
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

DESIGN OF SYSTEMS LANGUAGES

A thesis presented in partial fulfilment

of the requirements for the degree of

Mast er of Science in Computer Science

at Massey University

Christopher Allen Freyberg

March 1975

Abstract

Systems Languages have often been designed on a rather

ad hoc basis . This thesis attempts to formulate and

analyse design crjteria in a more systematic manner .

These criteria are drawn from three major sections:

a sur~ey of languages used for systems programming , a

discussion of systems programs features, and a discussion

of programming language effectiveness . The resulting

criteria are then discussed in relation to their

application to the language design . A collection of

language summaries is included in the appendices.

To the many people who have helped

or encouraged me in the completion of this thesis.

I would like to acknowledge by name the work of the following:

Brian Carpenter, Bob Doran, Prof. G. Tat e (Supervisors)

Lloyd Thomas (Algol 68)

Lyn Stening (typist)

§4

§s

§6

§i. 1

§i. 2

§i. 3

§2.1

§2 . 2

§2 . 3

§2 .4

§2.5

§2 . 6

§4 . 1

§4 . 2

§4 . 3

§s . 1

§s . 2

§s.3

§s.4

§s . s

§6 . 1

§6 . 2

§6 . 3

§6 . 4

Table of Contents

Intrcductio!'l

Aim

Some Difficulties

Outline

A Brief Survey

The Various Languages

Algol Based Languages

PL/I Based Languages

Other High-Level Languages

PL360 Based Lai1guages and Assemblers

Summary

Syst ems Programs : Common Features

Systems Programs : Definition and Scope

Breakdown of Processing Features

Collect ed Features

Effectiveness Functionality , Error Immunity

and Efficiency

Functionality

Err or Immunity

Efficiency

Criteria and their Appli cation to the La nguage Design

Extensibility/Orthogonality

Data Related Criteria

Control Rel ated Criter ia

Miscellaneous Critera

Conclusions

Appendices

Language Summaries

A Language Design

Glossary

References

1.

§i Introduction

§1.1 Aim

In the past, a commonly accepted project for a masterate in the

programming languages field was to take an already designed language,

suitably modified, to implement on a given machine. The student thereby

derived experi ence in implementation problems. However the usefulness

of that type of project is severely limited when the language is a systems

programming language, in that most machines to which the student has

access already have well developed suites of systems programs. Hence

rewriting a part of any suite runs foul of intercommunication problems,

and rewriting the whole would be an excessively large task even for a

small machine. The project would accomplish little more than an intimate

knowledge of one language and one machine.

An obvious alternative, that of designing and implementing a

systems language , was discarded for similar r easons; also there is

already a plethora of languages of that type. Such a 'home grown'

language i s , moreover, only likely to gain acceptance and be used in the

immediate locality unless it happens to incorporate some startlingly new

and useful technique or construct.

more than an exercise.

In · other words, i ·t: would be little

The topic finally selected, "Design of Systems Languages", was

anticipated to require two reasonably distinct subprojects:

i. a survey of existing systems languages

ii. development of design criteria based on an analysis of their

features

ana possibly a third subproject developing a language based on those

criteria. However it soon became obvious, while surveying the existing

languages, that in many cases the criteria employed by their authors were

neither explicit nor extensive, so that a s omewhat different approach

would be required, even if the basic intention remained the same.

Some inherent · difficulties

A major problem in tackling a topic such as this is that the

experience (or lack of it) of the author can lead to large distortions

of outlook. He attempts to survey and criticise a group of languages

with a wide range of features, when the only features he has experience

2.

of are l imited to those implemented on the few machines he has worked

on. Coupled to this, the machines to which he at present has access

colour and in some respects bias his appraisal of anything which applies

to other machines, particularly to those to which he has never had access.

For example, access to a stack machine leaves him with doubts about the

sanity of anyone who uses 360 type parameter passing.

Realising that these two difficulties exist fortunately provides

some solutions - abstraction becomes a keyword and generality becomes an

overall goal. The survey of languages thus becomes a means to an end,

and can be divided into two parts:

i. a gathering of information from separate sources

ii. a criticism of what has been done or not done to date.

Following this, greater emphasis can be given to determining the paramount

features and linguistic requirements of the various types of systems

program , instead of relying upon other people ' s opinions about them .

Similarly it i s preferable to determine for oneself the desirable features

of a systems language, particularly in the shadow of considerable

disagreement in the literature over machine independence of sys~ems

languages, and even over terminology, notably ' efficiency '. These

disagreements point to fields of study outside the scope of this thesis.

§1.3 Outline

This thesis therefore attempts, through a survey of existing systems

l anguages and an examination of the characteristics of systems programs,

to develop a series of criteria by which a systems programming language

may be judged, and through which a n ew language can be constructed to

make it a useful tool.

Section 2 surveys existing languages by grouping them with respect.

to common base languages . It . relies heavily upon §6~1, which is a

table of the features of the various languages.

summarised in §2.6.

The sect ion is

Section 3 · addresses the nature of systems programs and what language

features are required to write and support them. Emphasis is placed

here (as in Section 2) on the language itself and the linguistic criteria ,

rather than on the compiler or the methodology of construction. A

summary is made in §3 .3.

Section 4 i s an attempt to put some order into arguments about

efficiency, commentation , and the general methodology of systems programs .

3.

It also attempts to draw up guidelines for those features the compiler.

must provide exclusive of the language itself.

Section 5 collec t s together the criteria from the above three

sections and , along with criteria r elated to extensibility, attempts

to order them into a preferential system . This system is then discussed

in terms of the limitations it places on, and demands it makes on, the

language structure .

The conclusions of the thesis are really contained in Section 5,

and for this reason are not given a separate section heading.

4.

A Brief Survey

The Various Languages

Sammett [Sam 71] lists 44 programming languages either designed or

used for systems programming . At the end of 1974, some 20 more had made

an appearance. Bearing in mind that these languages are only the ones

of which accounts have been published (and have come to my attention),

I consider it likely that at the present time there are at least 80

programming languages (other than assemblers) used for systems programming.

From these facts, one can draw two immediate conclusions. Firstly,

there is no systems programming language which satisfies the needs of any

large group of people; and , secondly , institutions get a certain

satisfaction in creating a new language tailored to their own (and often

limited) needs.

Dissatisfaction with existing languages will always, in my opinion ,

be endemic. Any language used for writing an operating system must

be machine-dependent , as each machine has instructions which ar~ unique

.to it, and which often must be coded explicitly. This is not to say that

the machine dependence need be extensive; there are various mechanisms

to severely limit its scope .

However , the proliferation of new languages for limited purposes is

a human problem which could be overcome by greater adaptation of existing

languages, rather than by creation of new ones . To this end extensible

languages, such as ALGOL68 , may provide a partial answer.

It seems fairly obvious that no systems program (in the sense defined

in §3.1) is ever truly portable , regardless of whether or not it is coded

in some high-level language. In fact, it could be said that systems

programs are precisely those programs which, for some reasons, are

non-portable. The algorithm effected might be the same but some internal

steps will ?oubtless have to be machine dependent. However , this does not

deny that the systems language itself may be largely portable . A

great deal of time wasted on complete redesign of languages could be saved

by providing either an extensible language, or a language which might

eas ily be modified to accommodate the idiosyncrasies of different machines.

§2.1.1 Language Hierachies

A large number of systems languages are regarded by their creators

as an extension or modification of a base language. This progressive

5.

modification of existing languages provides, when studied , many examples

of what language features are considered necessary for systems programming.

It is indeed interesting that three hierachies (based on ALGOL, PL/I, and

PL-360) account for more than half the total number of systems languages

available - an indication that these base languages contain many useful

constructs or ideas. These three trees are dealt with separately in

§2.2, §2.3, and §2.5. The remaining high level languages have at most

two-node trees, and are discussed in §2.4 under groupings related to

their intended usage.

Figures 2 .1, 2 . 2, and 2. 3 picture the trees for ALGOL, PL/I and

PL-360 respectively while Fig 2.4 pictures any remaining minor trees.

Where it is ascertainable that the l anguage has been implemented on more

than one machine, a superscript asterisk indicates this. Bracketed

elements in Fig 2 .1 have to my knowledge never been used for writing

systems programs and were not intended for that purpose.

Assembler Languages per se

In this survey I have avoided discussing assembly languages for two

reasons. The first is that there is an extremely large number of

assembly languages with varying degrees of structure, and the second is

that most people are fully aware of limitations and capabilities of

assembler languages (except , perhaps , how ' efficient ' assembl er language

programs are). I wil.l discuss this in greater detail in §4.

It is doubtful that those who still advocate a s s embler languages for

systems programming will ever be convinced that some loss in object-code

efficiency can be amply compensated for in other ways . However, some

time spent using a system written in a high-level language would soon

demonstrate the facilities available which could not or would not have

been provided in assembler language. Examples of these are variable

length job + program names, fr ee format job control cards , easily under­

stood operator messages, to mention just a few.

Some assembler languages are, nevertheless, quite highly structured.

SAC (for the Elliott 503, 803) is an early example, and PL-360, AL, SAL,

are more modern varieties , Powerful macro processors such as ML/I can

provide considerable structure· up to the procedure level in assembler

language programming with no less direct source-obj ect code correspondence

than the assemblers themselves. The only inefficiencies that can be

generated are by using overly generalised macros, and calling them too

often. One wonders then why these aids do not seem to be more widely

used by advocates of assembler-language programming.

6.

Fig 2. 1 ALGOL Hierachy

(ALGOL 58)

:·:
NELIAC

:':
ALGOL 60 ATLAS AUTOCODE -!: CLIP

/,,
JOVIAL IMP (Edin)

I
I

SL/8 I IMP (Irons)

I \ I
I :': -:': ~':

MOL 360 (ALGOL 68) XALGOL (EULER) CORAL 66

/\ ·;': ... ~
MOL 9Lf0 MARY DCALGOL ES PO L PASCAL

7 ,

§2.2 Algol-Based Languages

Figure 2. 1 pictures the dependency tree for the ALGOL based languages .

Of the 23 nodes , the 16 underlined were designed explicitly for systems

programming, while another two have been used for that purpose. The

sheer size of the tree, particularly the ALGOL-60 subtree , indicates

a high proportion of useful features in the base language .

The fact that ALGOL58 and ALGOL60 were designed by committees

illustrates the value of cooperative effort in producing a general design .

It does not , however, indicate usefulness of the language , as by far the

most heavily used languages are end-nodes . As far as the subsequents

of ALGOL58 are concerned , JOVIAL, NELIAC and ALGOL60 were developed al l

at the same time . ALGOL60 emerged as the prime example of an elegant

language design; the others , while both incorporating new features not

present in the former (such as primitive macros , initialised arrays ,

precision specification, new operator declarations) and also enjoying

considerable use , failed to generate any further language (principally ,

I believe , because of their general untidyness).

ALGOL60 is the direct predecessor of the greatest number of systems

languages . Of those 4 are machine dependent to an appreciable extent

and of the remaining 8 only two were designed specifically for systems

programming , although all have been used in this field .

§2.2 . 1 Data

The three basic single cell modes , INTEGER , REAL , and BOOLEAN occur

in almost all the languages in the ALGOL hierachy . Some earlier

languages distinguished these types by quite elaborate precision

specifications . For example,, in NELIAC:

ITEM A 000 , B 000 . 00

In the later languages precision is specified in terms of storage

units required (that is, bytes or words) as decimal processing hardware

has become more rare . Several languages have other single cell modes ,

the most prominent being POINTER. Some of the earlier languages have

no mode real , but as most of the languages are implemented on large

machines with hardware floating- point arithmetic nearl y all the l ater

languages have thi s mode .

8 .

Arrays are often cut to a single dimension, and sometimes have a

fi xed lower bound of 0 or 1 . More importantly , most languages permit

array initialisation at declaration time.

Bit-fields as data occur almost exclusivel y in the later languages

with the exception of JOVIAL (which has variable modifiers that select

bits or bytes) . XALGOL and its two derivatives have a very marked field

syntax that reflects the hardware of the B6700.

Generalised data structures are not evident at all in the earlier

languages, although some specific modes such as lists and stacks occur

in several . JOVIAL again was ahead of its time with the TABLE

declaration , but PASCAL, ·ALGOLW, ALGOL68, a nd MARY all have considerably

more general structure mechanisms . In these languages the outstanding

difference is whether or not a scalar quantity may have purely mnemonic

values . To illustrate this consider the following definition of a

mode 'person ' in PASCAL:

type person = record name

age

sex

end

string ;

integer ;

(male , femal e)

Here if fred were of mode ' person ' then the following is l egitimate

fred . sex := male ;

No such mechanism exists in ALGOL68 (for instance) , where the mode

definition would be

mode person = struct (string name ,

int age

bool male) ;

and it would have to be understood that , if jane was of mode 'person ',

that

means

jane. male = false

jane is female .

Declarations are required for all these languages , and since

ALGOL-like languages are typically block structured , scope is predominantly

local (JOVIAL ~as local scope only in procedures) . Initialisation of

single cell variables is rare , unlike arrays. Storage classes , however ,

tend to be evenly split between static and dynamic , presumably for

reasons of efficiency. Programmer control over these really occurs only

in ALGOL68 and MARY. How items are packed in storage seems to be

largely outside programmer control , except in JOVIAL, whose TABLE

declaration is functionally similar to the PL/I structure mechanism .

9,

Name equating of identifiers is widespread, but address equating occurs

only in ESPOL. The later languages have unions - in PASCAL they are

embedded in the record mechanism , while in ALGOL68 and MARY they are

completely independent of the structure mechanism.

Probably the most obvious difference between the ALGOL60 and its

successors is the presence of string or character modes.

§2.2.2 Operators

There is little difference among the l anguages in the arithmetic ,

logical, or relational operators although some languages have special

doubl e precis ion arithmetic operators . ALGOL68 and MARY have a special

group of conformity testing relations for unions.

Referencing operators exist in almost all of the languages which

have r efer ence modes , ALGOL68 being the exception . The most common is.

the deref operator, but where dereferencing is implicit (as in ALGOL68,

XALGOL, ESPOL , DCALGOL), there is sometimes a ref-to operation, .particularly

for string pointers .

String operations t end to be machine dependent , particularly as to

whether only s ingle character or whole string operations are available.

The bas ic operations are relational but move , size, and substring funct ions

are evident where strings may be manipulated as a whole. Translate

operations are not common , but table membership appears in several languages .

·The assignment operation generally holds for all modes in a language

although the method of determining the mode to be assigned may become

complex (as in ALGOL68).

Priority among operators is generally standard, with the exception

of operators peculiar to a given language (such as a shift operator) .

In cases where new operators may be declared care has ·to be taken to

ensure that the priorities of binary infix operators are not unusual.

Coercions vary considerably from language to language. Throughout

this family (unlike PL/I) the implicit coercions are those normally

expected, such as real~integer and dereferencing. Machine dependent or

unexpected coercions are nearly always explicit. With the exception of

real~integer the implicit coercions are normally 'widening ' operations.

§2.2.3 Control

One of the identifying features of this language family is the block

and procedure structure. These blocks serve (in almost all cases) as

10.

a method of obtaining local identifier scope as well as statement grouping.

Declarations are most oftep limited to the heads of blocks, with the

exception of ALGOL6B and MARY. These two languages are expression

languages rather than statement languages , and blocks (closed clauses)

may have values. No languages have named blocks.

Most of the languages have gotos , although their use tends to .be

more restricted in the more recent languages. PASCAL, for instance,

limits their scope to within procedures , and has only integer labels.

The computed goto is sometimes absent as well.

Selection in the earlier languages was limited to conditional and

biconditional forms, but none of the later languages omits some form of

numeric selection (or case statement). Probably the most advanced of

these is that of PASCAL where the labels may be scalar value mnemonics

(see §2.2.2). The exception condition in most numeric selections is

equivalent to an invalid array subscript.

Procedures are always permitted to return a value, though the mode

of this value may be severely limited, generally to a scalar . Parameters

are passed as a mode and, with one exception (ALGOL68), their formal use

is indicated separately (value, name in ALGOL60 ; canst~ var in PASCAL).

Generally procedures may be recursive without further specification , but

they never have multiple entry points .

Software and hardware interrupt mechanisms tend to be present only

in the more machine-orient ed languages such as XALGOL, DCALGOL, ESPOL,

and IMP (Edin).

Process control only appears in the ALGOL68 subfamily , and the

XALGOL subfamily . In the former , parallel elaboration is part of the

language and sema 's are used to control such elaboration , while in the

XALGOL family the task control mechanism (coroutines, independent and

dependent asynchrous tasks, events for semaphores and resource control,

interrupts, locks) is quite machine-oriented.

The basic ALGOL60 looping construct is for statement , where the

loop is tested at the top, and optionally stepped . Most implementors

have found it necessar~ to extend looping constructs to include

tested-at-bottom, and occasionally a next clause. In these cases the

syntax has been altered to include while <cond> do <stmt> and

do <stmt> until <cond>, or by using repeat as a keyword (PASCAL, IMP).

11.

§2.2.4 I/O

Stream I/O was indicated in the ALGOL60 revised report and many

implementations of ALGOL60 reflect this. Because the designers of

ALGOL60 left the I/O mechanisms undefined, the implementations of I/O

processes vary considerably from machine to machine (and the syntax from

language to language). Most (if not all) of the successor languages

have a record form of I/O, including some mechanism for formatting.

In most cases there appears to be no distinction between buffered and

unbuffered forms of I/O.

§2.2.5 Machine Dependency

There is a large variation in the machine dependency of the languages

in this family. Languages designed for general use are the least so

afflicted, while those designed for systems programming are the most

afflicted, as one might expect. At least one general-purpose language

was also designed for systems use, and this has a considerable proportion

of its syntax machine dependent (and as might be expected, this is heavily

used [Bro 74]). Overall, the machine dependence of the general purpose

languages tends to be limited to those areas (such as I/O and string

handling) which were left undefined by the revised report. On the other

hand, in languages intended for systems programming (such as ESPOL,

MOL 360, MOL 940), machine dependence takes such forms as access to

machine registers, pseudo-procedures for peculiar instructions and shift

operators.

§2.2.6 Extensibility

The earliest attempts at extensibility are in JOVIAL which had both

macro, table, and operator declarations. While most of the successors

to ALGOL60 have some form of macro available in them, only the more

recent have made any real advance into extensibility. The prime reason

for this seems to have been two papers in the middle 1960's [Gal 67, Wir 66],

which made suggestions for extensions to ALGOL60. Since then new

languages rarely do not have a data-structuring mechanism. This is

in several cases generalised to allow new modes to be declared, and ·in

these cases declaration of operators is always available. Onions (which

exist in PASCAL, ALGOL68, and MARY) are the latest development in

extensibility.

LSD CIMPL

Fig 2. 2

:';

PL/I Hierachy

* PL/I

XPL SABRE PL/I EPL

I I
MAL US MULTICS PL/I

Fig 2.3 PL-360 Hierachy

PL-360

PL516 PL11

PL503

12.

SYMPL PL/S(BSL)

PL1130

13.

PL/I - Based Languages

The PL/I - based languages form the second-largest family in the

systems programming area (Fig 2.2). All the languages (other than

PL/I itself) were designed for use in an area of systems programming,

and the authors are generally explicit as to which one. The most

interes ting difference between this family and the ALGOL family is that,

while the latter are generally built up from the base language by inclusion

of additional features, the PL/I based languages are generally an

extended - subset languages. That is, the language designers have cut

back, rather than built on, the base language. Some authors look upon

the complexity of PL/I as a prominent fault. [Ber 72]

Data

In the main, the data types and data structuring mechanism of PL/I

have been carried into the successor languages . XPL and MALUS are

exceptions to this. XPL, for example, does not permit declaration of

data structures (except one dimensional arrays) and has only fixed,

character, and bit-string modes. In the remainder, there are many minor

variations . Strings may have a stat i c maximum length as in PL/S, LSD,

and SABRE PL/I. Fields may be available as bit-strings with a maximum

length, or as multiple bytes. This may serve to indicate the packing

r equired . There is a di stinct t endency away from ·specifying precision

in terms of digits, as for example in LSD where numeric data may be

halfword, word, or double word. The major area of divergence is in the

handling of t he various storage classes. LSD has the STATIC, AUTOMATIC,

and BASED classes from PL/I (although the BASED mechanism is a little

different), has STACKED instead of CONTROLLED, and additionally has

ENTRY and CONSTANT. Multics PL/I and SABRE PL/I both have different

BASED mechanisms, and PL/S appears only to have AUTOMATIC, STATIC, and

BASED. In all cases (including XPL and MALUS), there is initialisation

available within declarations.

variables.

§2.3.2 Operators

Most of the languages flag undeclared

As before, most of the operators from PL/I have been carried into

the succeeding languages. Of course, where a data type has been

eliminated, operations on it have been eliminated also. Significantly,

left and right logical shifts, and logical exclusive - or operators

14.

have been added to several of the l anguages (PL/S , XPL, MALUS , LSD).

Referencing operations have undergone some minor alterations, generally

to make them easier to use. Although string handling operations vary

considerably between the languages within this family, (in the case of

PL/S they have almost vanished) they appear to be attempts to make use

of available hardware (particularly the 360/370 series hardware) and

because of this they often perform similar functions (for example FIND

in LSD and INDEX in SABRE PL/I) . There seems to be little or no

alteration of the assignment operator , or the standard priority of

operators . However, the amount of implicit coercion has been consider­

ably decreased . There is E£_ implicit coercion in LSD or PL/S , and in

XPL it is limited to some widening coercions .

however, are provided for almost every case .

