Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Development of Fusion Motion Capture for Optimisation of Performance in Alpine Ski Racing

A thesis presented in fulfilment of the requirements for the degree of

Doctor of Philosophy in Science

at Massey University, Wellington, New Zealand

Matthew Andrew Dalhousie Brodie

2009

Abstract

Fusion Motion Capture (FMC), a wearable motion capture system was developed, and applied to the optimisation of athlete performance in alpine ski racing. In what may be a world first, the three-dimensional movements of a skilled athlete (with less than 20 FIS¹ points) skiing through a complete training giant slalom racecourse were analysed.

FMC consists of multiple light weight sensors attached to the athlete including inertial measurement units (IMUs), pressure sensitive insoles and a global position system (GPS) receiver. The IMUs contain accelerometers, gyroscopes, and magnetometers. Limb orientation and location are obtained by mathematically combining the most reliable data from each sensor using fusion algorithms developed by the author. FMC fuses the signals from the IMUs and GPS without the need for the post filtering, usually applied to motion capture data, and therefore, maintains maximum bandwidth. The FMC results were stable and relatively independent of motion type and duration unlike other inertial systems available in 2005, when the research was initiated.

Analysis of data collected from an athlete skiing giant slalom contradict the traditional 'going straight turning short' race strategy. The shortest path may not always be the fastest. Instead each gate has a different optimum approach arc. Optimum turn radius increases with both increasing speed and increasing terrain slope. The results also contradict laboratory measurements of ski/snow sliding friction and suggest that snow resistance in giant slalom is of similar importance to wind drag. In addition to gravity, the athlete increased speed using the techniques of 'lateral projection' and 'pumping'.

Race performance was determined from the analysis of the athlete skiing through the entire course. FMC proved, therefore, to be more suitable than traditional optical systems that are practically limited to capturing small sections of a race course.

The athlete experienced high and rapidly fluctuating torques about all three axes of the lower joints. This information could be useful in designing training programmes racecourses and equipment to reduce knee injuries. Data driven animations and colour coded force vector diagrams were developed to enhance athlete feedback. Inline skating data was also analysed.

¹ Federation International Ski (FIS), the ruling body in ski racing. Less than 20 FIS points means it is likely the athlete will be ranked within the top few hundred athletes world wide.

To Emily, Reuben, and Douglas who are more precious than sunshine

Preface

The preface tells a story about a research journey. Along the road a brief summary of part of this research became an entry to the 2008 New Zealand MacDiarmid Young Scientists of the Year Awards. The 90 second competition entry video and poster provide a useful overview of the research suitable for all audiences. After the success in these awards the Foundation for Research Science and Technology made a short professional video which also provides and interesting introduction to the thesis. The videos and poster from the competition are available on the accompanying CD (**Appendices\MacDiarmid 2008\Stage 2 Gold_Science.mpg**) and the video entry is also available on YouTube at the following address:

www.youtube.com/BrodieMAD

The project was originally titled 'The Optimisation of Athlete Movements in Alpine Ski Racing' but was changed to reflect the shift in focus of the research to the development of Fusion Motion Capture. At the start there were many obstacles to overcome. There was no funding, a suitable motion capture system was not available, ski racing was not a high priority in New Zealand, and the nearest ski area was several hours drive away. It soon became apparent that motion capture of giant slalom racing in the harsh alpine environment was not an easy proposition. Several times, contrary to the weather forecast, conditions were favourable. If all the hidden obstacles had been known in advance then a different path might have been chosen, but then ignorance was bliss.

One by one the obstacles fell, but like the heads of the serpent Hydra from Greek mythology more keep appearing. Fortunately, most of Hydra's heads eventually represented the possibility of novel contributions to the body of knowledge and so the mantra was adopted, 'every cloud has a silver lining (and a publication)'.

The research for this PhD resulted in several peer-reviewed publications in journals, books and conferences. It also generated a lot of mainstream media interest, including TV appearances, radio interviews and articles in magazines, newspapers and on the internet.

There is a saying: "May you live in interesting times." It has been and still is an interesting journey.

Acknowledgements

The author gratefully acknowledges the support that made this project possible.

The following people, in alphabetical order, contributed to this project through the research, the funding applications and the thesis preparation: Prof Geoffrey Anneson, Dr Bobby Cheema, Prof Philip Dickinson, Mr David Graham, Mr Ben Griffin, Mr Angus Howden, Dr Edmond Lai, Dr Rachel Page, Dr Wyatt Page, Dr John Ruck, Mr Rhys Thorpe, Mrs Judy Thorpe, Mr Mike Turner, and Dr Alan Walmsley.

This research was supported by the following institutions: The Institute of Food Nutrition and Human Health, Massey University, Mt Ruapehu Alpine Lifts, the New Zealand Academy of Sport, Sport and Recreation New Zealand, and Volkswagen New Zealand.

This research was supported by the following awards and grants: The Foundation for Research Science and Technology, for the 2008 MacDiarmid Overall Runner Up New Zealand Young Scientist of the Year Award and Future Science and Technology Award. The Federation International Ski, for an Innovation award at the 4th International Congress on Science in Skiing. The Royal Society of New Zealand, for the R.H.T Bates award and the James G. Hay travel award. Education New Zealand, for a postgraduate study travel abroad award. Sport and Exercise Science New Zealand (SESNZ), for the 2005 Emerging Scientist Award. The Vice Chancellors Committee, for a Claude McCarthy travel award.

Approval for the skiing experiments in this thesis was obtained from the Massey University Human Ethics Committee, Palmerston North Application 05/105.

Table of Contents

ABSTR	ACT	III
<u>PREFA</u>	.CE	VII
ACKN	OWLEDGEMENTS	IX
<u>TABLE</u>	E OF CONTENTS	XI
<u>LIST O</u>	F ILLUSTRATIONS	<u>XVII</u>
<u>LIST O</u>	F VIDEOS	XXI
<u>GLOSS</u>	SARY	XXIII
<u>SYMB</u>	OLS	XXV
<u>1.</u>	INTRODUCTION	<u>1</u>
1.1.	W HY	2
1.2.	CHRONOLOGY OF MOTION CAPTURE AND SKIING	-3
	1.2.1. BIOMECHANICAL ANALYSIS AND SKIING	6
1.3.	IS OPTICAL MOTION CAPTURE SUITABLE FOR SKIING?	7
1.4.	MOTION CAPTURE USING NEW SENSING TECHNOLOGY	11
1.5.	FORCES AND OPTIMUM TRAJECTORIES IN ALPINE SKI RACING	13
	1.5.1. GRAVITY	14
	1.5.2. GROUND REACTION FORCES MEASUREMENT	14
	1.5.3. WIND RESISTANCE	15
16	1.5.4. SNOW RESISTANCE	10
1.0. 1.7.	CHAPTER SUMMARY	17
<u>2.</u>	IMU LABORATORY TESTS	21
2.1.	ANIMATING NANCY	22
	2.1.1. Methods	22
	Details about the data driven animation	23
	Assumptions of IMU motion capture	24
	2.1.2. EXPERIMENTAL	25
	2.1.3. RESULTS	25
	Movement one: Walking	26
	Movement two: Dancing	26
	Wovement infee: Kotating on a chair	26
	214 DISCUSSION	20
2.2.	THE PENDULUM	20 27

