Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Design of Digital Instrumentation for Scanning Probe Microscopy

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Physics

at Massey University, Palmerston North, New Zealand

Henning Albrecht Michael Klank 1999

Abstract

A scanning tunneling microscope with a focus on digital instrumentation has been built. The aim of this project was to allow a digital signal processor full control over all essential microscope variables, especially simultaneous control of the vertical and horizontal tip position.

Due to the fact that its operation is controlled by software, this system offers convenient operation and considerable flexibility, allowing different modes of operation, such as topographical and spectroscopic scans. Presently this microscope is the only one in New Zealand that allows the operator full software control over the tip position and bias voltage, thereby allowing it to become a powerful research tool.

Atomic scale images on graphite were successfully recorded. The spatial resolution of the microscope was estimated to be 5 pm vertically and 40 pm horizontally. Two different imaging methods were demonstrated on a gold sputtered TEM grating with a scan area that was larger than $4 \,\mu m \times 4 \,\mu m$. One method has variable horizontal scan speed, while the other method can possibly be used for nanolithography. Both show the flexibility of this system.

Although digital electronics is often perceived as being slower and noisier than analog electronics, in this instrument it did not decrease the data acquisition speed nor did it reduce the signal-to-noise ratio. The bandwidth of the closed-loop controlled microscope is currently about 1 kHz, limited by the bandwidth of the current-to-voltage converter, an analog component. The resolution is limited by the large gain of the high-voltage amplifiers used to drive the actuators. With a faster current-to-voltage converter and a reduced high-voltage amplifier gain, a bandwidth of 8 kHz should be possible with a vertical resolution of less than 2 pm and a horizontal resolution of 10 pm.

Acknowledgements

Many people contributed in one way or another to the completion of this thesis.

Firstly I would like to mention the three supervisors of this project. Dr. Blair Hall initiated this project and made me come to New Zealand in the first place. I thank him for this and his good sense of humor. Dr. Craig Eccles looked after me for the last two years. I had the pleasure to work with an incredibly patient man. Associate Professor Robert O'Driscoll was also the course controller of two electronics papers where I had a teaching role. I have learnt a great deal from him regarding electronics and how handle students by telling stories.

I would like to express my gratitude for the people dwelling across the corridor in the rooms of the electronics services. Udo von Mulert explained to me the world of scientific instruments and how to repair all sorts of things. Peter Lewis built almost all of the second generation electronics and was always there to help and listen. Some day we will go and see the blue duck. Robin Dykstra was always the person to ask in complicated electronics design matters. I thank him especially for the word nano-robot and for giving me the right hint for fixing the ADC module. Keith Whitehead should also be mentioned as a source of incredible knowledge. Gerard Harrigan, who used to work at electronics services, showed me a few tricks for laying out printed circuit boards and supplied me with thyme and chives for the garden.

Our student, Mark Hunter, was the physicist in the Matlab cockpit, creating several graphs. We discussed physics and other things together at all sorts of times during day and night.

I would also like to thank the mechanics, Steve Denby, Noel Foot and Barry Evans for building various parts of the microscope. Kit Clark from Kaycee Technology built and modified several parts of our probe head assembly.

On a more personal level I would like to acknowledge the support of many good friends.

Lise cared for me in many ways. We went together through thick and thin. I thank her for her wits and her smile.

Jörg would supply us with *Wein* in the crucial moments. Martin, our longterm flatmate, discussed aspects of thesis writing with me in the long dark winter months. Luckily there is a summer after winter. I also have to thank our earlier flatmates, especially Andrew, with whom I discussed many a problem from home-made philosophy to waste-water ponds.

Last but not least I would like to thank my family, who were far away in space but not in spirit. My brother Thilo presented me with a few selected paintings, my father Eckart was always able to entertain us all and my mother Johanna was the soul of the family.

