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ABSTRACT 

Software size estimation is a central but under-researched area of software engineering 

economics. Most current cost estimation models use an estimated end-product size, in 

lines of code, as one of their most important input parameters. Software size, in a 

different sense, is also important for comparative productivity studies, often using a 

derived size measure, such as function points. The research reported in this thesis is an 

investigation into software size estimation and the calibration of derived software size 

measures with each other and with product size measures. 

A critical review of current software size metrics 1s presented together with a 

classification of these metrics into textual metrics, object counts, vector metrics and 

composite metrics. 

Within a review of current approaches to software size estimation, that includes a detailed 

analysis of Function Point Analysis-like approaches, a new classification of software size 

estimation methods is presented which is based on the type of structural partitioning of a 

specification or design that must be completed before the method can be used. This 

classification clearly reveals a number of fundamental concepts inherent in current size 

estimation methods. Traditional classifications of size estimation approaches are also 

discussed in r~lation to the new classification. 

A generic decomposition and summation model for software sizing is presented. 

Systems are classified into different categories and, within each category, into 

appropriate component type partitions. Each component type has a different size 

estimation algorithm based on size drivers appropriate to that particular type. Component 

size estimates are summed to produce partial or total system size estimates, as required. 

The model can be regarded as a generalization of a number of Function Point Analysis­

like methods in current use. Provision is made for both comparative productivity studies 

using derived size measures, such as function points, and for end product size estimates 

using primitive size measures, such as lines of code. The nature and importance of 

calibration of derived measures for comparative studies is developed. System adjustment 

factors are also examined and a model for their analysis and application presented. The 
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model overcomes most of the recent criticisms that have been levelled at Function Point 

Analysis-like methods. 

A model instance derived from the generic sizing model is applied to a major case study 

of a system of administrative applications in which a new Function Point Analysis-type 

metric suited to a particular software development technology is derived, calibrated and 

compared with Function Point Analysis. The comparison reveals much of the anatomy 

of Function Point Analysis and its many deficiencies when applied to this case study. 

The model instance is at least partially validated by application to a sample of components 

from later incremental developments within the same software development technology. 

The performance of the model instance for this technology is very good in its own right 

and also very much better than Function Point Analysis. 

The model is also applied to three other business software development technologies 

using the IFIP1 standard inventory control and purchasing reference system. The 

purpose of this study is to demonstrate the applicability of the generic model to several 

quite different software technologies. Again, the three derived model instances show an 

excellent fit to the available data. 

This research shows that a software size estimation model which takes explicit advantage 

of the particular characteristics of the software technology used can give better size 

estimates than methods that do not take into account the component partitions that are 

characteristic of the software technology employed. 

1 International Federation for Information Processing 
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CHAPTER 1 

INTRODUCTION TO SOFTWARE SIZE ESTIMATION 

Software size estimation is an important but under-researched area of software 

engineering economics. The derivation of an appropriate size estimate is neither 

straightforward nor trivial, the process of sizing software is still subject to a wide 

margin of uncertainty and there has been comparatively little research on software 

sizing models to date [DACS87]. This is particularly true in the general area of 

business applications. The prediction of the size of a product as early and as 

accurately as possible is an elusive goal and currently "expert sizing depends on so 

many subjective factors that different 'experts' can arrive at radically different 

estimates. This underscores the need for more objectively based sizing techniques" 

[CONT86]. 

Software size estimation is important because size is a major cost driver in software 

development and hence is typically a critical component of early effort estimation 

[WANG85]. Estimated system size is used as input to cost and scheduling models so 

that development effort can be estimated and progress can be monitored throughout 

the development. For detailed scheduling estimates subsystem and component sizes 

are also necessary. 

Escalating software development costs have led to the use of tools to increase 

developer productivity. There is a corresponding need to measure changes in 

productivity as the development environment changes (technology productivity). 

Productivity is usually defined in terms of output per effort unit with software size 

being the most commonly used measure of the output produced. Such a definition is 

adequate for developer productivity, but a different approach is needed for technology 

productivity. Software size in relation to software cost, schedule, and both developer 

and technology productivity is discussed further in 1.1 and 1.2. 

There is a serious and continuing shortage of suitable development data for research 

into software size estimation models and productivity studies. A substantial and on-



going commitment from management is required for any kind of realistic data 

collection. Small programs written by students are not adequate for this type of 

research. To obtain enough relevant data long periods of time are normally involved 

(several man-years). The collection of project data can be quite time consuming and 

difficult without instrumented tools. The author was fortunate in having access to a 

large amount of high quality data from the New Zealand Correspondence School 

development. 

With the emergence of an ever-increasing variety of new methods and tools for 

software development, together with evolutionary changes in existing methods, there 

is a need for more flexible and adaptable methods of software size estimation, that can 

change as the software development environments they are applied to change. 

Generic software size estimation models which can be tailored to particular 

environments are required to meet changing needs of this complexity. 

1.1 IMPORTANCE OF SOFTWARE SIZE ESTIMATION AS 
INPUT TO COSTING AND SCHEDULING MODELS 

With the continuing escalation of software costs and the cost overruns, schedule 

delays, poor reliability, or even project failure, that are typical of many software 

projects [DEMA82], the importance of software project control is obvious. Project 

planning has been identified as one of the critical problems faced by software 

managers [THA Y81]. However, successful project planning relies on a reasonably 

accurate assessment of the effort required for completing the project [W ANG84] 

together with the schedule options that may be available [JEFF87]. Software costing 

and scheduling models are being used increasingly to assist with the planning of 

software development. Costing models are used not only to predict the cost of 

developing the software but also to estimate the number of personnel that will be 

required for that development, the elapsed time to complete the project, and the time 

that will be needed to complete each phase of the project. Over the past several years 

a number of effort/costing models have been developed [DOTY77, W ALS77, 

PUTN78, FREI79, BOEH81, RUBI85, JONE86, CONT86, JEFF87]. Many of 

these models are also discussed in [BOEH81, MOHA81, BOEH84, KITC85, 

CONT86, JONE86, KEME87]. These models, which all use software size as a 

major cost driver, are finding increasing commercial acceptance, especially in the 
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United States. One of the models, the Intermediate COCOMO model [BOEH81], 

when applied to a sample of 63 projects, gave results which were within 20% of 

actual cost 68% of the time. Another model, SPQR/20 [JONE86], is claimed to have 

been calibrated against historical data from a broad spectrum of programs and 

systems and to have generally come within ±15% of the observed results, except at 

the extreme ends of the model's operational range. Although there is a need for 

software sizing models with a reliability at least as good as that observed for these 

costing models, there has been comparatively little research to date in this area and 

variations of over 300% in the size estimation of a project have occurred during a 

project's development [SINC87]. It is important to remember that a cost estimation 

model cannot give a good cost prediction unless the estimated size which is used as 

input is close to the actual size. Many of the accuracy claims for cost prediction 

models are based on data sets which include size data from already completed 

software and all of the models have been developed using data obtained from 

completed software projects. In fact the COPMO model [CONT86] was developed 

using the same data that was used to develop COCOMO [BOEH81]. As a result, the 

accurate estimation of the size of proposed software was not a problem in these cases 

since the size was already available. However, after-the-event analysis of the 

relationships between cost drivers and effort, using a known size, though providing 

useful modelling data, does not address the size estimation question. 

Software size estimation is the weakest link in the software cost estimation chain. It 

was included in Boehm's list of seven outstanding research issues in software 

engineering economics. He states that "The biggest difficulty in using today's 

algorithmic software cost models is the problem of providing sound sizing 

estimates". This difficulty is underscored by an experiment comparing six software 

size estimation models [DACS87] where the results of the experiment showed a range 

of estimates from 6,622 lines of code to 36,700 lines of code where the actual size 

was 9,177. Reifer [REIF87a p.285] states in his cost-estimating wish list that "better 

and more accurate ways of developing sizing estimates will be made available as 

research into function point theory begins to realize its potential". Itakura and 

Takayanagi [ITAK82] suggest that size, together with time required for software 

development, "is probably the most difficult aspect of any project". The accuracy of 

any size estimation model will depend on "where in the life-cycle the model is 

applied, the level and depth of the information available for the software system, the 

understanding of the model" being used "by the developing organization" as well as 
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"familiarity with the specific software application area. Only a certain level of 

accuracy and precision is possible at the early phases of the development where the 

level of knowledge about the software system is at a minimum. Any software sizing 

technique cannot be expected to compensate for an inaccurate understanding of what 

the software is to do" [DACS87] . Chapter 3 discusses current approaches to 

software sizing and recent research in some detail. 

1.2 IMPORTANCE OF 
PRODUCTIVITY STUDIES 

SOFTWARE SIZING IN 

The escalating cost of software, the accelerating demand for computer applications in 

recent years [W ANG84] and the development of products that claim significant 

productivity benefits, have made productivity measurement in software development 

increasingly important. A survey of the productivity literature to 1982 was published 

in [PARI82] and Jones [JONE78, JONE81, JONE86] has also made an extensive 

study of programming productivity. He suggests that the term software productivity 

is generally used to imply either reduced calendar time for product development or 

reduced cost of that development. In order to calculate productivity it is necessary to 

have some unit with which to measure the quantity of product that has been 

developed. Jones states that "historically there has not been a workable definition for 

software yield. Programmer productivity has become an international concern and its 

three parameters are time, cost and yield" . Yield is sometimes referred to by the 

terms result or output [KWON87]. Productivity has traditionally been measured in 

lines of code per programmer day (month or year) and a number of papers have been 

published giving productivity figures for specific languages [ALBR79, JEFF83, 

RUD083, TA TE87, VERN88], though increasingly dissatisfaction is being 

expressed with lines of code as a measure of yield, especially for fourth generation 

languages [RUD083, JONE86, CANN86] and for comparisons of productivity 

between projects developed in different languages [ALBR79, BEHR83, RUD83, 

JONE86]. As a result there have been attempts [HALS77, ALBR79, DEMA82] to 

use units other than lines of code to measure the size of software. Some replacement 

metrics for measuring the output of the software development process that have been 

suggested are function points [ALBR79], BANG [DEMA82], and data base/diagram 

component counts [KWON87]. Chapter 2 classifies software size metrics and 

presents a critical evaluation of the more commonly used metrics. 
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1.2.1 Job Sizing for Productivity Studies 

Software productivity studies are most commonly done for one of two reasons: 

(1) to measure developer and/or managerial effectiveness within a defined 

software development environment (developer productivity) 

(2) to measure the effect of different development methodologies, tools or 

environments on software production (technology productivity). 

Software size measures are needed in both cases. However the sizes that need to be 

measured are different. In the first case the size of the product is of concern and the 

productivity unit commonly employed is lines of code per person-day. In the second 

case, however, there is as much interest in the size of the job to be done as there is in 

the size of the software produced using a particular development environment. The 

size of the job to be done should not be measured in technology-dependent terms (for 

example, lines of code) since this would defeat the purpose of measuring the 

technology-dependent effects. A measure which is as technology-independent as 

possible is needed for the second type of productivity study. Function Point Analysis 

(FPA) [ALBR79, ALBR83, ALBR84] is the most commonly used method that 

attempts to supply such a measure. See 2.5 for a critical evaluation of FPA. 

It is considered appropriate here to examine more closely the role of software size 

measures in productivity studies which compare different software development 

technologies. 

There are, in general, two approaches to this problem, the standard task approach and 

the standard measure approach. These are illustrated in Figures 1.1 and 1.2. 
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Standard task, J 

technology A technology B 

Size in L using A S(J, A, L) S(J, B, L) Size in L using B 

A and B can be compared directly using the ratio 
S(J, A, L) : S(J, B, L) 

Figure 1.1 The Standard Task Approach to Software Productivity 

Measurement 

In the standard task approach a standard system is defined and then implemented in 

two different technologies. The sizes of the resulting systems can be directly 

compared and the comparative effects of the technologies on size will be obvious. 

Size of P 
inF 

I Task P 

technol gy A 

SizeofPin S(P,A,L) 
L using A 

P(A) = 
S(P, A, L) 

S(P, F) 

Standard measure, F of job 
to be done 

I Task Q 

technol gy B 

S(Q, B, L) 

S(Q, R, L) 
P(B) = S(Q, F) 

Size ofQ 
in F 

Size ofQ in 

L using B 

Figure 1.2 The Standard Measure Approach to Software Productivity 

Measurement 
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In the standard measure approach the sizes of the jobs to be done are estimated in a 

'technology-independent' metric. The sizes of the completed jobs are measured in L 

(probably lines of code). P(A) and P(B) are then calculated by dividing the sizes of 

the jobs in L units by the estimated sizes in F units. Productivity comparisons can 

now be made because the dimensions of each are L units/F units. 

The standard measure approach is generally used for several reasons: 

(1) it is not usual for two different implementations of an identical system to 

be developed 

(2) applications chosen to fill the standard task role are usually small, and 

therefore are likely to be unrepresentative 

(3) the standard measure approach is usually very much cheaper than the 

standard task approach 

( 4) it is difficult in practice to keep all other factors constant when using the 

standard task approach. 

A major problem, however, for software productivity measurement is that there is no 

generally accepted or completely satisfactory measure of the size of the job to be 

done. Function points are used as a de facto common measure particularly for 

business applications, but their use in this role has recently been criticized [SYM088, 

VERN89]. The role of calibration for productivity comparisons is described in 

Chapter 4 and some examples of calibration for this purpose are included in Chapters 

5 and 6. 

The treatment of technology productivity above has been limited to sizing issues. In 

addition to the sizes of the products of different technologies, it is, of course, usual to 

compare cost, effort and duration as well. These matters are, however, outside the 

scope of this thesis. 
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1.3 OBJECTIVES AND STRUCTURE OF THESIS 

The main objectives of this research are: 

(i) by means of a critical survey of recent research in software size estimation to gain 

a greater understanding of both software size estimation methods and metrics 

(ii) based on this understanding, to construct a generic software size estimation model 

that meets most sizing purposes and overcomes most size estimation problems 

(iii) to test the model in a realistic environment . 

The structure of this thesis follows these general goals and is divided into seven 

chapters as follows: 

1. The importance of software size estimation and measurement for input into costing 

and scheduling models and also for job sizing in productivity studies. This topic has 

been examined earlier in this chapter. 

2. A critical examination of software size metrics and their suitability for different 

sizing purposes and in different software development situations. 

3. A critical study of software size estimation methods together with an attempt to 

classify them in a more systematic manner than has been done previously in order to 

highlight their relationships and reveal more of their essential structure. The 

identification of those methods whose development and/or generalization is most 

likely to lead to new and substantially improved sizing models. 

4. The development of a generic software size estimation model which 

(1) accommodates a wide range of different sizing purposes and sizing 

metrics 

(2) overcomes many of the criticisms of existing models 
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(3) spans much of the software life cycle, but concentrates on the specification 

and early design phases where early size estimates are most in demand. 

(4) can be based on more objective aspects of software representations from 

specification through to code, but does not necessarily exclude subjective 

aspects 

(5) distinguishes metrics which are highly technology-dependent from those 

that are less so, relates them through technology-dependent factors, and 

provides a calibration mechanism for metrics with low technology­

dependence (job-size metrics) 

(6) builds upon a historical data base of technology-dependent data and 

includes an adaptive mechanism to cope with a shift or change in software 

technology, including recalibration of job-size metrics where necessary 

(7) can be tailored to specific development environments or technologies for 

greater accuracy, or can be kept more general in applicability, possibly at 

some cost in accuracy 

(8) allows for partial sizing to meet a variety of sizing purposes 

(9) includes an adjustment factors model which characterizes and classifies 

adjustment factors effectively and provides for flexibility in their use to 

meet different sizing purposes. 

5. The development and testing of an instance of the generic software sizing model 

for a large system of related data-centred business applications for which a significant 

body of data is available. 

6. A demonstration of the applicability of the generic model to several different 

software development technologies applied to a single standard business system of 

small but significant size. 

7. A summary of conclusions from this research and an outline of some areas for 

further research. 

9 



Data used for development and application of the model in Chapter 5 is included in 

Appendices A and B, while data used for the development of the model instances in 

Chapter 6 is included in Appendix C. 

The terminology employed in the software economics area presents many difficulties, 

owing mainly to the many different concepts used in many different situations and the 

dearth of suitable commonly used words to describe them. As a result many different 

writers use different terms, and it has been necessary to compile a glossary of tem1s. 
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CHAPTER 2 

A CRITICAL REVIEW OF PREVIOUS WORK ON 
SOFTWARE SIZE METRICS 

Software size metrics are fundamental to all software size estimation. Since they are 

so fundamental they are described in detail in this chapter while the next chapter 

reviews the closely related topic of current approaches to software size estimation. 

This chapter presents a critical review of previous work in the area of software size 

metrics which is examined in relation to the ideas for software size estimation 

developed in this thesis. Because it has not been possible to completely separate 

some of the metrics from the methods of obtaining them, some discussion of methods 

is also included where appropriate. 

There are problems with the measurement of software. Although many researchers 

are dissatisfied with the most commonly used metric, the line of code (LOC)1, as the 

basis for measurement [ALBR79, RUD083, JONE86 p.5, LEVI86] there is no 

commonly agreed or generally satisfactory substitute for it. Some suggested 

replacements to date include function points [ALBR 79], length and volume 

[HALS77], character counts [BLUM86], token counts [LEVI86], data base 

component counts and diagram counts [KWON87], BANG [DEMA82], and metric 

vectors [BASI88] (though the last is not a single metric). Different software size 

metrics tend to relate to different aspects or concepts of system size such as the size of 

the product as against the size of the job to be done. 

An approach to measurement that will give a consistent (usable at all stages of the 

lifecycle) size metric or set of related metrics, early enough in software development 

to be useful, is critical for software engineering economics. DeMarco [DEMA82] 

defined the R.ualities of a good metric in the context of software size measurement and 

estimation, as being measurable, independent (objective), accountable, precise, 

consistent and available early enough to be useful. Levitin [LEVI86 p.314] discusses 

the requirements of a basic unit for the measurement of software and suggests that the 

usefulness of a metric may be relative, as the same metric may be quite appropriate in 

one situation and useless in another. He suggests that not only should a metric be 

1 LOC is used as an abbreviation for line or lines of code depending on the context. 
11 



meaningful in the situation in which it is used, but that it should also have the 

following four properties: 

(a) a clear and unambiguous definition so that it can be calculated algorithmically (i.e. 

be automatable) 

(b) a relationship with an intuitive idea of program size; it should always have a 

positive value and be additive 

(c) application to a wide variety of languages (i.e. be universal) 

(d) a correspondence to some traditional means of measuring the size of printed 

material in natural language. 

2.1 CLASSIFICATION OF SOFTWARE SIZE METRICS 

Software size metrics can be classified into four main groups: 

a) textual measures which are analogous to commonly used measures of the size of 

natural language in printed form 

b) object counts of specification objects, or of objects occurring in other descriptions 

of software, or within the software itself 

c) vector metrics which count separately more than one kind of object within the 

software or within some description of it, such as requirements, specification, and 

design documents or machine readable records 

d) composite metrics which are single values produced by the application of functions 

to more than one kind of object count; these can be regarded as functions of vector 

metrics. 

The characteristics of these four classes are described in sections 2.2 - 2.5. The most 

discussed and/or most used software size metrics fall within three of these groups, 

textual metrics, object counts and composite metrics. Figure 2.1 illustrates this 

classification and shows software size metrics within this structure. 
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Textual 
Metrics 

Counts of: 

Programs 
Functions 
Procedures 
Subroutines 
Paragraphs 

Subprograms 
Modules 

Statements 
Lines 

Tokens 
Characters 

Object 
Counts 

Counts of: 

Metrics 

Diagram components 
Data Base components 

Logical transactions 
Functional primitives 

Operators 
Operands 

Vector 
Metrics 

Vectors 
containing 
more than 
one metric 

Composite 
Metrics 

Function Points 
Mark II Function Points 

BANG 
Software Science 

measures 

Figure 2.1 Structural Classification of Size Metrics 

2.2 TEXTUAL METRICS 

Textual metrics can be considered to be analogous to the traditional measures used 

with natural language, i.e. chapters, pages, paragraphs, sentences, lines, words and 

characters. LOC, statement counts, and token counts are textual metrics that have 

been used most common! y as software size metrics. 

