Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ISOLATION OF 5' REGULATORY SEQUENCES FOR RUMINANT ATP CITRATE LYASE

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

> Rebecca Jane Sanders 1998

ABSTRACT

ATP citrate lyase is an essential enzyme in the pathway for conversion of glucose to fatty acids in mammalian tissues. The enzyme catalyses the cleavage of cytosolic citrate to acetyl CoA and oxaloacetate in an ATP-dependent reaction. The sequence of the cDNAs for both rat and human ATP citrate lyase have been published and have 96.3% identity at the amino acid level. This high level of identity may also extend to other mammals, including ruminants. The ruminant presents a unique system in which to study the regulation of ATP citrate lyase as levels of expression of the enzyme change during the development of a functional rumen. An analysis of the 5'-regulatory region of ruminant ATP citrate lyase will be important in determining factors that contribute to the developmental regulation of this enzyme in ruminants.

In order to analyse the 5'-regulatory region of ruminant ATP citrate lyase, a probe was constructed with which to screen an amplified bovine genomic library. The probe was produced by cloning a 282 bp PCR product containing rat ATP citrate lyase exon II sequence, amplified from rat genomic DNA. This clone was sequenced to verify that it contained rat ATP citrate lyase exon II sequence.

This probe was then used for northern and Southern blotting, and for screening an amplified bovine genomic library. Northern blotting of rat and lamb total RNA showed that the probe hybridised with rat RNA, but not with lamb RNA. Conditions for hybridisation were not optimised, as hybridisation between the probe and rat RNA was not as specific as expected. The quality of RNA used for preparing the northern blots could have also affected the specificity of hybridisation.

Southern blotting experiments were also inconclusive, as the hybridisation signals seen were not specific. However the probe was shown to hybridise to rat and human genomic DNA.

Screening of the bovine genomic library was unsuccessful, but once conditions for hybridisation are optimised, then the probe could be used to rescreen the amplified bovine genomic library, and isolate a clone containing the 5'-regulatory sequences for bovine ATP citrate lyase.

ACKNOWLEDGEMENTS

I would like to thank Kathryn Stowell and John Tweedie for their supervision, guidance and encouragement during my thesis. I would also like to thank the past and present members of the Twilight Zone for all their help and friendship provided during my time in the lab - it has been a truly memorable experience. Finally, I would like to thank my family and friends for their love and support.

TABLE OF CONTENTS

		Page
ABSTRACT		
ACKNOWLEDGEMENTS		
LIST OF FIGURES		
LIS	T OF TABLES	ix
ABI	BREVIATIONS	Х
CH	APTER ONE: INTRODUCTION	1
1.1	Lipid Biosynthesis	1
	1.1.1 Acetyl CoA Carboxylase	2
	1.1.2 SREBPs	4
	1.1.3 Obesity	4
1.2	Ruminant Lipid Biosynthesis	5
	1.2.1 Glucose Sparing in Ruminants	8
1.3	ATP Citrate Lyase	9
	1.3.1 Regulation of ATP Citrate Lyase	11
	1.3.2 Phosphorylation of ATP Citrate Lyase	12
	1.3.3 Transcription and mRNA Levels	13
	1.3.4 Cloning of ATP Citrate Lyase cDNA and Genomic DNA	14
	1.3.5 Potential Response Elements	15
1.4	Aim of this Project	17
CHAPTER TWO: MATERIALS AND METHODS		
2.1	Materials	19
	2.1.1 Enzymes	19
	2.1.2 Chemicals	19
	2.1.3 Miscellaneous Products	19
	2.1.4 Escherichia coli Genotypes	20
2.2	Methods	21
	2.2.1 Manipulation of RNA	21
	2.2.2 Synthesis of cDNA	21
	2.2.3 DNA Amplification	21
	2.2.4 PCR Screening of Colonies	22
	2.2.5 DNA Digestion and Agarose Gel Electrophoresis	22

	2.2.6 Purification of Fragments from Agarose Gels	22
	2.2.7 Quantitation of DNA	22
	2.2.8 Preparation of Vectors for Subcloning	22
	2.2.9 Ligation of DNA	23
	2.2.10 Transformation of Competent Cells	23
	2.2.11 Preparation of Plasmid DNA	23
	2.2.12 Single Stranded DNA Sequencing	23
	2.2.13 Double Stranded DNA Sequencing	24
	2.2.14 Labelling DNA Probes with ³² P	24
	2.2.15 Hybridisation using DNA Probes	24
	Prehybridisation	24
	Hybridisation	24
	Washing	25
	2.2.16 Autoradiography	25
	2.2.17 Isolation of Genomic DNA	25
	2.2.18 Digestion of Genomic DNA	25
	2.2.19 Electrophoresis of Genomic DNA	26
	2.2.20 Southern Transfer	26
	2.2.21 Screening of Bacteriophage Library	26
	2.2.22 Preparation of Plating Cells	27
	2.2.23 Plaque Lifts	27
CH	APTER THREE: RESULTS AND DISCUSSION	28
3.1	Introduction	28
3.2	Design of PCR Primers	28
3.3	Isolation of Total RNA	30
3.4	Synthesis of cDNA	33
3.5	PCR with ATPCL5' and ATPCL3' Primers	33
	3.5.1 Subcloning of 3.3 kb PCR Product Representing	
	Rat ATP Citrate Lyase cDNA	39
3.6	PCR with ATPCL5' and ATPCL3' Exon III Primers	42
	3.6.1 Subcloning of 282 bp PCR Product	46
	3.6.2 Sequencing of pACL282 Clone	46
3.7	Design of ATPCL1 and ATPCL2 Primers	50
3.8	Isolation of Genomic DNA	51