Contents

At	ostra	ct		i
Ac	knov	wledge	ements	ii
Lis	st of	Figur	es	viii
Lis	st of	Table	S	xi
1	Intr	oducti	ion	1
	1.1	Scann	ing Probe Microscopy	1
		1.1.1	Near-Field Microscopes	1
		1.1.2	Short-Range Interaction	1
		1.1.3	Image Generation	2
	1.2	Comp	uter Control for SPM	3
	1.3	DSP-0	Controlled Microscope	5
		1.3.1	Height Control	6
		1.3.2	Spectroscopy	6
		1.3.3	Convenient Service Tool	7
		1.3.4	Position Control	7
		1.3.5	Novel Imaging Modes and Nano-Manipulation	8
2	Pro	be Mi	CLOSCODY	9
_	2.1	Theor	etical Background	9
		2.1.1	One Dimensional Tunneling	9
		2.1.2	Standard Model	12
	2.2	Gener	al Design Considerations	18
	2.3	Essent	tials for Scanning Probe Microscopy	20
	2.0	231	Probe Head Overview	20
		2.3.2	Microscope Overview	24
		2.3.3	Operation of the Microscope	26
3	Med	hanics	5	29
-	3.1	Movin	g the Microscope and the Scanning Tip	29
		3.1.1	Piezoelectric Effect	29
		3.1.2	Piezoelectric Actuators	36
		3.1.3	Movement of the Probe Head	43
	3.2	STM '	Tip	47
		3.2.1	Tip Material	48
		3.2.2	Tip Production	48

	3.3	Vibration Isolation	54
		3.3.1 Necessity of Vibration Isolation	54
		3.3.2 Simple Spring-Mass System	54
		3.3.3 Transmissibility	56
		3.3.4 Air Table and Damping Stack	59
		3.3.5 Vibrational Modes of Probe Head and Central Actuator . 6	30
		3.3.6 Conclusion	33
		3.3.7 Horizontal Ringing	35
	3.4	Thermal Compensation	36
4	Con	itrol 7	'1
	4.1	Microscope as a Control System	71
	4.2	Feedback Control	71
		4.2.1 Stability	73
		4.2.2 Bandwidth	74
	4.3	Direct Digital Control	75
		4.3.1 Aliasing	76
		4.3.2 Zero Order Hold	76
		4.3.3 Quantization	77
	4.4	Bandwidth of Sampled-Data Systems	77
		4.4.1 Reconstruction	79
	4.5	Microscope Control	31
	4.6	Imaging Modes	33
5	Elee	ctronics 8	4
	5.1	Design Specifications	34
		5.1.1 Speed	34
		5.1.2 Noise, Resolution and Dynamic Range Considerations 8	34
		5.1.3 Tunneling Current	36
		5.1.4 Piezoelectric Control Voltages	37
		5.1.5 Bias Voltage 8	38
		5.1.6 Input Channel	39
		5.1.7 Data Transfer)0
		5.1.8 Accuracy) 1
	5.2	Physical Organization of the Electronic Hardware)3
		5.2.1 Modularity)3
		5.2.2 Organization)3
	5.3	DSP System)5
		5.3.1 DSP)5
		5.3.2 DSP System Interface)5
		5.3.3 Overview of the DSP System Interface	00
		5.3.4 Buffer, Address Decoding and Clock)2
		5.3.5 Conversion between Parallel and Serial Data 10)2
	5.4	Probe Electronics	0
		5.4.1 Overview	0
		5.4.2 IVC Module	1
		5.4.3 Future Options	27
		5.4.4 IVC Module Noise	27
		5.4.5 ADC module	32
		5.4.6 HV module	10

