Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Biological properties of blueberries and their effects on breast cancer in DMBA-induced mammary tumorigenesis rat model

A thesis presented in partial fulfilment of the requirements for the degree of

> Doctor of Philosophy in Nutritional Science

at Massey University, Palmerston North New Zealand

JANYAWAT VUTHIJUMNONK

2015

Abstract

Breast cancer is the most common form of cancer found in women. Approximately 75% of breast cancer patients are diagnosed with estrogen receptor positive (ER+) breast cancer. The standard clinical treatments for breast cancer include surgery, chemotherapy and radiation; however, dietary bioactive compounds from various plants have also been proposed to have chemopreventive or therapeutic effects on breast cancer. Blueberries have been reported to contribute to several health benefits including anti-tumour activity. Blueberry pomace, a by-product of the blueberry juice industry having high fibre content, may also have health benefits but has not been tested for efficacy against breast cancer previously. Therefore, the primary objective of this thesis was to investigate the effects of selected rabbiteye blueberries grown in New Zealand and blueberry pomace on their potential for tumorigenesis 7,12managing mammary induced bv dimethylbenz[a]anthracene (DMBA).

Five rabbiteye blueberry (*Vaccinium ashei*) cultivars ('Centurion', 'Maru', 'Rahi', 'Ono' and 'Tifblue') were initially characterised by measuring total phenolic concentration (TPC) using a Folin-Ciocalteu procedure, total flavonoid concentration (TFC), and anthocyanin profiles and chlorogenic acid concentration by HPLC. Further experiments were then carried out to investigate whether these rabbiteye blueberries possessed bioactivity that may affect breast cancer growth and development such as antioxidant capacity, prebiotic (*Lactobacillus* spp.) and antimicrobial activities (*Escherichia coli, Salmonella typhimurium* and *Staphylococcus aureus*) and anti-angiogenic activity using chicken chorioallantoic membrane (CAM) assay. Finally, the effects of selected rabbiteye blueberry extracts or highbush blueberry pomace supplemented diet consumption on DMBA-induced mammary tumorigenesis, oxidative stress biomarkers, serum estrogen level, populations of intestinal microflora and caecal β-glucuronidase enzyme activity were assessed in a rat model.

The five rabbiteye blueberry cultivars were found to contain sufficient polyphenolics, flavonoids, total anthocyanins and chlorogenic acid to exert bioactive effects, even in a water extract of freeze-dried material. The 'Tifblue' cultivar contained the highest TPC, TFC, total anthocyanins and chlorogenic acid of the studied cultivars. Blueberry pomace also contained high concentrations of polyphenolic compounds. Total polyphenolic concentration of blueberry pomace in this study ranged from 0.74 - 1.20 mg GAE/g frozen berries. The blueberry extracts both from fruits and pomace possessed antioxidant activity

as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Some evidence of prebiotic activities of blueberry extracts was shown in vitro (ca. 0.6-0.9 log CFU/mL increases for Lactobacillus. rhamnosus and Lactobacillus. acidophilus respectively). However, the blueberry extracts in this study did not exhibit anti-microbial activity. The water extracts of 'Maru', 'Centurion' and 'Tifblue' demonstrated more than 50% inhibition of angiogenesis compared to controls in CAM assay. Total polyphenolic concentration and chlorogenic acid concentrations were strongly correlated with antioxidant activity while total anthocyanins showed a strong relationship with anti-angiogenic activity. An animal trial was conducted with 100 female Sprague-Dawley rats (Rattus norvegicus) and assigned equally in five treatment groups; negative control (no DMBA with normal feed and normal water), positive control (DMBA with normal feed and normal water), 'Centurion' (DMBA with normal feed and 'Centurion' extract), 'Maru' (DMBA with normal feed and 'Maru' extract) and pomace (DMBA with 5% blueberry pomace supplemented diet and normal water). Seven week old rats were gavaged with DMBA and, starting shortly after (ca. 2 h), their diets were supplemented with 25% blueberry juice in feeding water or 5% blueberry pomace in solid diet. The major effects of blueberry extracts or pomace consumption were inhibition of the number of tumours and slower tumour progression from adenoma to carcinoma. A total of 35 tumours were found from animals in a positive control group (without blueberry treatment), while animals that received blueberry supplementation had fewer than 15 tumours per group (χ^2 = 22.1, P< 0.01). In addition, approximately 85% of tumours found in animals without blueberry treatment were carcinomas while less than 50% of tumours in all blueberry-treated animals were carcinomas. Blueberry consumption in both extract and pomace forms restored levels of oxidative stress in serum from DMBA treated rats to normal levels. Consumption of blueberry water extracts did not alter the level of circulating estrogen in animal blood serum but pomace-supplemented diet significantly reduced circulating estrogen. Even though blueberry consumption did not show any effects on measured components of intestinal bacteria population (Lactobacillus spp., Bifidobacterium spp. and *E. coli*). β -glucuronidase enzyme activity was reduced in caeca of animals that received pomace-supplemented diet. A positive correlation was also found between serum estrogen levels and β -glucuronidase enzyme activity. Blueberry consumption has therefore been shown to be a promising strategy to reduce progression of mammary tumours in a DMBA treated rat model. This study suggests that including fibre with polyphenolic compounds in the food matrix leads to improved bioefficacy.

