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Abstract 

Systems Languages have often been designed on a rather 

ad hoc basis . This thesis attempts to formulate and 

analyse design crjteria in a more systematic manner . 

These criteria are drawn from three major sections: 

a sur~ey of languages used for systems programming , a 

discussion of systems programs features, and a discussion 

of programming language effectiveness . The resulting 

criteria are then discussed in relation to their 

application to the language design . A collection of 

language summaries is included in the appendices. 
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1. 

§i Introduction 

§1.1 Aim 

In the past, a commonly accepted project for a masterate in the 

programming languages field was to take an already designed language, 

suitably modified, to implement on a given machine. The student thereby 

derived experi ence in implementation problems. However the usefulness 

of that type of project is severely limited when the language is a systems 

programming language, in that most machines to which the student has 

access already have well developed suites of systems programs. Hence 

rewriting a part of any suite runs foul of intercommunication problems, 

and rewriting the whole would be an excessively large task even for a 

small machine. The project would accomplish little more than an intimate 

knowledge of one language and one machine. 

An obvious alternative, that of designing and implementing a 

systems language , was discarded for similar r easons; also there is 

already a plethora of languages of that type. Such a 'home grown' 

language i s , moreover, only likely to gain acceptance and be used in the 

immediate locality unless it happens to incorporate some startlingly new 

and useful technique or construct. 

more than an exercise. 

In · other words, i ·t: would be little 

The topic finally selected, "Design of Systems Languages", was 

anticipated to require two reasonably distinct subprojects: 

i. a survey of existing systems languages 

ii. development of design criteria based on an analysis of their 

features 

ana possibly a third subproject developing a language based on those 

criteria. However it soon became obvious, while surveying the existing 

languages, that in many cases the criteria employed by their authors were 

neither explicit nor extensive, so that a s omewhat different approach 

would be required, even if the basic intention remained the same. 

Some inherent · difficulties 

A major problem in tackling a topic such as this is that the 

experience (or lack of it) of the author can lead to large distortions 

of outlook. He attempts to survey and criticise a group of languages 

with a wide range of features, when the only features he has experience 
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of are l imited to those implemented on the few machines he has worked 

on. Coupled to this, the machines to which he at present has access 

colour and in some respects bias his appraisal of anything which applies 

to other machines, particularly to those to which he has never had access. 

For example, access to a stack machine leaves him with doubts about the 

sanity of anyone who uses 360 type parameter passing. 

Realising that these two difficulties exist fortunately provides 

some solutions - abstraction becomes a keyword and generality becomes an 

overall goal. The survey of languages thus becomes a means to an end, 

and can be divided into two parts: 

i. a gathering of information from separate sources 

ii. a criticism of what has been done or not done to date. 

Following this, greater emphasis can be given to determining the paramount 

features and linguistic requirements of the various types of systems 

program , instead of relying upon other people ' s opinions about them . 

Similarly it i s preferable to determine for oneself the desirable features 

of a systems language, particularly in the shadow of considerable 

disagreement in the literature over machine independence of sys~ems 

languages, and even over terminology, notably ' efficiency '. These 

disagreements point to fields of study outside the scope of this thesis. 

§1.3 Outline 

This thesis therefore attempts, through a survey of existing systems 

l anguages and an examination of the characteristics of systems programs, 

to develop a series of criteria by which a systems programming language 

may be judged, and through which a n ew language can be constructed to 

make it a useful tool. 

Section 2 surveys existing languages by grouping them with respect. 

to common base languages . It . relies heavily upon §6~1, which is a 

table of the features of the various languages. 

summarised in §2.6. 

The sect ion is 

Section 3 · addresses the nature of systems programs and what language 

features are required to write and support them. Emphasis is placed 

here ( as in Section 2) on the language itself and the linguistic criteria , 

rather than on the compiler or the methodology of construction. A 

summary is made in §3 .3. 

Section 4 i s an attempt to put some order into arguments about 

efficiency, commentation , and the general methodology of systems programs . 
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It also attempts to draw up guidelines for those features the compiler. 

must provide exclusive of the language itself. 

Section 5 collec t s together the criteria from the above three 

sections and , along with criteria r elated to extensibility, attempts 

to order them into a preferential system . This system is then discussed 

in terms of the limitations it places on, and demands it makes on, the 

language structure . 

The conclusions of the thesis are really contained in Section 5, 

and for this reason are not given a separate section heading. 
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A Brief Survey 

The Various Languages 

Sammett [Sam 71] lists 44 programming languages either designed or 

used for systems programming . At the end of 1974, some 20 more had made 

an appearance. Bearing in mind that these languages are only the ones 

of which accounts have been published (and have come to my attention ), 

I consider it likely that at the present time there are at least 80 

programming languages (other than assemblers) used for systems programming. 

From these facts, one can draw two immediate conclusions. Firstly, 

there is no systems programming language which satisfies the needs of any 

large group of people; and , secondly , institutions get a certain 

satisfaction in creating a new language tailored to their own (and often 

limited) needs. 

Dissatisfaction with existing languages will always, in my opinion , 

be endemic. Any language used for writing an operating system must 

be machine-dependent , as each machine has instructions which ar~ unique 

.to it, and which often must be coded explicitly. This is not to say that 

the machine dependence need be extensive; there are various mechanisms 

to severely limit its scope . 

However , the proliferation of new languages for limited purposes is 

a human problem which could be overcome by greater adaptation of existing 

languages, rather than by creation of new ones . To this end extensible 

languages, such as ALGOL68 , may provide a partial answer. 

It seems fairly obvious that no systems program (in the sense defined 

in §3.1) is ever truly portable , regardless of whether or not it is coded 

in some high-level language. In fact, it could be said that systems 

programs are precisely those programs which, for some reasons, are 

non-portable. The algorithm effected might be the same but some internal 

steps will ?oubtless have to be machine dependent. However , this does not 

deny that the systems language itself may be largely portable . A 

great deal of time wasted on complete redesign of languages could be saved 

by providing either an extensible language, or a language which might 

eas ily be modified to accommodate the idiosyncrasies of different machines. 

§2.1.1 Language Hierachies 

A large number of systems languages are regarded by their creators 

as an extension or modification of a base language. This progressive 
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modification of existing languages provides, when studied , many examples 

of what language features are considered necessary for systems programming. 

It is indeed interesting that three hierachies (based on ALGOL, PL/I, and 

PL-360) account for more than half the total number of systems languages 

available - an indication that these base languages contain many useful 

constructs or ideas. These three trees are dealt with separately in 

§2.2, §2.3, and §2.5. The remaining high level languages have at most 

two-node trees, and are discussed in §2.4 under groupings related to 

their intended usage. 

Figures 2 .1, 2 . 2, and 2. 3 picture the trees for ALGOL, PL/I and 

PL-360 respectively while Fig 2.4 pictures any remaining minor trees. 

Where it is ascertainable that the l anguage has been implemented on more 

than one machine, a superscript asterisk indicates this. Bracketed 

elements in Fig 2 .1 have to my knowledge never been used for writing 

systems programs and were not intended for that purpose. 

Assembler Languages per se 

In this survey I have avoided discussing assembly languages for two 

reasons. The first is that there is an extremely large number of 

assembly languages with varying degrees of structure, and the second is 

that most people are fully aware of limitations and capabilities of 

assembler languages ( except , perhaps , how ' efficient ' assembl er language 

programs are). I wil.l discuss this in greater detail in §4. 

It is doubtful that those who still advocate a s s embler languages for 

systems programming will ever be convinced that some loss in object-code 

efficiency can be amply compensated for in other ways . However, some 

time spent using a system written in a high-level language would soon 

demonstrate the facilities available which could not or would not have 

been provided in assembler language. Examples of these are variable 

length job + program names, fr ee format job control cards , easily under­

stood operator messages, to mention just a few. 

Some assembler languages are, nevertheless, quite highly structured. 

SAC (for the Elliott 503, 803) is an early example, and PL-360, AL, SAL, 

are more modern varieties , Powerful macro processors such as ML/I can 

provide considerable structure· up to the procedure level in assembler 

language programming with no less direct source-obj ect code correspondence 

than the assemblers themselves. The only inefficiencies that can be 

generated are by using overly generalised macros, and calling them too 

often. One wonders then why these aids do not seem to be more widely 

used by advocates of assembler-language programming. 
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Fig 2. 1 ALGOL Hierachy 
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§2.2 Algol-Based Languages 

Figure 2. 1 pictures the dependency tree for the ALGOL based languages . 

Of the 23 nodes , the 16 underlined were designed explicitly for systems 

programming, while another two have been used for that purpose. The 

sheer size of the tree, particularly the ALGOL-60 subtree , indicates 

a high proportion of useful features in the base language . 

The fact that ALGOL58 and ALGOL60 were designed by committees 

illustrates the value of cooperative effort in producing a general design . 

It does not , however, indicate usefulness of the language , as by far the 

most heavily used languages are end-nodes . As far as the subsequents 

of ALGOL58 are concerned , JOVIAL, NELIAC and ALGOL60 were developed al l 

at the same time . ALGOL60 emerged as the prime example of an elegant 

language design; the others , while both incorporating new features not 

present in the former (such as primitive macros , initialised arrays , 

precision specification, new operator declarations) and also enjoying 

considerable use , failed to generate any further language (principally , 

I believe , because of their general untidyness ). 

ALGOL60 is the direct predecessor of the greatest number of systems 

languages . Of those 4 are machine dependent to an appreciable extent 

and of the remaining 8 only two were designed specifically for systems 

programming , although all have been used in this field . 

§2.2 . 1 Data 

The three basic single cell modes , INTEGER , REAL , and BOOLEAN occur 

in almost all the languages in the ALGOL hierachy . Some earlier 

languages distinguished these types by quite elaborate precision 

specifications . For example,, in NELIAC: 

ITEM A 000 , B 000 . 00 

In the later languages precision is specified in terms of storage 

units required ( that is, bytes or words) as decimal processing hardware 

has become more rare . Several languages have other single cell modes , 

the most prominent being POINTER. Some of the earlier languages have 

no mode real , but as most of the languages are implemented on large 

machines with hardware floating- point arithmetic nearl y all the l ater 

languages have thi s mode . 
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Arrays are often cut to a single dimension, and sometimes have a 

fi xed lower bound of 0 or 1 . More importantly , most languages permit 

array initialisation at declaration time. 

Bit-fields as data occur almost exclusivel y in the later languages 

with the exception of JOVIAL (which has variable modifiers that select 

bits or bytes) . XALGOL and its two derivatives have a very marked field 

syntax that reflects the hardware of the B6700. 

Generalised data structures are not evident at all in the earlier 

languages, although some specific modes such as lists and stacks occur 

in several . JOVIAL again was ahead of its time with the TABLE 

declaration , but PASCAL, ·ALGOLW, ALGOL68, a nd MARY all have considerably 

more general structure mechanisms . In these languages the outstanding 

difference is whether or not a scalar quantity may have purely mnemonic 

values . To illustrate this consider the following definition of a 

mode 'person ' in PASCAL: 

type person = record name 

age 

sex 

end 

string ; 

integer ; 

(male , femal e ) 

Here if fred were of mode ' person ' then the following is l egitimate 

fred . sex := male ; 

No such mechanism exists in ALGOL68 (for instance) , where the mode 

definition would be 

mode person = struct (string name , 

int age 

bool male) ; 

and it would have to be understood that , if jane was of mode 'person ', 

that 

means 

jane. male = false 

jane is female . 

Declarations are required for all these languages , and since 

ALGOL-like languages are typically block structured , scope is predominantly 

local (JOVIAL ~as local scope only in procedures) . Initialisation of 

single cell variables is rare , unlike arrays. Storage classes , however , 

tend to be evenly split between static and dynamic , presumably for 

reasons of efficiency. Programmer control over these really occurs only 

in ALGOL68 and MARY. How items are packed in storage seems to be 

largely outside programmer control , except in JOVIAL, whose TABLE 

declaration is functionally similar to the PL/I structure mechanism . 
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Name equating of identifiers is widespread, but address equating occurs 

only in ESPOL. The later languages have unions - in PASCAL they are 

embedded in the record mechanism , while in ALGOL68 and MARY they are 

completely independent of the structure mechanism. 

Probably the most obvious difference between the ALGOL60 and its 

successors is the presence of string or character modes. 

§2.2.2 Operators 

There is little difference among the l anguages in the arithmetic , 

logical, or relational operators although some languages have special 

doubl e precis ion arithmetic operators . ALGOL68 and MARY have a special 

group of conformity testing relations for unions. 

Referencing operators exist in almost all of the languages which 

have r efer ence modes , ALGOL68 being the exception . The most common is. 

the deref operator, but where dereferencing is implicit (as in ALGOL68, 

XALGOL, ESPOL , DCALGOL), there is sometimes a ref-to operation, .particularly 

for string pointers . 

String operations t end to be machine dependent , particularly as to 

whether only s ingle character or whole string operations are available. 

The bas ic operations are relational but move , size, and substring funct ions 

are evident where strings may be manipulated as a whole. Translate 

operations are not common , but table membership appears in several languages . 

·The assignment operation generally holds for all modes in a language 

although the method of determining the mode to be assigned may become 

complex (as in ALGOL68). 

Priority among operators is generally standard, with the exception 

of operators peculiar to a given language (such as a shift operator) . 

In cases where new operators may be declared care has ·to be taken to 

ensure that the priorities of binary infix operators are not unusual. 

Coercions vary considerably from language to language. Throughout 

this family (unlike PL/I) the implicit coercions are those normally 

expected, such as real~integer and dereferencing. Machine dependent or 

unexpected coercions are nearly always explicit. With the exception of 

real~integer the implicit coercions are normally 'widening ' operations. 

§2.2.3 Control 

One of the identifying features of this language family is the block 

and procedure structure. These blocks serve (in almost all cases) as 
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a method of obtaining local identifier scope as well as statement grouping. 

Declarations are most oftep limited to the heads of blocks, with the 

exception of ALGOL6B and MARY. These two languages are expression 

languages rather than statement languages , and blocks (closed clauses) 

may have values. No languages have named blocks. 

Most of the languages have gotos , although their use tends to .be 

more restricted in the more recent languages. PASCAL, for instance, 

limits their scope to within procedures , and has only integer labels. 

The computed goto is sometimes absent as well. 

Selection in the earlier languages was limited to conditional and 

biconditional forms, but none of the later languages omits some form of 

numeric selection (or case statement ). Probably the most advanced of 

these is that of PASCAL where the labels may be scalar value mnemonics 

( see §2.2.2). The exception condition in most numeric selections is 

equivalent to an invalid array subscript. 

Procedures are always permitted to return a value, though the mode 

of this value may be severely limited, generally to a scalar . Parameters 

are passed as a mode and, with one exception (ALGOL68), their formal use 

is indicated separately (value, name in ALGOL60 ; canst~ var in PASCAL ). 

Generally procedures may be recursive without further specification , but 

they never have multiple entry points . 

Software and hardware interrupt mechanisms tend to be present only 

in the more machine-orient ed languages such as XALGOL, DCALGOL, ESPOL, 

and IMP (Edin). 

Process control only appears in the ALGOL68 subfamily , and the 

XALGOL subfamily . In the former , parallel elaboration is part of the 

language and sema 's are used to control such elaboration , while in the 

XALGOL family the task control mechanism (coroutines, independent and 

dependent asynchrous tasks, events for semaphores and resource control, 

interrupts, locks) is quite machine-oriented. 

The basic ALGOL60 looping construct is for statement , where the 

loop is tested at the top, and optionally stepped . Most implementors 

have found it necessar~ to extend looping constructs to include 

tested-at-bottom, and occasionally a next clause. In these cases the 

syntax has been altered to include while <cond> do <stmt> and 

do <stmt> until <cond>, or by using repeat as a keyword (PASCAL, IMP). 
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§2.2.4 I/O 

Stream I/O was indicated in the ALGOL60 revised report and many 

implementations of ALGOL60 reflect this. Because the designers of 

ALGOL60 left the I/O mechanisms undefined, the implementations of I/O 

processes vary considerably from machine to machine (and the syntax from 

language to language). Most (if not all) of the successor languages 

have a record form of I/O, including some mechanism for formatting. 

In most cases there appears to be no distinction between buffered and 

unbuffered forms of I/O. 

§2.2.5 Machine Dependency 

There is a large variation in the machine dependency of the languages 

in this family. Languages designed for general use are the least so 

afflicted, while those designed for systems programming are the most 

afflicted, as one might expect. At least one general-purpose language 

was also designed for systems use, and this has a considerable proportion 

of its syntax machine dependent (and as might be expected, this is heavily 

used [Bro 74]). Overall, the machine dependence of the general purpose 

languages tends to be limited to those areas (such as I/O and string 

handling) which were left undefined by the revised report. On the other 

hand, in languages intended for systems programming (such as ESPOL, 

MOL 360, MOL 940), machine dependence takes such forms as access to 

machine registers, pseudo-procedures for peculiar instructions and shift 

operators. 

§2.2.6 Extensibility 

The earliest attempts at extensibility are in JOVIAL which had both 

macro, table, and operator declarations. While most of the successors 

to ALGOL60 have some form of macro available in them, only the more 

recent have made any real advance into extensibility. The prime reason 

for this seems to have been two papers in the middle 1960's [Gal 67, Wir 66], 

which made suggestions for extensions to ALGOL60. Since then new 

languages rarely do not have a data-structuring mechanism. This is 

in several cases generalised to allow new modes to be declared, and ·in 

these cases declaration of operators is always available. Onions (which 

exist in PASCAL, ALGOL68, and MARY) are the latest development in 

extensibility. 
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PL/I - Based Languages 

The PL/I - based languages form the second-largest family in the 

systems programming area (Fig 2.2). All the languages (other than 

PL/I itself) were designed for use in an area of systems programming, 

and the authors are generally explicit as to which one. The most 

interes ting difference between this family and the ALGOL family is that, 

while the latter are generally built up from the base language by inclusion 

of additional features, the PL/I based languages are generally an 

extended - subset languages. That is, the language designers have cut 

back, rather than built on, the base language. Some authors look upon 

the complexity of PL/I as a prominent fault. [Ber 72] 

Data 

In the main, the data types and data structuring mechanism of PL/I 

have been carried into the successor languages . XPL and MALUS are 

exceptions to this. XPL, for example, does not permit declaration of 

data structures ( except one dimensional arrays) and has only fixed, 

character, and bit-string modes. In the remainder, there are many minor 

variations . Strings may have a stat i c maximum length as in PL/S, LSD, 

and SABRE PL/I. Fields may be available as bit-strings with a maximum 

length, or as multiple bytes. This may serve to indicate the packing 

r equired . There is a di stinct t endency away from ·specifying precision 

in terms of digits, as for example in LSD where numeric data may be 

halfword, word, or double word. The major area of divergence is in the 

handling of t he various storage classes. LSD has the STATIC, AUTOMATIC, 

and BASED classes from PL/I (although the BASED mechanism is a little 

different), has STACKED instead of CONTROLLED, and additionally has 

ENTRY and CONSTANT. Multics PL/I and SABRE PL/I both have different 

BASED mechanisms, and PL/S appears only to have AUTOMATIC, STATIC, and 

BASED. In all cases (including XPL and MALUS), there is initialisation 

available within declarations. 

variables. 

§2.3.2 Operators 

Most of the languages flag undeclared 

As before, most of the operators from PL/I have been carried into 

the succeeding languages. Of course, where a data type has been 

eliminated, operations on it have been eliminated also. Significantly, 

left and right logical shifts, and logical exclusive - or operators 
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have been added to several of the l anguages (PL/S , XPL, MALUS , LSD). 

Referencing operations have undergone some minor alterations, generally 

to make them easier to use. Although string handling operations vary 

considerably between the languages within this family, (in the case of 

PL/S they have almost vanished ) they appear to be attempts to make use 

of available hardware (particularly the 360/370 series hardware) and 

because of this they often perform similar functions (for example FIND 

in LSD and INDEX in SABRE PL/I) . There seems to be little or no 

alteration of the assignment operator , or the standard priority of 

operators . However, the amount of implicit coercion has been consider­

ably decreased . There is E£_ implicit coercion in LSD or PL/S , and in 

XPL it is limited to some widening coercions . 

however, are provided for almost every case . 