§2 . 3 . 3 Control

Explicit coercions ,

Whereas PL/I itself was a block-and-procedure-oriented language,

several of its successors have become procedure-orient ed l anguages .

This means that the begin-end combination serves only to group statements

and is not used to give local scope , or automatic storage to variables.

XPL, MALUS , LSD, MULTICS PL/I are examples . The goto remains the same

as standard PL/I in all the languages , but selection (which is

standardly conditional, and biconditional in PL/I) has been extended in

some cases (XPL, LSD) to include numeric selection. In LSD the exception

condition is trapped to a special statement rather than forcing a

runtime error . Procedures may have values (though this value may not be

a structured mode) and parameters are almost exclusively call-by-reference .

In several cases procedures may have to be explicitly declared recursive ,

if this facility is desired . LSD also provides for omitted parameters .

The PL/I ON statement provides for handling of software and hardware

interrupts, although this mechanism is not available in at l east one

language (XPL). Because the original specification of process control

(in PL/I) was quite loose, there is considerable variation in the languages

which have some contro~ of this sort. The exact form appears to depend

on the operating system which is intended to run behind the compil ed

program . (cf LSD, MULTICS PL/I). Loops, basically tested-at-top and

stepped, have been extended in the case of LSD to include tested-at-bottom,

and an exit clause .

15.

§2.3.4 I/O

In nearly all cases, the complex PL/I I/O and formatting routines

have been omitted or r eplaced by a smaller set of simpler routines.

These appear to include both stream and record I/O but without formatting .

§2.3.5 Machine Dependency

XPL, MALUS, LSD, PL/S permit the introduction of inline code through

a code statement. In XPL and MALUS it is limited to one instruction.

Several of the languages make use of operations which are machine dependent,

s uch as logical shifts . XPL, PL/S, and LSD at least have register

declarations, and both LSD and PL/S give the programmer cons iderable

control over segmentation of code and data.

§2.3.6 Extensibility

The extensibility facilities of standard PL/I include extensible

data types (through the BASED s torage class), and the compiletime

macro facilities. The latter mechanism has been r ep l aced in almost all

of the successor l anguages . XPL , for example, has only a simple

unparameter ed macro facility , while LSD has considerable mechanism for

extension at each of the pre-parse , post-parse, and code generation phases.

This is described in somewhat greater detail in [Ber 72].

. · 16 . .

Fig 2.4 Other Languages

String and List Processing Languages :-

.,,•;
SNOBOL

.•.
LISP,. TRAC APL AMBIT/L

Compiler Generators:-

COGENT CWIC360 APA REL GARGOYLE TRANDIR fSL META TMG

Algorithmic Languages : -

SYSL BCPL
...

BLISS" SIMPL-X COBOL PROTEUS SUE

GPL FORTRAN-LRLTRAN

17.

Other High-Level Languages

Figure 2. 4 lists the remaining high-level l anguages . They are

divided for discussion purposes into three groups , according to usage .

It should be noted that wi thin the compiler-generator group it is

difficult to distinguish an algor ithmic language from a compiler-generating

system . This is not considered important in this context .

§2.4.1 String and List Processing La nguages

Languages in this group , because they were designed for a specific

purpose , are not easi l y described in the manner used previously . An

attempt to do so might give a deceptive appearance of the individual

languages . What follows is a brief general description of the languages

and their capabilit i es with little regard for specifics.

Apart from AP L, the prime objective of these languages is the

processing of runtime- dynamic data structures such as strings and lists.

With one exception data items are considered as strings or lists , a lthough

they may be operated on, at times, as if they were of other modes .

Thus, the mode of a data item depends largely on the context . Array-l ike

modes are available in some of the l anguages , and some languages have a

general data- structuring mechanism .

The bas.ic operations within the languages (those on strings and

lists) may be implied ·by the structure of the language stat ements.

Priority of infix operators varies from l anguage to language . These

languages are generally interpreted rather than compiled, and often this

is used to give a program the ability to extend itself at runtime . With

the exception of AMBIT /L, the only program structuring tool available in

the group is the procedure . Control generally passes from statement to

statement via gotos or an equivalent expl i cit construct . Mechanisms

for pass i ng parameters to procedures vary considerably , and a number of

standard functions are provided for the programmer in three of the

languages.

I /O is basically stream , and the l anguages are all machine independent .

§2.4.2 Compiler-generators

The compiler-generating languages, like the string and list processing

languages , are highly specialised . This means , as it did in §2.4.1,

that their modes , operations, and control structures are limited to those

18 .

required for the specific application. Because of this, there is

little to be gained by close study of this group. The group is

discussed only in order to make this chapter complete.

The basic data modes are strings, stacks, and integers. Identifiers

are generally undeclar ed and typeless. Operations available include

those necessary for s tring manipulation and parsing. Program structure
I

virtually does not exist for these languages - control passes from

statement to s tat ement through implied goto mechanisms. I/O is

generally stream , and since most of these languages would normally be

run interpretively they are not machine dependent. Unlike the string

and list processing group, they do not have any self-extension

capabilities.

§2.4.3 Algorithmic Languages

Seven l anguages in this group were designed explicitly for systems

programming, and another two (FO RTRAN and COBOL) are languages in general

use . LRLTRAN is based on FORTRAN, but the remainder do not acknowledge

a particular base l anguage . The intention in this section is to identify

and discuss the areas in which the systems languages in this group differ

from other l anguages.

Three of these l anguages (BCPL, BLISS , and SIMPL-X) have only one

primary data mode. In each case , this mode corresponds to a standard

storage cell of twenty four to thirty six bits. These modes are

weakly typed, and for arithmetic operations behave like integers.

The only additional mode available in SIMPL-X is the single dimensional

array, but BLISS and BCPL have considerable facilities for building

structured modes . The concept behind both these facilities is a

distinction between the 'value' a name possesses, and the value of the

cell to which that name refers.

most languages .

This distinction is not available in

BCPL has two methods of evaluating expressions containing names,

address (lmode) evaluation and data (rmode) evaluation. The left hand

side of an assignment symbol is evaluated in lmode, while the right hand

side is evaluated in rmode. The method of evaluation can be forced

by use of two unary infix operators, lv and rv. The following example

shows how this may be used to build a simple data structure

. let V = vec(10)

rv(V+3) := rv(V+4) + 10

The first statement declares and initialises a variable V to point

to an area of 10 adjacent cells . The second statement assigns the

value of the fourth of these ten cells, plus 10,to the third.

19.

V is effectively the name of a vector, The general form rv(x+y) is

found so useful it is abbreviated to xly, and so the second statement

may be written Vl3 := vl4 + 10. This mechanism is combined with

a simple but effective procedure mechanism to provide arbitrary data

structures . However data protection is non-existent .

The BLISS structuring mechanism is similar but clearer. An~e

always stands for the address that name possesses . An explicit

dereferencing operator (.) is provided and must be used to obtain a

value. Thus .A means 'the value of A'; and x~ .x + 1 adds one to

the value of x . It is possible to define a mode by giving its accessing

mechanism. Thus

structure matrix34[e1,e2]=(.matrix34 + .e1*4 + .e2)

defines the accessing mechanism for a three by four matrix . This is

used by mapping the structure onto a chunk of storage.

local space [12];

map matrix34 space;

space [2,1] := . space [2,2] + 6;

For example

Bliss storage classes are local, global, own, and register, and a

controlled class.

between these.

The method of structuring data varies slightly

It can be seen that these structuring mechanisms are quite general ;

but that their use may become tedious.

LRLTRAN extends the standard FORTRAN data types by (a) use of a

sophisticated macro system to give a structured appearance to data,

and (b), permitting bytes of variable length to be mapped into part of

a whole word .

A prominent featilre of the operations available in this group of

languages is the extensive set of operations for partial cells . In

addition to the standard logical operations, there are shift , exclusive

or, and masking operators. Other than these, operators are only

provided for the primary data modes (which in several cases means no

real arithmetic),and for 'address of' and dereferencing operations.

20 •.

The most significant di fference between this group of l anguages

and any others lies in the control area. Three of the languages in

this group (SUE , BLISS , SIMPL-X) do not have explicit goto statements .

These are the only languages in this survey to omit this control feature

and replace it with other more readable constructs . Basically what

has been done is first ly, to include a full set of standard control

statements (conditional, biconditional, numeric selection , l oops

tested at top and bottom , stepped loops , procedures), and s econdly,

t o add extra statements to exit any closed environment such as procedur es ,

l oops , and statement groups . These exits may be conditional or

unconditional and may carry a value with them . Such attempts to

eliminate the goto appear to be at l east partially successful [Ber 72).

The more modern languages in this group al so provide for process

control in the form of coroutines (dependent synchronous tasks).

These generally take the form of an invocation of a procedure (all of

whose parameter s are evaluated at invocation) indicating that it is to

be run as a coroutine , and giving other system- dependent information.

For example , in BLISS

create run (a , 3) at 100 length 1000 then exit

invokes the procedure ' run ' as a coroutine with stack beginning at

location 100 of length 1000, and exit ' s on termination of the coroutine.

Semaphore equivalent constructs are also provided in some of these

l anguages .

The l a nguages in this group are not exceptional in the remaining

discussi on areas . They have provision for inline assembler l a nguage

but are otherwise machine-independent , and with the except i on of SIMPL-X,

their extensibility i s limited to data structuring and macro facilities.

21.

PL360 - Based Languages and Assemblers

Towards the end of the last decade there was a major development

in the field of assembly languages , the structured assemblers . The

first of these was PL360 , and since then some five or six further

structured assemblers have appeared whose indebtedness (stated or

otherwise) to PL360 is obvious . (Fig 2. 3 page 12) . The basic intention

of the authors of these languages was t wo-fold - firstly to improve the

readability of the assembly language , and secondly to allow full access

to hardware of the machine . The way in which these intentions have

been implemented is of major importance , since no one could deny their

possible advantages .

The basic tools which have been used to perform the implementation

are these . One , make the assembler free format . Two , include

considerable program structuring through the use of blocks , procedures ,

conditional clauses, and looping clauses. Three , allow the use of

meaningful symbolic names for all data items , including registers .

Four , where possible permit groups of assembly language instructions to

be replaced by an expression-type phrasing .

It can be seen from this that structured assemblers offer considerable

advantages over conventional assembly languages while adding no major

disadvantages . For this reason, the discussion here i s confined to

structured assembl ers .

S2 . 5; 1 Data

Each language has scalar modes corresponding to (a) the cell

(smallest addressable unit of storage) , and (b) any multiples of a singl e

cell that are recognised by the hardware , · and (c) mnemonic register

names . Thus PL360 ha~ BYTE , SHORT INTEGER, INTEGER(LOGICAL) , REAL , and

LONG REAL (corresponding to one , two , four , four, and e ight bytes

respectively) , while PL11 has BYTE , LOGICAL , and INTEGER (one , two , two

bytes) , and PL503 has only INTEGER (one word) . Machine registers are

known by mnemonics (RO , FO , F01) but in most cases there i s a synonym

mechanism for making these more meaningful . For example , in PL360

integer register exp ~· RO .

Arrays of all non-register scalar modes may be declared . These

are one dimensional with a fixed base value which depends on the machine .

Strings are normally treated as an array of bytes , but where byte

addressing i s not possible, as on the ELLIOT 503 , the characters are

22.

packed into cells, The basic provision for strings appears to be the

storage of literal constants.

There are no attempts to provide for fields , structures (other than

arrays) or reference variables.

Identifiers must be declared, and in some cases may be made local

or global . In all ca3es variables may be initialised at declaration,

and in all but one case (PL503) they may be either name equated or

address equated through a syn clause (or similar).

Operators

Infix operators are restricted to those whose function i s accomplished

by a single machine instruction. Commonly, mnemonics are provided for

some unary operators such as shift operators. Most of these languages

do not have an operator priority mechanism. The main r eason for this

is that there should be a direct correspondence between the expression

forms and machine instructions. Thus the assignment s tatement normally

contains only two distinct identifiers, in the form a = a + b

or a = a + 3 or a = b . Similarly logical expressions contain two

operands. The form of these assignments is directly dependent on the

addres s ing structure of the machine.

As with conventional assemblers, the typing of variables is very

weak. However, in the PL360 family typing does determine which one of

a family of infix operators (represented by the same symbol) will be used

to evaluate an expression. For instance, on a 360, there are generally

nine machine operators corresponding to any arithmetic operation .

Coercions do not exist in these languages.

§2.S.3 Control

The constructs for control are the only place where the programmer ,

is not directly aware of machine instructions being used. These

languages are more procedure-oriented than block-oriented; blocks

genercilly only serving· to group statements.

exist in all these languages.

Simple goto statements

Selection mechanisms vary from language to language. All languages

haveconditionalsand biconditionals but only one or two have a form of

numeric selection. PL360 for example has a case statement.

23.

While procedures occur in all the languages, their implementation,

particularly the parameter passing mechanism, is very machine-oriented .

The only parameter of a PL360 procedure is a register, while PL503 permits

passing of integers, constants, and strings. The procedures do not

return values (except through parameters), are not recursive, and do not

have multiple entry points.

Looping constructs are generally extensive . In most of this family

they are equivalent to those which are available in ALGOL60, that is

tested-at-top and stepped , although the syntax varies considerably.

§2.5.4 I/O

None of these languages have I/O facilities exceeding those available

in assembler.

Machine Dependency

This is obviously total . Only the basic skeleton of the language

applies to most machines. Some of these languages have facilities for

controlling segmentation of programs.

Extensibility

None of these languages are extensible ,

24.

Summary

It is evident now tha~ this survey has not accomplished what was

originally intended. There are two reasons for this: firstly,

there are a large number of languages spanning many machines and

l anguage areas, and secondly , it is difficult to estimate the extent of use

and s uccess of any particular l anguage in the systems programming area.

Thus, while the survey has not made it clear exactly what language

features are desirable, it has shown which parts of systems languages

are undergoing the most development. Hence it has also shown the

deficiencies (and by implication the adequate parts) of systems languages.

In particular, data structuring and goto replacement are two areas

undergoing major change, and thus it may be said that these areas have in

the past been deficient.

What has not been made evident however is the inadequacy of

facilities for string manipulation , or task control , or partial-cell

manipulation. The only indication that the survey gives of this is

that these facilities are different in almost every language. It is

for this reason that I have made the independent survey of systems

programming requirements in §3 and §4.

25.

§3 Systems Programs Corrunon Features

A syst ems l anguage is used to implement systems programs ; hence

in order to decide what features a systems language should support , i t

i s necessary fir st to define the term ' systems program' and then to

examine the various types of systems programs so as to elici t the features

which must be present in any implemented systems language . Two things

must be made clear at t he out set . Firstly, a large number of the

features may be representative of a larger class of programming languages

although we are really interested i n the differences bet ween systems

programming languages a nd gener al purpose languages . Secondly , a fa irly

substantial part of the feat ures needed are reflected by the implementat ion

rather than the language i tself ; for example merge- editing , efficiency

or sectional compilation .

26.

§3.1 Systems Programs - Definition and Scope

§3 .1.1 Definition of the term ' Systems Program '.

While most pr'ogrammers are aware of the meaning of the term

' systems program', it proves almost impossible to get a working definition

onto paper. Although there i s no widely accepted analytic definition of

the term, Bergeron [Ber 72] does attempt such a statement. Wulf [Wul 72]

defines systems programs much more clearly in t erms of their discernable

properties. "They :

(1) must be efficient on a partic.ular machine

(2) are large, probably requiring several implementors

(3) are 'real' in the sense that they are widely distributed

and are us ed frequently (perhaps continuously)

(4) are rarely ' finished ', but rather are elements in a design/

implementat ion feedback cycle."

These form a reasonable working definition with which other authors

agree to a large extent ([Ber 72], [Sam 72], [Don 72]). However, I would

add one more property: -

(5) can be distinguished from applications programs in that they are

rarely directly productive to the user.

This identifies one major property that i s inherent in the nature of

systems programs . That is, they are used to contro.l, support, and define

a user's algorithm without actually performing the algorithm itself. This

is obviously a distinction of degree rather than kind . Several people

have made r emarks which gl ance upon the property . For example

Donovan [Don 72]: "Systems programs were developed to make

computers better adapted to the needs of their us ers" and Cox [Cox 71]

while discussing operating systems said that they make up the difference

between the hardware that was designed and the 'virtual machine' that the

salesmen sell.

This method of definition, however, does not provide much insight

into the language features which systems programs require, but rather gives

an indication of the nature of programming involved. Hence, like

Sammet [Sam 71], I prefer to define a ' systems program' by listing the

classes within which it must fall.

of four primary categories.

Systems programs, then, belong to one

(1) Language Implementing Programs - all those programs which .

manipulate or run an algorithm coded in some source language.

Includes compilers, interpreters, macro processors.

27 .

(2) Supervisory Programs :- all those programs which s upervise the

running of a machine, or ma nipulate machine-code programs .

Includes supervisors , monitors , loaders .

(3) Runtime Support Routines :- subroutines which are used by a

program at runtime to support features which are not available

in the hardwure . Includes device handling routines , I/O

routines , floating-point arithmetic where this is not available

in the hardware.

(4) Special Applications Programs :- those applications programs

which by nature r equire greater access to hardware features

than a ' high-level language ' permits . Includes dump routines ,

dump ana l ysers , matrix manipulation routines , data base
1 management .

Although these classes include instances which would not under any

circums tances be called systems programs , they do include virtually a ll

cases of systems programs . Those which are truly systems programs are

those which further have the five properties as listed above .

§3 . 1 . 2 Processing Levels in Systems Programs

The primary classes of program just mentioned provide a convenient

division through which the features of systems programs can be exami ned.

Within any program there exist separable secondary processing types , for

example table searching, scanning , sorting , or stack manipulat ion . These

secondary processing types , hereinafter referred to as forms , are generally

bounded in context : that i s , they are confined to several closed areas

of program , and wit hin these areas or subalgorithms they are locally

salient features of data and processing . For example , a compiler may have

string scanning as one of its forms. This may occur i n several parts of

a compiler , but in each of these places the data types are similar , the

primitive operations are the same, and flow of control passes a l ong similar

paths . These simil arities directly i ndicate the requirements of systems

programs . Thu~ section §3 . 2 attempts to reduce the four primar y classes

to these forms for detailed study. Note , however , that certain forms are

well integrated into the struct~re of t he algorithm (for exampl e error

recovery), and some programs retain a gl obal unity which makes this sort

of top down analysis diffi cult .

1
Efficiency considerations often force a program into th i s category.

28 .

Identifying these forms and noting the frequency and/or necessity

of their occurrence within the whole realm of systems programming

provides one objective means of studying the requirements of systems

programs. It is my contention that manyauthorsof systems languages

have not made a sufficiently objective study , but rather have decided

what would constitute ' nice ' (as opposed to necessary) elements of

systems language design . This fact is amply evi denced by the plethora

of systems l anguages presently availabl e .

While realising that languages must change somewhat to accommodate

different and new hardware, and more advanced software t echniques , it

i s not obvious that thi s need be much more than superficial . (For

instance, the apperance of array processing hardware .has not necessitated

new general purpose languages) . In fact the reverse is true .

29.

§3.2 Breakdown of Processing Features

§3.2.1 Language Implementing Programs

There are four ma in varieties of language implementing programs :­

compilers , interpreters, assemblers, and macro-processors . These

are listed below together with the ir component parts .

Compilers :-

which generally comprise

(a) lexical analysis

(b) parsing and reduction

(c) code production and optimisation

(d) error r ecovery over (a) and (b)

(e) input/output at a high level.

Interpreters :-

which generally comprise

Assemblers

(a) l exical analysis

(b) parsing (but not necessarily reduction)

(c) interpretat ion

(d) error r ecovery over (a), (b) and (c)

(e) input/output at a high level.

which generally comprise

(a) lexical analysis

(b) code production

(c) error recovery over (a) and (b)

(d) input/output at a high level.

Macro Processors :-

which generally comprise

(a) lexical analysis

(b) simple parsing

(c) input/output at a high level.

30.

Thus the salient components of language-implementing programs are

(a) l exical analysis (occurs in 4)

(b) high-level I/O (occurs in 4)

(c) parsing (occurs in 3)

(d) error recovery (occurs in 2)

(e) code production (occurs in 2)

(f) interpretation (occurs once)

Here types (a) (c) typify this category of systems programs.

Lexical analysis , which occurs in all four types of program, involves

the scanning of text, breaking it up into terminal symbols , checking on

symbol formation , r ecognis ing identifiers and reserved words, and

conver s ion of text to int ernal data types.

forms are us ed in performing these tasks

The following sub-process ing

(a) scanning , comparison and manipulat.i on of variable

leng th strings

(b) access ing table structures containing differing modes

(symbol + reserved word tables)

(c) conversion of data (e . g. string to various internal modes)

(d) decision making (either through tables or program structure)

Input/Output used in these programs is generally at a high level,

that i s , fully buffered single s tatement transfer operations . The

operations need not be formatted, but considerable facilities mus t be

available for string manipulation , particularly concatenation , and

conversions from binary to string and vice versa. Both random access

(for code files), and serial access (t ext files) are necessary. The

forms required are

(a) single statement, buffered, random and serial

access I/O .

(b) format conversion

(c) string manipulation

(d) and conversion to and from string representations

of internal data items.

31.

The parsing process is generally accomplished in one of two ways -

the decision-making process is built into the program through subroutine

structure (as in recursive descent), or it is accomplished through the

use of stacks and a decision making structure (as in precedence analysis,

or list structure form of syntax) . The forms required are

(a) extensive program structuring facilities including

recursive procedures

(b) stack manipulation

(c) list structure manipulation

(d) decision tables .

