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1.1. Abstract 

" Specific Object Recognition Using Iso-Luminal Contours "  

Object recognition is a broad topic in the study of computer vision. In this case the task of 

distinguishing between specific instances of various objects is addressed. The ability to 

perform this task would allow robots to operate in unstructured environments, allowing 

greater and more efficient automation of many tasks. Techniques currently proposed tend 

to have low accuracy rates, high processing time, or both. This research seeks to establish 

a method that can quickly and accurately find instances of objects within a scene.  

Iso-luminal contours were used to gather the initial data, from which higher level features 

were extracted. Basic geometric features were used as the intermediate data, consisting of 

lines, arcs, and lobes (a custom type suited to describe corners). The high level data was a 

custom type, called blocks; each block contains a few features and describes the spatial 

relationships between them. The features and blocks are designed to be spatially 

invariant, so the blocks are directly compared to determine which objects are in a scene.  

The objectives of this research were not met. The results show the geometric features 

were not robust to changes in image sets, although they did work well with the image set 

they were developed with. Unfortunately this means the performance of the subsequent 

'block' related steps cannot be established. Most of the work was focussed on this aspect. 

Future work would entail increasing the robustness of the features part of the algorithm, 

and then gauging if the block based research is of practical use.  

It is thought that the research results were poor because feature extraction was poor. It is 

further thought that the high level analysis has merit. 
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2. Introduction 

Artificial vision refers to the capturing of image data using cameras and analysing it using 

computer algorithms in order to derive a higher level of data than that offered by the raw 

pixels. The field has, over the last fifty years, been successful at providing detailed 

answers to precise and well-defined questions. Examples are metrology of well-defined 

outlines and determining attributes of structures in the images – such as face recognition. 

This success seems to be tied to analysing a well-defined situation. For the general case 

where an unstructured image is analysed, results have been less pleasing. This latter case 

has been of interest to academic researchers as they have sought to advance the field. 

The development of embodied artificial intelligence makes more stringent demands upon 

the field because biomimetic robots need vision. They need to operate in an unstructured 

environment and they need to be able to derive information from the images which they 

capture in this environment. This presents the requirement that a computer algorithm 

should be able to process an image and report the objects in the image and their 

orientation – even if they are partly obscured. 

This problem was initially approached (R O Duda & P E Hart, 1972) (Shantz, 1981) with 

the idea that determination of the edges would allow us to produce cartoons delineating 

objects which could then be recognized from geometric relationships. Capabilities have 

improved over the years but current edge-followers do not yet permit this process to be 

successful. Many other approaches have been attempted including scale invariant feature 

transforms (SIFTs) but a mature methodology to recognise and orient objects in images is 

not yet available. 

In 2005, Flemmer and Bakker proposed a technique which did not set out to find edges 

nor to attempt to cartoon objects. They determined a large number of isoluminal contours 

in images and then extracted, from this large number, those contours which had 

significance. The criterion for significance was that enough contours at different light 

levels had to be coincident. The loci delineated by these contours are similar, but not 

identical, to what is traditionally viewed as an edge. The difference is that isoluminal 

contours will trace out, sequentially, those points of constant brightness that lie on a 
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significant luminal gradient. Further, the process leads to an ordering of the points so that 

the edges tend to be contained in these contours even though a sharpest gradient follower 

would not draw them out. It was pointed out (Flemmer & Bakker, 2005) that when these 

contours were plotted as the local second derivative versus arc length, the resultant curves 

were rotation invariant. It was suggested that, if the data in these curves could be coded in 

terms of the features present, it might be possible to recognise objects purely on the basis 

of this coding. 

This work considers the question, “How shall we use such curves, derived by any means, 

to recognise objects?” Here we do not care by what means the curves were developed. 

We will plot them as second derivative versus arc length and attempt to use this data to 

recognise objects. Flemmer and Bakker considered a specific problem that is of 

importance in developing a biomimetic robot and this work considers that same problem. 

The robot needs to be able to find any object in its world and then to be able, 

subsequently, to recognise that identical object. When it encounters the object, it will not 

recognise it the first time but will spend time rotating it until it has learned it from all 

angles. Flemmer and Bakker proposed that twenty equally spaced views of the object 

would provide enough information and therefore every rigid object could be described by 

the isoluminal contours derived for each of these twenty views; interpolation was possible 

between views. 

This analysis does not assume the ability to deal with universals. It is assumed that all 

mugs are different and the robot only knows that particular mug which it has examined. 

This is a very restricted version of the general problem of recognising objects in images. 

This work considers the specific problem that we have a database of known views of 

definite objects and that we have applied a protocol which yields a set of isoluminal 

contours from each view of each object. We imagine that our database might contain 

300,000 such views. Our problem is that, presented with a new image, we run the 

protocol, acquire the isoluminal contours of this image and then ask whether any of the 

database objects is present. This problem has been considered in a very simple form 

where template matches or a few SIFT’s are applied but we are conscious that any 
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solution must be capable of managing the data problem so that the judgement is made 

within a few seconds. 

In this work, we will consider improving the protocols of Flemmer and Bakker in terms 

of speed and also quality of derived isolumes. We will then explore ways in which these 

isolumes can be used to recognize specific views of specific objects. We will not use one 

of the usual databases because our need is not to seek a class of objects such as cars but 

rather to seek a specific orientation of a specific object. The most appropriate visual 

database would be what the robot’s eyes recorded over a period of time as it went about 

its business. Failing that, we work from the database of Flemmer and Bakker which offers 

100 images, some of which contain views, either frank or partially occluded, of two 

“target” objects. 
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3. Literature Review 

The literature review begins with a brief history of the field of object recognition, an 

overview of the current state-of-the-art systems, and an overview of the human vision 

system.  

The review focuses on literature and systems similar to the proposed approach, which 

builds on that of Flemmer and Bakker 2005. The proposed method propagates 

information from grey level contours, through to the more complex relationships between 

the contour features. Various approaches and comparisons at each step are reviewed, as 

well as a general review of the most successful or notable systems in the field. 

A “conclusions” section summarises the findings of the reviewed literature and provides 

insights relevant to the thesis topic.  
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3.1. Research History 

Object-recognition using computer vision has been subject to much research over the 

years. Articles on the subject have been published prior to the 1980s (Uhr, 1972). Today 

there are many examples of working object-recognition systems used in many different 

industries. In the 1980s the available computing power severely limited any significant 

work; many complex algorithms are implemented today due to the 100,000-fold (Ross, 

2008) increase in computing power since then. And yet, despite this huge increase there 

are still no realistic implementations of a generalised, object-recognition system. The use 

of an object’s curves for comparison with those in a database has always been considered, 

with edge detectors conceived around 1968 (Sobel & Feldman, 1968), level sets 

becoming common place in the early 90’s (Mark, Peter, & Stanley, 1994), and isolumes 

in 2005 (Flemmer & Bakker, 2005). 
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3.2. Overview of the Current State of the Art 

Most existing object-recognition algorithms cannot work with large object databases 

(Pinto, Cox, & DiCarlo, 2008) (Tistarelli, 1995); either the computation time increases, or 

the recognition rate decreases. Today the majority of object-recognition systems are 

designed for specialised applications, where a small range of similar scenes are involved 

with a correspondingly small object database. Many different algorithms have been used 

with varying degrees of success; neural networks, object shape features, colour, texture, 

shape, and edge curves. Currently there does not appear to be any computer object-

recognition system that achieves performance comparable to a human. 

Development of video-based object-recognition has been made possible by advances in 

computer processing power; currently techniques take around 40-100ms per frame (Laika 

& Stechele, 2007). Providing cues to assist automobile drivers is one area where there has 

been significant progress (ibid.). This, of course has the advantage of a less generic scope 

(ibid.).  

Systems have been designed based on an object’s edge curves (see Edge Curve 

Generation Methods section). Some of these achieve high accuracy rates, but none seems 

to be able to scale up to large object libraries. Object edge curves can be generated in 

many different ways. The system used seems to depend on the application at hand, so it is 

not thought that one system is ‘better’ than the rest. 
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3.3. Analysis of the Human Vision System 

Human vision is a complex system able to identify objects from within a scene quickly 

and efficiently. Although it does not use object edge curves exclusively we can still gain 

insight from an analysis of the algorithms used in the human vision system.  

3.3.1. Image Acquisition 

The human eye operates in much the same way as a standard CMOS or CCD camera—a 

lens forms an image onto a mosaic of light sensitive receptors (Gregory, 1978, pg. 26)—

with the difference being that the sensors are non-uniformly distributed. The 

photoreceptor cells are considered to be in two groups, rods and cones. The cones are 

receptive to the red, green, and blue values in the image, while the rods are mainly used 

for vision in low light situations (Bowmaker & Dartnall, 1980). 

3.3.2. Information Propagation 

In order to gain better insight into the brain’s vision algorithm we will evaluate the 

system from an information handling perspective. Although the information propagates 

through different areas of the retina, cortex, and brain (Morito, Tanabe, Kochiyama, & 

Sadato, 2009), the interactions between these areas can still be thought of in computer 

algorithm terms.  

This vision pathway is categorised into five groups, the V1, V2, V3, V4, and V5 cells 

(Nolte, 2002, pg. 551), also known as visual cortical areas. V1 cells respond to visual 

input from only a tiny part of the retina, and each cell is tuned for a specific input 

patterns, such as a line at a specific angle (Gregory, 1978, pg. 26) (Over, 1972, pg. 7).  

The eye performs saccades many times per second, which shifts the field of view to 

different parts of the viewed scene. These saccades completely alter what each V1 cell is 

‘seeing’, and therefore each cell’s output. So while cells may be tuned to very specific 

shapes; a half circle at a certain radius, or a certain type of texture, these saccades enable 

each part of the viewed scene to be thoroughly examined (Vallines & Greenlee, 2006).  
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The information is processed through the five cell groups in a hierarchical manner (R. J. 

Watt & Phillips, 2000). The exact nature of the network between the five cell groups is 

not yet known, but the following valuable insights have been gained. There are both feed-

forward and feed-back connections, present within the hierarchy (Livingstone & Hubel, 

1988). The cells can pass information across multiple visual cortical area levels (Hawkins 

& Blakeslee, 2004, pg. 113). The higher levels contain cells sensitive to higher order 

interactions such as complex shapes and motion (Born & Bradley, 2005). Once the 

‘image’ has reached the high order cells it is no longer affected by the eye’s saccades 

(Hawkins & Blakeslee, 2004, pg. 120).  

The conditions by which the cells are triggered vary from person to person, suggesting 

that the network is learned and is able to change, more effectively to process the person’s 

environment (Damaraju, Huang, Barrett, & Pessoa, 2009). 

In summary, there are a number of features of the human vision system that can be 

applied to a computer vision system algorithm.  

• A number of simple features are used, these can be localised anywhere in the 

viewed image. 

• A hierarchical structure with feed-back and feed-forward connections is used to 

represent complex arrangements of the simple features. 

• The hierarchical structure is learned, and is dictated, by the objects seen and 

known. 
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3.4. Object Recognition Systems Overview 

3.4.1. Scale Invariant Feature Transforms 

The Scale-Invariant-Feature-Transform method was developed by Lowe (Lowe, 1999) 

who claimed it can achieve robust object-recognition within cluttered and partially 

occluded images, all with a computation time of under two seconds. The features used are 

scale- and rotation-invariant, and partially invariant to change in illumination and camera 

viewpoint (Lowe, 2004). A large collection of local feature vectors, around 1000 per 

image, are used to provide the high level of discrimination. The vector locations are 

obtained by selecting the maxima and minima of a difference-of-Gaussian function, taken 

at different scales over the image (Lowe, 1999). The vector data is calculated from the 

magnitude and direction of the image’s local gradient. It is combined with the location to 

make a scale-invariant-feature-transform-key, or a SIFT key (ibid). A nearest-neighbour 

approach is applied when comparing the SIFT keys with an object database. Database 

objects that contain high numbers of matched keys—that agree on the objects location 

and pose—are considered to be a match (ibid).  

Each SIFT key must be compared to all those within the library (Lowe, 2004), requiring 

very large numbers of comparisons for large object databases, causing the system to run 

slower, and the accuracy to decrease (ibid). Both of these parameters would become 

unacceptable in this research and so we do not use SIFT keys here. 

3.4.2. Content-based Image Retrieval 

Content-based image retrieval (CBIR) is the term given to a system capable of retrieving 

or organising digital picture archives by their content (Ritendra, Dhiraj, Jia, & James, 

2008). CBIR utilises techniques from several disciplines, such as; computer vision, 

machine learning, database systems, etc. 

The architecture for image retrieval contains three steps, feature transformation, feature 

representation, and a similarity function (Vasconcelos & Lippman, 2000). 
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This type of system generally deals with far larger image sets than the other algorithms 

listed in this review. Due to the associated computing constraints, simple and quick 

functions are used to generate the feature data, such as dominant colour, homogenous 

texture, and edge histogram descriptors (Till, Ullrich, nich, Lars, & Manjunath, 2004). 

The simplicity of the features used, makes this type of system unsuitable to identify 

which specific objects are present within an image. 

3.4.3. Context-Based Object-Class Recognition and Retrieval by 

Generalised Correlograms 

Jaume, Nicu et al (Jaume, Nicu, & Petia, 2007) propose a method to retrieve images with 

matching object classes by using Generalised Correlograms (GCs) in the matching 

process. A GC is associated with one local part of the image, but also contains the spatial 

relationships between it and other parts. This method uses local parts to describe the 

image contents as it provides greater robustness against clutter and partial occlusions than 

global representations (ibid). Spatial relationships between parts are added to give a 

significant increase in distinction.  

A search object is generated from multiple images where the object is highlighted by the 

user. This learning step allows the system to decide what GCs are most effective to use 

when searching other images. 

The system has been tested against the COIL-100 database (Nene, Nayar, & Murase, 

1996) and the Caltech database (Fei-Fei, Fergus, & Perona, 2004), as well as other images 

to provide more insight. Results against the Caltech database have accuracy rates of 84-

98% for different classes. The COIL-Database was used to examine the effects of scaling 

and rotation—both slightly decrease the accuracy—with a scale factor of 0.5 reducing it 

from 100 to 93.2%, and a rotation change of 20 degrees causing a reduction from 100 to 

85.3%. Additional images were added to some categories in the Caltech database, to 

ensure the background was not being learnt instead of the object itself. Background 

dependence was proven when the ROC equal error rate for the planes category jumped 

from 62.2% to 87.6% when images with a sky background that didn’t contain a plane. 
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The design, and accuracy, of this method are suited to class matching; which is to put the 

objects into broad categories like planes, rather than specific instances such as a Boeing 

747. Parts of the algorithm may also be suitable for identifying and locating specific 

objects, but this does not appear to have been tested. 

3.4.4. Weakly Supervised and Unsupervised Category Learning 

Many object-recognition systems make use of sets of learning images, containing pictures 

of the object, or object category, to be identified. Using multiple images of the same 

object or class allows the algorithm to decide which parts of the image are most 

distinctive to that object or class.  

Fully supervised learning requires time-consuming labelling of every image; weakly 

supervised and unsupervised learning requires no categorising of the original images 

(Fergus, 2003). However, weakly supervised learning does require identifying only those 

images which contain the object. Unsupervised learning can be done by creating clusters 

to represent different objects or categories, and refining these clusters based on their fit 

(Lee & Grauman, 2009). While this is computationally expensive, it is performed while 

learning the objects so it only needs to be performed once. 

Lee and Grauman apply an unsupervised learning method to the Caltech-101 and 

Microsoft Research Cambridge v1 (MSRC-v1) datasets. Semi local descriptors are 

extracted from the image, compared with those from other images and given a weighting. 

Transformations are applied and iterative clustering performed to obtain image clusters 

containing objects of the same class. Results were 79% pure (the portion of a cluster 

containing the dominant class) for 7 classes and 66% for 20 classes using the Caltech 101 

database. For the Caltech-4 database the results were up to 91%. 

Some of the theory behind weakly supervised, class learning could probably be applied to 

our system, to ensure the best object representation is used in the database. 
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3.5. Edge detection 

An object’s curves are often used in differentiating between different objects or classes. 

Common types of curves are constant grey level contours, or boundary/edge curves. The 

data gathered in each case is of one of two similar types; discrete X and Y co-ordinates, 

or a function which fits to such points, in each case the data delineates part of the object. 

3.5.1. General Edge Detectors 

Edge detection algorithms are used for many computer-vision applications such as, object 

detection (Vicente, Munoz, Molina, & Galilea, 2009), medical imaging (Suri, Singh, & 

Reden, 2002), and pattern recognition (Rosin, 2009), to name a few. 

A common approach to edge detection is to take a greyscale image, apply a smoothing 

filter to it and then take the spatial derivative with respect to both axes. The maximum 

gradients obtained are associated with edges (Pinho & Almeida, 1997). Accurate 

localisation can be achieved by applying a second order differentiation and locating the 

zero crossing associated with significant edges (ibid.), although there are obviously issues 

with noise. 

The most widely used smoothing filter for edge detection is the Gaussian filter (Basu, 

2002), which is an orientation-independent filter that is easy to scale and apply to discrete 

values. A discrete, differentiation operator is often used to find the gradient at each point; 

a number of these are available, such as the Sobel, Robert’s Cross, and Prewitt’s. The 

Canny edge detector is similar but uses four filters to generate the gradient at specific 

points as well as hysteresis thresholding and non-maximum suppression (Tony 

Lindeberg, 1998). Hysteresis thresholding reduces the gradient threshold when an edge is 

found nearby, allowing complete edges to be found even in noisy images (ibid.). Non-

maximum suppression filters the edge points to include only those with local maximum 

gradients; the filtering is performed normal to the edge to ensure a single-pixel, 

continuous line is found (ibid.).  
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Edge detection algorithms often process the image at multiple scales to ensure the edge 

points found are true edge points and not caused by other image factors (Basu, 2002). The 

Marr-Hildreth operator is one such and is also orientation independent (ibid.). 

A common characteristic of all these edge detectors is that they produce fractured shapes 

and curves. Some list only the individual edge pixels, while others group the edge pixels 

into straight lines, while ignoring curves entirely. With the intent of our research being to 

deal with the shapes of complete contours, much extra processing would be required to 

extract useful information from the output of these edge detectors. An algorithm such as 

the Hough transform (pg 24) would be suitable to arrange the points into simple lines and 

arcs, however extracting full shape curves would be much more difficult. 

3.5.1. Level Sets 

A level set is defined as a set of points that share the same function value (Osher & 

Fedkiw, 2003, pg. 5). For a function of two variables the members of the set will lie as 

curves (or contours) on a level plane (ibid., pg. 87). One of the features of a level set is 

that they can describe quite complex two-dimensional curves, including disjoint curves, 

using simple equations.  

The level set algorithm can be applied to many different situations, for instance articles 

have been published in the fields of; computer vision, mathematics, chemistry, and 

biology. Some of these include, Karantzalos and Argialas’ (2009) use of level sets in 

analysing aerial images, Brandmans (2008) computation of eigenvalues of elliptic 

operators on compact hyper-surfaces, Alagona, Ghio et al’s (1999) detection of synthetic, 

dipeptide orientations, and Can, Chen et al’s (2006) simulation of molecular interactions. 

Image processing is concerned with two-variable functions of pixel position, x and y, that 

yield level curves or contours of constant brightness. An example  of such an algorithm 

(Sethian, 1996, pg. 8) examines the image for multiple intensity levels; at each level the 

image is separated into intensities greater and less than the specified intensity. The points 

on the boundary curve are defined as an ‘explicit interface’. This initial stage gives a set 

of regions bounded by these explicit interface curves. This can be used for image 

segmentation to give the outline of the object contained within an image. There are many 
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implementations of this method, namely; (Cremers, Rousson, & Deriche, 2007), (Sethian, 

1996, pg. 219), (Wang, Song, Tan, & Wang, 2009), and (Osher & Fedkiw, 2003, pg. 

119). Methods such as fast marching and active contours use a multiple-iteration 

approach to obtain the best-fit boundary for the object outline. 

The segmentation of an image using level sets is a powerful tool in many applications, 

however segmentation is not the goal in this application, as the object’s internal curves 

should be recorded and considered when matching objects. The explicit interface curves 

will contain the internal curve information, along with superfluous curves where there is 

an insignificant gradient. Extracting useful curves from the explicit interface data would 

require an additional algorithm, but would not require a segmentation step, making level 

sets of limited use. 

3.5.2. Phase Congruency 

Phase congruency edge detection finds the image edges by examining the frequency 

domain. Local frequency information for the image points can be calculated using 

wavelets (Peter Kovesi, 1999). The Fourier components obtained are maximally in phase 

where an edge occurs (P. Kovesi, 2003). Because the phases are examined it is a 

magnitude independent process (ibid). The wavelet calculation only provides frequency 

information for one direction/dimension, so it must be calculated and evaluated at 

multiple orientations. It is also beneficial to use multiple wavelet scales to calculate the 

Fourier components (Peter Kovesi, 1999). 

The phase congruency method can be used to give reliable identification of edge points 

within an image. However the many calculations required for each point makes this 

algorithm unattractive for our purpose.  

3.5.3. Iso-luminal Contours 

An Iso-luminal Contour, or isolume, is a curve formed by a collection of points that 

follow the same brightness within a greyscale image. The iso-luminal contour algorithm 

is a recent development and has not yet been implemented in many different applications 

(Flemmer & Bakker, 2005).  
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The image is viewed as a cartographic map, with the intensity being represented by 

altitude (Flemmer & Bakker, 2009). The iso-luminal contours are obtained by following a 

specified grey level on the surface until it completes a closed curve, or the gradient fades 

away (Figure 1) (Figure 2). This method generates open- and closed-loop contours. 

Interpolation between the pixels is performed to produce contours with sub-pixel 

resolution. The grey levels to be examined are chosen to provide significant redundancy 

on the object edges. The algorithm combines contours that are overlapped by larger ones, 

and records the extent of redundancy for those remaining. Contour winnowing can thus 

easily be performed and those without sufficient redundancy removed. The processing of 

the contours reduces the size of the data and ensures that the majority of significant edges 

are found, with relatively few false edges (Flemmer & Bakker, 2005). 