Acknowledgements

One of the greatest creations in nature is the human body. How the human body functions and responds to its environment is something I am passionate about and was the primary reason I decided to pursue a PhD is this area. A PhD study is a great journey where you meet many new people, learn new concepts, have to step out of your comfort zone and finally reach your destination. I would not have been able to reach my destination without the support from a number of people I have met along the way.

Firstly, I would like to express my sincere gratitude to my chief supervisor, Professor Julian Heyes for the continuous support of my study, for his patience, motivation, understanding and extensive advice. I am grateful for his support during the difficult times and I could not have asked for a better supervisor for my PhD journey. Besides my chief supervisor, I would like to thank my Massey University thesis committee, Dr Fran Wolber and Dr Wei-Hang Chua, for their insightful comments, challenging questions, encouragement and support. Sincere thanks also to Professor Marlena Kruger, Director of Research, for her understanding and support during the tough times. I also would like to thank Professor Abdul-Lateef Molan from Diyala University, Iraq for giving me the opportunity to do a PhD and for all his support.

My sincere appreciation is extended to Dr Juliet Cayzer for her advice and support during my animal trial and Associate Professor John Munday for his expertise in histopathological examination.

My sincere thanks also go to all School of Food and Nutrition staff for their support and suggestions throughout my research; notably James Liu for helping with antioxidant measurements, Michelle McGrath for her assistance with high-performance liquid chromatography analysis, Shampa De for her support and technical assistance in microbiology experiments and polymerase chain reaction analysis, and Anne Broomfield, Kim Wylie, and Chris Booth for their professional assistance during my animal trial. Thanks also to Corrin Hulls, Gabrielle Plimmer, Yvonne Parker and all staff of the School of Food and Nutrition, Small Animal Production Unit, and Institute of Veterinary, Animal and Biomedical Science pathology department. I am also grateful to Anne and Harry Frost, Mamaku Blue (Rotarua, New Zealand) for supplying blueberry pomace used in this study.

I would like to acknowledge Rajamangala University of Technology Lanna for my PhD scholarship. I thank my office buddy Hannah Morton for both her academic and emotional support. I also thank Jin Ying for giving me the opportunity to work as a laboratory demonstrator and teaching assistant. It has been an invaluable experience. My sincere gratitude also goes to Dr Pranee Inprakhon, my Master degree advisor, for all her support and suggestions. I would also like to thank all my Thai friends both here in Palmerston North and in Thailand; in particular Phatcha Hirunwatthanakul, Thanyarat Phengnuam, Komkiew Pinpimai, Chanapa Sawatdeenaruenat and Siphathra Dechatiwongsa for their support throughout my journey. I thank all my Biotechnology, Mahidol University friends for their endless supports and suggestions for both my personal life and academic career.

I would like to thank my Kiwi family, Michelle Meneghini and her sons, Joshua, Adam and Ben for accepting me into their family, they made my life in New Zealand a wonderful experience.

Finally, my deepest thanks to my beloved family; my father (Kittipong Vuthijumnonk), my mother (Rewadee Vuthijumnonk), my brother (Jerayoot Vuthichumnong), my sister (Jarissa Vuthijumnonk), my aunt (Karuna Vuthijumnong) and my uncle (Kamolmit Vuthichumnong) for continual financial and emotional support. I could not have done this without you. Thank you for always believing and never losing faith in me.