		2.2.1. DATA PROCESSING	29
		Fusion algorithm overview	29
		Obtaining a static estimate of orientation	30
		Obtaining a dynamic estimate of orientation	31
		Bi-directional integration	31
		The video system	31
		2.2.2. METHOD	32
		2.2.3. RESULTS	32
		2.2.4. DISCUSSION	34
	2.3.	STATIC ACCURACY	36
		2.3.1. METHOD	36
		The static calibration rig	37
		The Trials	37
		Quaternion representation and error calculation	37
		Statistics	37
		Calibration of the IMU raw data	38
		2.3.2. EXPERIMENTS	38
		2.3.3. RESULTS	39
		2.3.4. DISCUSSION	39
_			
<u>3.</u>		FREE SKIING AT CORONET PEAK 2005	<u></u>
	31	FUCION MOTION CADTUDE SET UD	12
	3.1.	THE FMC ALCODITUM VEDSION ONE	42
	J.4.	The body model and static calibration	4 3 45
		Synchronisation of the GPS and IMUs	45 45
	33	EXPERIMENTAL	45
	34	RESULTS AND DISCUSSION FROM A FREE SKUNG TRIAL	40 46
	5.7.	Colour Coded Force Vector Analysis for skiing	46
		Data driven animation of skiing	48
		Validation of GPS accuracy	50
		Validation of body segment orientation and visualisations	51
		Other problems with the prototype FMC system	52
<u>4.</u>		FUSION MOTION CAPTURE DEVELOPMENT	
		2	
	4.1.	ORIENTATION ACCURACY OF FREE MOVEMENT	54
		4.1.1. METHOD	54
		The wand Differences between IMU and VMA actimates of arientation	54
		MU to Word Calibration	55 56
		Eventimental	50 56
		A = 12 P ESH TS AND DISCUSSION	56
	12	FDEE MOVEMENT ALCODITIUM AND ACCUDACY	50 57
	4.2.	FREE MOVEMENT ALGORITHM AND ACCURACT $4.2.1 \text{FMC at contract Wedston Two}$	58
		Combining Different Coordinate Systems	50
		4.2.2 METHOD	57 60
		Experimental	61
		VMA system error	61
		4 2 3 RESULTS AND DISCUSSION	62
	4.3	3D ANTHROPOMETRY AND THE RIOMECHANICAL MAN	65
		4.3.1. METHOD	66
		3D frame construction and development	66
			00

	From bony landmarks to 'The Biomechanical Man'	68
	The Biomechanical Man in MATLAB	70
	Mapping the IMUs to the body segments	70
	4.3.2. EXPERIMENTAL	72
	4.3.3. RESULTS AND DISCUSSION	74
	Criterion and 3D anthropometry differences	74
	Reasons for differences	75
	Limitations for sacrum, thigh and thorax body segments	76
	Are the limitations of the body model acceptable?	76
<u>5.</u>	DEVELOPMENTS FROM INLINE SKATING	
5 1	CADTUDE AND VISUAL ISATION OF INFINE SKATING	Q1
5.1	5.1.1 METHODS	81
	The Biomechanical Man - IMU to hody segment mapping	81
	Creating the date driven enimations from EMC date	81
	Fusion Motion Conture algorithm Vargion Three	02 82
	5.1.2 EVDEDIMENTAL	02 85
	The course	0 <i>J</i> 85
	Fauinment	0J 86
	Equipment $5.1.2$ Destines a part a visital is ation	80 87
	5.1.7. RESULTS FROM DATA VISUALISATION 5.1.4. DISCUSSION ADOLT DATA VISUAL ISATION	00
	Limitations of global trajectory	90
	Limitations of the data driven animations	01
5 2	ANALVSIS OF EXTERNAL FORCES ON SLALOM SKATING	91 92
J.2	5.2.1 METHODS	92
	Defining ground reaction forces	92
	Calculation: Ground reaction forces wind drag and hearing friction	92
	RS-Scan insole measurement hysteresis and foot loading ratio	93
	Ground reaction force calculations (GRF)	94
	Dissipative force calculations: Wind drag and hearing friction	97
	Component nower calculations	97
	Component energy calculations	98
	5.2.2 RESULTS AND DISCUSSIONS	98
	Limitations of modelling the dissinative forces	98
	Comparing the effects of different external forces	90
	Limitations of the calculated forces	102
	Power analysis and the work of external forces	102
	Validity of power and work analyses	104
5 3	VARIARIJ ITV OF INI INF SKATING CLOBAL TRAJECTORY	104
	5.3.1 METHODS AND CALCULATIONS	106
	Variability in global trajectory	106
	5.3.2 RESULTS AND DISCUSSION	107
	Global trajectory accuracy	107
	Variability in trajectory	107
	Open radius slalom gate passing strategy	108
	Final caveats	110
5 4	SIMULATION OF ATHLETE SPECIFIC OPTIMUM TRAJECTORIES	110
J•7	5 4 1 METHODS	110
	Simulation constraints	110
	Ontimisation of the global trajectory	110
	5.4.2. RESULTS AND DISCUSSION	112
		115

<u>6.</u>		FMC AT MT. RUAPEHU OCTOBER 2006	115
	6.1.	SKI RACING DATA COLLECTION	117
		6.1.1. INSTRUMENTATION	117
		IMU placement	117
		Other measuring equipment	119
		Equipment list	119
		Data logging and synchronisation	119
		6.1.2. EXPERIMENTAL	120
	6.2.	THE GLOBAL POSITIONING SYSTEM	121
		6.2.1. PSEUDO-RANGE AND CALCULATING RECEIVER LOCATION	122
		Static accuracy of differential GPS location	124
		Dynamic accuracy of differential GPS location	126
		6.2.2. CARRIER-FREQUENCY AND CALCULATING RECEIVER VELOCITY	126
		Differential GPS - integrated velocity accuracy	129
		Differential GPS - test gate survey	130
		Dynamic accuracy of differential GPS velocity	131
		6.2.3. SUMMARY OF GPS ACCURACY	132
	6.3.	GATE SURVEY	132
		6.3.1. ALIGNING THE GPS AND THEODOLITE COORDINATE SYSTEMS	133
		Z-axes alignment	133
		Heading Alignment	134
		6.3.2. DATA FUSION	134
	6.4.	A SIMPLE MODEL OF THE COURSE TERRAIN	135
	6.5.	FUSION MOTION CAPTURE ALGORITHM: VERSION FOUR	136
		6.5.1. GLOBAL TRAJECTORY	137
		6.5.2. LIMB ORIENTATION AND GYROSCOPE OVERLOAD	139
	6.6.	MEASUREMENT OF EARTH'S MAGNETIC FIELD	141
		6.6.1. MEASURING EARTH'S MAGNETIC FIELD	141
		6.6.2. RESULTS	143
		6.6.3. DISCUSSION	144
	6.7.	THIGH SOFT TISSUE ARTEFACTS	144
	6.0	6.7.1. REMOVING THIGH SKIN ARTEFACTS	145
	6.8.	RESULTS: DATA DRIVEN ANIMATIONS	145
	6.9.	ORIENTATION AND TRAJECTORY ERRORS DURING SKIING	147
		Limb segment orientation	147
		Global Trajectory	148
		Summary of expected errors	150
<u>7.</u>		FORCES IN GIANT SLALOM	<u> 151</u>
	7.1.	ACCURACY OF FMC DATA AND THE ANALYSIS OF FORCES	152
	7.2.	MODELS FOR DISSIPATIVE FORCES	156
		7.2.1. WIND DRAG MODEL	157
		7.2.2. SNOW RESISTANCE MODELS	158
	7.3.	BIOMECHANICAL MAN VERSION TWO WITH SOLID LIMBS	160
	7.4.	DYNAMIC CROSS SECTIONAL AREA AND WIND DRAG	161
		7.4.1. METHOD OF MEASURING CROSS SECTIONAL AREA	162
		7.4.2. RESULTS OF CROSS SECTIONAL AREA IN SKIING	162
		7.4.3. DISCUSSION ABOUT CHANGING CROSS SECTIONAL AREA	163
	7.5.	CALCULATING MODEL COEFFICIENTS	164
		7.5.1. CHOOSING THE COEFFICIENTS	166
		7.5.2. DISCUSSION ABOUT WIND DRAG AND SNOW RESISTANCE	168