Chapters may be considered analogous to programs and at a crude level the number 

of programs making up a system may be of interest; however, this measure may not 

be the ultimate metric used but may be converted to a LOC measure by using the 

average LOC per program. If a particular environment has standards that result in the 

production of programs of a similar size the measure may be meaningful but if these 

standards do not exist, the metric may not be very useful. 
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Paragraphs have been considered analogous to modules, functions, procedures, 

subroutines, subprograms or paragraphs (in the COBOL sense). The modules used 

in experimental work done by Basili [BASI85 p.2] were defined as independently 

compilable units such as FORTRAN functions, subroutines and BLOCK DAT A, or 

separately definable and retrievable units from an on-line library. Conte et al 

[CONT86] define modules as consisting of one or more functions and suggest that 

counting functions may be more useful than counting modules as the variation in 

LOC for a function may not be as great as that of a module lp.43 J. They cite indirect 

support for this in [BASI79]. They also suggest [p.42] that, unless there are strict 

guide-lines on the way programs are divided up, this metric will give little 

information. It is unlikely that modules, procedures, subprograms, etc. will be of 

any real use unless they are associated with another metric such as LOC and Levitin 

[LEVI86 p.314] suggests that, although modules, functions, procedures etc. may 

have been used as size metrics, they are clearly too coarse for most applications. 

2.2.1 Lines of Code 

The LOC is a textual unit that can be considered analogous to a line of text in the 

traditional measures associated with natural languages. Dunsmore fDUNS84] 

believes that, if one uses a standard definition consistently, LOC is probably the most 

intuitive measure of program size. The LOC is the oldest and most commonly used 

metric for software size and is still extensively used today. This metric originated 

from the number of punched cards that it took to contain a program [CONT86 p.32], 

and appeared in the literature as early as 1969 [ARON69], although clearly it had 

already been in use for some time before then. Levitin [LEVI86 p.314] suggests that 

the dominance of this metric results from its simplicity and ease of application 

together with "its naturalness for such older computer languages as ASSEMBLY and 

FORTRAN and to some degree the inertia of tradition". For some languages, for 

example, BASIC and FORTRAN, there is usually a one-to-one correspondence 

between a LOC and a statement. However, for many modern languages this is no 

longer true [LEV186 p.314]. Basili et al [BASI83 p.658] described LOC as "a more 

primitive volume metric". 

Levitin [LEVI86 p.315] states that LOC is more a measure of the size of a program's 

representation rather than of the size of the program. Jones [JONE86 p.63] suggests 

that although the problems of using LOC as a measure are severe, the concept is so 

deeply embedded in the programming industry that it cannot be quickly replaced in 
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the short to medium term. With the introduction of Ada, a language that fits relatively 

easily with a LOC count, a LOC metric may be with us for many years to come. 

Using Levitin's [LEVI86] criteria LOC are automatable, additive, can have definition 

clarity, are nearly universal in their application to traditional programming languages 

but may not be quite so widely applicable in future, for example with some Computer 

Aided System Engineering (CASE) tools. 

A brief discussion of some of the problems that can arise with the LOC as a metric is 

presented in the next section. For a fuller discussion of these problems the reader is 

referred to [JONE86] . 

(i) Problems with the Lines of Code Metric 

Jones [JONE86 p.15] states that, although the phrase LOC is used almost daily, there 

is no universally agreed definition of precisely what a LOC is. He suggests that there 

are eleven major variations in software line-counting and that these variations fall into 

two different groups, both of which must be considered. The first group concerns 

line-counting variations at the program level while the second concerns line-counting 

variations at the project level. Differences in counting techniques can result (in 

extreme cases) in differences of more than five to one at the progran1 level [JONE78]. 

LOC was initially used for counting lines of machine code or assembler code at a time 

when a LOC was more easily identified because of its fixed fonnat. Once free-form 

assembly languages were introduced, more than one statement could be written on a 

line. This signalled the beginning of problems for the LOC as a software size metric 

[JONE86 p.47]. More difficulties appeared with the introduction of third generation 

languages and still others have emerged with the development of fourth generation 

languages (4GLs) and CASE (Computer Aided System Engineering) tools. The 

difficulties with LOC as a measure are not restricted to a concern with software sizing 

issues per se, but also extend to significant problems with productivity measures. 

These latter difficulties will not be discussed in any detail here. The reader is again 

referred to [JONE86] for a full discussion. 

(a) Source or Object Code 

Insofar as LOC are used as a size measure for the actual product developed or 

delivered to a customer, the problems that arise are caused by the lack of, or even 

impossibility of, a definition for a standard counting method that can be used across 
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all languages. Counting may be based on lines of source code or alternatively on 

lines of object code although most, but not all, published work deals with source 

code. If, instead of source code, object code is used other considerations arise. 

What effect will optimizing compilers have on the number of lines of object code? 

Arthur [ARTH85] suggests that an optimizing compiler produces 25% fewer 

statements than a normal one. It may be simple to count object lines in a completed 

program but it is not easy to estimate the final compiled size of a program before it is 

written in a high level language. Ratios of object code per source instruction are 

reported to vary from 1.6 : 1 to 6 : 1 [JONE78 p.11] for the same language. In 

[JONE86 p.49] a table of ratios of source statements to executable statements for a 

number of languages shows variations from 1: 1 for basic assembler to 1 :50 for 

spreadsheet languages. 

(b) Statement Counting 

The coding standards within an organization, and between organizations, may vary 

significantly, with some organizations or programmers using several statements per 

line, or spreading one statement over several lines, while other organizations may 

enforce a standard one-statement-per-line regime. A line may contain more than one 

statement but Boehm [BOEH81 p.59] and Conte, Dunsmore and Shen l CONT86 

p.35] consider a line is a line, no matter how many statements it contains. Boehm 

[BOEH81 p.59] however uses the term delivered source instructions (OSI) which he 

defines as LOC or card images, as an alternative to LOC. 

(c) Data Definitions and Non-executable Code 

One variation is to count only executable lines. Systems written in some earlier 

languages, for example FORTRAN, did not use the large file and data definitions that 

other languages may require. Programs written in COBOL, however, may have 

many pages of non-executable code. There have been discussions on whether all or 

any of the COBOL DATA DIVISION should be included in the LOC count. Jones 

[JONE86 p.20] considers that data definitions are elements of LOC and Duncan 

[DUNC88] also includes data declarations in a LOC count. Dunsmore [DUNS84] 

agrees and states that because effort has to be expended on all source statements 

(including declarations), and not just those that will be executed, they should all be 

included in the LOC count. Boehm [BOEH81 p.479] stated that he included only 

one third of the data division from the COBOL systems that were part of the data base 

that he used as the basis for the building of his COCOMO software costing model. 

The other programs in his data base were mainly written in FORTRAN and 

Assembler. 
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(d) Reused Code 

It is also possible that some or all of the data division in a program may be made up 

of code copied from a library, another program or even from another system. Similar 

difficulties occur with included or reused code of all kinds. Should all of it, or only 

some of it, be included in the final LOC count? [JONE86 p.20] takes the view that 

the code delivered to the user should be the basis of the count and included code is 

counted every time it is included. This view is discussed more fully in section 2.2.1 

(ii). Other writers [JEFF79] do not take this stance and count included code only 

once together with the relevant copy or include statements. 

(e) Comments, Blank Lines, ]CL and Scaffolding 

Some writers [WALS77, BAIL81, MAST85, DUNC88] have included comments in 

their count of LOC and others have possibly included blank lines by counting pages 

and multiplying them by the number of lines on a page. However, most exclude both 

comments and blank lines [BOEH81 p.59, BOYD84, CONT86 p.35, JONE86 

p.20]. Some writers [BOEH81 p.59, WALS77] include Job Control Language 

(JCL), while others [JONE86 p.20] exclude it. Some [JONE86 p.20], exclude non­

delivered software, such as scaffolding, while others [BOEH81 p.58], suggest 

excluding it unless that software has been developed with as much care as the 

delivered software. Many writers have limited their di scussion to programs rather 

than systems, and therefore do not mention their attitude to inclusion or exclusion of 

lines of JCL and scaffolding. 

(f) Development Language 

With the many different languages, and dialects of languages, that are used for 

software development, and the different counting methods used across installations, it 

is often impossible to compare program size and productivity figures between 

installations. Some of the published data omits the precise basis of the LOC 

measurement for a particular system and, without this, it is impossible to con~pare the 

sizes of different systems even if they are written in the same language. It may 

require several lines of assembler language to provide the functionality of one line of 

COBOL, and many lines of COBOL to provide similar functionality to one 'line' of a 

4GL, for example ALL, PowerHouse, LINC, lnformix. The introduction of 4GLs 

has meant that the existing problems with the LOC as a software size metric are 

exacerbated. LOC, as they are generally known, may not exist in some programs 

written in these languages, for example where techniques like form-filling are used 

for the non-procedural specification of parts of a system. As a result many 4GLs 
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must have their own line counting conventions defined. The conventions used to 

count non-procedural code may be quite different from those required to count 

procedural code. The procedural code will probably be similar to conventional third 

generation languages and hence rather easier to count. A counting convention for one 

4GL [VERN88] is discussed in section 5.1. 

(ii) Approaches to Solving the Problems of Lines of Code 

Approaches that can be used to resolve the major problems discussed above depend 

on the measurer's view of the software and the purpose for which it is being 

measured. If a size estimate is being made in LOC as input for costing, then a 

standard approach, of which the following is an example, would appear to be 

necessary to achieve consistency: 

a) Using only a particular version of a standard language and 

system, though this may not always be possible. 

b) Enforcing standard formats for the language and using a "pretty 

printer" to guarantee a standard layout and, preferably, to also 

count the LOC as they are developed. 

c) Treating included code in the same way as subroutines or macros 

and counting them only once, together with their 'calls'. 

d) Adopting a similar principle to (c) in regard to reuse. 

e) Having a standard approach to the inclusion or exclusion of 

scaffolding, JCL, comments and blank lines. 

f) In accordance with more modern approaches to programming 

languages, counting all declarative code. 

Such an approach would, in some instances, reduce many of the current problems of 

measuring software size. It would still be difficult to compare the sizes of programs 

written in different languages, and systems written in some 4GLs would also be 

difficult to deal with. Jones [JONE86 p.59) has suggested that the language 

problems may be overcome by normalizing the different languages into basic 

assembler language. This involves converting the actual program size into equivalent 

assembler lines by multiplying the number of source statements by the nominal level 

of the language. He states that although the method is statistically unsound, and 

obviously somewhat subjective and unreliable, it is at least a starting point. He 

suggests language levels for a number of the currently used languages and has 
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provided a form of language size conversion m his products, SPQR/20 and 

SIZER/FP (although this is in a slightly different context and is discussed in more 

detail in section 3.6). Language expansion factors are used in a similar fashion, in 

some other size estimation products, for example, ASSET-R [REIF87], QSM FP 

[QSM87] and Before You Leap [GORD87]. 

However, if the area of interest is the amount of code that is actually delivered to a 

customer, then a different approach to resolving some of these problems, possibly 

one similar to that used by Capers Jones [JONE86 p.20], may be appropriate. This 

approach applies the following conventions: 

a) Lines are terminated by delimiters. 

b) Verbs or operational statements are included. 

c) Data definitions are included. 

d) For Assembler language, macro expansions are included. 

e) For COBOL, included code is counted every time it is included. 

f) The code delivered to the user is the basis for the count. 

g) Comments are excluded. 

h) Job control language is excluded. 

i) Temporary code developed to aid testing is excluded. 

The emphasis is on programs that are actually delivered to the end users, rather than 

on the development of that code, and the measures are aimed at what users receive, 

not what programmers do. This is a further illustration of a need to adapt the measure 

to fit the purpose of the measurement. 

2.2.2 Statement Counting 

The statement is a textual unit that can be considered to be analogous to a sentence in 

the traditional measures associated with natural languages, though in languages 

allowing nested statements it is perhaps analogous to a clause. Most programming 

languages have statements as their most prominent syntactic component. Levitin 

[LEVI86 p.315) suggests that statement counting, because it is a finer measure than 

LOC, overcomes the problems of counting LOC in free format languages. In 

[FEUE79], where PL/I programs were investigated, the number of statement clauses, 

which "roughly corresponds to the number of semi-colons" was used; Vosburgh et al 

[VOSB84] and Jones [JONE86 p.16] count statements rather than LOC. Basili et al 

19 



[BASI83] count both statements and LOC. Statements, however, like sentences, 

may be of dramatically different lengths [LEVI86 p.316]. Using Levitin's criteria 

statements have definition clarity, their counting is automatable, they are additive, but 

may not be universal across all languages. 

There have, however, been a number of problems identified with statement counting. 

Levitin [LEVI86 p.315] noted the following difficulties with the use of the statement 

as the basic metric: 

(a) It can be difficult to get a standard definition of a statement applicable to a wide 

variety of languages. Although most known programming languages are imperative 

or statement-oriented there are important languages such as APL, LISP and PROLOG 

which are not organized around the notion of a statement. APL and LISP are 

organized around expressions while PROLOG is organized around rules. 

(b) Another problem results from the possibility of using structured or nested 

statements in languages like Pascal. The count of nested statements is a non-trivial 

task. One cannot overcome these problems by only counting statement delimiters, for 

example, the full stop in COBOL or the semi-colon in Algol-like languages, because 

these constructs may not actually coincide with the statements as defined by the 

language. Levitin gives an example of a single line of Pascal which has three 

statements (one IF, and two assignments), but only one semi-colon. Similarly a 

COBOL sentence may contain many verbs or statements. Indeed, sentences of a 

whole page occur in some COBOL programs. 

(c) Levitin [LEVT86 p.315] also suggests that inconsistencies with the use of semi­

colons in Algol-like languages (where they can be used to separate statements and for 

increments of an index variable in a FOR statement) are typical of the inconsistencies 

across or between programming languages. 

2.2.3 Tokens 

The token is a textual unit that can be considered as analogous to a word in the 

traditional measures associated with natural languages. In an effort to overcome 

some of the difficulties of using LOC or statements to measure program or system 

size Levitin [LEVI86] has suggested using tokens counts. He asserts that they are a 

superior metric because they are a finer unit of measurement and that, just as the word 
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is the fundamental unit for the English language, the token is the fundamental unit of 

programming languages. He also suggests that they have (almost) definition clarity, 

are countable automatically, are additive, are universally used across computer 

languages and correspond to natural language units. In view of this he is surprised 

that they have not been used in software engineering research and for practical 

applications. 

Levitin [LEVI86 p.316] defines tokens as: 

"the basic syntactic units from which a program can be 

constructed. Each token represents a sequence of 

characters that can be treated as a single logical entity. At 

the same time, these entities are atomic, i.e. they have no 

further possible subdivisions." 

Identifiers, numbers, strings and punctuation symbols are all typical tokens of 

programming languages. Levitin suggests that tokens have all the desirable properties 

of a size metric. He notes that some languages recognize the fundamental importance 

of tokens, for example, ADA defines a program as a sequence of tokens or lexical 

units. During lexical analysis, the first stage of compilation, programs are split into 

tokens which can be counted automatically. Programs written in some 4GLs, or 

parts of programs that have been developed with the use of form-filling techniques, 

are likely to be made up of nothing that is readily recognizable as a LOC [VERN88]. 

Token counts may be a more appropriate measure of the sizes of systems written in 

these languages. 

There may be some difficulties with the use of tokens as a general measure. Any 

software of realistic size will possess many thousands of tokens. However as we 

use KLOC (thousands of LOC) why should we not use KTOK [LEVI86 p.316] ? 

There are also some problems with the definition of a token, or token pairs, for 

example, opening and closing brackets, begin ... end statements etc.; should they 

count as one token or two? Levitin suggests that each be counted separately but in 

software science token counting [HALS77, FITZ78] these matching pairs are 

normally counted as a single token. 
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2.2.4 Character Counts 

Characters in the English language can be considered to be analogous to characters in 

program text although this is not a commonly used metric. One of the difficulties 

with character counting is its sensitivity to the changing lengths of variable names. 

Using Levitin's criteria [LEVI86] character counting is automatable, has definition 

clarity, is additive and is universally used across computer languages, however it may 

be at such a low level that it might not always be useful. A character count divided by 

30 was used to define a LOC in MUMPS programs [BLUM86]. 

2.3 OBJECT COUNTS 

Other measures of software size are based on counts of various objects occurring 

within software or its specification. Objects that have been counted include 

procedural LOC, JCL statements (or lines), data declarations [BOEH81 p.59], unique 

operators and operands, total operators and operands [HALS77] functional primitives 

[DEMA82] and logical transaction types [SYMO88]. Albrecht and Gaffney 

[ALBR83] defined a metric based on the sum of the unique input and output items in 

programs. System BANG, described by DeMarco in 1982, is based on counts of 

functional primitives that are adjusted by the numbers of input and output items at 

their boundary while Data BANG is based on data base component counts 

[DEMA82]. Because BANG is a composite metric based on two types of object 

counts it is discussed in section 2.5. Kwong [KWON87] makes two similar but 

rather general suggestions. He states that components making up data base 

definitions can be counted and that this metric is useful for data-centred designs with 

simple procedural requirements and also that the diagrams or charts used with some 

development methods (for example Structure Systems Analysis [DEMA79], HIPO, 

flowcharts) allow developers to generate countable elements. Although diagram 

counting has not been used to any great degree to date, with the increasing use of 

CASE tools with graphical interfaces, metrics of this type may become more 

important in the future. None of the measures classified in this group as object 

counts appear to have been used on their own other than experimentally. 
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2.4 VECTOR METRICS 

Work of general relevance in the area of software metrics has been done by Basili 

and Rombach (BASI88) in the TAME project. Among the important concepts they 

discuss is that of a characteristic vector of metrics for a development environment. 

They state that "most aspects of software products are too complicated to be captured 

by a single metric" and that "for both definition and interpretation purposes a set of 

metrics (a metric vector), that frame the purpose of the measurement, needs to be 

defined". They also state that we cannot just use "metrics from other environments. 

The models and metrics must be tailored for the environment in which they will be 

applied". These general concepts also apply to the more restricted subject of software 

size metrics. Conte et al [CONT86 p.78] suggest that a vector metric may be a more 

useful measure of the properties of software than a single measure although their 

discussion was in the context of complexity measures. 

Most of the approaches that use object counts are based on counts of more than one 

object type and hence can be considered to be metric vectors although in practice they 

are often combined later into a single unit (see section 2.5). Function Point Analysis 

(FPA) [ALBR79] uses files in combination with input and output data elements or 

record types as its basic units. Symons [SYM088] in MarkII uses input data 

elements, output data elements and entities for each logical transaction type. From the 

vector metric point of view the component measures of FPA and Markll can be 

regarded as entries in a vector of metrics although in practice they are combined into a 

single composite metric. If both System BANG and Data BANG [DEMA82] are 

used to measure the same software then they can also be considered to be entries in a 

metric vector. 

2.5 COMPOSITE METRICS 

The application of suitable functions to more than one kind of object count, i.e. to a 

vector of counts, can result in single-valued composite metrics. The software science 

metrics [HALS77], together with BANG [DEMA82], FPA [ALBR79] and Markll 

[SYM088], are examples of composite metrics that have been used for software size. 

System BANG and Data BANG [DEMA82, DEMA84] are composite metrics based 

on functions of object counts, i.e. functional primitives and operands, data base 

objects and relationships. Software science measures [HALS77] are based on four 
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counts, unique operator and operand counts and total operator and operand counts. 

Several single software science measures, length, volume and vocabulary are 

functions of these basic counts. 

Both FPA and Markll attempt to combine several basic counts into a single measure 

which is related to 'function value delivered to the user'. To obtain the single 

(composite) function point metric from a vector involves the resolution of the 

question of function value provided to the user. This tricky question is resolved by 

giving different components different weights. These weights are meant to reflect the 

relative value of a component to the user; however not all users have agreed with 

Albrecht's weightings [SYMO88] (see section 2.5.1 (i) which examines this topic in 

more detail). 

Although there are some similarities between System BANG, FPA and MARKII, 

System BANG does not have a fixed number of component or object types 

(functional primitives), FPA has five component or object types (inputs, outputs, 

files, interfaces and inquiries) while Mark.II has a single component or object type 

(the logical transaction). Both FPA and Mark.II are based on the user's (external) 

view of the system (ie they are functions of input and output data, and files associated 

with transactions that are visible to the user). System BANG on the other hand is 

obtained from both externally visible data elements and internlli functionlli primitives. 