 

Figure 1. Greyscale image of the mug 
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Figure 2. Isolumes on the mug 

The isolumes are represented by a set of points, giving the rate of curvature (second 

spatial derivative of the contour). The ensuing graph (Figure 3) is known as the isolume’s 

fingerprint. The fingerprint is represented by the inverse of the local radius at any point 

on the isolumes. The radius is calculated by fitting an arc to the selected point and its 

neighbours. The shape of the fingerprint can be considered scale- and rotation-

independent (Bakker & Flemmer, 2009), although with larger contours there will be more 

points. The fingerprint technique could be adapted and applied to other algorithms with 

two dimensional curve data, such as level sets 

 

Figure 3. Fingerprint plot for the mug’s outline 

The algorithm will provide iso-luminal contours in the form of a set of ordered points 

with their corresponding fingerprint. These isolumes are most often found on the major 

grey level gradients within an image, thus representing the significant object edges. 
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Isolumes are also found on an object’s interior features, such as a colour change, or 

surface orientation change. Using the isolume’s fingerprints to extract the required 

features will be simple and efficient. We have chosen this method to provide the required 

curves for the research. 
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3.6. Object Curve Comparison Techniques 

An object’s edge curves go by many different names in the literature; contours, isolumes, 

boundary curves, and snakes, but they all represent a set of x and y points that lie on an 

object's edge. 

3.6.1. Simple Contour Description Methods 

There are numerous ways to describe and compare the various attributes of a contour; 

those outlined below provide a simple measure of similarity.  

• The segment length ratio method splits the contour at all the points of high 

curvature; these new lengths are split again at the zero curvature crossings. These 

small segments can be easily characterised with respect to their parent length in 

order to describe the contour, using parameters such as the length, or the angle of 

each segment (R. Watt, 1991, pg. 112). 

• The medial axis process combines a number of contours, and provides a contour 

that lies between the originals (Shantz, 1981; R. Watt, 1991, pg. 112). This 

method is useful, in applications such as text recognition, for taking interior and 

exterior outlines and converting them to a single edge. 

• Contour centroids are calculated by taking an average of the all the x and y points 

on the contour. When this is done for multiple contours the distribution of these 

centroids can be used to describe and compare an image in a very compact form 

(Cheng & Yan, 1998; R. Watt, 1991, pg. 112). 

• A measure of a contour’s symmetry can provide a simple description for easy 

comparison with those in a database. It describes how symmetrical a contour is—

for both rotational and mirror symmetries—and provides an axis or centre of 

symmetry where appropriate (Bigun, 1988; Marola, 1989; Zabrodsky, Peleg, & 

Avnir, 1992).  
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3.6.2. Contour Distance Transform 

The contour distance transform calculates an array the same size and dimension as the 

image, each value represents the distance to the nearest contour. When using this, it is 

preferable initially to divide the image into probable object sections (Kassahun & 

Sommer, 2004), which enhances the effectiveness of the algorithm. There are a number of 

techniques available for image segmentation including; stereopsis, colour matching and 

level set-based segmentation.  

Contours are then extracted from the sub-images, and the minimum distance transform is 

generated for each sub-image. Each pixel position is given a corresponding number 

representing the minimum distance to a contour (Huang & Mitchell, 1994; Ragnemalm, 

1992). This method provides a direct comparison of two contours that can be found in 

different images, used in situations where the two contours are likely to be very similar. It 

also provides accurate contour localisation (Kozinska, Tretiak, Nissanov, & Ozturk, 

1997). 

It is expected that using this approach for object identification would not be robust with 

respect to occlusions, partially because of the reduced contour information, and partially 

because the scene-division algorithms lose effectiveness when occlusions occur. 

3.6.3. Contour Segment Networks 

Contour segment networks essentially break up and recombine the original contours. 

One of the challenges with using grey level contours is that the edges are not reliably 

extracted from complex images that contain a lot of clutter. A contour may pass through 

multiple objects if the grey level is shared by them (Choi, Lam, & Siu, 2001). Breaking 

the contours into segments gives a much better representation of the scene and the 

underlying contours (Wong, Yuen, & Tong, 1998).  

It is broken into straight lines wherever possible, simplifying the rest of the algorithm. 

From the multitude of lines, networks are constructed by adding lines that have 

approximately co-incident end points, or are tangentially co-incident over a discontinuity. 

This essentially reforms the contours in a crude representation of the originals (Ferrari, 
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Tuytelaars, & Gool, 2006). This deconstruction and reconstruction of the contours 

provides a more robust representation of a scene. Although the original contours might 

not fully encompass an object, at least one contour network will (ibid). A comparison is 

then performed on the relative line lengths and orientations with those in the database. 

The system achieves an 82% recognition rate with a seven object database (ibid).  

The process generates a large amount of data that must be compared with a large 

database, therefore it is not expected that the computation time will scale well. 

3.6.4. Cross-Correlation  

Cross-correlation is widely used as a measure of similarity in matching tasks (Zhao, 

Huang, & Gao, 2006). A contour can be represented as a binary image and correlated in 

the same way as a normalised image.  

Cross-correlation is performed by comparing the pixel values when the images are 

overlaid on one-another; different positions are tried and a measure of accuracy generated 

for each. Normalised cross-correlation techniques are very fast and accurate for images 

without large orientation changes, such as adding computer-generated special effects in 

movies (Lewis, 1995), or facial recognition programs (Brunelli & Poggio, 1993). Once a 

scale, rotation, or viewpoint change is introduced, correlating the system becomes more 

complex and inefficient (Paul, Pascal, & Andrew, 1992).  

For object-recognition the changing rotation, scale and viewpoint must be taken into 

account. The standard, normalised, cross-correlation method can overcome the problem 

of rotation and scale (Zhao et al., 2006), though it is usually done by transforming the 

image and re-correlating, which is a time consuming process. There is a modified, 

normalised, cross-correlation method that is resilient to changes of rotation, scale and 

viewpoint, written by Zhao, Huang & Gao. Each point is assigned a vector as well as co-

ordinates; the vector is determined by some parameter of the point itself. By averaging 

the vectors a dominant direction and scale can be obtained. The points of one image can 

then be translated to ‘calibrate’ it to the other image. With both images now in the same 

orientation and scale, normalised cross-correlation can be performed.  
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Because the correlation must be performed with each pair of objects, it would be 

computationally expensive to apply this method to the full object database. This makes 

the approach unsuitable for general object-recognition. 

3.6.5. Curvature Scale Space 

Curvature scale space (CSS) is a form of representing a two-dimensional shape or outline 

in a form that is rotation and scale invariant (Mokhtarian & Mackworth, 1986). It is 

currently one of the most popular multi-scale curvature representations for 2D curves 

(Costa & Cesar, 2009, pg 480).  

The representation is a function showing curvature of the outline along its length. It is 

generated by convolving the x and y functions with a one-dimensional Gaussian kernel. A 

number of kernels are used with differing widths to provide information at multiple detail 

levels, all of which are superimposed on a single CSS plot (Mokhtarian & Mackworth, 

1986). When presented with a set of discrete data points, such as edge points found within 

an image, a discrete, Gaussian kernel can be calculated and used, which is preferable to a 

sampled kernel (T. Lindeberg, 1990).  

Various methods to compare the generated CSS plots have been implemented. The 

commonly used contour maxima method compares the points at which there is a local 

curvature maximum. The positions and levels of curvature are used to match the images 

(Yue, 2007). 

An Eigen-CSS method recently developed by Drew et al represents the CSS plot in eigen 

space. This is done by first summing curvature data at x values along the plot, as a set of 

vectors. Phase shift (the problem of different starting points) is handled by passing the 

vectors into the frequency domain and back again (Drew, Lee, & Rova, 2009). This 

method is more computationally efficient than the maxima method, and produces better 

results (ibid). Using the MPEG-7 contour database, the classification success rate in a 

‘leave-one-out’ test was 94.1% over 1400 objects in 70 classes. 

A CSS plot may be of use when locating features on an object curve. However comparing 

the object curves directly is likely to be vulnerable to occlusions. 
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3.7. Extracted Features 

This section focuses on the different feature types extracted from the object curves, rather 

than the techniques used to compare them. The type of representation used in describing 

an object's shape will have a significant impact on the effectiveness of a general, object-

recognition system (Sebastian & Kimia, 2001). Object features are generally chosen to 

maintain a unique representation of an image with the minimum amount of data. Feature 

types can range from points, to simple geometric features, to template images. 

3.7.1. Object Contours Using Arc Length and Tangent Orientation 

A contour can be represented by an arc length variance vs. tangent orientation variance 

plot, which is  used to provide a better comparison of the data (Xu & Xu, 2004). The ‘arc 

length’ describes how far along the contour a point is, and ‘tangent orientation’ is the 

tangent angle of the contour at that point. 

The contour is replaced with a Bezier-Spline curve to increase the efficiency; it gives a 

good approximation of the contour, but with far fewer control points. The arc length vs. 

tangent orientation variance plot can be calculated from the curve. The resulting plot can 

be considered rotation- and partially scale-invariant (ibid). The system is only partially 

scale invariant due to the fixed distance sampling to calculate the variance. The arc length 

vs tangent angle variance plot is similar to the curvature scale space method used in other 

systems (Mokhtarian, 1997), and similar to the fingerprint used in the isolume system 

(Flemmer & Bakker, 2005).  

The plot is then broken into smaller patches representing significant features on the 

contour. Various attributes of these patches are recorded and can be compared with an 

object database for identification (ibid), the division into patches aid in its ability to 

process occluded contours. Results show around a 90% accuracy rate for jet plane shapes.  

The replacement with a B-Spline will remove some resolution, and plotting the arc length 

vs tangent angle seems more suited for comparing contours directly. 



24 

 

3.7.2. Hough Transform 

The Hough transform detects and records geometric primitives within an image, such as 

lines, curves, and even ellipses (Aguado & Nixon, 1996). It achieves this by determining 

parameters that characterise these patterns (Illingworth & Kittler, 1988). 

Candidate points for the transform can be found by applying an edge detector to the 

image. For the linear version of the Hough transform, lines at various angles are fitted to 

each of the edge points. The parameters are determined by transforming the lines from 

real space into Hough-parameter-space—where they appear as sine waves—using the 

angle and normal distance from the origin. The intersection points of the sine waves in 

Hough-space correspond to the line parameters in real space (Richard O Duda & Peter E 

Hart, 1972), where they are represented as infinite-length lines. An accumulator array is 

used to record how many sine waves pass through each set of parameters, this array has to 

be very large to get accurate results (Fernandes & Oliveira, 2008). Adaptations of this 

system have been developed for other more complex shapes (Aguado & Nixon, 1996). 

Arcs fitted to the real points appear as lines in Hough-parameter space, and again the 

intersection points give the main curves within an image.  

It is worth noting that once the features have been extracted, for some image processing 

applications they must be bound to finite length lines and curves instead of infinite length, 

which adds additional computation requirements. The Hough-transform technique can 

generate false positives, the number of which increases with the complexity of the image 

(Grimson & Huttenlocher, 1988). 

The lack of definite end points and the possibility of false positives make this algorithm 

unsuitable for our purposes. 

3.7.3. Best Fit Geometric Features 

Many systems use an algorithm to fit a set of geometric features to the data, this data may 

be the raw image pixels (Zhao et al., 2006), contour data (Flemmer & Bakker, 2005), 

edge points (R O Duda & P E Hart, 1972), or something different. The geometric features 

used are varied; blobs (Duygulu, Barnard, de-Freitas, & Forsyth, 2002, pg. 99), lines 
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(Bakker & Flemmer, 2009), partial ellipses (Howarth, Bakker, & Flemmer, 2009), 

skeletal members (Sebastian & Kimia, 2001), and more. The Hough transform is a 

popular method to obtain the best fit, but many applications use dedicated algorithms.  

Creating specialised algorithms and using features that suit the proposed algorithm can 

offer many benefits such as; custom features, specialised feature representation, faster 

runtime, and enhanced accuracy. 
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3.8. Feature Comparison Algorithms 

The generalised requirements for the feature comparison part of the system are to make 

many comparisons in a short amount of time, while still maintaining good accuracy and 

discrimination. The systems reviewed here mainly come from the algorithms reviewed in 

above sections; however there is a vast number of methods used for comparing two sets 

of data and algorithms from other fields may be applicable. 

3.8.1. Object Classes/Clusters 

Grouping objects into similar classes can reduce the number of comparisons needed, 

making it possible to process very large databases (Jain, Murty, & Flynn, 1999).  

Hierarchical clustering is an approach that greatly reduces the number of comparisons 

needed for large object set. The objects are grouped by some measure of similarity. The 

search is performed by first finding the viewed object’s group, then searching within the 

group for an exact match (Cole, Austin, & Cole, 2004). The library objects are grouped 

together by the similarity of their features, and are represented by an average of these 

features (ibid). Implemented using a dataset of Lego bricks and a template matching 

algorithm, recognition rates of 90% and times of 6.7 sec per image have been achieved. 

Decision trees can be used to select the correct class from a large database very quickly 

(Quinlan, 1986). Using a decision tree, rather than the usual cascaded class detector 

checks, provides far better scalability for large object class databases (Zehnder, Koller-

Meier, & Gool, 2006). Object-recognition is well suited to the implementation of a 

decision tree due to the large amount of similar features shared between object classes 

(ibid). Decision trees are a cornerstone of many of database engines such as MySQL, the 

index defined is used to create m-trees (Teixeira, 2011) to facilitate much faster searches . 

In the method of Zehnder, Koller-Meier (ibid) each step of the tree contains a ternary 

decision point, rather than a binary one. There are situations where the answer is unclear 

or Dependent on unknown factors; the decision can be reviewed at a later stage when 

more information is present. Only the feature being checked at each decision node must 
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be calculated, making the algorithm run faster for easy-to-recognise objects (ibid). The 

decision tree ends with class detector nodes, to ensure low false positives. 

The comparisons can be done with a simple method such as normalised cross correlation. 

The effectiveness of the system depends greatly on the features used, and the algorithm to 

compare them. Both hierarchical clustering and decision trees show merit, and either may 

be added to the algorithm at a later time if applicable. 

3.8.2. Maximum Entropy Framework 

Maximum entropy is a statistical method used to predict the outcome of a system based 

on its inputs, done by self learning with large amounts of data (Adam, Vincent, & 

Stephen, 1996). When applied to object recognition, various features and their parameters 

can be viewed as the inputs, and the identified object is the outcome of the system. 

Lazebnik, Schmid et al have implemented an object-recognition system based on the 

maximum entropy principle. The features are ‘binned’ according to various parameters, 

and standard ‘word’ values are generated. The system can then operate similarly to the 

text translation programs using the same principle (Ocg & Ney, 2002). Additional feature 

types could be added, requiring very little changes to the system.  

Clustering algorithms are used to write the dictionary and the bins for each word, by 

grouping sets of similar features together, ensuring there are no duplicate entries in the 

dictionary (Lazebnik, Schmid, & Ponce, 2005). The dictionary not only contains specific 

instances of the features, but also the geometric relations between them (ibid). The 

maximum entropy model is used with a set of training images to generate a probability 

distribution for the dictionary words in the object. Object searches are performed by 

calculating the number of words present in the image that correspond to the database 

object.  
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The time scalability of the maximum entropy framework method is expected to be quite 

good, as the generation of the dictionary words is done only once per image. However the 

word data is fairly low level and will result in a very large dictionary. The results for this 

method are very good, with recognition rates of around 90%. It is not known if the 

recognition rate would decrease when this system is run with a large database. 

3.8.3. Semi-Local Affine Parts 

A semi-local affine part is described as a collection of features that are present in multiple 

views of the same object (Lazebnik, Schmid, & Ponce, 2004), other methods have also 

taken a similarly view-independent approach (Ferrari, Tuytelaars, & Gool, 2004). 

These are found by applying geometric transforms to various features in an object view to 

get them to match with those in another view; if the match is good, and the transform is 

the same for a group of features, it is considered a semi-local affine part (Lazebnik et al., 

2004). Each object in the database contains a list of these semi-local affine parts, which 

are matched to features within an image. If enough matches are found it can be said the 

object is contained with the image.  

The results for this method look promising with recognition rates of around 90%; 

however the computation to match each part is rather intensive, so a full database search 

is expected to take a long time, making this type of system unsuitable. 
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3.9. Conclusions on the Literature Survey 

The literature review has provided insight into many facets of the object-recognition 

problem; the human vision system, different edge-curve generation methods, and existing 

algorithms based on edge curves. 

A number of edge-curve generation methods are available, each has strengths and 

weaknesses, Flemmer and Bakker’s Iso-luminal contours seems best suited to this 

application. The processing time is comparable, and the data gathered is in an easily 

useable format. The data also shows good accuracy and repeatability. 

A possible contributing factor to the effectiveness of the human vision system is its 

hierarchical structure, which converts the image to higher level data through a number of 

stages. Emulating this type of system may lead to better performance. 

In the field of computer vision, there are very few systems being designed for large 

database object-recognition, and none that seem feasible in the near future. The majority 

of systems are designed for specialised tasks of small scope. Many systems fail to scale 

up to large object databases as either the processing time increases, or the recognition 

rates decrease. To design a suitable system we must learn from the shortcomings of these 

other systems.  
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4. Recognition Method 

The following section describes the algorithms used in this work to recognise specific 

objects within a scene. The first subsections are the isolume extraction and feature 

recognition methods. A test method and results for the feature extraction part of the 

algorithm is described, and shows the performance of the system's initial stages. 

Two methods are outlined for constructing and comparing high level data constructed 

from the features found; bit descriptors, and pair and triple blocks. In the case of the pair 

and triple blocks the comparison method is multi-stage, consisting of direct block 

comparison, clustering, and finally spatial matching. Both of the methods make use of a 

similar learning algorithm to assign weights to the more important bit descriptors or 

blocks. 



32 

 

4.1. Isolumes 

The proposed system uses an object’s characteristic curves to identify higher level 

features and relationships. These curves are found on the object edges and anywhere else 

where there is a significant tonal change. A general term used in literature for this sort of 

curve is a contour. Contours contain a list of the points used to make up an object's curve. 

This system builds upon the work of Flemmer and Bakker, and uses isoluminal contours 

to identify object features. 

Isoluminal contours—hereafter known as isolumes—are contours that follow a specified 

brightness. An image is made up of discrete points 'pixels' arranged in rows and columns, 

this system uses images with 640 columns and 480 rows. The colour image is converted 

to grey scale so each pixel is represented by a single brightness value; instead of red, 

green and blue values. An algorithm finds the isolumes by searching for curves located on 

a constant grey level intensity within the image. An isolume is defined as a set of points 

located on the same brightness, or luminance; giving the name, iso-lume. 

In addition to the constant grey level across the points, they must also be located on a 

brightness 'cross-gradient' of sufficient magnitude. The cross-gradient is a measure of 

how much the brightness is changing, which occurs on object edges and internal features. 

It is taken perpendicular to the direction of the isolume, and is calculated using the grey-

level difference between two neighbouring orthogonal points. 

To illustrate the role of isolumes, the image can be thought of as a topographic map; with 

the red, green, and blue values of each point combined to give a grey level ‘height’. An 

isolume follows the hillsides at a specific height until they flatten off or come full circle. 

Topographic maps place lines along a specified altitude level, in a similar way to an 

isolume being fitted to a specific grey level. Figure 4 shows a topographic map of an 

object corner, the red line is an isolume which finishes due to lack of cross-gradient as the 

‘slope’ gets gentler. Steeper gradients are more strongly associated with the object/image 

features we are looking for, so an isolume will not be fitted when there is insufficient 

cross-gradient. 
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Figure 4. Topographic map of an object’s corner generated from a greyscale image 

Shown are the image and its contours interpolated from the brightness values, i.e. 

isolumes. Dark blue contours have the lowest grey level, light green the highest. 

4.1.1. Extraction 

The isolume extraction algorithm was based on one designed by Flemmer and Bakker 

(Flemmer & Bakker, 2005) which is also described in the literature review section (Iso-

luminal Contours, pg 15). Some modifications have been made to the algorithm to 

enhance processing speed and to tailor the results to the feature-extraction algorithm’s 

requirements. 

4.1.1.1. Specific Implementation 

The implementation of the isolume extraction algorithm was optimised for speed without 

comprising its accuracy or robustness. The algorithm was efficiently implemented using 

threading and unmanaged memory operations where practical. Threading makes use of 

multiple processor cores, allowing the program to process multiple subroutines in 

parallel. Unmanaged memory operations use memory address pointers to copy or work 

with large blocks of data, ignoring the time consuming data type checks etc. The basic 

algorithm can be described with a flowchart (Figure 5), and is explained in further detail 

below. C# is used as the programming language, as it supports object oriented 

programming, and is easy and efficient to use. 
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Figure 5. Isolume extraction flowchart 

Algorithm Summary 

Firstly the image is grey-scaled to convert each pixel to a single intensity. The image is 

then blurred to smooth it. Next the contour start points—or seed points—are sought. For a 

particular grey level a seed point is selected, and the contour is traced along the same grey 

level. Starting at the seed point the contour is traced out until the grey level cross gradient 

diminishes, or it comes full circle, or it meets the borders of the image. During tracing, a 

‘scan array’ is used to find the next contour point by ‘sweeping’ ahead. Any potential 

seed points in the neighbourhood of each contour point are erased as it is traced. These 

operations will be discussed separately—and in more detail—in the following sections. 

Greyscale 

A greyscale conversion is used to obtain a single intensity value for each pixel, from the 

RGB values. A commonly used calculation (Equation 1) is used to convert the image to 

greyscale, pixel by pixel. Individual weights for the different colours are used to correct 

for the colour perception of a human eye, making it easier for a human to code and debug. 



35 

 

Unmanaged memory operations within C# are used for the calculation, which greatly 

reduce the time required to retrieve and store the RGB and grey level information. 

�� =  11 ∗ � + 16 ∗ � + 5 ∗ �
32  

Equation 1. RGB to grey level conversion 

Gl represents the calculated grey level intensity, with R G and B the input values obtained 

from the colour of each pixel in the image. 