7.7. Ri 7.8. F(7.8.1 7.8.2 7.8.3 7.8.4 7.8.4 7.8.5 7.9. Ri 7.9.1 7.9.2 7.9.3 8. OPT 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 8.3. W 1 8.4. P(8.5. D) 8.6. Ti 8.6.1	SIDUAL FORCES, POWER AND ENERGY OT LOADING RATIO INERTIAL PROPERTIES OF EQUIPMENT INERTIAL PROPERTIES OF HELMET AND BACKPACK ALGORITHM FOR DETERMINING FOOT LOADING RATIO IN SKIING 'he user supplied function RESULTS OF FOOT LOADING RATIO AND COP MEASUREMENTS CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION SULTS AND IMPLICATIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES	172 176 177 177 178 178 178 179 183 183 183 183 184 187 191
7.8. F(7.8.1 7.8.2 7.8.3 7.8.4 7.8.5 7.9. Ri 7.9.1 7.9.1 7.9.1 7.9.2 7.9.3 8. OPT 8.1.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 4.8 8.1.6 8.2. Ri 8.3. W 4.8 8.1.6 8.2. Ri 8.1.6 8.2. Ri 8.3. W 4.8 8.1.6 8.2. Ri 8.1.6 8.2. Ri 8.3. W 4.8 8.1.6 8.2. Ri 8.3. W	OT LOADING RATIO INERTIAL PROPERTIES OF EQUIPMENT INERTIAL PROPERTIES OF HELMET AND BACKPACK ALGORITHM FOR DETERMINING FOOT LOADING RATIO IN SKIING 'he user supplied function RESULTS OF FOOT LOADING RATIO AND COP MEASUREMENTS CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION ESULTS AND IMPLICATIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES	176 177 178 178 178 179 183 183 183 183 184 187 191
7.8.1 7.8.2 7.8.3 7.8.4 7.8.5 7.9. Ri 7.9.1 7.9.1 7.9.1 7.9.1 7.9.1 7.9.2 7.9.3 8. 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 8.4. PC 8.5. D/ 8.6. Ti 8.6.1	INERTIAL PROPERTIES OF EQUIPMENT INERTIAL PROPERTIES OF HELMET AND BACKPACK ALGORITHM FOR DETERMINING FOOT LOADING RATIO IN SKIING he user supplied function RESULTS OF FOOT LOADING RATIO AND COP MEASUREMENTS CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION CONCLUSIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES IMISATION OF SKI RACE TECHNIQUE	177 178 178 179 183 183 183 183 184 187 191
7.8.2 7.8.3 7.8.4 7.8.4 7.8.5 7.9. Ri 7.9.1 7.9.1 7.9.1 7.9.1 7.9.2 7.9.3 8. 8.1 8.1. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 8.3. W 8.4. PC 8.5. D. 8.6. Ti 8.6.1	INERTIAL PROPERTIES OF HELMET AND BACKPACK ALGORITHM FOR DETERMINING FOOT LOADING RATIO IN SKIING he user supplied function RESULTS OF FOOT LOADING RATIO AND COP MEASUREMENTS CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION CSULTS AND IMPLICATIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES	177 178 178 179 183 183 183 183 184 187 191
7.8.3 7.8.4 7.8.4 7.8.5 7.9. Ri 7.9.1 7.9.2 7.9.3 8. OPT 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 1 8.4. PC 8.5. D. 8.6. Ti 8.6.1	ALGORITHM FOR DETERMINING FOOT LOADING RATIO IN SKIING "he user supplied function RESULTS OF FOOT LOADING RATIO AND COP MEASUREMENTS CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION SULTS AND IMPLICATIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES IMISATION OF SKI RACE TECHNIQUE	178 178 179 183 183 183 184 187 191
7.8.4 7.8.4 7.8.5 7.9. Ri 7.9.1 7.9.2 7.9.3 8. OPT 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 1 8.3. W 1 8.4. PC 8.5. D. 8.6. Ti 8.6.1	he user supplied function RESULTS OF FOOT LOADING RATIO AND COP MEASUREMENTS CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION ESULTS AND IMPLICATIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES	178 179 183 183 183 184 187 191
7.8.4 7.8.5 7.9. Ri 7.9.1 7.9.1 7.9.2 7.9.3 8. OPT 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 5.8.1.6 8.2. Ri 8.3. W 5.8.5 8.6. Ti 8.6.1	RESULTS OF FOOT LOADING RATIO AND COP MEASUREMENTS CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION SULTS AND IMPLICATIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES	179 183 183 183 184 187 191
7.8.5 7.9. Ri 7.9.1 7.9.1 7.9.2 7.9.3 8. OPT 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 1 8.4. Po 8.5. D. 8.6. Ti 8.6.1	CONCLUSIONS OF FOOT LOADING RATIO OPTIMISATION SULTS AND IMPLICATIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES IMISATION OF SKI RACE TECHNIQUE	183 183 183 184 187 191
7.9. Ri 7.9.1 7.9.1 7.9.2 7.9.3 8. OPT 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W H 8.4. Po 8.5. D. 8.6. Ti 8.6.1	SULTS AND IMPLICATIONS VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES IMISATION OF SKI RACE TECHNIQUE	183 183 184 187 191
7.9.1 7.9.2 7.9.3 8. OPT 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W H 8.4. PC 8.5. D. 8.6. Th 8.6.1	VISUALISATION OF EXTERNAL FORCES ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES IMISATION OF SKI RACE TECHNIQUE	183 184 187 191
7.9.2 7.9.3 8. OPT 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 1 8.4. PC 8.5. D. 8.6. Ti 8.6.1	ENERGY AND WORK OF EXTERNAL FORCES VISUALISATION OF EXTERNAL TORQUES IMISATION OF SKI RACE TECHNIQUE	183 184 187 191
7.9.3 8. OPT 7.9.3 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W N 8.4. Po 8.5. D. 8.6. Ti 8.6.1	VISUALISATION OF EXTERNAL TORQUES	187 191
8. OPT 8.1. R. 8.1.1 8.1.1 8.1.2 8.1.3 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 8.4. PC 8.5. D. 8.6. Ti 8.6.1 8.6.1	IMISATION OF SKI RACE TECHNIQUE	<u>191</u>
I 8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. RI 8.3. W V 8.3. W V 8.4. PC 8.5. D. 8.6. TI 8.6.1	imitations of the analyses	
8.1. R. 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. RI 8.3. W H 8.3. W H 8.4. PC 8.5. D. 8.6. TH 8.6.1		192
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 5.3. W 5.4. PC 8.5. D/ 8.6. Th 8.6.1	ACE ANALYSIS	193
8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W N 8.3. W 1 8.4. Po 8.5. D/ 8.5. D/ 8.6. Ti 8.6.1	VISUALISATION	193
8.1.3 8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W N 8.3. W N 8.4. Po 8.5. D 8.6. Ti 8.6.1	CHRONOLOGICAL ANALYSIS	194
8.1.4 8.1.5 8.1.6 8.2. Ri 8.3. W 8.3. W 8.3. W 8.4. PC 8.5. D 8.6. Ti 8.6. Ti 8.6.1	COURSELINE	195
8.1.5 8.1.6 8.2. Ri 8.3. W 8.3. W 4 8.4. Po 8.5. D4 8.6. Ti 8.6. Ti 8.6.1	SPEED	196
8.1.6 8.2. Ri 8.3. W 8.3. W 1 8.4. Po 8.5. D 8.5. D 8.6. Ti 8.6.1	RESULTANT FORCES	197
8.2. Ri 8.3. W 14 8.4. PC 8.5. D 8.6. Ti 8.6.1	GROUND REACTION FORCES	198
8.2. Ki 8.3. W 1 8.4. Po 8.5. D 8.6. Ti 8.6.1	TSULTANT FORCE VECTOR ANALYSES	200
8.3. W H 8.4. PC 8.5. D 8.6. TI 8.6.1	IND DDAC AND SNOW DESIGTANCE	200
H 8.4. Pc 8.5. D 8.6. Ti 8.6.1	Vind drag area	202
8.4. PC 8.5. DA 8.6. TI 8.6.1	lerd and soft snow	202
8.4. PC 8.5. DA 8.6. TI 8.6.1	Idiu dilu Soft Show	202
8.6. TI 8.6.1	WER, ENERGY AND WORK	204
8.6.1	ATA DRIVEN AMINATION WITH FORCES	200
8.0.1	EDUCTION CONFER	209
0.()	FRICTION CONES	210
8.6.2		212
8.6.3	FORCE ANGLES	214
8.6.4	TURN RADII	216
8.7. A	CCELERATIVE TURN TECHNIQUE	218
8.7.1	ACCELERATION FROM DIVERGING SKI AND COM TRAJECTORIES	218
8.7.2	ACCELERATION FROM EFFECTIVE SNOW SLOPE CHANGES	221
8.8. D	SCUSSION ABOUT RACE STRATEGY	222
8.8.1	GENERAL TRENDS	222
8.8.2	SKI SELECTION AND DESIGN	224
8.8.3	OPTIMUM RACE STRATEGY	226
8.8.4	SIMULATING THE OPTIMUM TRAJECTORY	228
<u>9. CON</u>	CLUSIONS	229
7	he practical conclusions for coaches and athletes are:	231
9.1 A	CRITICAL REVIEW OF THE RESEARCH ACHIEVEMENTS	231
9.2. FI	NAL CONCLUSIONS	239
93 Fi	TURE RESEARCH	237
7.5. 10		271

