Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The Infinity:

 Mobius Band in Fashion Zero Waste Pattern Cutting MethodZewei Li
2021

at Massey University, Wellington, New Zealand

Abstract

The textile and fashion manufacturing industry entered a period of rapid development after the Industrial Revolution and the ensuing environmental problems have become increasingly serious. Fabric waste made by both traditional industry production processes and consumer behaviour has contributed to these problems. In recent years, fashion design practitioners have looked to zero waste pattern cutting methods as a response to fabric waste issues today. This practice-led fashion design research project investigates zero waste pattern cutting using a Mobius band to eliminate fabric waste, reducing manufacturing with minimal cutting lines and extending the life of the fabric.

My design process, utilising action research, begins with analysing existing zero waste pattern cutting methods nd explores the Mobius band to continuously develop and generate innovative garment shapes and test feasibility in varied fabrics, size, and dimension. This creative method aims to explore the design potential for innovative diverse shapes and multiple wear possibilities to meet the individual needs of the 'new' consumer.

```
Deb Cumming and Sue Prescott
For your guidance and immense support throughout this project.
Caroine Campbell
For the opportunity to do this Master of Design.
Kendra Marston
For the writing support
Emily Fei
My parents and friends
For continuous love and generous support.
```


Content

Introduction

o. 1 Experiential Motivation of This Research

Fabric waste has become a significant issue as a result of the rapid development of the fast fashion industry and vescources is not an acceptable transaction and therefore creative solutions are needed to achieve more sustainable outcomes.
The reason why I wanted to investigate this topic is related to my internship experience at a fashion trade company the factory, technician's office, sampling studio, and the export department which gave me the chance to analyse work opprations. This experience helped me gain a clearer understanding of mass production processes and the use of fabrics to reflect on the environmental impact of the fashion industry today.
Based on my observations, it became very clear that there were multiple points in the design and production process that led to fabric waste. During the creative process of sampling and design development, materials were
overused. The cutting out of samples, often seen in mass production, did not adhere to minimal fabric use. There were multiple sampling requests carried out prior to mass production, focusing on the design style of the garments and the testing of the patterns for different sizes and colours. These were replicated for the sampling studio, the customer, intermediate trader, and for the foreign trade merchandiser. I Ilso found that the skill and knowledge
of the designer and sampling studio workers infuenced the number of samples made and how much waste was produced.
During mass production, 85% of fabric used is considered the accepted standard for lay plan approval (Rissanen and McQuillan 11). I found that in this company, in many instances, it can be 80% or even lower, and for a brand
with high--quality inspection standards or a brand with a relatively high retail price point, the use and waste of with high-quality inspection standards or a brand with a relatively high retail price point, the use and waste of
materials may be even greater in mass production. Due to the possibility of multipl ereworks, the consumption of threads and recuts of a single piece of fabric may also increase. Understanding some of the causes of fabric waste Ind analysing the impact of different imperatives by separate departments was helpfutl. It became apparent during his intershhip that many of these processes were not recognized as a problem and were accepted as the norm in the consumers, and industry to reflect and take responsibility for the environment.

For this project. I thought that a new design thinking is neede considering both pre-consumption and post-consumption wast

consumption and post-consumption waste.
The context of this exegegis is provided in Chapter One; Sustainable fashion and waste, impacts of industry overproduction and vereconsumption. Zero waste pattern making methods were researched to best reduc or e liminate tabric waste in the early stage of garment making. Thada broad interest in both creative patter
cutting and zero waste pattern cutting methods, such as iggaw puzzles, geometric garment shapes, cut-one piece method and related apparel techniques. I have introduced these towards the end of Chapter One to explain my design precedents.
Chapter Two of this exegesis starts with the introduction of my methodology-action research in desig (Swann $50-51$); Creative drawing and initial pattern explorations. I analysed various cutting lines within (Swann 50-51); Creative drawing and initial pattern explorations. I a alalysed various cutting lines within
minimal shapes in garments and investigated body measurements and proportions to explore garment multi-wear possibilities. Incorporating the concept of Mobius band solved many of my initial design aims to create new design shapes with multiple garment variants, wear choices and different sizes. This is fully explained within my design process. Reflective practice is crucial within these design explorations and used to consider body measurements and scale in a new way and time is taken to understand the precio
nature of fabric. I think it is incredibly important for fashion designers to understand fabrics, especilly in sustainable fashion.
Chapter Three presents my final collection. The Infinity Mobius band combined with cut-one-piece metho eliminates fabric waste in the pattern making process by consciously reducing cutting lines to ensure fabric
integrity and longeity. The pattern design method is based on the human body measurements and the relationship of design parts to support garment changes and further developments of alternative garmen designs from the same pattern. This not only reduces the sampling process of pattern making but also give the wearer greater creative space and added options for gaining new garments from the 'old' garment. This Mobius band zero waste pattern-cutting method is an alternative design production system to contribute solutions to current fabric waste issues.

Chapter one: Context Review-Sustainable Fashion and Waste

In order to give a broader context to my research it was important to investigate some of the industry and societal changes. Because these large-scale and complex problems mean it is impossible to make a difference through a single change, what we need to do is to discover the different environmental responsibilities of collectives and individuals in order to implement design solutions (O'Mahony 52). Understanding consumers and their needs within new social contexts is key to developing relevant and creative technical design applications.

While most people have intentionally or unintentionally neglected the issue of fabric waste for many years, the new sustainable revolution may bring hope of solving the problem. In the
Anthropocene, the growth of human power made us ignore the changes in the surrounding environment and even react indififerently to our negative environmental impacts (LeCain $3-6$). If the traditional apparel industry operation and make a profit of based on ensuring quality, eesthetics, and meeting market expectations under low-risk and compliance conditions folder industry modeds priorititied profit, thentodayy sindustryshould foreground environment considerations. The fourth Industrial Revolution, which is "powered by a constellation of new anovations across the physical, digital and biological worlds, from 3D printing and artificial intlligence to advances in

A new generation of consumers is giving up the pursuit of fast fashion, and sustainable fashion is entering the public eye. The good news from the Thredup 2019 resales report shows consumers are beginning to pay more attention to the meaning and concept behind the brand, especially in erms of sustaianaiilty. The consumption mindset of the younger generation in this respect is
worthy of appreciation. Seventy four per cent of people between the ages of 18 and 29 prefer to buy goods from sustainable brands (Thredup 12). And in a survey of consumers' expectatio buy goods from sustainable errands (Thredup 12). And in a survey of consumers expectations
for clothing, 59% want companies to create and produce more ethical and sustainable fashion products (Thredup 11). This will allow the development of sustainable fashion strategies to be valued by capital while reducing their operational resistance. This highights that consume consciousness has begun to change and with the next major consumer group demanding new practices.

In addition, this year the most serious global economic crisis after the second world war Guterres 1), coviD-19, has provided the conditions and opportunity for the continuous rowth of sustainable fashion and the cultivation of new consumer awareness. The epidemic as hit the economy hard, and the apparel industry has exposed its vulnerability in this crisis
Amed et al. 11). The number of company bankruptcies has increased sharply, therefore the memployment rate has also risen dramatically (Amed et al. 6). People's financial difficulties
and the anxiety caused by the epidemic are all affecting their consumption behaviours, which indicates "consumer instinct to prioritise neecssary over discretionary yoods" (Amed et al. 6), on apparel. Just as the shift in Gen-Z and Millennial consumer intentions mentioned above was happening quietly before the pandemic (Amed et al. 19), the pandemic does also make sustainable first" more appealing to the general public (Amed et al. 8). "The pandemic will brin views around materialism, over-consumption and irresponsible business practices" (Amed et al. 18). The process of reshaping the apparel industry or finding new value opens the doo For companies to accept the penetration of sustainable fashion, because it will help to attrac increasingly frugal and disillusioned consumers"(Amed et al. $17-19$).

"The crisis is a catalyst that will shock the industry into change-now is the time to get ready for a post Coronavirus world." (Amed et al. 8)

The definition of sustainability in the past 50 years has been controversial, and its meaning
has grauualy hhanged ot meeet the needs of develomenet in the fathion industry (arrer 20.).
In the 1950s, the word emerged to describe issues related to social change and poverty, but has gradually changed to meet the needs of development in the fashion industry (Farrer 20),
In the 1950s, the word emerged to describe issues releted to social change and poerty but
now it is more erepresentative of envirionmental protection and recycyling (Farrer 20), as well as
 environmental resources (Lewis and Gertsakis 4).

Sustainable fashion is the apparel industry's response strategy to environmental and social
issues. In addition, it is asso important to ensure the healthy development of animal and plant species, because this will indirectly affect human society. So how are we to determine whethe
the current model is sustainable? Herman Daly's three conditions give a clear answer:
"Its rates of use of renewable resources do not exceed their rates
of regeneration Its rates of use of non-renewable resources do of regeneration; Its rates of use of non-renewable resources do
not exceed the rate at which sustainable renewable substitutes are not exceed the rate at which sustainable renewable substitutes are
developed; and Its rates of pollution emission do not exceed the assimilative capacity of the environment"(Meadows et al. 209).
Unfortunately, the current state of society's operations has exceeded the renewable rate of resources and the degree of decomposition of pollutants. This consumption of reso
the speed of waste production are clearly unsustainable (Lewis and Gertsakis 6).

However, sustainable design strategies give designers the opportunity to reassess the value of
raw materials and products, and respondin a morecomprehensive way (Mcouillan "Zero-Waste raw materials and products, and respond in a more comprehensive way (McQuillan "Zero-Waste
Design Practice: Strategies and Risk Taking for Garment Design" 85 . Today the methods snd Design Practice: Strategies and Risk Taking for Garment Design" 85). Today, the methods and
decisions adopted by designers should also be based on environmental, economic, social and decisions adopted by designers should also be based on environmental, economic, social and
future development considerations, and aim at improving the social environment (Lewis and Gertsakis 5). Therefore, in response to the problem of fabric waste production in the apparel
industry, zero waste could be one of many effective methods. Atthough fabric scraps can be

Goal	Attribute ${ }^{1}$	Outcomes
Reduce	Preventative	Most desirable \wedge
Reuse	Predominantly ameliorative Part preventative	
Recycle	Predominantly ameliorative Part preventative	
Treatment	Predominantly assimilative Partially ameliorative	∇
Disposal	Assimilative	Least desirable

(Fig. 2) Waste management (Lewis and Gertsakis 7).
According to this table, reducing waste is the most desirable way to solve the waste issue. To avoid waste and reduce waste is to reduce the environmental impact of texties throughout their
life cycle such as the impact of crops on the water, chemicals in the soil and rivers when makin life cycle such as the impact of crops on the water, chemicals in the soil and rivers when making
fabrics, the emission of carbon dioxide during transportation, and finally impact on the soil
when, resources, and it it ill also be the most cost-effective method (Lewis and Gertsakis 11). Therefore zero waste pattern cutting could be a good method to or respond to the fabric waste issue, because it controls waste at the e eeginning of the clothing making process. Although reducing waste in
design and production is only the tip of the iceberg for complexs ustainable apparel strategies, design and production is only the tip of the iceberr for compless sustainable apparel strategies
the contribution from reducing the impact of artric w wste onthe environmet will besgife the contribution from reducing the impact of fabric waste on the environment will be significant
(Rissanen "From 15% to $0^{\circ} 7-8$. Thus, my Mobius band zero waste pattern cutting approach is primarily aimed at reducing fabric waste at the design stage and taking into consideration multiple pattern and garment derivatives from the fabric and postconsumer waste.

