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ABSTRACT

The genus Gobiomorphus Gill (1863) is the only representative freshwater Eleotridae in
New Zealand and is comprised of seven species, of which four are diadromous. The
species are endemic to New Zealand and are widespread around lowland streams and
coasts (with non-diadromous species penetrating further inland). The only other
Gobiomorphus species are G. coxii and G. australis, which are endemic to Australia.
Eleotridae are stocky fishes of small size (up to 150 mm in length) (McDowall, 1990)
and are characterised by two dorsal fins, large pectoral fins, separate thoracic pelvic fins
(fused in gobies) and the absence of a lateral line (McDowall, 1990; Allen et al., 2002).

Gobiomorphus has had a particularly turbulent taxonomic history in the
literature, spanning approximately 150 years from Gill (1863) to the present, where
many species have been synonymised with one another (particularly, most
Gobiomorphus species were synonymised with G. gobioides) due the plasticity of many
morphological characters. Additionally, similar morphologies have led to identification
difficulties. Phenotypic plasticity can also make cladistic approaches difficult (e.g.
Vrijenhoek, 1998; Orti er al.. 1994), for example there has been a lot of controversy
surrounding G. alpinus and its species status. Furthermore, studies of evolution using
morphological characters often lack an accurate perspective on relationships and origins
of fish species, in particular, little information exists on the evolutionary origins of the
Gobiomorphus genus. Genetic studies have contributed to resolving problems with
taxonomically difficult groups by detecting diversity between morphologically similar
species (Where DNA variation is often not expressed phenotypically), and examining
geographical divergence within species (e.g. Vrijenhoek, 1998; Kocher et al., 1989).
Thus, this thesis employed two regions of mitochondrial DNA (cytochrome b and
control region) to resolve issues surrounding species identification, morphological
variation, phylogenetic relationships (including divergence), origins and the evolution
of diadromy within the Gobiomorphus group.

Mitochondrial DNA sequences were obtained from all seven Gobiomorphus
species in New Zealand, as well as from both Australian Gobiomorphus. The
morphology of both G. basalis and G. breviceps in the lower North Island was also
examined. The results suggested that the Australasian Gobiomorphus are a polyphyletic

group, although with the exclusion of G. australis the rest of the species formed a



monophyletic group. The Australian group formed a polyphyletic group basal to the
New Zealand monophyletic group. Gobiomorphus hubbsi, a diadromous species was
found to be a sister group to the New Zealand Gobiomorphus. Clock calibrations
indicated that the New Zealand and Australian groups have been isolated for about 6-37
Myr, suggesting that the New Zealand species dispersed here (in a single event) from
Australia post-Gondwana break-up. These results are discussed in terms of New
Zealand’s geological history. Once in New Zealand there was a series of radiations; the
most recent radiation produced the non-diadromous species (G. breviceps, and a G.
basalis, G. cotidianus (although not all populations are diadromous) and G. alpinus
species complex). Furthermore, G. huttoni and G. gobioides (both diadromous) formed
a monophyletic group that is part of the first radiation, indicating that diadromy is a
primitive feature of Gobiomorphuis.

Mitochondrial DNA accurately distinguished between G. breviceps and G.
basalis (suggesting a genetic basis to morphological variation), and coupled with
morphological data, identified pectoral fin ray counts as the best quantitative character
for differentiating the species. However, within species high morphological variation
was observed that did not fit expected patterns of geographical divergence. Limited time
periods may have obscured subtle morphological divergence between catchments.
Mitochondrial DNA revealed some unique haplotypes within both catchments, whereas
some catchments shared identical haplotypes. The lack of divergence between
catchments may have been due in part to connections during the Pleistocene, whereas
populations with unique haplotypes may have been isolated for a greater length of time.

