
Res. Lett. Inf. Math. Sci., 2009, Vol. 13, pp. 8�13

Available online at http://iims.massey.ac.nz/research/letters/
8

Source Code: Automatic C Library Wrapping �

Ctypes from the Trenches

Guy K. Kloss

Computer Science
Institute of Information & Mathematical Sciences

Massey University at Albany, Auckland, New Zealand
Email: G.Kloss@massey.ac.nz

At some point of time many Python developers � at least in computational science � will
face the situation that they want to interface some natively compiled library from Python. For
binding native code to Python by now a larger variety of tools and technologies are available.
This paper focuses on wrapping shared C libraries, using Python's default Ctypes, with the
help of the matching source code generator from CtypesLib.

Keywords: Python, Ctypes, wrapping, automation, code generation.

1 Overview

One of the grand fundamentals in software engineering is to use the tools that are best suited for
a job, and not to decide on an implementation prematurely. That is often easier said than done,
in the light of some complimentary requirements (e. g. rapid/easy implementation vs. the need for
speed of execution or vs. low level access to hardware). The traditional way of binding native code
to Python through extending or embedding is quite tedious and requires lots of manual coding in
C. This paper presents an approach using Ctypes [1], which is by default part of Python since
version 2.5.

As an example the creation of a wrapper for the LittleCMS colour management library [2]
is outlined. The library o�ers excellent features, and ships with �o�cial� Python bindings (us-
ing SWIG [3]), but unfortunately with several shortcomings (incompleteness, un-Pythonic API,
complex to use, etc.). So out of need and frustration the initial steps towards alternative Python
bindings were undertaken.

In this case the C library is facilitated from Python through code generation. The generated
code is re�ned in an API module to meet the desired functionality of the wrapper. As the library
is anything but �Pythonic,� an object oriented wrapper API for the library that features �qualities
we love� is built on top.

A more complete description of the wrapping process can be found in the corresponding article
in The Python Papers [4].

2 Requirements

The work presented in this paper is based on wrapping the LittleCMS colour management library
in version 1.16. It has also been used together with version 1.17, which required only the most
minor tweaks, mainly on unit tests.

For the development itself, the code generator from the CtypesLib project is needed. For parsing
the library's header �le it uses GCCXML, the GCC compiler's own parser that produces an XML
representation of the code's parse tree. In most current Linux distributions now version 0.9.0 of

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 9

GCCXML is available. This version requires either the �ctypeslib-gccxml-0.9� branch of CtypesLib
or a recent snapshot of the development branch.

Finally, for the execution of the wrapper libraries the Ctypes as well as the NumPy1 modules
are required. Implementing the wrappers di�erently, one can avoid using NumPy at the expense of
a largely sacri�ced convenience when operating on (larger) array structures. The Python Imaging
Library (PIL)2 may be a suitable companion for experimenting with images in using the presented
bindings.

3 The Code

This code is free software: you can redistribute and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

3.1 Code Generator

The author of Ctypes is developing CtypesLib. It contains a code generator in the modules
ctypeslib.h2xml and ctypeslib.xml2py. These can be called manually, or from a generator script
(Fig. 1) with the proper parameters for the task to automate the process. The header is parsed
(lines 16�19), and a Python binding module is generated into a module _lcms (lines 21�25). For
some �deeper� modi�cations code needs to be evaluated before the bindings are de�ned. For this
purpose the generator patches (lines 27�36) the generated module _lcms by injecting the code from
_setup.py (Fig. 2).

Some excerpts of the quite extensive generated code from _lcms.py is shown in Fig. 3. Lines
3�7 have been �patched� into it by the code generator in place of three original lines. Some
general (lines 9�11) as well as some library speci�c simple data types are de�ned (lines 13�14).
Constants (explicit and computed from C pre-processor macros) are as well de�ned (lines 16�17).
In the following of Fig. 3 are several more complex type de�nitions from C structures. These are
mostly di�erent data containers that can be used as bu�er types (icUInt8Array or cmsCIEXYZ) for
the cmsDoTransform() function after casting to LPVOID (see lines 13�16 in Fig. 9). cmsCIEXYZTRIPLE in
contrast shows a nested data type as it would be used e. g. to describe the absolute colourimetric
values of a device's primary colours (as a camera).