Table of Contents

Abstract			i
Acknowledgements			iii
Table of contents			v
List of tables			vii
List of figures			ix
Abbreviations			xiii
Chapter 1	Introductio	n	1
Chapter 2	Literature r	review	3
	2.1 Breast	cancer statistics	3
	2.2 Breast	development and breast cancer	4
	2.2.1	Normal mammary gland development	4
	2.2.2	Breast cancer	6
	2.2.3	Classification of breast cancer types	7
	2.2.4	Estrogen and breast cancer	8
	2.2.5	Immune system and breast cancer	10
	2.2.6	Factors that influence breast cancer risks	11
	2.3 Intestir	nal microflora	17
	2.4 Bioactiv	ve compounds in blueberries and blueberry pomace	20
	2.4.1	Total polyphenolic concentration	21
	2.4.2	Anthocyanins	23
	2.4.3	Phenolic acids	28
	2.4.4	Blueberry dietary fibre	29
	2.5 Biologi	cal properties of blueberries	30
	2.5.1	Antioxidant activity	30
	2.5.2	Prebiotic and antimicrobial activity	32
	2.5.3	Anti-angiogenesis	35
	2.5.4	Estrogenic/ anti-estrogenic activities	38
	2.6 Blueber	rries and breast cancer	38
	2.7 Aim and	d research objectives	45
Chapter 3	Polypheno	s of rabbiteye blueberries and effect of freeze-	
	drying and	extraction solvents	49

Chapter 4	In vitro antioxidant, prebiotic, antimicrobial and in ovo anti-	
	angiogenic activities of rabbiteye blueberries extracts	77
Chapter 5	Impact of blueberry extracts and blueberry pomace on 7,12-	
	dimethylbenz[a]anthracene-induced mammary tumorigenesis	
	in rat model	105
Chapter 6	Impact of blueberry extracts and blueberry pomace on	
	mammary gland morphology, oxidative stress, circulatory	
	estrogen level and intestinal microflora of 7,12-	
	dimethylbenz[a]anthracene-induced mammary tumorigenesis	
	rat model	135
Chapter 7	General discussion and conclusions	167
Recommendations fo	r future research	175
References		179
Appendix		210

List of tables

Chapter 2

Table 2-1	Effect of major phytochemical classes from various plants on breast	
	cancer	16
Table 2-2	Possible beneficial function of intestinal microflora	18
Table 2-3	Total phenolic concentration of blueberries and blueberry pomace	24
Table 2-4	Total anthocyanins of blueberries and blueberry pomace	26
Table 2-5	Individual anthocyanins present in blueberry fruits and pomace	27
Table 2-6	Percentage composition of anthocyanins in blueberry fruits	28
Table 2-7	Effects of blueberries or their polyphenols in in vivo mammary	
	tumorigenesis rat model	42

Chapter 3

Table 3-1	Individual anthocyanin components of the five cultivars of rabbiteye	
	blueberry fruits extracted with MilliQ water or 5% aqueous formic acid	67
Table 3-2	Individual anthocyanin components of the five cultivars of freeze-dried	
	rabbiteye blueberry fruits extracted with MilliQ water or 5% aqueous	
	formic acid	68
Table 3-3	Individual anthocyanin components of the five cultivars of rabbiteye	
	blueberry pomace extracted with MilliQ water or 5% aqueous formic	
	acid	69
Table 3-4	Individual anthocyanin components of the five cultivars of freeze-dried	
	rabbiteye blueberry pomace extracted with MilliQ water or 5% aqueous	
	formic acid	70

Chapter 4

Table 4-1	Correlation coefficient (R values) between blueberry phytochemicals	
	and their biological properties	102

Table 5-1	Standard animal diet and 5% pomace supplemented diet formulation	110
-----------	--	-----

Table 5-2	Mean body weight at week 0 and week 13 of the study, mean liver	
	weight and liver/ body weight ratio	119
Table 5-3	Mean palpable tumour latency of animals that received DMBA	
	treatment	121
Table 5-4	Comparison of post mortem tumour indices between experimental	
	groups	124
Table 5-5	Total number of tumours in test group, total tumour volume and	
	volume/tumour	127

Table 6-1	Number of tumour incidence and mammary gland abnormality	148
Table 6-2	Histopathological categories of tumours found in DMBA treated groups	151