§2 . 3 . 3 Control 

Explicit coercions , 

Whereas PL/I itself was a block-and-procedure-oriented language, 

several of its successors have become procedure-orient ed l anguages . 

This means that the begin-end combination serves only to group statements 

and is not used to give local scope , or automatic storage to variables. 

XPL, MALUS , LSD, MULTICS PL/I are examples . The goto remains the same 

as standard PL/I in all the languages , but selection ( which is 

standardly conditional, and biconditional in PL/I) has been extended in 

some cases (XPL, LSD) to include numeric selection. In LSD the exception 

condition is trapped to a special statement rather than forcing a 

runtime error . Procedures may have values (though this value may not be 

a structured mode) and parameters are almost exclusively call-by-reference . 

In several cases procedures may have to be explicitly declared recursive , 

if this facility is desired . LSD also provides for omitted parameters . 

The PL/I ON statement provides for handling of software and hardware 

interrupts, although this mechanism is not available in at l east one 

language (XPL). Because the original specification of process control 

(in PL/I) was quite loose, there is considerable variation in the languages 

which have some contro~ of this sort. The exact form appears to depend 

on the operating system which is intended to run behind the compil ed 

program . (cf LSD, MULTICS PL/I). Loops, basically tested-at-top and 

stepped, have been extended in the case of LSD to include tested-at-bottom, 

and an exit clause . 
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§2.3.4 I/O 

In nearly all cases, the complex PL/I I/O and formatting routines 

have been omitted or r eplaced by a smaller set of simpler routines. 

These appear to include both stream and record I/O but without formatting . 

§2.3.5 Machine Dependency 

XPL, MALUS, LSD, PL/S permit the introduction of inline code through 

a code statement. In XPL and MALUS it is limited to one instruction. 

Several of the languages make use of operations which are machine dependent, 

s uch as logical shifts . XPL, PL/S, and LSD at least have register 

declarations, and both LSD and PL/S give the programmer cons iderable 

control over segmentation of code and data. 

§2.3.6 Extensibility 

The extensibility facilities of standard PL/I include extensible 

data types (through the BASED s torage class), and the compiletime 

macro facilities. The latter mechanism has been r ep l aced in almost all 

of the successor l anguages . XPL , for example, has only a simple 

unparameter ed macro facility , while LSD has considerable mechanism for 

extension at each of the pre-parse , post-parse, and code generation phases. 

This is described in somewhat greater detail in [Ber 72]. 
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Other High-Level Languages 

Figure 2. 4 lists the remaining high-level l anguages . They are 

divided for discussion purposes into three groups , according to usage . 

It should be noted that wi thin the compiler-generator group it is 

difficult to distinguish an algor ithmic language from a compiler-generating 

system . This is not considered important in this context . 

§2.4.1 String and List Processing La nguages 

Languages in this group , because they were designed for a specific 

purpose , are not easi l y described in the manner used previously . An 

attempt to do so might give a deceptive appearance of the individual 

languages . What follows is a brief general description of the languages 

and their capabilit i es with little regard for specifics. 

Apart from AP L, the prime objective of these languages is the 

processing of runtime- dynamic data structures such as strings and lists. 

With one exception data items are considered as strings or lists , a lthough 

they may be operated on, at times, as if they were of other modes . 

Thus, the mode of a data item depends largely on the context . Array-l ike 

modes are available in some of the l anguages , and some languages have a 

general data- structuring mechanism . 

The bas.ic operations within the languages (those on strings and 

lists) may be implied ·by the structure of the language stat ements. 

Priority of infix operators varies from l anguage to language . These 

languages are generally interpreted rather than compiled, and often this 

is used to give a program the ability to extend itself at runtime . With 

the exception of AMBIT /L, the only program structuring tool available in 

the group is the procedure . Control generally passes from statement to 

statement via gotos or an equivalent expl i cit construct . Mechanisms 

for pass i ng parameters to procedures vary considerably , and a number of 

standard functions are provided for the programmer in three of the 

languages. 

I /O is basically stream , and the l anguages are all machine independent . 

§2.4.2 Compiler-generators 

The compiler-generating languages, like the string and list processing 

languages , are highly specialised . This means , as it did in §2.4.1, 

that their modes , operations, and control structures are limited to those 



18 . 

required for the specific application. Because of this, there is 

little to be gained by close study of this group. The group is 

discussed only in order to make this chapter complete. 

The basic data modes are strings, stacks, and integers. Identifiers 

are generally undeclar ed and typeless. Operations available include 

those necessary for s tring manipulation and parsing. Program structure 
I 

virtually does not exist for these languages - control passes from 

statement to s tat ement through implied goto mechanisms. I/O is 

generally stream , and since most of these languages would normally be 

run interpretively they are not machine dependent. Unlike the string 

and list processing group, they do not have any self-extension 

capabilities. 

§2.4.3 Algorithmic Languages 

Seven l anguages in this group were designed explicitly for systems 

programming, and another two (FO RTRAN and COBOL) are languages in general 

use . LRLTRAN is based on FORTRAN, but the remainder do not acknowledge 

a particular base l anguage . The intention in this section is to identify 

and discuss the areas in which the systems languages in this group differ 

from other l anguages. 

Three of these l anguages (BCPL, BLISS , and SIMPL-X) have only one 

primary data mode. In each case , this mode corresponds to a standard 

storage cell of twenty four to thirty six bits. These modes are 

weakly typed, and for arithmetic operations behave like integers. 

The only additional mode available in SIMPL-X is the single dimensional 

array, but BLISS and BCPL have considerable facilities for building 

structured modes . The concept behind both these facilities is a 

distinction between the 'value' a name possesses, and the value of the 

cell to which that name refers. 

most languages . 

This distinction is not available in 

BCPL has two methods of evaluating expressions containing names, 

address (lmode) evaluation and data (rmode) evaluation. The left hand 

side of an assignment symbol is evaluated in lmode, while the right hand 

side is evaluated in rmode. The method of evaluation can be forced 

by use of two unary infix operators, lv and rv. The following example 



shows how this may be used to build a simple data structure 

. let V = vec(10) 

rv(V+3) := rv(V+4) + 10 

The first statement declares and initialises a variable V to point 

to an area of 10 adjacent cells . The second statement assigns the 

value of the fourth of these ten cells, plus 10,to the third. 
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V is effectively the name of a vector, The general form rv(x+y) is 

found so useful it is abbreviated to xly, and so the second statement 

may be written Vl3 := vl4 + 10. This mechanism is combined with 

a simple but effective procedure mechanism to provide arbitrary data 

structures . However data protection is non-existent . 

The BLISS structuring mechanism is similar but clearer. An~e 

always stands for the address that name possesses . An explicit 

dereferencing operator (.) is provided and must be used to obtain a 

value. Thus .A means 'the value of A'; and x~ .x + 1 adds one to 

the value of x . It is possible to define a mode by giving its accessing 

mechanism. Thus 

structure matrix34[e1,e2]=( .matrix34 + .e1*4 + .e2) 

defines the accessing mechanism for a three by four matrix . This is 

used by mapping the structure onto a chunk of storage. 

local space [12]; 

map matrix34 space; 

space [2,1] := . space [2,2] + 6; 

For example 

Bliss storage classes are local, global, own, and register, and a 

controlled class. 

between these. 

The method of structuring data varies slightly 

It can be seen that these structuring mechanisms are quite general ; 

but that their use may become tedious. 

LRLTRAN extends the standard FORTRAN data types by (a) use of a 

sophisticated macro system to give a structured appearance to data, 

and (b), permitting bytes of variable length to be mapped into part of 

a whole word . 

A prominent featilre of the operations available in this group of 

languages is the extensive set of operations for partial cells . In 

addition to the standard logical operations, there are shift , exclusive 

or, and masking operators. Other than these, operators are only 

provided for the primary data modes (which in several cases means no 

real arithmetic),and for 'address of' and dereferencing operations. 
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The most significant di fference between this group of l anguages 

and any others lies in the control area. Three of the languages in 

this group (SUE , BLISS , SIMPL-X ) do not have explicit goto statements . 

These are the only languages in this survey to omit this control feature 

and replace it with other more readable constructs . Basically what 

has been done is first ly, to include a full set of standard control 

statements (conditional, biconditional, numeric selection , l oops 

tested at top and bottom , stepped loops , procedures ), and s econdly, 

t o add extra statements to exit any closed environment such as procedur es , 

l oops , and statement groups . These exits may be conditional or 

unconditional and may carry a value with them . Such attempts to 

eliminate the goto appear to be at l east partially successful [ Ber 72). 

The more modern languages in this group al so provide for process 

control in the form of coroutines (dependent synchronous tasks). 

These generally take the form of an invocation of a procedure (all of 

whose parameter s are evaluated at invocation) indicating that it is to 

be run as a coroutine , and giving other system- dependent information. 

For example , in BLISS 

create run (a , 3) at 100 length 1000 then exit 

invokes the procedure ' run ' as a coroutine with stack beginning at 

location 100 of length 1000, and exit ' s on termination of the coroutine. 

Semaphore equivalent constructs are also provided in some of these 

l anguages . 

The l a nguages in this group are not exceptional in the remaining 

discussi on areas . They have provision for inline assembler l a nguage 

but are otherwise machine-independent , and with the except i on of SIMPL-X, 

their extensibility i s limited to data structuring and macro facilities. 
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PL360 - Based Languages and Assemblers 

Towards the end of the last decade there was a major development 

in the field of assembly languages , the structured assemblers . The 

first of these was PL360 , and since then some five or six further 

structured assemblers have appeared whose indebtedness (stated or 

otherwise ) to PL360 is obvious . (Fig 2. 3 page 12) . The basic intention 

of the authors of these languages was t wo-fold - firstly to improve the 

readability of the assembly language , and secondly to allow full access 

to hardware of the machine . The way in which these intentions have 

been implemented is of major importance , since no one could deny their 

possible advantages . 

The basic tools which have been used to perform the implementation 

are these . One , make the assembler free format . Two , include 

considerable program structuring through the use of blocks , procedures , 

conditional clauses, and looping clauses. Three , allow the use of 

meaningful symbolic names for all data items , including registers . 

Four , where possible permit groups of assembly language instructions to 

be replaced by an expression-type phrasing . 

It can be seen from this that structured assemblers offer considerable 

advantages over conventional assembly languages while adding no major 

disadvantages . For this reason, the discussion here i s confined to 

structured assembl ers . 

S2 . 5; 1 Data 

Each language has scalar modes corresponding to (a) the cell 

(smallest addressable unit of storage ) , and (b) any multiples of a singl e 

cell that are recognised by the hardware , · and (c) mnemonic register 

names . Thus PL360 ha~ BYTE , SHORT INTEGER, INTEGER(LOGICAL) , REAL , and 

LONG REAL (corresponding to one , two , four , four, and e ight bytes 

respectively) , while PL11 has BYTE , LOGICAL , and INTEGER (one , two , two 

bytes) , and PL503 has only INTEGER (one word) . Machine registers are 

known by mnemonics (RO , FO , F01) but in most cases there i s a synonym 

mechanism for making these more meaningful . For example , in PL360 

integer register exp ~· RO . 

Arrays of all non-register scalar modes may be declared . These 

are one dimensional with a fixed base value which depends on the machine . 

Strings are normally treated as an array of bytes , but where byte 

addressing i s not possible, as on the ELLIOT 503 , the characters are 
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packed into cells, The basic provision for strings appears to be the 

storage of literal constants. 

There are no attempts to provide for fields , structures (other than 

arrays) or reference variables. 

Identifiers must be declared, and in some cases may be made local 

or global . In all ca3es variables may be initialised at declaration, 

and in all but one case (PL503) they may be either name equated or 

address equated through a syn clause (or similar). 

Operators 

Infix operators are restricted to those whose function i s accomplished 

by a single machine instruction. Commonly, mnemonics are provided for 

some unary operators such as shift operators. Most of these languages 

do not have an operator priority mechanism. The main r eason for this 

is that there should be a direct correspondence between the expression 

forms and machine instructions. Thus the assignment s tatement normally 

contains only two distinct identifiers, in the form a = a + b 

or a = a + 3 or a = b . Similarly logical expressions contain two 

operands. The form of these assignments is directly dependent on the 

addres s ing structure of the machine. 

As with conventional assemblers, the typing of variables is very 

weak. However, in the PL360 family typing does determine which one of 

a family of infix operators (represented by the same symbol) will be used 

to evaluate an expression. For instance, on a 360, there are generally 

nine machine operators corresponding to any arithmetic operation . 

Coercions do not exist in these languages. 

§2.S.3 Control 

The constructs for control are the only place where the programmer , 

is not directly aware of machine instructions being used. These 

languages are more procedure-oriented than block-oriented; blocks 

genercilly only serving· to group statements. 

exist in all these languages. 

Simple goto statements 

Selection mechanisms vary from language to language. All languages 

haveconditionalsand biconditionals but only one or two have a form of 

numeric selection. PL360 for example has a case statement. 
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While procedures occur in all the languages, their implementation, 

particularly the parameter passing mechanism, is very machine-oriented . 

The only parameter of a PL360 procedure is a register, while PL503 permits 

passing of integers, constants, and strings. The procedures do not 

return values ( except through parameters), are not recursive, and do not 

have multiple entry points. 

Looping constructs are generally extensive . In most of this family 

they are equivalent to those which are available in ALGOL60, that is 

tested-at-top and stepped , although the syntax varies considerably. 

§2.5.4 I/O 

None of these languages have I/O facilities exceeding those available 

in assembler. 

Machine Dependency 

This is obviously total . Only the basic skeleton of the language 

applies to most machines. Some of these languages have facilities for 

controlling segmentation of programs. 

Extensibility 

None of these languages are extensible , 
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Summary 

It is evident now tha~ this survey has not accomplished what was 

originally intended. There are two reasons for this: firstly, 

there are a large number of languages spanning many machines and 

l anguage areas, and secondly , it is difficult to estimate the extent of use 

and s uccess of any particular l anguage in the systems programming area. 

Thus, while the survey has not made it clear exactly what language 

features are desirable, it has shown which parts of systems languages 

are undergoing the most development. Hence it has also shown the 

deficiencies (and by implication the adequate parts) of systems languages. 

In particular, data structuring and goto replacement are two areas 

undergoing major change, and thus it may be said that these areas have in 

the past been deficient. 

What has not been made evident however is the inadequacy of 

facilities for string manipulation , or task control , or partial-cell 

manipulation. The only indication that the survey gives of this is 

that these facilities are different in almost every language. It is 

for this reason that I have made the independent survey of systems 

programming requirements in §3 and §4. 
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§3 Systems Programs Corrunon Features 

A syst ems l anguage is used to implement systems programs ; hence 

in order to decide what features a systems language should support , i t 

i s necessary fir st to define the term ' systems program' and then to 

examine the various types of systems programs so as to elici t the features 

which must be present in any implemented systems language . Two things 

must be made clear at t he out set . Firstly, a large number of the 

features may be representative of a larger class of programming languages 

although we are really interested i n the differences bet ween systems 

programming languages a nd gener al purpose languages . Secondly , a fa irly 

substantial part of the feat ures needed are reflected by the implementat ion 

rather than the language i tself ; for example merge- editing , efficiency 

or sectional compilation . 
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§3.1 Systems Programs - Definition and Scope 

§3 .1.1 Definition of the term ' Systems Program '. 

While most pr'ogrammers are aware of the meaning of the term 

' systems program', it proves almost impossible to get a working definition 

onto paper. Although there i s no widely accepted analytic definition of 

the term, Bergeron [Ber 72] does attempt such a statement. Wulf [Wul 72] 

defines systems programs much more clearly in t erms of their discernable 

properties. "They : 

( 1) must be efficient on a partic.ular machine 

(2) are large, probably requiring several implementors 

( 3) are 'real' in the sense that they are widely distributed 

and are us ed frequently (perhaps continuously ) 

(4) are rarely ' finished ', but rather are elements in a design/ 

implementat ion feedback cycle." 

These form a reasonable working definition with which other authors 

agree to a large extent ([Ber 72], [ Sam 72], [Don 72]). However, I would 

add one more property: -

(5) can be distinguished from applications programs in that they are 

rarely directly productive to the user. 

This identifies one major property that i s inherent in the nature of 

systems programs . That is, they are used to contro.l, support, and define 

a user's algorithm without actually performing the algorithm itself. This 

is obviously a distinction of degree rather than kind . Several people 

have made r emarks which gl ance upon the property . For example 

Donovan [Don 72]: "Systems programs .... were developed to make 

computers better adapted to the needs of their us ers" and Cox [Cox 71] 

while discussing operating systems said that they make up the difference 

between the hardware that was designed and the 'virtual machine' that the 

salesmen sell. 

This method of definition, however, does not provide much insight 

into the language features which systems programs require, but rather gives 

an indication of the nature of programming involved. Hence, like 

Sammet [Sam 71], I prefer to define a ' systems program' by listing the 

classes within which it must fall. 

of four primary categories. 

Systems programs, then, belong to one 

(1) Language Implementing Programs - all those programs which . 

manipulate or run an algorithm coded in some source language. 

Includes compilers, interpreters, macro processors. 
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( 2 ) Supervisory Programs :- all those programs which s upervise the 

running of a machine, or ma nipulate machine-code programs . 

Includes supervisors , monitors , loaders . 

(3) Runtime Support Routines :- subroutines which are used by a 

program at runtime to support features which are not available 

in the hardwure . Includes device handling routines , I/O 

routines , floating-point arithmetic where this is not available 

in the hardware. 

(4) Special Applications Programs :- those applications programs 

which by nature r equire greater access to hardware features 

than a ' high-level language ' permits . Includes dump routines , 

dump ana l ysers , matrix manipulation routines , data base 
1 management . 

Although these classes include instances which would not under any 

circums tances be called systems programs , they do include virtually a ll 

cases of systems programs . Those which are truly systems programs are 

those which further have the five properties as listed above . 

§3 . 1 . 2 Processing Levels in Systems Programs 

The primary classes of program just mentioned provide a convenient 

division through which the features of systems programs can be exami ned. 

Within any program there exist separable secondary processing types , for 

example table searching, scanning , sorting , or stack manipulat ion . These 

secondary processing types , hereinafter referred to as forms , are generally 

bounded in context : that i s , they are confined to several closed areas 

of program , and wit hin these areas or subalgorithms they are locally 

salient features of data and processing . For example , a compiler may have 

string scanning as one of its forms. This may occur i n several parts of 

a compiler , but in each of these places the data types are similar , the 

primitive operations are the same, and flow of control passes a l ong similar 

paths . These simil arities directly i ndicate the requirements of systems 

programs . Thu~ section §3 . 2 attempts to reduce the four primar y classes 

to these forms for detailed study. Note , however , that certain forms are 

well integrated into the struct~re of t he algorithm ( for exampl e error 

recovery), and some programs retain a gl obal unity which makes this sort 

of top down analysis diffi cult . 

1 
Efficiency considerations often force a program into th i s category. 
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Identifying these forms and noting the frequency and/or necessity 

of their occurrence within the whole realm of systems programming 

provides one objective means of studying the requirements of systems 

programs. It is my contention that manyauthorsof systems languages 

have not made a sufficiently objective study , but rather have decided 

what would constitute ' nice ' (as opposed to necessary) elements of 

systems language design . This fact is amply evi denced by the plethora 

of systems l anguages presently availabl e . 

While realising that languages must change somewhat to accommodate 

different and new hardware, and more advanced software t echniques , it 

i s not obvious that thi s need be much more than superficial . (For 

instance, the apperance of array processing hardware .has not necessitated 

new general purpose languages) . In fact the reverse is true . 
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§3.2 Breakdown of Processing Features 

§3.2.1 Language Implementing Programs 

There are four ma in varieties of language implementing programs :­

compilers , interpreters, assemblers, and macro-processors . These 

are listed below together with the ir component parts . 

Compilers :-

which generally comprise 

( a ) lexical analysis 

(b) parsing and reduction 

(c) code production and optimisation 

(d) error r ecovery over (a) and (b) 

( e) input/output at a high level. 

Interpreters :-

which generally comprise 

Assemblers 

(a) l exical analysis 

(b) parsing (but not necessarily reduction) 

(c) interpretat ion 

(d) error r ecovery over (a), (b) and (c) 

(e) input/output at a high level. 

which generally comprise 

(a) lexical analysis 

(b) code production 

(c) error recovery over (a) and (b) 

(d) input/output at a high level. 

