Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Declaration Confirming Content of Digital Version of Thesis

I confirm that the content of the digital version of this thesis

Title: Performance Evaluation of Multihop Wireless Network

is the final amended version following the examination process and is identical to this hard bound paper copy.

Student's Name: Liang, Shuai (Lynn)

Student's Signature:

Date: 2010-09-20

Performance Evaluation of Multihop Wireless Network

A thesis presented in fulfillment of the requirements for

Master of Engineering Degree

In

Electronics and Communications Engineering

School of Engineering and Advanced Technology
Massey University at Albany
New Zealand

Liang, Shuai

ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude and appreciation to my supervisor Dr. Mohammad Rashid for his guidance and support throughout my two-year study at Massey University. His enthusiastic supervision, professional suggestions and in-depth review of the thesis have extremely helpful in completing my research.

Furthermore, I take this opportunity to thank Dmitri Roukin who helped me with simulation environment configuration and troubleshooting in the early stage of my research. Sincere thanks go to Gill Sanders and her family for all the help and encouragement they offered during my stay at Albany.

My deepest gratitude goes to my beloved family for their loving considerations and great confidence in me all through these years. Thank you so much, Dad, for all your valuable time spent on listening to me and supporting me working out the problems all the way long.

ABSTRACT

In recent years, there has been an upsurge of interest in wireless broadband access networks in both industry and academia. This study aims at evaluating the performance of wireless access networks implemented in the multihop mesh architecture based on IEEE802.11 standards.

An implementation model is defined with the objectives to assess the impact of the variation of several network parameters including the number of mesh access points (MAPs) and stations (STAs), supported profiles, etc. A detailed analysis of the results gathered from 168 simulation runs in OPNET Modeler reveals that the number of MAPs in each extended service set (ESS) could be configured up to 4, the number of STAs associated to each MAP could be up to 8. On the other hand, the EDCA mechanism for QoS support from IEEE802.11e has been considered in the evaluation on both STAs and MAPs. The results show that enabling EDCA mechanism improves the global multihop network performance significantly in the scenarios with more streaming service (more bandwidth demanding) and more real-time applications (more delay stringent and more uplink bandwidth required).

CONTENTS

ACKNOWLEDGEMENTS
ABSTRACTI
CONTENTSII
LIST OF FIGURESV
LIST OF TABLESVII
LIST OF ABBREVIATIONSIX
CHAPTER 1 INTRODUCTION
1.1 Background
1.2 Objectives of the Study
1.3 Research Approach
1.4 Thesis Outline
CHAPTER 2 REVIEW OF LITERATURE ON MULTIHOP WIRELESS
NETWORKS
2.1 Introduction to Multihop Wireless Networks
2.2 Open Issues and Research Trends 11
2.2.1 Protocols for Network Management
2.2.2 Security
2.2.3 Cross-Layer Design
2.3 Performance Evaluations
CHAPTER 3 AN OVERVIEW OF WIRELESS NETWORK STANDARDS21
3.1 Introduction
3.1.1 IEEE802.11 LAN Topology
3.1.2 IEEE802.11 Station Services

3.2 I	EEE802.11 Physical Layer	25
3.2.1	The Various Physical Layers	25
3.2.2	IEEE802.11a	26
3.2.3	IEEE802.11b	28
3.2.4	IEEE802.11g	30
3.3 I	EEE802.11 Medium Access Control	31
3.3.1	MAC Data Services	31
3.3.2	MAC Frame Formats	39
CHAPTER	4 WIRELESS NETWORK SIMULATION TOOLS	44
4.1 T	The Need for Simulation	44
4.2 T	ype of Simulators	45
4.3 A	A Brief Comparison	46
4.4	PNET Modeler Basics	48
4.4.1	Modeler Architecture	48
4.4.2	Discrete Event Simulations	56
4.4.3	Wireless LAN Model Suite	63
4.4.4	Results Collection	65
CHAPTER	5 SIMULATION MODEL OF THE MULTIHOP WIRELESS	
NETWOR	K	68
5.1 F	Reference Scenario Definition	68
5.1.1	Layout of the Scenario	68
5.1.2	Application Definition	70
5.1.3	Profiles Definition	76
5.2 S	cenarios Variations	77
5.2.1	Mobiles Variations	77
5.2.2	Profiles Variations	81
5.2.3	EDCA Parameters	82

СНАРТЕ	CR 6	ANALYSIS OF SIMULATION RESULTS	83
6.1	An Ov	verview	83
6.2	Global Average Throughput		84
6.3	Globa	l Average Delay	88
6.4	Dropp	ed Data	93
СНАРТЕ	ER 7	CONCLUSIONS AND FUTURE STUDY	96
7.1	Conclu	usions	96
7.2	Future	Study	98
REFERE	NCES		99

LIST OF FIGURES

Figure 1.1 An Example of Multihop Wireless Network	4
Figure 2.1 Cross-Layer Framework and interaction among layers (Zhan	g &
Zhang, 2008)	17
Figure 3.1 IEEE802.11 LAN topology	22
Figure 3.2 IEEE802.11a PPDU.	27
Figure 3.3 IEEE802.11b PPDU (IEEE LAN/MAN Standards Committee, 1	999)
	29
Figure 3.4 Beacons and Contention Free Periods	31
Figure 3.5 Backoff Mechanism in DCF	32
Figure 3.6 Polling Mechanism in PCF	34
Figure 3.7 Generation of CAPs during the CP	37
Figure 3.8 Transimission opportunity in HCF	37
Figure 3.9 MAC frame Format	39
Figure 3.10 Frame Control Field	40
Figure 4.1 Graphical Editors for Network, Node and Process Models	49
Figure 4.2 Network Models with Point-to-Point, Bus and Radio Links	50
Figure 4.3 A Hierarchical Network with Two Levels of Subnetworking	51
Figure 4.4 Node Model Employing Packet Streams, Statistic Wires	53
Figure 4.5 State Transition Diagram in the Process Editor	55
Figure 4.6 Typical Simulation Timeline (OPNET Technologies,Inc., 2010)	58
Figure 4.7 Simulation Event List (OPNET Technologies,Inc., 2010)	59
Figure 4.8 Ad-hoc Network	63
Figure 4.9 Infrastructure BSS	63
Figure 4.10 Extended Service Set	63
Figure 4.11 Wireless Backbone	64
Figure 4.12 Example of Vectors Data Result Panel	65