BANG is obtained from functions of input and output items and their associated 

functional primitive. Some of these functional primitives would not be visible to the 

user (for example, device and storage management). 

Even some of the work that uses LOC can be viewed as dealing with a type of 

composite metric, for example, where the procedural lines in COBOL programs have 

been treated differently from data declarations [BOEH81 p.479]. Only one third of 

the data declaration lines, in COBOL programs, were counted for the COBOL 

systems used in the development of the COCOMO model. Some of the other work 

using LOC has also dealt with JCL differently. In some cases the JCL was excluded 

[JONE86 p.20] while in others it was included [BOEH81 p.59, WALS77] . 
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2.5.1 Function Point Analysis 

Function Point Analysis (FPA) was introduced by Albrecht [ALBR79] in 1979 and 

has been developed further since then [ALBR83, ALBR84]. A modified version of 

FPA, MARK.II, was described by Symons [SYM088] in an attempt to overcome 

problems with FPA that he identified. Reifer [REIF87a p.285] states in his cost­

estimating wish list that "better and more accurate ways of developing sizing 

estimates will be made available as research into function point theory begins to 

realize its potential". 

(i) Aims of Function Point Analysis 

A function point [ALBR79], is a composite metric which aims to measure the 

function value that a system provides to the user. It is claimed to be independent of 

· the language in which the software is written. This claim to language independence is 

discussed in greater detail in 2.5.l(iv) below. Albrecht [ALBR79, ALBR83, 

ALBR84] believed that the intrinsic size of a system was the product of a measure of 

the information that the system processed, and a technical complexity factor. The 

latter took into account the various technical and other factors involved in developing 

and implementing the information processing requirements (for example 

performance, ease of use, etc.) which influence the final size of the software. He 

introduced FPA to measure the size of a system based on these two factors. The 

unadjusted function points measure the information processed and the adjustment 

factor the technical difficulties of implementation. 

The function point measure is a dimensionless number that is based on the end-user's 

view of the system [ALBR79]. Albrecht refers to this as "function value delivered to 

the user". There is great difficulty with this concept. In the calibration of MarkII, 

Symons [SYM088] effectively equates function value with production effort or cost. 

However, other possible interpretations include: 

(i) some kind of economic measure of information utility, though this would seem 

to apply more readily to outputs than to inputs 

(ii) some measure of specification size - based on the idea that transactions that 

have larger and more complex specifications provide more function to the user 

(iii) some product measure, again presumably related to value (or more likely cost) 

in most cases. 
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The function point measure was proposed with the aims of being independent of LOC 

and implementation language, being calculable early in the development cycle 

[ALBR83], and being able to isolate the intrinsic size of the system from the 

environmental factors [ALBR84]. Albrecht [ALBR84] also claims that nontechnical 

users can understand and evaluate the measure. An implied aim for the introduction 

of the measure is that it has an acceptably low measurement overhead [SYM088]. 

(ii) Function Point Computation 

The measure is determined from the number and complexity of five component 

types: 

external input types 

external output types 

logical internal file types 

external interface file types 

external inquiry types. 

This initial count is summed (unadjusted function points) and later modified using 

fourteen system adjustments to get a final function point count for the system 

(adjusted function points) [ALBR83, ALBR84, ZWAN84]. 

The Albrecht FPA model is thus: 

where 

T = .OlLDj + .65 0 <= Dj <= 5 

for 14 general infom1ation processing adjustments Dj, and Fk(Ck) is the raw function 

point measure for the kth component, calculated according to the following tables 

(Table 2.1 and 2.2), which show the component types, the items whose counts 

determine the raw function points of components, the class intervals for those item 

counts, and the weights for low(L), average(A) and high(H) function point levels for 

each component type.- An example using these tables is given below. 
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Component Component FP determinants & class interv als 
type files record types data elements level weil! hts 

class-> 1 2 3 1 2 3 1 2 3 L A H 

file 1 2-5 >5 <20 20 - 50 >50 7 10 15 
interface 1 2-5 >5 <20 20 - 50 >50 5 7 10 

input <2 2 >2 <5 5 - 15 >15 3 4 6 
output <2 2-3 >3 <6 6 - 19 >19 4 5 7 
inquiry Uses files & data elements and takes greater of input or 3 4 6 

output level 

Table 2.1 FPA Component Types, Class Intervals and Weights 

The level weights are derived from the class intervals of the two relevant component 

FP determinants as follows: 

Component two class 
1 2 3 

Component 1 L L A 
one 2 L A H 
class 3 A H H 

Table 2.2 Function Point Level Table 

with a possible subjectively applied variation of one level up or down depending on 

an assessment of component complexity. 

An example may help to clarify the use of the above tables. A file with 1 record type 

and 12 data elements is low (L) and thus rates 7 raw function points, whereas an 

input involving references to 4 files and 8 data elements has a high (H) level giving 6 

raw function points. 

The current FPA method, described above, is a little different from that which was 

introduced by Albrecht in 1979 [ALBR79]. The original work did not include an 

external interface type, all the component types had the same complexity and the 

adjustment factor for system complexity was ± 25%, not the later ±35 %. The 

measure has been refined from time to time, as for example in the GUIDE Current 

Practices document [ZWAN84]. 
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(iii) Use of Function Point Analysis 

Since many of the system adjustment factors could be classed as cost drivers rather 

than size drivers, the final function point count can be considered to be more a 

measure of total effort than of size. Symons [SYMO88] refers to the metric as a size 

measure, but his usage of the term size is more in the sense of total effort for the job 

to be done, and does not adequately distinguish between size and effort. 

Function point data is used within IBM to measure efficiency (FP/work month), 

quality (defects/FP), trends in productivity, and maintenance support (work hour/FP) 

[DACS87]. FPA was originally introduced by Albrecht to compare productivity 

between projects that were written in different languages and used different 

technology. He used the average number of LOC required to develop a function 

point to show the relative productivities of COBOL, PL/1 and DMS/VS [ALBR79]. 

Other writers [RUDO83b, REIF87, JONE86 p.77, GORD87, VERN88, VERN89, 

LIM89] have extended this work to give relative productivities for some other 

languages, including 4GLs, and the measure has been incorporated, sometimes with 

additional refinements, into several commercially available size and cost estimation 

tools [GORD87, JONE86, REIF87, QSM87]. These tools are discussed in more 

detail in section 3.2.2. Symons [SYMO88] suggests that the FPA method is likely to 

become a de facto industry standard in the business information processing industry 

but "before that happens it is necessary to examine the method for any weaknesses 

and to overcome them". 

(iv) Criticisms of the Function Point Measure 

Many of the problems with FPA as a measure of system size result from its history. 

FPA was originally introduced for productivity studies (including technology 

productivity) but is increasingly being used for size estimation. There is a conflict in 

the requirements of a metric with these two different uses. One requires technology 

independence, the other technology dependence. The main requirement for 

productivity studies is for a metric with a high degree of programming language 

independence, or more generally technology independence. By providing a measure 

of "function value delivered to the user" FPA has claimed this technology 

independence. On the other hand, to enable the product size in a target language to be 

estimated effectively a high degree of language or technology dependence is 
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necessary. This conflict has been resolved in the past by using technology-dependent 

multipliers, such as LOC per function point or effort in person-hours per function 

point, to convert from the (supposedly) technology-independent 'user function' 

measure (function points) to the technology-dependent size or effort measures of the 

target system. 

The problems with the function point measure can be divided into three groups -­

problems with the measurement of the unadjusted function point size, problems with 

the system adjustments and other general problems. Some of these difficulties appear 

to be the result of FPA having been developed in the late seventies with mainly batch 

systems and the use of some of the system adjustments to make up for the effects of 

more modem technologies. 

(a) Unadjusted Function Point Measurement 

The problems that occur here include division into a technology-dependent set of 

component types (input, output, inquiries, files and interfaces), an oversimplified 

classification of component types, the concept of function value delivered to the user, 

an inadequately documented and apparently rather arbitrary choice of weights, an 

inability to deal effectively with internal processing complexity, some inherent 

subjectivity and summation inconsistencies. 

Technology Dependence of Component Types 

FPA is claimed to produce a technology independent, dimensionless value. The first 

question that must be asked is - are the user functions (component types) of input, 

output, inquiry, file and interface on which FPA bases its information processing size 

measure themselves technology-independent? Symons [SYM088] maintains that 

they are not. He replaces files by entities, in an entity-relationship sense [CHEN77] 

in an attempt to update FPA in his MARKI! version. In a relational context the files 

could be replaced by relations. An updating of FPA's division of functions into 

inputs, outputs and inquiries would also seem to be appropriate with today's 

technologies. Modern interactive systems tend to blur these divisions. For example 

many input transactions, particularly those involving update information, display the 

current state of relevant and related information both initially and during the 

transaction, thus combining inquiry with input. 

If a new technology allows the user to do new things, or to do things differently, then 

it would appear that user function has changed with the technology. Its measurement 

must therefore change also. System components and measurement components 
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should match. Where technology changes, the metric vector of relevant object counts 

may need to change also. The original Albrecht component categories of file, input, 

output, inquiry and interface file do not always fit current technology well. Where 

this is the case they should be replaced by the natural components of the system 

model. Changes in system components are needed to reflect the characteristics of 

today's modem interactive systems which typically use batch methods almost solely 

for reports and have general purpose screen or window handling facilities for most 

other types of user-system interaction. The individual component metric vectors will 

then include elements of importance to that particular type of component. For 

example in the case discussed in [VERN89] these are: for menus, the number of 

choices; for screens, the number of data elements and files; for reports, the number 

of data elements, files and line types. For other technologies, the choice of 

components and component vector elements will be different again [VERN89]. For 

example, in an object-oriented environment, components might well include objects, 

many of which will be represented by packages (Ada) or modules (Modula-2). The 

component vector for an object may include counts of entities (types) which the object 

maintains, data elements of those entities, operations on them, and possibly imports. 

There are potential difficulties, however, where the specification is not in terms 

readily related to the design and implementation technology. 

For size estimation the use of FPA-type metrics is, of necessity, technology­

dependent. However, technology dependence is not concentrated solely in a LOC/FP 

ratio, but occurs also in the estimation model itself, in the division of modules into 

types with different estimators, in the relative weights given to estimates of different 

module types, and in the estimation formulae for each module type [VERN89]. 

Oversimplified Classification of Component Type Complexity Levels 

The classification of component type instances into simple, average and complex has 

the merit of being simple but in practice is rather oversimplified and a component with 

"over 100 data elements is only given at most twice the points of a component 

containing 1 data element" [SYM088]. This may not matter much for some system 

size estimates, where component sizes may average out, but may be important for 

other systems where the average component size is consistently different from the so­

called average of Table 2.1 [VERN89J. This oversimplification is also important 

when estimating individual component sizes. The extension of the number of 

complexity levels of the component types from three as described in [ALBR83] to 

five or even six in some later models [DACS87] may partly overcome this criticism. 
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Choice of Weights 

The weights given to the different component types were determined by Albrecht by 

"debate and trial" [ALBR83] and are meant to represent the relative value of the 

component to the user. In discussions with users, not all have agreed with Albrecht's 

weightings and some more objective measurement may be needed. Some of the 

weights give surprising effects at times. Symons [SYM088] asks why an inquiry 

from a batch input/output system gained more than twice as many function points as 

the same inquiry provided on-line and why an interface to another system should be 

of more value to a user than any other input or output. 

Complexity 

FPA treats the system as if all inputs, outputs, and inquiries flow into or out of a 

black box process whose processing complexity (and size) is related to the number of 

data elements and logical file types that are referenced. This may give a guide to the 

complexity of some components but the complexity of others may not be adequately 

represented and that of yet others may be totally ignored. FP A appears to undercount 

systems that have fewer inputs and outputs using larger numbers of data elements and 

complex processing when compared with those that have a greater number of simpler 

inputs and outputs, and less complex processing [SYM088]. An attempt is made in 

the system adjustment factors to overcome part of this problem; here the effects of 

interactive interfaces and complex processing on the system as a whole, together with 

other cost drivers, are used to modify the raw function point count. 

Summation Problems 

Because of the way the interface files are counted, where a single interface file is 

credited to two separate systems, the sum of the parts can be greater than the whole. 

If the system were developed as one (possibly) more complex system it would score 

fewer function points than if developed as two, (possibly) simpler systems but with 

similar functionality from the user point of view. Also, an integrated file is likely to 

score fewer function points than a collection of separate files. 

(b) Adjustment Factors 

The problems with the system adjustments relate to the restricted number of factors 

considered, the weights given to them, difficulties in measuring complexity, and the 

inherent subjectivity in applying the adjustments. These adjustment factors are the 

weakest part of the method [VERN87] with many of them relating to cost rather more 

than size. FPA system adjustment factors are discussed further in 3.2.3 while 

adjustment factors in general are discussed in 4.5. 
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Nwnber of Factors 

The number and type of system adjustment factors is unlikely to remain constant over 

time. Already Albrecht has changed them since his first introduction of FPA. The 

original version [ALBR79] used ten adjustment factors while the later version 

[ALBR84] includes fourteen. Some of the current factors appear to overlap and 

Symons [SYM088] suggests that a more open-ended approach and some reshuffling 

of the current factors may be more useful. Some of the current adjustment factors 

seem rather old-fashioned, tending to be aimed at batch processing systems 

[VERN87]. 

Weights and Subjectivity of Adjustment Factors 

The range of 0-5 used for the degree of influence of each of the factors is simple in 

concept but may not always be valid. Symons [SYM088] gives an example of a 

factor that deals with multisite implementation and suggests that the system 

adjustment factors and their weightings should be re-examined. The system 

adjustment factors give small additive corrections with equal maximum weight (an 

unlikely situation in the real world) and, with a relatively small total effect, have a 

possible range of from ±35% adjustment. Given the subjectivity of the adjustment 

criteria, and a tendency of assessors towards means, the overall adjustment of the raw 

function points will probably rarely be more than 15% [VERN871. Similar factors 

(cost drivers) in Boehm's COCOMO cost estimation model have widely varying 

weights and a much larger potential effect in total [BOEH81 p.118]. 

Complexity 

As noted in (a) above, the raw function point count does not always measure the 

effect of processing complexity. FPA tries to overcome this obvious flaw with its 

system adjustment factors. Symons [SYM088] considers that the way the internal 

complexity is dealt with is "rather inadequate and confused" and that systems studied 

by him with a high internal complexity do not seem to have their size adequately 

reflected by the FP method. The designers of the systems which Symons studied 

were of the same opinion. 

(c) General Criticisms 

Because the method is rather subjective (with guide-lines), and different installations 

are likely to use the method in somewhat different ways, it is unlikely that it will be 

possible to adequately compare the results and productivity figures between different 

installations. Low and Jeffery [LOW88] showed that function point estimates of size 

were lower for analysts experienced in both software development and in function 
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point estimation than for inexperienced analysts and that even among experienced 

analysts variations occur. They thus conclude that there is a need for organizational 

standards to be applied to the function point estimation process. Jeffery et al 

[JEFF88] express reservations with function points because of the subjectivity in the 

counting process. 

Notwithstanding these criticisms, the use of function points does overcome some of 

the difficulties that have been found with LOC, they are available early and they are 

the only metric in common use that can make a claim of any kind to technology­

independence. 

(v) Approaches to Solving the Problems of Function Points 

Symons [SYM088] has suggested an updated version of this measure to solve some 

of the problems he identified in FP A. He calls this new version Mark II. 

2.5.2 Marki! 

Markll is a composite metric introduced by Symons [SYM088] in 1988. He 

suggested that all the logical transaction types making up an application should be 

approached in the same way, with the size of each transaction being calculated from 

the numbers of input data elements, output data elements and entities (replacing the 

older file concept) used by the transaction. Symons suggested that: 

(i) interfaces between systems should be counted in exactly the same way as 

any other input or output 

(ii) inquiries should be counted as any other input/output combination 

(iii) the concept of logical file is impossible to define unambiguously, is not 

appropriate to a data base environment, and should be replaced by the 

(suitably defined) concept of an entity. 

Symons doubts the validity of talking about value to the user and concentrates on 

development effort. In doing so he reduces the usefulness of MarkII for productivity 

studies involving different technologies. He believes that the work of McCabe 
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[MCCA76] can be used to give a complexity parameter to the size of processing. 

However, since this cannot be evaluated until after the system has been developed, he 

makes use of several of Jackson's [JACK75] general ideas relating the complexity of 

processing to the number of data structure components processed. This takes the 

form of a count of the number of entity types referenced by a transaction type. From 

this a new formula for calculating unadjusted FPs is obtained. 

(i) Markll FP Calculation 

To obtain the raw function points (which Symons also calls the information 

processing size) the counts of input elements Ik, entities Ek and output elements Ok 

referenced in the kth transaction are summed over all transactions using the formula 

I,k (0.44Ik + 1.67Ek + 0.38Ok) 

in which the technology-dependent weights shown for the elements relate to the 

systems studied by Symons. 

(ii) Calibration of Markll 

Symons proposed the above weights for the types of systems, "normative 

technologies" and environments he investigated but suggested that any other 

technology would have its own weights. Changes in technology would be shown by 

changes in the weights. Symons calibrated his Markll measure against Albrecht's 

function points using an analysis of effort required to develop input, output and 

processing (estimated by entities processed) respectively. However the Albrecht 

function point count for a system does not necessarily equal that provided by MarkII. 

The biggest differences were shown for systems gaining over 500 function points 

with FPA - the size up to which the calibration of MarkII was pegged to Albrecht 

function points. MarklI in the main appeared to give relatively higher function point 

counts for larger systems. 
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(iii) Problems with Markll 

Although MarkII does overcome some of the criticisms of FPA it unfortunately 

introduces some problems of its own. 

By including files and interfaces as component types, FPA attempts to take account of 

the inherent size of the data model itself apart from its use in transaction processing. 

MarkII however, concentrates exclusively on processes and only includes files 

(entities) as and where referenced by a process with interfaces being treated as any 

other input and output (between applications). Because interfaces and files are not 

treated separately in Markll they are de-emphasized. The problem with this is that the 

data model definitions, including files, may form distinct components or modules of a 

system in addition to, and quite apart from, file references in processes. 

Symons applies weighting factors to FP elements (input elements, entities, output 

elements) based on the degree of difficulty of the development task for the particular 

technology being used. In one sense, there is nothing wrong with this; it certainly 

appears to be more reasonable than 'function value delivered to the user' and may 

well, in some cases, give a better size estimate for an application, in a specific 

technology, than that given by FPA. The calibration of MarkII FP elements with 

effort, however, destroys what is possibly the major strength of FPA, its use in 

productivity studies. For this purpose it would be better to calibrate the MarkII 

elements with a size-based metric, not an effort-based one because the former is 

somewhat closer to the inherent 'information processing size'. The size-based 

measure can then be calibrated back to function points for productivity studies. 

2.5.3 BANG 

DeMarco [DEMA82, DEMA84] suggested an approach to the measurement of system 

size that he called System BANG. This object-based measure is calculated from 

Structured Analysis specifications [DEMA 79, GANE79]. System BANG 

"represents the weight of function to be delivered" [DEMA84 p.21] . The system 

specifications are developed down to functional primitives. A functional primitive is 

described as "a trivial piece" ... "too small to justify further partitioning" [DEMA84 

p.18]. Each functional primitive is given an empirical complexity correction factor. 

This factor depends on the class of primitive function. DeMarco defined 16 classes (a 

beginning set) of primitives although he suggested that the correction factor value for 
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some may be less likely to remain invariant than for others. Table 2.3 shows the 

classes of primitives and correction factors that were included in this beginning set. 

Class of Primitive Correction Factor 

Separation 0 . 60 
Amalgamation 0.60 
Switching 0.30 
Simple Update 0.50 
Storage Management 1. 00 
Edit 0.80 
Coherency 1. 00 
Text Manipulation 1. 00 
Synchronization 1 . 50 
Formatting 1. 00 
Display 1.80 
Summarizing 1.00 
Arithmetic 0 . 70 
Initiation 1 . 00 
Computation 2.00 
Device Management 2.50 

Table 2.3 Functional Primitives and their Correction Factors 

The number of input and output elements at the boundary of each functional primitive 

is summed and used to adjust the value of the functional primitive. DeMarco 

provided a table of weighted functional primitive increments for this adjustment factor 

and stated that the values were based on "Halstead's volume/vocabulary relationship" 

[DEMA84 p.18, HALS77] (see section 2.5.4). The resulting values are summed to 

give total System BANG. The formulation is thus: 

where 

Ck = weight of kth component (functional primitive) 

nk = number of input and output elements at the boundary of the kth component 

.5nklog2(nk) is the adjustment factor formula. 