iv

		5.4.7	Bias Module
		5.4.8	The Switchboard
6	Soft	ware	152
	6.1	Overvi	ew
	6.2	Progra	mming the DSP
		6.2.1	Programming
		6.2.2	Processor
	6.3	DSP N	lain Program
		6.3.1	Single Program Approach
		6.3.2	Polling
		6.3.3	Main Routine
		6.3.4	Output to Probe Electronics
		6.3.5	Data Transfer 157
		6.3.6	Tasks 157
	64	Approa	ach 158
	0.1	641	Step 158
		642	Detach 158
		643	Find 161
	6.5	Sample	Investigation 161
	0.0	6.5.1	Baster Scan 161
		652	Linescan 163
		6.5.3	Acquisition Methods 163
		654	Characteristic Curves 168
	6.6	Sten R	
	6.7	PC Pr	ogram 168
	0.1	671	PC Main Routine 168
		672	Rester Scan 171
	68	Imago	Dienlay 171
	6.0	Contro	Algorithm 173
	0.9	6.0.1	PID Control 173
		692	Discretization 173
		693	Predictor Type Controller 177
		694	Software Control 179
		695	Parameter Tuning 180
		696	Outlook 181
		0.0.0	Outlook
7	Syst	em	182
	7.1	Introdu	action
	7.2	System	a Speed
		7.2.1	System Dead Time
		7.2.2	Measured Response Time
		7.2.3	Modeled Bandwidth
	7.3	Step Si	ze of Tip-Sample Approach
		7.3.1	Automatic Approach
		7.3.2	Approach Speed
		7.3.3	Total Approach Time
		7.3.4	Approach Speed of Second Method
		7.3.5	Recorded Tip-Sample Approach 194
	7.4	Scan N	fethods