Macro Processors :-

which generally comprise 

(a) lexical analysis 

(b) simple parsing 

(c) input/output at a high level. 
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Thus the salient components of language-implementing programs are 

(a ) l exical analysis (occurs in 4) 

(b) high-level I/O (occurs in 4) 

( c) parsing (occurs in 3) 

(d) error recovery (occurs in 2) 

( e ) code production (occurs in 2) 

(f) interpretation (occurs once) 

Here types (a) (c) typify this category of systems programs. 

Lexical analysis , which occurs in all four types of program, involves 

the scanning of text, breaking it up into terminal symbols , checking on 

symbol formation , r ecognis ing identifiers and reserved words, and 

conver s ion of text to int ernal data types. 

forms are us ed in performing these tasks 

The following sub-process ing 

(a) scanning , comparison and manipulat.i on of variable 

leng th strings 

(b) access ing table structures containing differing modes 

( symbol + reserved word tables ) 

(c) conversion of data ( e . g. string to various internal modes) 

(d) decision making (either through tables or program structure) 

Input/Output used in these programs is generally at a high level, 

that i s , fully buffered single s tatement transfer operations . The 

operations need not be formatted, but considerable facilities mus t be 

available for string manipulation , particularly concatenation , and 

conversions from binary to string and vice versa. Both random access 

(for code files), and serial access (t ext files) are necessary. The 

forms required are 

(a) single statement, buffered, random and serial 

access I/O . 

(b) format conversion 

(c) string manipulation 

(d) and conversion to and from string representations 

of internal data items. 
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The parsing process is generally accomplished in one of two ways -

the decision-making process is built into the program through subroutine 

structure (as in recursive descent), or it is accomplished through the 

use of stacks and a decision making structure (as in precedence analysis, 

or list structure form of syntax) . The forms required are 

(a) extensive program structuring facilities including 

recursive procedures 

(b) stack manipulation 

(c) list structure manipulation 

(d) decision tables . 

Error recovery is one of the most important components of any systems 

program, but because of the messy nature of standard techniques, 

effective language support is scarce . This area is correspondingly 

more important than component areas where standard language t echniques 

are adequate . Basically, what is r equired in error recovery is access 

to both data and program across distinct component area boundaries. 

Thus the error recovery process can both know of and adjust the state of 

what might otherwise be entirely self-contained components. The following 

forms are basic to this function 

(a) inter-component communications 

(b) int er-component passage of control 

( software interrupts or an equivalent ) 

Code production involves basically a manipulative knowledge of all 

machine instructions and cell formats, and use of tables (for register 

allocation, decision making, external symbols etc), while code 

optimisation requires retention of code and program flow images in 

graphs, tables, stacks etc . If folding (evaluation of constant sub­

expressions) is to be performed, then the optimisation process must be 

able to perform operations on all the data types in the language being 

compiled. The forms used are 

(a) a decision making structure 

(b) manipulation of table structures containing mixed modes 

(c) operations on modes not standardly available in the 

language in which the compiler (assembler ) is written 

(d) stack and list manipulation 

(e) manipulation of partial cells. 



The forms from the above paragraphs are collected into the tabl e 

bel ow . 

decision .making 

table structures 

( occurs 9 times ) 

string manipulation 

conversions 

( 9 ) 

( 8 ) 

( 8 ) 

stack and list structure manipulation ( 5 ) 

extensive program structuring ( 4 ) 

single-stat ement buffered I / O ( 4 ) 

inter-component communicat i ons ( 2 ) 

i nter-component control ( 2 ) 

manipulation of non-standard modes ( 2 ) 

manipulation of partial cells ( 2 ) 

Note that this table does not purport to be complete; rather it is a 

gathering of processing forms selected because they are peculiar to or 

relatively more important to the nature of systems programs . Nor do 
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the frequency count s purport to be an absolute measure of the importance 

of the various processing forms ; rather they provide an adequate measure 

of the relative importance of these forms . 

It must also be born in mind that what i s being provided her e is a 

basis for the discussion in §3 . 3, not a complete analysis of systems 

programs . 

§3 . 2 . 2 Supervisory Programs 

In this and the following two subsect ions , the procedure followed is 

identical to that of §3 . 2 . 1 above, but is abbreviated in order to avoi d 

considerable repetition . 

There are three types of supervisory program to be considered ; 

supervisors and monitors ; binders and linkage editors ; and loaders . 

While the overall functions of these are quite distinct , they have some 

large common component areas . The salient components are : 

(a ) manipulation of code files ( 3 ) 

(b ) access to system libraries ( 2 ) 

( c ) hardware aligned processes (I/O and interrupt handling ) 

(d ) task control (1:': ) 

( e) resource management ( 1 :': ) 

( f ) user and operator inter.facing (1 :':) 
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The components (c) to (f) belong entirely to the first of the 

three subclasses of program, and hence have an importance far greater 

than their frequency count would indicate. This is indicated with a 

star ( :'•) throughout . 

The following is the table of forms derived 

manipulation of partial cells (6*) 

manipulation of non- standard modes (6*) 

single- statement I/O (6*) 

manipulation of table structures (5•'•) 

§3 . 2.3 

direct two- statement I/O (unbuffered , random access) (4*) 

intercomponent communications (4*) 

use of restricted or special machine instructions (3*) 

decision making (3*) 

inter- component passage of control (2*) 

extensive program structuring (2*) 

stack and list manipulation (2:':) 

conversions ( 2•':) 

string manipulation (1:':) 

task initiation (1*) 

Runtime Support Routines 

Runtime or intrinsic routines include hardware extension routines 

(such as format handling, floating point arithmetic), device handling 

routines, file handling intrinsics. These routines do not normally 

have common components, so the forms (derived directly) are 

direct two- statement I/O (2) 

non-standard modes (1) 

conversions (1) 

string manipulation (1) 

partial-cell manipulation (1). 

The distinction between programs in this class , and parts of the 

operating system is not at all clear . I have treated this class as 

comprising .those programs whic~ are loaded or link-ed ited as an integral 

part of a user ' s program. Even this method of discrimination fails for 

some machines (for example the B6700). 



§3.2 . 4 Special Applications Programs 

Programs in thi s class ar e r egarded as systems programs for one 

or both of the following two r easons : they manipulate non-standard 
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or s ub-cell modes , or they must be more effic i ent than would be possible 

in a general purpose language . Such programs as dumpanalyzers , dump 

programs , directory listers , compacters , emulators might belong to this 

class . The essent i a l components here are the fol lowing 

(a) manipulation of code files (1) 

(b) access to system libraries (1) 

However , this is a gross oversimplification of the situation , as 

there i s a wide variety of pr ograms in this category. The forms 

involved are 

partial cell manipulation (1) 

s ingle-statement I/0 (1) 

direct two- statement I/O (1) 

non-standard modes (1) 

This section also serves to emphasize that systems programs must 

above all be effective (efficient, functional , error immune), since 

programs may be in this class onl y for reasons of efficiency . 
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Collected Features 

This subsection contains a brief discussion of the various processing 

forms isolated in §3 . 2 in the context of systems pr ograms . These forms 

are collected together i n the fo l lowing list : 

table structure manipulat i on 

decision making 

conversions 

single statement buffered I/O 

string manipulation 

manipulation of. non- standard modes 

manipulation of partial cell s 6 

stack and list structure manipul at i on 

direct two-statement I/O (unbuffered ) 6 

extensive program structuring 

inter- component communicat i ons 

inter-component control 6 

(14* ) 

(12* ) 

(11*) 

(11* ) 

(10*) 

(1 0* ) 

(10* ) 

( 7* ) 

( 7* ) 

( 6*) 

( 6* ) 

( 4* ) 

use of restricted or special machine 

task initiation 6 
instructions6 ( 3* ) 

( 1*) 

indicates that the form would normally be found only systems programs . 

Table structure manipulation . Systems programs require or retain 

large amounts of information in tabular structures (that is structures , 

whose composition is static at runtime ) . This includes such items as 

peripheral status , error messages, reserved words , symbol tables , task 

status , to name but a few , Systems programs specifically require t wo 

features i n such structures ; firstly that they may contain mixed modes ; 

and secondly that they are initialisabl e . However , t he basic 

requirement is for a general data-structuring mechanism. 

Decis i on making . Systems programs spend a large proport i on of 

their time making decisi ons as against manipulating data . (This assert ion 

can easily be verifi ed by comparing pages selected at random from systems 

programs and applicati ons programs ) . This decision making i s sometimes 

of an extremely complicated nature , for exampl e the parsing process . 

Simple conditional and numeric selection statements are not suffici ent 

i n t he systems programs context . General ised statements for multiway 

choice are desirable ; similarly recursive procedures (if pr acticabl e ) . 
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Conversions . Hardware normally provides few facilities for 

conversions between modes. Normally, runtime support routines are 

used to make up this deficiency in the hardware ( e .g . formatted I/0 

routines). These systems programs must be coded at the lowest possible 

level, and if, as in a minicomputer , all conversions are performed by 

the software , a one-to-one correspondence between source and object code 

may be the only feasible method . Larger machines , even though they may 

have some string to binary (and vice versa) conversion in the hardware , 

still require software to perform the bulk of generalised format conversions . 

This provides an excellent case for having inline code available in some 

places , and also for a rationalised syntax for every form of explicit 

coercion. 

Single statement buffered I/O. This raises three important points 

as far as systems programs are concerned . Firstly , standard I/O should 

not be omitted from systems languages for , although it is ' high-level ', 

many systems programs can make effective use of it. (Note that th i s 

comment applies to several other features of high-level l anguages) . 

Secondly , if it i s provided in a systems language , provision must be made 

for trapping associated faults ( s uch as disk parity errors) . Thirdly, 

it i s common practice fo r systems programs to utilise other systems 

programs for performing various funct ions . While this plagiarism is 

commonly contained within operating systems , it should not be inhibited 

el sewhere , a nd to adequately achieve this may require either an extensible 

language , or a series of l a nguages (Burroughs ESPOL,DCALGOL, and XALGOL 

for example ). 

String manipulation . A considerable amount of the total data 

manipulated by systems programs i s in string form . These strings are 

either manipulated as complete entities (for data ~ommunications , or 

error messages ), or are created or broken down for manipulation of 

substrings . There i s obviously a considerable case for a string mode 

in its own right, and it i s one of the peculiarities of this mode that 

the subparts of the mode are of the same mode. If syntax for string 

manipulation is forced to conform to the usua l tight keyword-and­

bracketed-context form , string. manipulation can appear very c lumsy indeed 

( see §s .2. S) . Ideally, the syntax for scanning , parsing , and 

concatenation should be simple , unique, and at as high a level as is 

practicable . 
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Manipulation of non-standard modes . A predominant feature of 

systems programs in general and operating systems in particular is that 

they manipulate special purpose modes , that is , modes which woul d not 

normally be found as a s tandard type in a general purpose language . 

Such modes are generally peculiar to the place in which they are used . 

They are not always static at runtime . If these are to be described 

adequately at compiletime (to enable compiletime checking) , a completely 

general data structuring mechanism is r equir ed , with an extension to 

permit creation of multiple copies , either through modes , or based 

variables. It i s obviously necessary for the programmer to have total 

control over the storage all ocation of many of these s tructures . 

Manipulation of partia l cells . ' Bit fiddling ' is generally confined 

to systems programs . It has two uses: either to pack data within cells 

to save space , or more importantly to manipul ate par ts of cell s which are 

directly r ecognised by the hardware . This latter use may require some 

explanation. Ma ny machines have hardware to operate directly on 

composite modes (floating point numbers for exampl e ) . The individual 

parts of these modes ( e . g . exponent , mantissa) often are not directly 

addressable because t hey do not fall on cell boudnaries . These partial 

cell s (or fields ) must a l so be available to the softwar e for manipulation , 

and would normally be treated as unsigned integers . 

Access t o f i elds requires that a mode must be able to be treat ed as 

e ither a complete unit, or as a l ow-level structure with component f i elds. 

That .i s , the mode must be to some extent weakly typed . The natural 

extension of the data structuring mechan i sm t o include sub-cell structure 

may be machine dependent . ( See §s . 2.4 ) . 

Stack a nd List structure manipulation. While stacks a nd lists 

should perhaps have been included in the discussion of non-standard modes , 

they appear s ufficiently frequently in systems programs to be discussed 

separately . Their provision in the l anguage i s a necessity , either 

through a comprehensive data s t r ucturing mechani sm, or as standard modes . 

Their presence highli ghts two aspects of data structuring . Both structures 

are dynamic, and because of this manipulating them r equires the use of 

r eferences , either explicitly or implicitly. The current s t ate of the 

art i s s uch that explicit manipulation of r eferences i s necessary . _ I am 

not suggesting that this i s a good thing, mer e ly that it i s currently 

necessary . Also , instances of list elements must be created at runtime , 

and some functions of lists may return a lis t (or a list el ement) , thus 

further reinforcing the case for generalised modes . 
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Direct two- statement I/0 , Direct unbuffered , or core I/O, 

is used only by systems programs . It is necessary in order to gain 

efficiency by overlapping processing with input or output . This type 

of I/O also gives the programmer greater control over a peripheral 

device and a decrease in I/O overheads ( by avoiding formatting and 

buffering) . The two statements of the I/0 are , naturally , ' initiate ' 

and ' wait if I/O not finished '. 

Extensive program structuring . Systems programs tend to be large 

and complicated and often messy . This indicates a requirement for a 

comprehensive set of program structuring facilities . It is essential 

to have block a nd procedure structuring , and it is just as essential for 

identifiers to have local scope . Considerable attention must be paid to 

aiding the programmer in laying out the program ' s structure , and as this 

is made easier in an extensible language , serious consideration should be 

given to this. In particular , a simple macro facility (if not abused ) 

can considerably improve program structuring. 

Inter-component communications. Under some circumstances, normally 

error conditions , there may be a requirement for two mutually exclus ive 

components of a program to have access to local information in the other . 

This is used for such operations as task information , r ecovery from 

errors and mutual exclusion with respect to resources . While the normal 

method of accomplishing this might be to make s uch information global 

to bo~h , this may be neither desirable nor necessary (cf Simula 67 ). 

Provision should be made for mutual exclusion with respect to data, and 

also for data to be passed between components via queues or some other 

mechanism . This applies particularly to information about independent 

tasks . 

Int er-component control . One of the main probl ems of an operating 

system is that of neatly terminating or changing the flow of control in 

another task . Under normal conditions, this can be accomplished 

through the standard inter- component communications system , although , 

of course, semaphores or their equivalent must be present to obtain 

mutual exclusion in criti~al sections of processing. However, for the 

handling of error conditions, this mechanism may be ineffectual ( fop 

example t erminating a task which is waiting indefinitely on a semaphore ). 

The requirement here is for a software interrupt mechanism, so that a 

task can be forced to change its state . Note that this may be equivalent 

to forc ing a task to execute a bad goto (cf premature termination because 
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of a fault) . This probl em is really a special case of the much larger 

problem of multiple exits from controlled environments . 

Use of r estricted or special machine instructions. An inevitable 

problem of writing an operating syst em in a high-level language is that 

sooner or later the programmer will wish to include inline code . This 

can occur for several reasons - all perfectly valid. Firstly , the 

source to machine code mapping may be such that a considerable loss in 

efficiency i s achieved by never inserting inline code. Secondly , the 

use of some machine instructions may be r estricted, either because of the 

physical state of the machine , or because their use is dangerous under 

normal circums tances . Thirdly, the systems programmer may require access 

directly to machine registers, or absolute addresses . 

These may be separated into two separate requirements . Initially , 

there is a need to provide access for the programmer to any machine 

instruction he desires , while at the same time minimising the chances of 

his making errors . Subsequently, there is a need to provide for the 

more common of these dangerous ins tructions to be provided directly in 

the language . (Weak typing is one of the best ways of accomplishing 

this. See §s.2.3.). 

Task initiation. One of the most important aspects of a 

multiprogramming operating system is the running of tasks , that is , 

processes which compete with each other for the available system resources . 

As this process is obviously different from the normal procedure calls , 

it generally r equires separate syntax. Language constructs must be 

avai l able to allow programmers to initiate different types of task . 

These types are discussed in §s.3 . 1 . Post-initiation communication and 

control of these tasks has been discussed in the paragraphs on inter­

component control and inter-component communications . 

The foregoing paragraphs have discussed the requirements of some 

of the forms of systems programs. 

discussed in §~. 

Meeting these r equirements is 
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Effectiveness Functionality, Error Immunity, and Efficiency 

Almost every set of criteria for systems languages contains the 

term ' efficiency '. Almost none of these explain the meaning that is 

attributed to the term but rather treat 'efficiency ' as somehow self­

defining . On reading the arguments concerning these criteria, it is 

evident that the uses of 'efficiency' differ considerably . It may be 

used in its broadest sense to indicate overall efficiency in use of a 

language , or in its narrowest sense to indicate some relative measure 

of the speed or size of code compiled from a language (presumably 

against the optimal mach~ne code ) . Because most glib uses of ' efficiency ' 

are in the narrow sense, and because it is evident that criteria based on 

this sense are inadequate (in that they ignore other aspects of overall 

language efficiency) , I have instead made use of the term as described 

below . 

The general criterion is for language effectiveness. (This term 

has been used before with similar meaning [Ard 70 ]. ). Effectiveness 

has three components : functionality (of the language and of the compiler ), 

error immunity (of the language ) , and efficiency (of the compiled code ). 

Effectiveness thus may be regarded as a measure of the relative cost of 

developing , using, and maintaining a piece of software (coded in that 

language , as against others) . Two components of effectiveness 

(functionality, and error immunity) unfortunately have no real measure , 

and so ' effectiveness ' · may only be 'real ' in its relation to cost of 

software . 
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Functionality 

§4 . 1.1 Functionality of the Language 

A language may be functional in two ways , writeability and 

readability. That is, a prograrruner must be able to easily and 

correctly write the language, and with correct understanding read 

the language. Writeability and readability naturally depend to a large 

extent on how suitable the language is f or the purpose for which it is 

being used. This is the first and perhaps most important criterion 

for functionality of the ·language; that the language is suited to its 

use . §3 concentrates on satisfying this criterion . 

What reflects on writeability? Firstly, the mapping from what 

the programmer envisages into how it is realised in the language must 

be as simple as possible . Thus the language should concentrate on 

describing algorithms rather than their implementation , and similarly 

the prograrruning language description of a data structure should not 

differ significantly from the natural language description of the same 

data structure (this is probably the greatest criticism of the BLISS 

data structuring mechanism. See §s . 2. 2) . The mapping must be as 

nearly one-to-one as possible, in that there should be the minimum 

number of ways of writing the same thing; thus avoiding the possibility 

of the programmer making an arbitrary decision as to the ' best ' way of 

writing something . This is most important, as even good systems 

programmers can mistake the 'prettiest ' path for the ' best ' path. 

Secondly, there must exist a reasonable mapping for almost everything 

the programmer may want to do , and moreover, exactly what form this 

mapping has must be obvious. That is, the programmer should not have to 

struggle to express himself , as this may result in unnecessarily devious 

code . 

Thirdly , the programmer must not be misled by finding that constructs 

he attempts to use because of similar constructs already us ed, are 

either not in the language or have an effect other than that which he 

expects . This implies that a language must obey the Law of Least 

Astonishment (itself a proper part of language orthogonality ), which 

states the programmer should be the least astonished as to the function 

or presenc~ of an arbitrary construct in the l anguage . 
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real procedure p(r,q); 

real r; procedure q; 

p := q(r); 

z p(if b then x else y, if c then sin else cos); 
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This is not valid ALGOL60, but it would seem reasonable to be able to 

be able to write this. 

This law also significantly r eflects on r eadability and error 

i mmunity. 

Readability is r efl ected in three things. Firstly, constructs 

must not be dec eptive or obscure in their f unction (Law of Least 

Astonis hm ent). 

for example 

in PL/I 

while in ALGOL60, 

DO WHILE 11 1 B; 

within a r eal procedure p 

p := 3; 

if p = 3 then . • . • . . 

is obscure 

i s deceptive 

Secondly, the l anguage must . be such that the structure of a program 

is s uperfi cially apparent . Thi s may be inhibited by the l anguage (a s in 

COBOL, FORTRAN or fixed forma t assemblers), and may be considerably aided 

by the compiler (begin-end counts in ALGOL, automatic indentation of 

blocks). 