<u>A.</u>	EXAMPLE CODE	
	Example 1, the Excel spreadsheet	243
	Example 2, The Pendulum	243
	Example 3, Nancy	243
	Example 4, The Biomechanical Man	244
<u>B.</u>	INLINE SKATING	
BIBLIC)GRAPHY	

List of Illustrations

FIGURE 1.1: MAREY'S WHITE HERON, MOTION CAPTURE FROM 1884^{Ψ}	
FIGURE 1.2: RAMPANT LIONESS: PHOTOGRAPH BY LUCA GALUZZI – WWW.GALUZZI.IT	
FIGURE 1.3: EADWEARD MUYBRIDGE FIRST USED CAMERAS FOR MOTION CAPTURE IN 1877^{Ψ}	4
FIGURE 1.4: WOODCUT OF MUYBRIDGE'S MOTION CAPTURE ^Ψ	5
FIGURE 1.5: IMPROBABLE SOLUTION TO THE BRACHISTOCRONE PROBLEM	13

FIGURE 2.1: SUBJECT WITH TEN IMUS AND AN XBUS MODELS THE IMU PLACEMENT	21
FIGURE 2.2: THE SUBJECT DANCING, NANCY, THE REAL TIME DATA DRIVEN ANIMATION IS VISIBLE	25
FIGURE 2.3: THE PENDULUM SET UP	28
FIGURE 2.4: A GENERAL OUTLINE OF THE FUSION INTEGRATION PROCESS	29
FIGURE 2.5: PENDULUM SWING IN QUATERNION REPRESENTATION ONLY Q1 IS SHOWN FOR CLARITY	30
FIGURE 2.6: THE IMU GLOBAL COORDINATE SYSTEM	31
FIGURE 2.7: VIDEO ANALYSIS OF NORMAL PENDULUM MOTION	33
FIGURE 2.8: KALMAN FILTER ALGORITHM ESTIMATION OF NORMAL PENDULUM MOTION	33
FIGURE 2.9: FUSION ALGORITHM ESTIMATION OF NORMAL PENDULUM MOTION	33
FIGURE 2.10: THE STATIC CALIBRATION RIG	37

riderie 5.11. The net more more brother in condition in the brother in condition in the first of	
FIGURE 3.2: IMU PLACEMENT ON THE THIGHS AND SHANKS	13
FIGURE 3.3: POSTERIOR VIEW OF THE SACRUM IMU PLACEMENT BETWEEN THE PSIS	13
FIGURE 3.4: FMC VERSION ONE - ALGORITHM DIAGRAM	14
FIGURE 3.5: VELOCITY PROFILE AND COM TRAJECTORY DURING THE RUN	17
FIGURE 3.6: COLOUR CODED FORCE VECTOR ANALYSIS	17
FIGURE 3.7: DATA DRIVEN ANIMATION, FIVE FRAMES PER SECOND FOR CLARITY	18
FIGURE 3.8: CLOSE UP OF COLOUR CODED FORCE VECTOR ANALYSIS	18
FIGURE 3.9: BIRDS EYE VIEW OF TURNS. LEFT SIDE - BRAKING AND RIGHT SIDE - ACCELERATING	19
FIGURE 3.10: SIDE VIEW OF TURNS. TOP PANEL - BRAKING AND BOTTOM PANEL - ACCELERATING	19
FIGURE 3.11: COMPARING DIFFERENT MEASUREMENTS OF A RACECOURSE	50

FIGURE 4.1: THE WAND, THREE BALLS AND AN IMU LOCATED AT THE T-JUNCTION	53
FIGURE 4.2: THE WAND, MARKERS, AND IMU WITH LOCAL AXES SHOWN	55
FIGURE 4.3: THE DIFFERENCE BETWEEN VMA AND IMU MOTION CAPTURE OVER TEN TRIALS	57
FIGURE 4.4: THE FMC ALGORITHM VERSION TWO	59
FIGURE 4.5: FUSION INTEGRATION ESTIMATION OF VERTICAL VELOCITY	60
FIGURE 4.6: EXPERIMENTAL SET UP, THE WAND WAS MOVED THROUGH FREE SPACE	61
FIGURE 4.7: VMA ORIENTATION ERROR AND DIFFERENCE BETWEEN VMA AND FMC OVER TRIALS	63
FIGURE 4.8: VMA LOCATION ERROR AND DIFFERENCE BETWEEN VMA AND FMC OVER TRIALS	63
FIGURE 4.9: LOCAL Y-AXIS ANGULAR VELOCITY OF THE WAND (VMA) AND THE IMU GYROSCOPE	64
FIGURE 4.10: THE 3D ANTHROPOMETRIC FRAME VERSION ONE	66
FIGURE 4.11: MAPPING THE LOCAL IMU COORDINATE SYSTEMS TO THE LOCAL BODY SEGMENTS	67
FIGURE 4.12: VISUALISATION OF MEASUREMENTS FROM THE 3D ANTHROPOMETRIC FRAME	70

FIGURE 5.1: BIOMECHANICAL ANALYSIS OF INLINE SKATING SOME FORCES AND TORQUES SHOWN	. 79
FIGURE 5.2: MAPPING THE IMUS USING THE 3D FRAME	. 82
FIGURE 5.3: FMC ALGORITHM VERSION THREE FOR INDOOR INLINE SKATING	. 83
FIGURE 5.4: THE PROXIMAL TO DISTAL CALCULATION SEQUENCE FOR FMC	. 84
FIGURE 5.5: CALCULATION PROCESS FOR THE CERVICAL JOINT CENTRE HEIGHT	. 85
FIGURE 5.6: RUN 4 SHOWS THE GATE PLACEMENT AND GLOBAL TRAJECTORY FOR TWO LAPS	. 85
FIGURE 5.7: CONES MARK THE COURSE, THE ATHLETE, IS HELD AT THE START POSITION	. 86
FIGURE 5.8: IMUS BEING ATTACHED TO THE UPPER BODY	. 87
FIGURE 5.9: THE GLOBAL TRAJECTORIES OF ATHLETE'S COM	. 87

FIGURE 5.10: FREE BODY DIAGRAM OF SKATING	93
FIGURE 5.11: RS-SCAN MEASURED NORMAL FOOT FORCES CONTAIN HYSTERESIS	94
FIGURE 5.12: GROUND REACTION FORCE CALCULATIONS FOR SKATING	95
FIGURE 5.13: CALCULATED FORCES IN THE X-AXIS	100
FIGURE 5.14: RESULTANT FORCE VECTOR DIAGRAM FOR SKATING	101
FIGURE 5.15: GROUND REACTION FORCE VECTOR DIAGRAM SHOWS SKATE STROKES	101
FIGURE 5.16: FRICTION CONE BASED ON CALCULATED HORIZONTAL GROUND REACTION FORCES	102
FIGURE 5.17: AIRBORNE GROUND REACTION FORCES	102
FIGURE 5.18: POWER ANALYSIS OF EXTERNAL FORCES	105
FIGURE 5.19: WORK DONE BY DIFFERENT EXTERNAL FORCES	105
FIGURE 5.20: ANALYSIS OF VARIABILITY IN GLOBAL TRAJECTORY	106
FIGURE 5.21: TRAJECTORY VARIABILITY AROUND THE COURSE	108
FIGURE 5.22: ANALYSIS OF TURN RADIUS	109
FIGURE 5.23: THE FORCE-VELOCITY RELATIONSHIP	112
FIGURE 5.24: SIMULATED TRAJECTORY BETWEEN TWO APEXES	113
FIGURE 5.25: SIMULATED TRAJECTORY VS. FIVE ACTUAL LAPS THROUGH THE COURSE	114