	7.5	7.4.1 Scan 7.4.2 Cho System Nois 7.5.1 7.5.2 HV 7.5.3 System	n Speed osing an Ac se at Signal No and Bias Mo em Signal-to	quisition ise odule No o-Noise F	Meth	od • •	· · · · · ·	· · · · · · · ·	· · · · · · · · ·	•	 	 	· · · · · · · · ·		196 198 199 199 202 203
8	Exp	eriments													206
0	81	Characteris	tic Curves												206
	0.1	811 <i>I-s</i> (Curve			• •	•••					•••	• •		206
		812 <i>I-V</i>	Curve			<u>.</u>									206
	8.2	Raster Scan	Images										•		200
	8.3	TEM Grid	i iniages			• •	• •	•••	• •	•		• •	• •	•	203
	0.0	831 Incre	emental Met	thod	• • •	• •	•••	• •	• •	•	• •	•••	• •	•	200
		832 Pog	Method			· · ·	• •		• •			• •	• •	•	210
	84	Granhite	S Mictilou .			• •	• •	• •	• •	• •	•	• •	• •	•	210
	0.1	841 Into			• • •	• •	• •	• •	• •	•	• •	• •	• •	•	210
		8.4.1 Intel 8.4.2 Imag	ro Sizo and	Corrugat	···	• •	• •	• •	• •	•	•	• •	• •	•	212
		8.4.2 Illiag	ge Size and	Corrugat	. 1011	• •	• •	• •	• •	• •	•	• •	• •	•	210
		8.4.3 NOIS	e ritering	····	•••	• •	• •	• •	• •	•	•	• •	• •	•	210
		0.4.4 1011	aces on Gra	pinte		• •	• •	• •	• •	•	•	•••	• •	•	211
9	Sum	mary and	Conclusion	n											219
	9.1	Summary													219
		9.1.1 Mec	hanics												219
				1 0 0 0 0 0	8 S S								1		000
		91.2 Elec	tronics	1 2 2 2 2				S 12	2.2	32 V.				100	2.20
		9.1.2 Elec 9.1.3 Exp	tronics erimental R	esults	• • •	•••	• •	•••	•••	• •	•	• •	• •	•	220
	9.2	9.1.2 Elec 9.1.3 Expe Conclusion	tronics erimental R	esults .	· · · ·	· · · ·	•••	· · · ·	•••	•••		· ·	•••	•	220 221 222
	9.2	9.1.2 Elec 9.1.3 Expe Conclusion	erimental R	esults .	 	 	• • • • • •	 	 	• • • •		 	 		220 221 222
Α	9.2 Mec	9.1.2 Elec 9.1.3 Expe Conclusion hanics	tronics erimental R	esults .	 	 	••• •••	 	 	 		 	· · · · · ·		220221222222223
A	9.2 Mec A.1	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri	tronics erimental R c Actuator 1	esults .	• • • • • • • •	· · ·	· · · ·	 	· · · · · ·	· · · · ·		 	· · · · ·		220 221 222 223 223
A	9.2 Mec A.1 A.2	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an	tronics erimental R c Actuator I Electrode M	esults . Propertie	28	· · · · ·	· · · ·	· · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·		 	· · · · ·		220 221 222 223 223 223
A	9.2 Mec A.1 A.2 A.3	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of	tronics erimental R c Actuator I Electrode N the Actuato	esults . Propertie Material or	28 	· · · · ·	· · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · ·	· · · · · · · ·	· · ·	220 221 222 223 223 223 223 225
Α	9.2 Mec A.1 A.2 A.3 A.4	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of	c Actuator I Electrode N the Actuato of the Actuat	Propertie Material or	es	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 220 221 222 223 223 225 226
A	9.2 Mec A.1 A.2 A.3 A.4	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato ical Sensitiv	Propertie Material Dr ity	es	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 220 221 222 223 223 223 225 226 226 226
Α	9.2 Mec A.1 A.2 A.3 A.4	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori	tronics erimental R c Actuator I Electrode N the Actuato of the Actuatical Sensitiv zontal Sensi	esults . Propertie Material or itors ity tivity .	es	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	220 221 222 223 223 223 223 225 226 226 227
A	9.2 Mec A.1 A.2 A.3 A.4	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational	tronics erimental R c Actuator I Electrode N the Actuato of the Actuatical Sensitiv zontal Sensi Modes	esults . Propertie Material or itors tivity	es	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	220 221 222 223 223 223 223 225 226 226 226 227 232
A	9.2 Mec A.1 A.2 A.3 A.4 A.5	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato ical Sensitiv zontal Sensi Modes cational Moo	Propertie Material or tity tivity . des of the	es	 	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	220 221 222 223 223 223 223 225 226 226 226 227 232 232
A	9.2 Mec A.1 A.2 A.3 A.4 A.5	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long	c Actuator I Electrode M the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes ational Moo gitudinal Vi	Propertie Material or ity tivity . les of the bration .	es	 	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	220 221 222 223 223 223 225 226 226 226 227 232 232 233
A	9.2 Mec A.1 A.2 A.3 A.4 A.5	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Trar	c Actuator I Electrode M the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes ational Moo gitudinal Vi sverse Vibra	Propertie Material or ity tivity . les of the bration . ation	es	 	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	220 221 222 223 223 223 225 226 226 226 227 232 232 233 237
A	9.2 A.1 A.2 A.3 A.4 A.5	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes ational Moo gitudinal Vi insverse Vibra ration of the	Propertie Material or ity tivity les of the bration . ation	es	 	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		220 221 222 223 223 223 225 226 226 226 227 232 232 233 237 238