DeMarco found the measure was not installation-independent and suggested that "the 

complexity weighting factors are, unfortunately, environment dependent" and that 

two of them, device management and computation, "you correct with your own 

estimate based on type of computation or type of device" [DEMA82]. He also 

suggested that "you will need to develop your own set of weightings and perhaps 

some of your own new classes" [DEMA82]. 
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DeMarco [DEMA82] also suggested a second System BANG measure. If the system 

is data-strong, i.e. one with a significant data base, then the BANG can be based on 

the count of objects in the data base. Each object count is corrected for the number of 

relationships at the object boundary and the corrected objects are then summed. For 

systems that are both data strong and function strong he suggested that the system 

should be divided, and two sets of BANG metrics should be used. The two 

predictors should not be combined and the project should be treated as if it were 

actually two projects. He did not believe that there was any satisfactory way of 

combining Function BANG and Data BANG in the general case but that an individual 

installation may be able to get a procedure for relative scaling so that the two could be 

added together. This implies that DeMarco had a metric vector view of the two 

counts. If a satisfactory scaling procedure could be found the two measures would 

be converted into a single composite metric. 

System BANG has some appeal as it is developed from specifications but the 

functional primitives are at such a low level that the information from it would not be 

available until the end of the design phase. There has been no other work published 

regarding the use of this metric. 

System BANG (at least from the published material) appears to be a general approach 

to a sizing method, that different users can customize in different ways, rather than a 

precisely defined method that they can follow. It is too subjective and the work 

involved for a DP department to build up its own weightings and classes of primitives 

would tend to prohibit wide use in its present form. This would also result in the 

measure becoming too installation-dependent. The System BANG approach is a very 

promising one if it can be built into an automated specification tool so that it can be 

calculated automatically and objectively as specifications are developed, for example, 

in conjunction with one of the Structured Systems Analysis and Design CASE tools 

that have recently been developed in Europe and the United States. Indeed, until it is 

automated, it is unlikely that it will be used at all widely. 

2.5.4 Software Science 

Software science [HALS77] is a family of composite metrics. Halstead used 

operator and operand tokens as the fundamental counts in these measures. He tried 

to go beyond LOC, with software science, by combining both the data and the 
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functional aspects of code from a program's vocabulary to calculate both program 

length and 'volume'. A program, procedure or function was considered to be a 

collection of tokens that could be classified as either operators or operands. This is 

based on the fact that all programs can be reduced to a sequence of machine language 

instructions each of which contains an operator and a number of operand addresses 

[SHEN83 p. 155]. 

Halstead defined the following basic measures: 

n1 = number of distinct operator tokens in the program 

n2 = number of distinct operand tokens in the program 

N 1 = total number of occurrences of operators 

N2 = total number of occurrences of operands. 

The vocabulary of a program is 

and the length of a well-structured program was a function of the number of 

operators and operands 

where N is closely related to the traditional LOC measure of program length. For 

machine language programs where each line consists of one operator and one 

operand, N = 2 x LOC [SHEN83 p.156]. Shen also states that, "like many other 

software metrics, N may not be a precise equality for a specific program yet may be 

considered valid in a statistical sense". 

If a program is made up of k procedures and functions its length is then: 

Program volume defined as the volume of an implementation of an algorithm in bits is 

V = N log2n. 
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Programming practices such as the redundant usage of operands or the failure to use 

higher level control constructs will tend to increase the volume [SHEN83 p.156]. 

Tokens that represent data, variables or labels are defined as operands while those 

tokens that specify an action are considered as operators. Punctuation marks, 

arithmetic symbols, command names, function names, special symbols like brackets 

and keywords are categorized as operators. Length and volume are two measures of 

program size. 

If N1 and N2 are not available the length equation 

is claimed to yield a good approximation to the length N. The length of the program 

can be estimated using this equation provided that the distinct operators and operands 

can be counted before the program is written. From the length metric effort and 

volume measures could be estimated. N may be converted to an estimate of source 

LOC via the relationship 

S = N/C 

where the constant C is language-dependent. For FORTRAN C is thought to be 

about 7 [CONT86 p.41]. 

(i) Criticisms of Software Science 

There have been a number of criticisms of software science [LIST82, SHEN83, 

LEVI86]. Those criticisms that relate to software size are discussed below. They fall 

into five categories: 

(i) derivation of the formulae 

(ii) experimental work 

(iii) operator and operand definition and counts 

(iv) length equation 

(v) volume equation 
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a) Derivation of Formulae 

Software science as originally defined dealt with algorithms, consisting of "operators 

and operands and nothing else" [HALS77 p.8], not programs. Although rigorous 

algebraic derivations for the formulae are given in [HALS77] several assumptions are 

made "for which there would seem to be no theoretical justification" [SHEN83 

p.157]. The assumptions that operators and operands alternate seems reasonable but 

this would imply that N 1 "" N2 which has not been observed in general [SHEN83 

p.158]. Lister [LIST82 p.70] suggests that the "foundations of software science are 

perilously weak" and that "it needs a clearer definition of its assumptions, goals and 

domain of application" as well as "a methodology which is seen to be rigorous". If it 

develops in these ways it may provide "useful and worthwhile results". 

b) Experimental Work 

In many of the reported experiments the sample size is too small for great significance 

to be attached to the results [LIST82 p.67] . Many of Halstead's conclusions were 

based on sample sizes less than 10. The programs involved were small. It is 

probably not possible to generalize results from such programs to large, multi-module 

industrial programs. Many of the experiments involved single subjects and the 

subjects, even when there were several, were college students. The results may not 

be applicable to professional programmers [SHEN83 p.158]. 

c) Operator and Operand Definition and Counts 

Just as there are problems with counting LOC, there are variations in classifying 

operators and operands in software science. It is important that the counting scheme 

be clearly defined and consistent across experiments [LIST82, p.67]. There is no 

general agreement amongst researchers on the most meaningful way to classify and 

count these tokens [SHEN83]. The consequences of this are serious as it was shown 

by Elshoff [ELSH78] that small variations in a counting scheme can affect certain 

measures by as much as 50 percent. The rules used for operator/operand 

classification are language-dependent and frequently an1biguities occur in the counting 

of the unique operands [CONT86 p.38]. The conventions used for counting 

operators and operands should be applicable to programs written in any of a wide 

class of languages [LIST82 p.67]. The counting scheme initially described by 

Halstead [HALS77J was for FORTRAN programs. The scheme is more difficult to 

apply to more modern languages and to less primitive control constructs [LIST82, 

p.67]. For languages like LISP, the actual existence of operators and operands has 

been questioned altogether [LASS81]. The nonprocedural parts of 4GLs consist of 
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mainly of operands with most operators being implicitly supplied by the positioning 

of the operand. 

Later work [SHEN83 p.157] has included declarations and input/output statements 

which the early counting conventions ignored. Statement labels were originally 

considered to be operators but recent research tends now to classify labels as 

operands [CONT86 p.37]. There are also problems with counting symbols that are 

used with different meanings in the same program. Should they be counted 

separately for each meaning? Levitin [LEVT86 p.316] suggests that the consideration 

of tokens like '( )', 'BEGIN-END', and 'IF-THEN-ELSE' as single operators has 

major consequences for the length metric and that the pitfalls of the operator/operand 

dichotomy are especially annoying since both length and volume depend on the sums 

of the operator and operand counts, which makes a distinction between them 

irrelevant. He suggests that we would be better to just count tokens. 

d) Length Equation 

There is no rigorous mathematical derivation for the length equation [FITZ78, p.6]. 

Card [CARD87 p.32] states that there is a mathematical dependency in the length 

equation that explains why this equation has appeared to have deceptively strong 

empirical support and that the failure of the length equation threatens the foundation 

of software science. Lister believes that, although the empirical evidence has shown 

that the length equation works and initially appears impressive, on closer 

examination this evidence is not so conclusive as it first appears [LIST82, p.67]. 

Lister believes that the length equation is not well established and that it may not hold 

for programs written in structured languages unless a counter-intuitive counting 

scheme is adopted [LIST82 p.67]. All the early empirical evidence supplied was 

from programs written in FORTRAN and PL/1 or from small Pascal programs 

written by students (with presumably a high proportion of impurities). Lister [p.68] 

cites nine large professionally-written Pascal programs that show large discrepancies 

between values of N and AN. These discrepancies were so large as to provoke 

further analysis. Examination showed that for these large programs 111 was 

consistently less than n2 whereas for small programs n1 and 112 were comparable. 

This observation suggested that t\N falls short of N because the contribution of 111 is 

too small. This is caused by the programs being large enough to contain most of the 

built-in operators so that the growth of n1 is constrained by the number of user­

defined procedures and functions. Analysis of these large programs showed that 

there were not enough user-defined operators to give a value of n1 large enough to 

satisfy the length equation. The situation was different with the FORTRAN 
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programs, which provided the early empirical support, as nearly all transfer of 

control was by jumping to a label. These labels made a large contribution to n1. 

Lister altered his counting scheme to count each occurrence of a control construct as 

a distinct operator to be counted each time it was included. He suggests that such a 

counting scheme is most unappealing but did give rather better results. The early 

PL/1 programs contained a significant number of GOTOs despite the structured 

nature of the language and this increased significantly the size of n 1. Lister also 

suggests that there was no more evidence to support 

than there was to support a number of other arbitrary functions such as 

as estimators for N in his programs. He notes that 10n2 gives a better fit for the 31 

programs used by Shen [SHEN79] but does not propose it as a new estimator 

[p.68]. Lister concludes [p.70] that the length equation may only hold for languages 

with primitive control constructs. 

Basili [BASI83 p.658] reported that in his experimental work "N significantly 

overestimated N for modules below the median size and underestimated those above 

while Card and Agresti [CARD87 p.30] also report that N consistently 

underestimates large modules. Wang [W ANG85] found that "the length equation is 

not suitable for large Pascal programs". 

e) Volume 

Levitin [LEVT86 p.317] suggests there are special problems with the volume metric 

and that there is even some uncertainty regarding its definition; on one hand it is 

measured in bits but on the other hand it can take non-integer values (with a range that 

is not continuous either). The values can be rounded up but this has not been done 

consistently in the general literature or by Halstead [HALS77] himself in the original 

monograph on software science. Levitin also shows that volume is not additive and 

that the volume, in bits, may not always be adequate to encode a program fragment. 

He cites an example where this is caused by the treatment of bracket pair as a single 

operator. 
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(ii) Approaches to Solving the Problems of Software Science 

Software Science counting schemes have been identified for many common 

languages [LEVI86] however these counting schemes have not always shown 

consistency. Some sets of counting rules have been published, for example, for 

Pascal in [CONT86 p.38]. 

Albrecht and Gaffney [ALBR83 p.640] demonstrated that the software science 

formulas originally developed for small algorithms could be applied to large 

application programs in Pl/1 and COBOL. They also relate software science 

measures to function points and source LOC, and suggest that both the work hours 

and application size in source LOC are strong functions of function points and 

input/output data item counts (n*2). They use n*2 to mean the sum of the overall 

external inputs and outputs of the application program. 

Albrecht and Gaffney state [p.640] that n1 (number of unique operators) need not be 

known to estimate the number of tokens N, or the number of instructions for a single 

address machine. "An 'average' figure for n1 (and thus for n1log2n1) can be 

employed or the factor n1log2n1 can be omitted, inducing some degree of error". 

They suggest that one could take a number of approaches to estimating program 

(code) size. The "data label vocabulary size (n2)" could be estimated, or n*2, the 

number of conceptually unique inputs and outputs can be used as a surrogate for n2. 

They state that n*2 should be easy to determine early in the design cycle from the 

itemization of external inputs and outputs found in a complete requirements 

definition. Albrecht and Gaffney found that a sample correlation, for 29 APL 

programs, between N and n*2log2n*2 was 0.918 and between N and n2log2n2 was 

0.988 and relate their results to function points, to source LOC and work hours. 

Their measures based on I/0 count showed slightly better, but not significantly better, 

statistics than those based on function points. 

(iii) Other Work Using Software Science 

In System BANG DeMarco [DEMA82, DEMA84] summed the number of input and 

output items at the boundary of each functional primitive and then used this sum to 

adjust the value of the functional primitive. He provided a table of weighted 

functional primitive increments for this adjustment (Table 2.3) and stated that the 

values were based on Halstead's volume/vocabulary relationship (2.5.4) [HALS77]. 
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Albrecht and Gaffney [ALBR83] published work relating function points to software 

science and suggested that the function point software estimation procedure appears 

to have strong theoretical support based on Halstead's [HALS77] software science 

formulas. They suggest that their work can provide an early bridge between function 

points, software science and source LOC. 

2.6 PRIMITIVE, COMMON, COMPOSITE AND DERIVED 
METRICS 

In this discussion of software metrics it is important to note that some metrics are 

estimators while others are estimated. At one stage in software development a metric 

may be estimated from an estimator but at a later stage of development the metric of 

interest may be counted directly; for example LOC may be estimated from a count of 

objects occurring in the specifications but at completion of the software development 

lines may be counted directly. Because other metrics like function points and BANG 

have no real existence in the sense that there is no discrete thing one can point to and 

say 'That is a function point', they can never be counted directly but only ever 

estimated or calculated. Metrics that can be counted at some stage in development can 

be termed primitive metrics while those that cannot be counted directly but are 

estimated or derived from primitive metrics can be termed complex or derived 

metrics. 

Primitive refers to a measure that is 

(a) conceptually or intuitively simple, though its complete and unambiguous 

definition may not be easy 

(b) can be counted directly at some stage during development. 

Primitive metrics hence include counts of objects of various kinds, statements, LOC, 

tokens, characters. 

Common refers to a measure that is widely applicable to many development methods 

and to many languages. Primitive measures tend to be also common. 

Composite refers to measures which are functions of more than one other measure 

and/or count, for example a function of the number of data elements, the number of 
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entities and the complexity of a set of associated procedural fragments in a particular 

component. FPA-like measures are composite. 

The term derived has the additional connotation of being related through some explicit 

or implicit calibration process to some other estimate or measure. For example, an 

FPA-like estimate (as established in 4.3.7) may be derived from an estimate in LOC 

by determining the ratio of LOC per function point. 

Composite measures tend also to be derived because they need a basis for combining 

different measures and object type counts, unless this is to be done arbitrarily, or 'by 

debate and trial' as in Albrecht's FPA (ALBR79]. Thus, the main types of measures 

are primitive and composite derived, referred to below as primitive and composite, 

respectively. Some primitive measures, such as LOC, are common, as are some 

composite measures such as function points. 

Figure 2.2 shows diagrammatically the relationships of these measures and where 

current software size metrics fit into this scheme. 

2.6.1 Uses of Primitive and Composite Size Measures 

The uses of phmitive and composite measures tend to be different. While primitive 

measures can potentially be used at the requirements or specification stages of 

development, for example by measuring the textual bulk of a specification, composite 

measures in terms of counts of specification objects tend to be more meaningful and 

useful at this stage. However, the use of formal automated specifications in both 

CASE tools and executable specification systems is likely to stimulate the search for 

suitable primitive specification measures (see 2.7). Primitive measures tend to be 

applicable to source code of most types. However, the trend to non-procedural, 

form-filling development methods in CASE tools and 4GLs, makes the application of 

some primitive measures, such as LOC, more difficult in such cases. 

45 



Common 
(Textual) 

Primitive 
(Basic) 

eg. counts of: 

Modules 
Statements 

Lines of code 
Tokens 

Characters 

Figure 2.2 

Metrics 

Component 
Object 
Counts 

eg. counts of: 

Entities 
Relations 

Data elements 
Report line types 

Number of choices 
Control breaks 

Composite 
(function 

of primitives) 

BANG 
FPA 

FPA-like 
Software Science 

measures 

Relationships Between Metrics 

What is being measured or estimated by the metrics may vary. A measure may be 

used to obtain the size of a specification or to get the 'intrinsic' size or size of a job to 

be done. It may be a measure or estimate of a partial size of a system or it may 

include adjustment factors in an attempt to estimate the size of the system as a whole. 

When a metric is used may also be important. A metric may be used to measure or 

estimate the partial size or entire size of a specification, design, or implementation and 

different metrics may well be required for each of these sizes. What the measure is 

being used for may also be important; for example it may be for early size estimation 

or may be for data collection at the end of the development. 
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2.7 NEED FOR FUTURE MEASURES 

The increasing use of CASE tools has created a need for size metrics useful for 

developers using these tools. Metrics need to be able to relate to the LOC and FP 

measures that have been used for so many years, to allow comparisons against 

projects developed with conventional tools for productivity measurements. Metrics 

must also be available for comparative productivity studies between projects 

developed with different CASE tools. It is possible that there may increasingly be a 

need to move towards the concept of a metric vector to satisfy these different 

requirements in a software size metric. Measures of size, obtainable from 

specifications, which can be calculated automatically from entries in the system 

dictionary, will increasingly be required by users of CASE workbenches and tools. 

These users' major interest will not be how many LOC will be generated by the 

CASE system employed; their interest will rather be in metrics able to measure the 

size of the job to be done, in a form useful for scheduling purposes, and perhaps also 

for measures that can also be used for comparative productivity studies. 

2.8 SUMMARY AND CONCLUSIONS 

This review of previous work has classified software size metrics into four groups, 

textual metrics, object counts, metric vectors and composite metrics. An additional 

classification of primitive and derived metrics was also briefly discussed. This is a 

more comprehensive classification and review than any previous one the author is 

aware of. 

There are no software size metrics that are completely satisfactory, even for a single 

well-defined purpose. The unsatisfactory features of each metric have been analysed 

as well as approaches to overcoming them. The usefulness of a metric is dependent 

on the purpose for which it is being used. A metric that is appropriate in one situation 

may be quite inappropriate in another. No one metric discussed was seen to be useful 

in all situations. For many purposes a single LOC measure may be appropriate but 

for productivity purposes function points may be used . In this context function 

points are a more meaningful metric than LOC measurements which a.re too language­

dependent. However, for input into most current software cost estimation models 

LOC metrics are essential. LOC is unlikely to be replaced in the short or medium 

term and any emerging metrics will need to be capable of being converted to LOC for 

some time to come. 
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With the increasing use of modern software development technologies like CASE 

tools, other measures of system size, based on counts of a variety of objects or 

tokens occurring in the specifications or software, may become more important. 

System and Data BANG introduce some important principles in this respect and 

metrics like them, based on object counts, warrant further research. 

Because software size is often determined by counting a number of different objects 

there is no one single common count from which it can generally be determined. This 

consideration leads to the important concept of a metric vector including several 

counts or measures of different objects or aspects of a system or component. This 

concept of a metric vector, which counts more than one object within specifications or 

software, is identified as likely to be of increasing use as an approach to software size 

metrics. 

Single valued composite or derived metrics which attempt to combine several of the 

basic or primitive counts into a single metric are required for comparative studies. 

Such metrics are essentially functions of metric vectors. FPA and its derivatives are a 

useful step in this direction. 

FP A and MarkII are examined in detail, including a detailed analysis of the criticisms 

that have been levelled at them. It is concluded that neither FPA nor MarkII function 

points are technology-independent though both are much less technology-dependent 

than LOC. The treatment of adjustment factors in FP A is seen to be particularly 

unsatisfactory for sizing purposes. 

There is too much controversy about the usefulness of software science. There has 

been a good deal of research on the various software science measures with much of 

it giving very mixed results. Because of this, and because software science metrics 

are not used widely in practice, software science per se is not considered further in 

the context of this thesis. 

The metrics identified as being of greatest importance to this thesis include token 

counts, statement counts, LOC, various object counts, metric vectors and FPA-like 

composite metrics. 
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CHAPTER 3 

CURRENT APPROACHES TO SOFTWARE SIZE 
ESTIMATION 

As discussed in Chapter 1, there have been, and still are, many problems with the 

accurate estimation of software size prior to the implementation of an application. 

Because of the problems a number of different approaches to software size estimation 

have been developed. Many of these produce size estimates in LOC for the required 

language, although some models allow for estimation in more than one metric (for 

example, SSM [BOZO86] ). 