Thirdly, the ' language must not contain arbitrary r estrictions, such 

as limiting identifiers to 6 letters. 

Functionality outside the Language 

How a program is written may depend quite significantly upon things 

only vaguely related to the language. The large and complex nature of 

systems progr ams makes certain demands on the construction of the compiler 

and other programs associated with getting a program running. 
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There are two important functions of a compiler which need to be 

taken into account here: commentation support, and optimisation. 

The manner in which a compiler supports these drastically affects program 

readability. 

Comments do not naturally form part of the language structure and, 

while it is obvious that they are most likely to be needed around some 

particular parts of the language, permitting them only at fixed points 

in the language may be seen as an arbitrary restriction . It might be 

argued that high-level languages are self-documenting and thus do not 

need extensive commentation. However, since a program does not specify 

what is being done but rather how it is being done, this argument is 

deceptive. (The reader may verify this for himself by selecting an 

algorithm at random from Collected Algorithms of CACM, get ting somebody 

to transcribe the algorithm omitting comments, and then attempt to say 

what the algorithm does and how it is used). It is essent ial that 

comments may be inserted in a program between a ny two terminal tokens . 

Perhaps the eas i est way of achieving this is to have a s ingle character 

which denotes the end of the line of program (as in Burroughs ALGOL, 

ESPOL , DCALGOL, and many assembly languages) . 

Redundancy in a program often provides an extemely · effect ive means 

of making that program more r eadabl e . This applies particul arly to 

redundancy of load operations. Consider the following single statement 

from the Burroughs B6700 2.4 MCP. 

RETURN (M[W := (W := M[MYF+1].PIRF + (IF BOOLEAN (W.[1 3 : 1]) 

THEN WO RDSTACK[R := FINDD1STACKNUM(MYF-BOSR),SEGDICTMSCW 

+ W.MYSDIF] ELSE M[DOSETTING + W. MYSDIF]) . ADDRESSF] 

.[1 6-M[MYF+1] . PSRF) X8-1: 8] & (W)[47:19:20] & R[27 :19:20]); 

This statement, which may only be regarded as programming pornography, 

in fact probably saves four or five memory r eferences. (In all fairness, 

the latest MCP has a slightly different representation of this statement, 

with comments). The point being made here is that proper optimisation 

might obviate statements of this sort. 

not even require this optimisation. 

Machines with cache stores would 

Separate and optional compilation are both very important aids in 

the construction of systems software. The former requires that procedures 

or blocks can be compiled separately and bound (link-edited ), thus saving 

time by recompiling only what is necessary, and allowing members of a 
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programming team to work much more independently than would otherwi se 

be possible . 

Optional compilation can be extensively used for introducing 

debugging code , extended features which may not always be desired, and 

so on. For an example , both the DCALGOL and ALGOL compilers on the 

B6700 are compiled from the same source code , the difference being the 

setting of a compiletime option . 
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Error Immunity 

Dijkstra once made a request for "intellectually manageable programs , 

which can be understood and for which we can justify, without excessive 

amounts of reasoning , our belief that they will operate properly under 

all conditions . . . . . ". It is a prime prerequisite for such programs 

that the language used does not contain error-prone constructs. 

are three levels on which these constructs become apparent, purely 

syntactic, mixed syntactic and semantic, and purely semantic . 

There 

At the purely syntactic l evel , it is most important to retain the 

maximum lexographic distance between all terminal symbols . Thus the 

distance between GEQ and LEQ is one, and a single miskeyed character 

can produce another valid symbol; while the distance between GREQ and 

LSEQ is two , and it takes two miskeyed characters to produce another 

valid symbol . This is somewhat analogous to the case of the programme~ 

who declares a variable DO in ALGOL60 (and s ubsequently finds DO on his 

listing ). 

The greatest confusion can arrive at the next level, when syntax 

and semantics interact. For in s tance, in ALGOL68, the declaration 

real r may mean just that, or be a contraction for ref real r = l oc real , 

depending on the context. If the declaration occurs as a formal 

parameter specification then the declared item is a real, but if it 

occurs on its own as variable declaration then it is a ref real. Again , 

the distance between real r : = 6 and real r = 6 is one , but the difference 

in meaning is considerably greater. Thus the distance between any two 

constructs at the syntactic l evel should be proportional to the distance 

between those constructs at the semantic l evel. This is another form of 

the Law of Least Astonishment . 

There are several rules that can guide the language designer here . 

Firstly , to ensure a minimum distance of two between keywords in the 

language . Secondly, to avoid having the meaning of any group of two 

or more symbols context dependent . Thirdly, to avoid having two similar 

terminals syntactially valid in the same place (for example I and / , 

- and _, : and ; ) . And . lastly , to maintain the relation between 

syntactic and semantic distances. 

One particular item arising from the third of these rules is that 

there shoul d be no implicit declarations, since implicit declaration 

permits a mispunched identifier to be syntactically valid where it 

otherwise would not be . 
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At the purely semantic level, there are only two major items, 

closely related, to be avoided. These are gotos and reference variables. 

Because gotos inhibit program validation procedures, and because 

they may in their unrestricted form cause scope violations (which have to 

be fixed up by a runtime intrins ic), their use should either be abolished 

or at least contained within limited-scope areas. There seems little 

doubt that unrestricted use of gotos is error-prone and, while the 

arguments for and against are too long-winded to expand here, §s.3 
contains my views and a partial solution . 

Hoare [Hoa 73] points out that reference variables are very closely 

related to gotos in that they can cause scope violations. Checking 

against this is time consuming and, as with gotos, the best solution 

would seem to be eliminating them entirely from the language. This 

problem is no less difficult tha n that of eliminating gotos from the 

l anguage , particularly because reference variables may be used to greatly 

increase efficiency by avoiding repeated use of some addressing mechanism . 

At the present time, complete removal of reference variables appears 

unrealistic. 



Efficiency 

Efficiency , in its narrow sense , is a relative measure of two 

things: firstly , the amount of time a section of program takes to 

execute, and secondly, the amount of space that section of program 

takes in core. These should be measured relative to time- optimal 

47 . 

and space- optimal machine code programs which perform the same function , 

but because this is unrealistic they can only be measured relat i ve to 

a single assembler language program which performs the same function . 

The range of values quoted for efficiency varies considerably 

between languages (as might be expected) , and even within a language . 

In one project it was found that code written by programmers in 

experience in PL/I was five to ten times worse than that which they 

could have written in assembly language [ Cor 69 ] . Another study [Ar d 70] 

found that code written by experienced PL/I programmers using the 

F- compiler was four to five times worse 'than assembler language . These 

figures are perhaps quite atypical , and probably result from the· 

generality of PL/I . For instance Terashima [ Ter 74] quotes a run- time 

efficiency of 1 .11 times and a space efficiency of 1 . 17 times for programs 

written in SYSL , a language specifically designed for systems programming . 

Efficiency obviously tends to increase with the level of the language , 

but the reason this is so marked may be due to the bad design of the 

higher-level languages and their compilers , 

It is worthy of mention that Terashima estimates the ' productivity ' 

(; functionality) of his language at approximately twice that of assembler 

language . This should increase with the level of the language , but may 

not a l ways balance out the decrease in effici ency. 

There are several \~ays of aiding programming efficiency , Fi r;:;tly, 

each sectio~ of source must compile into the most efficient object code . 

This might be regarded as totally a function of the compiler , but the 

l anguage designer can make sure that only the most efficient construc t s 

are available for any part i cular processing form . There is obviously 

some trade-off point where a l anguage construct may be too ineffici ent 

t o use , and unfor tunately this often will depend on the machine on which 

t he language is being implemented . Thus the compiler should make the 

programmer aware of how much code each statement generates , and even what 

code is generated. 
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Secondly, where suitable language constructs are unavailable, or 

grossly inefficient, the programmer should be able to recode them into . 

assembler language. Bergeron et al [Ber 72] have made such a succinct 

justification for this that I quote it here in its entirety. 

"In a few cases, it is impossible for the user to describe a 

peculiarity of his system. Furthermore, every compiler will have 

-features which restrict some systems programmers . These unsatisfactory 

conditions can be relieved by allowing the insertion of assembler 

language as in-line "open subroutines" . The section of code thus 

produced will contradict some of the rules of a systems programming 

language , especially syntact ic clarity, but at times the advantages of 

low l evel coding are great enough to compensate for this loss. 

When an available facility is expensive in the systems language, 

judicious recoding of critical portions in assembler language may also 

be valuable. By taking the machine environment into consideration, 

a programmer may modify the compiler's target code to raise the overall 

efficiency of his system appreciably. The following example will show 

that a tight algorithm at the source code level does not necessarily 

ensure an efficient program : 

A linguA/.i.ti.co gMup a..t BJz.own UiuveJl...6U!f WM c.ocling in an 

e__o.Jtf_y veJ!...6ion 06 PL/I wluc.h clid no.t incl.ude. .the. TRANSLATE 

and VERIFY fiunc..ti.on6. In a R.e.y Jtou.ti.ne., .the.y ne.e.de.d to 

!.le.an a chaJz.ac..te.Jz. .6.t!Ling 6olL the. fiill.t oc.c.UIL!Le.nc.e. 06 one. 

0 6 .6 e.vvi.a.l ugh.t-bi.t c.onfiigU!l.atio n6 ' Jz.e..tu.Ji_ning the. ivr.de.x 

o 6 .tha..t diaMc__,te.Jz. in .the. .6.tlLing. To hnp.teme.n;t thi-6, .the.y 

c.ode.d a ve.Jz.y .tight PL/I .toop (whic.h c.ompi.f.e.d in.to a fa!Lge. 

amount 06 mac.hine. c.ode.). Fina...U.y, a .6!f.6.tem.6 p11.og11.amm e.Jz. 

11.e.llize.d tha..t .the.y had j w.,.t J.iimui.a..te.d the. .6..i.ng.te. I 360 

TRT ,{,YI/.) .tll.uc..ti.o tt. B !f Jte.c.o cling tha.:t. .6 maU, R. e.y 11.0 u.tine. ,(,n 

a..M e.mb.te.Jz. .tanguag e., he. ·WM ab.le. to 1te.duc.e. the. e.xe.c.u.ti.on. 

time. 06 the. whole. p11.og11.am two oJtdeJ!...6 06 magni.:tude.. I.t wa.6 -

o n.ty .th.Ito ttg h .tow .f.e.v e..t R.now.te.dg e. o 6 the. mac.hine. that .the 

p11.og.1tam c.o uld be. made. mo!Le. e.6 fi,iclen:t. 

The trade-off between the efficiency of assembler language and its 

lack of clarity is easily resolved since such inserts should occur only 

infrequently when the relevant section of the program is completely 

thought out. Furthermore, documentation should be provided in great 

detail to explain the meaning of the code (in fact, the original code 

in the systems language provides excellent documentation in such a case)." 
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The most important effects of permitting some form of inline 

assembler are to all ow the · language designer to raise the level of 

other language construct s ( thus decreasing machine- dependency), and to 

increase s ignificantly the efficiency of critical port i ons of programs. 

These are both extremely worthwhile . 

However, in order t hat the critical portions be i dentified 

accurately (a more diffi cult task than it would appear [Wul 7 2)) there 

should be available to the programmer , through the compiler , a method 

of timing execution of program modules . 

The most important point to emerge is t hat any appli cation of 

criteria related to efficiency in particular , and effectiveness in 

general , will r equire a compromise between opposing arguments . 
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§s Critieria and their Application to the Language Desi gn 

The previous three sections have concent rated on determining , 

for l angudge-related aspects (§2 and §3 ) and effectiveness- related 

aspects (§4), the most important criteria . This section introduces 

criteria related to aspects of extensibility , and for these and t he 

abovenmentioned discusses their interrelationships and application 

to the language design . In subsection §s . s an attempt is made to 

sum up and order the criteria overall , and to provide in part a guide 

to what aspects the intending designer/implementor of a systems 

language should consider important . 

A large proportion of the criteria previously derived fall int o 

two distinct groups - those related to data and those related t o 

control. The effects of the criteria in these groups are discussed 

in §s .2 and §s .3 respectively . The remaining criteri a are discussed 

in §s . 4. 

It must be emphasised that not all criteri a indicate concret e 

requirements of the language (such as provision for task initiation 

and control , and stri ng manipulatives) but rather form guidelines for 

the overall design of the language (such as efficiency , orthogonality ) . 

These guidelines are by far the mos t important of the criteria , but 

they do not themselves construct the language . They have a governing 

effect in that they may force a choice between two equivalent constructs , 

but they never create the constructs themselves . Thus they are not 

considered in isolation but rather when they affect the application of 

other criteria . 



§s.1 Extensibility/Orthogonality 

§5.1.1 Extensibility versus Universality. 

Hardware today presents the systems programmer with great 

divergence in functional appearance . Because of this, there is 

general acceptance of the belief that systems programs cannot be 

made portable without a significant loss in efficiency [ Sam 71 ]. 

However, this has not reduced a belief that systems programming 

languages may be made portable. There are basically two ways of 
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achieving this: either by including all f eatures that may be required 

on all machines or at least a large proportio~ of them (the universal 

language approach); or by providing a relatively low-level portable 

language kernel and means to develop extensions to this (the 

extensible l anguage approach ). 

Universal languages have several disadvantages . A programmer 

may not in fact find the l anguage feature he requires, or he ma~ find 

it too inefficient to use on his particular machine . The language 

itself becomes large and correspondingly clumsy , making it both 

difficult to learn and diff icult to r ead . The definit i on of the 

language may make it difficult for a construct to be implemented in the 

mos t natural way , resulting in either a sli ght deviation from the 

definition , or a loss in efficiency . The language may prohibit 

utilisation of some hardware feature on an existing or f uture machine . 

All of these may be small and detourable items but they combine to 

provide a s izeable a rgument against this approach . 

Extensible l anguages , on the other hand , have several advantages , 

and only one major dra~back . 

Firstly they promote better structuring of a program or a suite of 

programs . This is of particular significance to operating systems , 

where the program structuring is otherwise provided through procedures 

or macros . For example , an overview of an operating system may have 

the appearance of an inverted wedding cake as in Fig 5.1 , where each 

layer is involved i n building data s tructures and operations for the 

next and s ubsequent tiers , while at the same time retaining a 

functional unity within the one level . 
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Fig 5 ,1 

intrinsic functions - high level I/O - user interface 

process control operator interface 

resource management 

interrupt and I/O control 

In a non-extensible language a programmer may have to work hard to make 

this structuring neat or even apparent . 

extensible language . 

This is not so in an 

Secondly, constructs can nearly always be built to provide anything 

the programmer requires , and generally at an efficient low level of 

implementation. This is because , in describing an extended structure , 

a programmer is not only specifying the structure but also its 

implementation. The ' nearly' above is the major disadvantage , or 

rather deficiency , of extensibility. It might be argued that an 

extensible language is not worth the effort involved in implementing it 

if the extensibility is not completely general . This may pose some 

practical difficulty (see §5.1.2) . 

The third advantage of extensibility is t hat since extensive data 

structuring facilities are required anyway, a large·amount of 

duplication of definition may be avoided by allowing modes to be defined 

and then associated with different names . Modes also combine extremely 

well with other language features required , such as weak typing and 

linked-list manipulation . Having made the language extensible in this 

respect the jump to more general extensibility is easier and s horter. 

§5 . 1.2 Extensibility Features 

Extensibility , then , i s a neat and useful tool, as far as systems 

languages are concerned . Can it be justified in terms of the increased 

implementation effort? There are three directions in which a language 

can be extended: extension of data (modes and unions) ; extension of 

operations (operator declaration) ; and extension of control ( e . g . by 

macros) . Each of these varies in usefulness according to the 

environment to be considered and providently , each is relatively 

independent of the other two, so that only the most useful may be chosen 

for implementation . 
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Extension of data is the most useful of the three . It has 

already emerged that good data structuring is an essential part of 

systems programming (§ 3 ). Non-extensible methods of describing data 

structures have several drawbacks . A s i gnificant amount of duplicated 

source code may be necessary to declare multiple copies of the same 

structure, (and methods for avoiding this, such as based variables 

in PL/I , result in semantic confusion) . Programatically imposing 

a mode on a weakly typed section of storage becomes clumsy , as does the 

manipulation of cells whose internal layout i s determined by hardware 

rather than software . There are two documented approaches to data 

extensions , the syntactic approach of ALGOL68, and the semant ic 

approach of BLISS . 

BLISS defines the mode through a STRUCTURE declarat ion, which 

associates an identifier, possibly with parameters, with an accessing 

algorithm . This algorithm may then be "MAP"ed on to any available 

piece of storage . 

tedious . 

This i s a very flexible approach although a little 

ALGOL68 permits the definition of modes, declaration of identifiers 

as declared modes, or unions of modes. Th i s syntactic approach is a 

mixed blessing however, for,in dealing with low level modes, some 

confusion exists between the functions of the definition of the mode and 

the functions of the declaration of an identifier having t hat mode . 

However, a small syntactic rearrangement could avoid most of this 

confusion ( see §s .2). Definition of modes does have a singular 

advantage in that it permits a consistent way of referring to sub-cellular 

items such as bits , bytes, and fields . This avoids both the packing 

problem of PL/I,and the extra declarations for word layouts of ESPOL. 

On the contrary , I find no such justificat ion for declaration 

of unions . They appear to have little use in systems programming and 

require considerabl e extra effort in impl ementation . Conformity 

relations then become essential, and as there is little hardware 

available for conformity testing, these may require significant amount s 

of software , included behind the programmer's back . 

avoided (§4.3). 

This should be 

Extensibility of operations is normally accomplished through 

procedures or macros. The declaration of infix operators has two 

semantic pitfalls . Firstly , if a standard operator name is used then 

care must be taken not to alter implied meaning of that operator, for 
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example , using " " for concatenation . Secondly, setting t he priority 

of an operator may virtually eliminate r eadability of the program. If 

a standard operator name has a different priority for different operands, 

or a new operator has an unexpected priority,this may prohibit rapid 

understanding of source code involving those operators . Even having a 

fixed priority scale as in ALGOL68 may cause confusion until the 

programmer is totally aware of the priorities of existing oper ators . 

Priority settings are too complex to be used with impunity . Thus it is 

suggested that if infix operators may be declared , then they have a fixed 

priority (probably the highest) if they are non-standard , or the priority 

of the standard operator whose name they use . Considering binary and 

unary operations are only a smal l part of any set of operator extensions , 

they could easi l y be dispensed with as infix operators . 

Extensibility of control is one of the least developed aspects of 

extensible languages. Because control is so embedded in the syntax of 

the language , extensibility with respect to control requires the ability 

to drastically alter the syntax and semantics of a l anguage during a 

compilation . This is such a difficult tas k that it does not seem ever to 

have been accomplished s uccessfully . Rather . most extensibility of 

control is provided through macro processors which , of course , work 

totally at the pre-syntax stage . Simple parameter ed macros such as 

those in Burroughs 86700 ALGOL provide a procedure-like appearance upon 

invocation which may be confus ing . Avoiding this requir es a much more 

complex system which would not normally be embedded in the language , 

for example ML/I. Perhaps if a language has adequate control primitives , 

this sort of extensibility might be better avoided compl etely . 

§s . i. 3 Orthogonality 

Orthogonality i s one of the criTeria worth bearing in mind as a 

guideline . Its real value is as a contribution to making a language 

more functional - that i s , more writeable, more readable , and l ess error 

prone . It helps a language to conform to the 'Law of Least Astonishment '. 

A programmer can form a construction more easily f r om experience with 

s imilarly formed constructions . Conversely , the programmer is more likely 

to correctl y interpret the function of a construction he sees before him 

because of his experience with s imilar constructions. 

Thus the real value of orthogonality is as a means of maintaining 

internal consistency of the language . 
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§5. 2 Data-Related Criteria 

Criteria in this section fall into two broad groups : 

firstly, those which merely predicate the presence in the language of 

a data type and operations thereon and where there is little or no 

choice of implementation involved ; and secondly , those which for some 

r eason are peculiar to the nature of systems languages or which have 

considerable flexibility of implementation. The former group is dealt 

with for convenience in §s.2.1 and in arbitrary order (since it deals 

with necessities). The l at t er are dealt with individually in §s.2 .2 
and succeeding subsections , and in my order of decreasing importance . 