A	9.2 A.1 A.2 A.3 A.4 A.5	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr A.5.5 Bean	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes rational Moo gitudinal Vi isverse Vibra ration of the m Vibration	Propertie Material or ity tivity . les of the bration . ation Probe H	es		· · · · · · · · · · · · · · · · · · ·								220 221 222 223 223 223 225 226 226 226 227 232 232 233 237 238 241
A	9.2 A.1 A.2 A.3 A.4 A.5	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr A.5.5 Bean Thermal Dr	c Actuator I Electrode M the Actuato of the Actuato	Propertie Material or ity tivity . les of the bration . ation Probe H	es		· · · · · · · · · · · · · · · · · · ·								220 221 222 223 223 223 225 226 226 226 227 232 232 232 233 237 238 241 242
A	9.2 A.1 A.2 A.3 A.4 A.5	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr A.5.5 Bean Thermal Dr	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes cational Moo gitudinal Vi isverse Vibra cation of the m Vibration	Propertie Material or ity tivity . les of the bration . Probe H 	es		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		220 221 222 223 223 223 225 226 226 226 227 232 232 233 237 238 241 242
A	9.2 A.1 A.2 A.3 A.4 A.5 A.6 Elec	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr A.5.5 Bean Thermal Dr tronics	tronics erimental R c Actuator I Electrode M the Actuato of the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes ational Moo gitudinal Vi isverse Vibra- ation of the m Vibration rift of the ST	Propertie Material or ity tivity . les of the bration . ation Probe H	es	 				医子子 计不可计算 化化学学 化化学学 化分子 化分子分子 化分子分子 化分子分子					220 221 222 223 223 225 226 226 226 227 232 232 233 237 238 241 242 242 246
A B	9.2 A.1 A.2 A.3 A.4 A.5 A.6 Elec	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr A.5.5 Bean Thermal Dr tronics B.0.1 Case	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes ational Moo gitudinal Vi isverse Vibra tation of the m Vibration rift of the ST cading Shift	Propertie Material or ity tivity les of the bration . ation Probe H Register	es		· · · · · · · · · · · · · · · · · · ·								220 221 222 223 223 223 225 226 226 226 227 232 232 233 237 238 241 242 242 246 246
A B	9.2 A.1 A.2 A.3 A.4 A.5 A.6 Elec	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr A.5.5 Bean Thermal Dr tronics B.0.1 Case B.0.2 Puls	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato of the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes trational Moo gitudinal Vi isverse Vibra tration of the m Vibration fift of the ST cading Shift e Stretcher	Propertie Material or itors ity tivity bration . ation Probe H FM Register	es		· · · · · · · · · · · · · · · · · · ·			医白白 化化合物化化合物合物化合物合物化合物合物合物合物合物合物合物合物合物合物合物合					220 221 222 223 223 223 225 226 226 226 227 232 232 233 237 238 241 242 246 246 246
A B	9.2 A.1 A.2 A.3 A.4 A.5 A.6 Elec	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.3 Tran A.5.4 Vibr A.5.5 Bean Thermal Dr tronics B.0.1 Caso B.0.2 Puls B.0.3 Com	tronics erimental R Electrode N the Actuato of the Actuato of the Actuato of the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes stational Moo gitudinal Vi isverse Vibra cation of the m Vibration rift of the ST cading Shift e Stretcher imunication	Propertie Material or itors itivity tivity bration . Probe H Register Protocol	es e Actu Head l		· · · · · · · · · · · · · · · · · · ·								220 221 222 223 223 223 225 226 226 226 227 232 233 237 238 241 242 246 246 246 248
A B	9.2 A.1 A.2 A.3 A.4 A.5 A.6 Elec	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr A.5.5 Bean Thermal Dr tronics B.0.1 Case B.0.2 Puls B.0.3 Com B.0.4 Swit	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato of the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes trational Moo gitudinal Vi isverse Vibra tration of the m Vibration tift of the ST cading Shift e Stretcher imunication chboard Co	esults . Propertie Material or ity tivity . les of the bration . Probe H M Register Protocol nnections	es		· · · · · · · · · · · · · · · · · · ·								220 221 222 223 223 223 225 226 226 226 227 232 232 233 237 238 241 242 246 246 246 248 249
A B	9.2 A.1 A.2 A.3 A.4 A.5 A.6 Elec	9.1.2 Elec 9.1.3 Expe Conclusion hanics Piezoelectri Silver as an Capacity of Sensitivity of A.4.1 Vert A.4.2 Hori Vibrational A.5.1 Vibr A.5.2 Long A.5.3 Tran A.5.4 Vibr A.5.5 Bean Thermal Dr tronics B.0.1 Case B.0.2 Puls B.0.3 Com B.0.4 Swit Probe Elect	tronics erimental R c Actuator I Electrode N the Actuato of the Actuato of the Actuato of the Actuato of the Actuato of the Actuato ical Sensitiv zontal Sensi Modes ational Moo gitudinal Vi isverse Vibra ration of the m Vibration fift of the ST cading Shift e Stretcher imunication chboard Co gronics	esults . Propertie Material or ity ity tivity . les of the bration . Probe H FM Register Protocol nnections	es		· · · · · · · · · · · · · · · · · · ·								220 221 222 223 223 225 226 226 226 226 227 232 232 233 237 238 241 242 246 246 246 246 248 249 250