Collectively, these studies highlighted the usefulness of mitochondrial DNA for
exploring; phylogenetic relationships (including divergence) and solving problems with
taxonomically difficult groups, and origins of fish species. Furthermore, the use of
molecular data coupled with morphological data can be used to aid in the improvement

of identification of morphologically similar species.
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THESIS INTRODUCTION

The freshwater bullies of New Zealand form part of the genus Gobiomorphus Gill, 1863
(Eleotridae), which consists of nine species to date. The name Gobiomorphus can be
broken down into two parts, with Gobio recognising the similarity between them and
the European gudgeon Gobio gobio and morphus taken from the Latin word
representing form or shape (McDowall, 1990). They are stocky fishes of small size (up
to 150 mm in length) and are characterised by two dorsal fins, large pectoral fins,
separate thoracic pelvic fins (fused in gobies) and the absence of a lateral line
(McDowall, 1990; Allen et al., 2002). The bullies are widely distributed throughout
New Zealand and two species (G. coxii (Cox’s gudgeon) and G. australis (striped
gudgeon)) are endemic to Australia and found on the Victorian south-eastern coast. The
species occupy both brackish- and inland fresh-water habitats and are typically benthic,
feeding on small aquatic invertebrates. While some members of the genus spend their
entire life cycle in freshwater, four of the seven New Zealand species are diadromous,
where part of their life cycle is spent in salt water. In particular, New Zealand
Gobiomorphus are amphidromous (a form of diadromy) where the larvae migrate out to
sea for a feeding phase before returning as juveniles to freshwater (McDowall, 1998).
Morphological characters have been used historically in systematics, however,
several characteristics (e.g. fin ray numbers) that have been used to describe fish are
often phenotypically plastic, where morphology tends to reflect the environmental
conditions. This has made cladistic approaches difficult (Vrijenhoek, 1998; Orti ez al.,
1994). Thus, in the early literature many species were not recognised (most species
were originally described as the one species; G. gobioides) due to their similar
morphology. Additionally, little information exists on the evolutionary origins of this
genus, including explanations regarding how Gobiomorphus reached New Zealand,
where the Eleotridae family is at southern-most limit (McDowall, 1975). However,
many genetic studies have contributed to resolving problems with taxonomically
difficult groups by detecting diversity between morphologically similar species (where
DNA variation is often not expressed phenotypically), and examining geographical
divergence within species (e.g. Vrijenhoek, 1998; Kocher ez al., 1989). In particular,
mitochondrial DNA (mtDNA) has allowed for high resolution analyses of population-

level questions in many species of fishes (Orti e al., 1994), and has provided insights



into the origins, evolution and phylogenetics of many New Zealand fishes including
Galaxiidae and Gobiomorphus (e.g. Waters et al., 2000; Smith ez al., 2005). Thus, this
thesis consists of two chapters dealing with genetic species identification,
morphological variation, phylogenetic relationships (including divergence), origins and
the evolution of diadromy within the Gobiomorphus group.

Chapter [ utilised two regions of mitochondrial DNA (control and cytochrome 5
regions) to examine and resolve phylogenetic relationships within the Gobiomorphus
genus and examine the relationship between Gobiomorphus, Philypnodon and Eleotris.
Additionally, this chapter aimed to provide an understanding of the somewhat
contentious view of species origins for this Australasian group, with a special focus on
the New Zealand species and the evolution of diadromy.

Although five out of the seven currently recognised species were recognised in
the early literature, there were some difficulties with identification. For example,

Gobiomorphus was once considered part of the Eleotris and Philypnodon genera—G.

gobioides (giant bully), G. huttoni (redfin bully), and G. basalis (Cran’s bully) (G.
cotidianus (common bully) was not described until 1975 by McDowall) were all part of
the genus Eleotris before being moved to Gobiomorphus in the late 1800°s: G. hubbsi
(bluegill bully) and G. breviceps (upland bully) were part of the genus Philypnodon
before being placed in Gobiomorphus in the 1960°s. Chapter I aimed to address the
confusion surrounding genetic species identification (and thus bully systematics) in
New Zealand by applying phylogenetic analyses to this species group.

Additionally, while the origin of typically migratory New Zealand Galaxiidae
has been well studied, with species distributions assigned as being either dispersal- or
vicariance-driven (McDowall, 2002; Waters & Burridge, 1999), little is known of the
origins of Gobiomorphus in New Zealand. However, some authors have suggested a
role for dispersal in creating current Gobiomorphus distributions. For example,
McDowall (1975) suggested that Gobiomorphus may have reached New Zealand via
dispersal in prevailing ocean currents, and believes that G. coxii is ancestral to or has
common ancestry with New Zealand Gobiomorphus. Meanwhile, Thacker and Unmack
(2005) examined the origins of the Australian Hypseleotris species whose widespread
distribution encompasses South Africa, Japan, Southeast Asia and Australia, and
suggested that this species dispersed from Southeast Asia via marine environments
before invading freshwaters in Australia. These findings highlight the dispersal potential

of fish species within the Eleotridae family. However, Gobiomorphus origins may



alternatively fit the vicariance theory such that current distributions may be a result of
Gondwanan plate tectonics and speciation. Therefore, Chapter I also aims to examine
this “dispersal vs. vicariance’ issue by examining which of these methods resulted in
Gobiomorphus colonising New Zealand, and determining whether this involved single,
or multiple dispersal events (if Gobiomorphus distribution is dispersal-driven).