Investigations of fabric waste highiights the importance of the designer's tabric choice (Aakko nd Koskennurmi-Sivonen 16-17. The composition of waste is complex, including not only by-products and surpluses of different production activites, but also commodities that are no
longer used (Lewis and Gertsakis 10 . The different waste materials determine how they will be disposed of. For example, the production of fabrics containing heary metals should be avoided, because it not only affects the air and soil, but also affects the human skin and nervous system Teli i 8 - -186). The use of polyester fabaric should be reduced because the ultra-fine fibres it
produces are harming marine animals and indirectly affecting humans. Natural fibre fabrics that consume a lot of resources in production like cotton (Teli 184), should be recycled as that consume a lot of resources in production like cotton (Teli 184), should be recycled as
much as possible. As Lewis and Gertsakis state, waste is "made up of different materials that should be treated differently - some shouldn't be produced, some should be reused, some
recycled or composted, some should be burnt and others buried"(Lewis and Gertsakis 7).

Approximately one thousand fifty million tonnes of textile waste is sent to landfills every year in the United States alone (Abnett 3). Textile waste can be divided into two sections, one is pre-consumer waste, the other is postconsumer waste (Gwilt and Rissanen 35). Pre-consumer
waste literally means waste eefore the goods are purchased, that is, textile waste during the
production process of clothes. According to an investigation by Gugnami and Mishra, 15 to production process of clothes. According to an investigation by Gugnami and Mishra, 15 to 20 percent of fabric is wasted in the process of cutting and making the garment (Rissanen
and Mceuillan 11). Take 2018 as an example, the fashion industry created 92 million tons of fabric waste (Rudenko). Part of the reason for the waste is the current mainstream clothing production model. often designers will only focus on design and the finished effect. The patternmaker will only consider how to meet the design requirements, and the constructor -
Secondly, "Post-consumer wate is thought of as pre-worn, manufactured garments that are sourced through second-hand d olthing mercranats and chantities" (Gwitt and R Rissanen 35). The
control of post-consumer waste is mainly decided and influeneed by the eonsumer themselves control of post-consumer wast is mainly ceaided and chantuenceed by the te ocssumement themselves
(Farrer 21). Take the UK fashion industry as an example, consumers donate clothes to (Farrer 21). Take the UK fashion industry as an example, consumers donate clothes to
Charities, second-hand stores or clothes banks, but more clothes stay in their wardrobe (Farrer 21). A large amount of clothing waste left the UK and was traded as recyclable fabric in other
countries, this is so called "green waste" (Farrer 20). Some of the better-quality clothes wilb be
re-sold in some countries and the rest will enter waste disposal factories that can shred the re-sold in some countries clothes and make them into cotton again or dump them in the landill. Even if designers an
factory employes make every effort to reduce waste in production, the end products can still be discarded as "unfashionable" products in favour of a new trend (McQuillan "Zero-Waste Desigg Practice: Strategies and Risk Taking for Garment Design" 87 . Therefore, today's huge
fabric waste is caused by both the fashion industry and consumers (Rissanen and Mcouvilaz fabric waste is caused by both the fashion industry and consumers (Rissanen and Mcouuilla
10) It t meaningful for me in my zero waste pattern cutting and design processto 10). It is meaningful for me in my zero waste pattern cutting and design process to think abou
consumers use of garments and the reuse of fabrics after consumption. In my proiect, therc consumers use of garments and the reuse of fabrics atter consumption. In my project, there
are multiple ways to wear a piece of garment, and new garments have been obtained by re cutting and re-constructing the same piece of garment.
Fabric is precious. Although the current technology makes it easy to produce, we are paying Fabric is precious. Although the current technology makes it easy to produce, we are paying
a more expensive price, even an irreversible one. Therefore, we must not only spend our thoughts on fabric waste disposal and recyccing, but also try at the design source e o ensure tha⿱
all decisions and methods are wihthin he soope of sustainable development (MCOilla "Zeroall decisions and methods are within the scope of sustainable development (McQuillan "Zero
Waste Design Practice: Strategies and Risk Taking for Garment Design" 86). A sustainabl Waste Design Practice: Strategies and Risk Taking for Garment Design" 86). A sustainable
fashion strategy aims, overall, to speakk to the multiple issues within the tabsin today. Zero waste fashion desigg brings an alternative, fabric-centric proceese
"Zero-waste, recycling, up cycling and working with advanced materials present pattern cutters with new challenges through contemporay fashion desizn" (Townsend Mills 1onent.
development of fashion design is inseparable from pattern making (Sharma 13), as the method of pattern making affects the design trend intentionally or unintentionally. ashion pattern making, which involves a process of constructing 3 D from 2 D , requires
nderstanding of the three-dimensional relationship between shape and body. This integrated association of the "pattern, the fabric, the shape, the body"(Tows send and Mills 105) to create garments is applicable to zero waste pattern cutting and my own pattern design research using
he Mobius band.

It would be meaningless to discuss the problem of fabric waste if a discussion of the pattern naking process is avoided. Creative pattern cutting (CPC) is the process of designing and cutting fabrics, and this process requires designers to fully understand the relationship
between the body and its covering (Townsend and Mills 104). This is dialogue between visual between the body andits covering(townsend and Niils 104 . This is a dialogue beween visual
and fabric forms, designers constantly explore shapes and forms to discover more potential possibilities for fabrics in fashion design (Townsend and Mills 104). Creative pattern cutting has become more valued in the development of contemporary fashion design. Fashion pattern making is not just a process of obeying instructions and commands, it is also a part of the design (Rissanen from 15% to 0 . When we pay more attention to the relationship between form (Townsend and Mills 104).

Zero waste fashion is "the design and manufacture of fashion that aims to eliminate the roduction of textile waste"(Rissanen and McQuillan 212). Zero waste pattern cutting is the process of cutting and creating garments by making full use of the length and width of the
fabric. This process helps to avoid $15 \%-20 \%$ of textile waste generated in the traditional fashion patterning process (Townsend and Mills 104). Applying creative pattern cutting
as a means to zero waste pattern cutting may enrich its knowledge system and create new possibilities (Townsend and Mills 110). However, if the pattern cutter neglects the control of
clothing performance, quality, technique, and design in cutting, it will bring about unknown o unresolved problems (Townsend and Mills 105), which may lead to dull and repeated garments. Finding a balance between the aesthetic appeal of apparel and the environment is an issue tha cannot be ignored. As introduced earlier, young consumers are concerned about sustainability but also prefer beautiful garments. Therefore, my goal is not only to reduce the cutting lim
while ensuring fabric zero waste, but also to ensure aesthetic appeal

The integrated relationship of the "pattern, the fabric, the shape, the body" to create garments (Townsend and Mills 105) was my primary focus throughour my research of designer precedent ro waste practice--based design research

The discovery of the Mobius band (Fig. 3) is atributed originally to the German mathematicians Johann Benedict Listing and August Ferdinand Möbius in 1858 (Thulaseedas and Krawcycyck gluing the two ends. Since the discovery of the mobius band, it has appeared in different felds including mathematics, engineering, science, and even art and magic (Thulaseedas and Krawcycyck 1). The Mobius band is more often used in architectural design, such as Peter Eisenman's Max Reinhardt Haus (Fig. 4) (Hodge et al. 90; Thulasedas and Krawcyyck 1)
which is a 34 -story multi-purpose tower (Hodge et al. 90). Although the building is divided by the ground plane and does not form a complete Mobius band visually, it is the product

(Fig. 3) The Mobius band (Thulaseedas and Krawczyck 1).
der of a design iteration starting from Mobius (Thulaseedas and Krawcezccc 2). The characteristic
of Mobius itself can provide penetration with space and visual production in architectur (Thulaseedas and Krawcycyck 2). For example, the infinite feature can make people experiene wonderful spatial and visual changes when walking around without being turned upside dow. dititonally, its transformation character can make the external and internal space interming Ashion pas and Krawczyek 2). The infinie feaure win aso help in adieving zero wase realises the possibility of varied wearing

(Fig. 4) Left: Max Reinhardt Haus (Thulaseedas and Krawcryck 2).
Right: Max Reinhardt Haus model (Hodge et tal. 91)

Fashion designer J. Meejin Yoon's conceptual project the Mobius (Fig. 5) takes the shape of the Mobius strip to create a felt A-ine slape dress (Hodge et al. 256 -257). The wearer
could d ip up the Mobius to create the dress around the body, and when unzippedi becomes a structured fabric loop on the floor (Hodge e tal. $256-257$. This was a simple use of the mobius theory to construct clothes without cutting and solve the issuo of excess fabric waste. However, He functionality of this garment is bit weak, and the use of this felt fabric let this dress look oo heavy and stiff, not allowing the fabric be fully utilised. In addition, the width of the fabric
nncreases the difficulty of winding the fabric around the body, so the fluidity of the fabric is also reduced.

There are many designers' creative pattern cutting methods or theories that influence m deas and open up my vision of afshion pattern making. For example, ickard Lindquist states deas and open up my vision of tashion pattern making. For example, Rickard Lindquiststates,
-patern outting is one of the activities that conssitute fashion design" (Rissannen and McQuillan 54). His kinetic construction theory focuses on the relationship between body movement and
joint points, balance cirections, and gament (Lindquist 7). In addition, he used traditional joint points, balanee directions, and garment (Lindqyist 7). In addition, he used traditional clothing styles like the Roman toga and Indian sari to conduct wrap clothing experiments in rrder to understand the movement and shape of the human body (rig. 6) (Lindquist $57-$-59)
This research influenced some of my arly toiles as these traditional garments are oriented to this research influenced some of my early toiles as the
fabric dimensions and draped in response to the body.
indquist's analysis of the traditional garment influent thinking about the baance direction and key biomechanical points (Lindquist 7). He explored human dynamic lines from early clothes, and combined patterns/locks with these dynamic lines to create a pattern early clothes, and combined patterns/ llocks with these dynamic lines to create a pattern
cutting method based on body movement. Compared t t o the traditional garments he studies, the cutting method based on body movement. Compared to the traditional garments sestudes, the
kinetic construction theory reduces the fabric dimension and makes it more ocnvenient or the
wearer to move. Howeever his one-piece-cut pattern shapes reduce the versatile usage of fabric wearer to move. However, his one-piece-ccut pattern shapes reduce the versatile usage of fabric

Julian Roberts' Subtraction Cutting method is another atternative process that clevery foccusse
on the negative space between the cloth and the body (Roberts 12 . It ooes however retain the on the eegative space between the cloth and the body (Roberts 12 . It does however retain tue
use of a conventional pattern/lock, rather than creating a new one. The advantage of the
. naking for innovative outcomes and reduces the dependence and restrictions on pattern piece numbers and sizing (Roberts 13). The 'Tunnel' technique is integral to the Subtraction Cutting ethod (Roberts 34), and involves constructing a tubular body with the cloth, and then leaving holes through which the body can pass. These holes can be connected and stacked in varying
order, and then based on this, the designer can start adjusting the design. During the design process, Roberts focuses on analysing the shape in front of him. It allows the designer to rethink the relationship between fabric, human body, and pattern. This process also makes he design result uncertain and unknown, where risks and opportunities co-exist. These risks can develop new positive possibilities in zero waste pattern cutting. A critical outcome is a
spatial relationship between the garment and the body with the potential for changeable and tansformable garments. His Sub-Cut dress (Fig. 7) is made of seven-meters-long white and ed cotton fabric, and this dress has no less than five kinds of wearing modes (Rissanen and McQuillan 67 7. This feature allows consumers to own 'multiple pieces' of clothing while only uying one piece of clothing (McQuillan and Rissanen 30). This will not only have the potential oo reduce the amount of fabric people purchase but also extend the useful life of the precious usual lengths for comparable garment types.

