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ABSTRACT 

The genus Gobiomorphus Gill ( 1863) is the only representative freshwater Eleotridae in 

New Zealand and is comprised of seven species, of which four are diadromous. The 

species are endemic to New Zealand and are widespread around lowland streams and 

coasts (with non-diadromous species penetrating further inland). The only other 

Gobiomotphus species are G. coxii and G. australis, which are endemic to Australia. 

Eleotridae are stocky fishes of small size (up to 150 mm in length) (McDowall, 1990) 

and are characterised by two dorsal fins , large pectoral fins , separate thoracic pelvic fins 

(fused in gobies) and the absence of a lateral line (McDowall, 1990 ; Allen et al., 2002). 

Gobiomorphus has had a particularly turbulent taxonomic history in the 

literature, spanning approximately 150 years from Gill ( 1863) to the present, where 

many species have been synonymised with one another (paiticularly, most 

Gobiomo,phus species were synonymised with G. gobioides) due the plasticity of man y 

morphological characters. Additionally, similar morphologies have led to identification 

difficulties. Phenotypic plasticity can also make cladistic approaches difficult (e.g. 

Vrijenhoek, 1998; O1ti et al. , 1994), for example there has been a lot of controversy 

surrounding G. al pi nus and its species status. Furthermore, studies of evolution us ing 

morphological characters often lack an accurate perspective on relationships and origins 

of fish spec ies, in particular, little information ex ists on the evolutionary origins of the 

Cobio111orph11s genus. Genetic studies have contributed to resolving problems with 

taxonomicall y difficult groups by detecting diversity between morpholog ically similar 

species (where D A variation is often not expressed phenotypically), and examining 

geographical divergence within species (e.g. Vrijenhoek, 1998; Kocher et al., 1989). 

Thus, this thesis employed two regions of mitochondrial DNA (cytochrome band 

control region) to resolve issues surrounding species identification, morphological 

variation, phylogenetic relationships (including divergence), origins and the evolution 

of diadromy within the Gobiomorphus group. 

Mitochondrial DNA sequences were obtained from all seven Cobiomorphus 

species in New Zealand, as well as from both Australian Gobiomorphus. The 

morphology of both G. basalis and G. breviceps in the lower North Island was also 

examined. The results suggested that the Australasian Cobiomorphus are a polyphyletic 

group, although with the exclusion of G. australis the rest of the species formed a 



monophyletic group. The Australian group formed a polyphyletic group basal to the 

New Zealand monophyletic group. Gobiomorphus hubbsi, a diadromous species was 

found to be a sister group to the New Zealand Gobiomorphus. Clock calibrations 

indicated that the New Zea land and Australian groups have been isolated for about 6-37 

Myr, suggesting that the New Zea land species dispersed here (in a single event) from 

Australia post-Gondwana break-up. These results are discussed in terms ofNew 

Zealand's geological history. Once in New Zealand there was a series of radiations ; the 

most recent radiation produced the non-diadromous species (G. breviceps, and a G. 

basal is, G. cotidianus (although not all populations are diadromous) and G. a/pinus 

species complex). Furthermore, G. huttoni and G. gobioides (both diadromous) formed 

a monophyletic group that is part of the first radiation, indicating that diadromy is a 

primitive feature of Gobiomorphus. 

Mitochondrial DNA accurately distinguished between G. breviceps and G. 

basa/is (suggesting a genetic basis to morphological variation), and coupled with 

morphological data , identified pectoral fin ray counts as the best quantitative character 

for differentiating the species. However, within species high morphological variation 

was observed that did not fit expected patterns of geographical divergence. Limited time 

periods may have obscured subtle morphological divergence between catchments. 

Mitochondrial DNA revealed some unique haplotypes within both catchments, whereas 

some catchments shared identical haplotypes. The lack of divergence between 

catchments may have been due in part to connections during the Pleistocene, whereas 

populations with unique haplotypes may have been isolated for a greater length of time. 

Collectively, these studies highlighted the usefulness of mitochondrial DNA for 

exploring; phylogenetic relationships (including divergence) and solving problems with 

taxonomically difficult groups, and origins of fish species. Furthermore, the use of 

molecular data coupled with morphological data can be used to aid in the improvement 

of identification of morphologically simi lar species. 