Figure 6.2: Lycra motion capture suit to contain the connecting wires	FIGURE 6.1: SYSTEM DIAGNOSTICS USING A LAPTOP FROM (BRODIE, WALMSLEY, & PAGE, 2008A)	115
Figure 6.3: IMU placement behind the ski boot, in a waterproof protective casing. 118 Figure 6.4: The author modelling the GPS and IMU attached to the helmet 118 Figure 6.5: System diagnostics using a laptop (Brodie et al., 2008a) 120 Figure 6.6: Velocity synchronisation of GPS and IMU data 120 Figure 6.7: Triangulation for receiver location from four satellites 122 Figure 6.8: Example pseudo-range corrections (six satellites) from skiing 124 Figure 6.10: Residual pseudo-range correcting skiing used to atta to true location 125 Figure 6.11: Calculation of velocity from carrier-frequency data. 127 Figure 6.12: Differential carrier-frequency corrections 129 Figure 6.13: Integrated velocity while walking though a loop using ECEF coordinates 130 Figure 6.14: Test surveying of the cones making up a simulate pracecourse 130 Figure 6.15: Residual speed from carrier-frequency during skiing 131 Figure 6.17: Rotation from GPS to theodolite to masure gate location 133 Figure 6.17: Rotation from GPS to theodolite coordinate systems 134 Figure 6.16: Alan Walmsley manning the theodolite to masure gate location 133 Figure 6.17: Rotation from GPS to theodolite coordinate systems 134 Figure 6.19: Fusion algorithm Version Four <td>FIGURE 6.2: LYCRA MOTION CAPTURE SUIT TO CONTAIN THE CONNECTING WIRES</td> <td>117</td>	FIGURE 6.2: LYCRA MOTION CAPTURE SUIT TO CONTAIN THE CONNECTING WIRES	117
Figure 6.4: The Author Modelling the GPS and IMU ATTACHED to the Helmet 118 Figure 6.5: System Diagnostics using a laptop (Brodie et al., 2008a) 120 Figure 6.6: Velocity synchronisation of GPS and IMU data 120 Figure 6.7: Triangulation for Receiver Location from four satellites 122 Figure 6.8: Example pseudo-range corrections (six satellites) from skiing 124 Figure 6.9: Convergence of differentially corrected GPS range data to true location 125 Figure 6.10: Residual pseudo-range (during skiing) used to estimate error 127 Figure 6.12: Differential carrier-frequency corrections 129 Figure 6.13: Integrated velocity while walking though a loop using ECEF coordinates 130 Figure 6.14: Test surveving of the cones making up a simulated racecourse 130 Figure 6.16: ALAN Walmsley manning the theodolite to measure gate location 133 Figure 6.17: Rotation from GPS to theodolite coordinate systems 134 Figure 6.18: Computer model of the ski racecourse based on gate measurements 136 Figure 6.19: Fusion algorithm Version Four 137 Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138 131 Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion 138 Figure 6.22: Gyroscope overload (around data poi	FIGURE 6.3: IMU PLACEMENT BEHIND THE SKI BOOT, IN A WATERPROOF PROTECTIVE CASING	118
Figure 6.5: System Diagnostics using a laptop (Brodie et al., 2008a)120Figure 6.6: Velocity synchronisation of GPS and IMU data120Figure 6.7: Triangulation for receiver location from four satellites122Figure 6.8: Example pseudo-range corrections (six satellites) from skiing124Figure 6.9: Convergence of differentially corrected GPS range data to true location125Figure 6.10: Residual pseudo-range (during skiing) used to estimate error127Figure 6.11: Calculation of velocity from carrier-frequency data129Figure 6.12: Differential carrier-frequency corrections129Figure 6.13: Integrated velocity while walking though a loop using ECEF coordinates130Figure 6.14: Test surveying of the cones making up a simulated racecourse130Figure 6.15: Residual speed from carrier-frequency during skiing131Figure 6.16: Alan Walmsley manning the theodolite to measure gate location133Figure 6.16: Alan Walmsley manning the theodolite coordinate systems134Figure 6.19: Fusion algorithm Version Four137Figure 6.19: Fusion algorithm Version Four137Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion138Figure 6.22: Gyroscope overload (around data point 500) causes a step error140Figure 6.23: Global Magnetic field recalculated after the fusion process140Figure 6.24: Calibration rod with IMUs aligned with a string of constant heading142Figure 6.25: Contour heading map at 1 metre from the floor143	FIGURE 6.4: THE AUTHOR MODELLING THE GPS AND IMU ATTACHED TO THE HELMET	118
Figure 6.6: Velocity synchronisation of GPS and IMU data	FIGURE 6.5: SYSTEM DIAGNOSTICS USING A LAPTOP (BRODIE ET AL., 2008A)	120
Figure 6.7: TRIANGULATION FOR RECEIVER LOCATION FROM FOUR SATELLITES 122 Figure 6.8: Example pseudo-range corrections (six satellites) from skiing 124 Figure 6.9: Convergence of differentially corrected GPS range data to true location 125 Figure 6.10: Residual pseudo-range (during skiing) used to estimate error 125 Figure 6.11: Calculation of velocity from carrier-frequency data 127 Figure 6.12: Differential carrier-frequency corrections 129 Figure 6.13: Integrated velocity while walking though a loop using ECEF coordinates 130 Figure 6.14: Test surveying of the cones making up a simulated racecourse 130 Figure 6.16: Alan Walmsley Manning the theodolite to measure gate location 133 Figure 6.17: Rotation From GPS to theodolite coordinate systems 134 Figure 6.19: Fusion algorithm Version Four 137 Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138 138 Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion 138 Figure 6.22: Gyroscope overload (around data point 500) causes a step error 140 Figure 6.23: Global Magnetic field recalculated after the fusion process 140 Figure 6.24: Calibration rod with IMUs aligned with a string of constant heading 142 Figure 6.25: Contour heading	FIGURE 6.6: VELOCITY SYNCHRONISATION OF GPS AND IMU DATA	120
Figure 6.8: Example pseudo-range corrections (six satellites) from skiing	FIGURE 6.7: TRIANGULATION FOR RECEIVER LOCATION FROM FOUR SATELLITES	122
Figure 6.9: Convergence of differentially corrected GPS range data to true location125Figure 6.10: Residual pseudo-range (during skiing) used to estimate error	FIGURE 6.8: EXAMPLE PSEUDO-RANGE CORRECTIONS (SIX SATELLITES) FROM SKIING	124
Figure 6.10: Residual pseudo-range (during skiing) used to estimate error.125Figure 6.11: Calculation of velocity from carrier-frequency data.127Figure 6.12: Differential carrier-frequency corrections.129Figure 6.13: Integrated velocity while walking though a loop using ECEF coordinates130130Figure 6.14: Test surveying of the cones making up a simulated racecourse.131Figure 6.15: Residual speed from carrier-frequency during skiing131Figure 6.16: Alan Walmsley manning the theodolite to measure gate location.133Figure 6.17: Rotation from GPS to theodolite coordinate systems.134Figure 6.19: Fusion algorithm Version Four137Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion138Figure 6.22: Gyroscope overload (around data point 500) causes a step error.140Figure 6.23: Global Magnetic field recalculated after the fusion process140Figure 6.24: Calibration rod with IMUs aligned with a string of constant heading.142Figure 6.25: Contour heading map at 1 metre from the floor143Figure 6.26: FMC data top left and bottom panels, video feed top right panel144Figure 6.26: FMC data top left and bottom panels, video feed top right panel144Figure 6.26: Trajectory separation in giant slalom.149	FIGURE 6.9: CONVERGENCE OF DIFFERENTIALLY CORRECTED GPS RANGE DATA TO TRUE LOCATION	125
Figure 6.11: CALCULATION OF VELOCITY FROM CARRIER-FREQUENCY DATA	FIGURE 6.10: RESIDUAL PSEUDO-RANGE (DURING SKIING) USED TO ESTIMATE ERROR	125
Figure 6.12: Differential carrier-frequency corrections129Figure 6.13: Integrated velocity while walking though a loop using ECEF coordinates130Figure 6.14: Test surveying of the cones making up a simulated racecourse130Figure 6.15: Residual speed from carrier-frequency during skiing131Figure 6.16: Alan Walmsley manning the theodolite to measure gate location133Figure 6.17: Rotation from GPS to theodolite coordinate systems134Figure 6.18: Computer model of the ski racecourse based on gate measurements136Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138138Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion138Figure 6.22: Gyroscope overload (around data point 500) causes a step error140Figure 6.23: Global Magnetic field recalculated after the fusion process140Figure 6.24: Calibration rod with IMUs aligned with a string of constant heading142Figure 6.25: Contour heading map at 1 metre from the floor143Figure 6.26: FMC data top left and bottom panels, video feed top right panel144Figure 6.27: Trajectory separation in giant slalom149	FIGURE 6.11: CALCULATION OF VELOCITY FROM CARRIER-FREQUENCY DATA	127
Figure 6.13: Integrated velocity while walking though a loop using ECEF coordinates130 Figure 6.14: Test surveying of the cones making up a simulated racecourse	FIGURE 6.12: DIFFERENTIAL CARRIER-FREQUENCY CORRECTIONS	129
Figure 6.14: Test surveying of the cones making up a simulated racecourse.130Figure 6.15: Residual speed from carrier-frequency during skiing131Figure 6.16: Alan Walmsley manning the theodolite to measure gate location.133Figure 6.16: Rotation from GPS to theodolite coordinate systems.134Figure 6.18: Computer model of the ski racecourse based on gate measurements.136Figure 6.19: Fusion algorithm Version Four137Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion138Figure 6.22: Gyroscope overload (around data point 500) causes a step error140Figure 6.23: Global Magnetic field recalculated after the fusion process140Figure 6.24: Calibration rod with IMUs aligned with a string of constant heading142Figure 6.25: Contour heading map at 1 metre from the floor143Figure 6.26: FMC data top left and bottom panels, video feed top right panel144Figure 6.27: Trajectory separation in giant slalom149	$FIGURE \ 6.13: INTEGRATED \ VELOCITY \ WHILE \ WALKING \ THOUGH \ A \ LOOP \ USING \ ECEF \ COORDINATES \$	130
FIGURE 6.15: RESIDUAL SPEED FROM CARRIER-FREQUENCY DURING SKIING131FIGURE 6.16: ALAN WALMSLEY MANNING THE THEODOLITE TO MEASURE GATE LOCATION133FIGURE 6.16: ALAN WALMSLEY MANNING THE THEODOLITE TO MEASURE GATE LOCATION133FIGURE 6.17: ROTATION FROM GPS TO THEODOLITE COORDINATE SYSTEMS134FIGURE 6.18: COMPUTER MODEL OF THE SKI RACECOURSE BASED ON GATE MEASUREMENTS136FIGURE 6.19: FUSION ALGORITHM VERSION FOUR137FIGURE 6.20: ATHLETE LOCATION FOUND BY INTEGRATION AND CORRECTION OF THE GPS VELOCITY 138FIGURE 6.21: RUN 3 TRAJECTORY BY GPS/IMU AND GATE FUSION138FIGURE 6.22: GYROSCOPE OVERLOAD (AROUND DATA POINT 500) CAUSES A STEP ERROR140FIGURE 6.23: GLOBAL MAGNETIC FIELD RECALCULATED AFTER THE FUSION PROCESS140FIGURE 6.24: CALIBRATION ROD WITH IMUS ALIGNED WITH A STRING OF CONSTANT HEADING142FIGURE 6.25: CONTOUR HEADING MAP AT 1 METRE FROM THE FLOOR143FIGURE 6.26: FMC DATA TOP LEFT AND BOTTOM PANELS, VIDEO FEED TOP RIGHT PANEL146FIGURE 6.27: TRAJECTORY SEPARATION IN GIANT SLALOM149	FIGURE 6.14: TEST SURVEYING OF THE CONES MAKING UP A SIMULATED RACECOURSE	130
Figure 6.16: Alan Walmsley manning the theodolite to measure gate location	FIGURE 6.15: RESIDUAL SPEED FROM CARRIER-FREQUENCY DURING SKIING	131
Figure 6.17: Rotation from GPS to theodolite coordinate systems 134 Figure 6.18: Computer model of the ski racecourse based on gate measurements 136 Figure 6.19: Fusion algorithm Version Four 137 Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138 Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion 138 Figure 6.22: Gyroscope overload (around data point 500) causes a step error 140 Figure 6.23: Global Magnetic field recalculated after the fusion process 140 Figure 6.24: Calibration rod with IMUs aligned with a string of constant heading 142 Figure 6.25: Contour heading map at 1 metre from the floor 143 Figure 6.26: FMC data top left and bottom panels, video feed top right panel 146 Figure 6.27: Trajectory separation in giant slalom 149	FIGURE 6.16: ALAN WALMSLEY MANNING THE THEODOLITE TO MEASURE GATE LOCATION	133
Figure 6.18: Computer model of the ski racecourse based on gate measurements	FIGURE 6.17: ROTATION FROM GPS TO THEODOLITE COORDINATE SYSTEMS	134
Figure 6.19: Fusion Algorithm Version Four 137 Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138 Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion 138 Figure 6.22: Gyroscope overload (around data point 500) causes a step error 140 Figure 6.23: Global Magnetic field recalculated after the fusion process 140 Figure 6.24: Calibration rod with IMUs aligned with a string of constant heading 142 Figure 6.25: Contour heading map at 1 metre from the floor 143 Figure 6.26: FMC data top left and bottom panels, video feed top right panel 146 Figure 6.27: Trajectory separation in giant slalom 149	FIGURE 6.18: COMPUTER MODEL OF THE SKI RACECOURSE BASED ON GATE MEASUREMENTS	136
Figure 6.20: Athlete location found by integration and correction of the GPS velocity 138 Figure 6.21: Run 3 trajectory by GPS/IMU and gate fusion	FIGURE 6.19: FUSION ALGORITHM VERSION FOUR	137
FIGURE 6.21: RUN 3 TRAJECTORY BY GPS/IMU AND GATE FUSION 138 FIGURE 6.22: GYROSCOPE OVERLOAD (AROUND DATA POINT 500) CAUSES A STEP ERROR 140 FIGURE 6.23: GLOBAL MAGNETIC FIELD RECALCULATED AFTER THE FUSION PROCESS 140 FIGURE 6.24: CALIBRATION ROD WITH IMUS ALIGNED WITH A STRING OF CONSTANT HEADING 142 FIGURE 6.25: CONTOUR HEADING MAP AT 1 METRE FROM THE FLOOR 143 FIGURE 6.26: FMC DATA TOP LEFT AND BOTTOM PANELS, VIDEO FEED TOP RIGHT PANEL 146 FIGURE 6.27: TRAJECTORY SEPARATION IN GIANT SLALOM 149	Figure 6.20: Athlete location found by integration and correction of the GPS velocity	138
FIGURE 6.22: GYROSCOPE OVERLOAD (AROUND DATA POINT 500) CAUSES A STEP ERROR	FIGURE 6.21: RUN 3 TRAJECTORY BY GPS/IMU AND GATE FUSION	138
FIGURE 6.23: GLOBAL MAGNETIC FIELD RECALCULATED AFTER THE FUSION PROCESS 140 FIGURE 6.24: CALIBRATION ROD WITH IMUS ALIGNED WITH A STRING OF CONSTANT HEADING 142 FIGURE 6.25: CONTOUR HEADING MAP AT 1 METRE FROM THE FLOOR 143 FIGURE 6.26: FMC DATA TOP LEFT AND BOTTOM PANELS, VIDEO FEED TOP RIGHT PANEL 146 FIGURE 6.27: TRAJECTORY SEPARATION IN GIANT SLALOM 149	FIGURE 6.22: GYROSCOPE OVERLOAD (AROUND DATA POINT 500) CAUSES A STEP ERROR	140
FIGURE 6.24: CALIBRATION ROD WITH IMUS ALIGNED WITH A STRING OF CONSTANT HEADING	FIGURE 6.23: GLOBAL MAGNETIC FIELD RECALCULATED AFTER THE FUSION PROCESS	140
FIGURE 6.25: CONTOUR HEADING MAP AT 1 METRE FROM THE FLOOR	FIGURE 6.24: CALIBRATION ROD WITH IMUS ALIGNED WITH A STRING OF CONSTANT HEADING	142
FIGURE 6.26: FMC DATA TOP LEFT AND BOTTOM PANELS, VIDEO FEED TOP RIGHT PANEL	FIGURE 6.25: CONTOUR HEADING MAP AT 1 METRE FROM THE FLOOR	143
FIGURE 6.27: TRAJECTORY SEPARATION IN GIANT SLALOM	FIGURE 6.26: FMC DATA TOP LEFT AND BOTTOM PANELS, VIDEO FEED TOP RIGHT PANEL	146
	FIGURE 6.27: TRAJECTORY SEPARATION IN GIANT SLALOM	149