(Fig. 7)
Above:
Below: put dress front view (McQuillan and Rissanen 311).

Mills' design method is based on using an existing garment as a design prototype. After thinking and analysing it, she transforms it into a zero waste garment. For example, her Muse dress (Fig. 8) was designed with reference to the black Greek dress from the e 2009 Inba
Spector AW collection (Townsend and Mills 107). She used the traditional drape metho Spector AW collection (Townsend and Mills 107). She used he trational drape mehad she continueed to develop it using the full-scale mannequin. Atter that, the fabric is define and a preliminary 2 D pattern is produced the relationship between 3 D and 2 D , and helped to clarify the most important part of th waste pattern cutting (Townsend and Mills 108), and continued to develop the remaining unidentified parts while maintaining the stability of important parts. The main purpose of
wills' method is to focus on the design first and then study the pattern of the design Mills' method is to focus on the design first, and then study the pattern of the design, and
then think about how to mix the two to achieve the final product (Townsend and vills 108 . then think about how to mix the two to achieve the final product (Townsend and Mils 108)
This provides a useful base for learning more about zero waste shapes when the end garmen design is preferred.
Mills not only pays attention to the fluidity of the fabric in the development of design, but also retains the shapes of the fabric itself as much as possible, in an antempt to integrate
 interference with the natural state of the fabric while retaining the design prototype as much as possible (Townsend and Mills 108). During the entire development process of the Muse
dress, drape is used as the main method, and the flat pattern making method is added after the initil desien med main method, and the flat pattern making method is added ater the initial design and toiles, and the final outcome is achieved with comprehensive analysis an
improvement. Mills' method is time-consuming in the short term. By determining the desig of the garment first, then making it zero waste, the finished garments are more directional. This method helps to reduce the unpredictability and uncontrolability of earlier precedents methods discussed but designs may not be as innovative, and it is a time-consuming process.

Deb Cumming and Holly Mcquillan's project "Zero + One"(Fig. 9), is a product of zero waste design combined with on--piece cutting technology, it is the method of making
a piece of clothing with a continuous fabric. This project includes the design of three a piece of clothing with a continuous fabric. This project includes the design of three
coats and shows the application process in various fabrics. The esearch goal of this coats and shows hhe appicicaion process in various fabics. The research goal of this
project is to reduce fabric waste and allow for post-consumer design disassembly and pattern reconstruction by fusing minimal cut lines for textile recycling. The one-piece
cutting method can reduce the cutting and stitching while ensuring new aesthetics of cutting method can reduce the cutting and stitching while ensuring new aesthetics of e cothing, which is a manifestation of minimalism (Cumming and McQuillan). Thi to observe and consider fit and functional body movement primarily in the double eeves. The goal is to e enable clothes to meet people's increasing demands for clothes terms of both aesthetics and functionality. Cumming and McQuillan achieved is goal by draping on the live body (Cumming and McQuillan). In addition, there are pattern and construction methods adapted for the alternative design process for
example; alternative double fabric folds in areas to compensate for no interfacing and am and pocket stabilization, retention of the selevage, applied tape to the origin am and pocket stabilization, retention of the selevage, applied tape to the original fnish and graphic textile quality. However, the location of cutting lines were scattered fnish and graphic textile quality. However, the location of cutting lines were scattered
throughout, this reduced the integrity of the fabric the fabric area between the cutting throughout, this reduced the integrity of the fabric (the fabric area between the cutting
lines is small and irregular). Although these cut lines can be refused, the effect on the fabric is irreversible.

IPAMP7
The design of First Son (Fig. 10) by Holly McQuillan mainly adopted the one-piece cuttin method. This garment can be assembled ointo different stylyes of dresses. The fle fexible and Design Practice: Strategies and Risk Taking for Garment Design" 86). McQuillan's creative pattern cutting process takes a piece of fabric and a size chart as the beginning of the story
 in each collision with the scissors (MMCQuillan "Zero-Waste Design Practice: Strategies an
Risk Taking for Garment Design" 87). Risks, errors, and even failures are the negative aspects Risk Taking for Garment Design" 87). Risks, errors, and even failures are the negative aspect
of this process. Although, as McQuillan states, "my design practice and research has bee actively to pursue the development of an accidental or intuitive design generation process (McQuillan "Zero-Waste Design Practice: Strategies and Risk Taking for Garment Design" 87). In exploring zero waste pattern cutting, she constantly challenges various risks, not involved
in traditional pattern making in traditional pattern making.

McQuillan's methods along with other designers discussed are commendable in that they are not afraid to deviate from the procedures of mainstream clothing design and are not affected by the so-called fashion trends. However, the bottom line is to make the clothes under rero Waste Design Practice: Strategies and Risk Taking for Garment Design" 877 .
(Fig. 10) First Son. 2004-2005. Holly McQuillan. Above: garment changes
Below: pattern

More and more types of fabric have been discovered and utilized by designers with the advance in technology (Hallett and Johnston 10$)$. To distinguish a fabric is actualy to distinguish its
constituent fibres and its characters. Fibre is mainly divided into the natural fibre, man-made fibre (Sinclair 5), and hybrid fibre (O'Mahony 51). The principle of judging whether a fabric is a sustainable fabric also changes with human cognition. The sustainability of fibre is related to the production process and also how to carry out the laundry care process (0^{\prime} Mahony 45). responsibility in this process. It will illuminate the research behind my careful selection of responsibility in this process. It w
fabrics in the design of this project.

Natural fibre does not necessarily mean that it is sustainable (Fletcher 11). Natural fibre
includes plant fibes and animal fires, such as cotton linen sisal hemp silk wool Includes plant fibres and animal fibres, such as cotton, linen, sisal, hemp, silk, wool, and so on (Hallett and Johnston $62-181$). Also, some new plant fibres have recently been applied
 43), mainly because most natural fiberes not only require shorter decomposition time but are also made from fast renewable resources. However, natural fibres have the problems of short
service life and large water consumption during raw material rowtw therefere in service lifí and large water consumption during raw material growth. The
proces, I try to ensure the integity of the natural fibe fabric for reuse.

Man-made fibre is not always harmful to the environment and can be environmentaly friendly depending on the materials (Fletcher 11; Hallett and Johnston 182). Synthetic fibres are gaining more and more advantages in saving water and extending the life of clothing (0 'Mahony 44;
Turle et al. 6) Although synthetic fibres are fibres synthesized through chemical processes, uch as polyester, nylon, acrylic, and so on, the raw materials of synthetic fibres are mostly such as pplyester, nylon, acrylic, and so on, the raw materials of synthetic cibres are mostly
made of petroleum (Hallett and Johnston 183), and petroleum itself is not a fast renewable resource. Such materials are mostly considered to be harmmull to the enviroment. However,
some new synthetic fibres are elieved to help solve environmental problems, they are new some new synthetic fibres are believed to help solve environmental problems, they are new
fibes made from recycled resources or that use less water (Hallet tand Johnston 182) For fibres made from recyled resources or that use less water (Hallett and Johnston 182). For
example, polyester PET fibre is a fibre made by Wellman International GmbH through recycling PET bottles (O'Mahony 48). Thus, more and more evidence shows that the fabrics
made of natural crops cannot be simply defined to be more environmentally friendly, and man-made materials are not neecessarily mofred harmfulu to the envirionment. In my design,
instead of buying new synthetic fibre tabric I have used leftover fabric from my past years collection, it will become "fabric waste" if I do not use it.
With the development of technology and new materials, hybrid fabrics may be the future of 44). As its name suggests, a hybrid fabric is a mixture of multiple fibres (OOMahony 51). The 44.) As its name suggests, a hybrid fabric is a mixture of multiple fibres (O° Mahony 51). The
advantages of hybrid fibre are mainly reflected in its service life due to its lower requirements in terms of washing temperature, frequency, and method. However, its shortcomings are als obvious, because iti is fusion of natural fibres and synthetic fibres its raw materials are no
unitary, which also increases its difficulty in recycling (Turley et iv 5) unitary, which also increases its diffculty in recycling (Turley et al. 5). In particular, most
of the mixed materials have high-performance elements such as metals and liquid cryst of the mixed materials have high-performance elements such as metals and liquid crysta
polymers ('OMahony 51 , which makes it difficult for these materials to be recyled. It precisely because the reconstruction of the fibre and fabric is complicated that it is important to ensure the integrity of the fabric, as this can make the fabric after deconstructing the clothes
more direct and effective for secondary creation.

The complex characteristics and production process of fabrics make it more difficult to achiev
and define to be sustainable (Tomaney 547) and therefore this requires more input fron designers. The current problem is that most designers will not ask whether the productio process of fabric or materials causes serious harm to the environment (Gwilt and Rissanen 17)
"It it uncommon in current fashion design practice for the designe to be concerned with "It is uncommon in current fashion design practice for the designer to be concerned with the
efficiency of fabric usage"(Rissanen "From 15% to 0 " 7 . The occurrence of this situation is also efficience brabric usage
affected by the cost of time and money to a certain extent. However, during the productio process of zero waste pattern cutting, the designer is sequired to improve their pattern makin, skills and their knowledge of the fabric (Abnett 4). Understanding the growth environment of
textile crops, the production of fibres, the process of dyeing fabrics, and the production and textile crops, the production of fibres, the process of dyeing fabrics, and the production an
disposas of clothes will held designers tominime negaive inpacts on the environment While disposal of clothes will help designers to minimize negative impact on the environment. Whil
focusing on sustainable design practice, fashion designers must also consider the process of cousing on sustanabale design practice, fashion designers must also consider the process
clothing from raw materials to consumers, because ifferent stages of production influence
ach other (Van Kopplen 3) and Wisull ber tos designers that guarantee aesthetics in limited resources (Tomaney 549). Therefore, my zero waste project starts with carefully and fabric I made from wool.

Understanding the production process of fabric is not only beneficial to promoting the development of sustainable fashion, but also helpftul to design innovation from a designer's fabric when choosing it, and understands the whole construction process of the garments, he designer demonstrates a sustainable strategy intake before consumption that can help to liminate fabric waste and positively impact the environment at the design stage (Rissanen Zero-Waste Fashion Design" 19). In addition, this will largely avoid contamination caused by consumers during cleaning and drying. Additionally "it is more effective to avoid problems
from the outset than to invest in reactive solutions once the problem has presented"(Lewis and Gertsakis 7). The contemporary designer needs to work hard on evaluating the existing echnologyand research, in orderto find methods that suitthe current social and envirionmental conditions (Rissanen "Zero-Waste Fashion Design" 19). However, because of the pollution nd waste of fabrics worldwide there is urgent need for reform, which also resesres space for methods including zero waste pattern cutting.