Error recovery is one of the most important components of any systems

program, but because of the messy nature of standard techniques,

effective language support is scarce . This area is correspondingly

more important than component areas where standard language t echniques

are adequate . Basically, what is r equired in error recovery is access

to both data and program across distinct component area boundaries.

Thus the error recovery process can both know of and adjust the state of

what might otherwise be entirely self-contained components. The following

forms are basic to this function

(a) inter-component communications

(b) int er-component passage of control

(software interrupts or an equivalent)

Code production involves basically a manipulative knowledge of all

machine instructions and cell formats, and use of tables (for register

allocation, decision making, external symbols etc), while code

optimisation requires retention of code and program flow images in

graphs, tables, stacks etc . If folding (evaluation of constant sub­

expressions) is to be performed, then the optimisation process must be

able to perform operations on all the data types in the language being

compiled. The forms used are

(a) a decision making structure

(b) manipulation of table structures containing mixed modes

(c) operations on modes not standardly available in the

language in which the compiler (assembler) is written

(d) stack and list manipulation

(e) manipulation of partial cells.

The forms from the above paragraphs are collected into the tabl e

bel ow .

decision .making

table structures

(occurs 9 times)

string manipulation

conversions

(9)

(8)

(8)

stack and list structure manipulation (5)

extensive program structuring (4)

single-stat ement buffered I / O (4)

inter-component communicat i ons (2)

i nter-component control (2)

manipulation of non-standard modes (2)

manipulation of partial cells (2)

Note that this table does not purport to be complete; rather it is a

gathering of processing forms selected because they are peculiar to or

relatively more important to the nature of systems programs . Nor do

32 .

the frequency count s purport to be an absolute measure of the importance

of the various processing forms ; rather they provide an adequate measure

of the relative importance of these forms .

It must also be born in mind that what i s being provided her e is a

basis for the discussion in §3 . 3, not a complete analysis of systems

programs .

§3 . 2 . 2 Supervisory Programs

In this and the following two subsect ions , the procedure followed is

identical to that of §3 . 2 . 1 above, but is abbreviated in order to avoi d

considerable repetition .

There are three types of supervisory program to be considered ;

supervisors and monitors ; binders and linkage editors ; and loaders .

While the overall functions of these are quite distinct , they have some

large common component areas . The salient components are :

(a) manipulation of code files (3)

(b) access to system libraries (2)

(c) hardware aligned processes (I/O and interrupt handling)

(d) task control (1:':)

(e) resource management (1 :':)

(f) user and operator inter.facing (1 :':)

33.

The components (c) to (f) belong entirely to the first of the

three subclasses of program, and hence have an importance far greater

than their frequency count would indicate. This is indicated with a

star (:'•) throughout .

The following is the table of forms derived

manipulation of partial cells (6*)

manipulation of non- standard modes (6*)

single- statement I/O (6*)

manipulation of table structures (5•'•)

§3 . 2.3

direct two- statement I/O (unbuffered , random access) (4*)

intercomponent communications (4*)

use of restricted or special machine instructions (3*)

decision making (3*)

inter- component passage of control (2*)

extensive program structuring (2*)

stack and list manipulation (2:':)

conversions (2•':)

string manipulation (1:':)

task initiation (1*)

Runtime Support Routines

Runtime or intrinsic routines include hardware extension routines

(such as format handling, floating point arithmetic), device handling

routines, file handling intrinsics. These routines do not normally

have common components, so the forms (derived directly) are

direct two- statement I/O (2)

non-standard modes (1)

conversions (1)

string manipulation (1)

partial-cell manipulation (1).

The distinction between programs in this class , and parts of the

operating system is not at all clear . I have treated this class as

comprising .those programs whic~ are loaded or link-ed ited as an integral

part of a user ' s program. Even this method of discrimination fails for

some machines (for example the B6700).

§3.2 . 4 Special Applications Programs

Programs in thi s class ar e r egarded as systems programs for one

or both of the following two r easons : they manipulate non-standard

34.

or s ub-cell modes , or they must be more effic i ent than would be possible

in a general purpose language . Such programs as dumpanalyzers , dump

programs , directory listers , compacters , emulators might belong to this

class . The essent i a l components here are the fol lowing

(a) manipulation of code files (1)

(b) access to system libraries (1)

However , this is a gross oversimplification of the situation , as

there i s a wide variety of pr ograms in this category. The forms

involved are

partial cell manipulation (1)

s ingle-statement I/0 (1)

direct two- statement I/O (1)

non-standard modes (1)

This section also serves to emphasize that systems programs must

above all be effective (efficient, functional , error immune), since

programs may be in this class onl y for reasons of efficiency .

35.

Collected Features

This subsection contains a brief discussion of the various processing

forms isolated in §3 . 2 in the context of systems pr ograms . These forms

are collected together i n the fo l lowing list :

table structure manipulat i on

decision making

conversions

single statement buffered I/O

string manipulation

manipulation of. non- standard modes

manipulation of partial cell s 6

stack and list structure manipul at i on

direct two-statement I/O (unbuffered) 6

extensive program structuring

inter- component communicat i ons

inter-component control 6

(14*)

(12*)

(11*)

(11*)

(10*)

(1 0*)

(10*)

(7*)

(7*)

(6*)

(6*)

(4*)

use of restricted or special machine

task initiation 6
instructions6 (3*)

(1*)

indicates that the form would normally be found only systems programs .

Table structure manipulation . Systems programs require or retain

large amounts of information in tabular structures (that is structures ,

whose composition is static at runtime) . This includes such items as

peripheral status , error messages, reserved words , symbol tables , task

status , to name but a few , Systems programs specifically require t wo

features i n such structures ; firstly that they may contain mixed modes ;

and secondly that they are initialisabl e . However , t he basic

requirement is for a general data-structuring mechanism.

Decis i on making . Systems programs spend a large proport i on of

their time making decisi ons as against manipulating data . (This assert ion

can easily be verifi ed by comparing pages selected at random from systems

programs and applicati ons programs) . This decision making i s sometimes

of an extremely complicated nature , for exampl e the parsing process .

Simple conditional and numeric selection statements are not suffici ent

i n t he systems programs context . General ised statements for multiway

choice are desirable ; similarly recursive procedures (if pr acticabl e) .

36 .

Conversions . Hardware normally provides few facilities for

conversions between modes. Normally, runtime support routines are

used to make up this deficiency in the hardware (e .g . formatted I/0

routines). These systems programs must be coded at the lowest possible

level, and if, as in a minicomputer , all conversions are performed by

the software , a one-to-one correspondence between source and object code

may be the only feasible method . Larger machines , even though they may

have some string to binary (and vice versa) conversion in the hardware ,

still require software to perform the bulk of generalised format conversions .

This provides an excellent case for having inline code available in some

places , and also for a rationalised syntax for every form of explicit

coercion.

Single statement buffered I/O. This raises three important points

as far as systems programs are concerned . Firstly , standard I/O should

not be omitted from systems languages for , although it is ' high-level ',

many systems programs can make effective use of it. (Note that th i s

comment applies to several other features of high-level l anguages) .

Secondly , if it i s provided in a systems language , provision must be made

for trapping associated faults (s uch as disk parity errors) . Thirdly,

it i s common practice fo r systems programs to utilise other systems

programs for performing various funct ions . While this plagiarism is

commonly contained within operating systems , it should not be inhibited

el sewhere , a nd to adequately achieve this may require either an extensible

language , or a series of l a nguages (Burroughs ESPOL,DCALGOL, and XALGOL

for example).

String manipulation . A considerable amount of the total data

manipulated by systems programs i s in string form . These strings are

either manipulated as complete entities (for data ~ommunications , or

error messages), or are created or broken down for manipulation of

substrings . There i s obviously a considerable case for a string mode

in its own right, and it i s one of the peculiarities of this mode that

the subparts of the mode are of the same mode. If syntax for string

manipulation is forced to conform to the usua l tight keyword-and­

bracketed-context form , string. manipulation can appear very c lumsy indeed

(see §s .2. S) . Ideally, the syntax for scanning , parsing , and

concatenation should be simple , unique, and at as high a level as is

practicable .

37.

Manipulation of non-standard modes . A predominant feature of

systems programs in general and operating systems in particular is that

they manipulate special purpose modes , that is , modes which woul d not

normally be found as a s tandard type in a general purpose language .

Such modes are generally peculiar to the place in which they are used .

They are not always static at runtime . If these are to be described

adequately at compiletime (to enable compiletime checking) , a completely

general data structuring mechanism is r equir ed , with an extension to

permit creation of multiple copies , either through modes , or based

variables. It i s obviously necessary for the programmer to have total

control over the storage all ocation of many of these s tructures .

Manipulation of partia l cells . ' Bit fiddling ' is generally confined

to systems programs . It has two uses: either to pack data within cells

to save space , or more importantly to manipul ate par ts of cell s which are

directly r ecognised by the hardware . This latter use may require some

explanation. Ma ny machines have hardware to operate directly on

composite modes (floating point numbers for exampl e) . The individual

parts of these modes (e . g . exponent , mantissa) often are not directly

addressable because t hey do not fall on cell boudnaries . These partial

cell s (or fields) must a l so be available to the softwar e for manipulation ,

and would normally be treated as unsigned integers .

Access t o f i elds requires that a mode must be able to be treat ed as

e ither a complete unit, or as a l ow-level structure with component f i elds.

That .i s , the mode must be to some extent weakly typed . The natural

extension of the data structuring mechan i sm t o include sub-cell structure

may be machine dependent . (See §s . 2.4) .

Stack a nd List structure manipulation. While stacks a nd lists

should perhaps have been included in the discussion of non-standard modes ,

they appear s ufficiently frequently in systems programs to be discussed

separately . Their provision in the l anguage i s a necessity , either

through a comprehensive data s t r ucturing mechani sm, or as standard modes .

Their presence highli ghts two aspects of data structuring . Both structures

are dynamic, and because of this manipulating them r equires the use of

r eferences , either explicitly or implicitly. The current s t ate of the

art i s s uch that explicit manipulation of r eferences i s necessary . _ I am

not suggesting that this i s a good thing, mer e ly that it i s currently

necessary . Also , instances of list elements must be created at runtime ,

and some functions of lists may return a lis t (or a list el ement) , thus

further reinforcing the case for generalised modes .

38 .

Direct two- statement I/0 , Direct unbuffered , or core I/O,

is used only by systems programs . It is necessary in order to gain

efficiency by overlapping processing with input or output . This type

of I/O also gives the programmer greater control over a peripheral

device and a decrease in I/O overheads (by avoiding formatting and

buffering) . The two statements of the I/0 are , naturally , ' initiate '

and ' wait if I/O not finished '.

Extensive program structuring . Systems programs tend to be large

and complicated and often messy . This indicates a requirement for a

comprehensive set of program structuring facilities . It is essential

to have block a nd procedure structuring , and it is just as essential for

identifiers to have local scope . Considerable attention must be paid to

aiding the programmer in laying out the program ' s structure , and as this

is made easier in an extensible language , serious consideration should be

given to this. In particular , a simple macro facility (if not abused)

can considerably improve program structuring.

Inter-component communications. Under some circumstances, normally

error conditions , there may be a requirement for two mutually exclus ive

components of a program to have access to local information in the other .

This is used for such operations as task information , r ecovery from

errors and mutual exclusion with respect to resources . While the normal

method of accomplishing this might be to make s uch information global

to bo~h , this may be neither desirable nor necessary (cf Simula 67).

Provision should be made for mutual exclusion with respect to data, and

also for data to be passed between components via queues or some other

mechanism . This applies particularly to information about independent

tasks .

Int er-component control . One of the main probl ems of an operating

system is that of neatly terminating or changing the flow of control in

another task . Under normal conditions, this can be accomplished

through the standard inter- component communications system , although ,

of course, semaphores or their equivalent must be present to obtain

mutual exclusion in criti~al sections of processing. However, for the

handling of error conditions, this mechanism may be ineffectual (fop

example t erminating a task which is waiting indefinitely on a semaphore).

The requirement here is for a software interrupt mechanism, so that a

task can be forced to change its state . Note that this may be equivalent

to forc ing a task to execute a bad goto (cf premature termination because

39.

of a fault) . This probl em is really a special case of the much larger

problem of multiple exits from controlled environments .

Use of r estricted or special machine instructions. An inevitable

problem of writing an operating syst em in a high-level language is that

sooner or later the programmer will wish to include inline code . This

can occur for several reasons - all perfectly valid. Firstly , the

source to machine code mapping may be such that a considerable loss in

efficiency i s achieved by never inserting inline code. Secondly , the

use of some machine instructions may be r estricted, either because of the

physical state of the machine , or because their use is dangerous under

normal circums tances . Thirdly, the systems programmer may require access

directly to machine registers, or absolute addresses .

These may be separated into two separate requirements . Initially ,

there is a need to provide access for the programmer to any machine

instruction he desires , while at the same time minimising the chances of

his making errors . Subsequently, there is a need to provide for the

more common of these dangerous ins tructions to be provided directly in

the language . (Weak typing is one of the best ways of accomplishing

this. See §s.2.3.).

Task initiation. One of the most important aspects of a

multiprogramming operating system is the running of tasks , that is ,

processes which compete with each other for the available system resources .

As this process is obviously different from the normal procedure calls ,

it generally r equires separate syntax. Language constructs must be

avai l able to allow programmers to initiate different types of task .

These types are discussed in §s.3 . 1 . Post-initiation communication and

control of these tasks has been discussed in the paragraphs on inter­

component control and inter-component communications .

The foregoing paragraphs have discussed the requirements of some

of the forms of systems programs.

discussed in §~.

Meeting these r equirements is

40 .

Effectiveness Functionality, Error Immunity, and Efficiency

Almost every set of criteria for systems languages contains the

term ' efficiency '. Almost none of these explain the meaning that is

attributed to the term but rather treat 'efficiency ' as somehow self­

defining . On reading the arguments concerning these criteria, it is

evident that the uses of 'efficiency' differ considerably . It may be

used in its broadest sense to indicate overall efficiency in use of a

language , or in its narrowest sense to indicate some relative measure

of the speed or size of code compiled from a language (presumably

against the optimal mach~ne code) . Because most glib uses of ' efficiency '

are in the narrow sense, and because it is evident that criteria based on

this sense are inadequate (in that they ignore other aspects of overall

language efficiency) , I have instead made use of the term as described

below .

The general criterion is for language effectiveness. (This term

has been used before with similar meaning [Ard 70].). Effectiveness

has three components : functionality (of the language and of the compiler),

error immunity (of the language) , and efficiency (of the compiled code).

Effectiveness thus may be regarded as a measure of the relative cost of

developing , using, and maintaining a piece of software (coded in that

language , as against others) . Two components of effectiveness

(functionality, and error immunity) unfortunately have no real measure ,

and so ' effectiveness ' · may only be 'real ' in its relation to cost of

software .

41.

Functionality

§4 . 1.1 Functionality of the Language

A language may be functional in two ways , writeability and

readability. That is, a prograrruner must be able to easily and

correctly write the language, and with correct understanding read

the language. Writeability and readability naturally depend to a large

extent on how suitable the language is f or the purpose for which it is

being used. This is the first and perhaps most important criterion

for functionality of the ·language; that the language is suited to its

use . §3 concentrates on satisfying this criterion .

What reflects on writeability? Firstly, the mapping from what

the programmer envisages into how it is realised in the language must

be as simple as possible . Thus the language should concentrate on

describing algorithms rather than their implementation , and similarly

the prograrruning language description of a data structure should not

differ significantly from the natural language description of the same

data structure (this is probably the greatest criticism of the BLISS

data structuring mechanism. See §s . 2. 2) . The mapping must be as

nearly one-to-one as possible, in that there should be the minimum

number of ways of writing the same thing; thus avoiding the possibility

of the programmer making an arbitrary decision as to the ' best ' way of

writing something . This is most important, as even good systems

programmers can mistake the 'prettiest ' path for the ' best ' path.

Secondly, there must exist a reasonable mapping for almost everything

the programmer may want to do , and moreover, exactly what form this

mapping has must be obvious. That is, the programmer should not have to

struggle to express himself , as this may result in unnecessarily devious

code .

Thirdly , the programmer must not be misled by finding that constructs

he attempts to use because of similar constructs already us ed, are

either not in the language or have an effect other than that which he

expects . This implies that a language must obey the Law of Least

Astonishment (itself a proper part of language orthogonality), which

states the programmer should be the least astonished as to the function

or presenc~ of an arbitrary construct in the l anguage .

for example

real procedure p(r,q);

real r; procedure q;

p := q(r);

z p(if b then x else y, if c then sin else cos);

42.

This is not valid ALGOL60, but it would seem reasonable to be able to

be able to write this.

This law also significantly r eflects on r eadability and error

i mmunity.

Readability is r efl ected in three things. Firstly, constructs

must not be dec eptive or obscure in their f unction (Law of Least

Astonis hm ent).

for example

in PL/I

while in ALGOL60,

DO WHILE 11 1 B;

within a r eal procedure p

p := 3;

if p = 3 then . • . • . .

is obscure

i s deceptive

Secondly, the l anguage must . be such that the structure of a program

is s uperfi cially apparent . Thi s may be inhibited by the l anguage (a s in

COBOL, FORTRAN or fixed forma t assemblers), and may be considerably aided

by the compiler (begin-end counts in ALGOL, automatic indentation of

blocks).

Thirdly, the ' language must not contain arbitrary r estrictions, such

as limiting identifiers to 6 letters.

Functionality outside the Language

How a program is written may depend quite significantly upon things

only vaguely related to the language. The large and complex nature of

systems progr ams makes certain demands on the construction of the compiler

and other programs associated with getting a program running.

43.

There are two important functions of a compiler which need to be

taken into account here: commentation support, and optimisation.

The manner in which a compiler supports these drastically affects program

readability.

Comments do not naturally form part of the language structure and,

while it is obvious that they are most likely to be needed around some

particular parts of the language, permitting them only at fixed points

in the language may be seen as an arbitrary restriction . It might be

argued that high-level languages are self-documenting and thus do not

need extensive commentation. However, since a program does not specify

what is being done but rather how it is being done, this argument is

deceptive. (The reader may verify this for himself by selecting an

algorithm at random from Collected Algorithms of CACM, get ting somebody

to transcribe the algorithm omitting comments, and then attempt to say

what the algorithm does and how it is used). It is essent ial that

comments may be inserted in a program between a ny two terminal tokens .

Perhaps the eas i est way of achieving this is to have a s ingle character

which denotes the end of the line of program (as in Burroughs ALGOL,

ESPOL , DCALGOL, and many assembly languages) .

Redundancy in a program often provides an extemely · effect ive means

of making that program more r eadabl e . This applies particul arly to

redundancy of load operations. Consider the following single statement

from the Burroughs B6700 2.4 MCP.

RETURN (M[W := (W := M[MYF+1].PIRF + (IF BOOLEAN (W.[1 3 : 1])

THEN WO RDSTACK[R := FINDD1STACKNUM(MYF-BOSR),SEGDICTMSCW

+ W.MYSDIF] ELSE M[DOSETTING + W. MYSDIF]) . ADDRESSF]

.[1 6-M[MYF+1] . PSRF) X8-1: 8] & (W)[47:19:20] & R[27 :19:20]);

This statement, which may only be regarded as programming pornography,

in fact probably saves four or five memory r eferences. (In all fairness,

the latest MCP has a slightly different representation of this statement,

with comments). The point being made here is that proper optimisation

might obviate statements of this sort.

not even require this optimisation.

Machines with cache stores would

Separate and optional compilation are both very important aids in

the construction of systems software. The former requires that procedures

or blocks can be compiled separately and bound (link-edited), thus saving

time by recompiling only what is necessary, and allowing members of a

44 . .

programming team to work much more independently than would otherwi se

be possible .

Optional compilation can be extensively used for introducing

debugging code , extended features which may not always be desired, and

so on. For an example , both the DCALGOL and ALGOL compilers on the

B6700 are compiled from the same source code , the difference being the

setting of a compiletime option .

45,

Error Immunity

Dijkstra once made a request for "intellectually manageable programs ,

which can be understood and for which we can justify, without excessive

amounts of reasoning , our belief that they will operate properly under

all conditions ". It is a prime prerequisite for such programs

that the language used does not contain error-prone constructs.

are three levels on which these constructs become apparent, purely

syntactic, mixed syntactic and semantic, and purely semantic .

There

At the purely syntactic l evel , it is most important to retain the

maximum lexographic distance between all terminal symbols . Thus the

distance between GEQ and LEQ is one, and a single miskeyed character

can produce another valid symbol; while the distance between GREQ and

LSEQ is two , and it takes two miskeyed characters to produce another

valid symbol . This is somewhat analogous to the case of the programme~

who declares a variable DO in ALGOL60 (and s ubsequently finds DO on his

listing).

The greatest confusion can arrive at the next level, when syntax

and semantics interact. For in s tance, in ALGOL68, the declaration

real r may mean just that, or be a contraction for ref real r = l oc real ,

depending on the context. If the declaration occurs as a formal

parameter specification then the declared item is a real, but if it

occurs on its own as variable declaration then it is a ref real. Again ,

the distance between real r : = 6 and real r = 6 is one , but the difference

in meaning is considerably greater. Thus the distance between any two

constructs at the syntactic l evel should be proportional to the distance

between those constructs at the semantic l evel. This is another form of

the Law of Least Astonishment .

There are several rules that can guide the language designer here .