A recent report for the United States Air Force [DACS87] describes a number of 

software size estimation models and evaluates six computerized models against a 

known (completed) real time project. The results are five over-estimations ranging 

from 27% to 400+% and one under-estimation (28%). The overestimates described 

in this report may well have been caused by the post-implementation nature of the 

study. With a completed system there is less likelihood of overlooking parts of it, 

whereas inadvertent omissions are frequently a problem when estimating systems 

before development and are therefore likely to be allowed for implicitly in some 

models. 

Boehm [BOEH81 p.320] discusses common reasons for inaccurate early size 

estimation - usually under-estimation. These include: 

"people are basically optimistic and desire to please" 

"people tend to have incomplete recall of previous experience" 

"people are generally not familiar with the entire software job". 

The earliest unit used to measure software size, and the most familiar, is the LOC. 

Historically, managers relied on expert judgement, based on experience and on 

analogy with projects of similar characteristics, to establish the ultimate size of the 

project [CONT86 p.214]. The interest in LOC as the metric for software size 
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estimation is a result of much real-time and embedded software production in the 

United States for the Department of Defense and NASA, and by some large 

companies (for example, TRW, Rockwell, Lockheed, Boeing) which are involved in 

the development of very large software (and hardware) systems. These organizations 

use cost and schedule estimation packages that require LOC input (for example 

COCOMO [BOEH81, BOEH84], PRICE S [FREI79] and SLIM [PUTN78, 

PUTN79, QSM87] ). The use of costing and scheduling models by these large 

organizations has resulted in relatively more research into the estimation of size (and 

cost) of real-time and embedded systems. In comparison, the estimation of size of 

business applications has been relatively neglected except for the major work done by 

Albrecht [ALBR79, ALBR83] of IBM. In fact Dr. Donald Reifer, the developer of 

ASSET-R [REIF87, REIF87a] stated that there was great difficulty in acquiring 

business data processing sizing and project data [REIF87b]. This relative lack of 

data and small amount of research in the business applications area has been brought 

about by the comparatively small size of most business data processing departments. 

Their software developments, when compared with developments like the United 

States Defense Department's Strategic Defense Initiative (SDI), are also relatively 

small. 

Though a sizeable amount of work has been done, mainly within large organizations 

developing real-time systems, there has been relatively little published research in the 

software size estimation area probably owing to business considerations. 

Though LOC are still the most commonly used metric, function points are increasing 

in popularity as an alternative size metric for some purposes. Not only is there no 

current agreed metric for software size measurement (or estimation), there is also no 

one generally accepted approach to obtaining software size estimates. None of the 

current approaches has been shown to be entirely satisfactory and nearly all have been 

criticized for inadequacy in some way or other [ALBR79, LIST82, RUD082, 

JONE86, VERN87, SYM088, VERN89]. Almost all current approaches to software 

size estimation involve some degree of subjectivity or expert judgement. While some 

approaches rely solely on expert judgement, others provide a framework of 

procedures aimed at assisting the expert(s) to produce more accurate estimates. Some 

of the earlier approaches to estimating software size, such as expert judgement and 

PERT techniques, have been incorporated into parts of newer models. 
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This chapter presents a review of current software size estimation methods. A new 

classification of approaches to software size estimation, developed by the author, is 

introduced in section 3.1 and discussed in detail in section 3.2. The only published 

references to some of the material, available to the author, is the DACS Report 

[DACS87] and one of the automated models described in that report, Software Sizing 

Analyser (SSA), is only available to United States Government agencies. 

3.1 CLASSIFICATION OF SIZE ESTIMATION 
APPROACHES 

Size estimation approaches can be classified in a number of different ways. Four 

possible classifications, structural, general (DACS87), temporal and metric-based, 

are identified and discussed in this chapter. 

1) A new classification of software size estimation approaches, developed by the 

author, is a structural classification. This classification is based on the type 

of structural partitioning of a specification (or design) that must be completed 

before the method can be used. Using this classification estimation approaches 

have been subdivided initially into two major classes: 

a) those that estimate the total size of the proposed system as a single entity and 

b) those that require the specifications to be first divided into components, with 

size estimation being done at the component level. The total estimated size, 

for this class, is the sum of component sizes. 

The second of these major sub-classes is then subdivided further. The first 

sub-class makes no distinction between components while the second groups 

components into several different component types. Both the resulting sub­

classes may be further partitioned by a consideration of their approach to 

estimating component sizes; a component may be estimated by type, without 

consideration of its individual characteristics (i.e. an average size is used for 

the component types) or, on the other hand, a component's size may be 

individually estimated (within its component type if there are several types) 

from (possibly) some set of object counts. 
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The structural classification described above is shown in Figure 3.1 and software 

size estimation approaches are discussed within this structural classification in 

section 3.1.1. 

System sized 
as 

whole 

Size with 
average 

component size 

Single 
component 

type 

Individual 
component 

Sizing 

System 

Component 
partitioning 

Several different 
component 

types 

Size with 
average 

component size 

lndividual 
component 

Sizing 

Figure 3.1 Structural Classification of Software Size Estimation 

Methods 

2) The classification used in the DACS Report, is based on "categories that illustrate 

general approaches to sizing" [DACS87]. The following classes are identified: 

sizing by analogy 

size-in-size-out 

function point analysis 

comparison of project attributes 

linguistic approach 

other. 
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However, some estimation methods incorporate more than one approach and 

would thus be included in more than one of these categories. For example, QSM 

Size Planner [PUTN87], which uses three different approaches and can combine 

the three weighted outputs into a single size estimate, is discussed within three 

classes. This classification scheme is discussed in section 3.3 and is applied to a 

number of additional approaches that were not included in the DACS report. 

3) A further alternative classification, developed by the author, and useful for rather 

different purposes, is a temporal classification. This classification is based not 

on the general approach used, but on a consideration of what parts of the 

specification or design must be completed before estimation can begin. Using this 

set of criteria, the following four classes are then identified: 

feasibility 

requirements 

preliminary design 

detailed design. 

There may, however, be variants to these classes depending on the software 

lifecycle model1 adopted. Of course, all software size estimation methods tend to 

give better results as the development process proceeds and gaps in the required 

information are filled in. 

4) An attempt was also made to classify the different software size estimation 

approaches on the primary metric used but this proved to be unsuccessful. 

Because some approaches give results in more than one metric, and some are able 

to produce results in any metric specified by the user, this classification had so 

many overlaps that it was abandoned. 

None of the classifications discussed above is considered to be entirely satisfactory. 

The structural classification, however, appears to result in fewer problems. 

Therefore it has been adopted as the preferred classification and is used to provide the 

structure for this section. For comparative purposes both the DACS classification 

and the temporal classification are discussed in more detail later. Section 3.3 reviews 

1 This may of course include incremental development, prototyping, etc. 
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software size estimation methods from the alternative viewpoint of the DACS 

classification and section 3.4 reviews methods within the temporal classification. 

3.2 STRUCTURAL CLASSIFICATION OF SIZE 
ESTIMATION APPROACHES 

Major size estimation approaches are identified and discussed within the structural 

classification in sections 3.2.1 - 3.2.2. Figure 3.2 shows diagrammatically the 

relationships of the approaches discussed to each other, and their positions within the 

classification structure. 

The first division in this classification partitions the approaches into those that 

estimate the system as a single entity as opposed to those in which the specifications 

must be sub-divided into components before estimation can be done. There are some 

methods that could fit into either of these categories. CEIS (Computer Economics 

Inc. Size Estimator), a recently developed commercial package, is one such method 

[DACS87 p.2-35]. This approach "allows the size of a task (program or project) to 

be estimated by comparing attributes of the new task to three reference tasks of 

known size". Although the size range of a task, or whether a whole system could be 

estimated as a single task with this package, is not specified there seems to be no 

reason why this should not be possible if three reference systems of known size are 

available. The CEIS approach however has been included in section 3.2.2 which 

deals with approaches requiring specifications to be partitioned into components 

because it is more likely to be applied to subsystems at some convenient level. 
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Figure 3.2 Structural Classification of Specific Software Size 

Estimation Methods 

3.2.1 No Partitioning of Specifications 

The estimation methods discussed in this section do not require the software 

specifications to be partitioned into components, modules, programs etc. before size 

estimation can be done. The following approaches are included in this class and are 

discussed below: 

Experience based estimation 

Group consensus including standard Delphi and Wideband Delphi 

PERT sizing based on a normal distribution 
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Analogy 

QSM Size Planner - Fuzzy Logic 

Other methods 

Price SZ 

The PERT technique can be used at either the system level or the module level 

[PUTN79] and is thus also included in section 3.2.2. 

(i) Experience-Based Estimation 

Several experience-based approaches have been described in the literature. They are 

mainly aimed at assisting in the production of LOC size estimates. When they are 

used the target language or languages must be known beforehand and, without a 

thorough understanding of the specifications and familiarity with the specific type of 

application, it is unlikely that good estimates will result. Experience-based methods 

require initial estimates of approximate size values. The final size estimate is a 

refinement of the broader, inexact estimates provided by the input. These techniques 

may be used for size estimation (when size is to be input into a costing model), 

however they have also been used for the production of cost estimates and it is in this 

context that they are discussed in [BOEH81]. The expert judgement approach, he 

suggests, may use just one expert but the result will only be as good as that expert, 

and will be as biased, optimistic or pessimistic, as that expert is [p.333]. 

Group consensus, PERT and Delphi methods can be used for size estimation at both 

system level and module level. However, group consensus, the Delphi methods, and 

the PERT sizing method using a normal distribution are usually applied at the system 

level and are therefore discussed in detail in this section. 

(a) Group Consensus 

A variation of the expert judgement approach is a group consensus technique. This 

involves the estimation of size by a group of experts. The final size estimate is the 

mean or median of the individual estimates. Boehm [BOEH81 p.333] describes the 

method as being "quick but subject to adverse bias by extreme estimates". A 

suggested variation is to hold a group meeting in which the experts discuss their 

individual estimates, with the aim of getting them to converge on, or agree to, a single 
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estimate. Boehm suggests that this method may filter out some uninformed estimates 

but that group members may be influenced by the more glib or assertive members, or 

that the group may be overly influenced by politics or authority figures. This was 

certainly the case when the following experiment, a variation of this technique, was 

tried by the writer in 1985. A group of fifteen graduate students were the 'experts'. 

Most of these students did not have commercial data processing experience but they 

were all familiar with projects of a similar size to the system under discussion. Two 

of the members of the group were very assertive. The rest of the group were very 

disinclined to argue with them. The result was that the estimate, instead of being a 

consensus of fifteen, was made in reality by only two members of the group. 

Boehm suggests that some of the drawbacks of this approach may be overcome by 

using a Standard Delphi technique as described by Helmer in 1966 [HELM66] 

and used as an expert consensus method in a number of different situations. Here the 

experts anonymously fill in their estimates on a piece of paper, a co-ordinator 

prepares a summary of the estimates with the rationales behind the estimates, 

distributes these to all participants, and then asks experts to give another estimate. 

Forms are filled out again and iterations continue until agreement is reached. No 

group discussion occurs. 

Because this method did not provide a sufficiently "broad communication bandwidth" 

Farquahar and Boehm [BOEH81 p.335] in the early 1970's formulated "an 

alternative method called the Wideband Delphi technique which has 

subsequently been used in a number of studies and cost estimation activities". The 

standard Delphi differs from the Wideband in that group discussion does take place in 

the Wideband. "Group discussion offers considerations for estimating size of the 

development effort that may be otherwise overlooked. Generally discussion will 

filter out extreme estimates" [DACS87]. Boehm suggests that Wideband Delphi "has 

been highly successful in combining the free discussion advantages of the group 

meeting technique and the advantages of anonymous estimation of the Standard 

Delphi technique" [BOEH81 p.335]. In this variation, illustrated in Figure 3.3, an 

initial meeting of experts is called where estimation issues are discussed with the co­

ordinator and each other. Forms are then filled out anonymously and a summary of 

these estimates are distributed to the members of the group. Another meeting of the 

experts is then called. They discuss points where the estimates varied widely and 
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then later fill in forms with revised estimates. Iterations continue for as many rounds 

as are appropriate. 

Completed 
Estimation 

forms 

Swnmary of 
Estimates 

Size in LOC 

Estimation 
forms 

Figure 3.3 Wideband Delphi Technique 

A variation on this method was tried in 1986 by the writer with a group of sixteen 

graduate students. These 'experts' were split into four groups of four. Each group 

produced an estimate of the product size. The chairman produced a summary of the 
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estimates and distributed them anonymously. The groups re-estimated and the results 

were again collected. Only one group, that which had provided the lowest estimate, 

was prepared to alter its initial estimate. The other three groups, perhaps with the 

confidence supplied by their peers, refused to change their estimates in any way. No 

agreement was possible, with all groups being quite adamant that they were correct. 

This resulted in three of the groups having significant underestimates (by 400% in the 

worst case), while the group that had made the highest estimate had only very slightly 

underestimated. 

(b) PERT Sizing Based on the Normal Distribution 

This is the simplest of the PERT approaches and involves the estimation of two sizes 

for the completed product by experts familiar with the proposed project specifications: 

a = the lowest possible size of the software 

b = the highest possible size of the software. 

The expected size of the software is 

a+b 
E = 2 

and the standard deviation of the estimate is 

b - a 
cr = -6-. 

These formulae are based on the assumption of a normal distribution of sizes between 

the two extremes a and b; a and b are understood to represent three standard deviation 

limits on the probability distribution of the actual software size. For a normal 

probability distribution this means that the actual software size would lie between a 

and b 99.7% of the time. Boehm [BOEH81 p.319] suggests that there is a problem 

with this method in that if the maximum size given for b corresponds to the maximum 

amount of code that will fit in the machine, then the result is unlikely to be accurate. 

He gives an example to support this criticism. PERT techniques have also been 

incorporated into several automated models including SSM [BOZO86] and Putnam's 

SLIM costing model [PUTN78, PUTN79, QSM87]. 
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(ii) Analogy 

QSM Size Planner - Fuzzy Logic 

QSM Size Planner's Fuzzy Logic [PUTN87, DACS87] is a commercial software 

size estimation package that provides a data base of historical data and uses a sizing 

by analogy approach. Eleven different application categories are available and each 

application category is statistically related to a size range. The application categories 

include business software, avionics, real-time, microcode/fim1ware, etc. 

Three inputs are required by the user: 

1. Application category. 

2. An overall size category within the application category, chosen from 

a range of six categories from small to very large. 

3. Another selection of size within the size category selected (in 2) above 

to refine the range of an estimate. Four choices are available for this 

selection with a range from low-high. 

A report using data from the QSM data base is provided. This report is based on the 

user's selections of application type and size categories. A combined weighted 

estimate based on conditional probabilities from the user selection and the QSM data 

base is provided. 

Strengths of the model include: modest input, early application and probability 

distribution to bound the range of an estimate; its weaknesses include subjectivity and 

lack of precision [PUTN87]. Figure 3.4 illustrates the approach. 
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Figure 3.4 QSM Fuzzy Logic 

This package was developed by Price Systems engineering personnel between 1980-

1985 [DACS87, OTTE86]. The development was based on the organization's 

experience with missile and radar projects together with some data from the literature. 

Because of its ready availability to United States Department of Defense (DoD) 

personnel, this is currently the most used sizing model by the DoD [DACS87]. The 

user of the package has a choice of two application types - military or commercial and 

the size estimate is available in either source or machine level instructions (MLI). 
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The system estimates size as a function of the following quantitative inputs but details 

of the algorithms used are not available : 

outputs 

pages output to a line printer 

alphanumeric and graphic displays 

output streams 

system states 

computed or created tables 

inputs 

message fields 

streams 

operator actions 

analogs 

functional bulkiness1. 

Environmental and calibration factors are used to adjust the size to the development 

environment and organization. These environmental and calibration factors include: 

design review, 'code walk thru', top-down approach, 

structure/module approach, size calibration factor, 

language expansion ratio, target size, integration with 

another system, and program requirements growth. 

The user must provide a qualitative rating for many of these factors. The first five of 

the calibration factors listed above are cost rather than size drivers, with the first four 

falling into the group of cost drivers Boehm [BOEH81 p.451] terms modern 

programming practice. Figure 3.5 illustrates the Price SZ approach. 

1. Describes software team experience with language and availability of software tools. Normal value 

= I, more tools< I and fewer tools> I [DACS87]. 
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3.2.2 System Partitioned into Components 

The approaches discussed in this section are those that require the specifications to be 

divided into components or modules before size can be estimated. Total system size 

is the sum of component sizes. Boehm [BOEH81 p.318] states that "there is no 

substitute for a detailed understanding of each software component to ensure accurate 

software sizing" (thus implying some degree of design - at least enough to divide the 

project up into component parts). Those estimation approaches that require this view 
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of the partitioning can be further sub-divided by their component types. One class of 

estimation methods makes no type distinction between components while the other 

class partitions the components into several different types. 

(A) Single Component Type 

This class of estimation approaches requires that the specifications of the system be 

partitioned into components or modules but makes no distinction between types of 

component during estimation. 

(i) No Individual Component Sizing 

The members of this class, with their single component type, do not employ 

functions based on any objective, measurable properties of individual modules or 

components in their approach except for perhaps a small number of reference 

modules, or at most a sample of modules. The following size estimation approaches 

are grouped within this sub-class: 

Experienced based 

Delphi techniques 

PERT based on the beta distribution 

Other experience-based estimation 

Ranking by size 

Software Sizing Model (SSM) 

Curve Fitting 

Analogy 

Computer Economics Inc. Sizer Planner (CEIS) 

QSM Standard Components Sizing 

Variable Counts 

State Ma.chines Model (SMM) 

SMM [BRIT85] is an approach similar in some ways to the approach described by 

Aron [ARON69] which is discussed under the heading 'Other Experienced-based 

Estimation', however, in Aron's approach, modules are assumed to have an average 
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implementation size within an organization while SMM obtains its average module 

size from a variable count for one of the modules. Both SSM [BOZ086] and Curve 

Fitting [DACS87] have some reliance on expert judgement. In both the user must 

rank modules (making up the system) by size. Both QSM's Standard Components 

Sizing [PUTN87] and CEIS [DACS87] rely on analogy with completed projects 

developed in the same language. 

(a) Experience-Based 

Although the Delphi techniques described in section 3.2.1 are normally used for 

system sizing they may be applied at the module level. Putnam and Fitzsimmons 

[PUTN79 p.191] suggest that a Delphi polling of experts can be used for module size 

estimates with the following PERT approach which is based on the beta distribution. 

The early experience-based approach, based on an average module size, described by 

Aron [ARON69] is also reviewed in this section. 

PERT Sizing Based on the Beta Distribution 

This is a rather more sophisticated approach than the normal distribution-based PERT 

approach and involves the separate estimation of each of the software components 

that will make up the completed software. Three estimates are required for each 

component to get a range of values that describe the limits, in number of source lines, 

for the size of each module. 

The PERT estimates for each component are as follows: 

ai = lowest possible size of the component 

mi= most likely size of the component 

bi= highest possible size of the component. 
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The estimated total software size then becomes 

with the standard deviation 

Boehm [BOEH81 p.319] believes that the reason this technique does somewhat better 

than the PERT sizing of complete systems based on the normal distribution, is 

because more thought is required when software is broken up into components, and 

three estimates are made for each component. However, he also suggests, that the 

standard deviation may be quite misleading as the method assumes that the estimates 

are unbiased toward either underestimation or overestimation. He is convinced that 

bias may be present, and suggests that current experience shows that most likely 
estimates (mj) tend to cluster toward the lower limit, while actual product sizes tend 

toward the upper limit. This imparts a significant bias toward underestimation in 
PERT sizing. Conte [CONT86 p.216] suggests that if the values used for ai, mi and 

bi are the averages from several different estimators that improved results can be 

expected. Figure 3.6 illustrates this approach. 
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Figure 3.6 Beta Distribution-Based PERT Estimation 

Conte [CONT86 p.216] suggests that, although the PERT techniques are an 

improvement on simple expert judgement, they are still highly subjective and agrees 

with Boehm [BOEH81 p.320] that experience has shown that most experts err on the 

low side and quotes an unpublished Yourdon report which showed that several 

experienced managers underestimated on 12 out of 16 projects when given the 

complete specifications of the projects on which to base their estimates [CONT86 

p.214]. 