Blur 

The greyscale image is blurred to reduce the effects of image noise, artefacts, and aliased 

edges; it is expected that this will create smoother contours. Image noise and artefacts can 

be introduced by the camera. A high quality camera correctly set up should reduce these. 

Aliased edges occur because the image edge must be put in discrete pixels, and the edge 

colour information will be put into the nearest pixel; it is similar to an access ramp 

following the same path as some stairs. The blur is performed by taking a weighted 

average of the pixel intensities surrounding each point in the image. 

A Gaussian distribution was chosen because it is a circular blur, and puts more ‘weight’ 

on the pixels closest to the centre. Placing greater weight on central pixels is expected to 

remove noise without reducing image information like the grey level cross-gradient as 

much as other blur types. 

The Gaussian blur is often performed by convolving the two-dimensional kernel (an array 

used as an operator in the convolution) with the image intensities, however, this two 

dimensional convolution requires many calculations. The Gaussian kernel has a linear-

separable property because its transposed kernel is the same as the original. This allows 

the convolution to be split into two single-dimensional convolutions, and greatly reduces 

the processing time. The single-dimensional kernel is convolved with the image 

intensities to calculate the effects from the neighbouring horizontal pixels. These 

calculated intensities are then convolved with a transposed single-dimensional-kernel to 

add the vertical effects. For a blur radius of 5 pixels, this reduces the number of 
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calculations from 81 to 18 for each pixel. Unmanaged memory addressing was also used 

to speed up access and storage times for the intensities. 

The Gaussian function is a bell curve of infinite width and unit area, with the steepness 

defined by the standard deviation used to calculate the function. Although a theoretical 

Gaussian blur will have an infinite radius, adjusting the standard deviation—and the bell 

curve’s steepness—allowed practical adjustment of the blur radius. The finite radius 

kernel was calculated by adjusting the Gaussian distribution’s standard deviation (in 

pixels) until the sum of all values within the specified radius was greater than 0.99; all 

kernel values were then scaled to bring the sum up to 1. 

For a 640x480 pixel image the greyscale and blur functions took around 35ms on a 2009 

desktop machine with a dual-core processor and threading of the functions. 

Scan Array 

The next step in the algorithm is to initialise the scan array and create threads for each 

grey level. The scan array (Figure 6) is used by the contour following part of algorithm to 

scan ahead easily, and find the pixel intensity of points on a given heading and distance. 

The scan array could be viewed as 24 vectors of length approximately 4 pixels. The index 

of each of these vectors corresponds to its heading. The vectors provide offset values, 

which are applied to the current point’s indices to find the next potential contour point 

along a given heading.  
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Figure 6. Scan Array 

The scan array contains the vector x and y values for 24 different headings around the 

current contour point (yellow). The vectors are all 4 pixels long, with their x and y values 

rounded to the nearest integer (blue). 

For example, if the contour is travelling upwards, the offsets obtained from the scan array 

are the scan-radius for x, and 0 for y; if it is coming from the point 85,33 the next point 

will be 85 + the scan-radius, 33. The scan array contains the x and y offsets for all points 

along the scan circumference, indexed clockwise from the top. Without the scan array 

two trig calculations would need to be performed, and rounded to the next pixels, multiple 

times for each new contour point. 

The number of discrete headings, and the size of the scan array, is driven by the scan-

radius used. Through experimentation we found that a scan-radius of 4 provided good 

contours across many different types of images. 
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Thread Initialisation 

The contour extraction algorithm uses a single thread for each grey level, with 50 grey 

levels being searched. The large number of grey levels ensures significant isolume 

overlap, to identify and represent the object features better. The blurred greyscale image 

is copied into a ‘pixel intensity array’ at the start of each thread, allowing the thread 

subroutine to remove/change the intensity values of points recorded in its isolumes. 

For each grey level there may be a number of isolumes present. To ensure all the data is 

gathered the seed point acquisition and isolume following methods are repeated to find 

and extract them all (Figure 5). 

Seed Point Acquisition 

The pixel intensity array is searched to find a contour start—or ‘seed’—point. A seed 

point is any point with its intensity close to the grey level being searched. To find the seed 

points the image is scanned left to right, going top to bottom along the way. This point is 

not actually used in the isolume, but provides the starting point for a local fine-grained 

search to find the optimal point to begin tracing an isolume. The fine grained search is 

done in the same way as the contour following part of the algorithm. 

Isolume Following 

To follow the isolume four basic operations are performed. These are done for each ‘step’ 

as the system ‘walks’ its way along an isolume. These four steps are now summarised, 

and explained in further detail below. Firstly the next point is found by scanning ahead. 

This point must be on the desired grey level, the scanning direction is adjusted until it is 

found. The intensity cross gradient is checked at this point, and also used to refine the 

point. Finally the seed points close to any point on the isolume are removed. These four 

operations are repeated until the intensity cross gradient diminishes, or the isolume comes 

full circle, or the image border is reached. 

The isolume has a current point and a heading at each step. These are used to identify the 

two points ahead that straddle the grey level. The contour points are always a fixed 

distance of approximately four pixels (the scan radius) apart. The grey level of the point 
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closest to the current heading is checked first, then those further around. The scan array 

(Figure 7) is used to obtain the index of the points ahead, for a given heading.  

To find the two points straddling the desired grey level, the isolume heading is adjusted. 

The algorithm determines whether to search clockwise or anticlockwise from the current 

heading based on the brightness level found in accordance with the ‘bright on the right’ 

rule. This rule means that the point with the higher grey level must always be on the right 

in the direction of travel along the isolume. This makes it more likely to follow the same 

image feature, and standardises the algorithm. The vectors of the scan array are used to 

identify the next point to evaluated, with the array index incremented or decremented to 

find the next point along the search radius. If both points are above the desired grey level 

the system will continue to search anticlockwise, if they are below, the direction moves 

clockwise. 

The isolume only continues if there is a sufficient cross-gradient. The point on the right 

must have an intensity of 7 or greater than point on the left.  

The point is recorded in the isolume with sub-pixel accuracy according to the 

interpolation formula in Equation 2. Linear interpolation is used to place the isolume 

point between the two straddling pixels, where the intensity gradient crosses the desired 

grey level.  

�� = �� + ��� − ��� � − ���� − ��  

Equation 2. Isolume point interpolation formula 

Where Xi is the interpolated x value, Xr is the X value on the right of the grey level, Xl is 

on the left, G is the grey level being followed, Gl is the grey level of the point on the left, 

Gr is the grey level on the right. An identical equation is used to calculate the 

interpolated Y value. 

To erase the seed points for subsequent isolumes, all points within the scan radius in the 

pixel intensity array are set negative. A rubout array (Figure 7) is used to perform this 

operation quickly, the array contains the X and Y offset indices of all points inside the 

scan array relative to the current contour point. It is a simple matter to iterate through and 
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set these points in the pixel intensity array to -1 to ensure they will not be used in other 

isolumes. 

A discrete point is required to set as the current isolume point to continue the following 

steps; the interpolated point is simply rounded to suit.  

 

Figure 7. Pixel operations for isolume extraction 

Figure 7 illustrates the process at the pixel scale. The first grid shows the size of the scan 

(blue) and rub-out (pink) arrays, centred about the current isolume point (yellow). The 

second shows the process used to find the next isolume point. The last grid shows the 

interpolated isolume pixel rounded to the nearest integer, and the red squares show the 

other pixels which will not be used again for this grey level. 

Contour Finishing 

The isolume following algorithm continues until the grey level cross-gradient falls below 

the threshold, or the isolume comes full circle, or reaches the edge of the image. If the 

isolume ends without coming full circle then only one end has been found. To find its 

other end, the current point is set to the start point of the isolume, and the contour heading 

and search direction are reversed (to bright on the left). The contour-following loop then 

proceeds in the same fashion to find the other end. 

With both ends of a single isolume found, and the points removed from the pixel intensity 

map, the contour-following process selects another seed point and repeats to find and add 

another isolume.  
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When the seed points are exhausted, the thread concludes by adding the isolumes to those 

from other grey levels. Once all the specified grey levels have been processed and their 

isolumes added to the image’s group, the system moves on to the next stage; the 

extraction of the arc, line, and lobe features. 

4.1.2. Comparison with Flemmer and Bakker’s Algorithm 

The isolume extraction algorithm is based on that created by Flemmer and Bakker; 

however we have added a few differences to customise it for the rest of this system. 

The image blur was performed with a Gaussian blur. Flemmer and Bakker used a simple 

average taken from the surrounding grey levels. The blur is done to reduce image noise, 

ensuring that the isolume-extraction algorithm finds curves with minimal effects from 

aliasing, artefacts, and image noise. The Gaussian blur assigns less weight to pixels 

further away, and is expected to remove the noise while maintaining a better 

representation of the image than an averaged square. 

Flemmer and Bakker use a straight-line interpolation step to add one or more points in 

between the extracted isolume points. This is done to make it easier to calculate the 

curvature at each point. However, because the additional points do not add any 

information to the isolume they were left out of this algorithm, and other approaches to 

reliable curvature calculation were explored. 

Flemmer and Bakker’s isolumes allow varied span distance between the points; designed 

to get shorter at areas of high curvature and longer on straight parts. This is done to 

reduce the aliasing effect seen when interpolating pixel points along a line. There was no 

observed reduction in calculation time by varying the step size. The adjustable step 

following algorithm must perform at least two calculations per point, which counteracts 

the lower number of overall points from a processing time perspective. The variable step 

approach was compared with a fixed width approach, and found to make little difference 

in feature identification due to subsequent processing steps (described in later sections). 

Variable step was abandoned in favour of uniform point separation to simplify the 

calculations required in subsequent methods. 
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4.2. Features 

This section discusses the types of features chosen to represent the objects. These features 

are lines, lobes, arcs and partial ellipses and are all simple geometric shapes, apart from 

the lobe. The ‘lobe’ is a new data shape used to represent the corners of an object. These 

features must reliably represent a variety of shapes, and be mathematically fast to process. 

The features are extracted from the analysed contours (pg 32) using the contour’s 

curvature plot, described in detail later as a ‘fingerprint’. This section outlines how the 

feature extraction algorithm examines the contours to obtain these features. Emphasis is 

placed on finding a representation that is robust when presented with small feature visual 

from viewing the same feature in different images (i.e. parametrically identical arcs for 

the a portion of an object, measured in two different environments). 

Algorithm Summary 

The system takes a contour, made up of a large number of x and y points. These points 

trace out a curve and are found on the object’s edge as well as internal parts where a tonal 

change occurs. To identify the boundaries between the different feature types a rate of 

curvature plot is used to describe how ‘sharp’ the corners are, or how ‘flat’ the straights 

are. This plot is also know as a contour’s ‘fingerprint’ and is described in more detail in 

the following paragraph. The associated contour points between these boundaries are used 

to calculate the parameters of each feature. Co-incident and adjoining features from 

different contours are combined and the level of coincidence recorded as a measure of 

feature significance. The level of significance is used to rank features of each type, 

ensuring the best are passed to the later processing stages. This is done because these 

stages can only process a relatively small number (30) of features of each type. 

4.2.1. Fingerprint Calculation 

A contour’s fingerprint is a plot of how sharp the corners are, or how flat the straights are. 

This is plotted from the start of the contour to its end. If the contour were a road, the 

fingerprint would show how much the steering wheel must be turned along the way. The 

fingerprint is used to identify ranges of points that are likely to belong to a single feature 
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(i.e. line, arc, lobe, ellipse). Fingerprints have previously been used to identify feature 

divisions in contours successfully (Flemmer & Bakker, 2005).  

The fingerprint is a graph of the contour’s curvature with respect to the distance from its 

start. This is the contour’s second spatial derivative. The rate of curvature is calculated by 

taking the inverse of the local radius, r, (Figure 8) at each point. The local radius is found 

by fitting an arc to three points; the current point, and the points two ahead and two 

behind it. This arrangement produced a more stable curvature plot than using the point 

one ahead and behind while still providing sufficient information on the sharper corners. 

 

Figure 8. Contour arc fitting 

The distance between contour points is five pixels, giving a fitted arc with a span of 

approximately twenty pixels. Although this five pixel scan distance may make smaller 

features difficult to identify, small features are more susceptible to image noise and are 

unlikely to provide significant information anyway. A five pixel scan distance gives 

repeatable fingerprints with stable curvature for many differently sized image features. 

Figure 9 shows the fingerprint generated for the outline of a mug.  
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Figure 9. Fingerprint generated by the system 

The fingerprint is taken from the outline of a common mug (Figure 10), with 3 flat sides, 

one curved handle, and six corners (including those at the top and bottom of the handle). 

The curvature spikes shown are located on the major corners, the long areas of no 

curvature represent the flat sides, and the flat area of some curvature represents the 

handle. 

 

Figure 10. Mug outline 
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Fingerprint Smoothing 

The curvature calculation forms the basis of the fingerprint. However there are also a few 

processing and smoothing steps to ensure the feature boundaries are found correctly.  

In following a contour, it is unreasonable to expect accuracy better than plus or minus one 

tenth of a pixel. Given that we are concerned with the slope of the contour—from which 

we derive the curvature—this level of error over the distance of a pixel leads to large 

errors, as may be seen in Figure 11. These errors were observed as sinusoidal ‘curvature 

harmonics’, with relatively low amplitudes. They are thought to be present due to the 

aliasing effects caused by the discretisation of the image. Aliased edges occur because the 

image edge must be put in discrete pixels, so the edge grey level will be put into the 

nearest pixel. This effect is similar to an access ramp following the same path as some 

stairs. Although the blur step and contour extraction were designed to remove these 

curvature harmonics, it was not completely effective. Despite the curvature harmonic’s 

low amplitude it was often large enough to cause a single feature’s group of points to be 

split.  

The fingerprint smoothing method parses the fingerprint and examines the four points on 

either side of the current one to remove these harmonics. The period of the harmonics was 

observed to be three to ten pixels in most cases (Figure 11). If there is no significant 

change in the surrounding curvature values—which would definitely show a change in 

feature type—the fingerprint value is replaced with a nine point average.  

 

Figure 11. Fingerprint showing curvature harmonics 

The selective nine point average removes the curvature harmonics, but preserves both the 

overall curvature trend and the lobe start/end points (Figure 12). 
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Figure 12. Fingerprint with curvature harmonics removed 

Feature Boundary Identification 

The next step is to identify arc, line, and ellipse portions of the fingerprint. These are 

characterised by long flat groups of curvature values. ‘Spikes’ will be ignored initially. 

After the flat parts are processed the spikes will be used to find the lobe features.  

The large segments of the fingerprint that are relatively flat are averaged to a single value. 

This makes it easier to identify the end points of lines, ellipses, and arcs, and provides the 

average curvature of the feature. A running average is used to evaluate the next point 

along the contour. A curvature threshold value (0.01) is used to determine if the next 

point belongs to this feature. Although the search begins from what is expected to be the 

beginning of a flat portion, sometimes the initial average is not representative of the 

whole portion. To address this issue the start is adjusted once the end has been found 

using the same process and threshold value, but with a more accurate average curvature 

value. The fingerprint boundary divisions are recorded when both ends of the flattened 

portion exceed the curvature threshold, or the fingerprint ends are reached. In the case of 

a closed loop contour, the system continues the flattening process across the ends, to find 

features spanning the contour’s start end join. 

The fingerprint can then be divided (Figure 13) into sections based on the curvature 

behaviour. Each section represents a single feature. Divisions are placed at the ends of the 

flat sections. A set of points all located close to the x-axis are indicative of a line, and the 

start and end points of this line section are recorded for later processing. The same is done 

for ellipses/arcs which are seen as flat portions of the fingerprint, but a distance away 

from the x-axis. The remaining sections are processed for zero crossings, which indicate a 
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lobe-lobe division as the contour follows a corner, turning the opposite direction. With 

the zero crossings added, any divisions of sufficient size (>=3 points) that remain are 

processed as lobes. 

 

Figure 13. Fingerprint with divisions shown 

Both the fingerprint points, and corresponding contour points of the individual sections 

are passed to the line-, lobe-, arc-, and ellipse-fitting methods described in detail below. 

Feature Coincidence 

Features found in different contours but on the same part of the image are combined for 

conciseness. A coincidence value is assigned to each feature to represent how many other 

features have been combined to form it. This is used in the feature combing method and 

in later stages of the analysis. It indicates the level of duplication in the represented 

feature. The coincidence value is used as a measure of importance, on the assumption that 

coincident features found on many contours are more important than features found only 

once. As each feature is found its coincidence value is set to one, and it is increased as co-

incident features are combined. 

4.2.2. Lines 

Lines are the simplest of the features used, requiring only four parameters to represent. 

The parameters are; direction (θ), length (L), and x and y co-ordinates of the centre point 

(x, y) (Figure 14). The line feature is used to represent the long straight portions of a 

contour; such portions must have at least 9 points, giving a minimum line length of 

approximately 36 pixels. 
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Figure 14. Line feature type 

The line appears as a set of points along the x-axis of the contour’s fingerprint. The image 

points corresponding to the set of fingerprint points are used to calculate the line’s 

parameters. 

The line is fitted between the two end-points of the identified contour section, so it is a 

simple matter to calculate the parameters. An end-point fit was chosen because it will 

better maintain the relationship between the line and other features following on the same 

contour. These ‘join’ relationships are seen to be important later in the analysis for 

creating the feature groups called ‘bit descriptors’ and ‘blocks’ (explained in details in a 

later section, pg 63). The line direction is normalised so it always points from left to right, 

or bottom to top in the case of a vertical line. This makes the feature direction 

independent of the contour direction. This is desirable as the contour will reverse 

direction if the background is lighter than the object, due to the bright on the right contour 

following approach. 

Once the lines from all the isolumes are extracted they are examined for coincidence. 

Coincident lines are combined to streamline the subsequent processing steps. The criteria 

tested for coincidence are; line direction and a calculated perpendicular distance from the 

larger line’s centre point to the smaller line. If two lines are found to be co-incident, the 

parameters are combined using a weighted average with the relative lengths and levels of 

coincidence giving the weight. The measure of coincidence for the new line is given from 
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the sum of the old line’s coincidence values. The coincidence value is the only non-

averaged parameter, and used later to identify the most significant lines. 

4.2.3. Lobes 

Lobes are the a geometric feature, and require eleven parameters. The lobe is used to 

represent corners and features of widely varying curvature. The lobe is defined by its 

middle point (xm, ym), two end points (xs, ys, xe, ye), length (L), tangent angle at the centre 

(θ), and the angle the contour changes from start to finish (α) (Figure 15). ‘Skewness’ (S) 

and ‘Kurtosis’ (K) are used to describe the shape of the lobe’s fingerprint (Figure 16). 

Although the contour representation cannot be accurately recreated from this definition, 

the end points and tangents are defined accurately, and the general shape is characterised.  

 

Figure 15. Lobe feature type 

The lobe is fitted to the spikes on the fingerprint plot using the x and y points in the image 

associated with the lobe partition. The length parameter is calculated as the sum of 

Pythagorean distances between sequential points. The points used to represent the start, 

middle, and end, are taken with respect to the feature boundaries as discussed above. The 

angle is the difference between the contour’s tangent at the start and end (α, Figure 16). 

The tangent is the angle bisecting the lobe start and end tangents (θ, Figure 16). Kurtosis 

and Skewness provide a numerical representation of the shape of the lobe’s curvature 

plot. Kurtosis is a measure of how evenly distributed the curvature is—how ‘pointy’ the 

curvature plot is. Skewness refers to whether the centre of curvature is in the middle of 

the points, or to one edge—how much of a ‘lean’ the curvature plot shows. The lobe 

direction is made independent of the contour direction; which is desirable as the contour 

will reverse direction if the background is lighter than the object, due to the bright on the 



 

right contour following approach.

ensure it is always presented

time. 

Figure 16. Lobe skewness and kurtosis

Equation 3. Skewness calculation 

Equation 3 shows how the skewness value is calculated for a lobe. The values range from 

0 to 1, with 0.5 having neutral skewness. 

lobe, which ranges from 0 to the length l; 

Equation 4. Kurtosis calculation 

Equation 4 shows how the kurtosis value is calculated for a lobe. The values range from 0 

to 1, with a value of 1 describing a completely flat fingerprint

the point along the lobe, whi
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lobe centre, calculated from the skewness multiplied by the lobe length.

the curvature values at the given point

Coincident lobes are combined 

having very close points. To calculate the parameters for the combined lobe, a weigh

generated from each lobe’s 

already); the new lobe is formed by a weighted average of the parameters

measure of coincidence is the sum of those in the combined lobes.

is the only non-averaged parameter, and used to identify the most significant lobes.

4.2.4. Arcs 

Arcs represent portions of the contour that have constant curvature

radius (r), centre point x and y

length (L) (Figure 17). Although the length c

(radius and angle), it is still included 

having to recalculate it. The image points corresponding to an arc are identified by 

portion of the fingerprint, with 

of Figure 13. 

Figure 17. Arc feature type 
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, calculated from the skewness multiplied by the lobe length.

the given point. 

obes are combined if the angle, tangent, and length, are similar, as well as 

having very close points. To calculate the parameters for the combined lobe, a weigh

e’s level of coincidence (1 if the lobe used has not been combined 

he new lobe is formed by a weighted average of the parameters

is the sum of those in the combined lobes. The coincidence value 

parameter, and used to identify the most significant lobes.

Arcs represent portions of the contour that have constant curvature. The parameters are; 

point x and y (x, y), angle encompassed (α), tangent at 

. Although the length can be calculated from the other parameters 

, it is still included because it is used often and time is saved by not 

The image points corresponding to an arc are identified by 

ortion of the fingerprint, with a significant curvature value; as can be seen in the middle 

 

, calculated from the skewness multiplied by the lobe length. f(i) or f(c) gives 

are similar, as well as 

having very close points. To calculate the parameters for the combined lobe, a weight is 

(1 if the lobe used has not been combined 

he new lobe is formed by a weighted average of the parameters. The new lobe’s 

The coincidence value 

parameter, and used to identify the most significant lobes. 