Fig. 4 shows the generated signature de�nitions for calling wrapped C functions. All C functions
used in the sample application in Fig. 9 are shown. Basically a callable Python object is bound
to an exposed stub in the library. The attribute argtypes describes a list of the calling parameter
types, whereas restype describes the type of the returned value.

3.2 The API

3.2.1 c_lcms.py

Some features of the original SWIG API have not been mapped identically through the code
generation. These issues and some helpers are taken care of in the end user C binding API c_lcms

as shown in excerpts in Fig. 5. The �rst lines import the whole generated name space _lcms. A
pre-processor macro's functionality is mapped through a function (lines 4�6), some missing data
types are created (lines 12�15) and equipped with a nice output representation (lines 8�10). Also
some SWIG naming tweak is emulated (line 17).

Colour space type descriptors are used in a human readable verbatim form (as a string), an
integer constant from lcms.h as well as one from the required icc34.h. These corresponding con-
stants are stored in an easy to handle Python dictionary containing ColourSpace objects, which

1http://numpy.scipy.org/
2http://www.pythonware.com/products/pil/

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 10

1 from ctypeslib import h2xml, xml2py

3 HEADER_FILE = ’lcms.h’
4 SYMBOLS = [’cms.*’, ’TYPE_.*’, ’PT_.*’, ’ic.*’, ’LPcms.*’, ’LCMS.*’,
5 ’lcms.*’, ’PERCEPTUAL_BLACK_.*’, ’INTENT_.*’, ’GAMMA.*’]
6 # Skipped some constants.

8 GENERATOR_PATCH = """
9 from _setup import *
10 import _setup

12 _libraries = {}
13 _libraries[’/usr/lib/liblcms.so.1’] = _setup._init()
14 """

16 def parse_header(header):
17 # [Skipped "path magic".]
18 h2xml.main([’h2xml.py’, header_path, ’-c’, ’-o’,
19 ’%s.xml’ % header_basename])

21 def generate_code(header):
22 # [Skipped "path magic".]
23 xml2py.main([’xml2py.py’, ’-kdfs’, ’-l%s’ % LIBRARY_PATH,
24 ’-o’, module_path, ’-r%s’ % ’|’.join(SYMBOLS),
25 ’%s.xml’ % header_basename]

27 def patch_module(header):
28 # [Skipped "path magic".]
29 fd = open(module_path)
30 lines = fd.readlines()
31 fd.close()
32 fd = open(module_path, ’w’)
33 fd.write(lines[0])
34 fd.write(GENERATOR_PATCH)
35 fd.writelines(lines[4:])
36 fd.close()

38 def main():
39 parse_header(HEADER_FILE)
40 generate_code(HEADER_FILE)
41 patch_module(HEADER_FILE)

Figure 1: Essential parts of the code generator.

in turn contain the di�erent representations(lines 35�42). ColourSpace gets its functionality from
PropertyContainer (lines 19�29).

3.2.2 littlecms.py

littlecms.py (see Fig. 6) �nally contains the object oriented and Pythonic parts of the end user
API. First of all a handler that is called by the native library on all errors is de�ned and assigned
(lines 6�13). The error handler also raises an LcmsException.

The Profile class loads pro�les from the �le system, or creates embedded ones from the built-
in library in the constructor (lines 21�28), which it also removes whenever the Profile object is
discarded (lines 30�32). Furthermore, it reveals the pro�le name as well as colourSpace attribute
information (lines 34�40) through object introspection and use of the ColourSpace helper structures
de�ned in c_lcms.