That is 

Data Structuring 

Weak Typing 

Fields 

Strings 

Storage Allocation 

Array Processing . 

It should be noted that the ordering does not imply that one 

crit erion s hould be satisfied before others , but r ather that all s hould 

be sat i sfied to an extent dependent on their prominence . 

§s. 2.1 Genera l Data Requirements 

·There are several s ingle cell data modes required. Integer or 

fixed point arithmetic variables are evidently necessary , as are the 

bas ic arithmetic operations . However , as floating-point hardware may 

not be available , providing a floating-point data mode may lead to the 

impression that the correspond~ng operations may be used with impunity .· 

If a floating point moµe is provided , as I think it should, then all 

operations .on that mode requiring a procedure call should be flagged 

as such . 

Logical values must be provided, and may be considered either as 

a one bit long field , or an integer value (e . g. 0 or 1) . This choice 

is normally not hardware dependent , and s ince the one bit field cannot 

be confused with a floating point variable of value 0 (as may occur in 

PL/I ) the former is preferable . 

Precision on modern machines is limited to multiples of the basic 

storage cell, and therefore different precisions s hould be considered 

as different modes r ather than as varia nts on a single mod·e (cf NELIAC ). 
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Arrays of all single cell modes are al so essential items. These 

should be multidimensional if no data structuring facility is provided 

( see §s . 2.2) . There is no necessity for a flexible lower bound , as a 

fixed lower bound improves effici ency and r equi r es little adjustment 

for an experienced programmer (although it may r educe readability ). 

However s ince whether the indexing base is one or zero l argely depends 

on the hardware , i t would be necessary to have the base value made c l ear 

to any intending programmer . (Operations on arrays ar e discussed in 

§s.2 .1 .) 

Strings and string operat i ons are discussed in §s . 2. s . 

Fields and partial words ar e discussed in §s.2.4. 

Structures ar e discussed in §s . 2. 2. 

For the sake of efficiency , reference variables are necessary. 

Of late there has been some discussion [Hoa 73] as to ways of eliminating 

r eferences from progranuning l anguages, s ince it i s i ndeed clear that they 

ar e in effect analagous to the goto - that i s , they may obscurely connect 

two otherwise unrelated pieces of data . However , har dware currently 

makes extensive use of s ue h modes , as does sofh1are (cf linked lists , 

dynamic tables ). I fee l tha t current software engineering has not yet 

developed adequate mechanisms for hiding the reference mode :from the 

programmer , particularly in systems work . It is difficult to cr eate a 

general data structuring mechanism without them , and almost impossible to 

perform efficient string manipulations (see §s . 2 . 5). Unfortunately 

little prot ection can be built into the syntax against deallocation of 

a r eferenced area (dangling pointer probl em ), but some can be gained 

by typing reference modes as in ALGOL68 . This i s cons i stent with 

generally strong typing , and although most machines do not distinguis h 

in the hardware between r eference variables referring to different modes ~ 

some (e . g . Burr?ughs B6700 ) definitely do. 

Declarat i on of all data should be mandatory . Ther e i s l ittle room 

in systems programming for the type of errors that may be gener ated by 

all owing implicit declarat i on . Identifiers s hould be local in scope , 

but s hould be abl e to name vari abl es whose stor age class is either local 

dynamic or controlled (see §s . 2. 6) . Initiali sation at declaration s hould 

be made available for a ll data , since this normally causes little 
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overhead on storage allocation, particularly in a stack machine . Some 

provis ion could be made for setting default initialisation values (e.g . 

zero for arithmetic modes ). 

§s.2.2 Data Structuring 

Data Structures are perhaps the most important s ingle facility in 

either a general programming language or a systems programming language . 

It might be argued that , in a language designed for implementing an 

operating system, that facility is second in importance to a facility for 

handling ta sk (or program) structures . The proportion of an operating 

system which deals with data structures is far greater than the 

proportion dealing with task structures . In any case I hope to demonstrate 

in the next few paragraphs that the difference between task and data 

s tructures is not great. 

The definition (dec l aration ) of a data structure consists basically 

of four parts 

(a) the syntax of the data structure (how parts of the structure 

are named) 

(b) the storage layout of the data structure (how and where parts 

of the structure are allocated ) 

(c) the addressing mechanism (how a part of the structure is 

obtained, given its name) 

(d) the operations on the data structure (the things which may be 

done to parts of the structure ). 

In practice these parts are combined in some way . The syntax and 

the storage layout are nearly always combined , often with the address 

mechanism . Although then the operations are not explicit in the 

declarat ion, they are defined by separate procedures or macros. Also 

(c ) and (d) ·are sometimes combined (cf PL/I , COBOL, ALGOL68 , BLISS , ESPOL ). 

Tasks as set up in most multiprogramming machines are little more 

than a specific sort of dynamic data structure and should be considered 

as such . They comprise a static part ( code, instruction counter , task 

control information) and a dynamic part (working storage - stack or 

register space , environment control) . They are subject to operations 

(initialisation , execution (both senses of the word), status enquiry ) 

by the operating system, and even allocation and deallocation . XALGOL 

contains a good example of this. Thus systems programs really spend 
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most of their time dealing with some form of data structure . 

In fact there are extremely few objects of manipulation by programs 

that could not be included under the classification of arbitrary data 

structures . All this forces the conclusion that, in the past, particularly 

in systems programming languages, data structuring facilities have been 

seriously neglected . 

Current systems l anguages contain predominantly four different 

methods of describing data structures , and these vary as to whether the 

structures may reference one another (and themselves) , or are dynamic as 

regards storage allocation or linking, and so on . 

COBOL and PL/I provide the best examples of the first method . The 

structure is r epresented as a two dimens ional table, the "associated" 

( " concatenated") dimension running down the program listing and the 

"derived" ("nested") dimension being indicated by a l evel prefix . PL/I 

data structuring , which is by far most commonly used, is complete in that 

arbitrary data structures may be declared and used, and the set of 

permissible end nodes is more than sufficient for system programming needs 

[ Cor 69 ]. However , the omission from the language of mode declarations 

has made the manipulation of multiple copies of an e l ement unnecessari ly 

awkward [Der 72]. 

BLISS contains the most concise form of the second method. Data 

structures are created by allocating an amorphous piece of storage , 

defining an accessing algorithm , and "MAP"ing or imposing the algorithm 

onto the storage . The main advantage of this r e l at ively low level 

technique i s that the accessing algorithm can be tailored to suit the 

resource tradeoff requirements of the particular user ' s data structure 

at compile time , thus gaining efficiency . Consequently, hashing , 

linking , stacking and other accessing methods are associated directly with 

the data structure rather than being set up through procedures or 

subroutines. Also, since a piece of storage may have two different 

structures mapped onto it, weak typing i s inherent . 

Thirdly, ALGOL68 has perhaps the most comprehensive set of data 

structuring facilities . As in PL/I the structure is represented as a 

two dimensional table , t he associated dimension being indicated by 

sequential separation with commas, the derived dimension by nested 

brackets . This tends to overwork brackets. These data structures may 

be self referencing but not self embedded and , as with PL/I data 

structuring, linked lists and other varying structures require an 

independent description of the method of access. 
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ESPOL contains the prime example of the fourth, or poor man's , 

method. The structures are defined by a seri es of macros which become 

more nested a s one goes deeper into the derived dimension . This shares 

advantages with both the BLISS and PL/I method but relies heavily on the 

programmer keeping associated macros together , and not misusing them 

s ince compiletime checki ng is here limited to type checking . Thus this 

method i s dangerously error-prone part i c ularly in secti ons of program 

where weak typing i s used extensively . 

Hoare [Hoa 73] has described yet another possibility , recursive data 

structuring , in which the need for explici t references is elimina t ed . 

While this currently app~ars a little academic , the na ture of this new 

method indicates that data structuring techniques are not at all complete 

or static . 

The basic requirements of systems l anguages as far as data structuring 

is concerned are firstly to be able to r efer without ambi guity to any 

part of any data structure that may be directly or indirectly manipulated , 

and secondly to have complete control over how parts of a data structure 

ar e stor ed and accessed . Currently availabl e methods, such as those 

described above , each handle static data structures adequately , but with 

varying degrees of ease . However , only one (BLISS ) appears to recognise 

the existence of dynamic data structures , mainly because of the low-level 

nature of it s data s tructuring technique . 

Thus , for the one element of data structuri ng which has gr eat er 

i mportance in systems programming (dynamic structures) , inadequate 

techniques are available . The systems programmer currently must implement 

most of the four parts described above through subroutines or macros . 

§s .2. 3 Weak Typing 

Weak typing i s the ability to treat an element of data as different 

modes at different times . This is not the same as unions - unions allow 

one to treat a name a s r eferring to different modes at different times . 

That weak typirig is necessary is made evident in §3. 
There are at leas t seven different ways of i mpl ementing weak typing . 

These are outlined in Fig 5.2. They are often implemented in some 

combination, but will now be considered individua lly . 
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Redefinition is normally used in structure declaration and has one 

main advantage; the two names by which the data may be referenced are 

associated in the declaration . Equivalencing , a close relation, suffers 

badly from lack of this association (the equivalencing statement may be 

far from the declarations in the program) making the program much less 

readable . It also requires an extra statement . A very similar concept 

is name equating , and of course its counterpart address equating . These 

two methods are normally used for 'single cell data items , and if used 

for multicell data items, have the disadvantage compared with r edefinition 

in that very little compile time checking can be done of the compatibility 

of data usage . Address equating is probably the worst method possible. 

Variable names r ef erring to the same data cell are not related in any 

cross-referencable way, and since this method is normally used in 

assemblers to r eference core locations outside the address range of the 

assembly, thus avoiding link-editing, programs using this may have the 

variable misplaced through relocation of the referenced module. Implicit 

coercions are also defective for two reasons. Firstly , they may include 

large amounts of code behind the programmer ' s back , and secondly the 

coercion may not have been intended at all but was r a ther a lexicographical 

error which might have been picked up by type checking . This has been 

remarked on as one of the great failings of PL/I as a systems programming 

language [ Boo 74, Ber 72] . Explicit coercions , howeve~, have one mjnor 

disadvantage and several advantages. They preserve the one-to-one mapping 

between identifiers and data items and so avoid some of the drawbacks of 

reference variables , and strong typing can be enforced at compile time 

thus reducing error- proneness . 

may become tedious (for example 

The minor disadvantage is that their use 

fixed-to-floating coercion) 

and under such circumstances it may be desirable to declare a coercion 

implicit. The last , but by no means least, common way of obtaining 

weak typing is the typeless variable . Typeless variables normally 

correspond to the storage elements of the machine , that is words , bytes , 

registers , and their use is accompanied by two rules. Firstly they 

implicitly coerce into and from ordinary typed variables , and secondly 

they provide a means of identifying when an overrri de of a hardware 

function , such as memory protect, is desired . 

It seems then that the choice should be between explicit coercions 

and typeless variables. Each has its own advantages , and therefore a 

combination of the two is the most advantageous . Implicit coercions 

may be required as well to avoid tiresome use of explicit coercions. 



Note that typeless variables may also be utilised as a base mode for 

single cell mode declarations, and in some circumstances redefinition 

may be used as a way of avoiding reference variables, It is worth 

pointing out again that any method of using two names to refer to one 
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data item increases susceptibility to the same sort of errors as accompany 

reference variables and unlimited gotos (cf above and below). 

a) 

b) 

c) 

d ) 

e ) 

f) 

g) 

redefinition 

(as in COBOL) 

Fig 5. 2 

equivalencing 

(as in FORTRAN) 

name equating 

(as in ESPOL ) 

address equating 

(as in mos t assemblers) 

coercion (implicit) 

(as in PL/I) 

coercion (explicit ) 

(as in XALGOL) 

typeless variables 

(as in ESPOL, 

assemblers ) 

Weak Typing Methods 

01 BLOCK1. 

02 REALS OCCURS 20 TIMES PIC 999. 

01 BLOCK2 REDEFINES BLOCK1. 

02 CHARS OCCURS 20 TIMES PIC XXX . 

REAL A, B(20) 

INTEGER I(S) 

EQUIVALENCE (A,B(1)),(I(1),B(10)) 

REAL A: 

POINTER P=A ; 

SAVE EQU /1 23 

DCL A FLOAT , B FIXED; 

B=A; 

/*hidden coercion code*/ 

REAL A; 

BOOLEAN B; 

B := BOOLEAN (A); 

WORD W; 

REAL A; 

POINTER P; 

W .- P; 

A . - W; 



62 . 

C' 

35 . 2. 4 Fields 

One requirement largely peculiar to systems programs is the ability 

to manipulate fields , or parts of addressable storage cells . The 

reasons for this are two-fold . Firstly, it is often necessary to 

conserve space by packing information at a greater density than can be 

achieved through standard storage addressing , and secondly systems 

programs , especially an operating system, must be able to recognise any 

field which the hardware recognises - for example , the exponent and 

mantissa fields of a floating point operand. 

Orthogonality of design requires that the method of specifying 

fields be a natural extension of the data structuring definitions . This 

results in a conflict . There are basically two types of machines to be 

considered , the byte-oriented machine ( e . g . IBM 360-370) , and the word­

oriented machine ( e . g . Burroughs B6700). This orientation really refers 

to the smalles t directly addressable storage cell . On the 360 the 

closest packing for numeric items is at the byte level, and the next 

step down is a single bit . There is no practical means of manipulating 

a three bit long value . This means that any numeric field recognisable 

by the hardware as such is at least a whole byte long, for example, 

the exponent field. Compare this with the B6700 where the smallest 

addressable unit is 48 bits ( 51 including the tag ). Special hardware 

is provided to manipulate , as unsigned integers, fields of any length 

from one to forty eight bits , at any position within the word . Therein 

lies the problem . To describe generalised fields in terms of bi ts and 

bytes, and conversely bits and bytes in terms of generalised fields, 

does not adequately reflect the true hardware circumstances . For the 

language to be portable, both schemes must be included in the syntax , 

and only one implemented . This is unpleasant but necessary. 

Once the fields possess names , manipulating them becomes relatively 

easy , as each size of field can be treated by the compil er as a basic 

mode , embedded within another mode. For example , a floating point 

operand could be expanded (or redefined ) as four or six eight-bit bytes. 

(cf §s . 2. 2 and §s.2 . 3 ). This · abi lity to treat non-terminal nodes of 

a data structure as possessing values independently of the terminal nodes 

does not exist in all languages . 
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§s.2.s Strings 

Strings and string manipulation are a weak point of most system 

languages. There is little evidence of rationalisation of the syntax 

and semantics of string processing (only r ecent ly has pattern matching 

taken on a more mathematical basis) . This i s in spite of the fact t hat 

hardware operations for dea ling with alphanumeric data differ little 

in function between machines. That is, most machines which have hardware 

for this type of data have similar operations differing only in 

complexity and side effects . 

String manipulation in systems programs can be split into two classes . 

In the operating system·, s trings are created , moved around, and trans lated. 

Thus the first class contains only operations where the string content 

is not s i gnificant. The second class comprises scanning and comparisons 

such as is found in the parsing of strings . The first class r equires 

only the implied use of pointers . Syntax for concatenation, replacement , 

and translation can be adequately constructed (as in XPL, PL/I) ~o hide 

the use of pointers from the programmer . However, with the second class 

of manipulations, this is much more difficult . Consider for instance 

the simple problem of i so l at ing the first non-blank substring in a string . 

This might be written 

in PL/I 

in XALGO L 

in ALGOLW 

while 
in SNOBOL 

TEMP = SUBS'J:R (SOU RCE , VERIFY (SOURCE,' 1 
) ) ; 

DEST= SUBSTR (TEMP, 1, INDEX (TEMP , 1 1 )-1); 

SCAN SOURCE : SOURCE WHILE EQL " "; 

REPLACE DEST BY SOURCE UNTIL EQL" "; 

i o· while source (i 11 )~" " do i 
' 

j i· while source ( i j 1 )--,=" II do .- ' 

i + 1 · , 

begin dest(i-jj1):=source(i 1);i:=i+1; 

SOURCE SPAN (' ')BREAK (' ') . DEST 

end; 

Then consider the even simpler problem of locating (but not isolating) 

the first non-blank substring (for comparison purposes). 

paradoxically more difficult in the above languages. 

It is 

The difficulties involved in creating usable syntax are three-fold. 

Firstly, string operations often alter more than one operand, which is 

not easy to express in an assignment-oriented language. Secondly, the 

operands may not be .assigned to, or used purely as a source, but rather 
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are altered in nature (compare A~A+3) , meaning add 3 to A) . And 

thirdly , if a n attempt is made to eliminate explicit use of pointers 

(as in PL/I) through s ubstrings these substrings have to be identified 

by a pointer and a l ength, rather than their composition . 

It is apparent that at the state of the art, clear and concis e 

syntax for parsing strings is not available . Considering the l arge 

amount of string manipulation performed in any compiler , this area has 

been severely neglected, at l east as far as systems pr ogramming languages 

are concerned . Unti l an adequate high level syntax for string 

manipulation becomes available , string pointers must remain as the only 

completely workable scheme . 

§s.2.6 Storage Allocation 

The applications programmer is concerned only with the s urface 

( syntactic) appearance of his data , and where or how it i s stored is 

immaterial . For the systems programmer , concerned with effic i ency of 

usage , explicit control of storage allocation i s in some cases essent ial. 

Unfortunately for the designer of systems languages , the types and 

r elative efficiencies of the various s torage classes vary from machine 

to machine . On a 360 or 370 the most efficient c l asses are stati c and 

explicit dynamic , although implicit dynamic is perhaps the most 

convenient to use. On a 86700, static does not exist , and must rather 

be considered as outer block dynamic storage. Implicit dynamic , on the 

other hand , is allocated in a hardware stack , and thus is very efficient . 

Both machines provide the explicit dynamic class of storage, at 

approximately the same effici ency . The B6700 also has provision for 

r ead onl y data . 

Thus the storage classes which must be provided are machine 

dependent. On a machine operat i ng with virtual memory, some mechanism 

must be provided whereby heap storage segments can be marked as 

overlayable or nonoverl ayabl e . (Provision must be made in the language 

for the use of defaults which may be overridden at the programmer ' s 

r equest ) . 
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§s.2 .1 Array Processing 

There are two excellent reasons why array processing should 

feature in a system language . First ly , a number of machines now have 

some form of vector processing capabilities (e . g . B6700, CDC STAR , 

MUS) , and such hardware should for the sake of efficiency , be utilised 

if it is available. Secondly, syntax for array processing signifi ­

cant l y abbreviates an algorithm which might otherwise have to use 

c l umsy looping structures . This holds regardless of whether the 

operation can be performed in special hardware . 

Several languages have array processing embedded (ALGOL68 , PL/ I , 

XALGOL) , and this practice should be extended . Providing that such 

operations may be defined at the lowest level , there is no reason why 

the syntax should be machine depend ent; the natural extens ions to 

single value operations appear adequat e . 
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§5 . 3 Control-Related Criteria 

Control in a systems programming language differs from that in 

a general purpose language in two areas , process control and exception 

condition processing . These are discussed in §5.3 . 1 and §5.3.2 

respectively . The four basic types of control r emaining 

a) parallel elaboration 

b) conditional or selective elaboration 

c) repetitive elaboration 

d) subrout ine elaboration 

are here discussed only briefly as the arguments differ little from 

those concerned with general purpose languages . 

Parallel elaboration syntax is unjustifiable in the context of 

present day hardware . Although some special purpose machines exist 

(e.g. ILLIAC IV), a l arge multiprocessor machine spends a very small 

amount of time engaged on parallel processing within a s ingle task . 

Such a machine when running normally would have each processor ·perform­

ing a different task . The only times that multi-processors would be 

coordina ted enough to parall e l-process on a statement basis would be 

during operating system initialisation and s uch fault conditions as 

power failure. However even in these circumstances processing would 

be more feasible on a mult~-tasking basis . 

The three r emaining types of control comprise forms of implicit 

gotos . Enough has been written about goto s [Dij 68 , Knu 71, Wul 71 ] 

for the topic to be avoided here, but I will state and justify my 

v iewpoint in the systems language context . 

Unconditional gotos shoutd be retained with their range limited 

to within any controlled environment. This means that no goto should 

result in ·an implicit procedure call (a bad goto). The unconditional 

goto is a highly efficient construct. Elimination of the goto 

completely in any language which is not rich enough in control 

constructs with embedded gotos results in a serious loss in efficiency 

through code duplication , artificial variables , or proceduring . 