. The parameters are; 

tangent at centre (ϴ), and 

an be calculated from the other parameters 

me is saved by not 

The image points corresponding to an arc are identified by the flat 

; as can be seen in the middle 



 

The arc parameters are calculated by 

two ends and one in the middle

the endpoints to the midpoint is half the 

calculated by using the relationship between 

tangent angle (ϴ) is the direction from the start to the end point, and normalised so 

arcs are always going clockwis

the midpoint, tangent angle and 

(in radians). 

Figure 18. Arc parameter calculation

Arcs are combined when they 

close to co-radial (sharing a similar radius and centre

partially coincident. There are two 

arcs, while the second checks 

For the first pass, the arc centre 

distance between the arc centres

average radii. The other parameter
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The arc parameters are calculated by first constructing a triangle between three 

two ends and one in the middle (Figure 18). The angle between the two lines 

midpoint is half the angle subtended by the arc (α)

sing the relationship between subtended angle, and chord length

is the direction from the start to the end point, and normalised so 

clockwise. The centre point is calculated with trigonometry

and radius. The length is calculated using the radius 

 

alculation 

they are similar. To be considered similar, the arcs must be 

(sharing a similar radius and centre-point), as well as being at least 

There are two passes in this process, the first checks 

 for co-radial arcs with different end points. 

arc centre location error is checked by calculating the 

centres; this must be smaller than a set fraction

e other parameters’ differences are compared directly. 

three points; the 

lines connecting 

(α). The radius is 

chord length (cL). The 

is the direction from the start to the end point, and normalised so that 

with trigonometry using 

the radius and angle 

are similar. To be considered similar, the arcs must be 

, as well as being at least 

process, the first checks for duplicate 

the Pythagorean 

set fraction (0.1) of their 
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The parameters are all combined using a weighted average, the weighting given by each 

arc’s level of coincidence. The level of coincidence for the new arc is the sum of the 

coincidence levels in the combined arcs.  

The second pass initially compares the centre points and radii to check if they are co-

radial (Figure 19). If the features are close to co-radial, the start and end angles for each 

are found. If the longer arc fully encompasses the smaller, the larger arc is returned (with 

an increased level of coincidence) and the smaller discarded. If neither encompasses the 

other, but there is some coincidence, the end points on the outside of the combined arc are 

found and a new arc constructed using the average centre-point and radius. 

 

Figure 19. Arc combining 

The two arcs must have similar radii (r1 and r2), and the distance between the centres of 

rotation (cd) must be less than a set fraction of the average radius. The arcs must also 

show at least ten degrees of overlap. 

  



 

4.2.5. Ellipses 

The ellipse feature type is designed to represent stable curves which vary slightly in 

radius. These are often found when a circular 

Arcs cannot accurately represent these parts of the contour, 

developed as a replacement. The ellipse is found on portions of the fingerprint with very 

little curvature variation, the same parts used to create arcs. 

following parameters; centre point x and y co

r2), tangent angle (ϴ), ellipse 

with respect to the ellipse tangent

Figure 20. Ellipse feature type 

The ellipse calculation is a modified fo

estimation technique (Wen & Yuan, 1994)
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The ellipse feature type is designed to represent stable curves which vary slightly in 

hese are often found when a circular part of an object is viewed from an angle

Arcs cannot accurately represent these parts of the contour, so an ellipse feature was 

The ellipse is found on portions of the fingerprint with very 

little curvature variation, the same parts used to create arcs. An ellipse co

point x and y co-ordinates (x, y), major and minor radii

 angle (α), ellipse length (L), and the offset of the minor axis 

with respect to the ellipse tangent (β) (Figure 20). 

calculation is a modified form of Wen and Yuan’s separate parameter 

(Wen & Yuan, 1994). To summarise Wen and Yuan’s method; t

The ellipse feature type is designed to represent stable curves which vary slightly in 

object is viewed from an angle. 

an ellipse feature was 

The ellipse is found on portions of the fingerprint with very 

An ellipse contains the 

, major and minor radii (r1, 

, and the offset of the minor axis 

 

Wen and Yuan’s separate parameter 

To summarise Wen and Yuan’s method; the 
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separate parameter estimation technique makes use of ellipses’ skewed-symmetry 

property. The theory shows that an ellipse has countless skewed symmetry axes, which 

cross at its centre. For an ellipse, the mid points of any set of parallel lines running from 

one side to the other form a skewed symmetry axis (Wen & Yuan, 1994). The method 

takes a subset of points and fits parallel lines between the ellipse points to give an axis of 

symmetry. A reliable estimation of the ellipse’s centre point is given by finding multiple 

axes of symmetry from different subsets, then identifying their intersection point. The 

remaining parameters (major and minor radii, and orientation) can be calculated from any 

three points using equations given in the article (Wen & Yuan, 1994). The average of 

multiple 3-point sets is used to best estimate the parameters.  

The calculated parameters (orientation, centre-point, major and minor radii) and the 

ellipse points are used to identify the length, contained angle, and offset angle parameters 

to give a fully defined partial ellipse. However this technique only works reliably if there 

are sufficient points and a significant level of skewness, otherwise it is difficult to identify 

the major ellipse angle. When there is insufficient skewness an arc is fitted instead. 

Ellipses are combined in a similar way to the arcs, with searches for duplicity, and 

coincidence. The first search compares all the parameters directly. If they are similar 

enough a new ellipse is created using a weighted average of the parameters. 

In the second search the centre points and angles are reviewed similarly to the arcs 

(Figure 19); if there is a complete or partial overlap the ellipses are combined. Combining 

two ellipses is more complex than for other types, as the ellipse’s skewed angle makes a 

large difference to the parameters. If the centre points and radii are similar, a number of 

points are created from each ellipse at known angles from the averaged centre point. Any 

angles which have points from both ellipses are averaged to a single point (Figure 21). An 

ellipse is then fitted to the generated points. A measure of error is given by calculating the 

distance between the new ellipse, and points from the original ellipses. If this is low 

enough the new ellipse is returned as the combined ellipse. The significance weightings 

from the original ellipses are combined to give the weight for the new ellipse. 
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Figure 21. Ellipse combining 

Shown are two partial ellipses on the left, and their generated points on the right. The 

points are generated for each ellipse at known angles from their averaged centre-point. 

The black points (on the right) are used to create the new ellipse, for the overlapped part 

of the ellipses these points are placed between the two ellipse points (blue) for the given 

angles. 
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4.3. Feature Extraction Test 

A test method was developed to identify and investigate any limitations in the process of 

contour and feature extraction.  

The test uses images of two objects in a variety of poses (Figure 22), to assess how the 

feature extraction system deals with rotation, scale, position and small lighting changes. 

The changes used by this test were selected to represent common object poses 

encountered by humans on a daily basis. 

The objects used for this test were a mug for the line and lobe feature types, and a pair of 

scissors for the arc and ellipse types. These two different objects were used to provide a 

greater variety of feature shapes. Features from at least four different parts of the object 

are used for each feature type. Each image set contained twenty four images, varying in 

scale, rotation, position. To give a representative average, two pictures were taken for 

each position, rotation, or scale change. For comparison, the parameters from the features 

in the two target pictures are averaged. Each physical change of object position, rotation, 

or scale also introduced an unmeasured but observable lighting change on the object. Two 

physical position changes were used, moving the object by approximately 25% and 50% 

of the viewed area. The rotation changes used were 20, 45, 90, 180 and 270 degrees. The 

object scale was increased and decreased by approximately 25% and 50%. A thumbnail 

sample from the two image sets shows the twelve different object poses (Figure 22).  
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Figure 22. Sample from feature test image set 

Each object has a 'target' control image that is considered to be the best case 

representation; the picture is taken of the front of the object, with lighting, scale, and 

rotation suitable for human object identification. A number of object parts corresponding 

to the different feature types were selected from the target images. These parts were 

corners, straight edges, or stable curves, and were found on the object edges. The two 

target images were processed and the line/lobe/arc/ellipse features identified in these 

object parts were recorded. 

Each image in the test set was processed by the system, and all the features found were 

shown. The required feature for each part of the object was then manually identified and 

recorded for later comparison. 

The test checked how reliably the system's features represent the same object part under 

different conditions. This was achieved by comparing the feature parameters that have 

scale-, rotation-, and position-independent representations. Some examples of these are; 

the angle contained by the arc/ellipse/lobe types, the skewness and kurtosis of the lobes, 

and the ellipse eccentricity. The test also compared some parameters that are scale- and 
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rotation-dependent by using image-transform calculations to map the target object feature 

to the test image. Some examples of these are; tangent angle, feature length, and radius.  

An image transform was used to identify the exact rotation and scale difference between 

the target image and the viewed image. The transform only uses scale and rotation; 

position parameters were not used as they had larger differences and were partially 

dependent on the scale and rotation. The image transform was calculated for each image 

using the chosen features, as well as some reference ones if required. In the case of the 

scissors which test for arcs, some lines were identified to give the image rotation. In the 

case of the mug, an arc was identified to give scale information.  

The difference between each of the feature parameters in the target and the tested image 

was calculated. In the case of transform-dependent parameters the image transform is first 

applied to the target feature's parameters to remove the transform change from the results. 

The differences are then averaged across all the features of that type for each test image. 

This gives one error value for each parameter and image combination. 

While testing the software it was observed that the position-dependent parameters 

(centre-point of circle, midpoint of line, end of lobe, etc) were too susceptible to camera 

effects such as fisheye, focal length, etc to give meaningful results when the simple image 

transform was used. These results were not recorded. 

For the chosen parameters the average and standard deviation of the difference across the 

test image set were calculated (Table 1). 

A number of features were not identified within the images. The percentage of features 

missed was calculated for each type (Table 2). The cause was observed to be most often 

due to the change in lighting conditions, with some feature endpoints incorrectly 

identified. 
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4.4. Feature Extraction Results 

Results presented in Table 1 show how the repeatability of various parameters varies 

across the different types of feature. Features representing the same part of an object were 

recorded for several different instances of the object. The difference between the features 

in the target image, and the test images was calculated. This difference was used to 

calculate an average difference and standard deviation for the parameters in the different 

feature types. 

Most feature types have parameters that can be compared independently of the image-

transform, as well as some that are transform dependant. A transform is used so 

parameters can be compared using a small adjustment to normalise for the image 

viewpoint change. For example, if the object is rotated by 90 degrees the line directions 

should be changed by 90 degrees; subtracting the image transform’s rotation allows the 

error difference to be calculated.  

Parameters are categorised into “Transform Independent” or “Transform Dependent” 

because the calculated transform can introduce errors into the latter category. Angle 

deviation is given in radians; while distance based parameter errors are given in 

percentage of the ‘target’ parameter. 
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Table 1. Feature comparison results 

Lines  Average Abs Difference Standard Deviation Units 

Transform Dependent Tangent 0.023 0.019 radians 

 Length 6% 7% % of original value 

Arcs     

Transform Independent Angle 0.348 0.547 radians 

Transform Dependent Radius 15% 19% % of original value 

 Tangent 0.212 0.302 radians 

Lobes     

Transform Independent Angle 0.053 0.043 radians 

 Skewness 8% 7% % of original value 

 Kurtosis 15% 13% % of original value 

Transform Dependent Tangent 0.024 0.022 radians 

 Length 11% 12% % of original value 

Ellipses     

Transform Independent Angle 0.595 0.932 radians 

 Eccentricity 40% 94% % of original value 

 Tangent 

Offset 

0.339 0.362 radians 

Transform Dependent Tangent 0.602 0.939 radians 

 R1 33% 63% % of original value 

 R2 130% 393% % of original value 

In most cases the average levels of error and standard deviation are acceptable. However, 

for the ellipse feature type the errors are very large. 

Table 2. Features found, by type 

 Found Total Present in Image Percentage 

Lines 90 92 98% 

Arcs 88 92 96% 

Lobes 126 138 91% 

Ellipses 86 92 93% 

Table 2 summarises the proportion of features found in the test images. None of the lobe 

features for an object part were present in every image, however most of the lines, and 

half the arcs and ellipses were. Because the system is only looking for features at a 

specific location—which are identified manually—extra features found are not recorded. 
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Table 3. Additional arc test 

Arcs  Average Difference Standard Deviation Units 

Transform Independent Angle 0.033 0.037 radians 

Transform Dependent Radius 1% 2% % of original value 

 Tangent 0.036 0.024 radians 

Table 3 shows a further test for arcs. It was conducted using a different object with end 

points that are easier to locate.  

 

Figure 23. Additional arc test feature comparison 

Figure 23 shows the arcs used in the first test, and the arc used in this test. The arcs on the 

pair of scissors do not have well defined ends like those on the mug. The object was the 

mug used for the line and lobe features, and only a single arc from the outside of the 

handle was used. The results were gathered and presented in the same way as for Table 1. 

When compared with the results in Table 1 this test shows how the accuracy of the 

identified arc features depends on the correct end point identification. 

Limitations of Analysis 

The analysis encompasses the contour extraction as well as the feature extraction, so 

contour flaws or inconsistencies could propagate through and affect the result of one or 

more feature types. 

Although a wide range of feature instances were used, not all shapes of arc or lobes are 

present, and the system could have less repeatability in some specific instances like very 

sharp corners with a narrow angle, or very high eccentricity ellipses, or many others. 
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4.5. Feature Extraction Conclusions 

The test analysed the repeatability for a number of different features on two objects. 

The proportion of features not identified in the images was low, with lobes having the 

most missing at 9%. On closer inspection it was found that the bulk of missed features 

were due to insufficient contours along an object part. The contours were missing due to 

shadows reducing or moving the intensity gradient too much. This effect could be 

reduced by adding more grey levels to process (which would incur a processing cost), or 

ensuring better lighting, either of which can be simply implemented later if required. 

Alternative edge detection methods may also reduce this affect; however, they are likely 

to be less suitable in other areas. 

The consistency of the parameters is of concern for ellipses and arcs, while the lines and 

lobes show more acceptable variation. Because ellipses and arcs are assigned to the same 

sections of the contour only one should be kept. Because ellipses have far greater errors, 

only arcs will be used. The errors in arc parameters mainly come from the incorrect 

identification of the end points. The end points are difficult for the system to identify 

correctly on the scissors due to the many arc-arc transitions present. A further test using 

the handle of the mug confirmed that when the end points are more easily identified, the 

features are more repeatable (Table 3). 

 



64 

 

4.6. Comparison Techniques 

This section describes how the feature data is used to compare items in viewed scene to 

objects in the database. The features used are lines, lobes, and arcs (pg 32 for the 

contours, pg 42 for the features). The comparison must allow accurate object 

identification, whilst being quick to process. A direct comparison of the features satisfies 

neither of these constraints, so relationships between the features will be created and 

compared along with the feature’s shape. 

Two different methods were attempted; one utilising manually identified relationships, 

and the other using relationships identified by the system. The following sections describe 

the user-identified, ‘bit descriptor’ approach, and the computer-identified, ‘pair and triple 

block’ approach. 

4.6.1. Bit Descriptors 

This method sought to identify and compare the spatial relationships between features. 

The ‘descriptors’ are a set of predefined geometric relationships able to be identified 

between features (see later in this section). Each descriptor’s presence in an image is 

indicated by a binary value; hence the term ‘bit descriptor’. The descriptors are stored as 

an array of bits which allows the use of fast bitwise comparisons. The comparison step 

generates a match score for the object and viewed image. 

The bit descriptor method is designed to be the first-pass in an object recognition system, 

so it need only generate a shortlist of potential object matches. A slower but more 

accurate system can then be used to identify a positive match from the shortlisted objects. 

The first-pass attribute means an emphasis is placed on a quick processing time, and a 

very small number of objects not identified in an image when they should be (false 

negatives). 
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4.6.1.1. Descriptors 

The purpose of the Bit Descriptors method is to provide a way to identify a number of 

significant geometric relationships associated with each object. These relationships are 

user defined, and may or may not be present in an image. There is no partial match for an 

individual descriptor. In the same way that a human can provide a fair and accurate 

description of an object using only words; the bit descriptor method aims to describe the 

object using only the bit descriptors. 

A descriptor specifies a geometric relationship between features of a given type. The 

descriptors used were chosen to give a wide range of relationships, while being specific 

enough to provide a distinctive description of the object. A small example set of 

descriptor names is given in Table 4, some of which are subsequently explained in more 

detail. 

Table 4. Descriptor name examples 

Parallel Lines 

Circles 

Line Square 

Triangles 

Parallelograms 

Symmetrical Lines 

Axis of symmetry common to 3 feature 

pairs 

Squares with Lobe Corners 

Rotationally symmetric Lines 

Right angle Line-Lobe-Line tangent groups 

 



 

Arc Symmetry Descriptor 

The arc symmetry descriptor represents two very similar arcs which can be mapped to 

one-another using a line of symmetry. 

provided a number of constraints are met. The arcs must have similar angle

length (L); having similar angle and length also ensures a similar radius

between the arc features is also checked as distant arcs are less likely to be from the same 

object. Provided the arcs are similar enough, two i

each arc’s end points (Figure 

of symmetry. Finally, perpendicular lines are plotted from 

point is defined as the average of the two arc end points)

distance (Pd) between the intersection points

arcs are considered symmetric, and the line of symmetry is stored.

Figure 24. Arc symmetry descriptor calculation
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The arc symmetry descriptor represents two very similar arcs which can be mapped to 

another using a line of symmetry. A line of symmetry is calculated for two 

provided a number of constraints are met. The arcs must have similar angle

; having similar angle and length also ensures a similar radius

between the arc features is also checked as distant arcs are less likely to be from the same 

object. Provided the arcs are similar enough, two intersecting lines are constructed from 

Figure 24). The two constructed lines are then bisected by the axis 

Finally, perpendicular lines are plotted from the arcs’ mid point

fined as the average of the two arc end points), to the symmetry line

distance (Pd) between the intersection points along the symmetry line is small enough the

are considered symmetric, and the line of symmetry is stored.  

 

descriptor calculation 

The arc symmetry descriptor represents two very similar arcs which can be mapped to 

A line of symmetry is calculated for two arcs 

provided a number of constraints are met. The arcs must have similar angle (α), and 

; having similar angle and length also ensures a similar radius. The distance 

between the arc features is also checked as distant arcs are less likely to be from the same 

s are constructed from 

). The two constructed lines are then bisected by the axis 

points (the mid-

, to the symmetry line. If the 

is small enough the 



67 

 

Provided all the constraints are met, the associated bit is set to one. The line of symmetry 

is also recorded as it is used in another descriptor to identify features sharing a common 

line of symmetry. 

Parallel Line Descriptor 

The parallel line descriptor represents pairs of lines that are parallel, as well as being 

partially symmetric and in close proximity. The main constraint of parallel lines is that 

they must have a minimal deviation angle (α) between them. Perpendicular lines are 

constructed at each endpoint, and at least one of these must meet the other line to ensure 

partial symmetry. The distance between centre points (Cd) must be less than the average 

line length (La/2+Lb/2). The two latter checks are to make it more likely that the parallel 

lines come from the same object. 

 

Figure 25. Parallel line descriptor calculation 
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Provided that all the constraints are met, the associated bit is set to one. The parallel line 

pair is also recorded as it is used in other descriptors to identify squares and rectangles. 

Line Square Descriptor 

Descriptors for line squares and parallelograms are some of the more complex descriptors 

present; representing a parallelogram formed by lines, and a square if the line lengths are 

equal. This descriptor uses the parallel line pairs stored from a previous descriptor’s 

calculations; and also uses a shared method to find line-line ‘chains’. A chain of lines is 

created when the line endpoints are within close proximity. The criterion for proximity 

factors in the line length. For example, Gap(DA) must be smaller than half of the 

minimum line length of either line A or B. For any closed four sided shape, there will be a 

looped line chain of A-B-C-D-A, for a parallelogram, the pairs A-C and B-D will also be 

stored in the parallel lines. 

 

Figure 26. Line square descriptor calculation 
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For the specific case of a square, the average angles of the line pairs are compared, and 

must have a difference of close to 90 degrees. The lines also must have a similar length to 

ensure it is a square and not a rectangle. 

Other Descriptors 

The Bit Descriptor list contains 152 spatial relationships which we suggest might be used 

to describe the significant attributes of objects within an image. See Appendix A – Bit 

Descriptor List for a full listing of the descriptors used. 

Descriptor Storage and Detector Calculation 

Once all the bit descriptors are processed, they are stored as a one-dimensional array of 

bits. Each bit in the array relates to a specific descriptor. If a descriptor is found in the 

image, its associated bit will be set to 1. Storage and comparison of the descriptors is 

therefore very compact and quick. 

The descriptors present in an image are calculated independently of the object it is 

compared to. Because the descriptor identification is only performed once when 

processing an image, it is possible to calculate and use complex relationships.  

The descriptors often require a custom ‘detector’ method to iterate through features of the 

right types looking for a specific relationship. However, some detectors are assigned to 

multiple relationships; i.e. three sets of parallel lines in an object is just the parallel line 

identifier finding three separate parallel line instances. While there are some sub-methods 

that can calculate minor parts and be used by multiple detectors, the bulk of the 

calculation cannot; like the line chain used for the parallelogram/square, it is also used for 

a triangle detector. 

The class of descriptor detectors forms the largest part of the bit descriptor system. In 

two-dimensional space it is a relatively simple task to write each detector using the 

various feature parameters, and shared sub-methods. Although there are 152 bit 

descriptors, the number of detectors is less than 50 due to the shared methods and some 

very similar descriptors. 
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4.6.1.2. Comparison 

The comparison algorithm is a very important part of any object recognition system. In 

this case the emphasis is placed on fast processing time, and identifying any objects likely 

to be in the image. Also important is identifying which objects are not likely to be within 

the image, but a small number of errors in this category is acceptable because it is only a 

first-pass system. 

Both the database object and the viewed image are represented by a string of 152 bits, 

showing which descriptors are present for each. The comparison between the viewed 

image and a target object from the database is performed by comparing which bit 

descriptors are present in both, using a bitwise AND operation. Occlusions or multiple 

objects can cause the scene description to have too few or too many bits present to match 

the string directly so the bitwise comparison is used. An AND is used rather than an XOR 

so other objects and their descriptors present in the viewed image do not detrimentally 

affect the comparison.  

Using bitwise operations makes for intrinsically fast computation, but using a managed 

and sorted object database could further improve this. Database software such as MySQL 

could be used to index the database for even faster search times.  

