Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE USE OF ANATOMICAL FEATURES OF THE STOMACH TO INVESTIGATE THE NUTRITIONAL STATUS OF DEER POPULATIONS

A thesis presented in partial fulfilment of the requirements

for the degree

of Master of Science in Ecology at Massey University

Roger Graham Lentle

1994

ABSTRACT

A feasibility study is undertaken for the development of indices recording interaction of individual ruminant herbivores with their nutritional environment with a view to their use as an individual based game management method. A current need for individual based methods having short response times is highlighted by a review contrasting population based and individual based methods of game management. Features desirable in a short time based individual method are discussed. Techniques which quantify the response to declining quality of diet, (which I term" intrinsic nutritional optimisation") are reviewed from a viewpoint of their potential as tools for game management.

Methods which record change in response to diet of rumen volume, papillary and omasal anatomical characteristics, are examined. Techniques that utilise simple anatomical parameters i.e. papillary length, papillary width, papillary site, omasal weight, omasal volume, omasal laminar area and omasal laminar number are favoured.

A study of the extent of rumen wall shrinkage during preservation in formalin at various sites in wild red deer (<u>Cervus elaphus</u>), was undertaken. This demonstrated a degree of unpredictable variability sufficient to cast doubt on the accuracy of papillary density measurements such as are incorporated into FISA values.

In these studies the effect of differing diet was evaluated using wild red deer as representative of an 'intermediate feeder' browsing and grazing habit, farmed red deer as representative of an obligate 'bulk feeder' grazing habit and wild fallow deer (<u>Cervus dama</u>) as representative of voluntary "bulk feeder grazing habit.

A multivariate analysis of rumen papillary size at six objectively defined

sample sites in wild and farmed red deer and in wild fallow deer was undertaken. Three significant axes were generated, overall papillary size, overall papillary shape and site specific papillation. These responded differently to changes in age, sex, diet and species. The results supported previous descriptive work demonstrating that papillation at certain sites varied with diet and that overall papillary size increased with age. However the rate of increase of papillary size was shown to vary according to the sex in concordance with known differences in bionomic strategy. Overall papillary shape was influenced solely by species.

A multivariate analysis of omasal anatomical characteristics including laminar number and area, from wild and farmed red deer and from wild fallow deer was undertaken. Two axes were generated, overall size and overall leafiness. The latter axis showed significantly more variance in "intermediate feeder" wild red deer than in farmed red deer or in "roughage feeder" wild fallow deer.

Rumen content analysis was carried out concurrent with other studies. As with the papillary analysis, there was no significant seasonal variation in wild deer samples, further supporting a hypothesis of little seasonal variation of dietary quality at population densities well below carrying capacity.

A jaw length condition index was derived using Weibull curves derived from population samples obtained two years prior to the current study. Whilst these curves were shown to give a good description of the jaw length condition index distribution of the current population, there was no significant correlation of the index values with results from the papillary or omasal study. Possible explanations for this were considered. Firstly that the methods recorded different aspects of nutrition. Secondly that the jaw length index exhibited a cumulative damping of sensitivity as a consequence of progressive accumulation of non demarcated annual growth increments, a problem that did not occur in indices such as the site specific papillation factor, where there was no age related

iii

increase.

.....

TABLE OF CONTENTS

P	A	G	E
Γ.	A	U	Ľ

· · · · · ·

TITLE PAGE	i
ABSTRACT	ii
ACKNOWLEDGMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiii
CHAPTER 1: INTRODUCTION	1
1.1. <u>GAME ANIMAL MANAGEMENT</u>	1
1.1.1. DEFINITION	1
1.1.2. AIMS	1
1.2. <u>ESTABLISHED METHODS</u>	2
1.2.1. POPULATION BASED METHODS	3
1.2.2. INDIVIDUAL BASED METHODS	4
1.2.2.1. ANATOMICAL PARAMETERS PRACTICAL	
CONSIDERATIONS	5
1.2.2.2. INDICES OF NUTRITIONAL WELL BEING:	5
1.2.2.2.1. Development and use	5
1.2.2.2.2. <u>Shortcomings.</u>	7
1.2.2.2.1. Response time	7
1.2.2.2.2. Responsiveness over the range of nutritional	
conditions under evaluation	8
1.2.2.2.3. Non-equivalence of various nutritional indices of	
wellbeing	10
1.2.2.3. DIETARY ANALYSIS	12