II 



PREFACE and ACKNOWLEDGEMENTS 

Each chapter has its own acknowledgements section. Here I thank those people whose 

assista nce was not specific to any one chapter o f this thesis. 

First I wo uld like to thank my supervisor, Dr Michael Joy for provid ing 

excel lent guidance throughout the long and often difficult journey that a thes is can often 

be. l wou ld also like to thank Mike for his humour (a lthough often very dry) and for the 

'counse lling' sessions that myse lf and other students made full use of! Furthermore, I 

would like to thank my co-supervisors Dr Mark Stevens and Dr Russell Death. Thank­

you Mark for your excel lent tutoring and crash course in genet ic analysis; from the 

laboratory work to the write-up. Without you I do not think my thes is would have been 

so interesting! Russell you have my grat itude for the help that you gave me ear ly on 

during my undergraduate study. You a re the one that fac ilitated my interests in 

fre shwater ecology and he lped me plan my future career, whic h is turning out to be 

rather fu n! Without you I may not have realised my aims in life. 

1 would also like to acknowledge the suppo11 g iven to me by the Julie A lley 

bursary, wh ich gave me some much needed financial a id. 

I am also very grateful to the other post-graduate students around the ecology 

department (as well as a few in the A llan Wilson Centre) who provided man y hours of 

entertainment, especia lly during lunch breaks that may have at times gone on for a little 

too long! Having people in the same boat as you also helps you stay sane and focussed. 

Angela, thank-yo u for your g uidance and providing for me with an outlet when th ings 

got a little frustrat ing! I a lso really enjoyed those coffee breaks (which often went a 

little longer than planned) even when we didn ' t actually get coffee, and I hope we wi ll 

always find the t ime to s it down together every once in awhile. I a lso must thank 

Richard Seaton fo r sharing his office w ith me, especially as I gave him so much cheek! 

One day Richard you' ll be able to get me back (how does the score stand? 100 to me 

and I to you I think! ). 

T he support provided by the rest of the staff in Ecology has been phenomenal. A 

big thank-you goes to a ll the technicians fo r he lping with field work and anything e lse l 

needed, and a lso to the office staff w ho provided so much help on so many levels. f 

would a lso like to thank the rest of the lecturers in the departme nt for many he lpful 

comments on my proj ect and for giving me the encouragement I often needed. During 

111 



my time in Ecology I also really enjoyed the morning tea shouts (at which all post­

graduate students could be found!), which provided me with much sustenance. Long 

live the morning tea shouts! 

To my Mum and Dad; thank-you so much for everything you have done for me, 

without you l could not have achieved what I have. Your love, suppo1t and confidence 

in my ability has meant the world to me. My achievements are yours to be proud of too. 

Thank-you also to my sib lings (James, Melissa, Claire and Benjamin) for just being 

there and for fun chats on the phone. Nanna, Grandad, and my many Aunties and 

Uncles have also contributed; they have always provided me with support and shown a 

strong interest in what I am up to, so for that [ thank-you. My cat Mia has also helped in 

her own way. Her constant need for my attention and loud purrs have reminded me to 

think beyond my own problems and needs. 

Last, but certainly not least a big thanks goes to my partner Mike Ushaw, who 

has been infinitely patient with me and provided me with much love and support, which 

is essential when completing a task such as a thesis. Cheers for sticking around, 

especially as I may not have always been in the best mood! I would also like to thank 

Mike's fami ly who have treated me as one of their own and taken me into the fold. This 

has been especially wonderful , as my own family is in the South Island, so it is nice to 

know I have support in the No1th! 

If I have forgotten anyone, my apologies ; many people contribute in positive 

ways to your life, but it is very difficult to thank everyone, but I think I have covered 

the main ones. 