To provide greater discrimination with very little additional processing cost, an object 

specific ‘weight’ is generated for each descriptor. The more often the descriptor is found 

with the object, and less often it is found in other images, the greater the weight. This is 

calculated using two probabilities; that the descriptor is present with the object, and that it 

is present without the object (Equation 5). The probabilities are found by processing a 

‘teaching’ image set. A set of 100 images was used, with more than a quarter containing 

the object at various levels of occlusion. The weights were then scaled so that the total 

weight across all the descriptors for the object is 1.  

��� !�"�#$%" #" ! &$ | ()* �$ #" ! &$� × �1 − ��� !�"�#$%" #" ! &$ | ()* �$ #" ! &$�� 

Equation 5. Descriptor weight calculation 
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If a significant number of bit descriptors found in an image are also present in a database 

object, the weights of those found are then added to give a match score. Because the total 

‘weight’ for each object is scaled to one, the match scores can be compared directly. 

Objects with a high enough match score from the viewed image are gathered in a short-

list. The short-list is ranked using the object’s match score, which is the likelihood that 

the object is in the image.  

Creating a short-list with only the most likely objects narrows down the field to a handful 

of object images, from a potential object database of approximately 300,000 (Flemmer & 

Bakker, 2005). This handful of images should be far more manageable for a more 

intensive comparison to confirm which objects are present. The more intensive search 

could match the individual features, compare spatial distances, or a completely different 

matching algorithm such as template matching could be applied. 

Summary 

The bit descriptor method outlined in this section was designed to allow a computer to 

identify similar object features and relationships to those a human would use. The object 

relationships must be chosen and written manually. The method is not standalone and will 

require a final pass algorithm. With only a shortlist of potential objects remaining the 

final pass algorithm can afford to use more processor time to achieve greater 

discrimination. 

4.6.2. Pair and Triple Blocks 

The pair and triple block method sought to allow the computer to generate its own spatial 

relationships between the features. It does this using groups of two or three features, 

which can in turn be combined to form a representation of the relationship between them; 

hence the term ‘pair and triple blocks’. The technique is briefly summarised below, with a 

more detailed explanation following directly afterwards. 
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The block data type was designed to provide a scale and rotation invariant description for 

different feature groups. Each block specifies the spatial relationships between its 

features, as well as the shape of the individual features themselves. The feature types used 

are lines, lobes, and arcs. Blocks contain either a pair or triple of the features, resulting in 

16 block types which are described in more detail in this section (page 73 onwards). 

Blocks discard the ‘bright-on-the-right’ method of recording angle signs used by the 

contour extraction method; they are instead determined by the layout of the features. This 

was done to ensure different coloured objects would have the same blocks, and a brighter 

background would result in the same blocks as a dark background for the same object. 

Each block contains two descriptions; referred to as internal and external definitions. The 

first describes the configuration of the features and relationships between them internal to 

the block, i.e. the shape of the block. The second is a set of four ‘external’ parameters, to 

provide scale, rotation, and position data so it can be accurately superimposed onto the 

viewed image, i.e. the location of the block. The descriptions are flexible enough to 

represent any combination of feature types in most positions. Groups of 2 or 3 features 

from 3 types generate 16 individual block types, each with different description 

parameters (pages 73 and 80). The parameters were chosen to minimise their sensitivity 

to small changes in feature arrangement. However this was not completely effective, 

resulting in a small number of specific configurations where one or more parameters are 

very sensitive. 

The system generates tens of thousands of blocks for each object in the database. The 

number of blocks is greatly reduced by removing any blocks which do not offer a 

beneficial level of discrimination. A ‘teaching’ image set is used (page 90), where the 

objects in each image have been recorded. Blocks that are found often in images not 

containing the object are removed, along with those very rarely found with the object. 
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The comparison of the image blocks with those in that database is three-stage (see block 

comparison method from page 89). The first is a direct match between the blocks, to 

obtain a match score. Secondly a cluster is created from the matched block pair’s 

position-dependent image to database mappings. The cluster size—both magnitude and 

proportion of the matched block pairs—is used to remove images which don’t contain the 

object. Finally, the block pairs in the cluster are ‘spatially’ matched to ensure they are in 

the same relationship as for the object. The spatial cluster size is used to identify which 

object is in the image. Spatial matching is performed by combining two or more blocks to 

create ‘derived blocks’ (pg 87), which represent the configuration and shape of all the 

features contained in all the blocks used. 

4.6.2.1. Block Types 

The block types are broken up into two main categories, those with two features (pairs) 

and those with three features (triples). Each block type has slightly different methods of 

parameter generation and comparison. There are six types of pair blocks, and ten types of 

triple block. The following sections describe the representation, creation, and comparison 

of each block type. 

4.6.2.2. Pair Blocks 

The six types of pair blocks represent two features either ‘joined’ together, or in close 

proximity. The pair description parameters and generation methods were designed to 

provide a distinctive, robust, and flexible representation of two features’ shape and 

position, while being very fast to generate. 

The three feature types used by the system give six different pair types (Figure 27), with 

the number of parameters for each ranging from 4 to 7. 
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Figure 27. Different type of feature pairs 

The features are shown in blue, and the constructed geometry shown in some cases with 

dotted lines. 

Figure 27 illustrates the 6 different types of pair blocks. In most cases there are 

constraints to satisfy for the pair to be recorded; these affect the shape of the possible pair 

blocks. The constraints were added to increase the chances of both features belonging to 

the same object. Blocks involving a lobe must have an end-end ‘join’, satisfied by 

proximity and similar tangent angle. The remaining three must have their centre points 

within a distance which depends on the feature lengths.  

The pair-block generation methods can be separated into two groups based on common 

parameter generation methods. 
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Line-Line, Arc-Arc, and Arc Line blocks 

 

Figure 28. Line Line, Arc Line, and Arc Arc block examples 

The line-line, arc-arc, and arc-line pair blocks all make use of the same method for the 

first four parameters. To make the same method process all three, those that involved an 

arc had an added construction line (Figure 27) using the two arc end points. This common 

method finds the first four parameters of each pair block. Table 5 shows all the 

parameters for the first three pair block types. 

Table 5. Parameters for Line Line, Arc Line, and Arc Arc blocks 

Line Line Line Arc Arc Arc 

Angle Between Lines Angle Between Lines Angle Between Lines 

Midpoint Offset Midpoint Offset Midpoint Offset 

Line Length A Line Length Arc Endpoint Distance A 

Line Length B Arc Endpoint Distance Arc Endpoint Distance B 

 Arc Position Arc Angle A 

 Arc Angle Arc Angle B 

 Arc Side of Constructed 

Line 

Arc Side A 

  
Arc Side B 



76 

 

The common method shared by these three block types requires some simple calculation 

to find the angle between the lines, and the midpoint offset. The construction lines used in 

the parameter calculations are shown only on the line-line type for simplicity (Figure 28), 

but are used for the line-arc and arc-arc as well. First a line is plotted between the centre 

points of the two feature lines (or construction lines in the case of an arc). The angle 

difference must be found in the right ‘quadrant’ according to the line directions. If instead 

of finding the correct quadrant a simple average, or smallest angle calculation were used, 

it would show a small difference in the case of a very obtuse angle between the feature 

lines. To account for this the feature lines’ intersection point is obtained, and the direction 

required to bisect the two feature lines is calculated. The angle-between-lines is found by 

calculating the angle contained by the quadrant the bisector line passes through. The 

bisector direction is also used to plot a constructed centre line between the feature lines. 

Lines perpendicular to the constructed centre line and beginning at the feature lines’ 

midpoints are used to calculate the offset (along the bisector line) between the features. 

The four parameters calculated by this shared method are; the angle between the lines, a 

midpoint offset, and the two lengths associated with the original features. Scale 

independence is provided by dividing the length parameters by the block’s scale (from its 

external parameters, see page 78).   

Parameters for the line-arc and arc-arc blocks are added that give its included angle, and 

describe which side of the construction line the arc lies on; inside or outside given by a 0 

or 1 respectively. For the line-arc block an extra parameter also shows whether the LHS 

(left hand side) or RHS (right hand side) feature is the arc. Any blocks which have an 

insufficient feature length to middle point distance ratio are considered too far apart and 

discarded. This is to help ensure the features used for a pair come from the same object. 
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Line-Lobe, Arc-Lobe, and Lobe-Lobe blocks 

 

Figure 29. Line Lobe, Arc Lobe, and Lobe Lobe block examples 

Line-lobe, arc-lobe, and lobe-lobe pairs are based around an apparent join between them.  

Blocks can only be created from feature combinations that have end points in close 

proximity (given by a proportion of feature length) and with similar end tangent angles.  

The parameters used (Table 6) include the angles and lengths of features where 

applicable. There are no parameters for the shape of the layout, as these pair block must 

always be joined tangentially from end to end. 

Table 6. Parameter for Line Lobe, Arc Lobe, and Lobe Lobe blocks 

Line Lobe Arc Lobe Lobe Lobe 

Lobe Angle Lobe Angle Smaller Lobe Angle 

Lobe Length Arc Angle Larger Lobe Angle 

Lobe Skewness Lobe Length Smaller Lobe Length 

Lobe Kurtosis Lobe Skewness Smaller Lobe Skewness 

 Lobe Kurtosis Smaller Lobe Kurtosis 

  Larger Lobe Skewness 

  Larger Lobe Kurtosis 
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Few calculations are needed for this block type. Potential tangent joins are checked by 

comparing Pythagorean distance and tangents for the feature end points. The parameters 

are obtained directly from the features. Scale independence is provided by dividing the 

length parameters by the block’s scale (from the external parameters). The lobe (or 

smallest lobe in the case of lobe-lobe pair) is considered to be the second feature, as the 

order is important when assigning the angles. The angles are stored as positive for 

clockwise rotation and negative for anticlockwise with respect to the direction from the 

first to second feature. The lobe skewness and kurtosis are also given. 

Pair Block Location Data 

The external parameters; scale, rotation, and position are calculated for each pair-block. 

This data is used for the cluster and spatial matching steps later in the algorithm (pg 93 

and 97). The parts used from each pair-block to calculate these values are shown in 

Figure 30. The vector gives direction, a solid black line for scale, and the point provides 

the X and Y position values. 



 

Figure 30. Scale, direction, and position data for pair blocks

For the three types containing lobes

travelling from the start point of the first feature to its end point. The position is the 

average of the two features’

position is the midpoint of the line constructed between the feature lines. The scale is 

given by the length of this constructed line, and the direction given by the 

centre line, always going away from the end where the two feature lines intersect.

The direction given by the bisector can be very 

original features if they are close to parallel, a small change in feature angle can flip it

180 degrees. To account for this; the system produces two blocks with reversed direction 

vectors when the feature angle is close to parallel

79 

. Scale, direction, and position data for pair blocks 

For the three types containing lobes, the scale and direction are given by a vector 

point of the first feature to its end point. The position is the 

features’ ‘joined’ end points. For the remaining three types

is the midpoint of the line constructed between the feature lines. The scale is 

of this constructed line, and the direction given by the 

, always going away from the end where the two feature lines intersect.

The direction given by the bisector can be very susceptible to small angle changes in the 

if they are close to parallel, a small change in feature angle can flip it

o account for this; the system produces two blocks with reversed direction 

when the feature angle is close to parallel. 

 

the scale and direction are given by a vector 

point of the first feature to its end point. The position is the 

remaining three types, the 

is the midpoint of the line constructed between the feature lines. The scale is 

of this constructed line, and the direction given by the constructed 

, always going away from the end where the two feature lines intersect.  

to small angle changes in the 

if they are close to parallel, a small change in feature angle can flip it 

o account for this; the system produces two blocks with reversed direction 
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4.6.2.3. Triple Blocks 

A feature-triple block is designed to allow the system to represent a group of three 

features in any position. Using three features mean their positions can be used to form a 

triangle with a discriminating aspect ratio. Its description parameters and generation 

methods were designed to provide a distinct, robust, and flexible representation of any 

three features.  

The lines and arcs are processed as infinite length lines and circles for triples. The larger 

number of features used allowed some end point dependent parameters to be discarded 

while maintaining a distinctive block representation. The lack of end point parameters 

speeds up processing, and—provided the majority of the feature is correctly located—

reduces errors associated with incorrect end point identification. A triangle is generated 

from three feature centre points or three constructed points, using the angles of the 

triangle gives a scale independent representation of their spatial relationship. 

The ten different types of blocks (arising from different feature combinations) are stored 

in separate arrays, in both the database and the data extracted from the image. Triples 

have the same first two parameters across all types; these parameters describe the aspect 

ratio of a triangle formed by three feature points. Using the same two first parameters 

across all triple types will simplify and speed up the comparison stage of the algorithm. 

The algorithms used to generate triple-blocks are more standardised than for pair-blocks; 

in this case circles and lobes are processed similarly as points. This separates the block 

generation algorithm for triples into four main types (Figure 31). The circles and lobes are 

distinguished by a few parameters added on to the end of the description, making ten 

different types of triple-blocks. 
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Figure 31. Four main triple types 

The four main triple types each have a separate block generation method. The method 

used by the system depends on the number of lines present in each triple, which varies 

from zero to three. The circles and lobes are treated as points, with the centre point used 

for the circle, and the midpoint used for the lobe. Some sub methods are used by all four 

methods, such as the triangle parameter calculations. 

The following tables (Table 7, Table 8, Table 9, and Table 10) show the parameters used 

for each block type; they are separated by the method used to generate each block type. 

Table 7. All Line block parameters 

Tip Triangle Angle 

RHS (right hand side) Triangle Angle 
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Table 8. Two Line block parameters 

Line Line Lobe Line Line Circle 

Tip Triangle Angle Tip Triangle Angle 

RHS (right hand side) Triangle Angle RHS (right hand side) Triangle Angle 

Point Index (0=tip, 1=RHS, 2=LHS) Point Index (0=tip, 1=RHS, 2=LHS) 

Angle Between Lines Angle Between Lines 

Lobe Length Circle Radius 

Lobe Angle  

Lobe Tangent  

Lobe Skewness  

Lobe Kurtosis  
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Table 9. Two Point Block Parameters 

Circle Circle Line Lobe Circle Line Lobe Lobe Line 

Tip Triangle Angle Tip Triangle Angle Tip Triangle Angle 

RHS Triangle Angle RHS Triangle Angle RHS Triangle Angle 

Line Direction Line Direction Line Direction 

Line Index Circle Index Line Position 

Radius of ‘Last’ Circle Lobe Index ‘Last’ Lobe Length 

Radius of Remaining Circle Circle Radius ‘Last’ Lobe Angle 

 Lobe Length ‘Last’ Lobe Tangent 

 Lobe Angle ‘Last’ Lobe Skewness 

 Lobe Tangent ‘Last’ Lobe Kurtosis 

 Lobe Skewness Remaining Lobe Length 

 Lobe Kurtosis Remaining Lobe Angle 

  Remaining Lobe Tangent 

  Remaining Lobe Skewness 

  Remaining Lobe Kurtosis 
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Table 10. All Points Block Parameters 

Lobe Circle Circle Lobe Lobe Circle Lobe Lobe Lobe Circle Circle Circle 

Tip Triangle Angle Tip Triangle Angle Tip Triangle Angle Tip Triangle Angle 

RHS Triangle Angle RHS Triangle Angle RHS Triangle Angle RHS Triangle Angle 

Lobe Index Circle Index Tip Lobe Length Tip Circle Radius 

Lobe Length Circle Radius Tip Lobe Angle RHS Circle Radius 

Lobe Angle ‘Last’ Lobe Length Tip Lobe Tangent LHS Circle Radius 

Lobe Tangent ‘Last’ Lobe Angle Tip Lobe Skewness  

Lobe Skewness ‘Last’ Lobe Tangent Tip Lobe Kurtosis  

Lobe Kurtosis ‘Last’ Lobe Skewness RHS Lobe Length  

‘Last’ Circle Radius ‘Last’ Lobe Kurtosis RHS Lobe Angle  

Remaining Circle 

Radius 

Remaining Lobe 

Length 

RHS Lobe Tangent  

 Remaining Lobe 

Angle 

RHS Lobe Skewness  

 Remaining Lobe 

Tangent 

RHS Lobe Kurtosis  

 Remaining Lobe 

Skewness 

LHS Lobe Length  

 Remaining Lobe 

Kurtosis 

LHS Lobe Angle  

  LHS Lobe Tangent  

  LHS Lobe Skewness  

  LHS Lobe Kurtosis  
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A number of parameters for the triple blocks are common across the different block types, 

making processing and notation simpler. The triangle formed by the three features has a 

‘Tip’ where the angle is smallest, a right hand side (RHS) which is the corner clockwise 

from the tip, and the remaining corner is the left hand side (LHS). This notation is used to 

describe the angle of the triangle corner directly, e.g. ‘tip angle’, or a parameter of the 

feature located at that point, e.g. ‘LHS Lobe Kurtosis’. ‘Last and ‘remaining’ are used in 

the same way; where there are two features of the same type the last is the furthest 

clockwise from the tip, and the remaining is the one whose parameters are not yet 

recorded. Some of the features parameters give an ‘index’ to show which position they 

are in, where 0 is the tip, 1 is RHS and 2 for the LHS. 

Triangle Parameter Calculation 

Figure 31 shows the how the triangle corner points are assigned for each of the main 

types; black for constructed geometry, blue for feature geometry. The triangle points for 

no lines or all lines blocks are simply a case of the feature points and line intersection 

points respectively. For a two line triple the intersection point and the feature point are 

used, as well as a point located on the line bisecting angle (out through the same quadrant 

as the point) and a line normal to the feature point. For a single line group, two feature 

points are used, and lines are constructed from these points perpendicular to the line 

feature, the middle point between the two intersections is used as the triangle’s third 

point. 

The three points give a triangle with a specific aspect ratio, characterised by three angles. 

The most acute is retained and its point assigned as the triangle tip, the right hand point’s 

angle is retained as well, and the third angle is not used as it is easily derived from the 

other two. 

Additional Parameter Calculation 

Other parameters indicate where different feature types are located on the triangle; tip, 

left hand or right hand side. For the two-line case the angle between the lines is given as 

an extra parameter. When a circle is involved, a radius is given and is normalised with 



86 

 

respect to the triangle’s scale. If a lobe is present the angle, skewness, and kurtosis are 

given, along with a normalised tangent; given with respect to the block’s direction. 

The standardised nature of the triple blocks means that the four main block generation 

methods are very similar. They generate the same types of parameters using the same 

simple calculations, so the four methods require no individual explanation. 

External Block Data 

Each triple also contains the external data parameters. Scale, rotation, and position are 

used to locate the block within the image. This is done once the triangle is already 

defined, and is the same for all feature-triple block types. First a line is plotted from the 

centre of the back side to its tip (shown in Figure 32). The centre of this line gives the 

position data, the length provides the scale, and the angle (towards the tip) is used as the 

block direction. This information is useful for normalising scale dependent parameters, 

creating derived blocks, and for the later clustering and spatial mapping. 

 

Figure 32. Triple scale, rotation and position assignment 

Triples have a few parameters sensitive to small amounts of change in feature position. 

The risk is that for certain shapes of triangle like the equilateral, a small amount of feature 

position change can cause features to be assigned to different points. However, only a 

small proportion of combinations will be susceptible, and those that do not offer good 

discrimination will not make it into the database due to the learning algorithm. 
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4.6.2.4. Derived Blocks 

Pair or triple blocks can be combined with one-another to form derived blocks; two or 

more derived blocks can also be combined into a single derived block. This is used to 

create and compare blocks representing a much larger number of features than pair or 

triple blocks can. This ‘spatial matching’ comparison process is described in more detail 

in the following sections (page 97). 

Any type of block can be grouped with another, to form a derived block. The derived 

block contains the two original blocks, and a scale-/rotation-/position-invariant 

description of the relationship between them (stored in the contained blocks external 

definition), and an external definition as before. 

The derived block’s external definition (scale, rotation, x and y position) is calculated by 

a simple average of those contained within. This can create an issue if the directions are 

opposite, as the average can be out by 180 degrees for nearly identical input blocks. This 

is overcome in the comparison method by checking for a match with a reversed block 

direction as well. The external parameters are used to locate the block within the image, 

which is used to create more derived blocks and to debug the process. 
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Figure 33. Derived block external data calculation 

The two blue lines represent the scale, heading, and position (base of vector) of the two 

blocks, while the black represents the same data from the derived block. 

For a later comparison stage, the external definition of the contained blocks must be made 

scale-/rotation-/position-invariant so that blocks within the derived blocks can be 

compared directly. The normalising calculations are performed using the created derived 

block’s external parameters. The data is translated into the same ‘space’ as the created 

derived block. Scale is normalised to a proportion of the created block’s scale given by 

dividing the contained block's scale by the derived block's scale. The direction is the 

difference to the contained block's direction from the derived block's direction. The 

position is normalised to the derived block's direction, and scale; so the calculated offset 

values are given as a proportion of the derived block’s scale, and the y axis is coincident 

with the derived block’s direction. 
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Table 11. Example derived block value calculation 

 Initial Block 

A 

Initial Block 

B 

Derived 

Block 

Block A 

within derived 

block 

Block B 

within 

derived block 

Scale 30 50 40 0.75 1.25 

Direction -0.3 0.7 0.2 -0.5 0.5 

X position 80 105 92.5 -0.3 0.3 

Y position 130 150 140 -0.26 0.26 

Table 11shows an example numerical solution to the derived block parameter calculation 

of the blocks shown in Figure 33. 

Summary 

The feature-pair and feature-triple blocks provide the system with a method to quantify 

the important aspects of spatial relationships between small groups of features. The 

implementation places emphasis on an accurate reconstruction, scale/rotation/position 

invariant parameters, which are also robust to small changes. However, there were a few 

specific cases where robust parameters were not achieved. 

The ability to derive blocks to create more and more complex relationships will be used 

in the final, spatial matching, stage of the system. 

4.6.2.5. Block Comparison 

The method used to compare the blocks from a viewed image to those in the object 

database will have a large effect on the speed and accuracy of the system. 