Firstly , to ensure a minimum distance of two between keywords in the

language . Secondly, to avoid having the meaning of any group of two

or more symbols context dependent . Thirdly, to avoid having two similar

terminals syntactially valid in the same place (for example I and / ,

- and _, : and ;) . And . lastly , to maintain the relation between

syntactic and semantic distances.

One particular item arising from the third of these rules is that

there shoul d be no implicit declarations, since implicit declaration

permits a mispunched identifier to be syntactically valid where it

otherwise would not be .

46.

At the purely semantic level, there are only two major items,

closely related, to be avoided. These are gotos and reference variables.

Because gotos inhibit program validation procedures, and because

they may in their unrestricted form cause scope violations (which have to

be fixed up by a runtime intrins ic), their use should either be abolished

or at least contained within limited-scope areas. There seems little

doubt that unrestricted use of gotos is error-prone and, while the

arguments for and against are too long-winded to expand here, §s.3
contains my views and a partial solution .

Hoare [Hoa 73] points out that reference variables are very closely

related to gotos in that they can cause scope violations. Checking

against this is time consuming and, as with gotos, the best solution

would seem to be eliminating them entirely from the language. This

problem is no less difficult tha n that of eliminating gotos from the

l anguage , particularly because reference variables may be used to greatly

increase efficiency by avoiding repeated use of some addressing mechanism .

At the present time, complete removal of reference variables appears

unrealistic.

Efficiency

Efficiency , in its narrow sense , is a relative measure of two

things: firstly , the amount of time a section of program takes to

execute, and secondly, the amount of space that section of program

takes in core. These should be measured relative to time- optimal

47 .

and space- optimal machine code programs which perform the same function ,

but because this is unrealistic they can only be measured relat i ve to

a single assembler language program which performs the same function .

The range of values quoted for efficiency varies considerably

between languages (as might be expected) , and even within a language .

In one project it was found that code written by programmers in

experience in PL/I was five to ten times worse than that which they

could have written in assembly language [Cor 69] . Another study [Ar d 70]

found that code written by experienced PL/I programmers using the

F- compiler was four to five times worse 'than assembler language . These

figures are perhaps quite atypical , and probably result from the·

generality of PL/I . For instance Terashima [Ter 74] quotes a run- time

efficiency of 1 .11 times and a space efficiency of 1 . 17 times for programs

written in SYSL , a language specifically designed for systems programming .

Efficiency obviously tends to increase with the level of the language ,

but the reason this is so marked may be due to the bad design of the

higher-level languages and their compilers ,

It is worthy of mention that Terashima estimates the ' productivity '

(; functionality) of his language at approximately twice that of assembler

language . This should increase with the level of the language , but may

not a l ways balance out the decrease in effici ency.

There are several \~ays of aiding programming efficiency , Fi r;:;tly,

each sectio~ of source must compile into the most efficient object code .

This might be regarded as totally a function of the compiler , but the

l anguage designer can make sure that only the most efficient construc t s

are available for any part i cular processing form . There is obviously

some trade-off point where a l anguage construct may be too ineffici ent

t o use , and unfor tunately this often will depend on the machine on which

t he language is being implemented . Thus the compiler should make the

programmer aware of how much code each statement generates , and even what

code is generated.

48.

Secondly, where suitable language constructs are unavailable, or

grossly inefficient, the programmer should be able to recode them into .

assembler language. Bergeron et al [Ber 72] have made such a succinct

justification for this that I quote it here in its entirety.

"In a few cases, it is impossible for the user to describe a

peculiarity of his system. Furthermore, every compiler will have

-features which restrict some systems programmers . These unsatisfactory

conditions can be relieved by allowing the insertion of assembler

language as in-line "open subroutines" . The section of code thus

produced will contradict some of the rules of a systems programming

language , especially syntact ic clarity, but at times the advantages of

low l evel coding are great enough to compensate for this loss.

When an available facility is expensive in the systems language,

judicious recoding of critical portions in assembler language may also

be valuable. By taking the machine environment into consideration,

a programmer may modify the compiler's target code to raise the overall

efficiency of his system appreciably. The following example will show

that a tight algorithm at the source code level does not necessarily

ensure an efficient program :

A linguA/.i.ti.co gMup a..t BJz.own UiuveJl...6U!f WM c.ocling in an

e__o.Jtf_y veJ!...6ion 06 PL/I wluc.h clid no.t incl.ude. .the. TRANSLATE

and VERIFY fiunc..ti.on6. In a R.e.y Jtou.ti.ne., .the.y ne.e.de.d to

!.le.an a chaJz.ac..te.Jz. .6.t!Ling 6olL the. fiill.t oc.c.UIL!Le.nc.e. 06 one.

0 6 .6 e.vvi.a.l ugh.t-bi.t c.onfiigU!l.atio n6 ' Jz.e..tu.Ji_ning the. ivr.de.x

o 6 .tha..t diaMc__,te.Jz. in .the. .6.tlLing. To hnp.teme.n;t thi-6, .the.y

c.ode.d a ve.Jz.y .tight PL/I .toop (whic.h c.ompi.f.e.d in.to a fa!Lge.

amount 06 mac.hine. c.ode.). Fina...U.y, a .6!f.6.tem.6 p11.og11.amm e.Jz.

11.e.llize.d tha..t .the.y had j w.,.t J.iimui.a..te.d the. .6..i.ng.te. I 360

TRT ,{,YI/.) .tll.uc..ti.o tt. B !f Jte.c.o cling tha.:t. .6 maU, R. e.y 11.0 u.tine. ,(,n

a..M e.mb.te.Jz. .tanguag e., he. ·WM ab.le. to 1te.duc.e. the. e.xe.c.u.ti.on.

time. 06 the. whole. p11.og11.am two oJtdeJ!...6 06 magni.:tude.. I.t wa.6 -

o n.ty .th.Ito ttg h .tow .f.e.v e..t R.now.te.dg e. o 6 the. mac.hine. that .the

p11.og.1tam c.o uld be. made. mo!Le. e.6 fi,iclen:t.

The trade-off between the efficiency of assembler language and its

lack of clarity is easily resolved since such inserts should occur only

infrequently when the relevant section of the program is completely

thought out. Furthermore, documentation should be provided in great

detail to explain the meaning of the code (in fact, the original code

in the systems language provides excellent documentation in such a case)."

49.

The most important effects of permitting some form of inline

assembler are to all ow the · language designer to raise the level of

other language construct s (thus decreasing machine- dependency), and to

increase s ignificantly the efficiency of critical port i ons of programs.

These are both extremely worthwhile .

However, in order t hat the critical portions be i dentified

accurately (a more diffi cult task than it would appear [Wul 7 2)) there

should be available to the programmer , through the compiler , a method

of timing execution of program modules .

The most important point to emerge is t hat any appli cation of

criteria related to efficiency in particular , and effectiveness in

general , will r equire a compromise between opposing arguments .

50 .

§s Critieria and their Application to the Language Desi gn

The previous three sections have concent rated on determining ,

for l angudge-related aspects (§2 and §3) and effectiveness- related

aspects (§4), the most important criteria . This section introduces

criteria related to aspects of extensibility , and for these and t he

abovenmentioned discusses their interrelationships and application

to the language design . In subsection §s . s an attempt is made to

sum up and order the criteria overall , and to provide in part a guide

to what aspects the intending designer/implementor of a systems

language should consider important .

A large proportion of the criteria previously derived fall int o

two distinct groups - those related to data and those related t o

control. The effects of the criteria in these groups are discussed

in §s .2 and §s .3 respectively . The remaining criteri a are discussed

in §s . 4.

It must be emphasised that not all criteri a indicate concret e

requirements of the language (such as provision for task initiation

and control , and stri ng manipulatives) but rather form guidelines for

the overall design of the language (such as efficiency , orthogonality) .

These guidelines are by far the mos t important of the criteria , but

they do not themselves construct the language . They have a governing

effect in that they may force a choice between two equivalent constructs ,

but they never create the constructs themselves . Thus they are not

considered in isolation but rather when they affect the application of

other criteria .

§s.1 Extensibility/Orthogonality

§5.1.1 Extensibility versus Universality.

Hardware today presents the systems programmer with great

divergence in functional appearance . Because of this, there is

general acceptance of the belief that systems programs cannot be

made portable without a significant loss in efficiency [Sam 71].

However, this has not reduced a belief that systems programming

languages may be made portable. There are basically two ways of

51 .

achieving this: either by including all f eatures that may be required

on all machines or at least a large proportio~ of them (the universal

language approach); or by providing a relatively low-level portable

language kernel and means to develop extensions to this (the

extensible l anguage approach).

Universal languages have several disadvantages . A programmer

may not in fact find the l anguage feature he requires, or he ma~ find

it too inefficient to use on his particular machine . The language

itself becomes large and correspondingly clumsy , making it both

difficult to learn and diff icult to r ead . The definit i on of the

language may make it difficult for a construct to be implemented in the

mos t natural way , resulting in either a sli ght deviation from the

definition , or a loss in efficiency . The language may prohibit

utilisation of some hardware feature on an existing or f uture machine .

All of these may be small and detourable items but they combine to

provide a s izeable a rgument against this approach .

Extensible l anguages , on the other hand , have several advantages ,

and only one major dra~back .

Firstly they promote better structuring of a program or a suite of

programs . This is of particular significance to operating systems ,

where the program structuring is otherwise provided through procedures

or macros . For example , an overview of an operating system may have

the appearance of an inverted wedding cake as in Fig 5.1 , where each

layer is involved i n building data s tructures and operations for the

next and s ubsequent tiers , while at the same time retaining a

functional unity within the one level .

52 .

Fig 5 ,1

intrinsic functions - high level I/O - user interface

process control operator interface

resource management

interrupt and I/O control

In a non-extensible language a programmer may have to work hard to make

this structuring neat or even apparent .

extensible language .

This is not so in an

Secondly, constructs can nearly always be built to provide anything

the programmer requires , and generally at an efficient low level of

implementation. This is because , in describing an extended structure ,

a programmer is not only specifying the structure but also its

implementation. The ' nearly' above is the major disadvantage , or

rather deficiency , of extensibility. It might be argued that an

extensible language is not worth the effort involved in implementing it

if the extensibility is not completely general . This may pose some

practical difficulty (see §5.1.2) .

The third advantage of extensibility is t hat since extensive data

structuring facilities are required anyway, a large·amount of

duplication of definition may be avoided by allowing modes to be defined

and then associated with different names . Modes also combine extremely

well with other language features required , such as weak typing and

linked-list manipulation . Having made the language extensible in this

respect the jump to more general extensibility is easier and s horter.

§5 . 1.2 Extensibility Features

Extensibility , then , i s a neat and useful tool, as far as systems

languages are concerned . Can it be justified in terms of the increased

implementation effort? There are three directions in which a language

can be extended: extension of data (modes and unions) ; extension of

operations (operator declaration) ; and extension of control (e . g . by

macros) . Each of these varies in usefulness according to the

environment to be considered and providently , each is relatively

independent of the other two, so that only the most useful may be chosen

for implementation .

53.

Extension of data is the most useful of the three . It has

already emerged that good data structuring is an essential part of

systems programming (§ 3). Non-extensible methods of describing data

structures have several drawbacks . A s i gnificant amount of duplicated

source code may be necessary to declare multiple copies of the same

structure, (and methods for avoiding this, such as based variables

in PL/I , result in semantic confusion) . Programatically imposing

a mode on a weakly typed section of storage becomes clumsy , as does the

manipulation of cells whose internal layout i s determined by hardware

rather than software . There are two documented approaches to data

extensions , the syntactic approach of ALGOL68, and the semant ic

approach of BLISS .

BLISS defines the mode through a STRUCTURE declarat ion, which

associates an identifier, possibly with parameters, with an accessing

algorithm . This algorithm may then be "MAP"ed on to any available

piece of storage .

tedious .

This i s a very flexible approach although a little

ALGOL68 permits the definition of modes, declaration of identifiers

as declared modes, or unions of modes. Th i s syntactic approach is a

mixed blessing however, for,in dealing with low level modes, some

confusion exists between the functions of the definition of the mode and

the functions of the declaration of an identifier having t hat mode .

However, a small syntactic rearrangement could avoid most of this

confusion (see §s .2). Definition of modes does have a singular

advantage in that it permits a consistent way of referring to sub-cellular

items such as bits , bytes, and fields . This avoids both the packing

problem of PL/I,and the extra declarations for word layouts of ESPOL.

On the contrary , I find no such justificat ion for declaration

of unions . They appear to have little use in systems programming and

require considerabl e extra effort in impl ementation . Conformity

relations then become essential, and as there is little hardware

available for conformity testing, these may require significant amount s

of software , included behind the programmer's back .

avoided (§4.3).

This should be

Extensibility of operations is normally accomplished through

procedures or macros. The declaration of infix operators has two

semantic pitfalls . Firstly , if a standard operator name is used then

care must be taken not to alter implied meaning of that operator, for

54.

example , using " " for concatenation . Secondly, setting t he priority

of an operator may virtually eliminate r eadability of the program. If

a standard operator name has a different priority for different operands,

or a new operator has an unexpected priority,this may prohibit rapid

understanding of source code involving those operators . Even having a

fixed priority scale as in ALGOL68 may cause confusion until the

programmer is totally aware of the priorities of existing oper ators .

Priority settings are too complex to be used with impunity . Thus it is

suggested that if infix operators may be declared , then they have a fixed

priority (probably the highest) if they are non-standard , or the priority

of the standard operator whose name they use . Considering binary and

unary operations are only a smal l part of any set of operator extensions ,

they could easi l y be dispensed with as infix operators .

Extensibility of control is one of the least developed aspects of

extensible languages. Because control is so embedded in the syntax of

the language , extensibility with respect to control requires the ability

to drastically alter the syntax and semantics of a l anguage during a

compilation . This is such a difficult tas k that it does not seem ever to

have been accomplished s uccessfully . Rather . most extensibility of

control is provided through macro processors which , of course , work

totally at the pre-syntax stage . Simple parameter ed macros such as

those in Burroughs 86700 ALGOL provide a procedure-like appearance upon

invocation which may be confus ing . Avoiding this requir es a much more

complex system which would not normally be embedded in the language ,

for example ML/I. Perhaps if a language has adequate control primitives ,

this sort of extensibility might be better avoided compl etely .

§s . i. 3 Orthogonality

Orthogonality i s one of the criTeria worth bearing in mind as a

guideline . Its real value is as a contribution to making a language

more functional - that i s , more writeable, more readable , and l ess error

prone . It helps a language to conform to the 'Law of Least Astonishment '.

A programmer can form a construction more easily f r om experience with

s imilarly formed constructions . Conversely , the programmer is more likely

to correctl y interpret the function of a construction he sees before him

because of his experience with s imilar constructions.

Thus the real value of orthogonality is as a means of maintaining

internal consistency of the language .

55.

§5. 2 Data-Related Criteria

Criteria in this section fall into two broad groups :

firstly, those which merely predicate the presence in the language of

a data type and operations thereon and where there is little or no

choice of implementation involved ; and secondly , those which for some

r eason are peculiar to the nature of systems languages or which have

considerable flexibility of implementation. The former group is dealt

with for convenience in §s.2.1 and in arbitrary order (since it deals

with necessities). The l at t er are dealt with individually in §s.2 .2
and succeeding subsections , and in my order of decreasing importance .

That is

Data Structuring

Weak Typing

Fields

Strings

Storage Allocation

Array Processing .

It should be noted that the ordering does not imply that one

crit erion s hould be satisfied before others , but r ather that all s hould

be sat i sfied to an extent dependent on their prominence .

§s. 2.1 Genera l Data Requirements

·There are several s ingle cell data modes required. Integer or

fixed point arithmetic variables are evidently necessary , as are the

bas ic arithmetic operations . However , as floating-point hardware may

not be available , providing a floating-point data mode may lead to the

impression that the correspond~ng operations may be used with impunity .·

If a floating point moµe is provided , as I think it should, then all

operations .on that mode requiring a procedure call should be flagged

as such .

Logical values must be provided, and may be considered either as

a one bit long field , or an integer value (e . g. 0 or 1) . This choice

is normally not hardware dependent , and s ince the one bit field cannot

be confused with a floating point variable of value 0 (as may occur in

PL/I) the former is preferable .

Precision on modern machines is limited to multiples of the basic

storage cell, and therefore different precisions s hould be considered

as different modes r ather than as varia nts on a single mod·e (cf NELIAC).

56 .

Arrays of all single cell modes are al so essential items. These

should be multidimensional if no data structuring facility is provided

(see §s . 2.2) . There is no necessity for a flexible lower bound , as a

fixed lower bound improves effici ency and r equi r es little adjustment

for an experienced programmer (although it may r educe readability).

However s ince whether the indexing base is one or zero l argely depends

on the hardware , i t would be necessary to have the base value made c l ear

to any intending programmer . (Operations on arrays ar e discussed in

§s.2 .1 .)

Strings and string operat i ons are discussed in §s . 2. s .

Fields and partial words ar e discussed in §s.2.4.

Structures ar e discussed in §s . 2. 2.

For the sake of efficiency , reference variables are necessary.

Of late there has been some discussion [Hoa 73] as to ways of eliminating

r eferences from progranuning l anguages, s ince it i s i ndeed clear that they

ar e in effect analagous to the goto - that i s , they may obscurely connect

two otherwise unrelated pieces of data . However , har dware currently

makes extensive use of s ue h modes , as does sofh1are (cf linked lists ,

dynamic tables). I fee l tha t current software engineering has not yet

developed adequate mechanisms for hiding the reference mode :from the

programmer , particularly in systems work . It is difficult to cr eate a

general data structuring mechanism without them , and almost impossible to

perform efficient string manipulations (see §s . 2 . 5). Unfortunately

little prot ection can be built into the syntax against deallocation of

a r eferenced area (dangling pointer probl em), but some can be gained

by typing reference modes as in ALGOL68 . This i s cons i stent with

generally strong typing , and although most machines do not distinguis h

in the hardware between r eference variables referring to different modes ~

some (e . g . Burr?ughs B6700) definitely do.

Declarat i on of all data should be mandatory . Ther e i s l ittle room

in systems programming for the type of errors that may be gener ated by

all owing implicit declarat i on . Identifiers s hould be local in scope ,

but s hould be abl e to name vari abl es whose stor age class is either local

dynamic or controlled (see §s . 2. 6) . Initiali sation at declaration s hould

be made available for a ll data , since this normally causes little

57.

overhead on storage allocation, particularly in a stack machine . Some

provis ion could be made for setting default initialisation values (e.g .

zero for arithmetic modes).

§s.2.2 Data Structuring

Data Structures are perhaps the most important s ingle facility in

either a general programming language or a systems programming language .

It might be argued that , in a language designed for implementing an

operating system, that facility is second in importance to a facility for

handling ta sk (or program) structures . The proportion of an operating

system which deals with data structures is far greater than the

proportion dealing with task structures . In any case I hope to demonstrate

in the next few paragraphs that the difference between task and data

s tructures is not great.

The definition (dec l aration) of a data structure consists basically

of four parts

(a) the syntax of the data structure (how parts of the structure

are named)

(b) the storage layout of the data structure (how and where parts

of the structure are allocated)

(c) the addressing mechanism (how a part of the structure is

obtained, given its name)

(d) the operations on the data structure (the things which may be

done to parts of the structure).

In practice these parts are combined in some way . The syntax and

the storage layout are nearly always combined , often with the address

mechanism . Although then the operations are not explicit in the

declarat ion, they are defined by separate procedures or macros. Also

(c) and (d) ·are sometimes combined (cf PL/I , COBOL, ALGOL68 , BLISS , ESPOL).

Tasks as set up in most multiprogramming machines are little more

than a specific sort of dynamic data structure and should be considered

as such . They comprise a static part (code, instruction counter , task

control information) and a dynamic part (working storage - stack or

register space , environment control) . They are subject to operations

(initialisation , execution (both senses of the word), status enquiry)

by the operating system, and even allocation and deallocation . XALGOL

contains a good example of this. Thus systems programs really spend

58 .

most of their time dealing with some form of data structure .

In fact there are extremely few objects of manipulation by programs

that could not be included under the classification of arbitrary data

structures . All this forces the conclusion that, in the past, particularly

in systems programming languages, data structuring facilities have been

seriously neglected .

Current systems l anguages contain predominantly four different

methods of describing data structures , and these vary as to whether the

structures may reference one another (and themselves) , or are dynamic as

regards storage allocation or linking, and so on .

COBOL and PL/I provide the best examples of the first method . The

structure is r epresented as a two dimens ional table, the "associated"

(" concatenated") dimension running down the program listing and the

"derived" ("nested") dimension being indicated by a l evel prefix . PL/I

data structuring , which is by far most commonly used, is complete in that

arbitrary data structures may be declared and used, and the set of

permissible end nodes is more than sufficient for system programming needs

[Cor 69]. However , the omission from the language of mode declarations

has made the manipulation of multiple copies of an e l ement unnecessari ly

awkward [Der 72].

BLISS contains the most concise form of the second method. Data

structures are created by allocating an amorphous piece of storage ,

defining an accessing algorithm , and "MAP"ing or imposing the algorithm

onto the storage . The main advantage of this r e l at ively low level

technique i s that the accessing algorithm can be tailored to suit the

resource tradeoff requirements of the particular user ' s data structure

at compile time , thus gaining efficiency . Consequently, hashing ,

linking , stacking and other accessing methods are associated directly with

the data structure rather than being set up through procedures or

subroutines. Also, since a piece of storage may have two different

structures mapped onto it, weak typing i s inherent .