Finally, Chapter | examines the evolution of diadromy in Gobiomorphus. The presence
of a saltwater-tolerant phase in diadromous fish species that allows dispersal has led to
the belief that ancestry for these species must be marine. This has been argued against
by McDowall (2004) who believes that diadromy simply implies an ancestry to other
diadromous species elsewhere rather than a purely marine ancestry. To further
complicate the issue, the genus Rhvacichthys is exclusively freshwater and is basal to
the Eleotridae (Akihito et al., 2000; Thacker & Hardman, 2005), possibly indicating a
freshwater ancestry for Gobiomorphus, and suggesting that non-diadromous bullies
should have a more basal position within species groups than diadromous bullies.
Alternatively, diadromy may be an ancestral character, which appears to be the case for
galaxiid fishes, where the presence of a marine phase is found in the basal members of
clades, but is absent in more derived species (Waters et al., 2000). Potentially
diadromous species in the New Zealand Gobiomorphus could belong in basal position
within the Gobiomorphus group, with non-diadromous species being of more recent
descent. Therefore, placement of species on phylogenetic trees will help to infer
ancestry or derivation of diadromy in Gobiomorphus.

Chapter II focuses on the identification and divergence of two non-migratory,
morphologically similar species (G. breviceps and G. basalis) in the lower North Island
of New Zealand. Gobiomorphus breviceps has a widespread distribution in New
Zealand, encompassing the South Island as well as lower North Island’s Manawatu,
Wairarapa and Wellington regions (McDowall, 1990). Conversely, G. basalis has a
widespread yet intermittent distribution in the North Island that reaches its southern
limit at Wellington (McDowall, 2000). Both species occupy a variety of habitats at low
altitudes (McDowall, 1975; 1990; 2000). The two species are sexually dimorphic; the
adult males often have bright and distinct colouration that the females and juveniles
lack. Colouration is often used as a diagnostic tool and is useful for identifying male
bullies, but can cause complications when females and juveniles are being compared in
situ. The overlap in distribution of the two species has led to confusion in the

identification of females and juveniles in the lower North Island, which is further



confounded by the presence of G. cotidianus (common bully) a morphologically similar
species.

Morphological characters including body ratios and serially repeated structures
such as fin rays (Christiansen et al., 1988) allow species to be further distinguished.
However, they may be strongly influenced by environmental factors, causing variation
in populations (Smith ez al., 2003; King et al., 2003). For example, G. alpinus (Tarndale
bully) occupies an extreme high-altitude environment and has the lowest number of first
dorsal spines for Gobiomorphus, which Smith et al. (2003) suggest may be the result of
the cold water that the species live in. The large variation in meristic counts (e.g. fin ray
counts) observed between populations in G. basalis and G. breviceps may also be a
result of environmental influence. For example, G. breviceps have 4-7 first dorsal spines
and G. basalis have 6-8 first dorsal spines. This overlap in fin ray counts between G.
breviceps and G. basalis can make identification of species difficult.

Therefore, this chapter aimed to utilise the control and cytochrome 4 regions of
mtDNA to accurately distinguish between G. breviceps and G. basalis. Upon species
identification, meristic information is applied to individuals in order to identify
diagnostic morphological characters. Additionally, the genetic and morphological
information for both species is used to examine divergence (both genetic and
morphological) to ascertain geographical patterns. It is thought that there would be
genetic and morphological divergence between catchments, as there will be no dispersal
(non-diadromous species), and there would be no genetic or morphological divergence
within catchments as dispersal would be possible.

Collectively, the two chapters of this thesis address the phylogenetic
relationships, origins and evolution of diadromy in Gobiomorphus, as well as resolving
issues surrounding identification and morphological variation. This work demonstrates
how genetic data can be used to resolve difficult taxonomic questions, and clarify
evolutionary patterns and origins in fish species. The thesis concludes with an overall

summary, and then addresses priorities for future research.
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