Chapter Two: Method-Design Thinking and Pattern Development Process with Reflection

The method in this practice-based design project is framed by an action research process, with analysis through reflective insights (Swann 50 -51). The action research (Fig. 11) can be divided in tirre stages: Research, Creatve, and Communication Swann 533 . Pbegan with secondary research
on related aspects of fabric waste issues and creative pattern cutting methods, defined the aims and scope, to then experiment with a number of pattern developments, sample processes, refining my
garment design decisions and outcomes throughout the process. Both the project development and garment design decisions and outcomes throughout the process. Both the project development and
design process were iterative processes that were constantly evaluated to find and solve problems and design process were iterative processes that were constantly evaluated to find and solve problems anc
make plans for the next stage. They followed the "spiral of cycles of action" composed of "plan, act, observe, and reflect" in the design process described by Ortrun Zuber-Skeritt (Swann 55-56; ZuberSkeritt 11-13). An outline of my specific design process and iteration (Fig. 12) is detailed below.

design development process was led by the following criteria: considered fabric choice considered fabric choice zero waste fabric usage zero waste fabric usage pattern planning responds to fabric and body dimensions

 pattern can create multiple garment designs patterns and garment designs are innovative in shapegarment designs are multi-sized and worn in multiple garment designs are muiti-sied and worn in mun so
patterns and garments facilitate recycled designs to extend fabric lic

My initial concept board (Fig. 13) explains the fabric waste situation,
which shows the light and dark side of the apparel industry. People wear fancy garments everyday imaging the light side, but there are in fact tons fancy yarments everyday imaging the light side, but there are in fact tons
of fabric waste in the darks side of the industry. Therefore, my collection "The infinity" used black and off-white as my colour palate to encourage
reflection on this issue. The pattern in black pleated fabric and wool felt fabric were all like black, falling and broken leaves which reflects the impact to the environment from both the fabric production process and the post-consumption period.

(Fig. 13) Initial concept board painting, Zewei Li,2020

My design processs started with a loto of sketches, mainly analysing the patterns of existing clothes,
and thinking divergently to achieve zero waste. This process not only enriched my understanding and thinking divergently to achieve zero waste. This process not only enriched my understanding
of different garment patterns but also began the exploration of my zero waste pattern cutting of different g
methods.

The relationship between garments, fabrics, and the human body is inseparable (Carufel and Bye 6). As shown in the figures, the clothes can be assembled using squares or or triangles (Fig. 144 . I
could foresee that there would be an excessive number of cutting lines (Fig 15) so stanted to could foresee that there would be an excessive number of cutting lines (Fig. 15), so I started to
nallyse how many cutting lines are necessary when constructing various types of garments. ructing various types of garments. Initial hal--scale toiles were used to extend my learning of different zero waste pattern cutting
meethods which had potential to achieve my aims. The potential of multipl pattern use and wear
of garments was important in my design thinkking in response to extending the serving life of the ff garments was important in my design thinking in response to extending the serving Iife of the
fabric and in the reduction of textile waste. In most of my design nrocess, Itook the election aric and in the eduction textie wste. In most of my design process, , fabric as the starting pointection exploration process all fabric I used was recycled, deadstock with the exception of the felt fabric constructed by myself.

The pattern and method of this toile is mainly inspired by both the historical medieval shirt （Fig．16）（Scott 67）and the Jigsaw puzzle methodology（Rissanen＂Zero－Waste Fashion Design＂ 86）．The outline of the medieval shirt is neat and rectangular from the sleeve to the main body it did not waste fabric except for the neck area．Although it can be easily fit to different body
shapes，the drape of the fabric is influenced by the people who wear it．

In the hoodie pattern from Timo Rissanen（Fig．．17），the main content on the left side consists
of the main body pieces，the sleeves are on the right side and the remaining part is filled by of the main boos se sleeves are on the right side and the remaining part is filled b the inner lining，facing，and tores pieces．Those eattern pieces are all geometric shapes an
are ultimately put together to become a rectangle．This demonstrated to and inspired me o are ultimately put together to become a rectangle．This demonstrated to and inspired me
how to divide the fabricis in different positions within a rectangle（Fig．18）．My attempt a zero waste pattern cutting starts with square fabric pieces of different sizes．Corresponding
sets of edges in the square piece formed cylinders corresponding to body dimensions．Ike⿻二丨． sets of edges in the square piece formed cylinders corresponding to body dimensions．I kep developing shapes with varied additions and details to show different looks（Fig．19）．This process gave me some understanding of the use and limitations of rectangular shapes．It was processs gave me some understanding of the use and limitaitions of rectangular shapes．It was
difficult to make a close fits shape to the body without having a cutting ine in a single square piece．Exploring trims increased the diversity of the garment，an important consideration for
consumer appeal，but these did not neessarily respond to the design criteria．

（Fig．19）\＃1 2D Square body and arms shirt：front and side views．

Generally Generally, the fabric is rectangular, it can se divided into multiple squares, and the square
can ee divided intomultiple triangles (Rissanen can be divided into multiple triangles (Rissanen "Zero-Waste Fashion Design" 40). Although
the pattern of this dress is made up of geometric figures, it presents a more contoured the pattern of this dress is made up of geometric figures, it presents a more contoured
silhouette. However, from the perspective of reducing the cutting lines, Ithought 18 cutting lines to build a loose fit coat added unnecessary fabric dissection. I explored dissecting the rectangular shape into varied shapes. Unlike the designs of Hishinuma the cut shapes were irregular and asymmetrical. My coat pattern (Fig. 21) reduces cutting lines and integrates jigsaw puzzle methodology and triangles as well.

First of all, I used paper, scissors, and tape to carry out experiments, a method I repeated throughout to quickly visualise the evolving shapes. When the design of the quarter-scale was formed, I scaled up this pattern to hall-scale in order to make the fabric toile to drape
on the hall-scale body form. This helped to futher devel on the hal--scale body form. This helped to further develop the shape details and check the
making process. When the toile was basically determined I explored the multiple wear making process. When the toile was basically determined, I explored the multiple wear
possibibitites by rotating or folding the clothes, but I was not very satisfee with the results. Generally, I like this coat, especially the shape of the lapel, as it can be worn differently. However, its back and side body are more exposed which is not suitable for a wide range
of markets. Although I greatly reduced the cutting lines I Id create of markets. Although I greatly reduced the cutting lines, I did create unnecessary cutting
lines in the pursuit of triangles. For example, the length of the upper cutting line of the lines in the pursuit of triangles. For example, the length of the upper cutting line of the
pattern can be shortened to ensure the integrity of the fabric to a greater extent. This method was senerally feasible for visual interest, but the large use of multi-sided shaped patterns resulted in random and unnecessary cutting lines, which are not conducive to a repeated
(Fig. 20) Six triangles coat (Hishinuma 162). resulted in random and unnecessary cutting lines
process or extending the service life of the fabric.

\#3 Diagonal dress and mobius top

"Taking the fabric to the dress form is a good way to gauge how the the fabric to the dress form is a good way to gauge
fabric breaks, folds, and drapes."(Calderin 171).

In my drape design process, I tried to "forget" my previous knowledge about pattern making ain through the process of dee to design and explore the shape of a human body once rrecious fabricic itself. The usable area of the fabric affects the creative space of the design, in t traditional pattern making and the creative pattern cutting process . large initital area of he fabric provides more possibilities for multiple re-creations. I found the action that affected the fabric area during pattern making was the cutting line: "cutting was the most delicate and demanding aspect of the garment trades; stitches were easily removed and replace, but a mistake in cutting would destroy the cloth" (Crowston 150). This also required me to carefully consider the direction, position, and length of each cutting line and whether it is necessary in
ny zero waste e cutting.

The idea of starting this design was to explore the possibilites of variable grainines and the bias-cut inspired by Madeleine Vionnet (Bryant $28-29$), so I placed the primary cut-line based on the 45 -degree diagonal of the square. My yoal was to minimize the use of cutting lines. As Cross states "design is opportunistic, and so the path of exploration cannot be predicted in
dvance"(cross 30 . Firstly, selected a piece of fabric I would use for toiling which was a black velvet with medium weight, thickness, shear, stretch, and high-medium drape. I conducted preliminary experiment with a paper pattern, cut the paper with the diagonal as the split point, and finished with a ellipse ethe cut line looked ilike forward-sloping letter P)(Figi, 22),
which was initially inspiried by Holly Mcequilan's work, the War and Peace dress (Risenen which was initially inspired by Holly McQuillan's work, the War and Peace dress (Rissanen
and McQuillan $75-77$). In my design the space of this ellipse mathes the size of the upper and McQuilian $75-77$. In my design the space of this ellipse matches the size of the upper
circumference of the chest. Ater the elastic band is added, it can effectively ensure the stability circumference of the chest. Atter the e eastic band is addeded, it can effectively ensure the stability
of clothes on the body. The oval cut--ut became a pocket. As in the steps of the previous toiles, scaled up the pattern and started draping on the half-scale body form. This is a simple but
selegan dress Fig. 23) the dress hem falls from high to elegant dress (Fig. 233), the dress hem falls from high to olow, showing the charm of the fabric
itself. In addition, I found that I may not need to cut the fabric diagonally, but only to cut the ocation of the bust and a shape cut out to allow the body to pass through (Roberts 34). Furthe nalysis involved minimising the cutting line for textile preservation and garment stability and subsequent process.

fig. 22) \#3 Diagonal dress: initial pattern and side view

In order to explore more possibilities of this same pattern, I continued to drape and discovered the potential for further garments and wear. I decided to pin the different edges of the fabric together to see what would happen. Then I found that the edges of the squares were structure independent but still connected to the body section. I used drawing to drive my analysis of this structure (Fig. 24).
 point, you can enter the internal structure without turning over hie eabric. found that I
needed to understand the principle of this phenomenon to help me understand more about the structure. "Deesign is not a search for the optimum solution to the given problem, but that design is exploratory" (Cross 29). This research led me to the Mobius band.

(Fig. 26) Further development of Diagonal dress: final pattern.

I explored cutting pieces of fabric to make mobius loops in different sizes and draped these around the body to learn more about the process potential. "Design is risky- it is not comfortable, and it it not easy" "(rosss 31 .) Although it was paper, I could still feel the fluidity
brought during the draping process. The single mobius top (Fig. 28) made by simply wrapping the mobius bands on the human bod is changeable and disorderly. I hoped that clothes could be changed within a controllable range. In short, I created a design parameter is changeable and disorderly. Thoped that clothes could be changed witin a controllable range. In short, created a design para
that must first look like a commercial garment. After this experiment, Ilooked for further transformational potential.

Iabelled the four corners of the front and back of the strip and compared the difference between a normal circle and a Mobius band. I found that a common circle meets two parallel points, but mobius band meets two opposite corners, that is, along the diagonal of r rectangle. Itried to use this diagonal as a benchmark to build on the Mobius Band in drape, at this points the mobius band this mobius zero waste pattern cutting process. I started to simplify my thinking, trying to think only about the diagonal. The following toile (Fig. 30) was created after this period of exploration, its structure is formed by intersecting diagonal lines. Compared with the previous toile, this fabric has a larger area and width and is closer to a square, so its contour is flater. No other cutting lines are added except for the armhole. This increases the dififculty of developing it itsta a variety of garment types, but the advantage is that the integrity of the fabric is suaranteed to the greatest exten.
On analysing these samples, Ifelt there was potential for further development with better consideration of fabric cuality.