v

1

	1.2.2.3	3.1.	Methods	12
	1.2.2.3	3.2.	The continuing need for dietary analysis	12
	1.2.2.3	3.3.	Shortcomings of dietary methods	13
1.3.	AI	LTER	NATIVE INDIVIDUAL BASED METHODS.	16
1.	3.1.	THI	E NEED FOR ADDITIONAL METHODS BASED ON.	
		THE	E CONCEPT OF INTRINSIC NUTRITIONAL	
		OPT	TIMISATION	16
1.	3.2.	TH	EORETICAL CONSIDERATIONS.	17
	1.3.2.1.		GROWTH AND RESORBTION	17
	1.3.2.2.		PROGRESSIVE INCREASE THROUGH THE LIFE OF	
			THE ANIMAL	17
ļ	1.3.2.3.		DEMARCATION OF ANNUAL GROWTH	18
	1.3.2.4.		VARIATION OF GROWTH RATE DUE TO	
			PHYSIOLOGICAL EFFECTS	19
1.	3.3.	THI	E POTENTIAL OF STOMACH ANATOMICAL .	
		PAR	AMETERS FOR USE IN INDIVIDUAL BASED	
		ME	THODS	19
	1.3.3.1.		INTRODUCTION	19
	1.3.3.2.		SPECIFIC MECHANISMS OF INTRINSIC	
			NUTRITIONAL OPTIMISATION IN THE	
			RUMEN AND THEIR POTENTIAL FOR	
			USE IN INDIVIDUAL BASED METHODS	22
	1.3.3.2	2.1.	Change in the rate of microbial mechanical	
			and microbial particle breakdown processes.	22
	1.3.3.2	2.2.	Change in rumen volume and papillary density	23
	1.3.3.2	2.3.	Change in absorbtive surface area.	25
	1.3.3	3.2.3.1	. Overall papillary anatomy	26

.....

	1.3.3.2.3.2.	Site specific changes in papillary anatomy	28
	1.3.3.2.3.3.	Changes in reticular anatomy	31
i	1.3.3.2.3.4.	Changes in omasal anatomy	32
1.3.3	3.3. TH	E USE OF INDIVIDUAL BASED METHODS	
	FO	UNDED ON STOMACH ANATOMY	
	PAI	RAMETERS: CONSIDERATIONS PARTICULAR	
	ТО	NEW ZEALAND	33
1.3.3	3.4. SU	MMARY OF SALIENT POINTS FOR AN	
	IN	VESTIGATION OF INDIVIDUAL BASED	
	ME	THODS BASED ON MECHANISMS OF	
	IN	TRINSIC .NUTRITIONAL OPTIMISATION.	33
CHAPT	ER 2: RED I	DEER RUMEN SHRINKAGE IN FORMOL SALINE	
(Present	ed as a copy	of a paper submitted to the Journal of Wildlife Manager	ment on
20/12/94)		35
2.1.	ABSTRAC	T	35
2.2.	INTRODU	CTION	35
2.3.	METHOD		36
2.3.1.	SPECI	MENS	36
2.3.2	PROC	EDURE	37
2.4.	RESULTS	•	40
2.4.1.	RUME	N WALL SHRINKAGES.	40
2.4.2.	PAPIL	LARY SHRINKAGES.	42
2.5.	DISCUSS	ION AND CONCLUSIONS	42
2.6.	REFEREN	NCES	47

vii

CHAPTER 3: A MULTIVARIATE ANALYSIS OF RUMEN PAPILLARY SIZE

IN RED DEER.

· · · ·

(Presented as a copy of a paper submitted to the Journal of Wildlife Management on 20/12/94.)

3.1.	ABSTRACT.	50
3.2.	INTRODUCTION	51
3.3.	MATERIALS AND METHODS	54
3.3.1.	SAMPLING SITES AND SPECIES.	54
3.3.2.	PAPILLARY MEASUREMENT TECHNIQUE	55
3.3.2	2.1. SAMPLING SITES	55
3.3	3.2.1.1. ATRIUM RUMINIS	55
3.3	3.2.1.2. ANTERIOR WALL OF VENTRAL SAC	55
3.3	3.2.1.3. RIGHT WALL OF VENTRAL SAC	55
3.3	3.2.1.4 LEFT WALL OF VENTRAL SAC	56
3.3	3.2.1.5. DORSAL SAC	56
3.3	3.2.1.6. CAUDODORSAL BLIND SAC	56
3.3	3.2.1.7. CAUDOVENTRAL BLIND SAC	56
3.3.2	2.2. MEASUREMENT PROCEEDURE	56
3.3.3.	DENTAL AGING.	58
3.3.4.	STATISTICS AND CALCULATIONS	58
3.4.	RESULTS AND ANALYSIS	59
3.4.1.	INTERPRETATION OF OF THE P.C. AXES.	61
3.4.2.	EFFECTS OF AGE AND SEX.	62
3.4.3.	EFFECTS OF SPECIES AND HABITAT.	67
3.4.4.	EFFECTS OF SEASON	67
3.5.	DISCUSSION	67
3.6.	REFERENCES	71

viii

CHAPTER 4: OMASAL ANATOMY IN NEW ZEALAND RED AND FALLOW

DEER: AN EXPLORATORY MULTIVARIATE ANALYSIS

(Presented as a copy of a paper submitted to the Journal of wildlife management on 20/12/94) 75