IV 



TABLE of CONTENTS 

ABSTRACT . .. ........ .. .. .......... .... .............. .. ................ ..... . ....... . ... ...... ...... i 

PREFACE and ACKNOWLEDGEMENTS .............. ... .... .... .. ........................ iii 

LlST ofTABLES ................ . ........................... . ................ . .................... vii 

LlST of FIGURES ................................................... ........ ........ .. ............ v ii 

UST of APPENDICES ........................... ... ..... ... . ... ... .......... ..... ............ .... ix 

THESIS INTRODUCTION .... . .......... .... .. .. . . .... ..... . ................. . .. . ......... .. .. .. I 

Literature Cited ................... . ... .. .................. . . ... . . . ... . ............................... 5 

CHAPTER I - PHYLOGENY OF NEW ZEALAND AND AUSTRALIAN 

ELEOTRIDAE WITH A FOCUS ON GOBIOMORPHUS ................................... 8 

Abstract. ............................ ... .. ............................................................. 9 

Introduction ................................................................ .. .. .... ................ I 0 

Materials and Methods ....... . ................. . .......................................... ...... .. 13 

Specin1en collection .... . ............ ...... ... ............ .......................... .. ............ ............. 13 

DNA analyses .... ...................... ... . .......... .. ................................ . .. 17 

Data analyses ....... .......... ................................................... .................................. 18 

Results ....................................... . .............. . ........................... . . .......... 19 

Cytochron1e b ................... . ........... .. ......................... ..... .............. 19 

Control region .................... . ............. . ..................... ... ............... .. 24 

Discussion ..... ... . .. ................. . . ....................... . . . ..................... . ............ 28 

Conclusions ............ .. .......................... .. ............................................... 34 

Acknowledgements ... ... ..... ........... .. .... . .... . . ....................... . .... . .... ........... 3 6 

Literature Cited ........... ..... ........... .. .... ... ... . . .. . .. . ... .................................. 3 7 

CHAPTER II- GENES AND MORPHOLOGY: A COMPARATIVE EXAMlNATION 

OF G. BREVICEPS AND G. BA SALIS IN THE LOWER NORTH ISLAND, NEW 

ZEALAND .......................................................................................... 45 

Abstract. . .. . .... ........ ....... .... ....... . .. ..... ......... .. ........ .. ... ..... ..................... 46 

introduction . ........... .. ............................. .. ........................................... 4 7 

Materials and Methods ............ .. ............................................................. 49 

V 



Specimen collection ....... . . . ............. . ...... . ....................... . .. . ........... .49 

DNA analyses ............................. ..................................... .. .. .............................. .. 51 

Morphological analyses ............ . ...... .. . ... .. . .. .. ...... ...................... ............. 52 

Data analyses ....... .. ........... .......... .......... .. .. .......... . . . .. . .............. .. . 52 

Results ............... . .. . .................... .. . . ......... .. ....... .. .............. . ................. 54 

Molecular analysis ........................... .. . . .............. . ...................... ... 54 

Morphological analysis .......... .. .... . ................... .. . . . . .... . .............. . .. .. 59 

Discussion ............. .. ............. . ... . ............... .. . . . .. ...................... . ...... .... .. 65 

Conclusions . . ................................... . ........... ........... ............. ............ ... . 68 

Acknowledge1nents ....... . .... .. ...................................... . ...................... .. . . 70 

Literature Cited ...... ... . . .................. .. ... ................ . ................................. 71 

THESIS CO CLUSION .................. . ...................................... .. ...... ... .... . 75 

F11111re Research .... . ....................... ... ......................................... .. . 78 

Literature Cited ................................. ..... .............................. . ............... 80 

Appendices ... . .. ..... . ................................ . ....... .. ...... .. ...... . ... . .. facing page 82 

VI 



LIST of TABLES 

TABLE 1.1 Sampling locations for all specimens throughout New Zealand and 

Australia (see also Smith et al., 2005; Akihito et al., 2000 and Thacker & Hardman, 

2005). [] indicate sequences yet to be placed on GenBank, numbers indicate number of 

sequences for each mtDNA region, and(-) no sequences for the region. • - sequenced by 

M. Stevens and B. Hicks (unpublished data) , all others collected for the purpose of this 

study. Sequences with GenBank accession numbers: A Y644 - Smith et al. (2005) ; 

A Y722 - Thacker & Hardman (2005); ABO212 - Akihito et al. (2000) ....... .... ........ 15 

TABLE 1.2 The 375 variable sites for cytochrome b region for Gobiomo,-phus. 