In the Transform class (Fig. 7) the two pro�les (input and output pro�le) are jointly used to trans-
form colour tuples between colour representations. The constructor is particularly helpful in using

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 11

1 import ctypes
2 from ctypes.util import find_library

4 # One of Gary Bishop’s ctypes tricks:
5 # http://wwwx.cs.unc.edu/~gb/wp/blog/2007/02/11/ctypes-tricks/
6 # Hack the ctypes.Structure class to include printing the fields.
7 class Structure(ctypes.Structure):
8 def __repr__(self):
9 """Print fields of the object."""
10 res = []
11 for field in self._fields_:
12 res.append(’%s=%s’ % (field[0], repr(getattr(self, field[0]))))
13 return ’%s(%s)’ % (self.__class__.__name__, ’, ’.join(res))

15 @classmethod
16 def from_param(cls, obj):
17 """Magically construct from a tuple."""
18 if isinstance(obj, cls):
19 return obj
20 if isinstance(obj, tuple):
21 return cls(*obj)
22 raise TypeError

24 def _init():
25 """Hunts down and loads the shared library."""
26 return ctypes.cdll.LoadLibrary(find_library(’lcms’))

Figure 2: Essential parts of the _setup module used for �patching� the generated code in _lcms.py.

the library. Besides several sanity checks for robustness it implements an automatic detection of the
involved colour spaces through the before mentioned pro�le introspection (lines 64�70). The cre-
ation of the actual (internal) transformation structure is located in the function _createTransform()

(lines 78�89). The reason is, that on every update of an attribute of a Transform instance this trans-
form structure needs to be disposed and replaced by a new one. Management of this functionality is
hidden through use of the property decorator together with the operator.attrgetter function (Fig. 8,
lines 91�105). This way operations are exposed to the end user as if they were simple attributes of
an object that can be assigned or retrieved without the need of any helper methods. Finally, for
the doTransform() method (lines 107�121) in absence of a set destinationBuffer a bu�er of a suitable
type, size and shape will be created. This way the doTransform() method can be used in the way
of an assignment operation, returning a suitable numpy array. Alternatively, it can be called with
input and output bu�ers, or even with an output bu�er which is identical with the input bu�er.
In the latter case an in-place transformation will be performed, overwriting the input data with
the transformed colour representation.

3.3 Examples

Finally two examples are presented. One is using the direct C wrapped user space API from c_lcms

that is largely compatible to the o�cial SWIG bindings (Fig. 9). A scanned image is converted from
the device speci�c colour space from a HP ScanJet scanner as characterised in the �le HPSJTW.ICM, to
the standardised sRGB display colour space using a built in pro�le (lines 4, 5). The transformation
is performed line�by�line, as pixel rows in images are often padded to multiples of certain sizes
(lines 11-16). The number of pixels (colour tuples) per pixel row must be speci�ed (line 16). In
case the bu�ers are numpy arrays, the bu�er must be passed e. g. as yourInBuffer.ctypes, or in case
of a Ctypes bu�er using ctypes.byref(yourInBuffer) (lines 14, 15). Due to the fact that whole pixel
rows can be transformed within the native C library �in one go,� the performance is very good.
Finally, LittleCMS structures that were created must be manually freed again (lines 18�20).

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 12

1 from ctypes import *

3 from _setup import *
4 import _setup

6 _libraries = {}
7 _libraries[’liblcms.so.1’] = _setup._init()

9 STRING = c_char_p
10 DWORD = c_ulong
11 LPVOID = c_void_p

13 LCMSHANDLE = c_void_p
14 cmsHPROFILE = LCMSHANDLE

16 TYPE_RGB_8 = 262169 # Variable c_int ’262169’
17 INTENT_PERCEPTUAL = 0 # Variable c_int ’0’

19 class icUInt8Array(Structure):
20 pass
21 u_int8_t = c_ubyte
22 icUInt8Number = u_int8_t
23 icUInt8Array._fields_ = [
24 (’data’, icUInt8Number * 1),
25]

