Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Hepatitis B Virus: A Longitudinal Study

A thesis presented in partial fulfilment of the requirements for the degree of

Masters of Science

At

Massey University, Palmerston North, New Zealand

Katherine Graciosa Blake-Palmer

2002

Abstract

Hepatitis B Virus (HBV) is a member of the hepadnavirus family. Viruses from this family infect primate, rodent and avian species. Wild type HBV virions consist of partially double-stranded circular DNA which is converted into covalently closed circular molecules in nuclei upon infection into host cells. The HBV genome is about 3.2kb in size and consists of four transcripts encoding the surface, core, polymerase and X proteins, in overlapping reading frames. HBV infection causes a variety of liver diseases in humans, for example, liver cirrhosis and hepatocellular carcinoma. Clinical manifestations range from asymptomatic to acute. The outcome of acute hepatitis B infection may be influenced by host factors some of which are controlled by the Major Histocompatibility Complex (MHC). In humans the MHC is known as the Human Leukocyte Antigen (HLA) region. Accordingly, the individuals involved in this study were HLA typed.

The aim of this study is to investigate HBV DNA differences in three different clinical types of hepatitis B disease over a 15 year period, and to determine if there is a correlation between specific HBV variants and particular clinical states. In 1985, 93% of the population of Kawerau (7,901) was tested for HBV, those found to be positive (519) have been monitored ever since. In 1998, individuals that fitted our requirements were invited to participate in our study. HBV DNA was extracted from blood samples and complete genomes sequenced, over 120,000 nucleotides were sequenced. Differences in HBV genotypes were compared. HLA alleles between the different clinical types were compared, as well as comparing HBV infected individuals with the general New Zealand population. The overall project is a major one and the results of this thesis get it well underway.

ii

Acknowledgements

I would like to thank Dr Chris Moyes of the Whakatane Child Health and Hepatitis Foundation for providing the hepatitis B virus samples.

Thank you David Penny for your supervision and much-needed assistance in writing this thesis.

Abby Harrison – thanks so much for your continued support throughout these last two years!

Thanks also to Trish McLenachan for all your help in the lab.

Thanks also to Rissa Otta for your help with the statistical analysis.

A big thanks to all my family and friends for your support outside of the lab – everybody needs to escape now and then!

Contents

Abstract	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	vii
List of Tables	viii

Chapter 1 Introduction

1.1 General Introduction to hepatitis B virus	1
1.1.1 Virus lifecycle	2
1.1.2 Viral Infection	5
1.1.3 Ways to combat virus	7
1.2 Introduction to the Human Leukocyte Antigen Complex	8
1.2.1 Function of the immune system	8
1.2.2 HLA and HBV	9
1.2.3 Linkage disequilibrium	10
1.2.4 HLA and the Pacific	11
1.3 Aim of thesis	13

Chapter 2 Characteristics of Viral Genome

2.1 Precore/Core gene	14
2.2 X gene region	20
2.3 Polymerase gene	22
2.4 Surface gene	24
2.4.1 Serotypes and Genotypes	25
2.4.2 S protein	28
2.4.3 M protein	30
2.4.4 L protein	30
2.5 Quasispecies Distribution	32

Chapter 3 Materials and Methods

3.1 DNA extraction	33
3.2 PCR amplification	34
3.3 Primer design	35
3.4 Confirmation of PCR product	36
3.5 PCR template purification	37
3.5.1 Shrimp Alkaline Phosphatase /Exonulcease I digest	37
3.5.2 Rapid gel extraction	37
3.6 DNA quantification	37
3.7 Cloning	38
3.7.1 Ligation	38
3.7.2 Transformation	38
3.7.3 Recombinant DNA extraction	39
3.8 Sequencing	40
3.8.1 Precipitation	40
3.9 Sequence analysis	41
3.10 HLA typing	41

Chapter 4 Results and Discussion

4.1 Genome sequences	42
4.1.1 HBV sequencing results	42
4.1.2 X gene	49
4.1.3 Precore/Core gene	51
4.1.4 Surface gene	56
4.1.5 Polymerase gene	60
4.1.6 1985 and 1998 comparisons	63
4.2 HLA results	65
4.2.1 Kawerau HLA samples	65
4.2.2 Comparing Kawerau samples with other NZ populations	70

Chapter 5 Summary and Conclusions

5.1 Summary of HBV sequencing results	77
5.2 HLA results summary	79
5.3 Conclusions	80

Bibliography

81

Appendices (see CD for appendices)