4.1.	ABSTRA	ACT	75
4.2.	INTROL	DUCTION	76
4.3.	MATER	IALS	79
4.4.	METHO	D	79
4.5.	<u>STATIS</u>	TICAL ANALYSIS	80
4.6.	RESULT	<u>TS</u>	81
4.6.1.	PC	COMPONENT AXES	82
4.6.2.	REL	ATIONSHIP OF OMASAL PC AXES TO OTHER	
	FAC	CTORS	82
4.6	5.2.1.	EFFECT OF AGE	82
4.6	5.2.2.	EFFECT OF SPECIES	82
4.6	5.2.3.	EFFECT OF SEX	82
4.6	5.2.4.	EFFECT OF DIET	82
4.6.6.	CON	IPARISON WITH RUMEN PAPILLARY	
	CHA	ARACTERISTICS	86
4.6.7.	MA	THEMATICAL RELATIONSHIP OF LAMINAR	
	NUI	MBER TO LAMINAR AREA	87
4.7.	DISCUS	SION	87
4.8.	REFERE	ENCES	91
CHAPT	ER 5: AN	ALYSIS OF RUMEN CONTENTS	93
5.1.	INTROI	DUCTION	93
5.2.	MATER	IALS AND METHOD	94
5.2.1.	SAN	MPLE CATEGORIES	94

·---

	5.3.	RESULTS	95
	5.4.	DISCUSSION	96
	CHAPTE	ER 6: RELATIONSHIPS BETWEN RUMEN A	NATOMY
		AND JAW LENGTH INDICES	98
	6.1.	INTRODUCTION	98
	6.2.	METHOD	99
	6.3.	<u>RESULTS</u>	100
	6.4.	DISCUSSION	100
	CHAPTE	ER 7: CONCLUSIONS AND FUTURE DIREC	TIONS 103
REFERENCES		108	
APPENDIX: 1 DATA KEY		132	
	DATA D	ISKETTE	Envelope on back cover

x

LIST OF TABLES

		PAGE
Ι	Linear and area shrinkages of formalinised rumens showing sampling sites and measurement interval	40
II	Papillary principal component analysis: Papillary length and breadth data from farmed and wild red and wild fallow deer	60
III	Analysis of variance of age, sex, diet (farmed and wild) and species (red or fallow) with PC score (probabilities listed where significant).	61
IV	Omasal principal components analysis: component loadings	81
V	Comparison of variances of omasal PC components	86
VI	Regression formulae fitting omasal laminar area and omasal laminar width number	87
VII	Analysis of variance of rumen vegetation content analysis with diet (farmed or wild) and species (red or fallow). (F values $\{F\}$ and probabilities $\{p\}$ for one way ANOVA based on dry weight of sorted vegetation).	95
VIII	Pearson correlation matrix probabilites of jaw length indices with papillary and omasal PC axis values.	100

· · · · ·

xi

LIST OF FIGURES

	LIST OF TIOORES	DAGE
1	Rumen anatomy of deer.	20
2	Rumen anatomy of deer showing standardised sample sites.	38
3	Box plot of % area shrinkages with formalinisation, at specific sites in red deer rumen wall sections.	41
4	Calculated effect of uniform rumen wall shrinkage rates on FISA for a variety of papillary densities. Number of papillae per sq. cm. inset at right border. Dotted line is the approximation assuming Pd is large and shrinkage rates are small.	44
5	Calculated effect of papillary density (papillae per sq cm.) on FISA assuminig uniform rumen wall area shrinkages of 10% and 20%.	45
6	Rumen anatomy of deer showing standardised sample sites.	53
7	Length and breadth measurement sites for various papillary shapes.	57
8	Plot of papillary principal component analysis PC vector 1 (overall papillary size) values against PC vector 2 (shape as a length width comparison) values.	63

- Plot of papillary principal component analysis PC vector 1 (0verall 64 papillary size) values against PC vector 3 (site specific factor) values.
- Plot of papillary principal component analysis PC1 values for all
 categories of deer (wild fallow and farmed red and wild red deer)
 against age. Separate linear regression lines shown for males (solid
 line) and females (dotted line).
- Ordination of papillary principal component PC axis 3 (site 66 specific) length loading factors. Factors are shown superimposed on the sampling site. Dotted lines show general orientation of + ve to ve values.
- 12 Omasal and omasal laminar anatomy showing measurement detail. 77
- Plot of omasal principal component analysis factors 1 (Overall size 83 factor) values against factor 2 (leafiness factor) values. Wild deer circles. Farmed deer triangles. Size of symbol proportional to age.
 Fallow deer shaded symbol.
- Plot of omasal principal component analysis factor 1 (overall size 84 factor) values against factor 2 (leafiness factor) values, showing species. Fallow deer circles. Red deer dots.

÷

....

xiii

- Plot of omasal principal component analysis factors 1 (Overall size 85 factor) values against factor 2 (leafiness factor) values, showing sex. Males dots. Females circles.
- Regression of omasal laminar "width number" (see text) value
 against omasal laminar total area (in.sq. mm.) using combined data
 from farmed and wild red plus wild fallow deer.

tr