27 class cmsCIEXYZ(Structure):
28 pass
29 cmsCIEXYZ._pack_ = 4
30 cmsCIEXYZ._fields_ = [
31 (’X’, c_double),
32 (’Y’, c_double),
33 (’Z’, c_double),
34]

36 class cmsCIEXYZTRIPLE(Structure):
37 pass
38 cmsCIEXYZTRIPLE._fields_ = [
39 (’Red’, cmsCIEXYZ),
40 (’Green’, cmsCIEXYZ),
41 (’Blue’, cmsCIEXYZ),
42]

Figure 3: Edited excerpts from _lcms.py.

The same task using littlecms simpli�es the handling even for this simple example quite signif-
icantly (see Fig. 10). The bu�ers are native numpy arrays, and need no speci�c calling conventions.
If the bu�ers consist of a two dimensional array (array of tuples for each pixel), then the number
of pixels for the bu�er conversion is automatically detected. As for example also the PIL module
supports handling of image data as numpy arrays, the usage becomes quite simple. As numpy arrays
are internally implemented in a pure C library, no speed degradation should be noticeable.

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 13

44 cmsOpenProfileFromFile = _libraries[’liblcms.so.1’].cmsOpenProfileFromFile
45 cmsOpenProfileFromFile.restype = cmsHPROFILE
46 cmsOpenProfileFromFile.argtypes = [STRING, STRING]

48 cmsCreate_sRGBProfile = _libraries[’liblcms.so.1’].cmsCreate_sRGBProfile
49 cmsCreate_sRGBProfile.restype = cmsHPROFILE
50 cmsCreate_sRGBProfile.argtypes = []

52 cmsCreateTransform = _libraries[’liblcms.so.1’].cmsCreateTransform
53 cmsCreateTransform.restype = cmsHTRANSFORM
54 cmsCreateTransform.argtypes = [cmsHPROFILE, DWORD,
55 cmsHPROFILE, DWORD,
56 c_int, DWORD]

58 cmsDoTransform = _libraries[’liblcms.so.1’].cmsDoTransform
59 cmsDoTransform.restype = None
60 cmsDoTransform.argtypes = [cmsHTRANSFORM, LPVOID, LPVOID, c_uint]

62 cmsDeleteTransform = _libraries[’liblcms.so.1’].cmsDeleteTransform
63 cmsDeleteTransform.restype = None
64 cmsDeleteTransform.argtypes = [cmsHTRANSFORM]

66 cmsCloseProfile = _libraries[’liblcms.so.1’].cmsCloseProfile
67 cmsCloseProfile.restype = BOOL
68 cmsCloseProfile.argtypes = [cmsHPROFILE]

Figure 4: _lcms.py continued: Edited excerpts of function de�nitions.

References

[1] T. Heller, �Python Ctypes Project,� http://starship.python.net/crew/theller/ctypes/, last ac-
cessed December 2008.

[2] M. Maria, �LittleCMS project,� http://littlecms.com/, last accessed January 2009.

[3] D. M. Beazley and W. S. Fulton, �SWIG Project,� http://www.swig.org/, last accessed De-
cember 2008.

[4] G. K. Kloss, �Automatic C Library Wrapping � Ctypes from the Trenches,� The Python Papers,
vol. 3, no. 3, pp. �, December 2008, [Online available] http://ojs.pythonpapers.org/index.php/
tpp/issue/view/10.