Thirdly, ALGOL68 has perhaps the most comprehensive set of data

structuring facilities . As in PL/I the structure is represented as a

two dimensional table , t he associated dimension being indicated by

sequential separation with commas, the derived dimension by nested

brackets . This tends to overwork brackets. These data structures may

be self referencing but not self embedded and , as with PL/I data

structuring, linked lists and other varying structures require an

independent description of the method of access.

Ill 59 .

ESPOL contains the prime example of the fourth, or poor man's ,

method. The structures are defined by a seri es of macros which become

more nested a s one goes deeper into the derived dimension . This shares

advantages with both the BLISS and PL/I method but relies heavily on the

programmer keeping associated macros together , and not misusing them

s ince compiletime checki ng is here limited to type checking . Thus this

method i s dangerously error-prone part i c ularly in secti ons of program

where weak typing i s used extensively .

Hoare [Hoa 73] has described yet another possibility , recursive data

structuring , in which the need for explici t references is elimina t ed .

While this currently app~ars a little academic , the na ture of this new

method indicates that data structuring techniques are not at all complete

or static .

The basic requirements of systems l anguages as far as data structuring

is concerned are firstly to be able to r efer without ambi guity to any

part of any data structure that may be directly or indirectly manipulated ,

and secondly to have complete control over how parts of a data structure

ar e stor ed and accessed . Currently availabl e methods, such as those

described above , each handle static data structures adequately , but with

varying degrees of ease . However , only one (BLISS) appears to recognise

the existence of dynamic data structures , mainly because of the low-level

nature of it s data s tructuring technique .

Thus , for the one element of data structuri ng which has gr eat er

i mportance in systems programming (dynamic structures) , inadequate

techniques are available . The systems programmer currently must implement

most of the four parts described above through subroutines or macros .

§s .2. 3 Weak Typing

Weak typing i s the ability to treat an element of data as different

modes at different times . This is not the same as unions - unions allow

one to treat a name a s r eferring to different modes at different times .

That weak typirig is necessary is made evident in §3.
There are at leas t seven different ways of i mpl ementing weak typing .

These are outlined in Fig 5.2. They are often implemented in some

combination, but will now be considered individua lly .

60 .

Redefinition is normally used in structure declaration and has one

main advantage; the two names by which the data may be referenced are

associated in the declaration . Equivalencing , a close relation, suffers

badly from lack of this association (the equivalencing statement may be

far from the declarations in the program) making the program much less

readable . It also requires an extra statement . A very similar concept

is name equating , and of course its counterpart address equating . These

two methods are normally used for 'single cell data items , and if used

for multicell data items, have the disadvantage compared with r edefinition

in that very little compile time checking can be done of the compatibility

of data usage . Address equating is probably the worst method possible.

Variable names r ef erring to the same data cell are not related in any

cross-referencable way, and since this method is normally used in

assemblers to r eference core locations outside the address range of the

assembly, thus avoiding link-editing, programs using this may have the

variable misplaced through relocation of the referenced module. Implicit

coercions are also defective for two reasons. Firstly , they may include

large amounts of code behind the programmer ' s back , and secondly the

coercion may not have been intended at all but was r a ther a lexicographical

error which might have been picked up by type checking . This has been

remarked on as one of the great failings of PL/I as a systems programming

language [Boo 74, Ber 72] . Explicit coercions , howeve~, have one mjnor

disadvantage and several advantages. They preserve the one-to-one mapping

between identifiers and data items and so avoid some of the drawbacks of

reference variables , and strong typing can be enforced at compile time

thus reducing error- proneness .

may become tedious (for example

The minor disadvantage is that their use

fixed-to-floating coercion)

and under such circumstances it may be desirable to declare a coercion

implicit. The last , but by no means least, common way of obtaining

weak typing is the typeless variable . Typeless variables normally

correspond to the storage elements of the machine , that is words , bytes ,

registers , and their use is accompanied by two rules. Firstly they

implicitly coerce into and from ordinary typed variables , and secondly

they provide a means of identifying when an overrri de of a hardware

function , such as memory protect, is desired .

It seems then that the choice should be between explicit coercions

and typeless variables. Each has its own advantages , and therefore a

combination of the two is the most advantageous . Implicit coercions

may be required as well to avoid tiresome use of explicit coercions.

Note that typeless variables may also be utilised as a base mode for

single cell mode declarations, and in some circumstances redefinition

may be used as a way of avoiding reference variables, It is worth

pointing out again that any method of using two names to refer to one

61.

data item increases susceptibility to the same sort of errors as accompany

reference variables and unlimited gotos (cf above and below).

a)

b)

c)

d)

e)

f)

g)

redefinition

(as in COBOL)

Fig 5. 2

equivalencing

(as in FORTRAN)

name equating

(as in ESPOL)

address equating

(as in mos t assemblers)

coercion (implicit)

(as in PL/I)

coercion (explicit)

(as in XALGOL)

typeless variables

(as in ESPOL,

assemblers)

Weak Typing Methods

01 BLOCK1.

02 REALS OCCURS 20 TIMES PIC 999.

01 BLOCK2 REDEFINES BLOCK1.

02 CHARS OCCURS 20 TIMES PIC XXX .

REAL A, B(20)

INTEGER I(S)

EQUIVALENCE (A,B(1)),(I(1),B(10))

REAL A:

POINTER P=A ;

SAVE EQU /1 23

DCL A FLOAT , B FIXED;

B=A;

/*hidden coercion code*/

REAL A;

BOOLEAN B;

B := BOOLEAN (A);

WORD W;

REAL A;

POINTER P;

W .- P;

A . - W;

62 .

C'

35 . 2. 4 Fields

One requirement largely peculiar to systems programs is the ability

to manipulate fields , or parts of addressable storage cells . The

reasons for this are two-fold . Firstly, it is often necessary to

conserve space by packing information at a greater density than can be

achieved through standard storage addressing , and secondly systems

programs , especially an operating system, must be able to recognise any

field which the hardware recognises - for example , the exponent and

mantissa fields of a floating point operand.

Orthogonality of design requires that the method of specifying

fields be a natural extension of the data structuring definitions . This

results in a conflict . There are basically two types of machines to be

considered , the byte-oriented machine (e . g . IBM 360-370) , and the word­

oriented machine (e . g . Burroughs B6700). This orientation really refers

to the smalles t directly addressable storage cell . On the 360 the

closest packing for numeric items is at the byte level, and the next

step down is a single bit . There is no practical means of manipulating

a three bit long value . This means that any numeric field recognisable

by the hardware as such is at least a whole byte long, for example,

the exponent field. Compare this with the B6700 where the smallest

addressable unit is 48 bits (51 including the tag). Special hardware

is provided to manipulate , as unsigned integers, fields of any length

from one to forty eight bits , at any position within the word . Therein

lies the problem . To describe generalised fields in terms of bi ts and

bytes, and conversely bits and bytes in terms of generalised fields,

does not adequately reflect the true hardware circumstances . For the

language to be portable, both schemes must be included in the syntax ,

and only one implemented . This is unpleasant but necessary.

Once the fields possess names , manipulating them becomes relatively

easy , as each size of field can be treated by the compil er as a basic

mode , embedded within another mode. For example , a floating point

operand could be expanded (or redefined) as four or six eight-bit bytes.

(cf §s . 2. 2 and §s.2 . 3). This · abi lity to treat non-terminal nodes of

a data structure as possessing values independently of the terminal nodes

does not exist in all languages .

63,

§s.2.s Strings

Strings and string manipulation are a weak point of most system

languages. There is little evidence of rationalisation of the syntax

and semantics of string processing (only r ecent ly has pattern matching

taken on a more mathematical basis) . This i s in spite of the fact t hat

hardware operations for dea ling with alphanumeric data differ little

in function between machines. That is, most machines which have hardware

for this type of data have similar operations differing only in

complexity and side effects .

String manipulation in systems programs can be split into two classes .

In the operating system·, s trings are created , moved around, and trans lated.

Thus the first class contains only operations where the string content

is not s i gnificant. The second class comprises scanning and comparisons

such as is found in the parsing of strings . The first class r equires

only the implied use of pointers . Syntax for concatenation, replacement ,

and translation can be adequately constructed (as in XPL, PL/I) ~o hide

the use of pointers from the programmer . However, with the second class

of manipulations, this is much more difficult . Consider for instance

the simple problem of i so l at ing the first non-blank substring in a string .

This might be written

in PL/I

in XALGO L

in ALGOLW

while
in SNOBOL

TEMP = SUBS'J:R (SOU RCE , VERIFY (SOURCE,' 1
)) ;

DEST= SUBSTR (TEMP, 1, INDEX (TEMP , 1 1)-1);

SCAN SOURCE : SOURCE WHILE EQL " ";

REPLACE DEST BY SOURCE UNTIL EQL" ";

i o· while source (i 11)~" " do i
'

j i· while source (i j 1)--,=" II do .- '

i + 1 · ,

begin dest(i-jj1):=source(i 1);i:=i+1;

SOURCE SPAN (' ')BREAK (' ') . DEST

end;

Then consider the even simpler problem of locating (but not isolating)

the first non-blank substring (for comparison purposes).

paradoxically more difficult in the above languages.

It is

The difficulties involved in creating usable syntax are three-fold.

Firstly, string operations often alter more than one operand, which is

not easy to express in an assignment-oriented language. Secondly, the

operands may not be .assigned to, or used purely as a source, but rather

64 ,

are altered in nature (compare A~A+3) , meaning add 3 to A) . And

thirdly , if a n attempt is made to eliminate explicit use of pointers

(as in PL/I) through s ubstrings these substrings have to be identified

by a pointer and a l ength, rather than their composition .

It is apparent that at the state of the art, clear and concis e

syntax for parsing strings is not available . Considering the l arge

amount of string manipulation performed in any compiler , this area has

been severely neglected, at l east as far as systems pr ogramming languages

are concerned . Unti l an adequate high level syntax for string

manipulation becomes available , string pointers must remain as the only

completely workable scheme .

§s.2.6 Storage Allocation

The applications programmer is concerned only with the s urface

(syntactic) appearance of his data , and where or how it i s stored is

immaterial . For the systems programmer , concerned with effic i ency of

usage , explicit control of storage allocation i s in some cases essent ial.

Unfortunately for the designer of systems languages , the types and

r elative efficiencies of the various s torage classes vary from machine

to machine . On a 360 or 370 the most efficient c l asses are stati c and

explicit dynamic , although implicit dynamic is perhaps the most

convenient to use. On a 86700, static does not exist , and must rather

be considered as outer block dynamic storage. Implicit dynamic , on the

other hand , is allocated in a hardware stack , and thus is very efficient .

Both machines provide the explicit dynamic class of storage, at

approximately the same effici ency . The B6700 also has provision for

r ead onl y data .

Thus the storage classes which must be provided are machine

dependent. On a machine operat i ng with virtual memory, some mechanism

must be provided whereby heap storage segments can be marked as

overlayable or nonoverl ayabl e . (Provision must be made in the language

for the use of defaults which may be overridden at the programmer ' s

r equest) .

65.

§s.2 .1 Array Processing

There are two excellent reasons why array processing should

feature in a system language . First ly , a number of machines now have

some form of vector processing capabilities (e . g . B6700, CDC STAR ,

MUS) , and such hardware should for the sake of efficiency , be utilised

if it is available. Secondly, syntax for array processing signifi ­

cant l y abbreviates an algorithm which might otherwise have to use

c l umsy looping structures . This holds regardless of whether the

operation can be performed in special hardware .

Several languages have array processing embedded (ALGOL68 , PL/ I ,

XALGOL) , and this practice should be extended . Providing that such

operations may be defined at the lowest level , there is no reason why

the syntax should be machine depend ent; the natural extens ions to

single value operations appear adequat e .

66 .

§5 . 3 Control-Related Criteria

Control in a systems programming language differs from that in

a general purpose language in two areas , process control and exception

condition processing . These are discussed in §5.3 . 1 and §5.3.2

respectively . The four basic types of control r emaining

a) parallel elaboration

b) conditional or selective elaboration

c) repetitive elaboration

d) subrout ine elaboration

are here discussed only briefly as the arguments differ little from

those concerned with general purpose languages .

Parallel elaboration syntax is unjustifiable in the context of

present day hardware . Although some special purpose machines exist

(e.g. ILLIAC IV), a l arge multiprocessor machine spends a very small

amount of time engaged on parallel processing within a s ingle task .

Such a machine when running normally would have each processor ·perform­

ing a different task . The only times that multi-processors would be

coordina ted enough to parall e l-process on a statement basis would be

during operating system initialisation and s uch fault conditions as

power failure. However even in these circumstances processing would

be more feasible on a mult~-tasking basis .

The three r emaining types of control comprise forms of implicit

gotos . Enough has been written about goto s [Dij 68 , Knu 71, Wul 71]

for the topic to be avoided here, but I will state and justify my

v iewpoint in the systems language context .

Unconditional gotos shoutd be retained with their range limited

to within any controlled environment. This means that no goto should

result in ·an implicit procedure call (a bad goto). The unconditional

goto is a highly efficient construct. Elimination of the goto

completely in any language which is not rich enough in control

constructs with embedded gotos results in a serious loss in efficiency

through code duplication , artificial variables , or proceduring .

There are relatively few languages which even approach the variety of

control constructs required . A maximum amount of effort therefore

should be put into making a language rich with a wide variety of

constructs containing embedded goto ' s .

illustrated in Fig 5 . 3 .

Some in common use are

/

Form

conditional

biconditional

numeric selection

multi conditional

loop tested at top

loop tested at bottom

loop tested elsewhere

subroutine

Fig 5 . 3

Embedded Gatos
Common Syntax

Unconditional Condit ional Multiway

if then 1

if then else 1 1

case of (.... , , •...) n-1 1

select in (c
1

: ,c
2

: ,c
3

:) n-1 n

while do 1 1

do until 1

repeat (.... exit ..•.) 1 1

call doit (....) 2

en
-..J

68 ,

All conunonly used constructs f or conditional or selective

elaborati on should be availabl e . Where the number of choices exceeds

two , the condition for each choice of elaboration should accompany the

choice more or l ess as a l abe l . For example

case n of (0: , 1 : 2 : ,) else

Note that a choice may be accompanied by more than one condition , thus

avoiding a goto to get between choices , as i n

case n of (0 : , 1 : , 2 :goto 1 ,)else

I t is particularly important to have an exception choice . In particul ar

non- numeric conditions should be as expansive as possible so that any

Boolean expression may be used as a label . There is one additional form

of the conditional whose use is almost peculiar to systems programs .

Commonly , evaluation of Boolean expressions proceeds to completion

regardless of whether this complete evaluation is necessary . For

example, only one of the operands in a conjunctive needs to be false to

ensure the va lue of the conjunctive . Thus what might more naturall y

have been written

if b1 andif b 2 andif b3 then

would have to be written

if b1 then if b2 then if b
3

then . . .

This is particularly important if the operands have side effects on

elaboration . For example if n < upperbound (A) and A[n] = 0 then

Constructs for repetitive execution provide probably the most

difficult place for eliminating the goto , because loops may be exited

on more than one condition , and then to different places . For this

reason the exit as in BLISS gained some acceptance , but stil l falls shor t

of a complete solution . Zahn [Zah 73] describes an effective but c l umsy

construct for such loops . In general , constructs in which the key

words are naturall y distributed over several l ines seem awkward , a nd

therefore probably appear difficult to understand (to the language

designer) . . Nevertheless , some construct similar to that of Zahn is

necessary i f a seri ous at tempt is to be made i n elimination of the goto .

Subroutines , l ike bl ocks , are one of the best tools a progr ammer

has for creating an understandable and well structured program. As

systems programs tend to be large by nature , s ubroutines should be used

extensively , and therefore extra attention should be paid to the

convenience of their use . In particular the parameter and r eturned

69 .

value mechanism should cater for every defined mode . There has t o be a

choice between ALGOL68 parameter passing , and ALGOL60 or ALGOLW parameter

passing . That is, either the formal parameters are comple t ely specified

modes (and ref to modes , and proc modes) or some formal cases are

indicated (such as value, n~me etc .) . If the language would include

r eferences as being strongly typed (that is ref to mode , or ref to ref

to mode) then the former is obviously desirable. On the other hand , a

l anguage like ALGOL60 or ALGOLW does not restrict programmers to a

great extent and, although it is not the neatest solution to the problem ,

should not be condemned on grounds of impracticality .

One of the better justifications for unions lies in parameter

passing. Often in systems programming one comes across a procedure

of which the type and number of parameters,in reality , varies as a

function of one other parameter . Some existing languages permit actual

parameters to be omitted in the call (AED,LSD) , and others use untyped

variables (ESPOL) . Weakly typed reference variables afford another

solution . All of these rely on runtime checking , and so the use of these

mechanisms should perhaps be avoided as far as possible . For the

remaining unavoidable cases , I favour the solution which introduces the

least additional features into the language being designed .

§s . 3. 1 Process Control

Process or task control is the most prominent of the functions

peculiar to systems programming. Through it multiprogramming systems

make efficient use of I/0 devices and other system resources . Adequate

provision for all aspects of this type of control i s essential.

Discussion here is centred around the three aspects of task control

that are most apparent in a systems language - dependency , communication ,

and mutual resource control .

Spawning a task from an initiating process differs from calling

a procedure or subroutine in that it is used when the execution of the

initiating or parent task is desired to be overlapped with the initiated

or son task . In order to achieve this , the son task must maintain a

degree of independence or life of its own . The degree of independence

may vary , however , since a son task may require access to information

found in the parent . Such tasks are called dependent , and for exampl e

70 .

·user jobs running under an operating system , or tasks run from a batch

controller are of this type. Other tasks are called independent, and

might include such things as the compiled program being initiated by a

compiler .

In some circumstances , dependent tasks may wish to obtain mutual

exc l usion with r espec t to a resource not by avoiding simultaneous execution

but by passing control from one to the other by explicit program command .

Such tasks are called coroutines . Each of these three types of task

should be provided , a lthough coroutines might be omitted i f some other

method of mutual exclusion was always preferable . This is simply a

matter of providing three different initiating statements and a

statement for explicit passage of control, such as those in XALGOL. It

is also necessary to have a means of indicating that the son-tasks code

is ind ependent of the initiating task, since an independent task cannot

use code of the initiating task but a dependent task often may.

As a son task is nested deeper than the initiating task, most of

its hous ekeeping properties (such as status, cpu time used etc) would

not normally be avai l able to the initiator. Access to these by the

initiator is essential . This can be accomplished in two ways : either

the operating system can be used to obtain the information (through its

knowledge of all tasks); or s uch information can be pu~ in a commonly

accessible pool, for which the normal rules of scope do not apply . I

favour the information pool technique for two reasons . Firstly, it

may appear in each task as a normal data structure, a nd accessed as such ,

although some information may be r ead-only when the task is executing .

Secondly, some of this task information needs to be available to the

parent before and after execution (such as use of resources, limi ts on

resources). This task information mode would of course depend on any

given implementation , and thus might be included in a prelude.

While most communication between tasks could go through the

information mode, processing of an independent nature also requires

mutual exclusion with respect to resources, and synchronisation of

execution . The way in which these are obtained depends largely on the

hardware available, but s uitable high level primitives can easily be

design ed for both procuring and releasing locks, and waiting on or

causing events (cf XALGOL , PL/I) .

71.

§s .3. 2 Exception Condition Processing

Some of the major omissions from current systems languages are

facilities for recognizing and dealing with hardware or software conditions

which are unexpected. Systems software can ill afford the luxury of not

attempting to recover from software or hardware failures. The basic

r equirements are twofold. Firstly, a mechanism must be provided whereby ·

control enters a given section of program after such an exception

condition occurs . The PL/I and XALGOL on-statement s perform this

function. Secondly , since it is not desirable or even possibl e to

return from some exception conditions (particularly those detected by

hardware) exit from this fault code must be made by the equivalent of a

goto . Quite often this goto is a bad goto , that is, one passing through

declaration of dynamically allocated variables . If gotos are to be

eliminated some acceptable mechanism must be found to replace it , such as

treating these conditions as a coroutine call .

This problem is evident l y a special case of a much larger one, namely

multiple exits from controll ed environments . See §S.3 .on loop exits

for d isc us sion of another special case . However, for the purposes of

error handling the mechanisms can be enormously ineffi~ient , as one would

not normal ly expect them to be used frequently . In r eality, implemen-

tations of software interrupts tend to be just that .

72,

§s,4 Miscellaneous Criteria

Two remaining topics whi ch affect the language itself (provision

for inline code , and separate compilation) are discussed in §s .4.1
and §s.4 . 2.

The remaining criteria, mentioned here for completeness, are the

managerial (or guideline) criteria. The reasons for these, and the

effects of them were discussed fully in §4. They are, in decreasing

order of importance

Functionality

Error Immunity

Code Efficiency.

While these criteria reflect little on the language structure, they

nevertheless form the most important overall group to be considered,

effectiveness. A l anguage must be effect ive in its purpose.

§s .4.1 Inline Code

For reasons given elsewhere (§4) I have considered the provision

of inline assembler language or machine language coding . The main

argument for this fac ility is efficiency , and the main argument against

is error susceptibility.

both as far as possible!

Therefore an attempt must be made to satisfy

There appear to be basically three ways of introducing the facility

- code statements , pseudo procedure calls, and code-bodied procedures.

Code statements are undesirable because of their error susceptibility.