List of figures

Chapter 2

Figure 2-1	Numbers of female cancer registrations in 2010, by organ site	4
Figure 2-2	Diagrammatic representation of the lobular structures of the	
	human breast	5
Figure 2-3	Progression of breast ductal carcinoma	7
Figure 2-4	Oxidative metabolisms of steroidal estrogens	10
Figure 2-5	Breast cancer risk factors	12
Figure 2-6	Detoxification mechanism and enterohepatic circulation as	
	affected by intestinal microflora	19
Figure 2-7	Rabbiteye blueberries	21
Figure 2-8	Polyphenols classification in blueberries	22
Figure 2-9	Structure of anthocyanidins commonly found in blueberries	23
Figure 2-10	Structure of chlorogenic acid	29
Figure 2-11	Sequential steps of tumour angiogenesis and metastases	36
Figure 2-12	Possible activities of blueberries and blueberries pomace in	
	prevention and modulation of DMBA-induced breast cancer in	
	animal model	46

Figure 3-1	Blueberry extraction scheme	53
Figure 3-2	Total phenolic concentration (TPC) of five rabbiteye blueberry	
	cultivars extracted by MilliQ water or water plus 5% formic	
	acid	56
Figure 3-3	Total flavonoid concentration (TFC) of five rabbiteye blueberry	
	cultivars extracted by MilliQ water or water plus 5% formic	
	acid	59

Figure 3-4	Total anthocyanin concentrations of five rabbiteye blueberry	
	cultivars extracted by MilliQ water or water plus 5% formic	
	acid	61
Figure 3-5	Representative anthocyanins chromatograms of five rabbiteye	
	blueberry varieties at 520 nm	64
Figure 3-6	Principle component analysis of individual anthocyanins from five	
	rabbiteye blueberry cultivars, (B) Score plot for principal	
	components 1 and 2 showing the contribution of each	
	anthocyanin to the observed PCA pattern	71
Figure 3-7	Chlorogenic acid concentrations of five rabbiteye blueberry	
	cultivars extracted by MilliQ water or water plus 5% formic acid	74

Figure 4-1	Chick chorioallantoic membrane of a control sample overlaid by	
	the rectangular grid	85
Figure 4-2	Ferric reducing antioxidant power (FRAP; mg $FeSO_4/g$ frozen	
	berries) of five rabbiteye blueberry cultivars extracted by water	
	alone or water plus 5% formic acid	87
Figure 4-3	Oxygen radical absorption capacity (ORAC; µmol Trolox	
	equivalent/g frozen berries) of five rabbiteye blueberry cultivars	
	extracted by water alone or water plus 5% formic acid	88
Figure 4-4	Enumeration [Log10 colony forming units (CFU)/ml] of L.	
	rhamnosus	91
Figure 4-5	Enumeration [Log10 colony forming units (CFU)/ml] of L.	
	acidophilus	93
Figure 4-6	Macroscopic monitor of embryos in anti-angiogenic activity using	
	CAM assay	97
Figure 4-7	Representative photomicrographs for qualitative observation of	
	anti-angiogenic properties	98
Figure 4-8	Percentage inhibition of new blood vessel formation in a chick	
	chorioallantoic membrane assay by five rabbiteye blueberry	
	cultivars	101

Figure 5-1	Animal experimental design	111
Figure 5-2	Scheme reporting the localization of mammary glands for	
	mammary tumours record	114
Figure 5-3	Data of average diet consumption	117
Figure 5-4	Data of average water consumption	118
Figure 5-5	Percentage of palpable tumour incidence in all DMBA-treated	
	groups	123
Figure 5-6	Individual value plot of tumour volume found in all DMBA-	
	treated groups	128
Figure 5-7	Progression of all individual palpable tumours from DMBA-	
	treated groups	132
Figure 5-8	Tumour progression	133

Figure 6-1	Whole mount mammary gland of rat showing "zone C" area	145
Figure 6-2	Average number of mammary gland structure (TEB, AB and LB)	
	per mm ² counted under light microscope for 140 day old rats	146
Figure 6-3	Representative images of mammary gland abnormality	147
Figure 6-4	Representative microscopic images (200X magnification) of	
	mammary gland and mammary tumours	150
Figure 6-5	Effect of blueberry extracts ('Centurion' and 'Maru') and diet	
	supplemented with 5% Highbush blueberry pomace on	
	distribution of the malignancy of tumour based on the	
	histopathological report	150
Figure 6-6	Effect of blueberry extracts ('Centurion' and 'Maru') and diet	
	supplemented with 5% Highbush blueberry pomace on blood	
	serum antioxidant	152
Figure 6-7	Effect of blueberry extracts ('Centurion' and 'Maru') and diet	
	supplemented with 5% Highbush-pomace on malondialdehyde	
	concentration in animal blood serum	153

