Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. SOME EFFECTS OF NITRATE AND AMMONIUM NITROGEN ON THE MINERAL COMPOSITION OF PASTURE GRASSES

By. P. R. Ball - 1966 -

Submitted as part fulfilment of the requirements for the degree of M. Agr. Sc. in Soil Science

> Massey University, Palmerston North, New Zealand.

> > , 100 - 73

TABLE OF CONTENTS

		<u>Page</u>
I	INTRODUCTION]
II	LIPERATURE REVIEW	
	A SOIL NITROGEN	
	1 Introduction	2
	2 Nitrogen Regime Under Grasslands	2
	(a) General	2
	(b) Seasonal Rhythm in N Form	3
	(c) Soil Factors	7
	B UPTAKE, UTILIZATION AND ACCUMULATION OF MAJOR ELEMENTS BY PLANTS	12
	l Introduction	12
	2 Nitrogen Metabolism in Non-legumes	12
	(a) Introduction	12
	(b) Sources of Nitrogen	13
	(c) Assimilation of Mineral Mitrogen by Plants	14
	3 Nitrate <u>versus</u> Ammonium in Plant Nutrition	19
	(a) Factors Affecting the Relative Efficiency of N forms	19
	(b) The Effects of NO and NH ₄ on Plant Composition 3	28
	4 Ionic Balance in Plant Tissues	33
	(a) Introduction	33
	(b) Determining Ionic Balance	34
	(c) Tissue pH	37
	(d) Organic Acids in Plant Tissues	39

		See at worder 7. Ober anne det en alle Tanda	Page
	(e)	Experimental Observation of Ionic Balance	43
	(<u>f</u>)	Ionic Balance in Tissues in Relation to N Form	58
	(g)	Root CEC and N Metabolism	68
	(h)	Conclusions	69
5		erionic Relationships in Ryegrass bage	70
	(a)	Introduction	70
	(b)	R_values as a Constant	71
	(c)	Factors Affecting R_value	72
	(d)	Maxima Recorded for R-value	78
	(e)	Interactions Between Elements During Uptake	79
C		HODS WAICH MAY BE USED FOR THE PROVISION HO3 OR MH4 DURING EXPERIMENTS	82
l	The	Problems	82
	(a)	pH Stabilisation	82
	(ъ)	Associated Ions	82
	(c)	Element Availability	82
2	Soi:	L Experiments	83
	(a)	Fertilizers	83
	(b)	"H-Serve"	84
	(c)	pH Stabilisation	86
	(d)	Associated Ions	87
3	Solı	ution Culture	88
	(a)	Sand Cultures	88
	(ъ)	Flowing Cultures	89
	(c)	Static or Periodically-renewed Culture Solutions	89
	(d)	Discussion	92

				<u>Page</u>
	4	Conclusions		94
III	EX	BRIMENTAL		95
	1	Experimental Design		95
		(a) Introduction		95
		(b) Experiment I		97
		(c) Experiment II		97
		(d) Experiment III		97
	2	Grasses		97
	3	Soil		98
	4	Preparation of Soil, and Cultur	e Solutions	99
		(a) General		99
		(b) Experiment I		100
		(c) Experiment II		101
		(d) Solution Culture: Experim	ent III	103
	5	Planting		108
		(a) Experiments I and II		108
		(b) Experiment III		109
	6	Conduct of Experiments		110
		(a) Diary		110
		(b) Experiments I and II		111
		(c) Experiment III		115
	7	Static Gulture Experiment		116
	8	Preparation of Materials for An	alyses	123
		(a) Plant Material	:	123
		(b) Soil Samples		124