There are relatively few languages which even approach the variety of 

control constructs required . A maximum amount of effort therefore 

should be put into making a language rich with a wide variety of 

constructs containing embedded goto ' s . 

illustrated in Fig 5 . 3 . 

Some in common use are 
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Form 

conditional 

biconditional 

numeric selection 

multi conditional 

loop tested at top 

loop tested at bottom 

loop tested elsewhere 

subroutine 

Fig 5 . 3 

Embedded Gatos 
Common Syntax 

Unconditional Condit ional Multiway 

if then 1 

if then else 1 1 

case of ( .... , .... , •... ) n-1 1 

select .... in ( c
1

: .... ,c
2

: .... ,c
3

: .... ) n-1 n 

while .... do 1 1 

do .... until .... 1 

repeat ( .... exit ..•. ) 1 1 

call doit ( .... ) 2 

en 
-..J 
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All conunonly used constructs f or conditional or selective 

elaborati on should be availabl e . Where the number of choices exceeds 

two , the condition for each choice of elaboration should accompany the 

choice more or l ess as a l abe l . For example 

case n of (0: . .. . . , 1 : 2 : . .. . . , ) else .. . . . 

Note that a choice may be accompanied by more than one condition , thus 

avoiding a goto to get between choices , as i n 

case n of (0 : ... .. , 1 : . .. . . , 2 :goto 1 , ... . . )else . . ... 

I t is particularly important to have an exception choice . In particul ar 

non- numeric conditions should be as expansive as possible so that any 

Boolean expression may be used as a label . There is one additional form 

of the conditional whose use is almost peculiar to systems programs . 

Commonly , evaluation of Boolean expressions proceeds to completion 

regardless of whether this complete evaluation is necessary . For 

example, only one of the operands in a conjunctive needs to be false to 

ensure the va lue of the conjunctive . Thus what might more naturall y 

have been written 

if b1 andif b 2 andif b3 then . . . . . 

would have to be written 

if b1 then if b2 then if b
3 

then . . . 

This is particularly important if the operands have side effects on 

elaboration . For example if n < upperbound (A ) and A[n] = 0 then 

Constructs for repetitive execution provide probably the most 

difficult place for eliminating the goto , because loops may be exited 

on more than one condition , and then to different places . For this 

reason the exit as in BLISS gained some acceptance , but stil l falls shor t 

of a complete solution . Zahn [ Zah 73] describes an effective but c l umsy 

construct for such loops . In general , constructs in which the key 

words are naturall y distributed over several l ines seem awkward , a nd 

therefore probably appear difficult to understand (to the language 

designer ) . . Nevertheless , some construct similar to that of Zahn is 

necessary i f a seri ous at tempt is to be made i n elimination of the goto . 

Subroutines , l ike bl ocks , are one of the best tools a progr ammer 

has for creating an understandable and well structured program. As 

systems programs tend to be large by nature , s ubroutines should be used 

extensively , and therefore extra attention should be paid to the 

convenience of their use . In particular the parameter and r eturned 
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value mechanism should cater for every defined mode . There has t o be a 

choice between ALGOL68 parameter passing , and ALGOL60 or ALGOLW parameter 

passing . That is, either the formal parameters are comple t ely specified 

modes (and ref to modes , and proc modes) or some formal cases are 

indicated (such as value, n~me etc . ) . If the language would include 

r eferences as being strongly typed (that is ref to mode , or ref to ref 

to mode ) then the former is obviously desirable. On the other hand , a 

l anguage like ALGOL60 or ALGOLW does not restrict programmers to a 

great extent and, although it is not the neatest solution to the problem , 

should not be condemned on grounds of impracticality . 

One of the better justifications for unions lies in parameter 

passing. Often in systems programming one comes across a procedure 

of which the type and number of parameters,in reality , varies as a 

function of one other parameter . Some existing languages permit actual 

parameters to be omitted in the call (AED,LSD) , and others use untyped 

variables (ESPOL) . Weakly typed reference variables afford another 

solution . All of these rely on runtime checking , and so the use of these 

mechanisms should perhaps be avoided as far as possible . For the 

remaining unavoidable cases , I favour the solution which introduces the 

least additional features into the language being designed . 

§s . 3. 1 Process Control 

Process or task control is the most prominent of the functions 

peculiar to systems programming. Through it multiprogramming systems 

make efficient use of I/0 devices and other system resources . Adequate 

provision for all aspects of this type of control i s essential. 

Discussion here is centred around the three aspects of task control 

that are most apparent in a systems language - dependency , communication , 

and mutual resource control . 

Spawning a task from an initiating process differs from calling 

a procedure or subroutine in that it is used when the execution of the 

initiating or parent task is desired to be overlapped with the initiated 

or son task . In order to achieve this , the son task must maintain a 

degree of independence or life of its own . The degree of independence 

may vary , however , since a son task may require access to information 

found in the parent . Such tasks are called dependent , and for exampl e 
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·user jobs running under an operating system , or tasks run from a batch 

controller are of this type. Other tasks are called independent, and 

might include such things as the compiled program being initiated by a 

compiler . 

In some circumstances , dependent tasks may wish to obtain mutual 

exc l usion with r espec t to a resource not by avoiding simultaneous execution 

but by passing control from one to the other by explicit program command . 

Such tasks are called coroutines . Each of these three types of task 

should be provided , a lthough coroutines might be omitted i f some other 

method of mutual exclusion was always preferable . This is simply a 

matter of providing three different initiating statements and a 

statement for explicit passage of control, such as those in XALGOL. It 

is also necessary to have a means of indicating that the son-tasks code 

is ind ependent of the initiating task, since an independent task cannot 

use code of the initiating task but a dependent task often may. 

As a son task is nested deeper than the initiating task, most of 

its hous ekeeping properties (such as status, cpu time used etc) would 

not normally be avai l able to the initiator. Access to these by the 

initiator is essential . This can be accomplished in two ways : either 

the operating system can be used to obtain the information (through its 

knowledge of all tasks); or s uch information can be pu~ in a commonly 

accessible pool, for which the normal rules of scope do not apply . I 

favour the information pool technique for two reasons . Firstly, it 

may appear in each task as a normal data structure, a nd accessed as such , 

although some information may be r ead-only when the task is executing . 

Secondly, some of this task information needs to be available to the 

parent before and after execution (such as use of resources, limi ts on 

resources ). This task information mode would of course depend on any 

given implementation , and thus might be included in a prelude. 

While most communication between tasks could go through the 

information mode, processing of an independent nature also requires 

mutual exclusion with respect to resources, and synchronisation of 

execution . The way in which these are obtained depends largely on the 

hardware available, but s uitable high level primitives can easily be 

design ed for both procuring and releasing locks, and waiting on or 

causing events (cf XALGOL , PL/I) . 
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§s .3. 2 Exception Condition Processing 

Some of the major omissions from current systems languages are 

facilities for recognizing and dealing with hardware or software conditions 

which are unexpected. Systems software can ill afford the luxury of not 

attempting to recover from software or hardware failures. The basic 

r equirements are twofold. Firstly, a mechanism must be provided whereby · 

control enters a given section of program after such an exception 

condition occurs . The PL/I and XALGOL on-statement s perform this 

function. Secondly , since it is not desirable or even possibl e to 

return from some exception conditions (particularly those detected by 

hardware) exit from this fault code must be made by the equivalent of a 

goto . Quite often this goto is a bad goto , that is, one passing through 

declaration of dynamically allocated variables . If gotos are to be 

eliminated some acceptable mechanism must be found to replace it , such as 

treating these conditions as a coroutine call . 

This problem is evident l y a special case of a much larger one, namely 

multiple exits from controll ed environments . See §S.3 .on loop exits 

for d isc us sion of another special case . However, for the purposes of 

error handling the mechanisms can be enormously ineffi~ient , as one would 

not normal ly expect them to be used frequently . In r eality, implemen-

tations of software interrupts tend to be just that . 
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§s,4 Miscellaneous Criteria 

Two remaining topics whi ch affect the language itself (provision 

for inline code , and separate compilation ) are discussed in §s .4.1 
and §s.4 . 2. 

The remaining criteria, mentioned here for completeness, are the 

managerial (or guideline) criteria. The reasons for these, and the 

effects of them were discussed fully in §4. They are, in decreasing 

order of importance 

Functionality 

Error Immunity 

Code Efficiency. 

While these criteria reflect little on the language structure, they 

nevertheless form the most important overall group to be considered, 

effectiveness. A l anguage must be effect ive in its purpose. 

§s .4.1 Inline Code 

For reasons given elsewhere (§4) I have considered the provision 

of inline assembler language or machine language coding . The main 

argument for this fac ility is efficiency , and the main argument against 

is error susceptibility. 

both as far as possible! 

Therefore an attempt must be made to satisfy 

There appear to be basically three ways of introducing the facility 

- code statements , pseudo procedure calls, and code-bodied procedures. 

Code statements are undesirable because of their error susceptibility. 

Pseudo procedure calls are of two types: one has each instruction 

field as a separate parameter (as in Elliott 503 Algol) allowing inline 

use of any individual instruction; and the other has a separate 

procedure for each useful instruct ion (as in ESPOL) . Both form a very 

long-hand way of obtaining a single machine instruction, and while the 

former is singuiarly error prone, the latter restricts the· machine 

instructions available . Code-bodied procedures (possibly inline) allow 

reasonable error checking, and when used in a language with a simple 

macro processor, can be surprisingly effective. All operands can be 

type checked at compile time, and any use of absolute addresses could be 

flagged. In effect the procedure provides a closed environment for the 

code, and increases the ability of the compiler to detect errors . 



73 , 

As an example consider the cormnonly used ' disable external interrupts ' 

instruction on the 86700 : 

code proc disallow : DEXI ; inline 

If an extensibility mechanism is available , operations on new modes 

can be defined in terms of a code-bodied procedure , thus providing the 

most efficient means of performing that operation . Note that these 

procedures may be inline or not , depending on whether the programmer 

considers inclusion of the code desirable at each invocation . 

§s.4.2 Separate Compilation 

Large programs can often be fixed or modified by changing only a 

small part of the whole program . Thus it is extremely convenient to 

separately compile procedures (or even blocks ) of a program and then link 

edit or bind them into the whole program . This mechanism may also be 

used to aid in the production of a large program by a team . While this 

facility does not reflect greatly on the language design , it does have 

a very pronounced effect on the compiler , and is worthy of separate 

mention. (Further discussion on this and related topics exists in §4 . ) 

Towards this end , procedures and blocks need as far as possible to 

be logically isolated, and code physically isolated into separate segments . 

This may well reflect on the overall system as much as on the language 

design . 
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§s.s Conclus ion 

The present trend of both computer companies and computer users 

towards packaged systems - hardware and software combined - has made 

necessary a reappraisal by computer companies of the cheapest way to 

produce reliable system software . It is apparent that the cost/perform­

ance ratio of a large systems software project depends more on issues 

which some would call manager ial (as against technical) [Wul 72] , and 

although these issues by and large are g l obal to a language design and 

its implementation, the desi gn and in particular the implementation 

influence and ar e influenced by managerial issues. This happens to an 

extent which I believe is not fully understood . 

This thesis set out to investigate design criteria for systems 

l anguages , and to a l esser extent systems l anguage implementation . 

There are three aspects from which a language and its implementation can 

be viewed . They are : Effectiveness , purely l inguistic criteria , and 

extensibility/ orthogonality . Ignoring the fact that these a spect s 

overlap , they can be placed into descending order of importance as 

follows 

(1) Effectiveness 

( 2) Linguisti c 

( 3 ) Ext~nsibility/Orthogonality 

The overlap i s shown in diagramatic form in figure 5. 4 . Note t hat 

although the ordering is implic it in the way the criteria are written 

down , this ordering is a general one applying to systems languages 

intended for all types of systems software projects . If the language 

wereintended to deal only with one aspect of systems programming , the 

order might change slightly . For example a language intended for 

writing an operating system only would probably require greater 

consideration of code efficiency and process control, and less of control 

str uctures and string manipulation facilities . In general a criterion 

will be positioned higher in the diagram if it is required for all 

aspects of systems programming , not just for one . It i s desirable to 

satisfy all the criteria i ndicat ed to a level depending roughly on their 

positi on in the diagram . It is certainly not s uggest ed that some be 

considered to the exclusion of others . Thus the best results are 
achieved by striking a balance between opposing criteria . 



EFFECTIVENESS 

Functionality 
(read and 
writeability) 

Error Immunity 

Code Efficiency 

Modularity of 
Compilation and 
Execution 

Runtime Debugging 
Aids 

Fig 5. 4 

LINGUI STIC 

Data Structuring 

Sub-Cell Layouts 

Complete Control Structures 

String-Manipulation Facilities 

High-Level Unformatted I/O 

Weak Typing 

Dynamic Storage Allocation 

Process Control 

Array Processing 
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EXTENSIBILITY 

Modes 

Macro Facility 

I 
Orthogonality 

Operator Declaration 

Unions 
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Some criteria appear to be duplicated . This is because a specific 

function to which a specific criterion is addressed may be encompassed 

by a more general concept whose wholesale implementation i s perhaps 

not so necessary; for example, data structuring and modes. 

There are five ways to approach a language design. They are: 

(1) a new and machine dependent language } non po~table 
( 2) an old language with machine dependent extensions · 

(3) an extensible base language (with minimum implementation ) 

(4) new machine independent language portable 

(5) old machine independent l anguage 

Not all these , however, may permit sufficient criteria to be fulfilled 

to the desired level. I think it is generally accepted that languages 

in categories 4 and 5 are unsuitable for systems programming ( for reasons 

of efficiency) . The machine independent s tructures which could describe 

some machine functions , notably direct I/O functions, and interrupt 

handling operations , are so ' high-level' that their inefficiencies 

become completely unacceptable under some circumstances. Either that 

or so ' basic ' that the use of large groups of these constructs becomes 

tedious and time consuming , and the overall function is obscured . This 

is because there is no list of 'intermediate level ' primitives that 

can adequately describe each of the varieties of ways of controlling the 

same overall functions on different machines . For example, an I/O 

operation on a PDP11 is done by moving data to a reserved apparent core 

address , while on a B6700 , the same function is performed through a 

SCAN OlJI' (a channel operation). 

The three remaining approaches are all used to a greater or lesser 

extent (see §2) and are justified in various ways . The most widely used 

type is of course 1, and is most often justified by the catch phrase 
II other languages were examined and found unsuitable . . .· . II 
or similar [Wul 71a , c1a 71], which is to my mind the greatest condem­

nation of that variety of language. The second type has gained a lot 

of acceptance recently, and in spite of its shortcomings [ Bro 74], it 

is certainly a useful approach . Two very real advantages are that a 

completely new language does not have to be designed or l earnt, and 

that an algorithm may be passed between machines with possibly only 

minor recoding . The third type has advantages also. Not only may 

programs be passed between machines with only minor recoding, but the 

language may be able to be implemented as originally defined on several 

machines . 
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My conclus ion , then, i s that systems programming languages should 

aim to be generally more effective (in the sense of §4 ), and to that 

end should provide better data structuring facilities and control 

constructs . Paying greater attention to these points s hould decrease 

the cost and improve the standard of sys t ems software . 

The most careful attent ion must be paid to separating those 

features which have only a minor effect on the effectiveness of the 

l anguage ( such as choice of implementat ion approach), from those which 

have a ma j or effect ( s uch as e limination of the goto). Performing 

this separation is not easy . In the past too grea t an emphasis has 

been placed on those things affecting the surface appearance of the 

l anguage , and too little on the basic underlying r equirements . 
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§5 Appendices 
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§6.1 Language Summaries 

Structure 

I • A brief resume is provided for all languages surveyed . Where no 

adequate description of the language was available only the design factors 

are given . Note that as these summaries are often derived from informal 

descriptions of the languages, they are liable to be incomplete (and 

possibly inaccurate). 

Each language is su~oarised under six headings: design, data, 

operators, control , I/O , machine dependency, and extensibility. Under 

each heading there i s a list of major items (in capitals and abbreviated 

to the underlined sections , as below), and each of these may further be 

modified by bracketed information . Since many languages have common 

components BASEPLUS i s used to indicate that, for the particular heading , 

only differences between the language and the base language are itemised . 

The following is more or less a combination of all possibilities . 

Des i gn: 

Data: 

AUTHOR (<name>) 

BASE LANGUAGE (<name>) 

YEAR OF APPEARANCE (<name>) 

PURPOSE (general/systems/compiler/applications/special ... ) 

CRITERIA -(<stated criteria>) 

BASEPLUS 

INTEGER REAL BOOLEAN ALPHA 

ARRAY (s ingle dim/multi dim , based <n>, int, real , 
bool, any ... ) 

STRING (bounded/varying) 

FIELDS (bit/<n> bit bytes/variabl e) 

PRECISION (digits/multiple cell ) 

STRUCTURES (gener al/restricted, self referencing ) 

REFERENCE (string , array, general, arbitrary) 

DECLARED (required/optional, static/dynamic , local/global, 
initialisable, equateable) 

OTHER . ( ...... ) 



Operators: 

Control: 

I/O: 

BASEPLUS 

ARITHMETIC (+ - X / + i mod ••.. . ) 

LOGICAL (AV-,::); . .... ) 

RELATIONAL (><~~=# ..•.. ) 
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REFERENCING (ref to, deref , address of , value of) 

STRING (relational, s i ze , s ubstring , translate , move , 
tabl e occurrence ) 

ASSIGNMENT (arith, boolean, reference , any , arr ay slices ) 

PRIORITY (std/left-right/right-left ) 

COERCION (implicit ... , explicit ... ) 

OTHER. ( ..... ) 

BASEPLUS 

CLOSED CLAUSES (value , declarations, named , .. . ) 

GOTO (conditional, numeric ) 

SELECTION (conditional , biconditional , numeric , logi cal ) 

PROCEDURES (value , parameters r ef/value/name , recursive , 
-- multiple entry ) 

INTERRUPT TRAPS ( software , hardware) 

PROCESS CONTROL (events , locks ) 

LOOPS (tested at top- bottom-middle , exitclause , 
stepped , nextclause ) 

OTHER ( ..... ) 

STREAM RECORD ------

Machine Dependency : CODE (inline, pseudo procs , proc bodi es ) 

SEGMENTATION (code , data) 

OTHER ( .. .. . ) 

Extensibility : BASEPLUS OPERATORS DATA CONTROL MACRO 



fiED-0 

Design : 

Data : 

Operators: 

Control: 

I/O : 

Dependency : 

Extensibility: 

AL 

Design: 

Data : 

Operators : 

Control: 

I/O: 

Dependency: 

Extensibility: 

81. 

AUTHOR (MIT , Ross?) BASE (ALGOL60) YEAR (early sixties ) 
PUR (general) CRIT (intended for machine independent 
progrannning on register machines ) 

BASEPLUS ALPHA? ARRAY (single dim, based O, fixed range) 
FIELD (bit) STRUCT (restricted) REF (arbitrary ) 
DECL (required , dynamic , global , initialisable ) 
OTHER ( stack , lists ) 

BASEPLUS STRING (?) REF (address of , value of) 
ASSIGN (reference , embedded) OTHER (infix stack ops ) 

BASEPLUS CLAUSES (value, named) PROC (parameters ref , 
recursive only if declared) 

RECORD (through package) STREAM (through package ) 

None 

MACRO (? ) 

AUTHOR (Haines ) YEAR (1971) PUR ( systems ) 
CRIT (" ... all the capabilities of the basic assembler 
l anguage of the System/3 60 yet offers a dramatic 
improvement in intelligibility" , "The language is 
implemented as a preprocessor to BAL" ) 

DECL (registers ) 

LOG (/\ ,V ,-,) 

SEL (conditional, biconditional) PROC (value , parameters ref ) 
LOOPS (tested at top, tested at bottom , stepped ) 
GOTO (conditional) 

None 

Extreme 

None 



ALOOL 60 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

ALffiL 68 

Design: 

Data: 

Operators: 

Control: 

I/0: 

Dependency: · 

Extensibility: 

82. 

