integer	84
7.10. Bit string representation of the edge colour 8-bit integer	85
7.11. Fragment of a graph with overlap regions	91
7.12. Example of the DAG produced from a fragment set	92
7.13. A line graph	101
8.1. Structures of the CherryPicker test molecules	106
8.2. Charge group size distributions with various <i>w</i> values	108
8.3. Charge group charge distributions with various <i>w</i> values	109
8.4. Charge group diameter distributions with various <i>w</i> values	111
8.5. Edge terminated fragment of a graph with overlap regions	112
8.6. Distributions of mapped bond parameter counts	114
8.7. Distributions of mapped angle parameter counts	115
8.8. Charge distributions of simple atomic fragment and overlap combinations	117
8.9. Molecule XVI with soft bonds marked in red	121
8.10. Experimental ¹ H NMR spectra	123
8.11. ¹ H NMR spectra of molecule I	124
8.12. ¹ H NMR spectra of molecule XXII	124
8.13. ¹ H NMR spectra of molecule IX	125
8.14. ¹ H NMR spectra of molecule VII	125
8.15. ¹ H NMR spectra of molecule VIII	126
8.16. ¹ H NMR spectra of molecule XVI	126
8.17. ¹ H NMR spectra of molecule X \ldots	127
8.18. Time series of amide dihedral during simulation	127
9.1. A graph with a tree-decomposition and a nice tree-decomposition	149
10.1. 1,8-naphthalimide structure	169
10.2. Idealised pressure-area isotherm	170
10.3. Structure of the naphthalimide molecule investigated here	172
12.1. Pressure–area isotherms plots the naphthalimide monolayer simulated in three different ensembles	177

12.2. Simulation snapshots	179
12.3. Progression of deuterium order parameters upon monolayer compression	180
12.4. Radial distribution function of carbon nine in the alkyl chain upon compression	181

List of Tables

3.1.	Sampling density RMSD results	43
4.1.	Amino acid counts	46
4.2.	RMSD values between normalised Ramachandran plots for all twenty natural	
	amino acids	47
5.1.	Reference GROMOS 54A7 backbone dihedral parameters for all amino acids	54
8.1.	Successfully parameterised molecules	118
8.2.	RMSD of minimised test molecules	119
8.3.	Overall molecular bond length and angle percentage deviations	121
9.1.	Relative atomic energies for elements with formal charges	134
9.2.	Negative bond dissociation energies	138
9.3.	Charged bond dissociation energies	141
9.4.	Efficency and accuracy of algorithms	154
9.5.	Comparison to reference assignments	156

List of Abbreviations

AA all atom.

- ATB Automated Topology Builder.
- **BSSE** basis set superposition error.
- **CIP** Cahn–Ingold–Prelog priority rules.
- **CSD** Cambridge Structural Database.
- DAG directed acyclic graph.
- **FPT** fixed parameter tractable.
- GAFF Generalised AMBER force field.
- NBO Natural Bond Orbital.
- PDB Protein Data Bank.
- QM quantum mechanical.
- QMDFF Quantum Mechanically Derived Force Field.
- RMSD root-mean-square deviation.
- **UA** united atom.
- **UFF** Universal Force Field.