Locations are indicated using location codes from Table l. Identical character states are 

indicated by dots. A - Gobiomorphus gobioides .... ... facing page 20 

TABLE 1.3 Sequence divergence (both regions of mtDNA) between G. cox ii and the 

extant New Zealand Gobiomorphus taxa ..... .. ... ..... ................................... .... 31 

TABLE IA The 368 variable sites for control region sequences for Gobiomorphus. 

Locations are indicated using codes from Table I . Ident ical character states are 

indicated by dots. A= G. gobioides .. . ... ..... facing page 24 

TABLE II. I Variable sites. The first set of variable sites is the cytochrome b 

sequences and the second is the control region sequences. Locations w here each 

hap lotype was found are indicated us ing locat ion codes from fig. 3 and haplotypes are 

g iven a s ingle letter code ( i.e. A,B etc.). Identical character states are indicated by dots. 

T he(-) indicates a de letion ............ ... ...... .. ... .... facing page 55 

TABLE 11.2 Canonical coefficients for each morphological character showing relative 

importance of each variable for discriminating the three species .. ...... ................... 60 

LIST of FIGURES 

FlGURE I.1 Map showing relative locations of regions in New Zealand and 

Australia ........ .. . ...... . . . . .. ........ . ... ... .. ................ ... .......... .. ........... .. ........ . 14 

FIGURE 1.2 Maximum likelihood phylogram based on the substitution model GTR+ 

I +G (-InL = 4408.8896 ; base frequencies set to A = 0.295 1, C = 0.3 741 , G = 0.0970, T 

= 0.2338) derived from Modeltest vers. 3. 7 (see methods), using a 377-bp fragment of 

VII 



the mitochondrial DNA (cytochrome b) gene using only unique sequences. Bootstrap 

confidence limits (500 replicates) shown above nodes. Codes are those used in Table I. 

Number of identical haplotypes present at any site is given in parentheses. Symbols 

indicate life history patterns; open circle= non-diadromous, closed circle= diadromous, 

half circle= presence of both life history patterns. G. huttoni species in bold is Chatham 

Island haplotype. A-N/KR(2), W/WR(I), BOP/LT(2), BOP/RR(3), BOP/KR(!) , 

NE/M(3), EC/G(3), M/N(2), WC/CR(2). B- N/SS(l), W/M(3), M/N(5), WC/LB(2). C 

- N/KR(I), N/LN(3), N/N(3), N/LW(3), N/WR(2), W/M(l). D- M/T(8), M/ W(I), 

M/TS(9), M/K(l2), M/M( l), Wa/K(7), Wa/WR(l), Wa/H(2), Wa/M(l), We/K(2), 

We/ES(!). E- N/KR(2), N/WR(2), N/Mi(2), N/M(l), N/US(2), W/M(2) ................ 23 

FIGURE 1.3 Maximum likelihood phylogram based on the substitution model 

HKY+I+G (-lnL = 2123 .9351 ; base freque ncies set to A= 0.3922, C = 0.1775, G = 

0.1356, T = 0.2947) derived from Modeltest vers. 3.7 (see methods), using a 384-bp 

fragment of the mitochondrial D A (control region) gene using only unique sequences. 

Bootstrap confidence limits (500 replicates) shown above nodes. Codes are those used 

in Table 1. umber of identical haplotypes present at any site is given in parentheses. 

Symbols indicate life history ; open circle = non-diadromous species, closed circle = 

diadrornous species, half circle = presence of both life history patterns. G. hulloni in 

bold is the Chatham Island haplotype ................ . ..... . ... . .................... . .... ..... ... 27 

FIG URE II.I The location of the sites sampled for bullies in the Wellington, 

Manawatu and Wairarapa regions, No11h Island, New Zealand ....... . .......... .. .......... 50 

FIGURE 11.2 Examp les of photos used to count fin rays ............ . ... . ......... . ..... . .. 53 

FIG URE 11.3 Haplotype network (neighbour joining with I 00 bootstraps) showing 

mtDNA haplotypes and their relative connections, with bootstrap support. Data from: 

(A) G. basal is (B) G. breviceps . . ..... . .. . ...................... .. ..... .. . .................. . .... 58 

FIGURE H.4 Discriminant ana lysis of a ll three species based on morphological data. 