AUTHOR (committee ed Naur, P) BASE (ALGOL58) YEAR (1960) 
PUR (scientific) CRIT ("a language suitable for expressing 
a large class of numerical processes in a form sufficiently 
concise for direct automatic translation into the language 
of programmed automatic computers") 

INT REAL BOOL ARRAY (multi dim, int-real-bool) 
STRING (parameter only) DECL (required, dynamic, local) 

ARITH (+, -, X, /, +) LOG(/\, V, --,, =>, =) 
REL (<, ~, >, ~,=, 1) PRI (std ) ASSIGN ( s ingle value only) 
COER (implicit int-real) 

CLAUSES (declarations) GOTO (conditonal, numeric) 
SEL (conditional, biconditional) PROC (value, parameters 
value-name, recursive) LOOPS (tested at top, stepped) 

Undefined, but STREAM indicated 

None 

None 

AUTHOR (committee ed Van Wijngaarden) YEAR (1968) 
BASE (ALGOL60? ) PUR (general) CRIT (machine independent 
general purpose language) 

INT REAL BOOL ALPHA ARRAY (multidim, anytype, flexible 
bounds) STRING ( bounded (array of a lpha)) 
FIELDS (bit arrays, 8 bit bytes) PREC (multiple cell) 
STRUCT (general) REF (general) DECL (required, dynamic 
or static, local initialisable, equateable) 

ARITH (+, -, x, /, +, t etc ) LOG (/\, V, -,, ::::>, = etc) 
REL (>, <, ~, ~, =, ¥ etc ) STRING (relational , size) 
ASSIGN (all modes) PRI (std, declarable) COERC (implicit) 

CLAUSES (value, declarations) GOTO SEL (conditional, 
biconditional, numeric) PROC (value, parameters, recursive) 
LOOPS (tested at top-end, stepped) OTHER (parallel 
elaboration) 

STREAM RECORD 

None 

OPER,DATA 



ALffiL W 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

ALPl-1/\ 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

.LVVBIT /L 

Design: 

Data: 

Operators: 

Control: 

AlITHOR (Wirth) 
PUR (general) 

BASE (ALGOL60) YEAR ( ) 
CRIT (suitable for teaching) 

BASEPLUS STRING (bounded) STRUCT (restricted) 
REF (ARBITRARY) 

BASEPLUS STRING (single character relational, move) 
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BASEPLUS SEL (numeric) PROC (parameters value-name-result) 
LOOPS (tested at top-bottom, stepped) 

STREAM 

None 

DATA (restricted data structures) 

AUTHOR (Yenshov A.P.?) BASE (ALGOL60) YEAR (1964) 
PUR ( 11 scientific") · 

BASEPLUS STRUCT (restricted?) OTHER (complex) 

BASEPLUS ASSIGN (multivalue) 

PROC (not r ecursive) 

STREAM? 

None 

DATA (restricted data structures) 

AUTHOR (Christensen C) YEAR (1970) PUR (symbol 
manipulation) 

ST.RING (varying) OTHER (various substring forms) 
DECL (~equired) 

LOG (/\ , V , -,) 

CLAUSES (delcarations) GOTO SEL (conditional, biconditional) 

I/O: None 

Dependency: None 

Extensibility: None 



Af>AREL 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

Af l 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

B 

Design: 

AUTHOR (Balzer RM) BASE (PL/I) YEAR (1968) 
PUR (Compiler construction) 

BASEPLUS 

84. 

BASEPLUS OTHER (specialised string parsing operators) 

BASEPLUS OTHER (non-sequentially processed groups of 
parsing statements with a special syntax) 

BASEPLUS 

None 

BASE PLUS 

AUTHOR (Iverson ) YEAR (1961) PUR (machine description 
language) 

INT REAL ALPHA ARRAY (two dimensional, based O, any) 
DECL (optional, static, global/local ) 
OTHER (variables are typeless) 

ARITH (+, -, x, /, ~. t, mod, many more) 
LOG (/\, V, -,, ::::), =, many more) RELATIONAL (<, >, s:, ~. =, #-) 
ASSIGN (any, array slices) PRI (right-left) 
COER (implicit int-real) OTHER (a consierable number) 

GOTO (conditional, numeric) ~ROC (value, parameters ref, 
recursive) 

STREAM 

None 

None 

AUTHOR (Johnson and Kernighan?) YEAR (1972) BASED (BCPL) 
PUR (systems programming) (Implemented on HIS 6070) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 



BCFL 

Design: 

Data: 

Operators: 

Control : 

I/O: 

Dependency : 

Extensibility : 

BLISS 

Design: 

Data: 

Operators : 

Control: 

I/O: 

Dependency: 

Extensibili ty: 

CifvpL 

Design : 

AUTHOR (Richards) BASE (CPL) YEAR (1968 ) 
PUR (compiler writing ) CRIT (linquist ic el egance ) 

ARRAY ( single dim, base 0) DECL (required, stati c , 
local, equateable) OTHER (cell data only ) 

ARITH (+, -, X, /) 
LOG (/\ , V , = , ~) 
ASSIGN PRI (std) 

REL (>, <, :2:. , ~ . =, -f) 
REF (address of, deref ) 
OTHER (shift left, shift right) 

CLAUSES (declarations) GOTO (conditional, numeric) 
SEL (conditional, biconditional, numeric ) 
PROC (value, parameters untyped) LOOPS (tested at 
top-bottom , stepped, exit clause) 

None 

None 

DATA (through data structuring mechanism) 

AUTHOR (Wulf et al) 
CRIT ("so as to be 
writing production 
machine") 

YEAR (1970) PUR (systems ) 
especially suitable for use in 
software systems for a speci f i c 

85 . · 

ARRAY (single dim, based 0) DECL (required, local/global, 
static/dynamic) OTHER (only cells and registers declared) 

ARITH (+, -, X, /,~,abs, t ) REL (<,>,~, :2:., =,"I) 
LOG (/\, V) REF (deref) ASSIGN PRI (std) 
OTHER (shift left, shift right ) 

CLAUSES (value ) SELECTION (conditional , biconditional, 
numeric, logical) PROC (value, parameters ref, recursive ) 
PROCESS (coroutines) LOOPS (tested at top- bottom, exit 
clause, stepped) OTHER (expression language) 

None 

CODE (inline) OTHER (pointer mechanism ) 

MACRO DATA (general data structuring ) 

AUTHOR (MIT) BASE (PL/I) YEAR (1970) PUR (teaching 
systems progrannning ) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 



CLIP 

Design : 

Data: 

Operator s : 

Control: 

I /O : 

Dependency : 

Extensibility : 

COBOL 

Design : 

Data: 

Operator s : 

Control: 

I /O : 

Dependency : 

Extensibility: 

AUTHOR (Book et a l) BASE (ALGOL58 ) YEAR (1960 ) 
PUR (information processing ) 

86. 

BASEPLUS STRING ( fixed length) DECL (initial isable , 
equateable ) STRUCT (restricted t o static forms ) 

BASEPLUS STRING ( subst r i ng , rel ational) 

BASEPLUS 

STREAM? 

None 

None 

AUTHOR (Committee ) YEAR (1959) PUR (business dat a 
processing) 

INT REAL ARRAY (single dim , based 1 , any) STRING (bounded ) 
PREC (digits ) STRUCT (restricted) 
DECL (required , static globa l , initialisable , equateable) 

ARITH ( + , - , ~" , / , rem) REL (>, <, =) LOG (/\ , V , -,) 
STRING (relational , move , translat e ) 
ASSIGN (any , substructures) PRI (std) COER (explicit ) 

CLAUSES (named ) 
biconditional) 

RECORD 

None 

None 

GOTO (numeric) SEL (conditional , 
LOOPS (tested at top , stepped) 



COGB'IT 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

CORAL 66 
Design: 

DCALGOL 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

87, 

AUTHOR (Reynolds) YEAR (1965) PUR (symbol manipulation) 
CRIT ("primarily for use as a compiler-compiler") 

DECL (optional, initialisable) OTHER (Cogent operates 
directly on tree structures through productions. 
Variables may be used to hold production trees, procedures 
simple data) 

OTHER (Cogent has a parse operation similar to SNOBOL but 
operatong on tree structures) 

SEL (conditional PROC (value, parameters ref?) 
OTHER (statement fixture) 

STREAM 

None 

MACRO (simple) 

AUTHOR (?) BASE (ALGOL60) YEAR (1966) 
PUR (real time systems) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

However, the language has greater data-structuring ability, 
and bit manipulation facilities as well as permitting 
inline machine code. 

AUTHOR (Burroughs Corp) BASE (XALGOL) YEAR (1970) 
PUR (systems programming CRIT (specifically designed 
for writing parts of the B6700 operating system, 
especially data communications) 

BASEPLUS OTHER (messages, queues) 

BASEPLUS OTHER (functions provided for many operations 
on queues and messages) 

BASEPLUS OTHER (wait on queue) 

BASEPLUS 

All extensions to XALGOL (which is machine dependent} 
are machine dependent. 

None 



EPL 
Design : 

ES POL 
Design: 

Da ta: 

Operators : 

Control: 

I/O : 

Dependency : 

Extensibili ty : 

FORTRAN IV 

Design : 

Data: 

Operators: 

Control : 

I/O: 

Dependency : 

Extensibility: 

AUTHOR (Bell Labs & MIT) BASE (PL/I) YEAR (1966) 
PUR (systems programming) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

88 . 

However , the l anguage is basically a subset PL/I and 
does not have the following PL/ I functions : I/O, PICTURE, 
complex arithmetic , controlled storage , ON statements , 
r ecursive procedures , based storage , pointers , and 
compiletime facilities . 

AUTHOR (Burroughs Corp ) BASED (XALGOL) YEAR (1966) 
PUR (writ ing operating systems ) 

BASEPLUS ARRAY (s ingle dim , based 0 ) FIELDS (variable) 
STRUCT (one level only) DEC L (address equateable, 
initialisable) OTHER (registers , typeless variabl es , 
controlled storage allocation) · 

BASE PLUS 

BASEPLUS OTHER (exit statement ) 

BASEPLUS 

extreme CODE (pseudo-procedures ) 

MACRO (parametered ) DATA ( specification of bit layout 
of typeless variabl es ) 

AUTHOR (IBM Corp) YEAR (1964) PUR (general ) 

INT REAL BOOL ALPHA ARRAY (two dim , based 1 , any) 
.DECL (optional, static , local , initialisable , equateable ) 

ARITH (+, -, X, /, t) LOG (A, V, ,, ~ ) 
ASSIGN (arith, l ogical) 

GOTO (numeric ) SEL (conditional) PROC (value, 
parameters ref , multiple entry ) LOOPS (tested at top , 
stepped ) 

RECORD ( formatted ) 

None 

None 



FSL 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

GARGOYLE 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

GCXJOL I II 

Design: 

89. 

AUTHOR (Feldman) YEAR (1964) PUR (writing compilers) 

ALPHA OTHER (symbol tab~es, stacks, typeless variables) 

ARITH (+,-) REL(<,>,=, f.) LOG(/\, V, -,) 
ASSIGN OTHER (stack ops, symbol table searches) 

GOTO SEL (biconditional) OTHER (parse requests are part 
of the language, each statement has a named successor) 

None 

FSL is part of a system implemented on some particular 
machine. The language becomes tied to the machine. 

None 

AUTHOR (Garwick) YEAR (1963) PUR (writing compilers) 

ARRAY (single dim, based 1) DECL (required, local/global, 
static) OTHER (typeless variables, Gargoyle operates on 
a string of tokens) 

ARITH (+, -, X, /) REL(>,<,= , 1-) LOG (A, V, -,) 
OTHER (shift, mask, and array search operations) 

GOTO SEL (conditonal, biconditional) PROC () 
OTHER (each statement has a named successor) 

STREAM (tokens only) 

Moderate 

None 

AUTHOR (McKeeman, Sauter) BASE (ALGOL60) YEAR (1967) 
PUR (writing operating systems) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

However, basically the language consists of the integer 
parts of ALGOL60, inline code capability, simple string 
handling, and facilities for process control. Arrays 
are single dimensioned and storage is static only. 



9(}. 

GPL 

Design: AUTHOR (Garwick) BASE (ALGOL60) YEAR (1968) 
PUR (general) CRIT (" a truly general purpose language") 

Data: 

Operators: 

Control: 

BASEPLUS ARRAYS (single dim) FIELD (variable) 
STRUCT (general) REF (any) 

BASEPLUS REF (value of) 

BASEPLUS OTHER (extended procedure forms) 

I/O: ? 

Dependency: None 

Extensibility: 

IMP <IRONS) 

Design: 

Data: 

Operators: 

Control: 

DATA (structured modes) OPER MACRO CONTROL 

AUTHOR (Irons ) BASE (ALGOL60) YEAR (1965) 
PUR (systems ) CRIT ("a real word tool, particularly 
useful for systems programming") 

BASEPLUS STRUCT (restricted) REF (abritrary) 
OTHER (list) 

BASEPLUS REF (address of, deref) PRI (right-left) 
OTHER (infix lis t operations) 

BASEPLUS CLAUSES (without declarations) 

I/O: ? 

Dependency: None 

Extensibility: DATA (structures modes) OPER MACRO CONTROL 



IMP (EDIN) 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

JffiSLE 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

. 91. 

AUTHOR (Stephens?) BASE (ATLAS AUTOCODE) YEAR (1966) 
PUR (systems programming) / 

INT REAL ARRAY (multidim, real int) STRING (bounded) 
PREC (multicell) STRUCT (general) REF (arbitrary) 
DECL (required, dynamic, local, equateable) 

ARITH (+, -, X, /, +, t) REL (>, <, ~, ::;;;, =, I) 
LOG (A, V, XOR ,-,) STRING (concat, simple pattern 
matching ) ASSIGN (whole structures only) PRI (std) 
COER (implicit integer-real) OTHER (left shift, right 
shift) 

CLAUSES (declarations) GOTO (numeric) SEL (conditional, 
biconditional) PROC (value, parameters recursive) 
INT (hardware) LOOPS (tested at top, stepped) 

STREAM 

Low 

DATA 

AUTHOR (White & Presser) YEAR (1973) PUR (the post­
syntactic phase of compiler construction) 

INT ARRAY (single dim, based 1) STRINGS (bounded) 
FIELDS (variable) REF (any mode) STRUCT (one level) 
DECL (required , local, dynamic?) OTHER (descriptors?) 

ARITH (?) LOG (?) 
ASSIGN (any mode) 

REL (?) STRING (?) 
COER {all explicit) 

REF (deref) 

CLAUSES (declarations) GOTO SEL (numeric) 
PROC (value, parameters value, r eturn) 
LOOPS (tested at middle, exit clause) 

? 

? 

DATA (structured modes) 



JOVIAL 
Design: 

Data: 

Operators: 

Control: 

I/0: 

Dependency: 

Extensibility: 

LISP 2 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

AUTHORS (System Development Corporation) 
BASE (CLIP) YEAR (19 60) PUR (general ) 

INT REAL BOOL ALPHA ARRAY (multidim) FIELDS (bit, 

92. 

8 bit bytes) PREC (digits ) STRUCT (one level only) 
DECL (optional, static, local, initialisable) 

ARITH (+, -, X, /, +, t) LOG (A, V, 1) 
REL (>, :;;::, <, ~. =, "f) ASSIGN (any) PRI (std)­
COER (implicit int-real) 

CLAUSES (declarations ) GOTO (conditional, numeric) 
SEL (conditional, bicond i tional , logical) 
PROC (value, parameters name-value) 
LOOPS (t ested at top-middle, stepped ) 

None 

CODE (inline) SEGMENTATION (data) 

MACRO 

AUTHOR(?) BASE (LISP 1~5, ALGOL60) YEAR (1965) 
PUR (general) 

INT REAL BOOL ALPHA ARRAY (simple dim, based 1) 
STRUCT (linked lists of other data) DECL (required , 
local, static) OTHER (procedure reference) 

ARITH (+, -, *, /,+,rem) LOG (A, V, 1) 
REL (<, ~, >, :;;::, =, "f) ASSIGN (any) PR! (std except 
list operators) COER (implicit int-real-bool) 
OTHER (head and tail of list operators) 

CLAUSES (declarations, value ) GOTO SEL (conditional, 
biconditional, numeric) · PROC (must have value, 
parameters value-ref, recursive) LOOPS (tested at 
top, . exit clause, stepped ) OTHER (expression language) 

STREAM 

CODE (inline) 

Programs can extend themselves 



LP-7o · 
Design: 

LRLTRAN 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Ext ensibility: 

LSD 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

93. 

AUTHOR (Rossiensky et al) BASE (PL-360) YEAR (1969) 
PUR (systems programming) CRIT ("a systems programming 
language with parallel processes") 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

AUTHOR (Mendic ino) BASE (FORTRAN IV) YEAR (1966) 
PUR (systems language) CRIT (ease of writing, 
portability, efficient ... ) 

BASEPLUS FIELDS 
REF (arbitrary) 
higher levels by 

(variable) ARRAYS (based 0) 
STRUCT (subword structure of fields, 
equivalencing) OTHER (register) 

' 

BASEPLUS REF (deref, address of) ASSIGN (multivalued ) 
OTHER (shift left, shift right) 

BASEPLUS PROC (parameters ref-value) LOOPS (may be 
decremented) OTHER (alphabetic labels) 

BASEPLUS 

CODE (inline) 

MACRO (parametered ) 

AUTHOR (Eergeron et al) BASE (PL/I) YEAR (1970) 
PUR ( systems ) 

INT REAL ARRAY (single dim, based 1, any type) 
STRING (variable) FIELD (bit, byte 8) PREC (halfword, 
doubleword) STRUCT (general) REF (arbitrary) 
DECL (optional, dynamic/static , global , initialisable) 
OTHER (stacked, register) 

ARITH ( +, - ,. X, +, MOD, : ) LOG (/\, V, -,, X, <<, >>, . & ) 
REL (>, <, :s;, ~, ••• ) STRING (substring, delete; insert, 
concat, table occurrence) ASSIGN (arith, ref) . 
REF (value of, address of) PRI (std) COER (explicit) 

SEL (conditional, biconditional, numeric,exception) 
GOTO PROC (value, parameters ref, omitted parameters, 
recursive) TRAP (software) PROCESS (events) 
LOOPS (tested at top, exit clause, next clause, stepped) 
OTHER (coroutines) 

STREAM RECORD 

CODE (inline, pseudo procs) SEG (data) OTHER (register 
allocation) 

OP, CONTROL, MACRO 



ML\LUS 
Design: 

~\L\RY 

Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency : 

Extensibility : 

f•flA II 
Design: 

94. 

AUTHOR (General Motors Corp) BASE (XPL) YEAR (1~70) 
PUR (syst ems programming) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

MALUS is a machine dependent (CDC STAR) extension 
of XPL 

AUTHOR (Rain) BASE (ALGOL68) YEAR (1972) 
PUR ( systems programming) 

BASEPLUS FIELDS (none ) DECL (specify exactly the 
internal mode required) OTHER (data can be declared 
read-only, s imple row structures, sets , powersets) 

BASEPLUS REF (value of) COER (no widening) 

BASEPLUS LOOPS (tested at bottom, optimised form) 

? 

None 

BASEPLUS 

AUTHOR (Schone et al ) YEAR (1 963) PUR (writing 
compilers) 

META II cannot be adequately described in the standard 
structure. A META II program consists of a represent­
ation of a BNF language description. Each production 
of this description normally contains at least one call 
on a literal output proced11re which would normally be 
used to produce an jntermediate language (e. g. assembler). 
Each production is considered a recursive procedure 
definition. The META II program inputs a string of 
tokens (which can be identifiers; strings , numbers, and 
spec~al chars), parses this top-down, and produces the 
indicat ed output. 



f1:ll-3ffi 
Design: 

~DL-940 

Design: 

NELIAC 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

AUTHOR (System Development Corp) BASE (ALGOL60) 
YEAR (1967) PUR (writing an operating system) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

95. 

However, the language has only arrays for data 
structuring and has no floating-point or character 
manipulation facilities. It is machine-dependent 
(IBM360) and features inline assembler and register 
declarations. 

AUTHOR (Hay and Rulisfson) BASE (ALGOL60) 
YEAR (1 968 ) PUR (systems programming) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

However, the language has no floating-point or string 
manipulation facilities, arrays are the only data 
structuring tool, but has bit manipulation facilities. 
It is machine-dependent (SDS-940) and permits ~nline 
assembler. 