I started again with a rectangular fabric 110 cm long and 25 cm wide. This was my leftover velvet
(tedium weight and thickness, no strecth high-medium drape and medium-low shear). Firstly (medium weight and thickness, no stretch, high-medium drape, and medium-low shear). Firstly,
I made this fabric into a mobius band. I placed the fabric join line on the centre front; here, the dividing line can clearly be seen between the front and back of the fabric. In order to cover this, I folded the fabric from the top, then pulled up the bottom right fabric under the centre front (CF). During this process If found that when I focused on drape on one part, it was difficullt for me to take care of other parts. Changes made in one section will affect other places.
cross-connected the fabric at the centre back (CB) (Fig. 32), creating the structure while incorporating a facing, Using the weight and drape of the fabric itself, I created a V-shaped neckline on the back. I used fabric layering to obscure the appearance of holes exposing the ody. In addition, I Ilso rotated the garment in order to get other looks, but not very successfully, band wast more visually effective compared to the previous toile. Misalignment and flipping were
ber complexities I needed to master when converting to a pattern.

Isoon progressed to experiment draping the Mobius on a full-sized dress form for a clearer undertanding of the relationship between the Mobius band method, the fabric and body, and designing
for multiple wear possibilities. The fabric $工$ used this time was deadstock 100% Merino knit fabric (medium weight, thickness, drape, shear and high-medium, stretch). The width of this fabric was for multiple wear possibilities. The fabric I used this time was deadstock 100% Merino knit fabric (medium weight, thickness, drape, shear, and high-medium stretch). The width of this fabric was
152 cm including the selvedge. I retained the use of sevedge in the design, because it not only ensures the zero waste fabric integrity, but it also reduces the use of overlock threads. As found in previous toiles, the length of the clothes would be affected by the width of the MB and use of the horizontal orientation.
In the process, I discovered that there are several possibilities for sleeves, making the pattern conducive to my goal to make a changeable garment. The designs were enhanced by the one-piece-cut nethod which reduced the number of cutting lines (Fig. 34). Concentrating details and sewing lines on the edge of the tabric, allowing more space in the centre of the fabrict faciltatedits reuse and wearer, for example the buttonhole around the edge facilitates flexibility of wear with the use of ties.

(Fig. 34) \#7 Single mobius multi-wear top (rectangle): front and back views, Zewei Li.

(Fig. 35) \#7 Single mobius multi-wear top pattern (rectangle), Zewei Li.

As I wanted to try different types of fabric to test this Mobius band method, I used a tube knit fabric. Taking the vertical dimension 99 cm of the cylinder as a reference line, I cut a certain distance from both ends of the fabric to the middle but
ensured that a part of the middle is connected. After that, the cut fabric is turned over and made to become a mobius band. Because a defined distance is planned in the middle, two mobius bands appear in this fabric shape, and therefore two twists appear. There are five holes of different sizes in this garment including two holes whose size can be changed without adding other trims because of the effect of the mobius band. This helps achieve variety without adding fastenings. During the construction process, attention should be paid to the treatment of the fabric turning area, which is a common construction issue in this method that I needed to resolve.

(Fig. 35) \#8 Single mobius vertical dissected: pants and dress, Zewei
143.5 cm

1018

While researching the Mobius band further, I was inspired by the video topology of Mobius cuts (MathConstructed $2: 28$). I pinned two Mobius Bands vertically, and placed the join point around the neck,
Llashing an opening at the midde of the first MB so the head may go through. Then Ilet the efftarm go slashing an opening a the midale of the first MB so the eead may go tirough. Then Het the elet arm yo
hrough the loop and dlosed the edge of the loop to create a sleeve, slashing an opening at the back MB, hrough the loop and closed the edge of the loop to oreate a sleeve, slashing an opening at the back MB, sleeve and armhole, I extended the firsts slasha a little bit more to provide space and was able to button it the right shoulder. Later I found out the majority of the second loop was still not used, yet I was still able to create a garment using only one loop (without fully cutting open the loop)(Fig. 39 . Thinking
about different entry point for the body inspired by this conceptof Julian Roberts (Roberts $29-34$) was ninteresting application. However, in this sample using two Mobius bands to make a piece of clothing was considered redundant. It not only increases unnecessary complexity in pattern making, but it a lso increases unnecessary fabric usage. This goes against my original intention.

The definition of MB in mathematics is thatit is one-sided and has no end (Barrow 219). Fabric, however, oftee has a right and wrong side. However, many monochromatic fabrics on the market make it diffficult to distinguish the right and wrong from a distance, and functionality is not impacted. The deadstock Merino knit tabric I used this time has two sides
of colourr red and skin, which helped enrich the design. An inherent quality of the Mobius Band is the use of both sides of the fabric, which in this case created a contrast between of colour, red and skin, which helped enirich the design. An inherent quality of the Mobius Band is the use of both sides of the fabric, which in this case created a contrast between
the frint and back of this garment (Fig. 40). In order to make the clothes meet more needs of customers and dapapt to different occasions, explored adding fabric of different texture on one side. It is a counter-clockwis Mobius band. This garment has contrast not only in the texture of the fabric, but also in the colour. Moreover, the overall outline of
the warm side is round, while the dark side has angular lines creating alternative silhouettes within.

"Design is abductive: a type of reasoning different from the more familiar concepts of inductive and deductive reasoning, but which is the necessary logic of design - the necessary step from function to form" (Cross 30).

The primary aim of this technical design pattern project is to e liminate fabric waste and reduce cutting lines during the pre-consumption phase. This method also aims to extend the esvrice life of the fabric, allowing re-creation more easily without multiple cut pieces and cutting
lines. This involved the process of roducining zero waste from 3D fabric and rethinking the lines. This involved the process of producing zero waste from 3 D fabric and rethinking the
relationship between fabric and body. If 2D fabric is a straight ine, then the Mobius Band is a circle with an angular tilt, and this till angle is one of the main factors that produces
variables. If the foundation fabrici itself is 3 D. it ain help reduce some of the cutting lines and variables. If the foundation fabric itself is D , it can help reduce some of the cutting lines and
sewing lines which are produced in the normative processes of transforming 2 D fabric into a ${ }^{3}$ D garment. Reducing cutting lines in zero waste pattern cutting, especially one-piece eutting, means that the integrity of the fabric is retained to a greater extent.
In addition, the "endless" feature of Mobius Band adds a certain degree of fluidity to the fabric of the garments, thereby creating more possibilities for transformation. By using the approach of zero waste pattern cutting from a Mobius band I explored the variability of women's
arment designs to meet the diverse needs of onsumers. I needed to create designs that were commercially viable and provided multi-wear functionality.

This fluidity of process helps to achieve design goals while reducing cutting lines.
The structural feature of the Mobius band also helps to blur the traditional definitions of right and wrong sides of the fabric. Mobius band zero waste pattern cutting helps to liberate more creative space, but in order to take aesthetics into account, it has certain requirements for the use of cloth. As the case with all draped garment designs, the fabric qualities are extremely important for the design outcome. This demands strong consideration for further design
development to meet the sustainable, aesthetic and technical design criteria. When reflecting on the sample process, I found that there was an intuitive response to the design in relation to the body forms. 1 wanted to consider, in greater depth, pattern planning, responding to fabric, and body dimensions.

This was analysed according to the size 12 data in the size table. Firstly, I extracted
 circumference and divided them into a group. These classifications mean that there is a possibility of positional displacement between the same group when designing and wearing clothes. Transposition between different groups is also achievable, but obviously,
I can replace a small circle with a large circle The circles are superimposed according to the grouping through the diagram, which helps me to understand the size changes and connections between different circles of the human body more clearly. The gap between each circle guarantes the possibility of design change, and also helps define the circumference of different parts of the garment.

Ankle girth Bicep (Top arm muscle) 23 cm Elbow girth Neck girth Calf girth 35 cm Knee girth	36 cm 35 cm

2.4.2 Line dimensions

Distinguishing the horizontal and vertical dimensions, as shown in the figure, helps me to understand the layout of these sizes more intuitively. I also tried to incorporate some
circles, from which the outline of a human body can appear. I found that these girth and lines are not independent. There seems to be some connections between them. After analysing the lines, I merged and synthesized these together.

Bust separation Waist to hip

19.2 cm 20 cm

Nape to back waist $\quad 41 \mathrm{~cm}$ Across back Nape to nipple Across chest 34.5 cm
33.5 cm

Nape to back waist	41 cm
Across back	36 cm
Nape to nipple	34.5 cm
Across chest	33.5 cm
Neck girth	36 cm
Calf girth	35 cm
Knee girth	33 cm

Chapter Three: Final Design Development

The final design process is similar to the development process but with stronger conviction to the design criteria. It is composed of multiple design iterations starting from draping of the mobius band and then working on toiles and patterns with the choice of fabric based on the consideration of sustainability and dimensional relationship to the body and garment designs.

Process

The goal this time was to design a garmentthat can cover the entire body, by considering
the dimension of the bust, hip, and bicep girth, and length of the nape to back waist the dimension of the busts, hip, and bicep girth, and lentht of the nape to back waist,
waist to knee and floor. The fabric width wast 163 cm including the elvedege waist to knee and floor. The fabric width was 163 cm including the selvedge, and the
length was 142 cm . I horizontally used this Mobius band with the human body this length was $142 \mathrm{cm.I}$ h horizontally used this Mobius band with the human body, this
means that the fabric grainline is horizontal in the final garment and the width of the means that the fabicic grainine is horizontal in the final garment and the width of the
fabric is cose to the length of the garment. In addition, I considered how to construct fabric is close to the eength of the garment. II addition, consitered how to construct
the garment while draping, because it would also influence design, especially when it came to the different fit of the garment with different types of astenings. In order to help myself in pattern making and construction, I labelled notches with numbers
After creating an initial pattern, I I llways sewed a small-scale cotton garment to test After creating an intial patern, I always sewed a smal--scale cotoron germent to test me to achieve the garment.

After initially constructing this garment, I moved it onto the mannequin to feel the changes in the direction of the fabric and the fit, in order to confirm whether and where it is necessary to add trims or details that could make this garment changeable.
For example, opening the shoulder line and neckline (Fǐ.50), the eff and right bicep For example, opening the shoulder line and neckline (Firy. 50), the leff and right b icep
girth are the same so so sleves are interchnangeable, the back of this dress san also be girth are the same so sleeves are interchangeable, the back of this dress can also be
worn as the front. In addition, $i t$ it possible to change the ength of the garment, due worn as the front. In addition, it is possible to change the length of the garment, due
to the hem length being bigger than the wais and hip girth. The eabric is pulled back o the waist area to change the shape and reduce the length of the dress with added
the fortenings to maintain this form.

$$
115
$$ construct this garment. In addition, in order to reduce using sewing thread, I avoided using overlock stitch or this project. I reinforced the cut points by hand stitching to help strengthen the corner instead of using fusing, because the fusisng tape consists of ho t glue on the fabbic and is not removable, which is inconsistent fusing, because the fusing tape consists of hot glue on the eabric and is not removable, which is inconsistent

with my gool of maximizint the interity of the farbic. The same e eesoning explains why I used a thread
chain and fabric straps as a button loop instead of buttonholing.

$$
110111
$$

Process

This is the same pattern, however, added cut lines create alternative garment designs so that the designer or consumer can choose the pattern at the begining of the design process
or it can be used as regenerated designs extending the service of the febic In order or it can be used as regenerated designs extending the service of the fabric. In order to
get a top and pants from the original dress pattern (1a) I separated the pattern from the get a top and pants from the original dress pattern (1a) I separated the pattern from the
waist area. The method of division is to re-divide the layout of the fabric by extending the existing cutting line. The added cut lines for legs are also based on the original leg position in the dress pattern. This does not change the use of the Mobius band pattern positioned horizontally to the body. The length and position of the new four cutting lines is also based on the consideration of hip girth, waist girth, knee girth, body rise, and waist to floor length
reliminary experiments were carried out by cutting mini-size patterns (Fiy 57 . This saved
time and effectively reduced the waste of fabric in the design and development process.