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 14

1 import ctypes
2 from generated._lcms import *

4 # A flag generating C macro reimplemented as a function.
5 def cmsFLAGS_GRIDPOINTS(n):
6 return (n & 0xFF) << 16

8 # SWIG wrapper backwards compatibility definitions.
9 def __array_repr(self):
10 return ’%s(%s)’ % (self.__class__.__name__, [x for x in self])

12 COLORB = ctypes.c_ubyte * 3
13 COLORB.__repr__ = __array_repr
14 COLORW = ctypes.c_uint16 * 3
15 COLORW.__repr__ = __array_repr

17 cmsSaveProfile = _cmsSaveProfile

19 class PropertyContainer(object):
20 """Container class for simple property objects."""
21 def __init__(self, **attributes):
22 self.__dict__ = attributes

24 def __repr__(self):
25 """Print fields of the object."""
26 res = []
27 for attribute, value in self.__dict__.items():
28 res.append(’%s=%s’ % (attribute, value.__repr__()))
29 return ’%s(%s)’ % (self.__class__.__name__, ’, ’.join(res))

31 class ColourSpace(PropertyContainer):
32 """A colour space descriptor."""

34 # Colour space type descriptors for lcms.h and icc34.h.
35 colourTypeFromName = {
36 ’GRAY’: ColourSpace(name=’GRAY’, lcms=PT_GRAY, ICC=icSigGrayData),
37 ’RGB’: ColourSpace(name=’RGB’, lcms=PT_RGB, ICC=icSigRgbData),
38 ’CMYK’: ColourSpace(name=’CMYK’, lcms=PT_CMYK, ICC=icSigCmykData),
39 # [Some snipped out.]
40 ’XYZ’: ColourSpace(name=’XYZ’, lcms=PT_XYZ, ICC=icSigXYZData),
41 ’Lab’: ColourSpace(name=’Lab’, lcms=PT_Lab, ICC=icSigLabData),
42 }

Figure 5: Edited extract from c_lcms.py.

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 15

1 from operator import attrgetter
2 import numpy
3 import ctypes
4 from c_lcms import *

6 class LcmsException(Exception):
7 """Indicates that an Exception in the Lcms module has occurred."""

9 def __lcmsErrorHandler(errorCode, errorText):
10 """Error handler called by liblcms on errors."""
11 # [Error level determination skipped.]
12 message = ’%s: %s!’ % (errorLevel, errorText)
13 raise LcmsException(message)

15 lcmsErrorHandler = cmsErrorHandlerFunction(__lcmsErrorHandler)
16 cmsErrorAction(LCMS_ERROR_SHOW)
17 cmsSetErrorHandler(lcmsErrorHandler)

19 class Profile(object):
20 """Profile handling class."""
21 def __init__(self, fileName=None, colourSpace=None):
22 self._profile = None
23 if fileName != None:
24 self._profile = cmsOpenProfileFromFile(fileName, ’r’)
25 elif colourSpace != None:
26 # [Built in profile creation skipped.]
27 else:
28 raise LcmsException(’Unknown profile type to create.’)

30 def __del__(self):
31 if self._profile:
32 cmsCloseProfile(self._profile)

34 @property
35 def name(self):
36 return cmsTakeProductName(self._profile)

38 @property
39 def colourSpace(self):
40 return colourTypeFromICC[cmsGetColorSpace(self._profile)]

Figure 6: Edited extract from littlecms.py. Error handler and Profile class.

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 16

42 # [Some internal helper snipped.]

44 class Transform(object):
45 """Transformation handling class."""

47 def __init__(self, inputProfile, outputProfile,
48 renderingIntent=INTENT_PERCEPTUAL,
49 transformationFlags=cmsFLAGS_NOTPRECALC,
50 inputDepth=8, outputDepth=8,
51 specialInputFormat=None, specialOutputFormat=None):
52 self._myTransform = None
53 self._inputProfile = inputProfile
54 self._outputProfile = outputProfile
55 self._renderingIntent = renderingIntent
56 self._transformationFlags = transformationFlags
57 # [Sanity check for allowed input and output bit depths snipped.]
58 self.inputDepth = inputDepth
59 self.outputDepth = outputDepth
60 # [Some further sanity checks snipped.]
61 self.specialInputFormat = specialInputFormat
62 self.specialOutputFormat = specialOutputFormat