The species form three distinct c lusters with some overlap. Up= G. breviceps, Cr= G. 

basalis and Co= G. 

cotidianus ... .. .............................. . ... .. ........ . .......... . .. ... . . ... .. .. ......... ......... 60 

FIG URE II.5 Scatter plot using the two best discriminating features (pectoral fin ray 

counts and anal fin ray counts) from canonical discriminant ana lysis, showing three 

fairly distinct species groups ....... . .... . .... . . . ......... . . ...... .. .... . . ........ . . .. ....... . .... 61 

VIII 



FIGURE 11.6a Canonical discriminant analysis of the three G. basal is locations 

using morphological data (all 5 variables). Each point represents individual specimens. 

Location: Circle= Ngturoa; triangle Turitea; diamond Kopuaranga .................. 62 

FIGURE 11.6b Canonical discriminant analysis of the seven locations using G. 

breviceps morphological data (all 5 variables). Each point represents individual 

speci1nens ........................................................................................... 63 

FIGURE 11.7 Canonical Discriminant analysis of the three catchments based on G. 

breviceps morphological data (all 5 variables). The three catchments overlap 

considerably. Catchment: Open circle= Manawatu; closed circle= Wellington; triangle 

= Wairarapa ......................................................................................... 64 

LIST of APPENDICES 

APPENDIX I Genetic distance based on sequence variation in the 105 unique 

mt DNA cytochrome b sequences for Gobiomorphus. Lower triangle is uncorrected 

distances and upper triangle is maximum likelihood distances. Location codes refer to 

those used in Table 1. A - Gobiomorph11s gobioides ......... ................. facing page 82 

APPENDIX II Genetic distance based on sequence variation in the 56 unique 

mtDNA control region sequences for Gobiomorphus. Lower triangle is uncorrected 

distances and upper triangle is maximum likelihood distances. Location codes refer to 

those used in Table 1. A G. gobioides; B G. hubbsi .................. ..... facing page 86 

APPENDIX Ill Uncorrected genetic distances based on sequence variation in 21 

mt DNA sequences for G. basal is. Location codes refer to those used in Figure 1. ........ . 

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . ... facing page 90 

APPENDIX IV Uncorrected genetic distance based on sequence variation in the 57 

mtDNA sequences for G. breviceps. Location codes refer to those used in Figure 1 ........ . 

... . .. ... ... ...... .. . ............... ...... .. . . .. .. . . ..... ..... ....... ..................... facing page 91 

IX 



THESIS INTRODUCTION 

The freshwater bullies of New Zealand form part of the genus Cobiomorphus Gill, 1863 

(Eleotridae), which consists of nine species to date. The name Cobiomorphus can be 

broken down into two patts, with Cobio recognising the similarity between them and 

the European gudgeon Cobio gobio and morphus taken from the Latin word 

representing form or shape (McDowall, 1990). They are stocky fishes of small size (up 

to 150 mm in length) and are characterised by two dorsal fins, large pectoral fins , 

separate thoracic pelvic fins (fused in gobies) and the absence of a lateral line 

(McDowall, 1990; Allen el al. , 2002). The bullies are widely distributed throughout 

New Zealand and two species (G. coxii (Cox ' s gudgeon) and C. auslralis (striped 

gudgeon)) are endemic to Australia and found on the Victorian south-eastern coast. The 

species occupy both brackish- and inland fresh-water habitats and are typically benthic, 

feeding on small aquatic invertebrates. While some members of the genus spend their 

entire life cycle in freshwater, four of the seven New Zealand species are diadromous, 

where part of their life cycle is spent in salt water. In particular, New Zealand 

Gobiomorphus are amphidromous (a form of diadromy) where the larvae migrate out to 

sea for a feeding phase before returning as juveniles to freshwater (McDowall , 1998). 