In the first toile, I realised that a simple straight line to divide the pattern of the legs canno solve the problem of the crotct area. The pants look tight especially phen steppings, squatting
and sitting down. In traditional patern making, semi-ellipicical fabric is sut to ensure the fil and sitting down. In traditional pattern making, a semiellipticicl fabric is cut to ensure the
of the crotch area. In most zero waste pattern cutting, this area of fabric is used as a pocke (Rissanen "Zero-Waste Fashion Design"" 95). Howeverer, in the one-piece-cut method this is
(t) and difficult to achieve. After many attempts, I finally solved this problem by adding two ne difficult to achieve. After many attempts, I finally solved this problem by adding two nev
curved cutting lines, which also created a belt by lifting and gathering. In addition, I added curved cutting lines, which also created a belt by lifting and gathering. In addition, I added
two short straight cutting lines to ensure the balance of pulling the fabric on the right side of the left leg. This is also to balance the fabric grainline near the Mobius band twist, and bette shape the lines of the legs.
(Fig. 58) Palazzo pant and asymmetrical
top: initial pattern, Zewei Li.

the pattern on the left side of the top and folded it inward to form a pocket, which enriched the
functionality of this garment. All stitch lines were aimed at providing a clean finish to ooth sides
of the garment.

(Fig. 63) Mobius Pattern 1a: full-length dress.

Process

In response to the chosen colour palette of this collection, I made the felt fabric from black Ind off-white wool. It has a natural and timeless aesthetic and is suitable for a wide range
of customers. Idecided to make the eflt fabric because it an achieve complete zero waste, cutting lines could be re-felted together without adding other material. In addition, the es do notfing for he difficulty in construction, especially in the reinforcement of cutting points.
"The natural properties of wool make it flexible, resilient, insulative, absorbent, hygienic, and mouldable" (Hallett and Johnston 66).

For the long coat, I used the Mobius band vertically. Firstly, I made a piece of felt fabric with a length based on the measurement of the mannequin and my target garment shape and length. The bust girth, shoulder length, hip, and wais girth were used for deciding the fabric width and the length of nape to back waist, front waist to knee, and the outer sleeve Ior deiding fabric length. In the process of draping, I used the Mobius band connection as the upper centre back, because fabric itself provides natural contrast for this garment
(Fig. 65). I also tried to create the same treatment on the front side of this garment. The position of the cutting lines was planned in order to manage the fabric for sleeves and the position of the cuttin.
hem of the garment.
Next was the stage of experimenting which created the possibilities of various sleeves. The cut line on the efft is longer than the cutting line on the right, so the lower part of the eleft sueve can be eelatively separated from the main part of the garment (Fig. 60). After that, he remaining fabric was folded, and a cutting line was added, as the aim was to continue the contrast formed by the back fabric. The making of the felt created a unique design I

(Fir 65) Felting coat half-scale process photos Zewei
found the fluidity of the felt fabric to be poor (heary weight, medium to high thickness, low shea drape, and stretch), which created difficulties to achieve diverse ways of wearing the garment. If used more cutting lines, or a half-cut, or a third-cut Mobius band method, diverse wearing may be improved. However, in order to test the feasibility of this pattern, I explored this pattern on othe fabrics and it worked well.

$\rightarrow c$

(Fig. 67) Felting coat foundation pattern 2a, Zewei Li.

This. pattern was also found to be suitable for mass-production
fabric. As the 2 a pattern width is 75 cm , it could make a paii fabric. As the 2 a pattern width is 75 cm , it could make a pair
of garments (duster robe or shirt designs) by using the full of garments (duster robe or shirt designs) by using the full
width of the 150 cm fabric, or could use half of the fabric to we the main piece and another hall of the fabric to become the le the main piece and another halo of the fabric to become the stylle, corrected and reduced the cutting line (Fig 68), which made the garment symmetrical and eliminated the extra fabric langing at the back hem of the garment. The four cutting lines
correspond to sleeves and hems. For movement of the arm and correspond to sleeves and hems. For movement of the arm and
body, I inclined the two sleeve cutting lines that were orignally perpendicular to the fabric edge. I tested the pattern on both medium weight calico and light weight silk. It is evident that the ame pattern has varied effects on different fabrics and requires different construction methods.

The change from duster robe to draped shirt is based on the position swap between bust girth and hip girth, across back and neck girth, waist to knee and nape to back waist, and upside-
down armhole and elbow The inclined cutting line increases the drape of the fabric, especially when the shirt is worn. However, this also brings some construction problems. Using a double turn with top stitch for the back opening of the robe without using fusing and a facing piece is difficult, as sit can
create roping especially on light weight fabric. Through increasing the folded widt, I reduced
this effect. For sustinality create roping especially on iight weight fabric. Hirugh increasing hefotded width, I reaceced
this effect. For sustainability concerns most of my fastenings are fabric made, but I also use wood, coconut and river shell buttons. Compared with calico and felt tabric, the silk fabric has
a certain fluidity creating another aesthetic

and connected with the main body of the garment. The exaggerated lapel is separated at the
centre back to make it appear to be composed of two triangles. The buttons on the front of
he garment are also made by felting and attached with wool thread, which unified the raw
naterials and is easily recycled. The twist made from the Mobius band is hidden inside the
tack hem. The shape of the sleve transitions from the curve a t the shoulder line to the right pack hem. The shape of the sleve transitions from the curve at the shoulder line to the right
angle a the elbow, together with the garment hem, balances the use of the curve and arc of the angle a the
garment.

Continuous experimentation on the Mobius band pattern and divergent pattern Possibilities based on an original pattern both help to explore the advantages and
disadvantages of the Mobius band zero waste method. For example the e protetye disadvantages of the Mobius sand zero waste method. For example, the prototype
of this pattern was planned for a wool coat from my self-made eflt fabric. During the process, I saw the possibility of using other fabrics (cotton and silk) and the potential for variants and changeable clothes. Because of this, the width of this pattern does oot fully use the width of the fabric for the manufacturing fabric. Atter minimal
pattern adijstments based on the width of 140 cm to 150 cm for most fabrics on the market, the pattern utilised half of the fabric. This means that two items of clothing an be produced at the same time in order to use this piece of fabric completely. This is highly feasible for mass production, and different sizes can be realised.
More design variants became evident after taking into account body dimensions and repositioning the fabric. Considering the further development of this pattern (Fig.
83). it could become a skirit and changeable top by simply extending two cutting nes. The original fabric positions of the shoulders, sleeves, and upper back at both ends of the fabric have become two pieces that make up the skirt. This is based on the position exchange of nape to waist and waist to knee, nape to bust point and
waist girth. The middle of the fabric becomes the top, this is based on the position whast girth. The midade of the tabric becomes the top, this is based on the poon knee girth and neek girth, waist to knee and nape to waist kie girth and across the back. Thus, the top still vertically yses the Mobius band but the kirt changes to be horizontal. In addition, the different way of wearing the top is supported by the exchange between the armhole and neck girth. There remain four uutting lines, the middle two are to ensure the accessibility of the neck and head,
combined with stitch lines to create armholes as well. The two cutting lines at the side create the torso access of the top piece and make a side seam for the skirt.

During the skirit construction process, I attached the lining piece to the main fabric to provide support for the drape and fabric weight. An invisible zip for the skirt was used as the fabric length which was insufficient for the working.
Ines could be moved to accommodate this.

For the top garment, I made the two pieces separately to free up space for the wearer to make their own adjustments for wear. In considering the stability when the two pieces are worin ogether, I added buttons and loops on the front and back neeklines. The cutting line creates a V-neckline and the cut points are strengthened by the button placement and hand stitched thread loop. The slit of the skirit is s located on the inclined cutting lines (bias srainline), which shows a rippled effect. This shortcoming did not alter the effect of the clothes too much as
it beomes part of the flow of the fabric. Thread loops (Fig. 85) were made and tested for different colours and the thickness of thread.

$(\mathrm{Fig} .8 .85)$ Double ayer skirt and
top construction exploration,
top construct
Zewei Li.

This final look is composed of a double-layered close-fitted skirt and a loose fitted top. The Mobius twists sits sat the right shoulder which allows for changing the garment wear between
the armhole and neckline. As it it soose fitted it can also be worn on both front facing and the armhole and neckline. As it is loose fitted it can also be worn on both front facing and
back facing. There are two holes at the right side of the off-white top which provide different back facing, There are two holes at the rightside of the off-white top which provide different
ways to access the arm. The drape of the fabric is positioned on the right front chest and ways to access the arm. The drape of the fabric is positioned on the right front chest and
right back The button at the hem corner which can button up to the neckline not only ight back. The button at the hem corner, which can button up to the neckine, not only
rovides the ability to fold back and reduce the length of the garment, but can twist the fabric together when wearing two-layers to create a different look. The closure of the skirt ised with a strap around the waist helps to adjust the size fit. The wearer can decide the position of the split when wearing it.

"Although its name is new, the idea is much older: for example the traditional Japanese kimonos or Indian saris both make use of one complete piece of a fabric without wasting any of it" (Aakko
and Koskennurmi-Sivonen 17). The value of traditional thinking about fabric is worth recalling.