FIGURE 7.1: SCREEN SHOT FROM OF RUN 3 USING THE VISUALISATION SOFTWARE	151
FIGURE 7.2: RESULTANT FORCE ACROSS THE SKI SLOPE IN RUN 3	154
FIGURE 7.3: LOCAL ACCELERATION OF THE RIGHT SKI	155
FIGURE 7.4: FORCE VECTOR DIAGRAM OF RESULTANT FORCES FOR RUN 3	155
FIGURE 7.5: THE BIOMECHANICAL MAN VERSION TWO, SOLID ELLIPTICAL SURFACES WITH END CAP	vs160
FIGURE 7.6: VERSION ONE OF THE NEW RENDERING ALGORITHM CONTAINED SOME BUGS	161
FIGURE 7.7: SCREEN CAPTURE: A SILHOUETTE OF THE ATHLETE'S CROSS SECTIONAL AREA	162
FIGURE 7.8: CHANGING CROSS SECTIONAL AREA BETWEEN GATES 2 AND 9 ON RUN 3	163
FIGURE 7.9: CHANGES IN OPTIMISED FRICTION COEFFICIENTS WITH VELOCITY	167
FIGURE 7.10: SNOW RESISTANCE COEFFICIENT VERSUS MEAN SPEED - FITTED WITH A LINEAR MODEL	
FIGURE 7.11: INSTANTANEOUS WIND DRAG AREA FROM FMC	169
FIGURE 7.12: COMPARISON OF DISSIPATIVE FORCES THROUGH THE COURSE	170
FIGURE 7.13: GROUND REACTION FORCE VECTOR ANALYSIS ABOUT GATE 6 IN RUN 3	173