64 # Detect the input/output format.
65 self._inputFormat = _getColourType(self._inputProfile,
66 self.inputDepth,
67 self.specialInputFormat)
68 self._outputFormat = _getColourType(self._outputProfile,
69 self.outputDepth,
70 self.specialOutputFormat)

72 self._createTransform()

74 def __del__(self):
75 if self._myTransform:
76 cmsDeleteTransform(self._myTransform)

78 def _createTransform(self):
79 if self._myTransform:
80 cmsDeleteTransform(self._myTransform)
81 self._myTransform = None
82 self._myTransform = cmsCreateTransform(self._inputProfile._profile,
83 self._inputFormat,
84 self._outputProfile._profile,
85 self._outputFormat,
86 self._renderingIntent,
87 self._transformationFlags)
88 if self._myTransform == None:
89 raise LcmsException(’Error creating transform.’)

Figure 7: littlecms.py continued: Edited extract from littlecms.py. Transform class creation and
disposal.

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 17

91 def _setInputProfile(self, aProfile):
92 self._inputProfile = aProfile
93 self._createTransform()
94 inputProfile = property(attrgetter(’_inputProfile’), _setInputProfile)

96 def _setOutputProfile(self, aProfile):
97 self._outputProfile = aProfile
98 self._createTransform()
99 outputProfile = property(attrgetter(’_outputProfile’), _setOutputProfile)

101 def _setTransformationFlags(self, theTransformationFlags):
102 self._transformationFlags = theTransformationFlags
103 self._createTransform()
104 transformationFlags = property(attrgetter(’_transformationFlags’),
105 _setTransformationFlags)

107 def doTransform(self, sourceBuffer, destinationBuffer=None,
108 numberTuples=None):
109 if numberTuples == None:
110 numberTuples = len(sourceBuffer)
111 if destinationBuffer == None:
112 # [depth_type determination skipped.]
113 destinationBuffer = numpy.zeros(sourceBuffer.shape,
114 dtype=depth_type)

116 # [Sanity checks for buffers compatibility skipped.]
117 cmsDoTransform(self._myTransform,
118 sourceBuffer.ctypes,
119 destinationBuffer.ctypes,
120 numberTuples)
121 return destinationBuffer

Figure 8: littlecms.py continued: Edited extract from littlecms.py. Alterations of Transform object
and doTransform() method.

1 from c_lcms import *

3 def correctColour():
4 inProfile = cmsOpenProfileFromFile(’HPSJTW.ICM’, ’r’)
5 outProfile = cmsCreate_sRGBProfile()

7 myTransform = cmsCreateTransform(inProfile, TYPE_RGB_8,
8 outProfile, TYPE_RGB_8,
9 INTENT_PERCEPTUAL, 0)

11 for line in scanLines:
12 # Skipped handling of buffers.
13 cmsDoTransform(myTransform,
14 ctypes.byref(yourInBuffer),
15 ctypes.byref(yourOutBuffer),
16 numberOfPixelsPerScanLine)

18 cmsDeleteTransform(myTransform)
19 cmsCloseProfile(inProfile)
20 cmsCloseProfile(outProfile)

Figure 9: Example using the basic API of the c_lcms module.

Source Code: Automatic C Library Wrapping � Ctypes from the Trenches 18

1 from littlecms import Profile, PT_RGB, Transform

3 def correctColour():
4 inProfile = Profile(’HPSJTW.ICM’)
5 outProfile = Profile(colourSpace=PT_RGB)
6 myTransform = Transform(inProfile, outProfile)

8 for line in scanLines:
9 # Skipped handling of buffers.
10 myTransform.doTransform(yourNumpyInBuffer, yourNumpyOutBuffer)

Figure 10: Example using the object oriented API of the littlecms module.