In this Anthropocene age, we should now show greater responsibility to the environment we
live in. After investigating the problems of fabric waste in traditional fashion industries, Ifeel strongly that both designers and consumers should change their behaviours and shift their designer in the fashion industry my contribution to to this challenge is to rothink the traditional designer in the fashion industry my contribution to this challenge is to rethink the traditional methods of apparel design and production. My aims in this technical design research project
are realised through exploration of the Mobius band zero waste patterns with minimal cutting are realised through exploration of the Mobius band zero watte paternss witr mimimal cututing
lines to respond to the fabric waste issue. This one-piece-cut method not only provides new pattern making approach for designerst to elimininate fabric waste at the pattern making stage, but also takes into consideration the extension of post-consumption textile life. The 'rew
consumer' is loking to alternative ways to satisfy their needs for newness' in clothing while Consumer' is looking to alternative ways to satisfy their needs for ' newness' in clothing while
naintaining sasstainable conscience. These design developments can meet wearers' demands by providing changeable garments and further developing garment options.
My Mobius band zero waste collection 'The Infinity' is mainly composed of two Mobius pattern foundations. Patterns 12 and 22 used minimal cutting lines to ensure efaric integrity
and reduce manufacturing. The adopted pattern on fabric types, different construction ways and fastenings help provide different garment looks from the same pattern. Patterns ib and bextended fabric usage life and met consumers' 'new garment requirements by adding hecessary cutting lines to further develop the original patterns and garments.
The alternative pattern design process highlights the continued development of existing patterns and the re-cutting of clothes to obtain new garments, which extends the service life of
fabrics. The design process comprised of multiple design iterations starting from the Mobius abrics. The design process comprised of multiple desigg iterations starting from the Mobius
and, oonsidering body and fabric dimensions, rraping and the eefining of patterns and toiles. analysed the main body measurements, girths and lengths, in order to find the relationship waste pattern cutting process and think about the proportions and dimensions of design lines spanning the body in order to create transformative pattern designs for different garment types and flexible wear possibilities.
The selection of fabrics was based on sustainable choices. I made and chose the fabric colour palette of black and shades of white for this collection because they are ctome the fabs and cherour arget a larger market. Fabric is considered a precious resource in garment creation. In many
waste, multiple cutting lines are distributed across the fabric. This problem affects the service
life of the fabre especially for woven and knit fabrics
All my toiling fabrics are deadstock fabrics, except for the wool felt fabric that was self-made to pattern dimension. The fabric I used in the final collection is combination of deadstock kfaric
 fabric was importante specially when aiming to use minimal cutting lines to achieve longevit. The outcomes of the Mobius band method vary yn the drape qualities of the fabric. In addition more space in the draping process to achieve the varied t tyen of garments to to resond to aims.

Compared with the traditional garments production model, it does not increase difficulty
in the construction process, This not only provides oppotuwities for entervises to use the in the construction process. This not only provides opportunities for enterprisese to use the
same pattern in different collections, but also reduces fabric waste in the pattern makion same pattern in different collections, but also reduces fabric waste in the pattern makin
and sampling process. This approach might be used in the industry for smaller agile desig companies. My collection is not an industry-ready project, but it exemplifes a process and designs which are ready to be eefined for production purposes to meet a company's price poin and target group. Additionally, this pattern innovation process has potential for application

There were extensive explorations that were not satisfactory in meeting my design aims an criteria, but these were analysed and refined as I learnt more about this Mobius zero wast pattern cutting process. I did not deliberately cater to popular fashion trends and the pursu of pre-determined clothing silhouettes. The final creative designs in this research project are
the products of the collision between the Mobius hand and zero waste pattern processes Tre are many possibilities for the development of the Mobius band method. Overall, the proces are many possibilitites for the development of the Mobius band method. Overall, the process
of creating these designs was quite challenging but joyful for me, and I would like to keep exploring the use of the Mobius band for zero waste pattern cutting in the future.

References

Aakko, Maarit and Ritva Koskennurmi-Sivonen. "Designing Sustainable Fashion:
Possibilities and Challenges." Research Journal of Textile and Apparel vol. 17.1,

Abnett, Kate. "Fashion's Fourth Industrial Revolution." The Business of Fashion, 2016, https://www.businessoffashion-com/community/ /voices ddiscussions/
what-doess-the-fourth-industrial-revolution-mean-for-fashion/fashions-fourth-ndustrial-revolution- 2 .
Amed, Iet al. "The State of Fashion 2020 Coronavirus Update." BOF McKinsey \&
Company, 2020. https:///www.mckinsey.com/industries/retail/our-insights/thectampenany, 2020. httpss./ wwww.mckinsey.com
Barrow, John D. 100 Essential Things You Didn't Know You Didn't Know About haths and the Arts. Random House, 2014.
Bryant, Nancy O. "Facets of Madeleine Vionnet's Cut: The Manipulation of Grain
Slashing, and Insets." vol. 11.2, 1993, pp. 28-37. Calderin, Jay. Form, Fit, and Fashion : All the Details Fa.
Know but Can Never Find. . Rockport Publishers, 2009.

Caruel, Robin and Elizabeth Bye. "Exploration of the Body-Garment Relationship
Theory through the Analysis of a Sheath Dress." Fashion and Textiles, vol. 7.1 , 020, pp. 1-2
Cloake, Dawn. Lingerie Design on the Stand: Designs for Underwear and
Nightwear. Sterling Publishing Company, 2000.
Crafts, Nicholas FR. . "The Human Development Index and Changes in Standards
of Living: Some Historical Comparisons." European Review of Economic History, of Living: Some Historical
vol. 1.3, 1997, pp. 299-322.
Cross, Nigel. "Natural Intelligence in Design." Design Studies, vol. 20(1) 1999, p

Crowston, Clare Haru. Fabricating Women: The Seamstresses of Old Regime France
675-1791. Duke University Press., 2001.
Cumming, Deb and Holly McQuillan. "Zero + One." Unmaking Waste conference,
Unmaking Waste conference, 2018.
Diesendorf, Mark. "Sustainability and Sustainable Development", Sustainability: The
Corporate Challenge of the e 21st Century, edited by D. Dunphy et al
Corporate Challenge of the 21st Century, edited by D. Dunphy et al., 2000.
Downs, Austin and Richard Acevedo. "How Our Trash Impacts the Environment.
Earth Day https://www.earthday.org/how-our-trash-impacts-the-environment/. Earth D
2021.

Farrer, Joan. "Remediation: Discussing Fashion Textiles Sustainability"" Shaping Sustainable
pp. 19-33.
Fletcher, Kate. Sustainable Fashion and Textiles: Design Journeys. Routledge, 2014. Giuffrida, Maria et al. "Loogistics Solutions to Support Cross Border E-Commerce
Towards China The Case of the Apparel Industry" Workshop on Business Models and Ict Technologies for the Fashion Supply Chain, edited by Rinaldo Rinaldi and and Ict Technologies for the Fashion Supply Chain, edited
Romeo Bandinelli, vol. 413, Springer, 2016, pp. 163 -178.
Guterres. Antonio. "Un Chief Says Coronavirus Worst Global Crisis since World War
Ii." France 24 https:///www.france24.com/en/2020o401-un-chief-says-coronavirusi.. France 24 https://www.france24.ce

Gwilt, Alison and Timo Rissanen. Shaping Sustainable Fashion: Changing the Way
We Make and Use Clothes. Earthscan, 2011. Hallett, Clive and Amanda Johnston. Fabric for Fashion: The Complete Guide.
Natural and Man-Made Fibres. Laurence King Publishing, 2014. Hishinuma, Yoshiki. Clothes by Yoshiki Hishinuma. Yoshiba Company Limited,

Hodge, Brooke et al. Skin+ Bones: Parallel Practices in Fashion and Architecture . es Hudson, 2006.
Khiabany, Gholam. "Globalization and the Internet: Myths and Realities." Trend
LeCain, Timothy. "Against the Anthropocene. A Neo-Materialist Perspective",
International journal for history, culture and modernity, vol. 3.1, 2015, pp. 1-28.
Lewis, H and J Gertsakis. "Sustainability and the Waste Management Hierarchy -a Discussion Paper." EcoRecycle Victoria, 2003
Lindquist, Rickard. Kinetic Garment Construction: Remark the Foundations rd Lindquist, 2015 .

Maloney, Carolyn B. "The Economic Impact of the Fashion Industry." U.S. Congress
Joint Economic Committee, 2019. --. "The Economic Impact of the Fashion Industry"" U.S. Congress Joint Economic Math-Constructed. "Topology of Möbius Cuts -Simple yet Powerful Math Model
for High School Students." Youtube https://www.youtube.com/watch?v=-kA1_ h1dZ58. Accessed 25Nov 2020.

McQuillan, Holly, "Zero-Waste Design Practice: Strategies and Risk Taking for
Garment Design." Shaping Sustainable Fashion: Changing the Way We Make and Sse Clothes, Earthscan, 2011, pp. 83-97.
McQuillan, Holly and Timo Rissanen. "Yield• Making Fashion without Making
Waste. 'he Dowse Art Museum, 201
Meadows, Donella H. et al. "Beyond the Limits: Confronting Global Collapse

Nakamichi, Tomoko Pattern Magic 2 Laurence King 2011
Napier, Elizabeth and Francesca Sanguineti. "Fashion Merchandisers' Slash and
Burn ilemma: A Consequenco of over Prouction and Excessive Waste?" Rutgers
Res. Business Reviev, vol. 3.2, 2018
O'Mahony, Marie. "Sustainable Textiles: Nature or Nurture?" Shaping Sustainable
Fashion: Changing the Way We Make and Use Clothes, Earthscan, 2011, pp. 43-54. Richardson, Robert B. "Yes, Humans Are Depleting Earth's Resources, but
'Footprint' Estimates Don't Tell the Full Story." The Conversation https:// ths litps:// theconversation.com/yes-humans-are-depleting
estimates-dont-ell-the-full-story-100705. 2021.
Rissanen, Timo. "From 15% to o:Investigating the Creation of Fashion without the
Creation of Waste." 2005 .
---. "Zero-Waste Fashion Design: A Study at the Intersection of Cloth, Fashion
Design and Pattern Cutting." vol. Doctor of Philosophy - Design, University of Design and Patterr.
Technology, 2013.
Rissanen, Timo and Holly McQuillan. Zero Waste Fashion Design. Bloomsbury
Publishing, 2016.
Roberts, Julian. Free Cutting. 2014.
Rudenko, Olena. "The 2018 Apparel Industry Overproduction Report and
Infographic." Sharecloth https://sharecloth.com/blog/reports/appareloverproduction.
Scott, Margaret. Fashion in the Middle Ages. Getty Publications, 2018
Series, New Zealand'S. "Environment Aotearoa 2019 Summary". Environmental
Reporting. Ministry for the Environment https://www.mfe.govt.nz/environment

Sharma, Megha. The Constant Change : An Innovative Zero Waste Fashion Design
Process. 2018.
Sinclair, Rose. "Understanding Textile Fibres and Their Properties: What Is a
Textile Fibre?", Textiles and Fashion: Materials, Design and Technology, edited by Textile Fibre"" extiles and Fas
Rose Sinclair, c , 2015, pp. $3-27$.
Smales, Christian. "The Importance of Ecommerce to the Fashion and Apparel
Industry." Ecommerce. DataFeedWatch https://www.datafeedwatch.com/log/ Smales, Christian. Mee fmportace
Industry., Ecommere. DatareedWatt
ecommerce-and-the--ashion-industry.

Swann, Cal "Action Research and the Practice of Design." Design issues 18.1, 2002,
pp. 49-61.
Tarrant, Naomi. The Development of Costume. Routledge, 1994.
Teli, M.D. "Environmental Textiles: Testing and Certification." Performance
Testing of Textiles: Methods, Technology and Applications, edited by Lijing Wang, Woodhead, 2016, pp. 177-192
Thredup. "Thredup 2019 Resale Report." 2019. https://www.thredup.com/
resale?tswc redir=true. ,
Thulaseedas, Jolly and R. Krawczyck. "Möbius Concepts in Architecture." vol. Tomaney, M. "Sustainabl insitute of Technology, 2003. Design and Technology, edited by Rose Sinclair, Cambridge, England 2o15, pp.
$547-560$. Townsend, Katherine and Fiona Mills. "Mastering Zero: How the Pursuit of Less Waste Leads to More Creative Pattern Cutting." International Journal of Fashion Turley, D.B et a. "The Role and Business Case for Existing and Emerging Fibres in
Sustainable Clothing: Final Report to the Department for Environment." Food and Sustainable Clothing: Final
Rural Affairs (Defra), 2009

Van Kopplen, A. and L. Vaughan "Engaging in Fashion." 5th European Academy of
Design Conference 2003. http://wwww.ub.es/5ead/PDF/w/VaughanKopplen.pdf.