A learning algorithm (page 90) is used to identify and separate only the target object 

blocks offering good discrimination. This enhances the results and creates a smaller set of 

blocks to process. 
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The comparison is three-stage; first the blocks in the viewed image are compared directly 

to the target object blocks (page 91). If there are enough matches to a database object, the 

matches are passed to a clustering algorithm (page 93). If the clustering algorithm yields 

good results the matches are passed to the final part of the system, the spatial matching 

algorithm (page 97). 

The following sections describe in detail the four different parts of the block comparison 

and matching algorithm. 

4.6.2.6. Learning Algorithm 

The purpose of the learning algorithm is to identify, retain, and assign a ‘weight’ to the 

blocks that offer significant discrimination for the object. The learning algorithm requires 

an object image, and an annotated learning set containing some images with the object 

and some without. 

It is expected that some blocks will be very common across different objects and scenes, 

or be too specific to the target image of the object stored in the database; in either case 

providing poor discrimination. Retaining only those blocks known to offer good 

discrimination is expected to enhance both the processing speed and accuracy of the 

system. 

The blocks with a high degree of discrimination are identified through the use of the 

teaching image set, with a rating applied to each block to show how discriminatory it is. 

Firstly, all blocks found in the target object image are generated. The teaching image set 

blocks are then generated and matched with the object blocks. This allows the calculation 

of two conditional probabilities for each object block. One for the chance the block is 

present when the object is in the image, and one for when there is no object present. 

Blocks that are often present with the object, but rarely found without, will provide very 

good discrimination. 

����%�, #" ! &$ | ()* �$ #" ! &$� × �1 − ����%�, #" ! &$ | ()* �$ #" ! &$���� 

Equation 6. Block weight calculation 
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Equation 6 shows the formula used to calculate an effectiveness rating for each block. A 

block’s weight can vary from 0 to 1, which ensures a consistent and simple range for all 

ratings. Blocks with a high enough rating are stored in the database, the rest are discarded. 

Only those with a rating above 0.1 are stored; this value was chosen to allow an order of 

magnitude difference between the highest and lowest rated blocks used. The exponent of 

20 was chosen by experimentation to ensure that only blocks very unlikely to appear in 

other images will be stored, reducing processing time and increasing accuracy.  

The use of a learning set and block rating allows the number of comparisons required for 

directly matching the blocks to be vastly reduced. This will speed up the process 

significantly, and will probably increase the accuracy as well. 

4.6.2.7. Block Comparison Pass 

The first stage of the comparison algorithm compares all blocks found in the viewed 

image with the target objects stored in the database. The number of matches is recorded 

for each target object, and those with enough matches are further processed by the 

system. 

The database is arranged with different tables for each block type, and each type is 

ordered by the first parameter of the block’s internal definition (described in detail from 

pg 71). Extra data is included in each table (Table 12) to provide the object’s name, the 

block’s index, and the block’s weight. This is done because blocks from different objects 

are all stored in the same table to reduce the block search time. The table is organised by 

the first parameter in ascending order. 

Table 12. Circle-circle-circle block database table columns 

Triangle Tip 

Angle 

(search 

key) 

Triangle 

RHS 

angle 

Tip 

Circle 

Radius 

RHS 

Circle 

Radius 

LHS 

Circle 

Radius 

Object 

Name 

Block 

Index 

Block 

Weight 

The flowchart (Figure 34) shows the steps taken in the algorithm to calculate a match 

score for each image. 
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Figure 34. Block comparison flowchart 

Each block type is processed by a single thread; this is simple because the different types 

are stored in different tables.  

The algorithm iterates through each block of the given type from the viewed image, 

comparing them with the database blocks from all objects. Firstly, two binary searches of 

the ordered first parameter give a two index ‘window’ to vastly reduce the blocks left to 

search.   

Blocks within this window are processed parameter by parameter. The parameters are 

compared directly and blocks with any single parameter outside the error range are 

discarded. A cumulative error approach was also considered, but would incur a higher 

processing cost. The acceptable error values are stored in arrays for each block type 

(Table 13), and allow the parameter’s error to be tuned for each block type.  

Table 13.  Arc-lobe example error values 

Lobe Angle Arc Angle Length Proportion Lobe Skewness Lobe Kurtosis 

0.2*π 0.75*π 0.15 0.4 0.4 

The tuning of these values was done by a best guess to start with; then refined by 

evaluating the blocks found to match, or the parameters causing non-matches. Blocks 
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found to match are stored in an array of matches with their associated object name, index, 

and rating.  

Once all the blocks in the viewed image have been processed, the matched blocks are 

used to generate a match score for each target object. The match score is given by adding 

the ratings of found blocks for each object, and dividing by the sum of the ratings in that 

particular object; meaning the score can range from zero to one.  

If the match score is high enough it is probable the object is in the viewed image. The 

match score threshold used is 0.06, found through experimentation in the ‘Bit Descriptor 

vs Blocks’ test on page 118.  Objects selected to go through the clustering matching 

algorithm have their associated block matches retrieved and stored in an array for each 

object; the rest of the results are discarded. 

4.6.2.8. Clustering 

The second stage of the matching algorithm is clustering the matched blocks. The cluster 

uses the block’s external parameters of scale, rotation, x, and y data. A mapping is 

calculated for each matched pair from the previous block matching step. This mapping 

contains the adjustment required to translate the block from its position, scale, and 

rotation in the viewed image to the database image. If a number of matches come from 

the same object, they will have very similar mappings resulting in a large cluster.  

Mapping Calculation 

Each mapping contains four transform values, scale, rotation, x offset, and y offset. The 

scale describes the size of the viewed image block relative to the target object block; its 

transform is calculated by dividing the viewed block scale by the target block scale. The 

rotation describes the difference in direction from the target block to the viewed image 

block; its transform is calculated by subtracting the target block direction from the viewed 

image block direction. The x and y offsets describe the position of the viewed image 

block relative to the target block within the images; and are normalised for the scale and 

rotation changes.  
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To calculate the position mapping the scale and rotation effects must first be removed. 

The target block’s x and y values are transformed by the scale and rotation mapping 

changes to remove these effects on the position change part of the mapping. If the 

position changes were directly compared, a simple rotation change would result in large 

position differences at the outside parts of an object, despite it still being in the centre of 

the image. Applying the mapping to the target blocks allows the rotation and scale 

components to be removed; so in the case of the simple rotation no position change would 

be found. The dependence is removed by plotting a vector from the centre of the image to 

the block’s position. The vector’s length is scaled by the scale transform value, and the 

rotation transform is added to its direction. The difference between the new vector 

endpoint and the viewed block position are used as the x and y transform values. Simply 

using the centre of the image will mean the target blocks are moved across the image, and 

introduces a position change that does not reflect the objects actual position in the image. 

However, this added change is applied uniformly, and will not affect the clustering 

process. With all four parts of the mapping calculated for the blocks, the clustering of 

these values can begin. 

Generic Quality Threshold Clustering Algorithm 

The Quality Threshold clustering algorithm requires the specification of the threshold 

distance within the cluster and the minimum number of elements in each cluster (Naik, 

1999). From each data point all the points within this threshold distance are found and 

stored with the cluster. The largest cluster is regarded as the true cluster, and its points are 

removed from any others. The process is repeated until no more clusters of sufficient size 

can be formed. 
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Figure 35. Two dimensional QT clustering example 

The blue circles show the first pass, they are all the same size to reflect the specific 

threshold distance. The green circle shows how a cluster (left most blue circle) is ‘moved’ 

due to the removal of points on the subsequent passes. 

 

Naik gives some advantages and disadvantage of this approach. 

Advantages 

• Quality Guaranteed - Only clusters that pass a user-defined quality threshold will 

be returned. 

• Number of clusters does not require specification. 

• All possible clusters are considered - a cluster is generated with respect to every 

data point and tested in order of size against quality criteria. 
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Disadvantages 

• Computationally intensive and time consuming - Increasing the minimum cluster 

size or increasing the number of data points can greatly increase the computational 

time. 

• Threshold distance and minimum number of element in the cluster must be 

specified. 

Implementation 

The matched block pairs have been stored in two arrays, and each matched pair is passed 

directly to the clustering algorithm. The first step calculates all the mappings, scale and 

rotation are calculated first so they can be used to calculate scale and rotation independent 

position mappings.  

The QT clustering algorithm was implemented as above, with one significant difference 

to save time. The maximum number of clusters was set. Because there must be a large 

number of matches contained in a cluster, it was found that there would often be over 20 

clusters converging on the same set of matches. Setting a maximum number instead of 

using every point reduced the number of convergent clusters to only a few, and vastly 

reduced the processing time. 

The constraints to pass this stage of the matching algorithm are a minimum cluster size, 

and a minimum proportion of the previously matched blocks. If these are met the blocks 

contained in the largest cluster were passed on to the final stage for spatial matching. 

Currently the system is limited to only identifying one of each object in an image. 

However, it is expected to be a simple task to enable the clustering algorithm to return 

multiple block groups if multiple objects are likely.  

The maximum error was required to be large, to ensure blocks that should be in the 

cluster made it through. The main reason for this was large deviation in the block’s 

external parameters. The calculated position mapping is affected by errors in scale and 

rotation. 
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4.6.2.9. Spatial Matching 

The final stage in the matching algorithm is spatial matching, to ensure those blocks in 

the same cluster are from the same object. The spatial match algorithm checks that each 

block within the cluster is in the same relative position in the viewed image as the target 

object image in the database. In theory those in the same group with the same mapping 

will by definition map back to the same relative positions. However, as outlined 

previously (pg 93) the clustering system is too sensitive to small errors, so this third 

match stage is required. 

 

Figure 36. Spatial matching flowchart 

This stage is more thorough than clustering, performed by utilising the blocks in a 

recursive fashion. Each block can be grouped with another, to form a derived block. This 

block contains the data in the two blocks, a scale/rotation/position invariant description of 

the relationship between them (stored as the contained blocks external definition), and an 
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external definition as before. To compare two derived blocks directly some simple 

calculations are performed to ensure the blocks contained in each have object 

scale/rotation/position independent parameters representing the relationship between 

them. 

Two blocks from both the viewed image cluster group, and the two corresponding 

database blocks, are used to create a pair of derived blocks. If the viewed image blocks 

contain features on the same parts of the objects, the scale/rotation/position invariant 

definition of the derived blocks will match. 

To match a derived block the scale/rotation/position invariant descriptions are compared 

directly. The contained blocks do not need to be compared because the derived block is 

created from already matched pairs of blocks from the viewed image and object database. 

The spatially invariant relationship between the contained block is compared. A match 

error score is easily generated because there will always be the same four error values. A 

Pythagorean distance is calculated from the error values and used as the match error. 

To minimise the impact and identify any spurious blocks still present, a match 

performance number is generated for each derived block. It is obtained by using one 

block pair to create ten derived blocks using ten other random blocks. The derived block 

is then matched with the nine others, and the match errors added. Large total match errors 

will signify that the block doesn’t fit with many others, and is unlikely to be from the 

object. Those blocks with large errors are discarded by the system. 

It is now much less likely to contain spurious data, but still possible. The algorithm 

continues recursion revising the blocks at each stage, and creating derived blocks from 

other derived blocks. The set of derived blocks is ordered by their total match error 

values, and used to form a set of derived blocks (from derived blocks) by combining any 

adjacent two. In this way the best fitting derived block will be combined with the second 

best, to form a ‘higher level’ derived block representing many features. The new derived 

blocks then replace the original blocks and the algorithm repeats. The process stops when 

there is only one block remaining, this may only take one or two iterations and contain 

very few original blocks, or take more than eight, containing hundreds of original blocks, 

and over a thousand features. 
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This single derived block contains a record of how many individual blocks were used to 

create it, and if this is greater than a set number (ten), and comprises more than a set 

proportion of the cluster (25%), the object is said to be within the image. 

An added benefit of creating a single cluster is that the location of the object in the 

viewed image is already recorded. 

Comparison Summary 

Using a multistage comparison system is expected to give accurate results with a fast 

computation time. Through the stages, the algorithm becomes more specific, and more 

discriminatory. The first steps are primarily to reduce the number of comparisons 

required by the final stage, spatial matching. However, the reduction of blocks also 

increases the likelihood that those which make it to the final stage are contained by the 

object, thus increasing the overall accuracy. 
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5. Results 

This section evaluates the performance of the system. The tests performed are described 

in detail and their results presented. In some cases the results are used to compare 

different methods or data types, and select those which give the best performance. The 

results provide insight into the limitations present in the system. Below is a brief outline 

of the tests performed; more detail and the actual results are provided later in this section. 

A large number of tests were required to obtain thorough and meaningful results due to 

the complexity of the system. First the two main comparison techniques were evaluated 

against each other. The lesser performing technique was then examined to identify its 

flaws. The better technique was further tested to optimise some data types and variables; 

after which its capabilities for accuracy, speed, and learning were evaluated. 

The better performing technique was tested, with separate tests for each of its three 

stages, and a further test to evaluate its learning ability. The first test evaluates the 

effectiveness of the different blocks types, and removes those which do not provide 

sufficient benefit. The clustering and spatial matching performances are also evaluated. 

The learning ability is evaluated, and in the same tests a minimum learning set size is 

established. A minimum learning set size is required because the learning sets must have 

a number of images containing the object and a number which do not contain it. 

The system is run against multiple image sets to evaluate its performance over a diverse 

range of objects.  

The system is finally compared against some of the better performing systems developed 

by others, to identify any relative strengths or weaknesses. 

The majority of tests are performed on a custom image set. This set contains two database 

objects, and 100 test images (Figure 37, pg 104).  
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5.1. Test Method 

This section explains the methods used to test the performance of the system and its 

components. The tests have been chosen to isolate and evaluate both the overall results, 

and the performance of its component parts. 

Image Sets Used 

The test method used ‘target’ images and ‘scene’ images. The target images were of the 

objects, with optimal lighting and a bland background (according to human perception). 

The scene images sometimes contained the target object and sometimes not. They were 

‘real world’ images and contained background and foreground clutter accordingly. A 

look-up table was manually developed to record to what extent a target object was 

present. This showed a level of occlusion from 0% (clearly visible) to 100% (not present). 

Also recorded were images in which the object was observed from different viewpoints, 

and those with a lot of background clutter. 

5.1.1. Bit Descriptors vs Blocks 

Two different methods were tested and compared to select the better one. The purpose for 

this test is to benchmark the performance of both methods using the same test method and 

image sets. 

Both the block-comparison and bit-descriptor methods use spatial relationships between 

the line, lobe, and arc features. The main difference between them is that the bit 

descriptors only identify pre-programmed relationships; while the blocks are much more 

flexible and can represent the majority of two or three feature combinations. Exactly the 

same features are used for both the bit descriptor and block tests. 

Bit descriptors (pg 64) are represented as a single bit indicating whether the spatial 

relationship is present or not. The system uses 152 bit descriptors, representing 

relationships such as parallel lines, squares, symmetrical features, or many others.  

The block data type (pg 71) was designed to provide a scale- and rotation-invariant 

description for different feature groups. Each block represents the spatial relationships 
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between its features, as well as the shape of the individual features themselves. The 

parameters contain sufficient information to redraw the extracted features. 

Each descriptor or block found in a target image is assigned a 'weight' to show how 

strongly it is associated with the object. Both methods make use of a learning algorithm to 

assign these weights to the descriptors or blocks. The weights are calculated in the same 

way and are calculated for each object; which means that the same descriptor or block 

will have different weights when used with different objects. 

A target object descriptor/block’s weight is calculated (Equation 6) from two conditional 

probabilities; the probability that the descriptor/block is present given that the object is in 

the image, and the probability that it is present given that the object is not. This means 

that a learning subset requires a number of images both containing, and not containing, 

the object.  

����%�, #" ! &$ | ()* �$ #" ! &$� × �1 − ����%�, #" ! &$ | ()* �$ #" ! &$���� 

Equation 7. Block weight calculation 

The weight calculation’s exponent was obtained by manual adjustment to give the best 

results. The full image library was used as the learning set, to give the most accurate 

probabilities. It was found that lower exponents gave too much weight to common blocks 

and descriptors, which resulted in an increase of wrongly identified objects. Higher 

exponents resulted in only a few descriptors/blocks having significant weights—which 

were not enough for a definitive match—so objects were not identified. An exponent of 

20 provided a good balance. The bit-descriptors-versus-block-tests were performed with a 

number of different weight thresholds, to find the optimum threshold. The calculation can 

return values between zero and one, and those used for matching must achieve a 

minimum weight. 

Using our basic dataset of 100 images (Figure 37) both techniques were run and the 

identification rates were compared across different weight thresholds. Each test gave two 

results for each object; a ‘true positive rate’ which showed the proportion of objects 

identified in images that contained the object, and a ‘false positive rate’ which showed the 

proportion of objects wrongly identified in images that did not contain the object.  
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Figure 37. Custom 100 pictures dataset 

Two different versions of the block system were tested. In one case the blocks were 

generated from feature combinations across the image and in the second, only the features 

from the same contours were used to create blocks. It was thought using blocks created 

from only the same contours would ensure the features used came from the same object. 

The identification rates were plotted on two graphs for each method tested to show true-

positive rates and false-positive rates (Bit Descriptor vs Blocks, pg 118). Three different 

categories were used; bit-descriptors, blocks created from all features available, and 

blocks created from features on the same contour. The x-axes on both show the block 

weight threshold used. 
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5.1.2. Bit Descriptor Flaws 

Initial results showed poor performance from the bit descriptors. A test was run to see 

why the bit descriptors performed poorly. Knowing what caused the poor performance 

can help avoid similar flaws in the method used. 

Bit descriptors differ from blocks because they can only identify the relationships thought 

significant enough to write detectors for. A match score is given by adding the weights 

from descriptors found in both the scene and target images then dividing by the total 

weight of descriptors found in the target image, to give a weighted proportion. A score of 

zero indicates that no descriptors were found in both images; a score of one indicates that 

all target-image descriptors were found in both. 

If the descriptors do not have a strong association with the objects, it would account for 

the lower performance. The weighting is a measure of how strongly the descriptor is 

associated with the object, as it is calculated from the two conditional probabilities; how 

often it is found when the object is present and how often it is found without the object. 

Descriptors found only occasionally with the object will show little association, while 

those found often in images without the object show association but little selectivity. 

To evaluate how effective the various descriptors were, a histogram of the descriptor 

weights for the tested objects was plotted (Bit Descriptor Flaws, pg 122).  

5.1.3. Pairs and Triples Type Evaluation 

A block's ‘type’ refers to the combination of feature types it contains. Different 

combinations are likely to have different worth to the method. Identifying and removing 

block types that do not offer significant benefits will increase the system's speed. This 

test's purpose is to enhance the accuracy of the system by removing superfluous data 

types. The test also evaluates the effectiveness of the block matching step by itself. 

The method requires that the target object blocks be learned and stored. To obtain the 

most accurate block weights the full image set was used as the ‘learning subset’ to 

calculate the block probabilities. The optimal block weight threshold was identified from 
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the results of a previous test (Pairs and Triples Type Evaluation, pg 123); blocks with a 

weight below 0.1 were culled. 

The system compares the blocks generated for each scene image with those stored in the 

database for each target object. A score is assigned for each match of the database objects 

to each scene image. This score is calculated by adding the weights of the target object 

blocks found in each scene image, and dividing this by the sum of all the block weights 

for that target object; which gives a weighted proportion. This is then summed over all the 

matches. 

The block generation algorithm was modified to generate only a single type, so they 

could be evaluated separately. Tests were performed for each of the block types, and the 

scores obtained were presented in charts. To allow a threshold score to be determined a 

plot was made of the number of true and false positives against threshold score for each 

block type (Figure 47). 

High true-positive rates and low false-positive rates were desired across the threshold 

range. Also desirable was a wide, flat spot on the true-positive rates, to show that the 

threshold was not too sensitive. A numerical estimate of a block type's effectiveness was 

calculated from the area of the plots; the area under the true-positive lines divided by the 

area under the false-positive lines. 

The tests were repeated with a lower block weight threshold, to ensure that the results 

were consistent if more blocks remained in the system, which may be required by later 

matching stages. The same tests were repeated with the ensemble of block types. 

A small number of block types were removed from the system, and results gathered with 

this remaining set (Pairs and Triples Type Evaluation, pg 123). The performance of the 

now-reduced set of block types was compared with the full set, to ensure there had been 

no significant loss of accuracy. 
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5.1.4. Clustering 

The clustering test evaluates the performance of the clustering and cluster matching 

algorithms. 

The second stage in the matching algorithm is to find any groups of matched blocks with 

similar ‘transforms’. A transform is defined as the rotation, scale, and position change 

mapping a target block onto a scene block.  

The initial block-matching step records matched pairs of blocks that are in both the scene 

image and a target object. Each block in a matched pair contains scale, rotation, and 

position information that is used to calculate the transform. Although the clustering 

algorithm does not use the weights learned from the teaching set directly, only matched 

blocks with a high enough weight can make it to this stage.  

When calculating the transform, the scale and rotation parameters are calculated first. The 

scale proportion is calculated by dividing the scene block scale by the target block scale. 

The difference in angle is calculated by subtracting the target block direction from the 

scene image block direction. A direct comparison of the blocks position would contain 

changes introduced by the scale and rotation, these effect must first be removed. An 

example of this effect is a pure 180 degree rotation, a block located on the handle would 

show a position change equal to the cup width. To remove this dependency the inverse of 

the scale and rotation mappings are applied to the scene blocks, using the image centre as 

a scale and rotation centre. The direct comparison can now be performed. 

Ideally, the transforms for all the matched blocks for a target object in a number of scene 

images would be exactly the same. However due to image inconsistencies and algorithm 

imperfections, there will always be a small error. 

The clustering algorithm seeks to find those points that form a ‘cluster’ or closely spaced 

group of points. The cluster is in terms of the four parameters of the transform. The 

clustering algorithm seeks to identify groups that lie within four-dimensional spheres in 

four-dimensional transform space. The dimensions are normalised to give different error 

margins for each parameter. 
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A ‘quality-threshold’ clustering algorithm was used to find the clusters, it was chosen as 

it requires the maximum error to be specified for each parameter (Clustering, pg 93). The 

transform data was found to contain very few significant clusters (often one or none), 

with some scattered transforms not belonging to the object.  