3.8.1 Methods of Genomic DNA Isolation	51
3.9 PCR with ATPCL1 and ATPCL2 Primers	54
3.9.1 Subcloning of 202 bp Product	54
3.9.2 Sequencing of pACL202 Clones	58
3.10 Labelling DNA Probes with ³² P	59
3.11 Northern Blotting	60
3.11.1 Northern Blot Analysis	60
3.12 Screening of Bacteriophage Library	62
3.12.1 Titering Library	63
3.12.2 Plaque Lifts	64
3.12.3 Hybridisation	64
3.13 Southern Analysis	66
3.13.1 Probing Southern Blot	66
3.14 Summary	70
CHAPTER FOUR: FUTURE DIRECTIONS	
4.1 Optimisation of Hybridisation Conditions 72	
4.2 Screening a Bovine Genomic Library	74
4.3 Obtaining a Sheep cDNA Probe	74
4.4 Sheep Genomic Clone	75
4.4.1 ATP Citrate Lyase Expression During Development	75
4.4.2 Characterisation of Sheep Genomic Clone	76
REFERENCES	
Appendix I Oligonucleotide Sequences	84
Appendix II Rat ATP Citrate Lyase cDNA Sequence 8	
Appendix III Alignment of Rat and Human ATP Citrate Lyase	
mRNA Sequences	89
Appendix IV Map of pBluescript® II SK- 93	
Appendix V Map of pACL282	
Appendix VI Map of pACL202	
Appendix VII Map of pTG3954	

010

•

LIST OF FIGURES

			Page
Figure	1.1	Reaction catalysed by acetyl CoA carboxylase	3
Figure	1.2	Reaction catalysed by fatty acid synthase	3
Figure	1.3	Pathways of fatty acid synthesis in ruminant adipose tissue	7
Figure	1.4	Reaction catalysed by ATP citrate lyase	10
Figure	1.5	Site of action of ATP citrate lyase and its role in providing	
		acetyl CoA for fatty acid synthesis	10
Figure	3.1	Schematic representation of PCR primers and rat DNA sequence	29
Figure	3.2	Total RNA isolated from neonatal lamb and rat liver tissue	32
Figure	3.3	RT-PCR scheme	36
Figure	3.4	3.3 kb PCR product amplified from rat liver first strand cDNA	
		with ATPCL5' and ATPCL3' primers	37
Figure	3.5	Positive control in RT-PCR reactions	38
Figure	3.6	Ligation scheme of pBlueScript with PCR product	40
Figure	3.7	282 bp PCR product amplified from rat liver first strand cDNA	
		with ATPCL5' and ATPCL3' exon III primers	44
Figure	3.8	Diagnostic digest of 282 bp PCR product and schematic	
		representation of expected digest products	45
Figure	3.9	Bst XI and Xho I digest of miniprep plasmid DNA containing	
		the 282 bp insert	47
Figure	3.10	Bss HII digest of miniprep plasmid DNA containing the 282 bp	
		insert	48
Figure	3.11	Rat and bovine genomic DNA samples	52
Figure	3.12	Genomic DNA samples used for Southern blotting	53
Figure	3.13	202 bp PCR product amplified from rat genomic DNA with	
		ATPCL1 and ATPCL2 primers	55
Figure	3.14	Diagnostic digest of 202 bp PCR product and schematic	
		representation of expected digest products	56
Figure	3.15	Eco RI digest of miniprep plasmid DNA containing the 202 bp	
		insert	57
Figure	3.16	Results of northern blotting with the 202 bp probe	61

Figure	3.17	6.17 Four putative plaques identified after first round screening of	
		the bovine genomic library with the 202 bp probe	65
Figure	3.18	Hybridisation of Southern blot with 202 bp probe	67

LIST OF TABLES

		Page
Table 2.1	Bacterial strains of Escherichia coli used in this study	20
Table 3.1	Isolation of total RNA from rat and sheep liver tissue	31
Table 3.2	Genomic DNA extracted from rat and bovine tissues	51
Table 3.3	Methods used and final use of labelled DNA	59
Table 3.4	Results of titering phage library	63

ABBREVIATIONS

А	adenine
Amp	ampicillin
bp	base pair
BRL	Bethseda Research Laboratories
cDNA	complementary deoxyribonucleic acid
С	cytosine
cpm	counts per minute
Da	dalton
DNA	deoxyribonucleic acid
DNAse	deoxyribonuclease
dCTP	deoxycytidine triphosphate
E. coli	Escherichia coli
EDTA	ethylene diamine tetra-acetate
EEO	electroendosmosis
G	guanine
IPTG	isopropyl β -D-thiogalactopyranoside
kb	kilobase
kDa	kilodalton
λ	Bacteriophage lambda
LMP	low melting point
mRNA	messenger ribonucleic acid
μg	microgram
μl	microlitre
mM	millimole
ng	nanogram
nm	nanometres
nt	nucleotide
OD	optical density
PCR	polymerase chain reaction
pfu	plaque forming units
pmol	picomole
RNA	ribonucleic acid

RNAase	ribonuclease
SDS	sodium dodecylsulphate
SSC	standard saline citrate
Т	thymine
TAE	Tris acetate EDTA
Taq	Thermus aquaticus
TE	Tris (10 mM) EDTA (1 mM) pH 8.0
TEMED	N, N, N', N'-Tetramethylethlyenediamine
U	unit
UV	ultraviolet
X-Gal	5-bromo-4-chloro-3-indolyl β -D-galactopyranoside