Other Experienced-based Estimation 

Aron [ARON69] describes an expert judgement method which is based on 

partitioning of specifications. The number of units, programs or packages, is 

estimated from the design by carrying at least one package down to the unit level. The 

number of units in packages is estimated by experience with similar packages, 
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sketching the design for the package, or using the same number obtained for the base 

package. The system size is determined by counting the number of elements and 

multiplying the result by the average element size i.e.: 

Deliverable instructions = number of units x average unit size 

Aron suggests that the average unit size depends on the operating habits of the 

designer and that as an individual tends to normalize his design the resulting units fall 

within a narrow range of sizes. This enables the designer to determine the average 

unit size that he assigns to people. This average, he suggests, is perfectly adequate 

for the purposes of a quantitative estimate. 

(b) Ranking by Size 

Curve Fitting 

This model, developed by Dean in 1983 [DACS87], is purely statistical in nature and 

relies on the ability and experience of the user "to rank and predict the size of 

individual functions". The specifications for the proposed system are partitioned into 

functions. The size of at least three individual functions must be known or must be 

predictable. All functions are ranked from largest to smallest in any suitable metric. 

The observed points are input into a curve-fitting model and the unknown points are 

predicted by fitting the observed points into one of the different curves. The analyst 

will need to evaluate the results and reject any that are obviously unsatisfactory. 

Software Sizing Model 

SSM, a computerized simulation model which interfaces to a number of costing 

models, was developed in the United States by Dr. George Bozoki in 1980 and later 

refined [BOZO86, DACS87]. This approach, which is based on module 

comparisons, uses expert judgement together with PERT techniques and relies on the 

user's ability to rank the size of the modules that make up the specifications. The 

model may be applied at any stage so long as the software can be partitioned into 

modules. Bozoki believes that estimators can make more reliable estimates of the 

relative sizes of modules than they can of their absolute sizes. Two modules must be 

of known size. These two modules are used as a reference from which to estimate 

the sizes of the other modules in the set. The two reference modules do not have to 
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be from the system being developed, any existing modules of known size can be 

used as a reference. 

The modules in the proposed software are ranked using their relative expected size, 

each is provided with a size range (lowest, most likely and highest), and each is 

associated with a designated size interval. From a unique pairing of all the modules 

making up the project the user must judge which is larger of the two, for each pair. 

The model uses this data to produce module sizes, standard deviations, total system 

size and probabilities in the unit used for the reference modules (source LOC, 

function points, etc.) but for source LOC estimates the reference modules must be in 

the same language as the proposed system. Figure 3.7 illustrates the SSM approach. 

If the system being sized is made up of a large number of modules then the 

procedures can become quite tedious [DACS87] with the following number of inputs 

required for n modules: 

Pairwise comparison data: (n/2) (n-1) 

Ranking data: n 

Sorting data: n 

PERT sizing data: 3n 

For 12 modules a total of 126 values per analyst will need to be input into the model. 

[DACS87] gives a comparison of results produced when the same data was input into 

SSM and was used to manually derive PERT size estimates for each of four analysts. 

The SSM size estimate produced, in this case, was better than that produced by any 

of the analysts. 
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Figure 3.7 Software Sizing Model 

(c) Variable Counts 

State Machine Model 

Two reference modules 
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language if SLOC 
selected 

This approach is a conceptual method classified by [DACS87 p.i] as having a 

linguistic approach. Britcher and Gaffney [BRIT85] have suggested that during 

design and implementation any system should be decomposed into six levels of detail 

70 



boxes. Level zero is the initial system specification while level five is the source code 

level. They suggest that on average each box per level would contain about the same 

amount of function. At the lowest level each function box would be implemented in 

about the same amount of code. Larger systems would have more boxes at each level 

not larger boxes. The size of any one function could be estimated by specifying the 

variable count (amount of data used and generated). The variable count corresponds 

to Halstead's 112, operand vocabulary size. To estimate at the procedure level the 

following formula was used in [BRIT85 p. 108] to estimate the number of assembler 

LOC: 

S = 4.8078 Vl y N oge 

where 

V = variable count, 

N = 1 if V < 100 

N = 2 if 100< V < 1000 

N = 3 if 1000 < V < 10,000 

The result is divided by an expansion value to reflect the use of a higher order 

language. [BRIT85] used a value of 1.2 to reflect the use of a mixed assembler­

macro language. 

Once the size is calculated for one procedure-level box then this size can be multiplied 

by the number of boxes at this level in order to estimate the system. When the 

approach was applied to a FAA system an average value of six was found for the 

variable count at the procedure level [BRIT85]. This average value allowed the 

estimation of average component size at higher specification levels. 

An earlier version of this approach was described in 1981 when Gaffney [GAFF81] 

suggested that the size of modules could be estimated individually using the software 

science length equation n 1 log2n 1 + n2log2n2 with a "standard estimate for n 1, the size 

of the instruction repertoire", and n2 = *n2.1 *n2 would be estimated from the top 

1 n1 = number of unique operators, n2 = number of unique operands, *n2 = input/output data item 

counts 
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level design of the module or procedure. In practice *n2 might be obtained from an 

automated design tool. A smaller relative error was found if the fom1ula was applied 

to the systems they studied in their entirety than if they applied the formula to each 

procedure individually. Figure 3.8 illustrates the SMM approach. 

Average procedure 
size 

Size of system 

Figure 3.8 State Machines Model 
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(d) Analogy 

QSM Size Planner - Standard Components Sizing 

The standard components sizing version of QSM's Size Planner [PUTN87, 

DACS87] is an approach that estimates the size of a system by analogy with previous 

projects developed in the same language. Users can use their own historical data 

base or the QSM data base or have results computed from a weighted combination of 

the two data bases. The user inputs language and values (low, most likely and 

highest) for a selection of 'components' from the following list : 

SLOC 

object instructions 

bytes 

files 

reports 

batch programs 

bits 

words 

modules 

subsystems 

interactive progran1s 

screens. 

Figure 3.9 illustrates the QSM SCS approach. 
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Source 
statements 

Object 
instructions 

Confidence 
levels 

QSM database 
Compare against 

database 

Combined weighted solution, SD 
for each of the inputs, total size 

Bits, Bytes, 
Words 

% of user's historical 
database for each 

componen t 

User historical 
data 

Figure 3.9 QSM Size Planner: Standard Components Sizing 

Computer Economics Inc. Size Estimation System 

This approach relies on a subjective comparison of the attributes of a new task against 

the same attributes of three reference tasks of known size in the same language. 

Figure 3.10 illustrates the CEIS approach. 

Three steps are involved in the estimation of a new task's code size [DACS87 p.2-

35]: 

Six important project variables are chosen. A pairwise comparison matrix, 

based on the effect of these variables on project size, is formed. 

Eigenvalue/eigenvector analysis is performed on this matrix to obtain a relative 

measure of matrix consistency and weights for each project attribute. 
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The relationship between the three reference tasks for the same set of project 

variables is determined by forming a pairwise comparison matrix. The 

relationship of the new task to each of the three reference tasks for each of the 

attributes is established. 

Measure of consistency 
of matrix 

Normalised 
vector values 
are attribute 

weights 

Size of 
uisk 

Figure 3.10 CEI Sizer 
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The unknown project size is computed as a function of the unknown project 

weight and actual sizes of the three reference tasks. 

(ii) Individual Component Sizing 

The approaches that fall into this class are those that make an attempt to get the size of 

each module from some kind of objective measures, usually counts of objects or 

variables within detailed specifications or design. Mar.kl! [SYM088], which sizes a 

single module type from the numbers of input data elements, output data elements 

and entities is included he.re together with an approach described by Wang 

[WANG84, WANG85] that can be used to estimate the size of programs. Wang's 

approach uses the number of unique variables identified during early program design. 

(a) Single Component Type 

Marki/ 

Mark II, which is illustrated in Figure 3.11, is based on Function Point Analysis, and 

was introduced in section 2.5.2. With its use of a single component type Mark II is 

here classified differently from the other FPA-like approaches, which use several 

component types. 

Symons [SYM088 p.2] states that the task of developing a business computerized 

system is determined by a product of factors, including an information processing 

size, and a technical complexity factor. The information processing size (raw 

function points) is defined as "some measure of the information processed". The 

technical complexity factor is analogous to Albrecht's [ALBR83] adjustment factor, 

that is "a factor which takes into account the size of the various technical and other 

factors involved in developing and implementing the information processing 

requirements" [SYM088 p.2]. These "factors are intrinsic to the size of the system in 

the sense that they result directly from the requirements for the system to be delivered 

to the user". In the Mark II approach all the logical transaction instances making up 

an application are estimated in the same way, with the size of each transaction being 

calculated from the numbers of input data elements, output data elements and entities 
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(replacing the older FPA file concept) used by the transaction. The logical transaction 

instance sizes are summed to give the information processing size and the technical 

complexity factor is then applied to give the size of the system. 

To obtain the raw function points the counts of input elements Ik, entities Ek and 

output elements Ok referenced in the kth transaction are summed over all transactions 

using the formula 

Lk (0.44Ik + 1.67Ek + 0.38Ok) 

in which the technology-dependent weights shown for the elements relate to the 

systems studied by Symons. Symons proposed the above weights for the types of 

systems, normative technologies and environments he investigated but suggested that 

any other technology would have its own weights and that changes in technology 

would be shown by changes in the weights. 
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Symons also suggests [p.8] that the 14 adjustment factors used in FPA are too 

restricted, that other factors may be needed now, and still other factors in the future, 

and that some of the FPA factors overlap [p.4]. The resu·iction of the FPA weights to 

the 0-5 range may be simple but it is too restrictive and a more open-ended approach 

to weighting these factors, which would vary with the technology, would appear to 

be desirable. He used 20 technical complexity correction factors in the examples in 
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[SYMO88] including one for documentation. Markll really measures something 

different from just the software size. It is attempting to estimate the total effort of the 

job to be done rather than the size of the software. For comparative purposes MarkII 

has been included in Table 3.1 with the other FPA-based approaches. 

Other Approaches 

Wang [WANG84, W ANG85], in his investigation of Pascal programs, used an 

approach which he called a data-structure-oriented size estimation method. He stated 

that a general approach to early size estimation involves two steps: a) establishment of 

a size model that is a function of some measurable program quantity and b) the 

identification of development strategies that encourage the early development of such 

quantities. He applied linear regression to his data set and identified the following 

relationship: 

S = 102 + 5.31 VAR 

VAR is defined as the number of conceptually unique variables and it can be 

determined from data-structures and variables developed early during program 

design. He found that this equation gave better results with his large Pascal 

programs than Halstead's length equation. 

This work is been continued by the Software Engineering Research Center (SERC) 

with Conte [CONT88J investigating two further size estimation models: 

S = C * SY AR and S =C * DYAR 

where: 

SY AR= a count of the unique variables identifiable al the specification stage 

from a DBMS sub-schema and 

DY AR= a count of the unique variables identifiable at the design stage. 

C is an expansion factor that depends on language and size level. 

Preliminary results when investigating small systems gave values for C with DY AR 

from 11.8 for Fortran programs to 25.8 for C programs and 16.8 for COBOL 

programs. A value of 100.6 for C was given for small COBOL programs with 

SVAR. 
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(B) Several Component Types 

This class requires specifications to be partitioned into different component types. 

The first sub-class includes those approaches that obtain some kind of average size 

estimate for each component type; no aLtempt is made to separately size each 

individual component within a class. The other sub-class includes those approaches 

where an attempt is made to size each individual component within the class. This 

individual component estimation is usually based on a function of counts of some 

objects within the specifications for each particular instance of each component type. 

(i) No Individual Component Sizing 

Two FPA-based approaches, SPQR Sizer/FP [SPR86] and Feature Points 

[DACS87] are included in this sub-class together with ESD [DACS87], an approach 

which uses analogy with an historical data base of completed components grouped 

into 105 different function types. 

(a) FPA-like 

SPQR Sizer/PP and Feature Points 

These two approaches were developed at SPR Inc. and are based on Albrecht's 1983 

[ALBR83] version of function point analysis which uses several different component 

types. However all components within a particular component type are given the 

same (average) weighting. Both Sizer/FP and Feature Points use just three 

parameters to form the system adjustment factor. These are: 

complexity of the problem 

complexity of the code 

complexity of the data. 
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These parameters are given subjective ratings on a scale of 1 - 5 by the user. 

SPQR Sizer/FP uses the five standard FPA component types. SPR have suggested 

that the effect on the function point total of using the average weights instead of three 

level complexity weights for each component type is a value that is within 2% of the 

later (current) Albrecht version of FPA [SPR86] and that as a result Sizer/FP requires 

rather less effort to produce an estimate. The DACS Repol1 lDACS87 p.4-23] gives 

an example where Sizer/FP and BYL (Before You Leap, an automated cost estimation 

tool that includes an FPA front end) [GORD87] were applied to the same system, 

along with a number of other approaches. Sizer/FP gave a 60% greater number of 

adjusted function points than BYL which uses a close implementation of the Albrecht 

1983 function point method. 

The Feature Points approach was also developed at SPR Inc. to overcome 

problems that were perceived when function points were used to estimate real-time, 

embedded, military and system software. The approach differs from Sizer/FP in two 

respects: 

the weight applied to data files is reduced from 10 to 4 

the number of component types is increased to six, with the inclusion of 

algorithm as a component type. 

Table 3.2 includes component weightings for both Sizer/FP and Feature Points. The 

same three parameters used in Sizer/FP to produce the adjustment factor are used in 

this method and the adjustment can alter the raw feature point count by 0.6 to 1.4. 

This approach was under test in 1987 [DACS87]. 

Both Sizer/FP and Feature Points have been included in Table 3.1 with the other 

FPA-based approaches. Both approaches, like many of the other FPA-based 

approaches, are normally used to give size estimates not in function or feature points 

but LOC. A language expansion ratio is used to convert the number of function or 

feature points into equivalent LOC for the implementation language. The language 

expansion ratio provides an average number of LOC required to implement a function 

point in the chosen language. Table 3.3 summarizes recent research on language 

expansion ratios. 

81 



(b) Analogy 

ESD Software Sizing Package 

This model is under development at ESD, Hascom Air Force Base, with the 

developers being primarily Dean and Mentzel [DACS87]. The ESD approach bases 

the expected size of a module or sub-system on an historical data base of modules in 

the same language, that perform a similar function. The ESD sizer consists of two 

primary components, a sizing data base and a user interface that allows a user to 

retrieve data and produce statistical reports on the selected data set. The data base 

contains reference data on modules by function type and number of source lines, 

computer used and language used. The data entries are grouped into approximately 

105 functions each of which is identified by an index number. The functions are 

divided into two groups: operational and support functions. To obtain an estimate for 

a module the user selects entries from the data base with one or more of the following 

parameters: 

index number 

system name 

range of source LOC 

development computer. 

language 

function name 

development status 

Several parameters may be combined to give more stringent criteria for selecting 

entries. A temporary data file of the selected entries is created. Statistical analysis is 

used to obtain the record count, mean, median, variance and standard deviation of the 

selected data set. The program will also produce a beta distribution curve to yield the 

most likely value for the new function based on the historical data from the data base. 

Modules implementing functions that cannot be assigned index numbers must be 

estimated in some other way. Figure 3.12 illustrates the ESD approach. 
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Figure 3.12 ESD Sizing Package 

(ii) Individual Component Sizing 

The approaches included in this section all use some type of individual component 

sizing, often from counts of objects occurring within the specifications of the 

different component type instances although the component sizing in SSA is rather 

more subjective than that of the other approaches within this class. 
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This class includes another group of techniques based on Function Point Analysis. 

Albrecht's FPA itself is included here [ALBR83] and two other FPA-like or FPA­

based approaches, ASSET-R [REIF87, DACS87] and QSM FP [PUTN87, 

DACS87], are also discussed in this section. A somewhat different approach, 

developed hy Itakura and Takayanagi [ITAK82], is also included in this group. This 

approach was developed in an attempt to estimate the size of reporting programs in a 

batch environment and although it is very limited in scope, it does attempt to size a 

program (component) class. BANG [DEMA82, DEMA84], which was discussed 

earlier, in section 2.5.2, when software size metrics were reviewed, is also included 

here. SSA, which is also in this group, uses an approach based on an historical data 

base of previously developed functions. SSA provides 33 function (component) 

types from which to choose. After data on the function of interest is retrieved, user 

expert judgement is required to assess the unknown function's size relative to the 

retrieved functions. 

The following approaches are those within this class: 

FPA-like 

FPA 

ASSET-R 

QSMFP 

BANG 

SSA 

Itakura and Takayanagi 

(a) Function Point Analysis and FPA-like Approaches 

A number of variants of the function point analysis approach to software size 

estimation have been developed. Approaches like BYL [GORD87], QSM FP 

[PUTN87] and ASSET-R [REIF87] use FPA or variants to obtain a size in function 

points. These approaches then use a language expansion ratio (see also 3.2.2Bi (a) 

and Table 3.3) to convert the function point count to LOC. 

Function Point Analysis 

FPA was introduced and discussed in some detail in 2.5.1. The function point 

measure is said to be based on the user's view of the system and it is claimed that 
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non-DP users can evaluate the measure [RUDO83]. FPA was used by Albrecht to 

compare productivity between projects that were written in different languages and 

used different technologies. He used the average number of LOC required to develop 

a function point to show the relative productivities of COBOL, PL/1 and DMSNS 

[ALBR79]. Other writers [RUDO83, JONE86, VERN88, LIM89] have used FPA to 

produce productivity figures for other languages including 4GLs. 

ASSET-R 

This approach [REIF87, DACS87], which is an extension of Albrecht's [ALBR79, 

ALBR83] work, uses three different component and weighting sets depending on the 

type of system to be sized. Three different system types are available: data 

processing, scientific, and real time. ASSET-R uses a modified number of 

components to try to improve prediction accuracy and to extend the approach to real 

time and scientific systems. Data processing system estimation uses the same five 

components as the 1983 FPA approach but Reifer infers that the number of weighting 

factor levels for a component has been extended from the original three to six. There 

is however, no difference between the weighting factor levels, for very high and extra 

high, for any of the component types, within any of the system types. This 

effectively means that there is a maximum of five weighting factor levels in an 

ASSET-R component type at present. The weightings used by ASSET-R for its three 

different application types are summarized in table 3.2. 

Component operating modes have been added to try to overcome the black box nature 

of FP A for hoth the scientific and real time system types. These are defined as 

"unique modes of operation which are performed internal to the system. Types are 

dialogue (batch, interactive and interpretive), processing (diagnostic, calibration and 

execution) and error modes (checkpoint/restart and reconfiguration)" [DACS87 p.A-

3]. Another two components, stimulus/response relationships and rendezvous have 

been included for real time systems. 

An extra item, the normalized operator/operand count (OOCn), is included in the basic 

ASSET-R calculation. As this item, which is based on Halstead's work [HALS77], 

may be difficult to calculate before implementation the user may input the number of 

algorithms instead. Assert-R also includes an architectural constant (ARCH) which 

deals with the degree of centralization or distribution of the application and its 

computer(s). This constant ranges from 1 - 2 and has six possible values [DACS 
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p.A-6]. ASSET-R also includes a reuse factor (rf) to cover a range of low 

(essentially none) to very high (over 30% reuse) but its derivation and application is 

internal to the model. The equation used in ASSET-R is as follows: 

Size (SLOC) = (ARCH) (EXPF) ((LANG * FP A) + OOC0 )rf 

ARCH architectural constant 

LANG language expansion ratio 

OOCn normalized operator/operand count 

EXPF technology expansion factor 

FP A adjusted function point count 

rf reuse factor 

The type of system being developed will determine the weightings of the parameters 

in the above equation. The complexity adjustments for raw function points are 

internal to the model and are different from the normal FPA adjustments. They are 

not obtained by rating program characteristics [DACS87 p. 2-33]. 

The technology expansion factor (EXPF) is calculated from nine parameters. These 

factors are: 

requirements volatility 

data base size 

use of software tools 

applications experience 

programming language experience. 

degree of real time code 

environment experience 

analyst capability 

use of modem programming techniques 

It is worth noting that all the above parameters are included in COCOMO [BOEH81] 

as cost drivers not size drivers. 
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FPA-like Soflware Sizing Approach FPA SPQR Fealure :)SM Size Assel-R 
Sizer-FP Poinls Planner 

Syslem Types Dala Processing X X X X 

Real Time X X 

Scientific X X 

Componenl Types External Input X X X X X 

External Output X X X X X 

Logical Internal File X X X X X 

External Interface File X X X X X 

External Inquiry X X X X X 

Number of Algorithms* X X 

Operating Modes X 

Stimulus/Response X 

Rendcvous X 

Single module type 

Number of Component Complexity Levels 3 1 1 5 6 

Number of Adjustment Factors 14 3 3 0 14# 

Table 3.1 System Types and Component Types for Function 

Point Analysis and FPA-like Approaches 

Note * in ASSET-R the number of algoriLhms may be used Lo gel an estimale of 

complexity, however an alternate and preferred input is normalized operator/operand 

count. 

