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Abstract 

A scanning tunneling microscope with a focus on digital instrumentation has 
been built. The aim of this project was to allow a digital signal processor full 
control over all essential microscope variables, especially simultaneous control 
of the vertical and horizontal tip position. 

Due to the fact that its operation is controlled by software, this system 
offers convenient operation and considerable flexibility, allowing different modes 
of operation, such as topographical and spectroscopic scans. Presently this 
microscope is the only one in ew Zealand that allows the operator full software 
control over the tip position and bias voltage, thereby allowing it to become a 
powerful research tool. 

Atomic scale images on graphite were successfully recorded. The spatial 
resolution of the microscope was estimated to be 5 pm vertically and 40 pm hor
izontally. Two different imaging methods were demonstrated on a gold sputtered 
TEM grating with a scan area that was larger than 4 j.lm x 4 j.lm. One method 
has variable horizontal scan speed, while the other method can possibly be used 
for nanolithography. Both show the flexibility of this system. 

Although digital electronics is often perceived as being slower and noisier 
than analog electronics, in this instrument it did not decrease the data acqui
sition speed nor did it reduce the signal-to-noise ratio. The bandwidth of the 
closed-loop controlled microscope is currently about 1 kHz, limited by the band
width of the current-to-voltage converter, an analog component. The resolution 
is limited by the large gain of the high-voltage amplifiers used to drive the ac
tuators. With a faster current-to-voltage converter and a reduced high-voltage 
amplifier gain, a bandwidth of 8 kHz should be possible with a vertical resolution 
of less than 2 pm and a horizontal resolution of 10 pm. 
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