Figure 4.13 Example of a Scalar Data Result Panel	66
Figure 5.1 The ESS Configuration	69
Figure 5.2 The Reference Scenario	70
Figure 5.3 Data Access Definition	70
Figure 5.4 Email Definition	71
Figure 5.5 File Transfer Definition	72
Figure 5.6 File Print Definition	73
Figure 5.7 Web Browsing Definition	73
Figure 5.8 VoIP Call Definition	74
Figure 5.9 Video Conferencing Definition	75
Figure 5.10 An Example of Multiple ESSs Scenarios	78
Figure 5.11 A Scenario with 4 MAPs per ESS	79
Figure 5.12 Scenario with 8 STAs per MAP	80
Figure 5.13 EDCA Parameters Setting	82
Figure 6.1 Global Average Throughput of Scheme 1 Scenarios	85
Figure 6.2 Global Average Throughput of Scenarios	86
Figure 6.3 Global Average Throughput of Scenarios	86
Figure 6.4 Global Average Throughput of Scenarios	87
Figure 6.5 Global Average Throughput of Scenarios	88
Figure 6.6 Global Average Delay of Scheme 1 Scenarios without EDCA	89
Figure 6.7 Global Average Delay of Scheme 1 Scenarios with EDCA	90
Figure 6.8 Global Average Delay of Scenarios	91
Figure 6.9 Global Average Delay of Scenarios	91
Figure 6.10 Global Average Delay of Scenarios	92
Figure 6.11 Global Average Delay of Scenarios	93
Figure 6.12 Dropped Data by Scenario	94

LIST OF TABLES

Table 1.1 IEEE802.11 Standards(IEEE LAN/MAN Standards Committee, 2010)
3
Table 3.1 IEEE802.11 Services (IEEE LAN/MAN Standards Committee, 1999)
24
Table 3.2 IEEE802.11a Data Rates (IEEE LAN/MAN Standards Committee,
1999)
Table 3.3 IEEE802.11g Options (IEEE LAN/MAN Standards Committee, 2003)
30
Table 3.4 Values for the Duration/ID Field
Table 3.5 Information Contained in the Different Address Fields
Table 3.6 QoS Control Field
Table 5.1 Profile Definition
Table 5.2 Mobiles Variations (Scheme 1)
Table 5.3Mobiles Variations (Scheme 2)
Table 5.4 Mobiles Variations (Scheme 3)
Table 5.5 Profiles Distribution

LIST OF ABBREVIATIONS

AC Access Category

ACK Acknowledgment

AIFS Arbitration Interframe Space

AIFSN Arbitration Interframe Space Number

AP Access Point

BSS Basic Service Set

BSSID Basic Service Set Identification

CA Collision Avoidance

CCA Clear Channel Assessment

CD Collision Detection

CRC Cyclic Redundancy Code

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTS Clear To Send

CW Contention Window

DA Destination Address

DCF Distributed Coordination Function

DIFS Distributed (Coordination Function) Interframe Space

DS Distribution System

DSSS Direct Sequence Spread Spectrum

EDCA Enhanced Distributed Channel Access

EDCF Enhanced Distributed Channel Function

EIFS Extended Interframe Space

ERP Extended Rate PHY

ESS Extended Service Set

FCS Frame Check Sequence

FHSS Frequency Hopping Spread Spectrum

FTP File Transfer Protocol

HCCA HCF Controlled Channel Access

HCF Hybrid Coordination Function

HTTP Hyper Text Transfer Protocol

IBSS Independent BSS

IFS Interframe Space

IP Internet Protocol

ISM Industrial, Scientific and Medical frequency band

LAN Local Area Network

LLC Logical Link Control

MAC Medium Access Control

MAP Mesh Access Point

MIMO Multiple Input Multiple Output

MPDU MAC Protocol Data Unit

MSDU MAC Service Data Unit

MWN Multihop Wireless Network

NAV Network Allocation Vector

NLOS Non-line-of-sight

NRTM Non Real-Time Maximum

NRTC Non Real-Time Centric

NRT Non Real-Time

OFDM Orthogonal Frequency Division Multiplexing

PBCC Packet Binary Convolutional Coding

PCF Point Coordination Function

PHY Physical Layer

PINC Pairwise Intersession Network Coding

PLC Power Line Communications

PLCP Physical Layer Convergence Procedure

PPDU PLCP Protocol Data Unit

PSDU PLCP Service Data Unit

QoS Quality of Service

RT Real-Time

RTC Real-Time Centric

RTM Real-Time Maximum

RA Receiver Address or Receiving Station Address

RTS Request to Send

SA Source Address

SIFS Short Interframe Space

STA Station

TA Transmitter Address or Transmitting Station Address

TCP Transmission Control Protocol

TXOP Transmission Opportunity

TGs 802.11s Task Group

UP User Priority

VoIP Voice over Internet Protocol

WDS Wireless Distribution System

WiFi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

WM Wireless Medium