# this is a different set from the usual FPA adjusLment facLors (sec section 2.5.1.) 

QSM Size Planner - Function Points 

This FPA-like approach [PUTN87] uses the same five component types as the 1983 

Albrecht [ALBR83] version of FPA. The major difference between this and the 

Albrecht version is that there are five complexity ratings (not three) within each 

component type (see Table 3.2). Another important difference from Albrecht's FPA, 

is that the raw function point count is not adjusted for complexity by the use of 

additional adjustment factors. The weighting factors used in this approach to 

calculate the function point total have not been published [DACS87]. 

87 

Mark II 

X 

X 

NA 

20 



Very Very Extra 
Low Low Average High High High 

FPA 
Data Processing Input 3 4 6 

Output 4 5 7 
Files 7 10 15 
Interfaces 5 7 10 
Inquiries 3 4 6 

QSM FP* 
Data Processing Input X X X X X 

Ouplul X X X X X 

Files X X X X X 

Interfaces X X X X X 

Inquiries X X X X X 

Sizer/FP 
Data Processing Input 4 

Output 5 
Files 10 
Interfaces 7 
Inquiries 4 

Feature Points lnpul 4 
Real-time Output 5 

Files 4 
Interfaces 7 
Inquiries 4 
Algorithms 6 

Asset-R 
Data Processing Input 4 4 4 4 5 5 

Ou1pu1 4 4 4 4 5 5 
Files 6 6 9 9 9 9 
Interfaces 4 4 6 6 6 6 
Inquiries 4 4 5 5 6 6 

Asset-R 
Scientific Input 4 

Output 4 4 4 4 5 5 
Files 9 
Interfaces 3 3 4 4 5 5 
Inquiries 4 4 5 5 6 6 
Operating Modes 3 

Asset-R 
Real-time Input 

Output 
Files 
Interfaces 
Inquiries 
Operating Modes 
Rendevous 
Stimulus/Response Relationships 

I 
Table 3.2 Component Weightings for FPA-like Approaches 

* The component weightings are proprietary to QSM 
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JONES SPQR ASSET-R BYL Albrecht Other 
[JONE86l [SPR86l [DACS87l [GORD87] fALBR79] 

Basic Assembler 320 320 400 300 
Macro Assembler 213 213 
C 150 128 ~ 128 
ALGOL 106 105 105 
CHILL 106 105 106 
COBOL 106 105 100 105 
FORTRAN 106 105 105 
JOVIAL 106 ~ 
Mixed Languages 105 
Other Languages 105 86 
PASCAL 91 91 -;u 91 
RPG 8) 8) 00 
PL/I 8) 8) 6.5 8) 

CMS-2 8) 

MODULA-2 71 8) 8) 

Ada 71 71 72 8) 

PROLOG 64 64 64 71 
LISP 64 64 64 
FORTH 64 64 64 
BASIC 64 64 64 
Microfocus COBOL 
WANG VS COBOL 
LOGO 53 58 64 
English Based Language 53 58 
Data Base Language (FOCUS, RAMIS, IDEAL) 40 4() 40 
Decision Support (EXSYS, STRATEGEM, ISPF 33 35 35 
Statistical Languages (SAS, STATPAC) 32 
APL 32 32 38 32 
OBJECTIVE-C 26 Zl 
DMS/VS 
INFORMIX 
SMALLTALK 21 21 25 
Menu-Driven Generators (AREY, LINC, PACBASE) 16 
Data Base Query Languages QBE, SEQUEL) 16 13 
ALL(4GL) 

MULTIPLAN JO 
Symphony/1-2-3 9 
Spread-sheet Languages (LOTUS, MUL TIPLAN) 6 6 
Graphic Icon Languages 4 

Table 3.3 Language Expansion Ratios in LOC/FP 

t [RUD083], § [VERN88], * [LIM89] 

Other Work Using Function Points 

110 114t 

65 

56* 

6ot 

25 
24* 

14* 

16§ 

Albrecht and Gaffney [ALBR83] used several formulae, based on software science 

and function point measures, to get estimates in LOC for some large COBOL and 

PL/1 programs. This experimental work was conducted to "demonstrate the 

equivalency of the various measures " (metrics) " and to show their effectiveness as 
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estimators". They used 24 large programs with four written in PL/1. They found the 

following independent variables useful when they used linear regression with LOC as 

the dependent variable: 

function points (F), input/output count (V), and function inforn1ation content (Flog2F). 

Input/output (I/0) count is described as being equivalent to "the total program 

input/output count without the weights and processing complexity adjustment applied 

in function points" J/0 count and function points are treated "as being equivalent to 

Halstead's" [HALS77] "n*2, the unique input/output data element count" [ALBR83 

p.641). Flog2F (the information content) corresponds to n*2log2n *2 an 

approximation to the factor n2log2n2 in Halstead's length equation. 

They then validated the formulae using additional data at three other development 

sites with another 17 PL/1 programs and found in all cases that the correlation 

coefficient was >0.92. and concluded that any of the following measures would be a 

good estimator for SLOC (S): 

S = 73.lF - 4600 (4 PL/1 programs) 

S = 6.3 (F log2 F) + 4500(4 PL/1 programs) 

S = 66F simplified model 

S = 53.2F + 12773 (based on original 24 cases in COBOL, PL/1 and OMS) 

They suggest that software size estimation should be a process which uses function 

points or I/0 count to estimate size in SLOC early in the development cycle and that 

this method provides a bridge between function points, software science and SLOC. 

They state that the early availability of elements that comprise function points and I/0 

count for an application would mean that estimation could be done earlier in the 

development cycle than the usual SLOC-based estimation techniques. 

(b) Analogy 

Software Sizing Analyser 

SSA [DACS87] is an automated package that uses an approach based on analogy 

with an historical data base of completed projects, grouped by function, with some 
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requirement for expert judgement. The data base consists of aerospace data for space 

systems applications. The data is grouped into approximately 33 standard functions 

which are identified by a keyword. The data stored for each function type includes: a 

classification on a five level (1 - 5) complexity scale, language, size in LOC and MLI 

(machine level instructions). The complexity entry is based on the judgement of the 

data collector with most entries being of a medium complexity (3). 

<= 

SSA database 7 

Figure 3.13 Software Sizing Analyser 

The approach gives estimated size for a single module performing a named function. 

To use the model the user must specify whether the unknown function is a ground or 

flight function together with a function keyword. The model will retrieve a list of 

entries satisfying the search criteria, with the number of cases being summarized by 

complexity. The analyst must detem1ine where in the high/low range of instructions 
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the new function lies thus incorporating some degree of expert judgement. This is an 

attempt to size individual components with a little more than just an average 

component size. The SSA approach is illustrated in Figure 3.13. 

(c) Other Approaches with Individual Component Sizing 

System BANG 

BANG was introduced and discussed in Section 2.5.3. The approach is summarized 

in figure 3.14. 

weighted functional 
primitive increment 

table 

table of complexity 
correction factors for 

each function type 

apply correction 
factor for each type 

of function 

\ I 

System BANG 

Figure 3.14 System BANG (adapted from [VERN87J) 
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Itakura and Takayanagi 

Because of the problems they saw in estimating size as input to algorithmic costing 

models, Itakura and Takayanagi [ITAK82] developed a method for partial size 

estimation for a specific kind of program, namely batch reporting, within a 

specialized type of system. They described it as "a program-size estimation model for 

batch programs in a banking system". Their model for COBOL programs was 

developed from input and output items and elements, as well as program processes. 

Their equation, for predicting program size, used the following variables: 

(1) Number of input files (X 1) 

(2) Number of input items (X2) 

(3) Number of output files (X3) 

(4) Number of output items (X4) 

(5) Number of reports (X5) 

(6) Number of horizontal items in reports (X6) 

(7) Number of vertical items in reports (X7) 

(8) Number of calculating processes (Xg) 

(9) Existence of sorting (X9) 

(10) Report type (X 10) 

Xs 

where X10 = L { 
i=l 

0 
X6i+5 
2X6i+30 
2X6i+5 

:transaction type 
:transaction, branch total and bank total type 
:branch total and bank total type 
:bank total type 

The variables, which the experts believed affected program size, were selected from 

information that was available at the time of estimation. Values for the coefficients of 

the variables in the equation, were determined by experts from the number of lines 

that each of the variables was expected to require in a program and was based on code 

in all the COBOL sections (i.e. Environment division, Data division Working Storage 

section etc.) of a program. This gave a linear equation that was used for estimating 

the total number of LOC for a program. 
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X5 

Y = 105 + 8X1 + 1.3X2 + 8X3 + 3.3X4 + 131X5 + L (4.6X6i+ X7i + 80Xgi + 6lX9i) + X10 

i=l 

where Y = the number of source LOC 

Initial estimates were made early, when reports and process flows were tentative, 

before file formats existed and before "any fundamental design work" had been done. 

These estimates proved to underestimate by 13% but Itakura and Takayanagi felt that 

this was quite good considering the poor initial conditions for their estimates, with 

potentially inaccurate data. The later (better) estimates, which were done at the end of 

the design stage, showed 7% underestimation which they considered very effective. 

Thirty eight small to medium sized COBOL programs were used to test their 

estimation equation. Their model underestimated for programs of over 2500 LOC. 

Even with the later estimates, the standard deviation was 690 LOC (i.e. 35% when 

the average LOC was 2000). They did not think that the model could be used directly 

by others but suggested that their modelling process was generally adaptable to other 

projects with the selection of other appropriate variables and coefficient values. 

The method was intended to give a more objective measure of program size but 

because of the subjectivity of the coefficients used, it must still be considered a 

method with a large expert judgement component. Because there has been no other 

experimental work published about this model, it has not been possible to discover 

how widely used or how successful it is. Boehm [BOEH84] suggested that this 

model would "appear to give reasonably good results for small-to-medium sized 

business programs within a single data processing organization". The method may 

be useful in an environment where there are well-defined programming standards and 

where the range of processes is limited. Boehm [BOEH84] noted that the method "is 

a useful step in the direction" of finding a formula for software size from quantities 

known early in the software lifecycle. 
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3.2.3 Syste1n Adjustment Factors and Relationship to 
Component Size Estimation 

A system adjustment factor is "a technical complexity factor which takes into account 

the size of the various technical and other factors involved in developing and 

implementing the information processing requirements" of an information system 

[SYM088 p.1]. It is determined by estimating the 'degree of influence' of one or 

more general application characteristics to get an overall system adjustment factor 

which is used to modify the information processing size. 

(i) Use of Adjustment Factors in the Sizing Models Surveyed 

As shown in Figure 3.2, most size estimation approaches fall within classes where 

estimation is based on partitioning a system into components. These estimation 

approaches may take one of two views of total system size estimation. The first 

group (11 out of 15 of the methods in Figure 3.20) view system size as the sum of 

component size estimates. Approaches like SSM, SSA, ESD, Curve Fitting, BANG, 

and CEIS are members of this group and are without subsequent size adjustment. 

The second, and smaller, group of approaches are almost all based on FP A. These 

estimate a "raw" system size by summing component size estimates and then adjust 

this size with an overall system adjustment factor. Some of the software size 

estimation models that were discussed earlier in this chapter, incorporate several 

adjustment factor elements that are cost drivers, rather than size drivers, and hence are 

not appropriate in this context. 

Adjustment factors occur in a minority of sizing models. An uncompromising view 

might regard them as at worst an admission of failure on the part of a model to 

include their effects in the component sizing process or, at best, the result of 

intentionally including only particular component types in the unadjusted size measure 

as, for example, in Albrecht's FPA. However, in the increasingly complex world of 

software size metrics, they are often a useful way of handling hard-to-measure size 

drivers not adequately covered elsewhere. 
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FPA Asset Featun Sizer Mark Price 
R Points FP II sz 

Number of factors 14 11 3 3 ?2J.) 8 
Data communications 6 
Distributed functions 6 
Performance 6 5 X 

Heavily used configuration 6 X 

Transaction rate 6 X 

On-line data entry 6 X 

End user efficiency 6 X 

On-line update 6 X 

Complex processing 6 
Reusability 6 
Installation ease 6 
Operational ease 6 
Multiple sites 6 
Facilitate change 6 
Functional bulkiness* <I< 
Size calibration factor .7-1.5 
Logical complexity X X 

Code structure* X X 

Data complexity X X 

Distributed archictecture 7 
Requirrnents volatility/growth* 5 0-18% 
Database size 4 
Use of software tools* 6 
Applications experience* 5 
Programming language experience* 5 
Environment experience* 5 
Analyst capability* 5 
Modem programming techniques* 5 
Degree of optimization 5 
Integration with another system X y/n 
Design review* y/n 
Code walk thru* y/n 
Top-down approach* y/n 
Structure/module approach* y/n 
Security X 

Direct access for third parties X 

Documentation requirements* X 

Special user training facilities X 

special/unique h/w or s/w* X 

Table 3.4 System Adjustment Factor Elements and their Ranges or 

Number of Complexity Levels 

* denotes adjustment factor elements identified as cost drivers. 

x denotes unpublished value. 

The estimation approaches that use an overall system adjustment factor, the 

adjustment factor elements and number of complexity levels or range for each element 

are shown in table 3.4 above. The number and weights of the adjustment factor 
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elements, and the subjectivity of their application in FPA-like approaches were 

discussed in section 2.5.1 (iv). 

Markll has tried to overcome some of these problems with adjustment factors in 

FPA-based approaches. The author is only aware of one estimation method, not 

based on FPA and component partitioning, that uses an overall system adjustment; 

this is Price SZ which estimates the system as a whole, with an unpublished 

algorithm, and then applies an adjustment factor to this size estimate. Both Price SZ 

and ASSET-R can be criticized because they include system adjustment factor 

elements that are cost rather than size drivers. 

(ii) Adjustment Dependence on what Size is Required for what 

Purpose 

In reviewing the need for an overall system adjustment factor it is necessary to 

determine what kind of size estimate is required and for what purpose. The whole 

system may be the subject of estimation or there may be cases when a partial size 

estimate (for example of components in a functional specification) is enough with no 

requirement for anything more. Which adjustment factor elements are appropriate 

depends on whether a complete or partial size is being estimated and, in the latter 

case, what partial size, and for what purpose. In some cases where a partial size 

estimate is required some system adjustment factor elements may not be necessary 

because certain system features, for example data communications, may either be 

supplied with the technology or be developed separately by systems programmers. 

In such a case these system adjustment factor elements may be the subject of a 

separate project, implemented by a separate group, with minimal impact on the 

application development project for which the primary size estimate is required. 

(iii) Conflicts Between FPA Adjustments and Component Sizing 

Concepts 

The FPA approach bases its component size estimates on some kind of average which 

is then adjusted up or down by the overall adjustment factor. There is a potential 

conflict between adjustment factors of this type and the concept of component size 
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estimation. A size estimation approach that uses a multiplicative adjustment across 

the whole system, like FPA, assumes that the housekeeping functions will be some 

proportion of the system size and, all other things being equal, will be larger for 

systems with a larger component size estimate. This may be true in many cases but 

need not always be so. In any event, it is suggested that functional module size 

estimation should be based solely on unadjusted FPs, if it is to be meaningful for 

individual modules. The idea of adjusting an average value up or down is 

inconsistent with the idea of module size estimation because it assumes that the 

adjustment affects all modules equally, or it implies that a downward adjustment can 

make systems smaller than the sum of their unadjusted module sizes, which seems 

unnatural. Adjustment factors are discussed further in section 4.5 and an adjustment 

factor model is presented in 4.5.2. 

3.3 A FIRST ALTERNATIVE CLASSIFICATION OF SIZE 
ESTIMATION APPROACHES 

The DACS Report [DACS87] divided software size estimation approaches into six 

categories "that illustrate general approaches to sizing" [p.2-1]. The classes identified 

in [DACS87], and the specific methods within these classes, were as follows: 

Sizing by Analogy 

ESD Sizing Package 

SSA 

QSM Size Planner -

Fuzzy Logic 

Function Point Analysis 

SPQR SIZER/FP 

Feature Points 

ASSET-R 

BYL 

Size-in-Size-O u t 

Wideband Delphi Technique 

SSM 

Curve Fitting 

PERT 

Comparison of Project Attributes 

CEIS 

QSM Size Planner -

Standard Components Sizing 

QSM Size Planner - Function Points 
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Linguistic Approach 

ASSET-R 

SMM 

Other Approaches 

PRICE SZ. 

The characteristics of these classes are discussed below but other approaches, not 

discussed in [DACS87], have been included within these classes, where appropriate. 

Because QSM Size Planner [PUTN87] has three approaches to size estimation it has 

been included in three different classes. ASSET-R, which is a function point analysis 

variant, but uses some linguistic ideas, was included by [DACS87] in the two classes 

shown above. 

3.3.1 Sizing by Analogy 

This approach relates the proposed development to previously developed modules 

and systems of similar function and environmental requirements. The analogy 

approach can be applied both at system and module level. ESD Software Sizing 

Package [DACS87], and SSA [DACS87] are examples of the module level analogy 

approach while QSM - Fuzzy Logic [PUTN87], which was classified in the structural 

classification under 'no partitioning of specifications', is a system level example. 

System level estimates are based on a comparison with similar application systems. 

The use of analogy at the function level, though more time consuming, provides more 

refined estimates and requires a more detailed assessment of the system components. 

At the module level the approach involves the use of a data base of previously 

developed modules. Information stored includes both function within the previously 

developed software, and size in source lines and/or machine level instructions 

required to develop each function. Data about various previous implementations of 

similar functions can provide a range of sizes for the user who selects a subset of 

items on which to base an estimate for the new function. ESD and SSA both estimate 

size by analogy at the function level. The major difference between them is the 

presence of a five level complexity scale that is applied to components in SSA. This 

attempt to obtain sizes for individual components placed SSA, in the earlier structural 

classification, into the 'several component types - individual component sizing' class. 

ESD was placed in 'several component types - no individual component sizing'. 
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3.3.2 Size-in-Size-Out 

Approaches in this class are described as purely statistical and require approximate 

size estimates, based on expert judgement, as input. They aim to get the most out of 

the data the experts can supply. The approximate size values used include: size 

ranges, relative ranking data, estimates of some of the modules making up a system 

and several independent estimates from individual experts. The Wideband Delphi 

Technique, PERT, SSM and Curve Fitting are included in this class. Both the 

Wideband Delphi Technique and PERT may be applied at either the system or 

function level while SSM and Curve Fitting are both normally applied at the function 

or module level. In the structural classification PERT, SSM, and Curve Fitting were 

included under 'system partitioned into components - no individual component 

sizing' while the Wideband Delphi Technique was included under 'no partitioning of 

specifications - experienced based'. 

3.3.3 Function Point Analysis 

FPA was described in detail in sections 2.5.1 and 3.2.2 (iib). The DACS Report 

includes the following approaches in this category: SPQR SIZER-FP, Feature Points, 

ASSET-R, BYL, and QSM Function Points. BYL is a close implementation of 

Albrecht's 1983 version of FPA. Because SPQR SIZER/FP and Feature Points use 

an average component size for component type instances they were included, in the 

earlier structural classification, under 'systems partitioned into components - several 

components types - no individual component sizing'. FPA itself, ASSET-R and 

QSM Function Points provide different complexity ratings and weights for each 

component type based on a more objective measure of the component sizes and were 

hence classified within the earlier structural classification as 'systems partitioned into 

components - several components types - individual component sizing'. Work on 

Markll had not been published until after the DACS Report. Markll is included in 

this DACS class because of its origins in FP A. In the earlier structural classification 

Markll was the sole member of the class 'single component type - individual 

component sizing'. 
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3.3.4 Linguistic Approach 

This class applies to those approaches that count the lexical symbols used in the 

programmatic expression of an algorithm. They can be found in pseudocode 

expressions of the formulae to be used, or in after-the-event source code of a system. 