Pseudo procedure calls are of two types: one has each instruction

field as a separate parameter (as in Elliott 503 Algol) allowing inline

use of any individual instruction; and the other has a separate

procedure for each useful instruct ion (as in ESPOL) . Both form a very

long-hand way of obtaining a single machine instruction, and while the

former is singuiarly error prone, the latter restricts the· machine

instructions available . Code-bodied procedures (possibly inline) allow

reasonable error checking, and when used in a language with a simple

macro processor, can be surprisingly effective. All operands can be

type checked at compile time, and any use of absolute addresses could be

flagged. In effect the procedure provides a closed environment for the

code, and increases the ability of the compiler to detect errors .

73 ,

As an example consider the cormnonly used ' disable external interrupts '

instruction on the 86700 :

code proc disallow : DEXI ; inline

If an extensibility mechanism is available , operations on new modes

can be defined in terms of a code-bodied procedure , thus providing the

most efficient means of performing that operation . Note that these

procedures may be inline or not , depending on whether the programmer

considers inclusion of the code desirable at each invocation .

§s.4.2 Separate Compilation

Large programs can often be fixed or modified by changing only a

small part of the whole program . Thus it is extremely convenient to

separately compile procedures (or even blocks) of a program and then link

edit or bind them into the whole program . This mechanism may also be

used to aid in the production of a large program by a team . While this

facility does not reflect greatly on the language design , it does have

a very pronounced effect on the compiler , and is worthy of separate

mention. (Further discussion on this and related topics exists in §4 .)

Towards this end , procedures and blocks need as far as possible to

be logically isolated, and code physically isolated into separate segments .

This may well reflect on the overall system as much as on the language

design .

74 .

§s.s Conclus ion

The present trend of both computer companies and computer users

towards packaged systems - hardware and software combined - has made

necessary a reappraisal by computer companies of the cheapest way to

produce reliable system software . It is apparent that the cost/perform­

ance ratio of a large systems software project depends more on issues

which some would call manager ial (as against technical) [Wul 72] , and

although these issues by and large are g l obal to a language design and

its implementation, the desi gn and in particular the implementation

influence and ar e influenced by managerial issues. This happens to an

extent which I believe is not fully understood .

This thesis set out to investigate design criteria for systems

l anguages , and to a l esser extent systems l anguage implementation .

There are three aspects from which a language and its implementation can

be viewed . They are : Effectiveness , purely l inguistic criteria , and

extensibility/ orthogonality . Ignoring the fact that these a spect s

overlap , they can be placed into descending order of importance as

follows

(1) Effectiveness

(2) Linguisti c

(3) Ext~nsibility/Orthogonality

The overlap i s shown in diagramatic form in figure 5. 4 . Note t hat

although the ordering is implic it in the way the criteria are written

down , this ordering is a general one applying to systems languages

intended for all types of systems software projects . If the language

wereintended to deal only with one aspect of systems programming , the

order might change slightly . For example a language intended for

writing an operating system only would probably require greater

consideration of code efficiency and process control, and less of control

str uctures and string manipulation facilities . In general a criterion

will be positioned higher in the diagram if it is required for all

aspects of systems programming , not just for one . It i s desirable to

satisfy all the criteria i ndicat ed to a level depending roughly on their

positi on in the diagram . It is certainly not s uggest ed that some be

considered to the exclusion of others . Thus the best results are
achieved by striking a balance between opposing criteria .

EFFECTIVENESS

Functionality
(read and
writeability)

Error Immunity

Code Efficiency

Modularity of
Compilation and
Execution

Runtime Debugging
Aids

Fig 5. 4

LINGUI STIC

Data Structuring

Sub-Cell Layouts

Complete Control Structures

String-Manipulation Facilities

High-Level Unformatted I/O

Weak Typing

Dynamic Storage Allocation

Process Control

Array Processing

75.

EXTENSIBILITY

Modes

Macro Facility

I
Orthogonality

Operator Declaration

Unions

76.

Some criteria appear to be duplicated . This is because a specific

function to which a specific criterion is addressed may be encompassed

by a more general concept whose wholesale implementation i s perhaps

not so necessary; for example, data structuring and modes.

There are five ways to approach a language design. They are:

(1) a new and machine dependent language } non po~table
(2) an old language with machine dependent extensions ·

(3) an extensible base language (with minimum implementation)

(4) new machine independent language portable

(5) old machine independent l anguage

Not all these , however, may permit sufficient criteria to be fulfilled

to the desired level. I think it is generally accepted that languages

in categories 4 and 5 are unsuitable for systems programming (for reasons

of efficiency) . The machine independent s tructures which could describe

some machine functions , notably direct I/O functions, and interrupt

handling operations , are so ' high-level' that their inefficiencies

become completely unacceptable under some circumstances. Either that

or so ' basic ' that the use of large groups of these constructs becomes

tedious and time consuming , and the overall function is obscured . This

is because there is no list of 'intermediate level ' primitives that

can adequately describe each of the varieties of ways of controlling the

same overall functions on different machines . For example, an I/O

operation on a PDP11 is done by moving data to a reserved apparent core

address , while on a B6700 , the same function is performed through a

SCAN OlJI' (a channel operation).

The three remaining approaches are all used to a greater or lesser

extent (see §2) and are justified in various ways . The most widely used

type is of course 1, and is most often justified by the catch phrase
II other languages were examined and found unsuitable . . .· . II
or similar [Wul 71a , c1a 71], which is to my mind the greatest condem­

nation of that variety of language. The second type has gained a lot

of acceptance recently, and in spite of its shortcomings [Bro 74], it

is certainly a useful approach . Two very real advantages are that a

completely new language does not have to be designed or l earnt, and

that an algorithm may be passed between machines with possibly only

minor recoding . The third type has advantages also. Not only may

programs be passed between machines with only minor recoding, but the

language may be able to be implemented as originally defined on several

machines .

77.

My conclus ion , then, i s that systems programming languages should

aim to be generally more effective (in the sense of §4), and to that

end should provide better data structuring facilities and control

constructs . Paying greater attention to these points s hould decrease

the cost and improve the standard of sys t ems software .

The most careful attent ion must be paid to separating those

features which have only a minor effect on the effectiveness of the

l anguage (such as choice of implementat ion approach), from those which

have a ma j or effect (s uch as e limination of the goto). Performing

this separation is not easy . In the past too grea t an emphasis has

been placed on those things affecting the surface appearance of the

l anguage , and too little on the basic underlying r equirements .

78 .

§5 Appendices

79.

§6.1 Language Summaries

Structure

I • A brief resume is provided for all languages surveyed . Where no

adequate description of the language was available only the design factors

are given . Note that as these summaries are often derived from informal

descriptions of the languages, they are liable to be incomplete (and

possibly inaccurate).

Each language is su~oarised under six headings: design, data,

operators, control , I/O , machine dependency, and extensibility. Under

each heading there i s a list of major items (in capitals and abbreviated

to the underlined sections , as below), and each of these may further be

modified by bracketed information . Since many languages have common

components BASEPLUS i s used to indicate that, for the particular heading ,

only differences between the language and the base language are itemised .

The following is more or less a combination of all possibilities .

Des i gn:

Data:

AUTHOR (<name>)

BASE LANGUAGE (<name>)

YEAR OF APPEARANCE (<name>)

PURPOSE (general/systems/compiler/applications/special ...)

CRITERIA -(<stated criteria>)

BASEPLUS

INTEGER REAL BOOLEAN ALPHA

ARRAY (s ingle dim/multi dim , based <n>, int, real ,
bool, any ...)

STRING (bounded/varying)

FIELDS (bit/<n> bit bytes/variabl e)

PRECISION (digits/multiple cell)

STRUCTURES (gener al/restricted, self referencing)

REFERENCE (string , array, general, arbitrary)

DECLARED (required/optional, static/dynamic , local/global,
initialisable, equateable)

OTHER . (......)

Operators:

Control:

I/O:

BASEPLUS

ARITHMETIC (+ - X / + i mod ••.. .)

LOGICAL (AV-,::);)

RELATIONAL (><~~=# ..•..)

80.

REFERENCING (ref to, deref , address of , value of)

STRING (relational, s i ze , s ubstring , translate , move ,
tabl e occurrence)

ASSIGNMENT (arith, boolean, reference , any , arr ay slices)

PRIORITY (std/left-right/right-left)

COERCION (implicit ... , explicit ...)

OTHER. (.....)

BASEPLUS

CLOSED CLAUSES (value , declarations, named , .. .)

GOTO (conditional, numeric)

SELECTION (conditional , biconditional , numeric , logi cal)

PROCEDURES (value , parameters r ef/value/name , recursive ,
-- multiple entry)

INTERRUPT TRAPS (software , hardware)

PROCESS CONTROL (events , locks)

LOOPS (tested at top- bottom-middle , exitclause ,
stepped , nextclause)

OTHER (.....)

STREAM RECORD ------

Machine Dependency : CODE (inline, pseudo procs , proc bodi es)

SEGMENTATION (code , data)

OTHER (.. .. .)

Extensibility : BASEPLUS OPERATORS DATA CONTROL MACRO

fiED-0

Design :

Data :

Operators:

Control:

I/O :

Dependency :

Extensibility:

AL

Design:

Data :

Operators :

Control:

I/O:

Dependency:

Extensibility:

81.

AUTHOR (MIT , Ross?) BASE (ALGOL60) YEAR (early sixties)
PUR (general) CRIT (intended for machine independent
progrannning on register machines)

BASEPLUS ALPHA? ARRAY (single dim, based O, fixed range)
FIELD (bit) STRUCT (restricted) REF (arbitrary)
DECL (required , dynamic , global , initialisable)
OTHER (stack , lists)

BASEPLUS STRING (?) REF (address of , value of)
ASSIGN (reference , embedded) OTHER (infix stack ops)

BASEPLUS CLAUSES (value, named) PROC (parameters ref ,
recursive only if declared)

RECORD (through package) STREAM (through package)

None

MACRO (?)

AUTHOR (Haines) YEAR (1971) PUR (systems)
CRIT (" ... all the capabilities of the basic assembler
l anguage of the System/3 60 yet offers a dramatic
improvement in intelligibility" , "The language is
implemented as a preprocessor to BAL")

DECL (registers)

LOG (/\ ,V ,-,)

SEL (conditional, biconditional) PROC (value , parameters ref)
LOOPS (tested at top, tested at bottom , stepped)
GOTO (conditional)

None

Extreme

None

ALOOL 60

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

ALffiL 68

Design:

Data:

Operators:

Control:

I/0:

Dependency: ·

Extensibility:

82.

AUTHOR (committee ed Naur, P) BASE (ALGOL58) YEAR (1960)
PUR (scientific) CRIT ("a language suitable for expressing
a large class of numerical processes in a form sufficiently
concise for direct automatic translation into the language
of programmed automatic computers")

INT REAL BOOL ARRAY (multi dim, int-real-bool)
STRING (parameter only) DECL (required, dynamic, local)

ARITH (+, -, X, /, +) LOG(/\, V, --,, =>, =)
REL (<, ~, >, ~,=, 1) PRI (std) ASSIGN (s ingle value only)
COER (implicit int-real)

CLAUSES (declarations) GOTO (conditonal, numeric)
SEL (conditional, biconditional) PROC (value, parameters
value-name, recursive) LOOPS (tested at top, stepped)

Undefined, but STREAM indicated

None

None

AUTHOR (committee ed Van Wijngaarden) YEAR (1968)
BASE (ALGOL60?) PUR (general) CRIT (machine independent
general purpose language)

INT REAL BOOL ALPHA ARRAY (multidim, anytype, flexible
bounds) STRING (bounded (array of a lpha))
FIELDS (bit arrays, 8 bit bytes) PREC (multiple cell)
STRUCT (general) REF (general) DECL (required, dynamic
or static, local initialisable, equateable)

ARITH (+, -, x, /, +, t etc) LOG (/\, V, -,, ::::>, = etc)
REL (>, <, ~, ~, =, ¥ etc) STRING (relational , size)
ASSIGN (all modes) PRI (std, declarable) COERC (implicit)

CLAUSES (value, declarations) GOTO SEL (conditional,
biconditional, numeric) PROC (value, parameters, recursive)
LOOPS (tested at top-end, stepped) OTHER (parallel
elaboration)

STREAM RECORD

None

OPER,DATA

ALffiL W

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

ALPl-1/\

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

.LVVBIT /L

Design:

Data:

Operators:

Control:

AlITHOR (Wirth)
PUR (general)

BASE (ALGOL60) YEAR ()
CRIT (suitable for teaching)

BASEPLUS STRING (bounded) STRUCT (restricted)
REF (ARBITRARY)

BASEPLUS STRING (single character relational, move)

83.

BASEPLUS SEL (numeric) PROC (parameters value-name-result)
LOOPS (tested at top-bottom, stepped)

STREAM

None

DATA (restricted data structures)

AUTHOR (Yenshov A.P.?) BASE (ALGOL60) YEAR (1964)
PUR (11 scientific") ·

BASEPLUS STRUCT (restricted?) OTHER (complex)

BASEPLUS ASSIGN (multivalue)

PROC (not r ecursive)

STREAM?

None

DATA (restricted data structures)

AUTHOR (Christensen C) YEAR (1970) PUR (symbol
manipulation)

ST.RING (varying) OTHER (various substring forms)
DECL (~equired)

LOG (/\ , V , -,)

CLAUSES (delcarations) GOTO SEL (conditional, biconditional)

I/O: None

Dependency: None

Extensibility: None

Af>AREL

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

Af l

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

B

Design:

AUTHOR (Balzer RM) BASE (PL/I) YEAR (1968)
PUR (Compiler construction)

BASEPLUS

84.

BASEPLUS OTHER (specialised string parsing operators)

BASEPLUS OTHER (non-sequentially processed groups of
parsing statements with a special syntax)

BASEPLUS

None

BASE PLUS

AUTHOR (Iverson) YEAR (1961) PUR (machine description
language)

INT REAL ALPHA ARRAY (two dimensional, based O, any)
DECL (optional, static, global/local)
OTHER (variables are typeless)

ARITH (+, -, x, /, ~. t, mod, many more)
LOG (/\, V, -,, ::::), =, many more) RELATIONAL (<, >, s:, ~. =, #-)
ASSIGN (any, array slices) PRI (right-left)
COER (implicit int-real) OTHER (a consierable number)

GOTO (conditional, numeric) ~ROC (value, parameters ref,
recursive)

STREAM

None

None

AUTHOR (Johnson and Kernighan?) YEAR (1972) BASED (BCPL)
PUR (systems programming) (Implemented on HIS 6070)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

BCFL

Design:

Data:

Operators:

Control :

I/O:

Dependency :

Extensibility :

BLISS

Design:

Data:

Operators :

Control:

I/O:

Dependency:

Extensibili ty:

CifvpL

Design :

AUTHOR (Richards) BASE (CPL) YEAR (1968)
PUR (compiler writing) CRIT (linquist ic el egance)

ARRAY (single dim, base 0) DECL (required, stati c ,
local, equateable) OTHER (cell data only)

ARITH (+, -, X, /)
LOG (/\ , V , = , ~)
ASSIGN PRI (std)

REL (>, <, :2:. , ~ . =, -f)
REF (address of, deref)
OTHER (shift left, shift right)

CLAUSES (declarations) GOTO (conditional, numeric)
SEL (conditional, biconditional, numeric)
PROC (value, parameters untyped) LOOPS (tested at
top-bottom , stepped, exit clause)

None

None

DATA (through data structuring mechanism)

AUTHOR (Wulf et al)
CRIT ("so as to be
writing production
machine")

YEAR (1970) PUR (systems)
especially suitable for use in
software systems for a speci f i c

85 . ·

ARRAY (single dim, based 0) DECL (required, local/global,
static/dynamic) OTHER (only cells and registers declared)

ARITH (+, -, X, /,~,abs, t) REL (<,>,~, :2:., =,"I)
LOG (/\, V) REF (deref) ASSIGN PRI (std)
OTHER (shift left, shift right)

CLAUSES (value) SELECTION (conditional , biconditional,
numeric, logical) PROC (value, parameters ref, recursive)
PROCESS (coroutines) LOOPS (tested at top- bottom, exit
clause, stepped) OTHER (expression language)

None

CODE (inline) OTHER (pointer mechanism)

MACRO DATA (general data structuring)

AUTHOR (MIT) BASE (PL/I) YEAR (1970) PUR (teaching
systems progrannning)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

CLIP

Design :

Data:

Operator s :

Control:

I /O :

Dependency :

Extensibility :

COBOL

Design :

Data:

Operator s :

Control:

I /O :

Dependency :

Extensibility:

AUTHOR (Book et a l) BASE (ALGOL58) YEAR (1960)
PUR (information processing)

86.

BASEPLUS STRING (fixed length) DECL (initial isable ,
equateable) STRUCT (restricted t o static forms)

BASEPLUS STRING (subst r i ng , rel ational)

BASEPLUS

STREAM?

None

None

AUTHOR (Committee) YEAR (1959) PUR (business dat a
processing)

INT REAL ARRAY (single dim , based 1 , any) STRING (bounded)
PREC (digits) STRUCT (restricted)
DECL (required , static globa l , initialisable , equateable)

ARITH (+ , - , ~" , / , rem) REL (>, <, =) LOG (/\ , V , -,)
STRING (relational , move , translat e)
ASSIGN (any , substructures) PRI (std) COER (explicit)

CLAUSES (named)
biconditional)

RECORD

None

None

GOTO (numeric) SEL (conditional ,
LOOPS (tested at top , stepped)

COGB'IT

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

CORAL 66
Design:

DCALGOL
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

87,

AUTHOR (Reynolds) YEAR (1965) PUR (symbol manipulation)
CRIT ("primarily for use as a compiler-compiler")

DECL (optional, initialisable) OTHER (Cogent operates
directly on tree structures through productions.
Variables may be used to hold production trees, procedures
simple data)

OTHER (Cogent has a parse operation similar to SNOBOL but
operatong on tree structures)

SEL (conditional PROC (value, parameters ref?)
OTHER (statement fixture)

STREAM

None

MACRO (simple)

AUTHOR (?) BASE (ALGOL60) YEAR (1966)
PUR (real time systems)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

However, the language has greater data-structuring ability,
and bit manipulation facilities as well as permitting
inline machine code.

AUTHOR (Burroughs Corp) BASE (XALGOL) YEAR (1970)
PUR (systems programming CRIT (specifically designed
for writing parts of the B6700 operating system,
especially data communications)

BASEPLUS OTHER (messages, queues)

BASEPLUS OTHER (functions provided for many operations
on queues and messages)

BASEPLUS OTHER (wait on queue)

BASEPLUS

All extensions to XALGOL (which is machine dependent}
are machine dependent.

None

EPL
Design :

ES POL
Design:

Da ta:

Operators :

Control:

I/O :

Dependency :

Extensibili ty :

FORTRAN IV

Design :

Data:

Operators:

Control :

I/O:

Dependency :

Extensibility:

AUTHOR (Bell Labs & MIT) BASE (PL/I) YEAR (1966)
PUR (systems programming)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

88 .

However , the l anguage is basically a subset PL/I and
does not have the following PL/ I functions : I/O, PICTURE,
complex arithmetic , controlled storage , ON statements ,
r ecursive procedures , based storage , pointers , and
compiletime facilities .

AUTHOR (Burroughs Corp) BASED (XALGOL) YEAR (1966)
PUR (writ ing operating systems)

BASEPLUS ARRAY (s ingle dim , based 0) FIELDS (variable)
STRUCT (one level only) DEC L (address equateable,
initialisable) OTHER (registers , typeless variabl es ,
controlled storage allocation) ·

BASE PLUS

BASEPLUS OTHER (exit statement)

BASEPLUS

extreme CODE (pseudo-procedures)

MACRO (parametered) DATA (specification of bit layout
of typeless variabl es)

AUTHOR (IBM Corp) YEAR (1964) PUR (general)

INT REAL BOOL ALPHA ARRAY (two dim , based 1 , any)
.DECL (optional, static , local , initialisable , equateable)

ARITH (+, -, X, /, t) LOG (A, V, ,, ~)
ASSIGN (arith, l ogical)

GOTO (numeric) SEL (conditional) PROC (value,
parameters ref , multiple entry) LOOPS (tested at top ,
stepped)

RECORD (formatted)

None

None

FSL
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

GARGOYLE

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

GCXJOL I II

Design:

89.

AUTHOR (Feldman) YEAR (1964) PUR (writing compilers)

ALPHA OTHER (symbol tab~es, stacks, typeless variables)

ARITH (+,-) REL(<,>,=, f.) LOG(/\, V, -,)
ASSIGN OTHER (stack ops, symbol table searches)

GOTO SEL (biconditional) OTHER (parse requests are part
of the language, each statement has a named successor)

None

FSL is part of a system implemented on some particular
machine. The language becomes tied to the machine.

None

AUTHOR (Garwick) YEAR (1963) PUR (writing compilers)

ARRAY (single dim, based 1) DECL (required, local/global,
static) OTHER (typeless variables, Gargoyle operates on
a string of tokens)

ARITH (+, -, X, /) REL(>,<,= , 1-) LOG (A, V, -,)
OTHER (shift, mask, and array search operations)

GOTO SEL (conditonal, biconditional) PROC ()
OTHER (each statement has a named successor)

STREAM (tokens only)

Moderate

None

AUTHOR (McKeeman, Sauter) BASE (ALGOL60) YEAR (1967)
PUR (writing operating systems)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

However, basically the language consists of the integer
parts of ALGOL60, inline code capability, simple string
handling, and facilities for process control. Arrays
are single dimensioned and storage is static only.

9(}.