AUTHOR (Halstead) BASE (ALGOL58) YEAR (1969) 
PUR (general) 

INT REAL ARRAY (single dim) FIELD (variable) 
PREC (digits) DECL (required, local/global, static, 
initialisable) 

ARITH (+, -, X, /, t, abs) REL (<, :::;;:, >, ~, = 1) 
LOG (/\, V) ASSIGN (array slices) PRI (none) 
COER (explicit) 

CLAUSES GOTO SEL (conditional, biconditional) 
PROC · (value, parameters) LOOPS (tested at top, stepped) 

STREAM (most implementations) 

None 

None 



OSL 
Design: 

PASCAL 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: · 

Extensibility: 

96. 

AUTHOR (Alsberg and Wells) BASE (ALGOL60) YEAR (1968) 
PUR (writing operating systems) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

However, the language is an extended subset of ALGOL60 
(including constructs to handle interrupts). It 
appears to be machine dependent. 

AUTHOR (Wirth) BASE (EULER) YEAR (1966) PUR (teaching) 

INT REAL ALPHA ARRAY (multidim) REF (?) PREC (digits) 
STRUCT (general) DECL (required, local, static) 
OTHER (set, powerset, file) 

ARITH (+, -, X, /,rem) LOG (A, V, -,) 
REL (>, :<:::, <, ::s:, =, -/-, c) REF (deref) ASSIGN (subranges) 
PRI (std) COER (implicit int-real) OTHER (set union, 
intersection, and difference) 

CLAUSES GOTO SEL (conditonal, biconditional, numeric, 
logical) PROC (value, parameters, recursive) 
LOOPS (tested at top-bottom, stepped) 

STREAM RECORD 

None 

DATA 



PUI 
Design: 

Data: 

Operators: 

Control: · 

I/O: 

Dependency: 

Extensibility: 

PW30 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

AUTHOR (Russell) BASE (PL360) YEAR (1971) 
PUR (systems programming) 

97. 

INT REAL ARRAY (single dim, based 0) PREC (multicell) 
DECL (required , equateable, initialisable) 
OTHER (registers) 

ARITH (+, -, X, /) REL (<, >, =, f) LOG (A, V, -,) 
REF (ref to) ASSIGN (arith) PRI (none) 
OTHER (stack manipulation operators reflecting PDP11 
architecture) 

CLAUSES SEL (conditional, biccnditional) PROC () 
LOOPS (tested at top, stepped) 

None 

Extreme 

None 

AUTHOR (Doran) BASE (PL360) YEAR (1971) 
PUR ( systems programming) 

INT ARRAY ( single dim, based O) 
initialisable) PREC (multicell) 
reg.lsters) 

DECL (required, 
OTHER (predeclared 

ARITH (+, -, X, /) LOG (A, V, XOR) OTHER (test . 
accumulator) 

GOTO SEL (conditional, biconditional) PROC (value, 
parameters ref) LOOPS (exit clause) 

None 

Extreme 

None 



Pl3ffi 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency : 

98. 

AlITHOR (Wirth) YEAR (1967) PUR ( systems programming) 
CRIT (" to improve readability of programs which must 
take into account the specific characteristics and 
l imita1:ions of a particular computer") 

INT REAL BOOL FIELD (8 bit bytes ) ARRAYS (single dim , 
based 1) PREC (multicell) DECL (required , local/global , 
stati c equateable, initialisabl e ) OTHER (registers) 

ARITH (+, -, x, / , t, mod) REL (<, ~. >, ~ , =, #) 
LOG (/\, V, -,) ASSIGN (any) PRI (left-right) 
OTHER (register tests , shift ops) 

CLAUSES (declarations ) 
biconditional , numeric) 
top, stepped ) 

None 

GOTO SEL (conditional , 
PROC () -LOOPS (tested at 

Extreme CODE (inline) SEGMENTATION (code , data ) 

Extensibility : None 

PL.503 
Design: 

Data : 

Operators: 

Control: 

I/O: 

Dependency : 

Extensibility : 

AUTHOR (Gordon ) BASED (PL516) YEAR (1 972) 
PUR (systems programming) 

INT ARRAY (single dim , based 0 ) DECL (required , 
static , local/global , initialisabl e) 

peculiar to the Elliott 503 , basical ly integer 
manipulat i ons which reflect Elliott 503 code 

CLAUSES (decl arations ) GOTO (conditional) 
SEL (biconditional ) PROC (parameters) LOOP (tested 
at top, stepped ) 

None 

Extreme 

None 



PL516 
Design: 

Data : 

Operators : 

Control: 

I/O: 

Dependency: 

Extensibility: 

Pl/I 
Design : 

Data: 

Operators: 

Control: 

I/O: 

Dependency : 

Extensibility: 

AUTHOR (Bell and Wichman ) BASE (PL360 ) YEAR (1970) 
PUR (systems ) 

INT ARRAY ( singl e dim, based 1) DECL (required , local , 
dynamic, initialisable) 

ARITH (+, -, X, /,mod ) LOG (A, V, --,, XOR) 
REL (<, ~, >, ~, =, I) ASSIGN (any) PRI (left-right) 
OTHER ( shi ft ops, compare) 

CLAUSE GOTO 
PROC (va lue ) 

None 

Extreme 

None 

SEL (conditional, bi conditional) 
LOOPS (tested at top, stepped ) 

AUTHOR (IBM Corp ) YEAR (1 964 ) PUR (general) 

INT REAL FIELD (bit, 8 bit byte) ARRAY (multidim, any) 
STRING (bounded) FIELDS (bit, 8 bit bytes) PREC (digits) 
STRUCT (general) REF (arbitrary) DECL (optional, 
static/dynamic, local/global, ini tialisable , equateable) 
OTHER (areas ) 

ARITH (+, -, X, /, t, mod) LOG (A, V, --,) 
REL (<, ~, >, ~ , =, I) REF (ref to, deref) 
STRING (relational, size , substring , translate, move , 
table occurrence) ASSIGN (any , array slices) PRI (std) 
COER (all implicit) 

CLAUSE (declar at i ons , named) GOTO (numeric) 
SEL (conditional , biconditional) PROC (values, parameters 
ref, recursive , multiple entry) INT ( software , hardware) 
PROCESS (events) LOOPS (tested at top, stepped ) 

STREAM RECORD 

None 

DATA (structured modes) MACRO (compile-time everything) 
CONTROL (generic procedures) 

. . . .. ( 



PUS 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility : 

PROTEUS 
· Design: 

PS440 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

AUTHOR (IBM Corp) BASE (PL/I) YEAR (1970?) 
PUR (systems programming) 

100, 

INT ARRAY ( single dim, based 0) FIELDS (bit, 8 bit bytes) 
STRING (bounded) PREC (multicell) STRUCT (general, 
self referencing) REF (arbitrary) DECL (required?, 
local/global, static/dynamic , based, equateable, 
initialisable) OTHER (entry, register) 

BASEPLUS REF (address of) COER (no implicit coercions) 

CLAUSE GOTO (numeric) SEL (conditonal, biconditional) 
PROC (value , parameters ref, multiple entry) 
LOOPS (tested at top, stepped) 

None 

CODE (inline) SEGMENTATION (code, data) 
OTHER (register control) 

MACRO (?) DATA (based data structures) 

AUTHOR (Bell) YEAR (1968) PUR ( systems programming) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

However, PROTEUS is an extensible l anguage, and has 
at least one derived language. 

AUTHOR (Sapper et al) YEAR (1970) PUR ( systems 
programming ) 

ARRAY (single dim) FIELDS (variable ) PREC (rnulticell) 
DECL (requir ed , local/global, static?, initialisable) 
STRUCT (single level only) OTHER (typeless variables) 

ARITH (+, -, X, /) LOG (A, V, -,) 
REF (address of, value of) ASSIGN 
COER (all explicit ) OTHER (monadic 
shift and mask ops) 

REL (<, ~, >, ;z:, =, #) 
PRI (std) 
machine operations, 

CLAUSES (declarations) 
biconditional, numeric) 
top-middle, stepped) 

GOTO SEL (conditional, 
PROC () LOOPS (tested at 

None 

CODE (inline) SEGMENTATION (code) 

Extensibility: None 



SABRE Pl/I 
Design: 

SAL 
Design : 

Data: 

Operators : 

Control: 

I/O: 

Dependency : 

Extensibility : 

Sl/8 
Design : 

AUTHOR (Hopkins) BASE (PL/I) YEAR (1968) 
PUR (syptems programming) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

101. 

However, the language is a l arge- subset PL/I with 
r estricti ons t o improve effi c i ency (e . g. bounded strings) 

AUTHOR (Lang) YEAR (1967) PUR (systems programming) 
CRIT ("·combines freedom and flexibility of assembly 
code with many facilities normally associated with 
high-level languages" ) 

INT REAL ARRAY ( single dim , based 1) DECL (required, 
local/global, stati c ) OTHER (registers , entry points ) 

ARITH (+, -, x, /) LOG (/\, V, -,) REL (<, :;;; , >, :<::, =, '/-) 
REF (deref, address of, index ) ASSIGN (any ) PRI (none?) 
OTHER (shift ops ) 

GOTO (numeric) SEL (conditonal , biconditional) 
PROC ( ?) LOOPS ( tested at top , stepped) 

STREAM 

high CODE (inline) SEGMENTATION (data) 

MACRO (s imple ) 

AUTHOR (Heidt and Fricks ) BASE (ALGOL60 ) YEAR (1970) 
PUR (writing operating systems ) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE 

A machine dependent l a nguage which reflects features 
of the PDP/8 architecture . 



Design: 

SNOBOL 4 
Design : 

Data: 

Operators: 

Control: 

I/O: . 

Dependency: 

Extensibility: 

102. 

AUTHOR (IBM?) YEAR (1960) PUR (general) 
CRIT ("it is possible to describe processes in a machine­
independent language which are themselves machine 
dependent") 

The SLANG system can not be adequately described within 
the usual notation. The system accepts as input a 
problem-oriented-language ( POL ) and a machine description 
and produces a machine language program . The machine 
description is given in terms of a number of machine­
independent macros. The POL bears some similarity to 
ALGOL58 . 

AUTHOR (Griswold ) BASE (SNOBOL 2) YEAR (1967) 
PUR ( string and list processing ) 

ARRAY (multidim , any) STRING (varying ) STRUCT (general , 
self referencing) REF (arbitrary) DECL (array and 
structures only) OTHER (typeless variables) 

ARITH (+, -, X, / , t, mod) REL (<,::;;,>,:?:.,=,#) 
REF (deref) STRING (relational size, substring , move , 
table occurrence and many more) ASSIGN PRI (left-right) 
OTHER (parsing implied by statement form) 

Each statement in the language may have named successors . 
If control does not pass to a named successor it passes 
to the next statement . 

STREAM 

None 

DATA CONTROL (programs may extend themselves) 



SUE 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

SIMJL X 
Design: 

AUTHOR (Clark and Ham) YEAR (1972) PUR (writing 
operating systems) 

103. 

INT ARRAY (multidim) STRING (bounded) FIELDS (variable) 
PREC (bits) STRUCT (general) REF (general) 
DECL (required, local, dynamic) OTHER (register) 

ARITH (+, -, X, /,mod) LOG (A, V, XOR,-,) 
REL (<, s, >, ~, =, 1) REF (deref) STRING (characters 
are treated as bytes, i.e. integers) ASSIGN (any, array 
slices) PRI (std) COER (explicit) OTHER (set union, 
intersection, difference and powerset operations, succ, 
pred) 

SEL (conditional, biconditional, numeric, logical) 
PROC (value, parameters value, recursive) PROCESS (events) 
LOOPS (tested at middle, stepped, exit clause) 

STREAM 

CODE (inline) 

MACRO DATA (any modes) 

AUTHOR (Basili) YEAR (1973) PUR (systems programming) 

Data: INT ARRAY (singl e dim, based 1?) 
DECL (required, local, dynamic, initialisable) 

Operators: ARITH (+, -, X, /) REL (<, s, >, ~, =, #) 
LOG (A, V, -., XOR) ASSIGN PRI (std) 
OTHER (shift ops, part word ops) 

Control: CLAUSES SEL (conditional, biconditional, numeric) 
PROC (value, parameters value-ref, recursive) 
LOOPS (tested at top, exit clause) 

I/O: STREAM 

Dependency: Low 

Extensibility: . Compiler is extensible. 



SY~PL 

Design: 

SYSL 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

Design: 

AUTHOR (Computer Sciences Corporation) BASE (PL/I) 
YEAR (?) PUR (systems programming) 

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE. 

AUTHOR (Terashima?) YEAR (1972) PUR (systems ) 
CRIT (runtime efficiency and space efficiency less 
than 1.15 times that of assembler language) 

INT REAL? ALPHA ARRAY (single dim, based 1) int, 
real) STRING (variable) FIELDS (bit strings ) 
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STRUCT (static) REF (string, program, offset into 
array) DECL (required?, dynamic , local, initialisable) 
OTHER (areas) 

ARITH (?) REL (?) REF (deref) STRING (?) 
ASSIGN (arith?) PRI (std) COER (implicit?) 

CLAUSES (declarations , named) GOTO (conditional) 
SEL (biconditional) PROC (value, ?) INTER ( software) 
LOOPS (tested at top, stepped ) 

RECORD 

OTHER (pseudo procs) 

None? 

AUTHOR (McLure) YEAR (1964) PUR (compiler generator ) 

This language can not be described adequately within the 
usual notation. TMG performs a top-down parse with 
backup. Semantic rules may be embedded in the parse rules. 
The basic TMG statement form is a sequence of actions. 
Each action may be labelled, and it may indicate a failure 
exit label. I/O is character oriented. 



TRAC 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

TR/1NDIR 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 
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AUTHOR (Mooers ) YEAR (1964) PUR (text manipulation) 
CRIT (designed specifically for handling unstructured 
text in an interactive mode). 

STRING (varying ) OTHER (other types e.g. integer are 
considered subclass of strings) 

ARITH (+, -, X, /) LOG (A, V, --,) REL(=,>) 
REF (ref to) STRING (relational, substring) 
ASSIGN PRI (bracketing) OTHER (string operations, 
shift and rotate) 

interpretive, statement by statement 

STREAM (string) 

None 

Programs may modify themselves 

AUTHOR (Massachusetts Computer Associates) 
YEAR (1964) PUR (compil er generator ) 

INT STRING (varying) OTHER (label) 

A number of builtin functions manipulate a parse 
tree directly 

GOTO SEL (conditional, biconditional) 

STREAM 

None 

None 



XALGOL 
Design: 

Data: 

Operators: 

Control: 

I/O: 

Dependency: 

Extensibility: 

XPL 
Design: 

Data: 

Operators: 

106. 

AUTHOR (Burroughs Corp) BASE (ALGOL60) year (1967) 
PUR (general) CRIT (suitable for compiler writing) 

BASEPLUS ALPHA ARRAY (read only) PREC (multicell) 
FIELDS (variable) REF (string, array) DECL (equateable) 

BASEPLUS STRING (relational, translate, move, table 
occurrence) COER (many explicit coercions) 
OTHER (field operations) 

BASEPLUS SEL (numeric) 
PROCESS (events, locks) 

STREAM RECORD 

High 

MACRO (parameters) 

INT (software, hardware) 
LOOPS (tested at bottom) 

AUTHOR (McKeeman) BASE (PL/I) YEAR (1968?) 
PUR (compiler writing) 

INT ARRAY (single dim, based 0) STRING (varying) 
FIELDS (variable) DECL (required, static, local, 
initialisable) 

ARITH (+, -, x, /,mod) 
REL (<, :::;;, >, ;;:;:, =, -f) 
concatenation) 

LOG (/\, V , -,) 
STRING (relational, substring, 

Control: CLAUSES GOTO SEL (conditional, biconditional, numeric) 
PROC (value, parameters ref) LOOPS (tested at top, 
stepped) 

I/O: STREAM 

Dependency: Low CODE (inline) 

Extensibility: . MACRO 
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A Language Design 

A careful study shows that several languages satisfy most of the 

criteria for good systems languages . They are SUE, BLISS , MARY and 

SIMPL-X. Each has some shortcomings: SUE, BLISS , and SIMPL-X do 

not have adequate string manipulation facilities, for example. SUE and 

MARY are more suited to larger machines , BLISS and SIMPL-X to medium-

size and small machines . In view of the r emarks made in the introduction 

(and elsewhere) regarding proliferation of languages , it would be 

hypocritical of me to suggest otherwise than that one of these languages 

be adopted. 



bad goto 

cell 

coercion 

§6.3 Glossary 

any goto which cannot be compiled into a simple 
branch instruction 

the smallest addressable unit of main storage 

108. 

the process by which one mode may be converted to another 

definition (as opposed to declaration) - the specification of a mode, 
a declaration which does not allocate storage 

dynamic 

field 

form 

heap 

inline code 

items (data) 

mode 

orthogonality 

overlay able 

prelude 

process 

task 

typeless 

union 

weak typing 

runtime changeable 

part of a ce11 · 

secondary processing type, such as string manipulation, 
error recovery, list processing 

storage under control of a garbage collector 

arbitrary code inserted at the statement level 

any piece of named data 

formal class associated with identifiers, no~mally a 
data type 

independence of complementary concepts within a language 

able to be overwritten (in main storage ) at runtime 

standard set of definitions used to extend a base 
language .for a specific purpose 

performed function 

a unit of work treated in an independent manner by the 
operating system 

having no mode or type, being any mode without coercion 

mode possessing one of a limited s~t of modes 

the ability to treat data as various different modes 
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§6 .4 References 

This section has two parts. §6.4.1 is a language ordered cross 

reference t o §6 . 4.2 (which is the proper table of references) . 

An attempt has been made to limit the number of references by 

deleting those concerned directly with languages if and only if 

(a) another (more accessable) paper discussing the language was 

available (b) the paper concerned did contain discussion of things 

other than the language itself . This mainly eliminated programmers 

guides and language reference manuals. 

many of these. 

Sammet [ Sam 71, Sam 74] gives 
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AED-0 

AL 

ALGOL 60 

ALGOL 68 

ALGOL W 

ALPHA 

AMBIT/L 

AP AREL 

APL 

B 

BCPL 

BLISS 

BSL 

CIMPL 

CLIP 

COBOL 

· COGENT 

CORAL 66 

DCALGOL 

EPL 

ES POL 

FORTRAN IV 

FSL · 

GARGOYLE 

GOGOL III 

GPL 

IMP (Irons) 

IMP (Edin) 

JOSS LE 

JOVIAL 

LISP 

LP70 

LRLTRAN 

ILSD 

MAL US 

MARY 

META 

Language to Papers Cross Reference 

Ros 69 

Hai 73 

Gal 67, Nau 63, Wir 63, Wir 66 

Bra 71, Van 74 

Boo 74 

Yer 66 

Chr 71 

Bal 69 

Ive 62 

Joh 73 

Ric 69 

Wul 71a, Wul 71b, Wul 72 

= PL/S 

Cla 71a 

Eng 61 

ANS 73 

Rey 65 

BCS 70 

Bur 73 

MIT 66 

Bur 72 

ANS 66 

Fel 66 

Gar 64 

Sau 67 

Gar 68 

Iro 70 

Ste 74 

Whi 73 

Sha 63 

Jen 70, Abr 66 

Ros 70 

Dub 71, Men 68 

Ber 71, Ber 72 

GMC 70 

Rai 72 

Opp 66 

110. 



111, 

MOL-360 Boo 70, Boo 71 

MOL-940 Hay 68 

NELIAC Mas 60 

NPL = PL/I 

OSL Als 68 

PASCAL Wir 69, Wir 71a 

PL11 Rus 71 

PL1130 Dor 72 

PL360 Wir 68 

PL503 Gor 72 

PL516 Bel 71 

PL/I ANS 73, Cor 69, Dod 66, Fre 69, Hop 71, Pes 71 

PL/S Wie 71 

PROTEUS Bel 68 

PS440 Sap 71 

SABRE PL/I Hop 68 

SAL Lan 69a, Lan 69b 

SL/8 Hei 70 

· SLANG Sib 61 

SNOBOL 4 Gri 68 

SUE Cla 71b 

SIMPL Bas 7 3' Bas 74 

SYMPL csc 
SYSL Ter 74 

TMG . McL 65 

TRAC Mop 65 

TRANDIR Che 66b 

XALGOL Bur 74 

XPL McK 70 
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