The clustering algorithm selects a number of random points as ‘seed points’, to grow the 

clusters from. The centre value of the cluster or 'centroid' is set to the seed point. The 

closest point to the centroid is identified and added to the cluster, the centroid is then 

updated to reflect the average of all points with the cluster. For each cluster, points are 

added until no more are left within the specified error radius. 

The largest cluster is selected as the one most likely to represent a target object in the 

scene image, the remainder are discarded. The case of an image containing two target 

objects would yield different large clusters of significance; however the image sets used 

only contain a single instance of any object so this is not a concern at this time.  

If the cluster contains more than 15 transforms, the proportion of transforms in the cluster 

to total transforms is recorded as the cluster score. Fewer than 15 matched blocks is not 

considered enough for a definitive object match and the score is set to zero. 

The tests were performed without removing scene images with low scores in the initial 

matching step. This ensures that the performance of the clustering step will be less 

skewed by the results of the previous step. Normally only scene images that show a 

significant number of block matches with an object would be passed through to the 

clustering stage. 

As for Pairs and Triples Type Evaluation (pages 105 and 123), plots were made of the 

number of true positives and true negatives versus image score (Clustering, pg 107). 

Again, high true-positive rates, low true-negative rates and a wide, flat true-positive curve 

were considered desirable. 
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5.1.5. Spatial Matching 

The spatial matching test evaluates the performance of the spatial matching and spatial 

match comparison algorithms. 

The final matching stage is spatial matching, which compares the layout of all the 

matched block pairs. This ensures that the arrangement of blocks in the scene matches 

that of the target. 

The spatial matching step uses the blocks in the largest cluster. Although having a similar 

transform should mean the blocks will be in a very similar arrangement, the position 

transform's dependence on the calculated scale and rotation transform required large error 

margins. Matched block pairs that are not from the object can make it into the final 

cluster because of the larger error margins; spatial matching provides a way to remove 

these. 

The flexible design of blocks allows the creation of ‘derived blocks’ from two or more 

‘normal blocks’. The derived blocks provide a scale-/rotation-/position-independent 

representation of the relationship between the contained blocks. Blocks from the cluster 

come in pairs, one from the target, and one from the scene, and are thought to represent 

the same part of the object. Two pairs are used to create a derived block in both target, 

and scene image space. The derived blocks will only match if the contained blocks are in 

a similar arrangement in the target and scene images.  

To make it easy to identify which block pairs do not belong to the object, each pair of 

matched blocks is used to create ten derived blocks with other random pairs (Figure 38). 

If a matched pair is not a correct match, few of the ten derived blocks will match, and if it 

is a true match the majority of the derived blocks will match. Pairs of matched blocks that 

do not perform well over the ten matches are discarded. 
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Figure 38. Derived blocks creation process 

A is a target block, and A’ is a scene block that may match A. 

However there is still a chance that a derived block matches but its contained blocks are 

not from the object (false positive). A further step is taken to reduce this possibility, and a 

recursive algorithm is used to create derived blocks from previously derived blocks.  

The derived blocks are ranked by their match scores. A match-score for each block-pair is 

calculated by adding the match errors across all ten derived blocks. Those with an error 

too large are discarded. This reduced set of blocks is then used to form a number of 

second-order, derived-blocks from the matched-pairs. The best performing pair is 

matched with the second best; then third to fourth, fifth to sixth and so on until all blocks 

are contained in a derived block. In the example figure (Figure 39) the performance of the 

block-pairs are ranked as follows; A, E, C, D, down to the bottom two, F, and K.  

These second-order, derived blocks are then checked across ten random matches as 

before. Those that match well enough are used to create more (third-order) derived 

blocks, and so on, until one (nth-order) derived block contains all the normal blocks 

(through its layers of derived blocks) that have not been discarded. 



 

Figure 39. Next level derived blocks creation process

AE,CD is a second-order, derived block containing the two

The spatial match score is calculated by the number of normal blocks still present in the 
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. Next level derived blocks creation process 

derived block containing the two, first-order, derived blocks, AE and CD.

The spatial match score is calculated by the number of normal blocks still present in the 

he score is the number of normal blocks in the final derived block 

a percentage of those originally clustered. If there are fewer than ten b

considered enough to provide a definitive object match, and the score is set to zero.

blocks was found, through experimentation, to give the best results.

The tests were performed without a threshold on the block-matching step or the clustering 

step, so the performance of the spatial-matching step would not be skewed as much by the 

results of the previous steps. When performing a match instead of testing the system,

pass the selection criteria of the previous two stages would be passed through 

matching stage.  

Pairs and Triples Type Evaluation (pages 105 and 123), and Clustering (pages

), plots were made of the number of true positives and true negatives versus 

Spatial Matching, pg 129). Again, high true-positive rates, low true

-positive curve were considered desirable. 
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5.1.6. Supervised Learning to Establish a Subset Size 

The best size for the learning set was sought. The method learns by using a ‘teach subset’ 

of images to identify blocks that correlate with the object’s presence. This test evaluates 

the performance of the learning component, and recommends a suitable subset size for 

future use. This test also establishes the results of the full system on our image set. 

The method fundamentally responds to recognition of blocks. However, because some 

blocks are rarer than others and tend to occur only in the images of certain objects, these 

are given greater ‘weight’ than those that are common. 

It is therefore possible to develop a strategy to make use of the varying significance of 

each block. The number and type of images used in the teach subset will affect the results. 

Before testing different strategies to choose the images for the subset, we establish a 

minimum subset size. 

A target block’s weight is calculated (Equation 8) from two conditional probabilities; the 

probability that the block is present, given that the object is in the image, and the 

probability that it is present, given that the object is not. This means that the subset 

requires a number of images both containing, and not containing, the object.  

����%�, #" ! &$ | ()* �$ #" ! &$� × �1 − ����%�, #" ! &$ | ()* �$ #" ! &$���� 

Equation 8. Block weight calculation 

The exponent of the second term (20
th

 power) was obtained by trial and error to give the 

best results. The full image library was used as the learning set, to give the most accurate 

probabilities. The calculation can return values between zero and one, and blocks used for 

matching must achieve a minimum weight of 0.1. A threshold value of 0.1 was set to 

allow some blocks to be worth ten times as much as others, which allows some more 

common blocks to be of small use to the system. It was observed that lower exponents 

would allow too many common blocks, which increased wrongly identified objects. 

Higher exponents did not allow enough blocks to be present for a definitive match, and 

objects were not identified. An exponent of 20 provided good results in both areas. 
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The method attempts to match blocks found in the target image with blocks found in the 

scene images. The learning stage uses these matched blocks to calculate the two 

probabilities with reference to the object’s presence from the lookup table. More accurate 

probabilities (and therefore block weight) provide better results, so it is important to 

select the learning subset to reflect the rest of the image set. Object blocks that do not 

meet the minimum weight are discarded. 

The reduced set of object blocks is compared with the scene image blocks, and a score 

generated for each object and each image. This score is the sum of the weights of any 

target object blocks found in a scene image, divided by the sum of all weights for that 

object. For this test, an object with a score above the threshold value of 0.06 was 

considered present. The clustering and spatial matching steps were left out because they 

are not as sensitive to changes in block weight as the block-matching step. 

Several learning strategies were tried, including supervised where human judgement 

guided the evaluation of images and automatic where humans were not involved (Table 

16). In some cases, the full library was used for teaching the method; in others a subset. 

Each learning set gave two results for each object; a ‘true-positive rate’, which showed 

the proportion of objects identified in images that contained the object, and a ‘false-

positive rate’, which showed the proportion of objects wrongly identified in images that 

did not contain the object. 

The true- and false-positive rates were plotted for different learning set sizes (Figure 52, 

Figure 53). Also plotted were horizontal lines indicating the true-positive rates from the 

full library learnt test, to show the best case scenario in which the probabilities calculated 

reflected the whole image set. The two plots created show how the identification rates 

change when either the number of object containing images was increased, or the number 

of images without the object was increased. The learning subset images were chosen to 

either show the object with little occlusion or background clutter, or to provide a diverse 

range of images that do not contain the object. 
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A table was created to show how the different strategies performed (Table 16). The 

performance of each object is shown. The number of images in each set was determined 

by the previous plots (Supervised Learning to Establish a Subset Size, pg 131). 

Also evaluated and shown in the table was the performance when multiple objects were 

learnt using the same subset of images. It will simplify and speed up the learning process 

if there is no performance loss associated with multiple object learning. 

5.1.7. Alternate Image Sets 

To ensure the system works on different objects in different environments, it was tested 

on two other image sets.  

A second image set with five objects across 180 images was compiled for the purpose. 

The objects were set in a variety of poses, scales, and occlusion levels. The objects were 

exactly the same, and photographed from a very similar viewpoint. 

The images were categorised by the object's presence and level of occlusion. The levels 

used were; object not present, background clutter, not occluded, less than 25% occluded, 

and more than 25% occluded. 

A subset was chosen for the system to learn the objects with, according to the criteria 

specified in a previous test (Supervised Learning to Establish a Subset Size, pg 112 and 

131). The system was also allowed to learn with the complete set of images. 

Both tests were run and the results set out in a table with the proportion of objects found 

for each category. 

The third set tested was a portion of the Caltech-101 image set. This image set was 

developed by the California Institute of Technology to evaluate the effectiveness of 

algorithms designed to differentiate between classes of objects. Although this is better 

suited for use with class detector systems than our specific object detector, the majority of 

leading systems have been benchmarked against it. Only a sample of the image set was 

used due to the long learning and processing time of the system. The images in each 

category are more often not of the same exact object, which this system is not designed to 
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handle. This is why only a single test was performed using the same images for both the 

learning set and the test set.  

The Caltech-101 images were categorised by whether the object is present or not, so the 

results are not separated by different levels of occlusion. 

5.1.8. System Flaws for Alternate Image Sets 

Due to the poor performance on the alternate image sets, a more in-depth analysis of the 

second image set was carried out. The results are used to identify the system flaws, and 

recommend potential improvements. 

A program was developed to graphically analyse the blocks which did not match, and 

determine the reasons why. 

To provide an informative sample, blocks from the objects were selected at random. 

Images containing the object but missing the block were examined; i.e. false negatives.  

Ten instances of blocks without matches were selected for each block type, for each 

object. 

These block match errors were categorised into one of five reasons; block parameters that 

do not match, incorrect feature type, feature not found, feature not significant, and image 

occlusion. A block is recorded to have an unmatched parameter if the features making up 

the block are present and represent the appropriate points on the object in the scene 

image, but the block does not match. Incorrect feature types occur when there is a feature 

representing the appropriate part of the object in the scene image, but it is of the wrong 

type; i.e. an arc corner instead of a lobe corner. Features may be missing from the test 

image if they were not found at all, or they were removed as being not significant enough. 

An image occlusion is a valid reason for an object block to be missing from a scene 

image. 

The program provided random blocks for a user to classify into one of the five reasons. 

For the block error and insignificant feature reasons a block was created from user chosen 

features for further examination. In the case of insignificant features the block was 

matched against the object block, to better estimate how many matches were being lost by 
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discounting insignificant features. In the case of blocks that do not match, the parameter 

or parameters causing this were recorded. 

The results are collated and show the most common type of errors. An additional 

breakdown shows the distribution of match-failure-causing parameters. This is to 

highlight any cases in which the parameter threshold is too low. Blocks formed with 

scene image features found to be insignificant are matched against the object block, and 

rates calculated to reflect the likelihood of these providing successful matches. 
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5.2. Results and Discussion 

This section shows and evaluates the results from the tests outlined in the previous 

section. The meaning of the results are discussed and interpreted to evaluate the strengths 

and weaknesses of the system. 
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5.2.1. Bit Descriptor vs Blocks 

The graphs for each method show the relative performance of the different feature 

comparison methods. Each of the three methods has two lines; showing the results of the 

cup and mug objects. As the weight threshold increases, fewer blocks/descriptors are used 

by the system, but those left are of higher value. The ‘true positive rate’ indicates how 

often an object is found, in images where it is present. The ‘false-positive rate’ indicates 

how often an object is found, in images where it is not present. 

5.2.1.1. Bit Descriptor Performance 

Bit descriptors are user defined detectors for specific spatial relationships. 

 

Figure 40. True positive rates for bit descriptor method 
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Figure 41. False positive rates for bit-descriptor method 

The bit descriptors method shows a poor ability to detect objects at high descriptor weight 

thresholds. It also does not perform very well at lower thresholds. The two different 

objects have different false positive characteristics; the mug's start high and drop off 

while the tape's start low and peak then fall off again. In both cases the false positives 

show a similar trend to the true positive rates.  

5.2.1.2. Blocks from All-Features Performance 

Blocks are machine generated relationships used to compare any feature combination of 

two or three features. The all-features version compares blocks created from any features 

found within the image. 

 

Figure 42. True positive rates for all-features block method 
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Figure 43. False positive rates for all-features block method 

The blocks generated from all features method shows excellent performance for high 

block weight thresholds. The true positive rates start lower and increase as the block 

threshold is increased, then start to fall off slightly on the highest threshold. The false 

positives show a similar performance trend, with the best performance (lowest rate on 

both objects) seen at the 0.1 threshold, and worst performance seen at the 0.01 threshold. 

5.2.1.3. Blocks from a Single-Contour Performance 

Blocks are machine generated relationships used to compare any feature combination of 

two or three features. The single contour version compares blocks created from features 

found on the same contour. 

 

Figure 44. True positive rates for single-contour blocks method 
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Figure 45. False positive rates for single-contour blocks method 

The blocks generated from features on the same contour method shows good performance 

for high block weight thresholds. The true positive rates start slightly lower and increase 

slightly as the block threshold is increased, then start to fall off on the highest threshold. 

The false positives show poor performance, with the best performance (lowest rate on 

both objects) seen at the 0.2 threshold where the true positives are starting to decline. The 

false positives show the worst performance at the 0.1 threshold, when the true positives 

are performing best. 

5.2.1.4. Comparison Between Methods 

The two graphs from each of the methods were used together to select the method with 

the highest true-positive rates and lowest false-positive rates, and to select the weight 

threshold to give the best results. 

The pairs-and-triples, true-positive rates for both objects show the highest results at the 

higher threshold levels, with the single-contour, pair-and-triples rates trailing slightly 

behind. The bit-descriptor true-positive rates show a large decline as the block-weight 

threshold is decreased, showing this method does not offer such a high level of 

discrimination. 

The pairs-and-triples results show the best performance in the false-positive tests as well, 

declining to zero at one of the block-weight thresholds before a slight rise for the mug 

object. The pair and triples from the same contour show much higher false positives 
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across the range of block-weight thresholds. The bit descriptors show higher false-

positive rates initially, declining to none at higher block weight thresholds. 

The pairs-and-triples results are significantly better than the other methods across the 

range of thresholds and objects. These results show promise with over 90% true positives, 

and no false positives. The optimum threshold to maximise true-positives and minimise 

false positives for this method can be seen at 0.1. 

Limitations of results 

The tests were performed on one dataset, containing two objects in an office environment, 

so it does not provide a large spectrum of real world objects and scenes. However there is 

no indication that any one of the systems should perform better than the others in 

different environments. 

5.2.2. Bit Descriptor Flaws 

The histogram shows the distribution of bit-descriptor weights for each object. The 

algorithm assigns a zero weight to any bit descriptor found more often in images that do 

not contain the object than those that do. The majority of the 0 - 0.01 weight range had a 

weight of zero, so have a negative, or no, association with the object.  

 

Figure 46. Bit-Descriptor weight histogram 
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The majority of descriptors fall within the 0 - 0.01 weight range. Only a few have a 

positive association with the objects and in most cases this is still very weak. This means 

that, individually, the bit-descriptors are a very poor way to discriminate between 

different objects. The poor results for the bit-descriptors collectively in the previous test 

are caused by the poor individual performance. 

Limitations of results 

A histogram of the bit-descriptor weights does not give insight into the performance of 

specific bit descriptors. However, it does show that overall there are very few descriptors 

with a high weight, suggesting the fatal flaw is not with a few specific descriptors, but 

with the method itself. 

5.2.3. Pairs and Triples Type Evaluation 

The graph shows how the true-positive, and false-positive, rates change with the match-

score threshold. True-positive rates (TP) are the percentage of images that contained the 

object, and in which the object was found. False positives (FP) are the percentage of 

images that do not contain the object, but in which the object was found. Each image is 

given a 'block score' according to how many blocks match the database object.  
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Figure 47. Example discrimination graph 

True positive rates close to 100% and false-positive rates around 0% are desired. The area 

under each line is used to assess the performance across the range of block-score 

thresholds. 

The graph shows both true- and false-positive rates declining for the objects. By the time 

the false positives have declined to 0, the true positives are around 45% for the Tape, and 

90% for the Mug. The true-positive rates do not show any wide flat portions suitable for a 

threshold selection. The above graph is just for one type of block, the results from all the 

block types are shown later in this section (Figure 48). 

The tables below summarises the graphs for the different block types. The desirable ‘flat 

portions’ can be approximated numerically by calculating the areas under the two true-

positive lines (one for each test object). The false positive effects are quantified in the 

same way. The ratio of the two areas is used as a measure of how useful each block type 

is to the system.  

Two tables were created for different block-rating thresholds; this refers to the minimum 

‘usefulness’ of the individual blocks stored in the object database.  
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Table 14. Block type effectiveness comparison (rating >0.1) 

Block Rating Threshold 0.1   

Type TP Area FP Area Ratio 

ArcLobe 1271 0 MAX 

LineLine 1044 0 MAX 

LineArc 695 0 MAX 

ArcArc 832 0 MAX 

LineCircleLobe 374 1 374 

LobeLobeCircle 763 4 190.75 

LobeLobeLobe 497 3 165.6667 

LineLobeLobe 308 3 102.6667 

LobeCircleCircle 517 6 86.16667 

CircleCircleCircle 442 13 34 

LineCircleCircle 352 15 23.46667 

LineLineLobe 1534 66 23.24242 

LineLobe 0 0 None 

LobeLobe 0 0 None 

LineLineLine 0 0 None 

LineLineCircle 0 0 None 

 

Table 15. Block type effectiveness comparison (rating > 0.05) 

Block Rating Threshold 0.05   

Type TP Area FP Area Ratio 

LineArc 300 0 MAX 

LobeLobe 200 0 MAX 

LineCircleCircle 159 0 MAX 

LineCircleLobe 185 0 MAX 

LineLobeLobe 168 0 MAX 

LobeLobeCircle 462 1 462 

ArcArc 558 2 279 

LobeLobeLobe 356 2 178 

LobeCircleCircle 370 3 123.3333 

LineLine 854 18 47.44444 

CircleCircleCircle 247 7 35.28571 

ArcLobe 925 57 16.22807 

LineLineLobe 1571 177 8.875706 

LineLobe 1800 400 4.5 

LineLineCircle 1570 387 4.056848 

LineLineLine 0 0 None 
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Although a lot of types do not have large true-positive area, a lack of false-positive area 

means they still contribute to higher scores when combined with the other types. The 

results from the tables show most block types contribute positively to the system, and 

only a few should be removed. Only those with no ‘TP Area’ were removed from the 

system. 

The two graphs below show the performance of the system before and after removing 

some of the block types. Again, the graphs show how the true-positive, and false-positive, 

rates change with the match-score threshold. 

 

Figure 48. Discrimination graph for all types of block 
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Figure 49. Discrimination graph for all block types left in the system 
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contribute either positively or negatively to the results. However, their removal will speed 

the process up. The results themselves are promising; with over 95% true positives once 

the false positives have fallen to zero. There is no wide flat portion on the true positive 
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The previous graph was also used to determine the optimal block score threshold, where 

the false positives have fallen to zero. This occurs at a block-score of 0.006 
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Limitations of results 

The block types were evaluated on sets with the same learning images as the test images. 

This means the learning ability of the different types is not tested across different subset 

groups of images, or whether learning from a subset gives similar results to learning from 

the complete set. It is not expected that different types of blocks will have significantly 

different learning abilities so these two factors are tested later on (Supervised Learning to 

Establish a Subset Size, pg 131). 

5.2.4. Clustering 

The graph shows how the true- and false-positive rates for the clustering part of the 

system vary according to the match score threshold. The cluster score is calculated 

according to how many matched pairs of blocks are grouped by the same rotation, scale, 

and translation information. 

 

Figure 50. Cluster performance curves 
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declined to 0, the true positives are around 70% for the Tape, and 90% for the Mug. 

Compared with the block performance charts (Figure 49) there are fewer false positives, 

and a wider flat portion of true positives for both objects. However, due to the minimum 

cluster size, even at the lowest cluster-score thresholds neither of the objects is found 

100% of the time. These results are good, but there is still room for improvement with 

another matching step. 

The threshold for the cluster score was chosen from the previous graph, at 0.15 the false 

positives have almost dropped to zero, while the true positives are still up around 90%. A 

minimum cluster size of 15 was also selected by observation. 

Limitations of results 

The performance of the clustering system cannot be completely independently evaluated, 

as it relies on the previous block matching process to find a significant number of blocks, 

containing few false positives. All images are passed through to the clustering stage even 

if they do not meet the block-score threshold, which may introduce a few more false 

positives but ensures any true positives rejected are due to the criteria of this matching 

stage. The results of those tests (Figure 49) suggest it does this adequately, however better 

results there would likely follow through to this part as well. 

5.2.5. Spatial Matching 

As for previous charts, the graph shows how the true-positive and false-positive rates for 

the spatial matching part of the system vary according to the match score threshold. The 

spatial match scores are calculated according to how many blocks are used in the final 

derived block, thus matching in relative position, scale, and direction between the viewed 

image and the object database. 
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Figure 51. Spatial Match performance curves 

The true-positive rates show much wider flat portions across a large range of block 

thresholds, followed by steeper declines than any of the previous graphs. This indicates 

the spatial-matching step is not as sensitive to threshold selection, provided a value 

corresponding to the flat portion of the true-positive curves is selected. There are a few 

false positives persistent across most of the range; however it is expected these will be 

removed when thresholds are applied to the previous clustering and block matching 

stages. Greater than 80% for the Tape object, and over 95% for the Cup are very good 

results. 