GPL

Design: AUTHOR (Garwick) BASE (ALGOL60) YEAR (1968)
PUR (general) CRIT (" a truly general purpose language")

Data:

Operators:

Control:

BASEPLUS ARRAYS (single dim) FIELD (variable)
STRUCT (general) REF (any)

BASEPLUS REF (value of)

BASEPLUS OTHER (extended procedure forms)

I/O: ?

Dependency: None

Extensibility:

IMP <IRONS)

Design:

Data:

Operators:

Control:

DATA (structured modes) OPER MACRO CONTROL

AUTHOR (Irons) BASE (ALGOL60) YEAR (1965)
PUR (systems) CRIT ("a real word tool, particularly
useful for systems programming")

BASEPLUS STRUCT (restricted) REF (abritrary)
OTHER (list)

BASEPLUS REF (address of, deref) PRI (right-left)
OTHER (infix lis t operations)

BASEPLUS CLAUSES (without declarations)

I/O: ?

Dependency: None

Extensibility: DATA (structures modes) OPER MACRO CONTROL

IMP (EDIN)

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

JffiSLE

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

. 91.

AUTHOR (Stephens?) BASE (ATLAS AUTOCODE) YEAR (1966)
PUR (systems programming) /

INT REAL ARRAY (multidim, real int) STRING (bounded)
PREC (multicell) STRUCT (general) REF (arbitrary)
DECL (required, dynamic, local, equateable)

ARITH (+, -, X, /, +, t) REL (>, <, ~, ::;;;, =, I)
LOG (A, V, XOR ,-,) STRING (concat, simple pattern
matching) ASSIGN (whole structures only) PRI (std)
COER (implicit integer-real) OTHER (left shift, right
shift)

CLAUSES (declarations) GOTO (numeric) SEL (conditional,
biconditional) PROC (value, parameters recursive)
INT (hardware) LOOPS (tested at top, stepped)

STREAM

Low

DATA

AUTHOR (White & Presser) YEAR (1973) PUR (the post­
syntactic phase of compiler construction)

INT ARRAY (single dim, based 1) STRINGS (bounded)
FIELDS (variable) REF (any mode) STRUCT (one level)
DECL (required , local, dynamic?) OTHER (descriptors?)

ARITH (?) LOG (?)
ASSIGN (any mode)

REL (?) STRING (?)
COER {all explicit)

REF (deref)

CLAUSES (declarations) GOTO SEL (numeric)
PROC (value, parameters value, r eturn)
LOOPS (tested at middle, exit clause)

?

?

DATA (structured modes)

JOVIAL
Design:

Data:

Operators:

Control:

I/0:

Dependency:

Extensibility:

LISP 2
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

AUTHORS (System Development Corporation)
BASE (CLIP) YEAR (19 60) PUR (general)

INT REAL BOOL ALPHA ARRAY (multidim) FIELDS (bit,

92.

8 bit bytes) PREC (digits) STRUCT (one level only)
DECL (optional, static, local, initialisable)

ARITH (+, -, X, /, +, t) LOG (A, V, 1)
REL (>, :;;::, <, ~. =, "f) ASSIGN (any) PRI (std)­
COER (implicit int-real)

CLAUSES (declarations) GOTO (conditional, numeric)
SEL (conditional, bicond i tional , logical)
PROC (value, parameters name-value)
LOOPS (t ested at top-middle, stepped)

None

CODE (inline) SEGMENTATION (data)

MACRO

AUTHOR(?) BASE (LISP 1~5, ALGOL60) YEAR (1965)
PUR (general)

INT REAL BOOL ALPHA ARRAY (simple dim, based 1)
STRUCT (linked lists of other data) DECL (required ,
local, static) OTHER (procedure reference)

ARITH (+, -, *, /,+,rem) LOG (A, V, 1)
REL (<, ~, >, :;;::, =, "f) ASSIGN (any) PR! (std except
list operators) COER (implicit int-real-bool)
OTHER (head and tail of list operators)

CLAUSES (declarations, value) GOTO SEL (conditional,
biconditional, numeric) · PROC (must have value,
parameters value-ref, recursive) LOOPS (tested at
top, . exit clause, stepped) OTHER (expression language)

STREAM

CODE (inline)

Programs can extend themselves

LP-7o ·
Design:

LRLTRAN
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Ext ensibility:

LSD

Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

93.

AUTHOR (Rossiensky et al) BASE (PL-360) YEAR (1969)
PUR (systems programming) CRIT ("a systems programming
language with parallel processes")

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

AUTHOR (Mendic ino) BASE (FORTRAN IV) YEAR (1966)
PUR (systems language) CRIT (ease of writing,
portability, efficient ...)

BASEPLUS FIELDS
REF (arbitrary)
higher levels by

(variable) ARRAYS (based 0)
STRUCT (subword structure of fields,
equivalencing) OTHER (register)

'

BASEPLUS REF (deref, address of) ASSIGN (multivalued)
OTHER (shift left, shift right)

BASEPLUS PROC (parameters ref-value) LOOPS (may be
decremented) OTHER (alphabetic labels)

BASEPLUS

CODE (inline)

MACRO (parametered)

AUTHOR (Eergeron et al) BASE (PL/I) YEAR (1970)
PUR (systems)

INT REAL ARRAY (single dim, based 1, any type)
STRING (variable) FIELD (bit, byte 8) PREC (halfword,
doubleword) STRUCT (general) REF (arbitrary)
DECL (optional, dynamic/static , global , initialisable)
OTHER (stacked, register)

ARITH (+, - ,. X, +, MOD, :) LOG (/\, V, -,, X, <<, >>, . &)
REL (>, <, :s;, ~, •••) STRING (substring, delete; insert,
concat, table occurrence) ASSIGN (arith, ref) .
REF (value of, address of) PRI (std) COER (explicit)

SEL (conditional, biconditional, numeric,exception)
GOTO PROC (value, parameters ref, omitted parameters,
recursive) TRAP (software) PROCESS (events)
LOOPS (tested at top, exit clause, next clause, stepped)
OTHER (coroutines)

STREAM RECORD

CODE (inline, pseudo procs) SEG (data) OTHER (register
allocation)

OP, CONTROL, MACRO

ML\LUS
Design:

~\L\RY

Design:

Data:

Operators:

Control:

I/O:

Dependency :

Extensibility :

f•flA II
Design:

94.

AUTHOR (General Motors Corp) BASE (XPL) YEAR (1~70)
PUR (syst ems programming)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

MALUS is a machine dependent (CDC STAR) extension
of XPL

AUTHOR (Rain) BASE (ALGOL68) YEAR (1972)
PUR (systems programming)

BASEPLUS FIELDS (none) DECL (specify exactly the
internal mode required) OTHER (data can be declared
read-only, s imple row structures, sets , powersets)

BASEPLUS REF (value of) COER (no widening)

BASEPLUS LOOPS (tested at bottom, optimised form)

?

None

BASEPLUS

AUTHOR (Schone et al) YEAR (1 963) PUR (writing
compilers)

META II cannot be adequately described in the standard
structure. A META II program consists of a represent­
ation of a BNF language description. Each production
of this description normally contains at least one call
on a literal output proced11re which would normally be
used to produce an jntermediate language (e. g. assembler).
Each production is considered a recursive procedure
definition. The META II program inputs a string of
tokens (which can be identifiers; strings , numbers, and
spec~al chars), parses this top-down, and produces the
indicat ed output.

f1:ll-3ffi
Design:

~DL-940

Design:

NELIAC
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

AUTHOR (System Development Corp) BASE (ALGOL60)
YEAR (1967) PUR (writing an operating system)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

95.

However, the language has only arrays for data
structuring and has no floating-point or character
manipulation facilities. It is machine-dependent
(IBM360) and features inline assembler and register
declarations.

AUTHOR (Hay and Rulisfson) BASE (ALGOL60)
YEAR (1 968) PUR (systems programming)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

However, the language has no floating-point or string
manipulation facilities, arrays are the only data
structuring tool, but has bit manipulation facilities.
It is machine-dependent (SDS-940) and permits ~nline
assembler.

AUTHOR (Halstead) BASE (ALGOL58) YEAR (1969)
PUR (general)

INT REAL ARRAY (single dim) FIELD (variable)
PREC (digits) DECL (required, local/global, static,
initialisable)

ARITH (+, -, X, /, t, abs) REL (<, :::;;:, >, ~, = 1)
LOG (/\, V) ASSIGN (array slices) PRI (none)
COER (explicit)

CLAUSES GOTO SEL (conditional, biconditional)
PROC · (value, parameters) LOOPS (tested at top, stepped)

STREAM (most implementations)

None

None

OSL
Design:

PASCAL
Design:

Data:

Operators:

Control:

I/O:

Dependency: ·

Extensibility:

96.

AUTHOR (Alsberg and Wells) BASE (ALGOL60) YEAR (1968)
PUR (writing operating systems)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

However, the language is an extended subset of ALGOL60
(including constructs to handle interrupts). It
appears to be machine dependent.

AUTHOR (Wirth) BASE (EULER) YEAR (1966) PUR (teaching)

INT REAL ALPHA ARRAY (multidim) REF (?) PREC (digits)
STRUCT (general) DECL (required, local, static)
OTHER (set, powerset, file)

ARITH (+, -, X, /,rem) LOG (A, V, -,)
REL (>, :<:::, <, ::s:, =, -/-, c) REF (deref) ASSIGN (subranges)
PRI (std) COER (implicit int-real) OTHER (set union,
intersection, and difference)

CLAUSES GOTO SEL (conditonal, biconditional, numeric,
logical) PROC (value, parameters, recursive)
LOOPS (tested at top-bottom, stepped)

STREAM RECORD

None

DATA

PUI
Design:

Data:

Operators:

Control: ·

I/O:

Dependency:

Extensibility:

PW30
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

AUTHOR (Russell) BASE (PL360) YEAR (1971)
PUR (systems programming)

97.

INT REAL ARRAY (single dim, based 0) PREC (multicell)
DECL (required , equateable, initialisable)
OTHER (registers)

ARITH (+, -, X, /) REL (<, >, =, f) LOG (A, V, -,)
REF (ref to) ASSIGN (arith) PRI (none)
OTHER (stack manipulation operators reflecting PDP11
architecture)

CLAUSES SEL (conditional, biccnditional) PROC ()
LOOPS (tested at top, stepped)

None

Extreme

None

AUTHOR (Doran) BASE (PL360) YEAR (1971)
PUR (systems programming)

INT ARRAY (single dim, based O)
initialisable) PREC (multicell)
reg.lsters)

DECL (required,
OTHER (predeclared

ARITH (+, -, X, /) LOG (A, V, XOR) OTHER (test .
accumulator)

GOTO SEL (conditional, biconditional) PROC (value,
parameters ref) LOOPS (exit clause)

None

Extreme

None

Pl3ffi
Design:

Data:

Operators:

Control:

I/O:

Dependency :

98.

AlITHOR (Wirth) YEAR (1967) PUR (systems programming)
CRIT (" to improve readability of programs which must
take into account the specific characteristics and
l imita1:ions of a particular computer")

INT REAL BOOL FIELD (8 bit bytes) ARRAYS (single dim ,
based 1) PREC (multicell) DECL (required , local/global ,
stati c equateable, initialisabl e) OTHER (registers)

ARITH (+, -, x, / , t, mod) REL (<, ~. >, ~ , =, #)
LOG (/\, V, -,) ASSIGN (any) PRI (left-right)
OTHER (register tests , shift ops)

CLAUSES (declarations)
biconditional , numeric)
top, stepped)

None

GOTO SEL (conditional ,
PROC () -LOOPS (tested at

Extreme CODE (inline) SEGMENTATION (code , data)

Extensibility : None

PL.503
Design:

Data :

Operators:

Control:

I/O:

Dependency :

Extensibility :

AUTHOR (Gordon) BASED (PL516) YEAR (1 972)
PUR (systems programming)

INT ARRAY (single dim , based 0) DECL (required ,
static , local/global , initialisabl e)

peculiar to the Elliott 503 , basical ly integer
manipulat i ons which reflect Elliott 503 code

CLAUSES (decl arations) GOTO (conditional)
SEL (biconditional) PROC (parameters) LOOP (tested
at top, stepped)

None

Extreme

None

PL516
Design:

Data :

Operators :

Control:

I/O:

Dependency:

Extensibility:

Pl/I
Design :

Data:

Operators:

Control:

I/O:

Dependency :

Extensibility:

AUTHOR (Bell and Wichman) BASE (PL360) YEAR (1970)
PUR (systems)

INT ARRAY (singl e dim, based 1) DECL (required , local ,
dynamic, initialisable)

ARITH (+, -, X, /,mod) LOG (A, V, --,, XOR)
REL (<, ~, >, ~, =, I) ASSIGN (any) PRI (left-right)
OTHER (shi ft ops, compare)

CLAUSE GOTO
PROC (va lue)

None

Extreme

None

SEL (conditional, bi conditional)
LOOPS (tested at top, stepped)

AUTHOR (IBM Corp) YEAR (1 964) PUR (general)

INT REAL FIELD (bit, 8 bit byte) ARRAY (multidim, any)
STRING (bounded) FIELDS (bit, 8 bit bytes) PREC (digits)
STRUCT (general) REF (arbitrary) DECL (optional,
static/dynamic, local/global, ini tialisable , equateable)
OTHER (areas)

ARITH (+, -, X, /, t, mod) LOG (A, V, --,)
REL (<, ~, >, ~ , =, I) REF (ref to, deref)
STRING (relational, size , substring , translate, move ,
table occurrence) ASSIGN (any , array slices) PRI (std)
COER (all implicit)

CLAUSE (declar at i ons , named) GOTO (numeric)
SEL (conditional , biconditional) PROC (values, parameters
ref, recursive , multiple entry) INT (software , hardware)
PROCESS (events) LOOPS (tested at top, stepped)

STREAM RECORD

None

DATA (structured modes) MACRO (compile-time everything)
CONTROL (generic procedures)

. (

PUS
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility :

PROTEUS
· Design:

PS440
Design:

Data:

Operators:

Control:

I/O:

Dependency:

AUTHOR (IBM Corp) BASE (PL/I) YEAR (1970?)
PUR (systems programming)

100,

INT ARRAY (single dim, based 0) FIELDS (bit, 8 bit bytes)
STRING (bounded) PREC (multicell) STRUCT (general,
self referencing) REF (arbitrary) DECL (required?,
local/global, static/dynamic , based, equateable,
initialisable) OTHER (entry, register)

BASEPLUS REF (address of) COER (no implicit coercions)

CLAUSE GOTO (numeric) SEL (conditonal, biconditional)
PROC (value , parameters ref, multiple entry)
LOOPS (tested at top, stepped)

None

CODE (inline) SEGMENTATION (code, data)
OTHER (register control)

MACRO (?) DATA (based data structures)

AUTHOR (Bell) YEAR (1968) PUR (systems programming)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

However, PROTEUS is an extensible l anguage, and has
at least one derived language.

AUTHOR (Sapper et al) YEAR (1970) PUR (systems
programming)

ARRAY (single dim) FIELDS (variable) PREC (rnulticell)
DECL (requir ed , local/global, static?, initialisable)
STRUCT (single level only) OTHER (typeless variables)

ARITH (+, -, X, /) LOG (A, V, -,)
REF (address of, value of) ASSIGN
COER (all explicit) OTHER (monadic
shift and mask ops)

REL (<, ~, >, ;z:, =, #)
PRI (std)
machine operations,

CLAUSES (declarations)
biconditional, numeric)
top-middle, stepped)

GOTO SEL (conditional,
PROC () LOOPS (tested at

None

CODE (inline) SEGMENTATION (code)

Extensibility: None

SABRE Pl/I
Design:

SAL
Design :

Data:

Operators :

Control:

I/O:

Dependency :

Extensibility :

Sl/8
Design :

AUTHOR (Hopkins) BASE (PL/I) YEAR (1968)
PUR (syptems programming)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

101.

However, the language is a l arge- subset PL/I with
r estricti ons t o improve effi c i ency (e . g. bounded strings)

AUTHOR (Lang) YEAR (1967) PUR (systems programming)
CRIT ("·combines freedom and flexibility of assembly
code with many facilities normally associated with
high-level languages")

INT REAL ARRAY (single dim , based 1) DECL (required,
local/global, stati c) OTHER (registers , entry points)

ARITH (+, -, x, /) LOG (/\, V, -,) REL (<, :;;; , >, :<::, =, '/-)
REF (deref, address of, index) ASSIGN (any) PRI (none?)
OTHER (shift ops)

GOTO (numeric) SEL (conditonal , biconditional)
PROC (?) LOOPS (tested at top , stepped)

STREAM

high CODE (inline) SEGMENTATION (data)

MACRO (s imple)

AUTHOR (Heidt and Fricks) BASE (ALGOL60) YEAR (1970)
PUR (writing operating systems)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE

A machine dependent l a nguage which reflects features
of the PDP/8 architecture .

Design:

SNOBOL 4
Design :

Data:

Operators:

Control:

I/O: .

Dependency:

Extensibility:

102.

AUTHOR (IBM?) YEAR (1960) PUR (general)
CRIT ("it is possible to describe processes in a machine­
independent language which are themselves machine
dependent")

The SLANG system can not be adequately described within
the usual notation. The system accepts as input a
problem-oriented-language (POL) and a machine description
and produces a machine language program . The machine
description is given in terms of a number of machine­
independent macros. The POL bears some similarity to
ALGOL58 .

AUTHOR (Griswold) BASE (SNOBOL 2) YEAR (1967)
PUR (string and list processing)

ARRAY (multidim , any) STRING (varying) STRUCT (general ,
self referencing) REF (arbitrary) DECL (array and
structures only) OTHER (typeless variables)

ARITH (+, -, X, / , t, mod) REL (<,::;;,>,:?:.,=,#)
REF (deref) STRING (relational size, substring , move ,
table occurrence and many more) ASSIGN PRI (left-right)
OTHER (parsing implied by statement form)

Each statement in the language may have named successors .
If control does not pass to a named successor it passes
to the next statement .

STREAM

None

DATA CONTROL (programs may extend themselves)

SUE
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

SIMJL X
Design:

AUTHOR (Clark and Ham) YEAR (1972) PUR (writing
operating systems)

103.

INT ARRAY (multidim) STRING (bounded) FIELDS (variable)
PREC (bits) STRUCT (general) REF (general)
DECL (required, local, dynamic) OTHER (register)

ARITH (+, -, X, /,mod) LOG (A, V, XOR,-,)
REL (<, s, >, ~, =, 1) REF (deref) STRING (characters
are treated as bytes, i.e. integers) ASSIGN (any, array
slices) PRI (std) COER (explicit) OTHER (set union,
intersection, difference and powerset operations, succ,
pred)

SEL (conditional, biconditional, numeric, logical)
PROC (value, parameters value, recursive) PROCESS (events)
LOOPS (tested at middle, stepped, exit clause)

STREAM

CODE (inline)

MACRO DATA (any modes)

AUTHOR (Basili) YEAR (1973) PUR (systems programming)

Data: INT ARRAY (singl e dim, based 1?)
DECL (required, local, dynamic, initialisable)

Operators: ARITH (+, -, X, /) REL (<, s, >, ~, =, #)
LOG (A, V, -., XOR) ASSIGN PRI (std)
OTHER (shift ops, part word ops)

Control: CLAUSES SEL (conditional, biconditional, numeric)
PROC (value, parameters value-ref, recursive)
LOOPS (tested at top, exit clause)

I/O: STREAM

Dependency: Low

Extensibility: . Compiler is extensible.

SY~PL

Design:

SYSL
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

Design:

AUTHOR (Computer Sciences Corporation) BASE (PL/I)
YEAR (?) PUR (systems programming)

LANGUAGE REFERENCE MATERIAL NOT AVAILABLE.

AUTHOR (Terashima?) YEAR (1972) PUR (systems)
CRIT (runtime efficiency and space efficiency less
than 1.15 times that of assembler language)

INT REAL? ALPHA ARRAY (single dim, based 1) int,
real) STRING (variable) FIELDS (bit strings)

104.

STRUCT (static) REF (string, program, offset into
array) DECL (required?, dynamic , local, initialisable)
OTHER (areas)

ARITH (?) REL (?) REF (deref) STRING (?)
ASSIGN (arith?) PRI (std) COER (implicit?)

CLAUSES (declarations , named) GOTO (conditional)
SEL (biconditional) PROC (value, ?) INTER (software)
LOOPS (tested at top, stepped)

RECORD

OTHER (pseudo procs)

None?

AUTHOR (McLure) YEAR (1964) PUR (compiler generator)

This language can not be described adequately within the
usual notation. TMG performs a top-down parse with
backup. Semantic rules may be embedded in the parse rules.
The basic TMG statement form is a sequence of actions.
Each action may be labelled, and it may indicate a failure
exit label. I/O is character oriented.

TRAC
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

TR/1NDIR
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

105.

AUTHOR (Mooers) YEAR (1964) PUR (text manipulation)
CRIT (designed specifically for handling unstructured
text in an interactive mode).

STRING (varying) OTHER (other types e.g. integer are
considered subclass of strings)

ARITH (+, -, X, /) LOG (A, V, --,) REL(=,>)
REF (ref to) STRING (relational, substring)
ASSIGN PRI (bracketing) OTHER (string operations,
shift and rotate)

interpretive, statement by statement

STREAM (string)

None

Programs may modify themselves

AUTHOR (Massachusetts Computer Associates)
YEAR (1964) PUR (compil er generator)

INT STRING (varying) OTHER (label)

A number of builtin functions manipulate a parse
tree directly

GOTO SEL (conditional, biconditional)

STREAM

None

None

XALGOL
Design:

Data:

Operators:

Control:

I/O:

Dependency:

Extensibility:

XPL
Design:

Data:

Operators:

106.