Appendix A Appendix B

List of Figures

Chapter 1 Introduction	
1.1 Hepatitis B virus genome	1
1.2 Virus lifecycle	4
Chapter 2 Breakdown of Genes	
2.1 Mis-sense mutations	18
2.2 S protein	29
2.3 M protein	30
2.4 L protein	31
Chapter 4 Results and Discussion	
4.1 Gel photos of Polymerase gene	45
4.2 Schematic of Surface gene	56

List of Tables

Cha	pter 1 Introduction	
1.1	Hepatitis B transcripts	3
1.2	NZ ethnicity	11
Cha	pter 2 Breakdown of the Genes	
2.1	The functions of the X-protein	21
2.2	Geographical distribution of HBV genotypes	27
2.3	Amino acid residues specifying determinants of HBsAg	27
Cha	apter 3 Material and Methods	
3.1	Primers	36
Cha	apter 4 Results and Discussion	
4.1	Clinical groups in the 1998 samples, by viral genotype	43
4.2	Summary of sequencing results for the 1998 samples, ++ clinical type	43
4.3	Cloned regions from 1998 samples	44
4.4	Gene regions that were amplified of the 1985 samples	46
4.5	Summary of sequencing results for the 1985 samples	47
4.6	Samples which were sequenced over 70%	48
4.7	The number of samples with mutation(s) for the X-gene region	49
4.8	The number of samples with mutations in the function areas of the PreC/C	
	gene region	52
4.9	The samples with mutations in the functional areas of the Surface gene	
	region	58
4.10	Overall single nucleotide mutation rate for the different Polymerase domains	61
4.11	Mutation frequencies for each domain in the Polymerase region	62
4.12	2 Number of samples with single nucleotide mutations in the different	
	P gene domains	62
4.13	3 The number of single base-pair differences and indels observed	

between 1998 and 1985 transcripts of the same sample	63
4.14 Allele family frequency for each HLA gene	66
4.15 HLA allele family frequencies for each of the clinical states of	
HBV infection	67
4.16 Genotype frequencies for each of the clinical states	68
4.17 Chi square results for the haplotype data	69
4.18 Table converting the serological names for HLA alleles to SBT equivalents	s 70
4.19 HLA-A allele frequencies for New Zealand populations	71
4.20 HLA-B allele frequencies for New Zealand populations	71
4.21 HLA-C allele frequencies for New Zealand populations	72
4.22 HLA-DRB1 allele frequencies for New Zealand populations	73
4.23 HLA-DQB1 allele frequencies for New Zealand populations	73
4.24 Haplotype frequency for NZ Maori and NZ European and	
Kawerau samples	74

Appendix A

A.1 Mutations in the X gene region

- A.2 Mutations in the Precore/Core gene region
- A.3 Mutations in the S gene region

Appendix B

B.1 Haplotype frequencies of HLA-A and HLA-B alleles for ++ clinical types B.2 Haplotype frequencies of HLA-A and HLA-B alleles for +- clinical types B.3 Haplotype frequencies of HLA-A and HLA-B alleles for -- clinical types B.4 Haplotype frequencies of HLA-A and HLA-B alleles for all clinical types B.5 Haplotype frequencies of HLA-A and HLA-C alleles for ++ clinical types B.6 Haplotype frequencies of HLA-A and HLA-C alleles for +- clinical types B.7 Haplotype frequencies of HLA-A and HLA-C alleles for -- clinical types B.8 Haplotype frequencies of HLA-A and HLA-C alleles for -- clinical types B.9 Haplotype frequencies of HLA-A and HLA-C alleles for ++ clinical types B.10 Haplotype frequencies of HLA-B and HLA-C alleles for +- clinical types B.11 Haplotype frequencies of HLA-B and HLA-C alleles for -- clinical types

B.12 Haplotype frequencies of HLA-B and HLA-C alleles for all clinical types

B.13 Haplotype frequencies of HLA-DRB1 and HLA-DRQ1 alleles for ++ clinical types

B.14 Haplotype frequencies of HLA-DRB1 and HLA-DRQ1 alleles for +- clinical types

B.15 Haplotype frequencies of HLA-DRB1 and HLA-DRQ1 alleles for -- clinical types

B.16 Haplotype frequencies of HLA-DRB1 and HLA-DRQ1 alleles for all clinical types