Zuber-Skerritt, Ortrun. Action Research in Higher Education: Examples and
Reflections. Kogan Page Limited, 1992.

Bibliographies

pp. 590-607.

Aldrich, Winifed Fabric, Form and Flat Pattern Cutting 2013
Bartlemus, P et al. "Demateriaization, Environmental Accounting and Resource
Management." European Commission, Brussels., 2oor.
Bennett, A. Culture and Everyday Life. London: Sage, 2005 .
Castells, Manuel. The Information Age. vol. 98 , Blackwell Publishers: Oxford, 1996. Wear." International Journal of Fashion Design, Technology and Education, vol.

Finn, Angela L. "Ethical Fashion: The Human Stories Driving a Fashion
Movement." Fashion in Fiction: A Transdisciplinary Conference, 2007.
Grimond, John. "For Want of a Drink: A Special Report on Water." The Economist, 2010. https:///www.economist.com/special-report/2010/0/5/22/for-want-of-a-
drink. Holly, McQuillan. "First Son." Photo, HOLLY MCQULLLAN, 2004.
hollymcquillan.com/design-practice/mdes-first-son-20042005/.

McQuillan, Holly. "Zandra Rhodes- Chinese Squares." Holly McQuillan, 2011.
https:/ /hollymcquillan.com/2011/03/28/yieldzandra-rhodes-chineses-squares/.
McQuillan, Holly et al. "The Cutting Circle: How Making Challenges Design." Research Journat of extile and Apparel, vol. 17, no. 1, 2013, pp. 39-49,

Moore, Sarah A. "Garbage Matters: Concepts in New Geographies of Waste." ,
Nakamichi, Tomoko. Pattern Magic. Laurence King, 2010.
Peterson, Ivars. Fragments of Infinity: A Kaleidescope of Math and Art. John Wiley
\& Sons Incorporated, 20o1.

Tellier-Loumagne, Francoise. The Art of Felt : Inspirational Designs, Textures and Telirer-Loumagne, Francoise. The A
Surfaces. Thames \& Hudson, 2008 .
Wicker, Alden. "Nyfw: Meet Yeohlee, the Zero-Waste Fashion Maven." Ecocult. https:///ecocull.com/nyfw-meet-yeohlee-the-zero-waste-fashion-maven/.
Made in China. Yajun, Xu, 2019. Benmo Evaluation, https://www.youtube.com/

Young, Elewisa. "Fashion Waste Is Rubbish - Yes, but This Is Not the Issue.
WTVOX https: / /wtrox.com/fashion/fashion-waste/. Accessed Nov 2020 .

List of images

(Fig. 1) Spending on apparel (Amed et al. 19). (Fig. 2) Waste management (Lewis and Gertsakis 7). (Fig. 3) The Mobius band (Thulaseedas and Krawczyck 1). (Fig. 4) Max Reinhardt Haus (Thulaseedas and Krawczyck 2). Max Reinhardt Haus model (Hodge et al. 91). (Fig. 5) The Mobius (Hodge et al. 256-257). (Fig. 6) Reconstruction of an Indian sari (Lindqvist 60). (Fig. 7) Sub-cut dress (McQuillan and Rissanen 31) and pattern of sub-cut dress (McQuillan and Rissanen 35). (Fig. 8) Muse dress with pattern (Townsend and Mills 109). (Fig. 9) Gauze coat with pattern (Cumming and McQuillan). (Fig. 10) First Son. 2004-2005. Holly McQuillan. (Fig. 11) The action research in design (Swann 53). (Fig. 12) My design process and iteration. (Fig. 13) Initial concept board painting, Zewei Li,2020. (Fig. 14) Geometric body form, Zewei Li. (Fig. 15) Cutting lines analysis, Zewei Li. (Fig. 16) Dalmatia by Rodrigo Ximenez de Rada, Spain, before 1247, Soria, Cistercian abbey of Santa, Maria de Huerta. (Fig. 17) Jigsaw puzzle methodology-hoodie pattern, Timo Rissanen. (Fig. 18) \#1 2D Square body and arms shirt pattern. (Fig. 19) \#1 2D Square body and arms shirt: front and side views. (Fig. 20) Six triangles coat (Hishinuma 162). (Fig. 21) \#2 Initial pattern, left-side, back, and front garment views, sequentially, Zewei Li. (Fig. 22) \#3 Diagonal dress: initial pattern and side view. (Fig. 23) \#3 Diagonal dress: final pattern and front view. (Fig. 24) Further development of Diagonal dress sketch analysis. (Fig. 25) Further development of Diagonal dress: front and back views. (Fig. 26) Further development of Diagonal dress: final pattern. (Fig. 27) Paper Mobius band test, Zewei Li. (Fig. 28) \#4 Single mobius top: front, left-side, and back views, Zewei Li. (Fig. 29) \#4 Single mobius top pattern, Zewei Li. (Fig. 30) \#5 Single mobius angular dress (square): front, back, and side views, Zewei Li. (Fig. 31) \#5 Single mobius angular dress (square) pattern, Zewei Li. (Fig. 32) \#6 Single mobius angular dress (rectangle): front, back, and side views,	Zewei Li (Fig. 33) \#6 Single mobius angular dress pattern (rectangle), Zewei Li. (Fig. 34) \#7 Single mobius multi-wear top (rectangle): front and back views, Zewei ${ }^{\text {Li. }}$ (Fig. 35) \#7 Single mobius multi-wear top pattern (rectangle), Zewei Li. (Fig. 36) \#8 Single mobius vertical dissected: dress pattern, Zewei Li. (Fig. 37) \#9 Single mobius horizontal dissected coat: front, side, and back views, Zewei Li. (Fig. 38) \#9 Single mobius horizontal dissected: coat pattern, Zewei Li. (Fig. 39) \#10 Double mobius coat: side and front views with pattern, Zewei Li. (Fig. 40) \#11 Double mobius joined: coat (bi-colour) right and reverse look views, Zewei Li. (Fig. 41) \#11 Double mobius joined: coat (bi-colour) pattern, Zewei Li. (Fig. 42) Circumference measurements, Zewei Li, size chart reference from Cloake Dawn (Cloake 10-13). (Fig. 43) Group circumference measurements, Zewei Li, size chart reference from Cloake Dawn (Cloake 10-13). (Fig. 44) Body lines dimensions, Zewei Li, size chart reference from Cloake Dawn (Cloake 10-13). (Fig. 45) Body horizontal and vertical dimensions, Zewei Li, size chart reference from Cloake Dawn (Cloake 10-13). (Fig. 46) Group lines dimensions, Zewei Li, size chart reference from Cloake Dawn (Cloake 10-13). (Fig. 47) Body girths and lines dimension combination, Zewei Li, size chart reference from Cloake Dawn (Cloake 10-13). (Fig. 48) Group body girths and lines dimension combination, Zewei Li, size chart reference from Cloake Dawn (Cloake 10-13). (Fig. 49) Full-length dress: initial pattern and small toile, Zewei Li. (Fig. 50) Initial full-length dress-possible dressing methods, Zewei Li. (Fig. 51) Full-length dress: pattern development process, Zewei Li. (Fig. 52) Knit full-length dress, Zewei Li. (Fig. 53) Full-length dress: final pattern, Zewei Li. (Fig. 54) Full-length dress: final photos. (Fig. 55) Full-length dress details. (Fig. 56) Full-length dress: other wear options. (Fig. 57) Palazzo pant and asymmetrical top: pattern development and small toile, Zewei Li.

(Fig. 58) Palazzo pant and asymmetrical top: initial pattern, Zewei Li.	
(Fig. 62) Palazzo pant and asymmetrical top d (Fig. 63) Mobius Pattern 1a: full-length dress	
(Fig. 64) Mobius Pattern 1b version: palazzo pant and asymmetrical top. (Fig. 65) Felting coat half-scale process photos, Zewei Li.	
	(Fig. 66) Felting coat hal-scale to
(Fig. 67) Felting coat foundation patte	
(Fig. 68) Duster robe and draped shirt pattern iteration,	
(Fig. 69) Duster robe full-scale toile-cotton, Zewei Li.	
	(Fig. 70) Duster robe full-scale toile-silk, Z
(Fiig. 71) Draped shirt full-scale toile-cotton, Zewei Li.	
(Fig. 73) Duster robe and draped shirt fastening expl(Fig. 74) Duster robe and draped shirt fastening explo	
(Fig. 75) Felting coat, duster robe, and d (Fig. 76) Felting coat final photos.	
${ }_{\text {(Fig. } 77)}$ (Felting coat details.	
${ }_{\text {a }}^{\text {(Fig. 78) Duster robe final photo }}$ (Fig 79) Duster robe detais.	
(Fig. 80) Other ways of wearing the duster robe(Fig 811 Draped shirt final photos	
(Fig. 81) Draped shirt final photos.(Fig. 82) Double layer draped tops.	
(Figig 83) Double layer skirit and top initial pattern, Zewei Li.(Fig 84) Double layer skir and top toile Zewei L .	
(Fig. 8) Double layer skirt and op op contruction exploration,(Fig. 8) Doubl layer skirt and top final pattern, Zewei Li.	
(Fig. 87) Double layer skirt and top final pho	
(Fig. 89) Other ways of wearing double laye	

Appendices

1.Fibre impact on environment

Cotton
Moderate energy demand during preparation and productio Moderate energy demand
High water requirement
High
High amount of chemicals used in finishing
Moderate greenhouse gas emissions
Organic Cottton
Low energy demands
Low energy dema
Low pesticide use
Low production and large demand for land area
Silk
Low energy demands during preparation and production High energy demand in dyeing High water requirement
Moderate water waste Low greenhouse gas emissions

Wool
Low energy demands during preparation and production Moderate water requirements in clearing
High water waste
Low greenhouse gas emissions Low greenhouse
High land use
Viscose
Moderate energy demands during preparation and productio High water requirem
Low water waste
Low rreenhouse gas emissions
Low land use
Polyester
Low water waste

$$
\begin{aligned}
& \text { Low water waste } \\
& \text { High reenhouse gas emissions } \\
& \text { Lov land use }
\end{aligned}
$$

$$
\begin{aligned}
& \text { High greenho } \\
& \text { Low land use }
\end{aligned}
$$

Hybrid fibre

```
Difficult to recycle 
```

Information based on the tables in the Summary Report to the Department for
Environment, Food and Rural Affairs (Turley et al. $\sigma-18$)
'The Infinity' collection fabric content ing polyester, silk, visc
Reduced energy use
Reduced greenhouse
Reduced energy use
Reduced dreenhouse gas emissions
Reduced greenhouse gas emiss
Reduced resource consumptio
Redueed water requienent
Reduced water requirement
Reduced water waste
Extended usage life

Protogananers lame: - Emily Fer

Ro

$$
\infty
$$