AUTHOR (Burroughs Corp) BASE (ALGOL60) year (1967)
PUR (general) CRIT (suitable for compiler writing)

BASEPLUS ALPHA ARRAY (read only) PREC (multicell)
FIELDS (variable) REF (string, array) DECL (equateable)

BASEPLUS STRING (relational, translate, move, table
occurrence) COER (many explicit coercions)
OTHER (field operations)

BASEPLUS SEL (numeric)
PROCESS (events, locks)

STREAM RECORD

High

MACRO (parameters)

INT (software, hardware)
LOOPS (tested at bottom)

AUTHOR (McKeeman) BASE (PL/I) YEAR (1968?)
PUR (compiler writing)

INT ARRAY (single dim, based 0) STRING (varying)
FIELDS (variable) DECL (required, static, local,
initialisable)

ARITH (+, -, x, /,mod)
REL (<, :::;;, >, ;;:;:, =, -f)
concatenation)

LOG (/\, V , -,)
STRING (relational, substring,

Control: CLAUSES GOTO SEL (conditional, biconditional, numeric)
PROC (value, parameters ref) LOOPS (tested at top,
stepped)

I/O: STREAM

Dependency: Low CODE (inline)

Extensibility: . MACRO

·107.

A Language Design

A careful study shows that several languages satisfy most of the

criteria for good systems languages . They are SUE, BLISS , MARY and

SIMPL-X. Each has some shortcomings: SUE, BLISS , and SIMPL-X do

not have adequate string manipulation facilities, for example. SUE and

MARY are more suited to larger machines , BLISS and SIMPL-X to medium-

size and small machines . In view of the r emarks made in the introduction

(and elsewhere) regarding proliferation of languages , it would be

hypocritical of me to suggest otherwise than that one of these languages

be adopted.

bad goto

cell

coercion

§6.3 Glossary

any goto which cannot be compiled into a simple
branch instruction

the smallest addressable unit of main storage

108.

the process by which one mode may be converted to another

definition (as opposed to declaration) - the specification of a mode,
a declaration which does not allocate storage

dynamic

field

form

heap

inline code

items (data)

mode

orthogonality

overlay able

prelude

process

task

typeless

union

weak typing

runtime changeable

part of a ce11 ·

secondary processing type, such as string manipulation,
error recovery, list processing

storage under control of a garbage collector

arbitrary code inserted at the statement level

any piece of named data

formal class associated with identifiers, no~mally a
data type

independence of complementary concepts within a language

able to be overwritten (in main storage) at runtime

standard set of definitions used to extend a base
language .for a specific purpose

performed function

a unit of work treated in an independent manner by the
operating system

having no mode or type, being any mode without coercion

mode possessing one of a limited s~t of modes

the ability to treat data as various different modes

109.

§6 .4 References

This section has two parts. §6.4.1 is a language ordered cross

reference t o §6 . 4.2 (which is the proper table of references) .

An attempt has been made to limit the number of references by

deleting those concerned directly with languages if and only if

(a) another (more accessable) paper discussing the language was

available (b) the paper concerned did contain discussion of things

other than the language itself . This mainly eliminated programmers

guides and language reference manuals.

many of these.

Sammet [Sam 71, Sam 74] gives

§6.4.1

AED-0

AL

ALGOL 60

ALGOL 68

ALGOL W

ALPHA

AMBIT/L

AP AREL

APL

B

BCPL

BLISS

BSL

CIMPL

CLIP

COBOL

· COGENT

CORAL 66

DCALGOL

EPL

ES POL

FORTRAN IV

FSL ·

GARGOYLE

GOGOL III

GPL

IMP (Irons)

IMP (Edin)

JOSS LE

JOVIAL

LISP

LP70

LRLTRAN

ILSD

MAL US

MARY

META

Language to Papers Cross Reference

Ros 69

Hai 73

Gal 67, Nau 63, Wir 63, Wir 66

Bra 71, Van 74

Boo 74

Yer 66

Chr 71

Bal 69

Ive 62

Joh 73

Ric 69

Wul 71a, Wul 71b, Wul 72

= PL/S

Cla 71a

Eng 61

ANS 73

Rey 65

BCS 70

Bur 73

MIT 66

Bur 72

ANS 66

Fel 66

Gar 64

Sau 67

Gar 68

Iro 70

Ste 74

Whi 73

Sha 63

Jen 70, Abr 66

Ros 70

Dub 71, Men 68

Ber 71, Ber 72

GMC 70

Rai 72

Opp 66

110.

111,

MOL-360 Boo 70, Boo 71

MOL-940 Hay 68

NELIAC Mas 60

NPL = PL/I

OSL Als 68

PASCAL Wir 69, Wir 71a

PL11 Rus 71

PL1130 Dor 72

PL360 Wir 68

PL503 Gor 72

PL516 Bel 71

PL/I ANS 73, Cor 69, Dod 66, Fre 69, Hop 71, Pes 71

PL/S Wie 71

PROTEUS Bel 68

PS440 Sap 71

SABRE PL/I Hop 68

SAL Lan 69a, Lan 69b

SL/8 Hei 70

· SLANG Sib 61

SNOBOL 4 Gri 68

SUE Cla 71b

SIMPL Bas 7 3' Bas 74

SYMPL csc
SYSL Ter 74

TMG . McL 65

TRAC Mop 65

TRANDIR Che 66b

XALGOL Bur 74

XPL McK 70

§6.4. 2

Abr 68

Als 68

ANS 66

ANS 68

ANS 73

Ard 70

Bak 72

Bal 69

Bas 73

Bas 74

BCS 70

Bel 71

Bel 68

Ber 71

Ber 72

Table of References

Abrahams PW
The LISP2 Programming Language and System
Proc FJCC 29 p661. 1966

Alsberg PA and Wells RA
OSL, An Operating System Language
TP University of Illinois, Urbana, Ill 61801 . May 1968

American National Standards Institute
American National Standard FORTRAN
ANS X3 . 9 - 1966

American National Standards Institute
American Nat i onal Standard COBOL
ANS X3.23 - 1968

American Nat ional Standards Inst itute
ECMA ANSI PL/I (BASIS 1-10) working document
1973

Arden B and Hamilton J
A Study of Programming Language Effectiveness
US Army Safeguard Systems Command ,
Contract DAH C60-7 0-C-003 6. 1970

Baker FT
System Quality throu gh Structured Programming
Proc FJCC pp339-343 . 1972

Balzar RM and Farber DJ
APAREL , A Par se -Request Language
CACM 12,11 pp624- 631 . Nov 1969

Basili VR
SIMPL-X: A Language for Writing Structured Programs

112.

TR-223 Computer Science Center, University of Maryland . Jan 1973

Basili VR
The SIMPL Family of Programming Languages and Compilers
TR-305 Computer Science Center , University of Maryland. June 1974

BCS Specialist Group (Online Computers and their Languages)
A Language for Real Time Systems
Computer Bulletin. Dec 1970

Bell DA and Wickmann BA
An Algol-Like Assembly Language for a Small Computer
Software Practice and Experience 1, 1 p61 . . Jan 1971

Bell JR
The Design of a Minimal Expandable Computer Language
Ph.D. Thesis. Dept . of Computer Science Stanford University
Stanford Calif . Dec 68

Bergeron RD et al
Languages for System Development
Sigplan Notices 6 , 9 p50 . Oct 1971

Bergeron RD et ai
Systems Program~ing Languages
Advances in Computers 12 pp175-284. 1972

Boo 70

Boo 71

Boo 74

Bra 71

Bro

Bro 69

Bro 69

Bro 74

Bur 74

Bur 73

Bur 72

113 .

Book E et a l
The CWIC/360 System, A Compiler for Writing and Implementing
Compilers
TR-SD-3510 System Development Corp, Santa Monica , California 90406.
April 1970

Book E et al
CWIC Users Guide : The MOL-360 Language .
TR-TM-(L)-4185/004/00 System Development Corp, Santa Monica ,
California 90406 . Feb 1971

Boom H
Experience with the use of Algol W as a SIL.
Algol Bulletin 37 pp63-67. July 1974

Branquart P et al
The Compositi on of Semantics in ALGOL-68 ·
CACM 14,11 pp697-707. Nov 1971

Brooker RA et a l
The Main features of Atlas Autocode
Computer Journal 8 ,4. Jan 1966

Brown PJ
A Survey of Macro Processors
Annual Review in Automatic Programming 6,2. 1969

Brown PJ
Using a Macro Processor to Aid Software Implementation
Proc SJCC 1969 p327-331. 1969

Brown P
Writing Software in ALGOL
Software Practice & Experience 4,2 pp139-1 44 . April 1974

Burroughs Corporation
Burroughs B6700/B7700 ALGOL Language Reference Manual
TR-5000649 Burroughs Corp . May 1974

Burroughs Corporat{on
Burroughs B6700/B7700 DCALGOL Reference Manual
TR-500 0052 Burroughs Corporation . June 1973

Burroughs Corporation
Burroughs B6700/B7700 ESPOL Language Manual
TR- 500094 Burroughs Corporation. June 1972

Che 66a Cheatham TE
The Introduction of Definitional Facilities into Higher Level
Programming Languages
Proc FJCC 29 pp623-637. 1966

Che 66b Cheatham TE

Chr 71

The TGS-II Translator Generator System
Proc IFIP Congress 65 Vol . 2 pp592-593 . 1966

Christensen C
An Introduction to AMBIT/L, A Diagramatic Language for List
Processing
Proc 2nd Symposfom on Symbolic and Algorithmic Manipulation
ACM . March 1971

Cla 71b Clark BL and Horning JJ
The System Language for Project SUE
Sigplan Notices 6,9 p79- 88. Oct 71

Cla 71a

Cor 69

csc

Dij 68

Dod 66

Don 72

Dor 72

DuB 71

Eng 61

Far 71

Fel 66

Fel 68

Fel 69

Fle 72

Fre 69

114.

Clark DD et al
The Classroom Information and Computing Service
TR-MAC TR-80, MIT Project MAC , Cambridge, Massachussetts 02139 .
Jan 1971

Corbato FJ
PL/I as a Tool for Systems Programming
Datamation 15,5. May 1969

csc
Systems Programming Language (SYMPL)
Computer Sciences Corporation , El Segundo, California 90245

Dijkstra EW
GO TO Statement Considered Harmful
CACM 11,3 p.147. March 1968

Dodd G
APL, A Language for Associative Data Handling in PL/I
Pree FJCC 29 . Nov 1966

Donovan JJ
Syst ems Programming
McGraw-Hill 1972

Doran RW and Navankasattusas T
Designing High- Level/Low- Level Computer Languages
Massey University Computer Unit
TR-MUCUP 7 . May 1972

Du Bois PJ and Mart in JT
The LRLRAN Language as Used in the FROST and FLOE Time-Sharing
Operating Systems
Sigplan Notices 6 , 9 pp92-104 . Oct 1971

Englund D and Clark E
The CLIP-translator
CACM 4,1 pp19-22. ~an 1961

Farber DJ
A Survey of the Systematic Use of Macros in Systems Building
Sigplan Notices 6 , 9 pp29-36 . Oct 1971

Feldman JA
A Formal Semantics for Computer Languages and its application
in a Compiler-Compiler
CACM 9 ,1 pp3- 9 . Jan 1966

Feldman JA and Gries ·D
Translator Writing Systems
C~CM 11,2 p17 . Feb 1968

Feldman JA and Rovner PD
An Algol-Based Associative Language
CACM 12,8 pp439-449. Aug 1969

Fletcher JG et al
On the Appropriate Language for Sys tem Programming
Sigplan Notices 7,7 p29 . July 1972

Freiburghouse RA
The Multics PL/I Compiler
Pree FJCC 35 pp187=199. Nov 1969

Gal 67

Gar 64

Gar 68

Gea 65

GMC 70

Goo 72

Gor 72

Gra 70

Gri ·

Hai 73

Hay 68

Hei 70

Hoa 73

Hop 68

Hop 71

Galler B and Perl is AJ
A proposal for Definitions i n ALGO L
CACM 10 , 4 pp204-219. April 1967

Garwick JV
GARGOYLE , A Language for Compiler Writing
CACM 7 , 1 pp16-20. June 1964

Garwick JV
GPL , A Truly General Purpose Language
CACM 11 , 9 pp634-638. Sept 1968

Gear CW
High Speed Compilation of Efficient Object Code
CACM 8,8 p483 . Aug 65

General Motors Corporation
MAL US
General Motors Corporation. 1970

Goos G
On System Programming Languages
IFIP WG2 . 1 Fonteinbleu 1972

Gordon NG
PL 503 Users Manual
TR- ISM 62 Inf ormation Science Dept., Victoria University ,
Wellington , N.Z. Nov 72

Graham R
The Use of High Level Languages for Systems Programming
Proc Inv Workshop on Network of Computers (NOC-69)

11 5.

National Security Agency, Fort George Nedde , Maryland. 20755
Oct 1970

Griswold RE et al
The SNOBOL 4 Programming Language
Prentice Hall. 1968

Haines EC
AL : A Structured Assembly Language
Sigplan Notices 8 , 1 p15. Jan 1973

Hay RE and Rulifson JF
MOL-940, Preliminary Specification for an ALGOL-like machine­
orientated language for the SDS940
SRI Project 5890 Stanford, California
Interim Technical Report 2. March · 1968

Heidt JS and Fricks CL
SL/8 , A Synthesis Language gor the PDP-8 / I
TR-GITIS-70-02, Georgia Institute of Technology , Atlanta ,
Georgia. 1970

Hoare CA
Recursive Data Structures
TR CS-73- 400 Stanford Artificial Intelligence Lab . Oct 1973

Hopkins M
SABRE PL/I
Datamation 14 , 12 p35. Dec 1968

Hopkins M
Problems of PL/I for Systems Programming
Sigplan Notices 6, 9 p89. Oct 1 971

Hus 62

Iro 70

Ive 62

Jen 70

Joh 73

Knu 71

Lan 66

Huskey HD
A Language for Aiding Compiler Writing
Proc Symbol ic Language in Data Processing p187
Gordon and Breach . New York . 1962

Irons ET
Experience with a n Extensible Language
CACM 13 ,1 pp31-40. Jan 1970

Iverson KE
A Programming Language

, Wiley. 1962

Jenks RD
META/ LISP , An Interactive Translator Writing System
TR- RC 2968 IBM, TJ Watson Research Centre,
Yorktown Heights New York 10598

Johnson SC and Kernighan BW
The Programming Language B
TR- CS- 8 Bell Labs , Murray Hill, N.J. 07974. Jan 73

Knuth DE and Floyd RW
Notes on Avoiding " GO TO" Statements
Information Proc Letters pp23- 31. 1971

Landin PJ
The Next 700 Programming Languages
CACM 9 , 3 pp157-166 . March 1966

Lan 69a Lang CA
SAL , System Assembly Language
Proc SJCC 34 pp543-555 . Nov 1969

Lan 69b Lang CA
Languages for Writing Systems Programs

-1.16 .

NATO Conference on Software Engineering Techniques p101 . Oct 1969

Low 69 Lowry ES and Medlock CW
Object Code Optimisation
CACM 12,1 pp13-21. Jan 1969

Lyl 71 Lyle DM
A Hierachy of High Order Languages for Systems Programming
Sigpl an Notices 6 , 9 pp73-78. Oct 1971

Mar 73 Martin CW

Mas 60

McI 60

McK 70

McL 65

Men 68

Assemblers : Ancient & Modern
Proc DATAFAIR 73 Conf . Vol 2 pp443-449. 1973

Masterton KS
Compilation for Two Computers with NELIAC
CACM 3 ,11 p607. Nov 1960

Mcilroy MD
Macro Instruction Extensions of Compil er Languages
CACM 3 , 4 . April 1960

McKeeman WM et a l
A Compiler Generator
Prentice Hal l . 1970

Mc Lure
TMG, A Syntax Directed Compiler
Proc ACM 20th National Conference p262 . 1965

Mendicino SF et al
The LRLTRAN Compil er
CACM 11,11 pp747-755 . Nov 1968

r

MIT 60

Mop 65

Nau 63

Opp 66

Pes 71

Rai 72

Rey 65

Ric 69

Ros 69

Ros 70

Rus 71

Sam 69

Sam 71

Sam 74

Sap 71

Sau 67

Massachussetts Institute of Technol ogy
EPL Reference Manual
Project MAC

Mopers C and Deutsch LP
TRAC , A Text Handling Language
Pree ACM 20th National Conference p229 . 1965

Naur P
Revised Report on Algorithmic Language ALGOL60
CACM 6,1 p1. Jan 1963

Oppenheim DK and Haggerty DP
META 5: A Tool to Manipulate Strings of Data
Proc ACM 21st Nat ' l Conf. 1966

Peschke JV
PL/I Subsets for Software Writing
Sigplan Notices 6 ,4. May 1971

Rain M
Some Formal Language Aspects of MARY
ALGOL BULLETIN AB34 .4 . 2. p45. June 1972

Reynold s JC
An Introduction to the COGENT Programming System
Pree ACM 20th National Conference p422. 1965

Richards M
BCPL, A Tool for Compiler Writing and Systems Programming
Pree SJCC 34 pp557-566. May 1969

117.

Ross DT
Introduction to Software Engineering with the AED-0 Language
MIT Cambridge , Massachussetts. 1969

Rossiensky JP and Tixier VT
LP70: A Systems Programming Language with Parallel Processes
Proc ACM International Computer Symposium ; Bonn p492 . 1970

Russel l RD
Preliminary Specifications of PL 11 : a programming language
for the DEC PDP11 Computer .
TR-SW-29 CERN DD/OM Development Note. 1971

Sammet JE
Programming Languages, History and Fundamentals
Prentice-Hall, Englewood Cliffs NJ 07632. 1969

Sammet JE
A Bri ef Survey of Languages Used in Systems Implementation
Sigplan Notices 6 ,9 p1 . Oct 1971

Sammet JE
Roster of Programming Languages for 1973
Sigplan Notices 9 ,11 pp18-31 . Nov 1974

Sapper GR
The Programming Language PS440 as a Tool for Implementing a
Time- Sharing System
Sigplan Notices 6 ,9 p37. Oct 1971

Sauter J
GOGOL III, An Algol-like Language for the PDP-6
TR-CS 239 Stanford University . 1967

Sch 69

Sha 63

Sib 61

Sli 71

Sol 72

Ste 74

Swi 68

Ter 74

Tix 69

Van 74

Wie 71

Wir 63

Wir 66

Wir 68

Wir 69

118,

Schneider V
Some Syntactic Methods for Specifying Extendible Programming
Languages
Proc FJCC p145-156. 1969

Shaw CJ
A Specification of JOVIAL
CACM 6 ,12 p721 . Dec 1963

Sibl ey RA
The SLANG- System
CACM 4,1 p75 . Jan 1961

Slimick J
Curr ent Systems Implement ation Languages : One User ' s View
Si gplan Notices 6 , 9 p20- 28 . Oct 71

Solntseff N
A Classificati on of Extensible Progr amming Languages
Information Proc Let t er s 1 pp91-96 . 1972

Stephens PD
The IMP Language and Compiler
Computer Journal 17,3 . 1974

Swinehart D
GOGOL III
ON 48 Stanford Artificial I ntelligence Laboratory
Stanford Universit y . Dec 1968

Terashima N
SYSL - System Description Language
Sigplan Notices 9 ,1 2 p35 . Dec 1974

Tixier V
O.S. Writing Systems
Informal Working Paper for NATO Conf erence on Software
Engineering . . Oct 1969

Van Wijngnaarden A (Ed)
Revised Report on the Algorithmic Language ALGOL68
TR- 74-3 Computer Science Dept. , University of Alberta

Wiederhold G and Ehrman J
Inferred Syntax and Semantics of Pl/S
Sigplan Notices 6 , 9 p111-121 . Oct 1971

Wirth N
A generali sation of ALGOL
CACM 6 pp547 - 554 . 1963

Wirth N and Hoa re CA
A Contribution to the Devel opment of ALGOL
CACM 9 , 6 pp413-431 . June 1966

Wirth ' N
PL360 , A Programming Language for the 360 Computers
JACM 1 5,1 pp37- 74. Jan 1968

Wirth N
The Programming Language PASCAL and i ts Desi gn Criteria
NATO Conference on Softwar e Engineering . Rome. Oct 1969

Wir 71a Wirth N
The Programming Language PASCAL
Acta Informatica 1 pp35-63
Springler-Verlag. 1971

Wir 71b Wirth N

Whi 73

Program Development by Stepwise Refinement
CACM 14,4 p221-227; August 1971

White JR and Presser L
A Structured Language for Translator Construction
to be published in the Computer Journal. 1973

Wul 71a Wulf WA et al
Reflections on a Systems Programming Language
Sigplan Notices 6,9 p42-49. Oct 1971

Wul 71b Wulf WA et al
BLISS, A Language for Systems Programming
CACM 14,12 pp780-790. Dec 1971

Wul 72 Wulf WA

Yer 66

Zah 73

Systems for Systems Implementations - Some Experiences
from BLISS
Proc FJCC pp943-948. 1972

Yershov AP
ALPHA, An Automatic Programming System of High Efficiency
JACM 13,1 p17. Jan 1966

Zahn CT

1.19,

A Control Statement for Natural Top-down Structured Programming
TR DD-CTZ-lg Cern Switzerland. Oct 1973