FIGURE 7-14: COMPARISON OF GROUND REACTION FORCE TO DISSIPATIVE FORCES	173
FIGURE 7.15: POWER ANALYSIS RUN 3 WITH RESIDUAL FORCES SEDARATED	175
FIGURE 7.16. DOWER ANALYSIS ROLD WITH RESIDUAL FORCES SELARATED	175
FIGURE 7.10. FOWER ANALYSIS KUN 5 RESIDUAL FORCES AND REACTION FORCE COMBINED	176
FIGURE 7.17. ENERGY ANALYSIS OF RUN 5 WITH RESIDUAL FORCES SEPARATED	10
FIGURE 7.16: MEASURED AND ESTIMATED FOOT LOADING KATIO FROM KUN 5	100
FIGURE 7.19: MEASURED COP MOVEMENT USING KS-SCAN INSOLES	182
FIGURE 7.20: ESTIMATED COP MOVEMENT USING A TORQUE BALANCE	182
FIGURE 7.21: ESTIMATED FOOT LOADING RATIO FROM CHANGE IN ANGULAR MOMENTUM FOR RUN 5.	182
FIGURE 7.22 ENERGY ANALYSIS WITH FORCES SEPARATED	186
FIGURE 7.23: ENERGY ANALYSIS WITH GROUND REACTION AND SNOW RESISTANCE COMBINED	186
FIGURE 7.24: FLEXION/EXTENSION TORQUES OF THE KNEE AND ANKLE DURING GIANT SLALOM	188

FIGURE 8.1: TWO RUNS BY THE SAME ATHLETE, GREEN HAS AN EARLY LEAD	. 191
FIGURE 8.2: THE BLUE MAN, RUN 3, TAKES THE INSIDE LINE ABOUT GATE 4 IN A VIRTUAL SKI X	. 194
FIGURE 8.3: CHRONOLOGICAL ANALYSIS USING FMC	. 195
FIGURE 8.4: COMPARISON OF TRAJECTORY BETWEEN GATES 3 AND 7	. 196
FIGURE 8.5: SPEED PROFILE OF RUN 3 (BLUE LINE) AND RUN 5 (GREEN LINE)	. 196
FIGURE 8.6: CLOSE UP FORCE VECTOR DIAGRAM, TOP PANEL RUN 3, AND BOTTOM PANEL RUN 5	. 197
FIGURE 8.7: GROUND REACTION FORCE VECTOR ANALYSIS RUN 3	. 198
FIGURE 8.8: GROUND REACTION FORCE VECTOR ANALYSIS RUN 5	. 198
FIGURE 8.9: FORCE VECTOR DIAGRAM RESULTANT FORCES RUN 3	. 201
FIGURE 8.10: FORCE VECTOR DIAGRAM RESULTANT FORCES RUN 5	. 201
FIGURE 8.11: DRAG AREA RUN 3, COEFFICIENT OF FRICTION $CD = 0.52$. 202
FIGURE 8.12: DRAG AREA RUN 5, COEFFICIENT OF FRICTION $CD = 0.52$. 202
FIGURE 8.13: SNOW RESISTANCE, THE HARD SNOW OF RUN 3	. 203
FIGURE 8.14: SNOW RESISTANCE, THE SOFTER SNOW OF RUN 5	. 203
FIGURE 8.15: ENERGY ANALYSIS OF EXTERNAL FORCES FOR RUN 3	. 205
FIGURE 8.16: ENERGY ANALYSIS OF EXTERNAL FORCES FOR RUN 5	. 205
FIGURE 8.17: POWER ANALYSIS OF RUN 3	. 206
FIGURE 8.18: POWER ANALYSIS OF RUN 5	. 206
FIGURE 8.19: ENERGY ANALYSIS THE WORK DONE BY THE LEFT AND RIGHT SKIS IN RUN 3	. 207
FIGURE 8.20: ENERGY ANALYSIS THE WORK DONE BY THE LEFT AND RIGHT SKIS IN RUN 5	. 207
FIGURE 8.21: SCREEN SHOT FROM OF RUN 3 USING THE VISUALISATION SOFTWARE	. 208
FIGURE 8.22: FRICTION CONE FOR RUN 3	. 211
FIGURE 8.23: FRICTION CONE FOR RUN 5	. 211
FIGURE 8.24: PHYSICAL INCLINATION ANGLE IN RUN 3	. 213
FIGURE 8.25: PHYSICAL INCLINATION ANGLE IN RUN 5	. 213
FIGURE 8.26: FORCE INCLINATION ANGLE IN RUN 3	. 214
FIGURE 8.27: FORCE INCLINATION ANGLE IN RUN 5	. 214
FIGURE 8.28: CLOSE UP OF PHYSICAL AND FORCE INCLINATION AT GATE 4 IN RUN 3	. 215
FIGURE 8.29: INSTANTANEOUS TURN RADII IN RUN 3	.216
FIGURE 8.30: INSTANTANEOUS TURN RADII IN RUN 5	. 216
FIGURE 8.31: SCHEMATIC OF HOW GROUND REACTION FORCES MIGHT ACCELERATE THE ATHLETE	. 219
FIGURE 8.32: COP TO COM DISTANCE IN RUN 5	. 220
FIGURE 8.33: EFFECTIVE SNOW SLOPE CHANGES DUE TO ATHLETE TRAJECTORY IN RUN 5	. 221
FIGURE 8.34: INCREASING TURN RADIUS WITH SPEED	. 223
FIGURE 8.35: PHYSICAL INCLINATION REACHES A LIMIT AT RACE PACE	. 223
FIGURE 8.36: SKI TURN RADIUS VS. SKI EDGING ANGLE	. 225
FIGURE 8.37: SKI/SNOW EDGING ANGLE FOR RUN 3	. 225
FIGURE 8.38: TURN RADIUS VS. SNOW SLOPE	. 227

FIGURE 9.1: VISUALISATION OF ATHLETE SPEED IN GIANT SLALOM SKIING FROM FMC DATA	229
FIGURE 9.2: PERFORMANCE FEEDBACK USING A COLOUR CODED FORCE VECTOR DIAGRAM	235

List of Videos

The supplementary videos are available on the accompanying CD (<u>Appendices/FMC Video</u>). In order to view these videos using the hyperlinks in the electronic version of this thesis first ensure that the supplementary material and the thesis are in the same folder. It may also be necessary to set the default media player to Windows Media Player.