vi

	B.1.2	Noise Bandwidth	53
	B.1.3	Step Rise Time	54
	B.1.4	Choosing Optimum Gain	56
	B.1.5	Sallen-Key Low-Pass Filters	57
B.2	Inverti	ing Operational Amplifier	61
	B.2.1	Voltage Signal Gain	61
	B.2.2	Real Amplifier	62
	B.2.3	Noise Gain	64
	B.2.4	Transimpedance	65
	B.2.5	Amplifier Voltage Noise	66
	B.2.6	Future Options	68
	B.2.7	T-Network	72
B.3	Logari	thmic Conversion	75
	B.3.1	Signal Rectifier	75
	B.3.2	Transconductance Amplifier	75
	B.3.3	Logarithmic Converter	77
	B.3.4	Reference Current	79
0.0			
Soft	ware		53

D Circuits

С

286

List of Figures

1

1.1 1.2	Image Acquisition Modes . Scanning Probe Microscope .	2 3
1.3	Interaction between PC, DSP and Probe Head	6
2.1	Energy Levels of Two Metals 10	0
2.2	Energy Levels	0
2.3	Standard Model	4
2.4	Sinusoidal Sample Model 1	4
2.5	Field Emission	6
2.6	Probe Head	9
2.7	Zeiss Probe Head	9
2.8	Tip and Sample	1
2.9	Piezoelectric Actuator Tube	2
2.10	Beetle-type Probe Head	3
2.11	Overview of the Scanning Tunneling Microscope 24	4
2.12	Coarse Approach Ramp 23	5
2.13	SPM System 2	5
3.1	Block of Piezoelectric Material 30	0
3.2	Creep of Center Actuator 38	5
3.3	Polarization of the Ceramic 30	6
3.4	Center Actuator	8
3.5	Outer Actuator	9
3.6	Double-Piezoelectric Effect (y) 44	2
3.7	Double-Piezoelectric Effect (x)	3
3.8	Typical Step Size	4
3.9	Calibration of the Probe Head 44	5
3.10	Tip Production	9
3.11	Electrochemically Etched Tips	1
3.12	Crashed Tip	2
3.13	Transmissibility	4
3.14	Induced Ringing	5
3.15	Power Spectrum of Ringing 6	6
3.16	Dimensions and Materials of Probe Head and Sample Holder 67	7
3.17	Measured Thermal Drift	9
4.1	Control Loop	2
4.2	Gain Margin 73	5
4.3	Sinc Function	9