Morphological characters have been used historically in systematics, however, 

several characteristics (e.g. fin ray numbers) that have been used to describe fish are 

often phenotypically plastic, where morphology tends to reflect the environmental 

conditions. This has made cladistic approaches difficult (Vrijenhoek, 1998; 011i el al., 

1994). Thus, in the early literature many species were not recognised (most species 

were originally described as the one species; C. gobioides) due to their similar 

morphology. Additionally, little information exists on the evolutionary origins of this 

genus, including explanations regarding how Gobiomorphus reached New Zealand, 

where the Eleotridae family is at southern-most limit (McDowall, 1975). However, 

many genetic studies have contributed to resolving problems with taxonomically 

difficult groups by detecting diversity between morphologically similar species (where 

DNA variation is often not expressed phenotypically), and examining geographical 

divergence within species (e.g. Vrijenhoek, 1998; Kocher et al. , 1989). In pa1ticular, 

mitochondrial DNA (mtDNA) has allowed for high resolution analyses of population­

level questions in many species of fishes (Orti et al., 1994), and has provided insights 



into the origins, evolution and phylogenetics of many New Zealand fishes including 

Galaxiidae and Gobiomorphus (e.g. Waters et al., 2000; Smith et al., 2005). Thus, this 

thesis consists of two chapters dealing with genetic species identification, 

morphological variation, phylogenetic relationships (including divergence), origins and 

the evo lution of diadromy within the Gobiomorphus group. 

Chapter I utilised two regions of mitochondrial DNA (control and cytochrome b 

regions) to examine and resolve phylogenetic relationships within the Gobiomorphus 

genus and examine the relationship between Gobiomorphus, Philypnodon and Eleolris. 

Additionally, this chapter aimed to provide an understanding of the somewhat 

contentious view of species origins for this Australasian group, with a special focus on 

the New Zealand species and the evo lution of diadromy. 

Although five out of the seven currently recognised species were recognised in 

the early literature, there were some difficulties with identification. For example, 

Gobiomorphus was once considered part of the E!eolris and Phi!ypnodon genera- G. 

gobioides (giant bully), G. hufloni (redfin bully), and G. basa!is (Cran's bully) (G. 

cotidianus (common bully) was not described until 1975 by McDowall) were all part of 

the genus E!eotris before being moved to Gobiomorphus in the late I 800 ' s ; G. h11bbsi 

(bluegill bully) and G. breviceps (upland bully) were part of the genus Phi!ypnodon 

before being placed in Gobiomorphus in the I 960's. Chapter l aimed to address the 

confusion surrounding genetic species identification (and thus bully systematics) in 

New Zea land by applying phylogenetic analyses to this species group. 

Additional ly, while the origin of typically migratory New Zea land Galaxiidae 

has been well studied, with species distributions assigned as being either dispersal- or 

vicariance-driven (McDowall, 2002 ; Waters & Burridge, 1999), little is known of the 

origins of Gobiomorphus in ew Zealand. However, some authors have suggested a 

role for dispersal in creating current Gobiomo1phus distributions. For example, 

McDowall ( 1975) suggested that Gobiomorphus may have reached New Zea land via 

dispersal in prevailing ocean currents, and believes that G. coxii is ancestra l to or has 

common ancestry with New Zealand Gobiomorphus. Meanwhile, Thacker and Unmack 

(2005) examined the origins of the Australian Hypse!eotris species whose widespread 

distribution encompasses South Africa, Japan, Southeast Asia and Australia, and 

suggested that this species dispersed from Southeast Asia via marine environments 

before invading freshwaters in Australia . These findings highlight the dispersal potential 

of fish species within the Eleotridae family. However, Gobiomorphus origins may 
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alternatively fit the vicariance theory such that current distributions may be a result of 

Gondwanan plate tectonics and speciation. Therefore, Chapter I also aims to examine 

this 'dispersal vs. vicariance' issue by examining which of these methods resulted in 

Gobiomorphus colonising New Zealand, and determining whether this involved single, 

or multiple dispersal events (if Gobiomorphus distribution is dispersal-driven). 