VIDEO 3.1: CORONET PEAK 2005
VIDEO 4.1: WAND
VIDEO 5.1: SKATE_LOCAL_VIDEO_V1
VIDEO 5.2: SKATE_LOCAL_VIDEO_V2
VIDEO 5.3: SKATE_MULTIVIEWS
VIDEO 5.4: SKATE_CONGRUENCE_V1
VIDEO 5.5: SKATE_CONGRUENCE_V2
VIDEO 5.6: SKATE_FRONT_TRACKING
VIDEO 5.7: SKATE_ALL_FORCE_SIDE
VIDEO 6.1: RUAPEHU_R3_VIDEO
VIDEO 6.2: RUAPEHU_R5_RELATIVE
VIDEO 6.3: RUAPEHU_R5_CONTOURS
VIDEO 6.4: RUAPEHU_R5_FMC_VIDEO
VIDEO 6.5: RUAPEHU_R3_CONTOURS
VIDEO 6.6: RUAPEHU_R5_ARTEFACTS
VIDEO 7.1: SILHOUETTE
VIDEO 7.2: RUAPEHU_R5_FORCE_OPTIM
VIDEO 7.3: RUAPEHU_R5_TORQUE
VIDEO 8.1: RUAPEHU_R3_VIDEO
VIDEO 8.2: SKIX_FINAL
VIDEO 8.3: SKIX FORCE G567
VIDEO 8.4: RUAPEHU R3 FORCE RSCAN
VIDEO 8.5: RUAPEHU_R5_FORCE_OPTIM
VIDEO 9.1: RUAPEHU_R3_FORCE_RSCAN
VIDEO 9.2: SKIX_FINAL

Glossary

AP	Anterior Posterior axis of the human body or segment, pointing forwards
	and generally parallel to the ground.
ASIS	Anterior Superior Iliac Spine, bony landmarks on the front of the sacrum
Bias	1. GPS clock bias or error, both satellite and receiver, because of the
	unstable receiver clock bias four satellites instead of three are required to
	fix receiver location in three dimensions. 2. IMU accelerometer,
	magnetometer or gyroscope low frequency error.
C7	Posterior bony landmark, 7 th cervical vertebra, close to the neck joint
	centre
Carrier-frequency	GPS data and the signal used to measure relative velocity between
	satellites and receivers.
CI	Confidence interval, usually 95%
CoM	Centre of Mass, the single point in space that represents the mean
	location an athlete's distributed mass. A force acting though the centre of
	mass of a body causes no torque or rotation of that body.
CoP	Centre of Pressure, two meanings. 1. The weighted mean location of
	pressure measurements taken with separate measurement cells that are
	part of a pressure sensitive insole. 2. An imaginary point between the
	modelled ski and snow surfaces. If the multiple ground reaction forces
	acting on different parts of the ski were approximated by a single force,
	then that combined force would act through the CoP.
DOP	Dilution of precision, 50% of GPS measurements fall within the stated
	DOP usually in metres. It is different from absolute accuracy.
Differential GPS	Use of a fixed base station to reduce GPS roving receiver errors
Drift	The rate of change of GPS clock bias, because of clock drift four
	satellites instead of three are required to fix GPS receiver velocity.
ECEF	Earth Centred Earth Fixed coordinate system in which GPS operates. The
	origin is the Earth's centre. The Z-axis refers to a north-pointing vector
	through the geographic poles of the earth and the X-axis intersects the
	Greenwich meridian (where longitude = 0°).
EMG	Electromyography, a measurement of muscle activity.
FMC	Fusion Motion Capture, a prototype wearable motion capture system that
	combines multiple data streams developed in this thesis.
GPS	Global Positioning System, consists of multiple satellites orbiting the
	earth and receivers on Earth's surface
GRF	Ground Reaction Forces, forces between the athlete's skis and the snow
	surfaces
IMU	Inertial Measurement Unit, a motion tracking sensor, in this thesis the
	IMUs contain accelerometers, gyroscopes and magnetometers.

Inverse dynamic	Analysis when differentiation of positional data is used to obtain rates and accelerations
IPAQ	A portable handheld computer used as a data logger in this thesis
Kinematic analysis	Analysis of visual parameters such as location or limb angles
Kinetic analysis	Analysis of accelerations, forces, rates and torques, which cannot be
-	determined from a single video frame
MATLAB	A technical computing language used in this thesis to develop fusion
	motion capture algorithms, to develop data visualisations and analyse the
	skiing data.
MEMS	Micro-Electro-Mechanical-Sensors, very small electromechanical devices
	such as sensors and actuators with integrated electronics
MID	Message Identification number in binary communication protocol
MT9B	A type of IMU sensor from XSens Technology
ML	Medio Lateral axis of the human body or segment, generally parallel to
	the ground and pointing laterally.
PSIS	Posterior Superior Iliac Spine, a bony landmark on the rear of the sacrum
PS	Pubic symphisis, a bony landmark on the front of the sacrum
PCMCIA	Communication slot used to connect the GPS to the IPAQ
Pseudo-range	GPS time of flight data used to measure relative distance between
	satellites and receivers.
RMS	Root Mean Square, used in this thesis to determine noise in a signal
VMA	Video Motion Analysis
XBus	A communication hub to which multiple IMUs can be attached

Symbols

Bold font represents a vector or matrix quantity and normal or *italic* font represents a scalar value. Subscripts often denote the source or owner of the parameter.

Α	Acceleration
A _c	Cross sectional area normal to the relative wind velocity
bo	IMU sensor bias
bT	IMU sensor temperature bias
C _d	Wind drag coefficient
CF	Carrier Frequency
c	Speed of light constant used internally by the SiRF2 GPS chip
_	(299,792,458ms ⁻¹), (SiRF Technology Inc, 2005)
E	Estimated error in a measurement
F	GPS signal frequency (1575420000 Hz) used by the SiRF2 GPS chip (SiRF Technology Inc, 2005)
F	Force, a subscript if present denotes the type of force
F_N	Normal force, applied perpendicularly to the ski base
g	Gravity
Go	IMU sensor gain correction
GRF	Ground Reaction Forces
GT	IMU sensor temperature gain compensation
H, h	Earths magnetic vector (in the GLOBAL and local reference systems)
HGRF	Horizontal ground reaction forces
Ι	1. Identity Matrix. 2. An Inertial Tensor describing the rotational inertia of a
	body segment.
K _{Friction}	Lumped inline skating bearing friction coefficient
K _{Drag}	Lumped wind drag coefficient
m	Mass
PR	Pseudo Range
Q	Quaternion representation of orientation consists of four elements Q0 to Q3,
	it describes orientation in terms of a rotation of $\cos(\theta/2)$ about a vector
	Usin($\theta/2$). More information is provided in Chapter 4.1.1
R	A Rotation matrix (3 by 3) that describes three degree of freedom orientations
	relative to a global reference system. Each element is a cosine of one of nine
	angles between the axes of the reference and local body system.
R _{LG}	A rotation from the local sensor to the global reference system as denoted by
	the order of the subscripts
Re	Reynolds number, a dimensionless quantity that describes the characteristics
	of the airflow about the skier as he descends the snow slope
S	Calibrated IMU data
Т	Torque or moment
Т	Temperature
То	Temperature offset

U	1. Raw binary IMU data. 2. A unit vector describing the axis of rotation used
	in defining quaternions
V, V, Vel	Velocity
X, Y, Z	Global axes, Z is always vertical and X generally points in the direction of
	travel and Y floats. Sometimes however X points towards magnetic north.
x, y ,z	Local axes of a body segment, y points along the limb caudally, z is
	mediolateral and x floats
×	Cross product of two three element vectors
α	Angular acceleration
3	Residual errors
θ	Angle of rotation
ρ	Density of air
σ	Standard deviation
$\mu,\mu_{F,}\mu_{V}$	Snow/ski friction or resistance coefficients, static and velocity dependent
ν	Kinematic viscosity of air
ω	Angular velocity
T	Normal to a surface or perpendicular
$ \mathbf{F} $	Magnitude of a force vector