4.4	Reaction Time	81
4.5	Feedback Control Loop of the STM System	82
F 1		05
5.1	System Overview	85
5.2	Electronic Hardware	93
5.3	Block diagram of the DSP system interface	100
5.4	Block diagram of the Buffer, Decoder and Clock	103
5.5	SPU and PSUs	104
0.0 5.7	Serial-to-Parallel Converter	100
0.1	Parallel-to-Serial Converter	100
5.0	Transimpedance Amplifer and Source Model	109
0.9 E 10	Transimpedance Amplifer with Depositio Conscitutes	116
5.11	Noise Model for the Transimodenee Amplifor	117
5.12	Superposition Principle	110
5.12	Massured and Modeled Frequency Response	119
5.14	Measured and Modeled Frequency Response	121
5 15	Signal Noice and Open loop Coin	122
5.16	Signal Noise and Open loop Cain	120
5.17	Signal to Noise Batic of Current to Voltage Converter (66 pF)	120
5.18	Signal-to-Noise-Ratio of Current-to-Voltage Converter (5 pF)	120
5.10	ADC Module	132
5 20	Switched Capacitor Network	134
5.21	HV Module	140
5.22	High-Voltage Amplifier	143
5.23	Bias Module	149
0.20		1 10
6.1	Software	153
6.2	Main Routine	155
6.3	Execution of a Task	157
6.4	Approach	158
6.5	Step	159
6.6	Detach	160
6.7	Find	161
6.8	Raster Scan	162
6.9	Linescan	163
6.10	Recording Tunneling Current	164
6.11	Point to Point Movement	166
6.12	Moving Trajectories	166
6.13	Settling Options	167
6.14	Step Response	169
6.15	PC Main Routine	170
6.16	Alternating Two Tasks	172
7 1	Direct Ster Deserves	104
1.1	Step Besponse	104
1.2	Simulated System Despanse Cair	100
1.5	Simulated System Response, Gain	101
1.4	Simulated System Response, Phase	100
1.0	Tunneling Current on Approach (Ourseinen)	194
1.0	i uniening ourient on Approach (Overview)	139

.

7.7	Slope	197
7.8	Calculated Noise of Input Channel	200
7.9	Signal-to-Noise Ratio of Current-To-Voltage Converter and ADC	
	Module	201
7.10	Total Noise of the System	204
8.1	<i>I-s</i> Curve	207
8.2	Apparent Barrier Height Curve	208
8.3	<i>I-V</i> Curves	209
8.4	TEM Grating	211
8.5	TEM Grating, SEM image	212
8.6	Grid Imaged with Pogo Method	213
8.7	Limits of Actuator Range	213
8.8	Graphite	214
8.9	Graphite Structure	214
8.10	Tip Change and Close-up	216
8.11	2D Fourier Transformation of Graphite Image	217
8.12	Terraces on Graphite	218
8.13	Single Terrace on Graphite	218
A.1	Horizontal Actuator Deflection	228
DI		
B.I	Pulse Stretcher Circuit	247
B.2	Pulse Tagger Circuit	247
B.3	Step Response of two <i>RC</i> low-pass filters	255
B.4	Sallen-Key Bessel Low-Pass Filter	257
B.5	Inverting Operational Amplifier	261
B.6	Amplifier Voltage Noise	269
B.7	Amplifier Voltage Noise	270
B.8	T-Network	272
B .9	Noise Control T-Network	274
B.10	Compensation Network	274
B.11	Transconductance Amplifier	276
B.12	Logarithmic Converter	277
B.13	Reference Current	280

List of Tables

2.1	Tip-Sample Approach 21
3.1 3.2	Measured Capacitance of Quadrants41Measured Longitudinal Resonance Frequencies61
5.1	Low Bias Current Operational Amplifiers 114
7.1	Time Constants
7.2	Measured and Calculated Input Channel Noise 202
7.3	Measured Noise of HV and Bias Module
A.1	Properties of the Center Actuator
A.2	Properties of the Outer Actuators
A.3	Effective speed of sound in center actuator
A.4	Natural Frequencies of the Probe Head
A.5	Thermal Expansion Coefficients
A.6	Thermal Expansion of the STM
B.1	Operational Amplifier Noise
B.2	Estimate and Comparison of Time Constants
B.3	Gain Values for Sallen-Key Low-Pass Filter
B.4	Frequency Values for Sallen-Key Low-Pass Filter