Finally, Chapter 1 examines the evolution of diadromy in Gobiomorphus. The presence 

of a saltwater-tolerant phase in diadromous fish species that allows dispersal has led to 

the belief that ancestry for these species must be marine. This has been argued against 

by McDowall (2004) who believes that diadromy simply implies an ancestry to other 

diadromous species elsewhere rather than a purely marine ancestry. To further 

complicate the issue, the genus Rhyacichlhys is exclusively freshwater and is basal to 

the Eleotridae (Akihito el al., 2000; Thacker & Hardman, 2005), possibly indicating a 

freshwater ancestry for Gobiomorphus, and suggesting that non-diadromous bullies 

should have a more basal position within species groups than diadromous bullies. 

Alternatively, diadromy may be an ancestral character, which appears to be the case for 

ga laxiid fishes, where the presence of a marine phase is found in the basa l members of 

clades, but is absent in more derived species (Waters el al. , 2000). Potentially 

diadromous species in the ew Zealand Gobiomorphus could belong in basa l position 

within the Gobiomorphus group, with non-diadromous species being of more recent 

descent. Therefore, placement of species on phylogenetic trees will help to infer 

ancestry or derivation of diadromy in Gobiomorphus. 

Chapter II focuses on the identification and divergence of two non-migratory, 

morphologically similar species (G. breviceps and G. basalis) in the lower No11h Island 

ofNew Zealand. Gobiomorphus breviceps has a widespread distribution in New 

Zealand, encompassing the South Island as well as lower North Island's Manawatu , 

Wairarapa and Wellington regions (McDowall, 1990). Conversely, G. basalis has a 

widespread yet intermittent distribution in the No11h Island that reaches its southern 

limit at Wellington (McDowall, 2000). Both species occupy a variety of habitats at low 

altitudes (McDowall, 1975; 1990; 2000). The two species are sexually dimorphic ; the 

adult males often have bright and distinct colouration that the females and juveniles 

lack. Colouration is often used as a diagnostic tool and is useful for identifying male 

bullies, but can cause complications when females and juveniles are being compared in 

situ. The overlap in distribution of the two species has led to confusion in the 

identification of females and juveniles in the lower North Island, which is further 

3 



confounded by the presence of G. cotidianus (common bully) a morphologically similar 

species. 

Morpholog ical characters including body ratios and serially repeated structures 

such as fin rays (Christiansen et al. , I 988) allow species to be further distinguished. 

However, they may be strong ly influenced by environmental factors, caus ing variation 

in populations (Smith el al., 2003 ; King el al., 2003). For example, G. alpinus (Tarnda le 

bully) occupies an extreme high-altitude env ironment and has the lowest number of first 

dorsa l spines for Gobiomorphus, which Smith el al. (2003) suggest may be the result o f 

the cold water that the spec ies live in . The la rge variation in meri stic counts (e.g. fin ray 

counts) observed between populations in G. basalis and G. breviceps may a lso be a 

result of environmenta l influe nce. For exa mple, G. breviceps have 4- 7 first dorsa l spines 

and G. basalis have 6-8 first dorsa l spines. T his overlap in fin ray counts between G. 

breviceps and G. basal is can make identification of spec ies diffi cult. 

Therefo re, this chapter aimed to utili se the control and cytochrome b regions of 

mtDNA to accurately di sting ui sh between G. breviceps and G. basalis. Upo n spec ies 

ident ifi cation , meristic in fo rmation is applied to indi vidua ls in o rder to identi fy 

d iagnostic mo rpho logica l characters. Additio na ll y, the genet ic and morpho log ica l 

in for mation for both spec ies is used to examine d ivergence (both genetic and 

morpho logica l) to ascertai n geographica l patterns. It is tho ught that there wo uld be 

genetic and morpho log ica l di vergence between catchments, as there will be no di spersa l 

(non-diad ro mous spec ies), and there wo uld be no genetic or mo rpho log ica l d ivergence 

w ithin catchments as dispersa l wo uld be poss ible. 

Co llecti ve ly, the two chapters of this thes is address the phylogenetic 

re lationships, orig ins and evolut ion o f diadromy in Gobiomo,phus, as we ll as reso lving 

issues surrounding ident ification and morphologica l variation. This wo rk demo nst ra tes 

how genetic data can be used to resolve difficult taxonomic questions, and c la ri fy 

evolutionary patterns and orig ins in fi sh species. The thes is concludes w ith an overall 

summary, and then addresses priorities for future resea rch. 
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