Figure 6-8	Effect of blueberry extracts ('Centurion' and 'Maru') and diet	
	supplemented with 5% Highbush-pomace on catalase activity in	
	animal blood serum	155
Figure 6-9	Effect of blueberry extracts ('Centurion' and 'Maru') and diet	
	supplemented with 5% Highbush-pomace on estradiol level	
	(pg/mL) in animal blood serum	157
Figure 6-10	Average caecum weights of animals from all experimental groups	160
Figure 6-11	Individual value plots showing the intestinal bacterial population	161
Figure 6-12	$\beta\mbox{-glucuronidase}$ enzyme activity in caeca from rats in all	
	experimental groups affected by DMBA-treatment and different	
	blueberry treatments	163

Figure 7-1	Contribution of evidence in this thesis to prevention of DMBA-	
	induced mammary tumour initiation and promotion	173

Abbreviations

16α-OHE1	16α-hydroxyestrone
2-MeOE2	2-methoxyestradiol
2-OHE2	Hydroxyestradiol
4-OHE2	4-hydroxyestradiol
5%FA	5% aqueous formic acid
ААРН	2,2' azobis(2-methylpropionamidine)dihydrochloride
AB	Alveolar bud
ACY	Total anthocyanins
AhR	Aryl hydrocarbon receptor
ANOVA	Analysis of variance
ATP	Adenosine triphosphate
AV	Alveoli
BMD	Bone mineral density
BMI	Body mass index
CAM	Chicken chorioallantoic membrane
CAT	Catalase
CD	Cluster of differentiation
CE	Catechin equivalent
CFU	Colony forming units
CGA	Chlorogenic acid concentration
CRC	Colorectal cancer
C _T	Threshold cycle
CYP1A1	Cytochrome P450 1A1
CYP1B1	Cytochrome P450 1B1
DAGDL	2,5-di-O-acetyl-D-glucaro-l,4:6,3-dilactone
DCIS	Ductal carcinoma in situ
DMBA	7,12-dimethylbenz[a]anthracene
E1	Estrone
E2	17β-estradiol
E3	Estriol
EC	Endothelial cell
EIA	Enzyme immunoassay
ER	Estrogen receptor
FB	Frozen berries
FeCl ₃	Ferric chloride
FeSO₄	Iron (II) sulfate
FISH	Fluorescence in situ hybridization
FL	Fluorescein
FOS	Fructooligosaccharides
FRAP	Ferric reducing antioxidant power

GAE	Gallic acid equivalent
	Glutathione peroxidase
	Heamatoxylin and eosin
	Hydrogen peroxide
	Hydrochloric acid
	, Human epidermal growth factor receptor 2
	Hypoxia-inducible factor-1
	High power fields
	High performance liquid chromatography
	Human umbilical vein endothelial cell
ICR	Imprinting controlled region
	Lobular carcinoma in situ
LB	Lobule
LPS	Lipopolysaccharide
MAM-A	Mammaglobin-A
МАРК	Mitogen-activated protein kinase
MDA	Malondialdehyde
MHC	Major histocompatibility complex
MMP	Matrix metalloproteinase
MQ	MilliQ water
MRS	Man-Rogosa-Sharpe
MVD	Microvessel density
Na2CO3	Sodium carbonate
NDOs	Non-digestible oligosaccharides
NK cells	Natural killer cells
NMU	Nitrosomethylurea
ORAC	Oxygen radical absorbance capacity
PAHs	Polycyclic aromatic hydrocarbon
PBS	Phosphate buffered saline
	Principle component
	Principle component analysis
PCNA	Proliferating cell nuclear antigen
	Photo-diode array
	Progression-free survival
	Phosphate buffer
	Progesterone receptor
	Quercetin equivalent
•	Quantitative polymerase chain reaction
	Relapse-free survival
	Reactive oxygen species
	Small Animal Production Unit
	Short chain fatty acids
	Sprague-Dawley
SOD	Superoxide dismutase

ТАС	Total antioxidant capacity
ТВА	Thiobarbituric acid
TE	Trolox equivalent
TEB	Terminal end bud
TFC	Total flavonoid concentration
ТРС	Total phenolic concentration
TPTZ	2,4,6-tripyridyl-s-triazine
Trolox	6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
TSB	Tryptic soy broth
VEGF	Vascular endothelial growth factors
WHO	World Health Organization
XREs	Xenobiotic response elements