		Page
9	Chemical Analyses	126
	(a) General	126
	(b) Plant Material	126
	(c) Soil Nitrogen	127
	(d) Mitrate in Culture Solutions	128
IV <u>R</u>	SULTS AND DISCUSSION	129
Å	THE EFFICACY OF "N-SERVE"	129
-	L In Soil	129
	2 In Culture Solutions	131
	Bree NO, Levels in Herbage: In Indirect Test for Nitrification	131
Į	Conclusions	132
В	THE EFFECTS OF N FORM ON THE YIELD AND MIMERAL COMPOSITION OF RYEGRASS AND SWEET VERMAL	132
-	Presentation of Results	132
ź	2 Yield	134
۰. ب	3 The Content of Metallic Cations	136
1	The Content of Mon-metals	140
E.	Conclusions	145
Ö	<u>SOME PLANT PHYSIOLOGICAL ASPECTS OF MO</u> AND NH ₄ ASSIMITATION BY GRASSES	147
נ	Ionic Balance During N Assimilation	147
	(a) The Gross Cation-anion Ratio	147
	(b) The Relationships Between Metallic Cations and Inorganic Anions	149
	(c) R-value	154
	(d) Discussion	155

Page

	2	Org	anic Anions	157
		(a)	Estimation	157
		(b)	Organic Anion Content and N Form	157
		(c)	Organic Anion Content and Yield	158
		(d)	Organic Anions and Metallic Cations	159
	3		etic Control Over the Mineral position of Ryegrass Merbage	162
		(a)	Statistical Methods and Presentation of Results	162
		(ъ)	Genetic Control over Yield and Mineral Composition	165
		(c)	Correlations Among the Characters studied	167
		(d)	Discussion	172
	Ļ	Con	clusions	175
V			PECTS OF THE AGRONOLITC SIGNIFICANCE OF L VARIATIONS IN THE SOIL N REGIME	177
	l	Int	roduction	177
	2		sonal Variation in the Mineral position of Pasture Grasses	177
	3	Sea	sonal Disorders in Farm Animals	179
		(a)	"Grass Staggers"	180
		(b)	"Autumn Ill Thrift"	188
	ζĻ	Dis	cussion and Conclusions	188
SUMARY				191
ACKNOWLEDGE	1-EN	ាមទ		192
BIBLIOGRAPH	IY			193
APPENDICES				203

LIST OF FIGURES, PLATES AND TABLES

FIGURES

<u>Page</u>

Figure

1	Conversion of Inorganic N to Organic N, Transport and Storage Within Plants	18
2	Relationships Between Organic Acids and 30 Intermediates in Carbohydrate Metabolism	44 <u>7</u>
3	Mineral Composition of Perennial Ryegrass Merbage in Relation to Stage of Growth and M Availability.	75
Ly	The Systematic Movement of Pots in the Soil Experiments	114
5	The Arbitary Division of Control Pots into "Horizons" for Soil Mineral N Analyses	125

PLATES

Plate

1	The Shaker used in the Preparation of Culture Solutions	106
2	Experiment II in Progress	112
3	Irrigation in the Soil Experiments	114
4.	Experiment III in Progress	117
5	Plants Prior to Marvest	117
6	Titration of Solutions in the Static Culture Experiment	120
7	An Established Ryegrass Plant	120

TABLES

<u>Table</u>

1	The Form, Level and Distribution of	
	Mineral N in Control Pots from Experiment II 1	30

Table		Page
2	Total Cation and Anion Uptake with \mathbb{MO}_3 and \mathbb{MH}_4 Nutrition	148
3	Genotypic Ranking of Ayegrass Results	164
4	Genotypic Ranking of the Organic Anion Contents and the Values for the Divalent/ monovalent Cation Ratio, for Ryegrass Plants Receiving MH ₄	171

SECTION I

INTRODUCTION

Fitrogen is unique among the major plant nutrients derived from soils in that it may be taken up by plants either as an anion or cation. Fitrate and ammonium comprise the pool of assimilable nitrogen, but their proportionate contribution varies considerably under differing climatic and soil conditions.

Bear (1950) formulated a general rule for a constant balance between the number of equivalents of cations and anions in the herbage of growing plants. From this it may be suggested that the uptake of cations and anions, other than ammonium and nitrate, will be markedly influenced by changes in the ionic form of nitrogen being absorbed by non-legumes. That uptake of ionic nitrogen normally exceeds that of any other ionic species, supports this suggestion.

Experiments undertaken in this investigation were designed to test the validity of the foregoing postulate, using pasture grasses, with a view to establishing whether changes in the nitrogen regime in the field could be of agronomic significance. In elucidation of the relationships between the form of mineral nitrogen available and certain physiological processes within the test plants, was also sought.