The spatial-match threshold score was selected as 0.25, which is where the true positives 

start to decline. Also chosen was a minimum spatial-match group size of 10, found by 

observation.  

Limitations of results 

The performance of the spatial matching system relies on the previous block matching 

process and clustering algorithm to provide a suitable cluster to begin with. All images 
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are passed through to the spatial matching stage even if they do not meet the block-score 

or cluster-score thresholds, which may introduce a few more false positives but ensures 

any true positives rejected are due to the criteria of this matching stage. Again, the results 

of those tests (Figure 49, Figure 50) suggest they do this adequately, however better 

results in those tests would be likely to contribute to better results in this test as well. 

5.2.6. Supervised Learning to Establish a Subset Size 

The two graphs below illustrate how the number of objects in the learning set affects the 

proportions of true and false positives found. True-positive rates (TP) are the percentage 

of images that contained the object, and in which the object was found. False positive 

rates (FP) are the percentage of images that do not contain the object, but in which the 

object was found. 

 

Figure 52. Learning set size, object image count 
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Figure 53. Learning set size, no-object image count 
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Table 16. Learning set selection methods 

  

Not 

Present 

Background 

Clutter 

Not 

Occluded 

<25% 

Occlusion 

<50% 

Occlusion 

>50% 

Occlusion 

>18deg 

rotation Total There (not inc >18deg) 

User Chosen                 

Cup % 0% 100% 100% 100% 80% 50% 0% 93% 

Tape % 0% 40% 68% 67% 75% n/a 33% 66% 

Machine Chosen  

Worst Result                 

Cup % 0% 100% 100% 100% 75% 100% 33% 96% 

Tape % 0% 75% 62% 0% 0% n/a 0% 46% 

Machine Chosen Worst  

Unoccluded Result                 

Cup % 0% n/a 100% 92% 60% 50% 33% 85% 

Tape % 0% 75% 60% 0% 0% n/a 33% 43% 

 

Table 17. Combined learning results 

  

Not 

Present 

Background 

Clutter 

Not 

Occluded 

<25% 

Occlusion 

<50% 

Occlusion 

>50% 

Occlusion 

>18deg 

rotation Total There (not inc >18deg) 

Separate Tests                 

Cup % 0% 100% 100% 100% 80% 50% 0% 93% 

Tape % 0% 40% 68% 67% 75% 0% 33% 66% 

Combined Test                 

Cup % 0% 100% 100% 100% 80% 50% 0% 93% 

Tape % 4% 60% 63% 67% 88% 0% 33% 69% 
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Although there is a breakdown by occlusion level, the ‘total there’ column provides the 

best indication of accuracy. The user chosen set shows the best performance for learning 

set selection. Combining the two sets into one actually slightly improved the results over 

having separate learning sets for each object. It is convenient that the user chosen set 

showed the best results, as it will be the quickest and easiest method to use. Also useful is 

the combined learning attribute, as this means the system can use other database object 

images to learn new objects put into the database. 

Limitations of results 

The choice of images for the learning sets will affect the results. The images chosen for 

the learning size tests started with those that appeared to have the best characteristics, and 

got slightly worse due to elimination. This is especially evident in Figure 52 where the 

false-positive rate for the cup appears to increase when more object images are added.  

5.2.7. Alternate Image Sets 

The following three tables show the proportion of times the object is correctly or 

incorrectly identified; categorised by different occlusion levels for the second set we 

developed, or by whether an object of the class is present for the Caltech-101 sample. 

Table 18. Second Set Full Learning Set Performance 

Object Type Not 

Present 

Background 

Clutter 

Not 

Occluded 

<25% 

Occlusion 

>25% 

Occlusion 

Total 

There 

Micrometer 0% 0% 56% 50% 25% 33% 

Mini Vise 0% 0% 56% 83% 0% 39% 

Motorcycle 

Sculpture 

0% 25% 50% 67% 50% 44% 

Vise Grips 1% 17% 63% 0% 0% 33% 

X360 Controller 0% 40% 89% 100% 100% 78% 

The results for the second image set using the whole set to learn from show between 33 

and 78 percent true positive rates, with only one object showing a false positive. The true-

positive rates are lower than is desirable, and a lot lower than the previous tests, 

suggesting some part of the algorithm does not deal with the newer objects or images 

very well. 
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Table 19. Second Set Subset Learning Performance 

Object Type Not Present Background 

Clutter 

Not 

Occluded 

<25% 

Occlusion 

>25% 

Occlusion 

Total 

There 

Micrometer 0% 0% 50% 75% 0% 31% 

Mini Vise 0% 8% 44% 83% 0% 36% 

Motorcycle 

Sculpture 

0% 33% 75% 50% 50% 56% 

Vise Grips 0% 0% 50% 0% 0% 22% 

X360 Controller 0% 20% 78% 100% 50% 64% 

The results for the second image set using only a subset to learn from show between 22 

and 64 percent true-positive rates, with no false positives. The true-positive rates are 

lower than is desirable, and unlikely to be of practical use. Again, suggesting some part of 

the algorithm does not deal with the newer objects or images very well. 

Table 20. Caltech-101 Sample Object Class Performance 

Object Class 

Examined 

False Positive Rate True Positive 

Rate 

Accordion 0% 0% 

Anchor 0% 5% 

Bass (fish) 0% 2% 

Binocular 0% 3% 

Brain 0% 2% 

Buddha 0% 1% 

Camera 0% 4% 

Five percent or lower recognition rates are completely unusable. Even though the Caltech 

set uses different object of the same type (rather than the same object and very similar 

viewpoint this system is designed for), better results were still expected.  

Limitations of results 

The Caltech set is much more suited towards class detection systems than our specific 

object recognition approach, which is reflected in the results.  
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5.2.8. System Flaws for Alternate Image Sets 

The table shows the reasons individual blocks did not match where they should have. A 

random selection of blocks was manually analysed to generate the results. Ideally, the 

only type of error in the system would be from image occlusions. ‘Block does not match’ 

means the block parameters are outside the acceptable error ranges. ‘Incorrect feature 

type’ means there is a feature present in the right place but it is of the wrong type; i.e. 

instead of an arc, it might be a lobe. ‘Feature not significant’ means the feature was 

discarded due to not lying on enough contours. 

Table 21. Categorised Error Results 

 Block Does 

Not Match 

Image 

Occlusion 

Incorrect 

Feature Type 

Feature 

Not Found 

Feature Not 

Significant 

Error Totals 64 67 34 257 58 

Error 

Percentages 

13% 14% 7% 54% 12% 

The most common error was ‘feature not found’; with the others being much less 

frequent. Features not being found shows that there is a problem with the feature 

extraction algorithm, one of the initial stages of the system. 

To illustrate the potential improvement if the insignificant features were retained (at great 

computational cost), the table below shows match rates for user specified blocks 

containing features previously deemed not significant enough. 

Table 22. Match Rates of Assembled Blocks using Insignificant Features 

 Match Rate 

Arc Lobe 50% 

Line Line 0% 

Line Line Lobe 0% 

Line Circle Circle 0% 

Line Circle Lobe 50% 

Line Lobe Lobe 0% 

Lobe Circle Circle 0% 

Lobe Lobe Circle 20% 

Lobe Lobe Lobe 19% 

Circle Circle Circle 33% 

Match Rate Over All Types 17% 
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In most cases these features do not match anyway; so their inclusion is unlikely to be of 

noticeable benefit to the object matching performance. 

The following table shows how well-distributed the parameter errors are. If a parameter 

has a disproportionate number of errors, its error threshold for block matching might be 

too sensitive. 

Table 23. Parameter Error Proportions 

Block Type Parameters Errors Maximum Errors for 

a Single Parameter 

Percentage of Total 

Errors for a Single 

Parameter 

Arc Lobe 5 8 3 38% 

Line Line 4 15 9 60% 

Line Arc 7 30 6 20% 

Arc Arc 8 4 2 50% 

Line Line Lobe 11 33 6 18% 

Line Circle Circle 7 26 6 23% 

Line Circle Lobe 12 16 4 25% 

Line Lobe Lobe 14 62 12 19% 

Lobe Circle Circle 11 18 5 28% 

Lobe Lobe Circle 15 21 6 29% 

Lobe Lobe Lobe 18 73 9 12% 

Circle Circle Circle 6 16 4 25% 

It can be seen from the table that higher percentages for a single parameter generally 

correspond to the block having fewer parameters, which is to be expected. Sensitive 

parameter block-match thresholds are unlikely to be causing the poor results. 

Limitations of results 

The categorisation of errors and construction of additional blocks was done by a human’s 

best match, and some human errors may have been introduced. 

  



 

138 
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6. Conclusions 

6.1. Bit Descriptor vs Blocks 

The blocks method of comparing the object features performed significantly better than 

the bit descriptors method.  

The bit descriptor’s true- and false-positive rates were worse than the blocks system for 

nearly every test. The true positives from the bit descriptors declined rapidly as the 

weight threshold was increased, while the block systems showed an increase. 

The block results were from two slightly different strategies, one which formed blocks 

from features across the image, while the other used only features from the same contour. 

The set using features from the whole image performed consistently better, so this method 

was used. 

An optimal block weight threshold can also be deduced from these results. The optimal 

weight for both true and false positives on the chosen block system is at 0.1. Both the 

highest true-positive rates and lowest false-positive rates occurred at this threshold. 
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6.2. Bit Descriptor Flaws 

The results were presented by a histogram of the bit weights. Out of 152 descriptors, 

many were found more often in images without the object, and were of no use for that 

object. The majority of those left had only a low block weight, thus had little correlation 

with the object’s presence. The main flaw of the bit descriptor system is that the 

descriptors are not specific enough to each object. Perhaps with a much larger number of 

descriptors their combined effect would be promising; however writing the detectors 

would be very time-consuming. 
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6.3. Pair and Triples Type Evaluation 

The performance of the different block types is evaluated using the ratio of true positives 

to false positives across a range of block score thresholds. The different block types are 

characterised by the type and number of features contained within. The test was 

performed twice at different block weight thresholds as well, to ensure the results were 

consistent. Four block types were found that offered very little or no benefit to the system 

for both block weight thresholds. The types were; Line-Lobe, Lobe-Lobe, Line-Line-

Line, and Line-Line-Circle. These were removed to save calculation time. 

The same test was used to record the performance with all blocks present, and after 

removing the four block types. These graphs were very nearly identical; and it was 

concluded the removed block types did not affect the match rates of the system. 

The graph after the four block types were removed was used to determine the optimal 

block score threshold. This occurs when there are a high rate of true positives, and only a 

few false positives; which can be seen at 0.006. This value was used as the weighted 

proportion of object blocks required to be in the viewed image for the system to move 

onto the next match stage. The gradual slopes of the true-positive rates suggest there is a 

large range of block scores where it is difficult to say with any certainty whether the 

object is present from the block score alone. 
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6.4. Clustering 

The clustering performance was shown with true- and false-positive rates for each object, 

against the cluster score threshold; similarly to the previous tests. The clustering 

performance shows true-positive rates with steeper slopes than the block-score test. 

However the true-positive rates still degrade significantly as the cluster-score threshold is 

increased to remove the false positives, requiring another match step to get good results. 

A value of 0.15 was chosen as the cluster match threshold, along with a minimum cluster 

size of 15. These values ensure the majority of images containing objects are passed to 

the spatial matching system, and include few images without the object. 
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6.5. Spatial Matching 

The spatial matching performance was shown with true- and false-positive rates for each 

object, against the spatial match score threshold; similar to the previous tests. The spatial 

matching results show the widest flat portion and steepest true positive rate curve yet. 

This suggests more match certainty, and less sensitivity to threshold selection provided 

the threshold is selected from the flat portion. The threshold score selected was 0.25, with 

a minimum number of 10 block transforms required for an object to be considered 

present. 
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6.6. Learning Ability 

The two graphs (Figure 52, Figure 53) show how the system results are affected by the 

number of images either containing or not containing the object. 

More images containing the object increase the rate of true positives. Although it appears 

the number of false positives increases as well, this is due to the order in which the 

images were selected. The best looking images were added to the group first, and the 5
th

 

was not as good a representation as the first. When the 5
th

 and 2
nd

 images were swapped, 

the false positives rose sharply then declined. 

As the number of images which do not contain the object is increased, the number of false 

positives declines, and the true positives also show a slight decline. This decline is due to 

some of the object blocks being found in the added images, thus reducing their weight. 

From the graphs the minimum learning set size was determined to be 4 images containing 

the object, and 9 images without it. 

Also tested were different strategies to select the images, consisting of two machine 

chosen methods, and one user chosen. The machine chosen methods selected the image 

with the most error, and added it to the learning set. One of the machine chosen methods 

only used object images that were un-occluded. The user chosen images were of diverse 

objects and background when the object was not present, and uncluttered, un-occluded 

images of the object. 

The user chosen method shows slightly better results, and is far quicker than the machine 

chosen methods, and will be used hereafter. 

When the learning sets for multiple objects were combined the results show little 

difference. In these cases there were four images from each object, and nine images 

containing neither. This ability speeds up the learning process for learning sets with 

multiple objects, but more importantly allows an object to be quickly added to an existing 

database using the other database objects as images not containing the added object 
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6.7. Alternate Image Sets 

The results for the two other image sets run through the system are poor, and there are 

obviously some flaws present. Although the Caltech-101 set is better suited for class 

detectors, the few percent true-positive rates are still unacceptably low. The second set we 

compiled is far more suited to this system, but still shows poor results, with the majority 

of objects found in less than half the object containing images. 
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6.8. System Flaws for Alternate Image Sets 

The system flaws test allocates the results into one of five main categories. Over half fell 

into the feature not found category, which is far worse than the previous Feature 

Extraction Test on page 57. This suggests a problem with the feature extraction 

algorithm, unfortunately this is also the first process, and problems there may contribute 

to errors attributed to other categories. The feature extraction problem is likely to be 

caused by the system not adapting to the colour/size/content of the images in the alternate 

sets. 

The table shows the potential benefits of allowing the ‘insignificant’ feature to remain in 

the system. Few of the blocks created from manually identified insignificant features 

match, suggesting simply increasing the number of features used to create blocks will do 

little more than slow the system down. 

The final results were designed to highlight any parameter with error thresholds that were 

too low, however the distributions were not uneven, so error thresholds are unlikely to be 

a significant problem.  
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6.9. Overall Conclusion 

As the system stands, it is not a satisfactory solution to the problem. However, specific 

object recognition is a very difficult problem that has yet to be solved. The system 

contains many parts which utilise high level data types to perform the comparison, some 

of which may be eventually used to solve the problem. 

Three similar approaches were attempted in this work, bit descriptors, and two sorts of 

pair and triple blocks. All three approaches use geometric features extracted from 

isoluminal contours. Through the methodology and results, this work provides insight 

into the strengths and weaknesses of these methods. 

The results across the set it was developed with are very good, showing it has potential to 

solve the problem. If the system can be developed further to work as well on other sets as 

it does on the development set, it would be an attractive solution to the problem of 

specific object recognition. 
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7. Recommendations 

The feature extraction part of this algorithm is not up to a standard to make it of any 

practical use. It is recommended that this is improved if possible, or replaced with a more 

reliable method. 

The block system could even be adapted to work with completely different feature types, 

as long as they still have a direction, position, and size within the image. While the block 

system's performance cannot be reliably established due to the substandard feature 

extraction in some image sets; it did work well when there was good feature data. 
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8. Appendix A – Bit Descriptor List 

1-5 Parallel Line Pairs 1-3 RS Centers coincident with 2 others 

6-10 Parallel Line Pairs >3 RS Centers coincident with 2 others 

>10 Parallel Line Pairs 1-3 RS Centers coincident with >2 others 

1-3 Sets of 3 Line Parallel Groups >3 RS Centers coincident with >2 others 

>3 Sets of 3 Line Parallel Groups 1-3 Symmetrical Lobes 

1-3 Sets of 4 Line Parallel Groups 4-8 Symmetrical Lobes 

>3 Sets of 4 Line Parallel Groups >8 Symmetrical Lobes 

1-3 Sets of >4 Line Parallel Groups 1-2 Lobe Cornered Squares 

>3 Sets of >4 Line Parallel Groups >2 Lobe Cornered Squares 

1-3 Sets of 3 Line Parallel Series 1-2 Lobe Cornered Triangles 

>3 Sets of 3 Line Parallel Series >2 Lobe Cornered Triangles 

1-3 Sets of 4 Line Parallel Series 1-2 Lobe Cornered Parallelograms 

>3 Sets of 4 Line Parallel Series >2 Lobe Cornered Parallelograms 

1-3 Sets of >4 Line Parallel Series 1-3 Right Angle Lobe Symmetry Pairs 

>3 Sets of>4 Line Parallel Series >3 Right Angle Lobe Symmetry Pairs 

1-2 Circles 1-3 Right Angle Line-Lobe-Line Tangents 

Groups 

3-6 Circles >3 Right Angle Line-Lobe-Line Tangents Groups 

>6 Circles 1-3 Line-Lobe-Line Tangents 

1-2 Squares 4-8 Line-Lobe-Line Tangents 

3-6 Squares >8 Line-Lobe-Line Tangents 

>6 Squares 1-3 Parallel Lobe Symmetry Pairs 

1-2 Triangles >3 Parallel Lobe Symmetry Pairs 

3-6 Triangles 1-3 Parallel Arc Symmetry Pairs 

>6 Triangles >3 Parallel Arc Symmetry Pairs 

1-2 Parallelograms 1-2 Equal Sided Parallelograms 

3-6 Parallelograms >2 Equal Sided Parallelograms 

>6 Parallelograms 1-2 Equal Sided Squares 

1-3 Symmetrical Lines >2 Equal Sided Squares 

4-8 Symmetrical Lines 1-2 Equal Sided Triangles 

>8 Symmetrical Lines >2 Equal Sided Triangles 

1-3 Symmetrical Arcs 1-2 Circle Segments (Ds) 

4-8 Symmetrical Arcs >2 Circle Segments (Ds) 

>8 Symmetrical Arcs 1-10 LobeLobe Tangent Pairs 

1-3 Axis of Symmetry with 2 Pairs of features >10 LobeLobe Tangent Pairs 

>3 Axis of Symmetry with 2 Pairs of features 1-3 LobeLobes with equal start/end tangents 

1-3 Axis of Symmetry with 3 Pairs of features >3 LobeLobes with equal start/end tangents 

>3 Axis of Symmetry with 3 Pairs of features 1-3 Lobelobes with 90 degree, and equal SE 

tangents 

1-3 Axis of Symmetry with >3 Pairs of features >3 Lobelobes with 90 degree, and equal SE 

tangents 

>3 Axis of Symmetry with >3 Pairs of features 1-2 Arc Line Tangents Mid Arc 

1-3 Sets of 2 Concentric Arcs >2 Arc Line Tangents Mid Arc 

>3 Sets of 2 Concentric Arcs 1-3 Line-Arc-Line Tangents 

1-3 Sets of 3 Concentric Arcs >3 Line-Arc-Line Tangents 

>3 Sets of 3 Concentric Arcs 1-3 Lobe Arc Tangents 

1-3 Sets of >3 Concentric Arcs >3 Lobe Arc Tangents 

>3 Sets of >3 Concentric Arcs 1-3 Arc Arc Tangents 

1-2 Arc Cornered Squares >3 Arc Arc Tangents 

>2 Arc Cornered Squares 1-3 Arc-Line-Arcs 

1-2 Arc Cornered Triangles >3 Arc-Line-Arcs 
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>2 Arc Cornered Triangles 1-3 180 degree Arc-Line-Arcs 

1-2 Arc Cornered Parallelograms >3 180 degree Arc-Line-Arcs 

>2 Arc Cornered Parallelograms 1-3 Lobe-Line-Lobes 

1-3 Right Angle Arc Symmetry Pairs >3 Lobe-Line-Lobes 

>3 Right Angle Arc Symmetry Pairs 1-3 180 degree Lobe-Line-Lobes 

1-3 Right Angle Line Symmetry Pairs >3 180 degree Lobe-Line-Lobes 

>3 Right Angle Line Symmetry Pairs 1-3 Arc-Lobe-Arcs 

1-3 Parallel Line Symmetry Pairs >3 Arc-Lobe-Arcs 

>3 Parallel Line Symmetry Pairs 1-3 Lobe-Arc-Lobes 

1-3 Right Angle Line-Arc-Line Tangents Groups >3 Lobe-Arc-Lobes 

>3 Right Angle Line-Arc-Line Tangents Groups Line Line Included angle 10-20 degrees 

1-3 Line-Arc Tangents Line Line Included angle 20-30 degrees 

4-8 Line-Arc Tangents Line Line Included angle 30-40 degrees 

>8 Line-Arc Tangents Line Line Included angle 40-50 degrees 

1-3 Rotationally Symmetric Line Pairs Line Line Included angle 50-60 degrees 

>3 Rotationally Symmetric Line Pairs Line Line Included angle 60-70 degrees 

1-3 Rotationally Symmetric Arc Pairs Line Line Included angle 70-80 degrees 

>3 Rotationally Symmetric Arc Pairs Line Line Included angle 80-90 degrees 

1-3 Rotationally Symmetric Lobe Pairs Line Line Included angle 90-100 degrees 

>3 Rotationally Symmetric Lobe Pairs Line Line Included angle 100-110 degrees 

1-3 Rotational Symmetry Groups of 2 Pairs Line Line Included angle 110-120 degrees 

>3 Rotational Symmetry Groups of 2 Pairs Line Line Included angle 120-130 degrees 

1-3 Rotational Symmetry Groups of 3 Pairs Line Line Included angle 130-140 degrees 

>3 Rotational Symmetry Groups of 3 Pairs Line Line Included angle 140-150 degrees 

1-3 Rotational Symmetry Groups of >3 Pairs Line Line Included angle 150-160 degrees 

>3 Rotational Symmetry Groups of >3 Pairs Line Line Included angle 160-170 degrees 

1-3 RS Centers coincident with 1 other 1-3 Arc centers on angle bisectors 

>3 RS Centers coincident with 1 other >3 Arc centers on angle bisectors 
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