These approaches to estimation are based on Software Science's [HALS77] ideas of 

operators and operands. ASSET-R, bases its size estimate on a function of the 

adjusted function points and operator/operand count, while SMM uses a variable 

count that corresponds to Halstead's operand count n2. The DACS Report did not 

mention System BANG but it can also be included in this class as it uses a factor 

based on an operator/operand count to adjust the size of a functional primitive. 

Wang's [WANG84, WANG85] data-structure-oriented approach, with similarities to 

SMM, estimates size from a count of variables based on Halstead's n2 and is included 

within this class. Because SMM suggests the use of variable counts to obtain the size 

of a few modules and then uses an average size for the rest, SMM and data-structure­

oriented sizing (in the earlier structural classification), were included within different 

classes. SMM was placed under 'single component type - no individual component 

sizing' and the data-structure-oriented approach under 'single component type -

individual component sizing'. 

3.3.5 Comparison of Project Attributes 

This class of methods, like the sizing by analogy class, requires a data base of 

completed projects. The approaches within this class relate the current project to 

previous developments at either the system or component level. DACS differentiates 

these approaches from those in the analogy class by suggesting that this group takes 

the analogy approach to a more detailed level of specification. 

Parameters are identified that correlate the size of the new program with specific 

attributes and these attributes are compared with the same attributes of completed 

projects. Statistical analysis is then used to yield an estimated size. CEIS with its 

matrices and eigenvalue/eigenvector analysis and QSM Standard Components Sizing 

are classified in this group. 
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The Itakura and Takayanagi [IT AK82] work was not mentioned in the DACS Report 

because it gives only a partial size estimate and is not automated. Their approach 

does not obtain its estimated size from a data base of completed projects. The 

approach however shows many of the characteristics of this class. However 

variables in the prediction equation have their coefficients derived by observation 

from similar completed developments. The Itakura and Takayanagi approach has 

therefore been included in this class. 

3.3.6 Other Approaches 

DACS could not explicitly associate one approach, PRICE SZ, with any of the above 

classes because little is known about the underlying techniques used. It does not 

employ FPA but some of its inputs are similar to function point parameters. 

3.4 A SECOND ALTERNATIVE CLASSIFICATION OF 
SIZE ESTIMATION APPROACHES 

The second alternative classification of size estimation approaches is based on a 

consideration of how much of the system definition, design and development process 

must be completed before the earliest application of the method is possible. This 

classification could also be said to be based on the set of minimal information 

required before the method can be used and this is, of course, dependent on 

development phase. Different analysis and design methodologies may be used with 

different developments or tools. What is available early with one methodology may 

not be available quite so early with another. It is not the purpose of this dissertation 

to survey such a large topic as this. Rather, a typical, widely-used methodology is 

considered. Thus the classification shown below assumes the use of a methodology 

similar to structured systems analysis [GANE79]. The discussion that follows also 

makes the assumption that structures identified in the early phases of specification or 

design will be carried through to later phases of development and will be mirrored in 

the implementation. 

Most of the size estimation approaches can, and should, be applied several times 

during development with an expected increase in accuracy in the later stages. One 
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approach that can be used very early, QSM Fuzzy Logic [PUTN87], does not 

actually need a defined project. Fuzzy Logic can be used to get an early general idea 

of the size of any system that might be of interest within several classification types. 

Using this second alternative classification, the following four size estimation classes 

are identified: 

feasibility 

requirements 

preliminary design 

detailed design. 

These classes are based on phase descriptions by Boehm [BOEH81 and Fairley 

[FAIR85]. Table 3.5 shows these classes (phases), the reviews that occur at their 

completion and the major documents, of interest here, produced at the end of each 

phase. 

Of course, there are several different development approaches with this table showing 

just one, the lifecycle approach. Incremental development, spiral development and 

prototyping will all have different characteristics, phases and reviews. However, no 

matter which approach to development is used there is a minimal essential information 

set that is required before a specific software sizing method can be used. 
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Phase 

Feasibility 

Define preferred 
concept, determine 
life cycle feasibility 

Requirements 

Phase Review 
Documents Produced 

Product Feasibility 
Review (PFR) 

System defmition and project plan 

Complete, validated set Software Requirements 
of required functions, Review (SRR) 
interface and 
performance. 

Preliminary Design 

Complete validated 
specification, includes 
data structures and 
control structures. 

Detailed Design 

Verified detailed design 
and specification 
for each unit 

Software requirements specification 
Preliminary user's manual 
Preliminary verification plan 

Preliminary Design 
Review (PDR) 

Architectural design document 

Critical Design 
Review (CDR) 

Detailed design specification 
User's manual 
Software Verification Plan 

Components Defined 

problem definition, goals, constraints, justifications 
functions to be provided, user characteristics, 
development/operating/maintenance environments 
lifecycle model 
preliminary development schedule and cost schedules 
tools, techniques, programming languages, testing 
requirements. 

external interfaces and data f1ow 
user displays/report formats 
user command summary 
high level data f1ow diagrams 
logical data sources and sinks 
logical data stores 
logical data dictionary 
exception handling. 

data flow diagrams 
conceptual layout of data structures 
attributes of data objects 
name and functional description of each module 
interface specifications for each module 
interconnection structure of modules 
interconnections among modules and data structures 
exception conditions. 

physical layout of data structures and data bases, 
data dictionary specification 
of all concrete data objects, 
detailed algorithms. 

Table 3.5 Early Phases and Reviews in Lifecycle Model 

Figure 3.15 shows a schematic view of the relationship of size estimation approaches 

to the different phases of the lifecycle. The approaches that may only be used in a 

phase under certain criteria are marked with a'?'. It must be emphasized again that 

this summary applies only to this particular lifecycle model and that different placings 

may result if a different model is used. 
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3.4.1 Feasibility 

Feasibility is completed with the product feasibility review (PFR). The system, 

goals, functions to be provided and user characteristics have been defined by the time 

of the PFR when the following software size estimation approaches can be used: 

Almost all approaches where the system is sized as a whole except for Price 

SZ. This latter approach is excluded because it requires details that will not 

be available until the software requirements review (SRR) (for example 

computed tables). Approaches included at this stage are: 

1) Experience based 

PERT normal 

Delphi techniques 

QSM-Fuzzy Logic 

2) Approaches that use analogy with previously developed functions. 

Although no design has been done, the major functions have been 

identified. If a data base of completed and categorized functions is 

available then the size of each of the defined functions can be estimated. 

ESD and SSA are approaches that may be used in this way. 

3) Curve Fitting could be used at this time if there are at least three other 

suitable completed projects available and it is possible to rank the 

proposed system against these projects. Alternatively, if some suitable 

functions of known size are available, then these could be used for 

estimation using Curve fitting, 'unknown' functions could each be 

separately estimated, then summed to produce a final estimate. 

4) CEIS can be used if the term 'task' describes the project as a whole and 

three reference projects of known size are available. 

SSM was included in the DACS Report [DACS87] with models that can be applied at 

this stage of development. SSM has not been included here because it uses module 
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comparisons and this implies design to a stage that will at least identify the required 

modules. 

3.4.2 Requirements 

The requirements phase is completed with a software requirements review (SRR). 

External interfaces, report formats, data flows, user display formats, and logical data 

stores have been identified by the end of this phase. The FPA-based approaches 

(except ASSET-R which is excluded because of its requirement for more detailed 

information about algorithms) and other approaches that use system (not module) 

inputs and outputs can be used by the SRR. 

FPA, SPQR Sizer/FP, Feature Points, MARKII, CEIS and the Itakura and 

Takayanagi approach can all be used once the SRR has been completed. 

3.4.3 Preliminary Design 

This phase is completed with a preliminary design review (PDR). At the end of this 

phase the modules that will comprise the product, the interconnections among 

modules and the data structures are known. The PERT sizing method based on the 

beta distribution can now be used and so can SMM, and QSM SCS. Because 

detailed data flow diagrams have been developed BANG can be applied. With the 

functional description of each module a detailed description of all algorithms will have 

been defined, so ASSET-R, with its requirement for detailed knowledge of 

engineering formulas and equations used (to derive operator/operand counts), can be 

also be applied during this phase. ASSET-R has been included here, rather than in 

the detailed design phase, because the engineering formulae and equations are likely 

to be important enough to be defined earlier than many of the other algorithms. These 

engineering formulae and equations may in fact have been important enough to have 

been defined during requirements. If Curve Fitting, ESD and SSA are applied at the 

module level they can now be used. 
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Size 
Estimate 

QSM-FL 
ESD, SSJ\, 
SSM, ?CEIS, 

FPA, Sizcr/f,P, 
Feature Points, 
ltakura, BANG, 
Price SZ, QSM-FP, 
MARKI! 

Uncertainty 

PFR 
SRR 

Tirre 

ASSET-R, 
PERT beta, 
SMM 
QSM SCS 

PDR 

... 

Wang 

CDR 

Figure 3.15 Relationship of Size Estimation Approaches to Phases 

(modified from [DACS87 p.3-8) 

3.4.4 Detailed Design 

Detailed design is completed with a critical design review (CDR). Wang's data­

structure-oriented approach was described as being applicable "at the end of the 

design stage [WANG84 p.141] and can be used at or after CDR. 
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Software Size Phase Minimum Information Required 
Estimation Approach 
PERT normal PFR system type, general 
Delphi PFR system type, general 
SSA PFR functions 
QSM Fuzzy Logic PFR system type 
ESD PFR functions 
Curve Fitting PFR functions 
CEIS ?PFR task atlributcs 
Feature points SRR as FPA 
QSM FP SRR as FPA 
Sizcr/FP SRR as FPA 
Price SZ SRR ouputs, inputs, system states, tables, analogs, functional bulkiness 
FPA SRR inputs, outputs, files, interfaces, inquiries 
BANG SRR functional primitives, input and output data clements 
[ITAK.82) SRR reports 
MarkII SRR fi !cs, inputs, outputs 
PERT beta PDR modules 
SMM PDR modules, variable counts 
QSM SCS PDR reports, programs, subsystems, screens, files 
ASSET-R PDR as FPA plus engineering formulae and equations 

Table 3.6 Summary of Major Size Estimation Approaches and 

Minimum Information Required for their Use 

Note: Knowledge of application development language to be used is assumed in the above table 

where appropriate. 

3.5 OTHER CONSIDERATIONS 

3.5.1 Static and Adap tive Approaches to Sizing 

Many of the approaches presented in this chapter can be described as static, for 

example FPA and most of its variants. Dynamic or adaptive methods are those that 

continually add appropriate new and updated data to the completed project data base 

and allow the user to access this new data (for example CEIS and QSM SCS) for 

future estimates. Markll with its tuneable coefficients can be regarded as an adaptive 

approach but its single component type may not lead to accurate size estimates. 

System components, whether modules or screens and reports, are dependent on the 

technology used and will change over time with the technology. FPA has been 

successful because it is based on system requirements components; however, these 

components are expressed in terms of a software development technology that may 

soon become obsolete. 
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3.5.2 Purpose for which Sizing Method is Suitable 

There are three major purposes for which software sizing exercises are carried out. 

The first is for an estimate of the size of the software that will actually be written so 

that good software cost and schedule estimates can be achieved. The second is for an 

estimate of the size of the completed software product that will be delivered to a 

customer. These two sizes may be quite different because of modification and reuse 

of code, JCL, included code, etc. All of the software size estimation approaches 

described in this chapter that can provide estimates in LOC can be used for these two 

purposes. The third purpose is for software productivity studies. The only 

approaches that can be used for this latter purpose need to be applicable across 

languages. Only those methods that claim some degree of language independence 

(i.e. the FPA-based approaches) can be used for this purpose. 

3.6 CONCLUSIONS 

This chapter has introduced a new structural classification of software estimation 

methods (summarized in Figure 3.1) which complements, and at its leaves includes 

the more traditional approach-based classification. Not only is the new structural 

classification more formal than the traditional one, it also more clearly demonstrates 

the fundamental concepts within the different software estimation methods, 

particularly those which involve component partitioning. 

Three other important, and complementary, classification aspects are also considered, 

namely a phase-based classification related to the phases of the software development 

method used, a brief consideration of static versus adaptive sizing methods and a 

classification according to the purpose of the estimate. The phase-based classification 

is a useful basis for the continuing refinement of a size estimate as development 

proceeds. Twenty two different methods or approaches have been classified and 

described. Most of the individual methods have been summarized in diagrammatic 

form by the author for greater ease of understanding. The individual descriptions of 

sizing methods identify the application areas for which they have been designed or to 

which they apply. These range from business applications to embedded systems. 
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The particular methods which have been analysed in more detail than the others are 

Albrecht's FPA and Symons' Markll. The sections devoted to these methods contain 

some new critical analysis. 

The concept of partial size estimates is introduced and used to relate adjustment 

factors to the purposes of a sizing exercise. A potential inconsistency between the 

adjustment mechanism in FPA and the concept of component sizing is uncovered. 

Size estimation can only be as good as the level and completeness of knowledge of 

the proposed system; incomplete knowledge of requirements can only result in 

incomplete size estimates. It is also necessary for the user of any sizing method to be 

quite clear about the purpose and timing of the sizing exercise in relation to the 

capabilities and options of the available methods in order to choose a method suited to 

a particular sizing problem. 
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CHAPTER 4 

A GENERIC MODEL FOR SOFTWARE SIZE ESTIMATION 
BASED ON COMPONENT PARTITIONING 

The size estimation approaches discussed in Chapter 3 take a number of different views 

of the structure of the software whose size they attempt to estimate. Those methods that 

estimate individual component sizes, followed by summation, and possibly an overall 

system adjustment, appear to be the most promising approaches to more objective and 

accurate size estimation. FPA and most of its variants fall into this group. Although 

FPA has been criticized and many of the criticisms are valid, the approach is a useful 

one which is widely used especially for size estimation of business systems, and (with 

extensions) for real-time systems. In response to justifiable criticisms, there is a need 

for new FPA-like methods to be developed both for size estimation and also for 

productivity studies. Few methods, other than those in the FPA family, cater for 

purposes other than that of software product size estimation. 

Because of the wide range of applications, development methods, and technologies, a 

more general FPA-like approach is required rather than a single method tailored to just 

one development method and technology or even a fixed set of methods covering 

several application categories. Such a generic approach, from which sizing model 

instances tailored to particular application categories and development technologies can 

be derived, has been developed by the author and is described in this chapter. This 

approach arose from an attempt to generalize FPA to give more objective estimates of 

the comparative sizes of component type instances, and to overcome the criticisms of 

FPA [VERN87, VERN89, SYM088] described in 2.5.1 and those of Markll discussed 

in 2.5.2 (iii). 

4.1 CONTEXT OF THE MODEL 

Although this thesis is not concerned with software costing, it is useful to put the 

software sizing process, with which it is concerned, into a wider software economics 

context. Figure 4.1, reproduced from [VERN87], presents a general model of the 

software sizing and costing processes. The following explanation of Figure 4.1 is 
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based on [VERN87]. Within the model are three parts A, Band C, with the following 

characteristics: 

system sizing 
model sizing sizcA 

model 
sizcB 

model (B) 

(A) (language) 

system 
size 

SOFTWARE SIZING MODEL estimate 
system 

(KDSI) 
cost 

sizing estimate requirements 
systems system constraints model COSTIN 

~ MODEL ► analysis (C) 

f igure 4.1 Software Sizing and Costing Model 

Part A: SizeA is intended to be as close to the inherent system size, or information 

processing size (in the Albrecht [ALBR79] and Symons sense [SYM088]) as 

possible, and as free as possible from implementation 'accidents' (in the 

Brooks [BR0087] sense. It is the 'size of the job to be done' of 1.3.1. A 

major goal for part A of the sizing model is objectivity. As was noted in 2.8 

there is a need for improved language-independent metrics that can be 

calculated automatically from entries in a data or system dictionary. There is 

no good reason why SizeA should not be computed directly from an automated 

system model as a by-product of the system definition process. A critical issue 

is the unit of measure for SizeA. Candidates include specification token 

counts, LOC in a standard language, or a less language-dependent measure, 

such as function points [ALBR79, ALBR83], MarklI function points 

[SYM088], System BANG [DEMA82, DEMA84] or a similar composite 

metric derived from a metric vector. SizeA is independent of the programming 

language used, and of other system constraints, but not necessarily completely 

independent of the software development technology employed, including the 

analysis and specification concepts. 
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Part B: This part of the sizing model, which may use one or more language expansion 

ratios (frequently expressed in LOC per FP) has the role of mapping the 

language-independent SizeA to the language-dependent SizeB. SizeB can be 

thought of as being the size of a 'neutral' source coding of the system in the 

chosen language. Typically this will be concerned primarily with functional 

aspects of the system rather than, for example, system utilities and 

housekeeping. Where several languages are used, or where the mapping is 

different for clearly definable parts of the system, SizeB is a weighted sum of 

components. 

Part C: The third part of the sizing model aims to apply appropriate adjustment 

factors, based on system constraints, to SizeB, or to parts of SizeB, to obtain a 

realistic final size in KDSI. The frequently quoted work of Weinberg and 

Schulman [WEIN74] suggests that such adjustment factors can, in special 

cases, be much greater than the ±35% limit of FPA. In most systems, large 

adjustments would, however, only apply to parts of the system, for example, 

the user interface or data communications. 

The main difficulty, or challenge, presented by the above model, is the clear definition 

of Parts A, B and C in a manner that allows each to be measured separately in a practical 

manner. In many development situations, only SizeC, the final source code, or its 

equivalent, is directly measurable. In some other situations, including the detailed 

examples analysed in this thesis, a close approximation to SizeB is measurable and an 

estimate of SizeA is also obtainable. 

SizeA is essentially a functional specification size. Given a suitable formal specification 

language, or set of system description dictionary entries, there is no reason in principle 

why SizeA should not be measurable. For example, a suitable metrication of 'upper 

CASE'1 tools could provide measures of specification size for environments using 

those tools. These measures though not in any way absolute, could provide useful 

information for comparisons with other developments using those same tools. 

However, a means of measuring SizeA directly is not yet commonly available, and is 

1 Upper CASE is a term used to describe computer assisted support for the early phases, or upper 
levels, of development. 
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not the subject of this thesis, being a substantial separate, though related, area of 

research. Nevertheless, as outlined in the discussion in 4.3 and 4.4, the general sizing 

model presented below caters for the case where SizeA is directly measurable. 

SizeB is described as a 'neutral' implementation of the functional specifications in a 

particular language, or implementation system, without the system constraints. To the 

extent that functional modules, or components, can be separated and distinguished from 

system constraint components, SizeB can be considered a partial size which counts only 

the functional components. This concept is used in the sizing model developed in this 

chapter. 

To understand the significance of Part C, it is necessary to be aware of what is meant in 

this context by system constraints. System constraints include requirements not in the 

'what' category (i.e. not functional requirements) which can be consolidated into size 

drivers, for example response time requirements, aspects of system decentralization or 

distribution and a number of other housekeeping matters such as data base 

reorganization, system administration and accounting, security, backup and recovery. 

In general terms, the system constraints are related to 'how' the system is implemented, 

rather than to 'what' it does. 

4.2 INTRODUCTION TO THE MODEL 

A generic model for software sizing is presented in the form of a set of steps which are 

followed to build an instance of such a model. Though the steps are presented as a 

sequence (strictly a network) of activities, there is likely to be considerable iteration in 

their actual use. Following the presentation and explanation of the model in 4.3, a 

number of issues in relation to the model are discussed in greater detail in later sections. 

The model is generic in that it is intended to cover sizing problems which can be solved 

by system decomposition and the subsequent summing of component size estimates. 

An important aspect of sizing by decomposition into components and summation of the 

component sizes is that (as noted in 4.1) it allows partial sizing, based on some, 

rather than all, of the components of a system. Partial sizing may be useful in that it 

allows different aspects of a system to be considered separately. In many cases, for 

example, functional aspects of a system are separable from a number of implementation-
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dependent aspects by a suitable component decomposition. Iri many organizations, the 

functional aspects are handled by application programmers whereas systems aspects are 

handled by systems programmers. 

The model is also general in the sense that provision is made both for product size 

estimation at various stages during development and also for size comparisons for 

productivity studies. As noted in Chapter 1, the purposes of these uses of software 

sizing are different and they tend to require different software size measures. LOC, or 

their equivalent, are most frequently the goal of product size estimation. Productivity 

studies, on the other hand, may use function points, or their equivalent, and calibration 

across different software development technologies is extremely important. In terms of 

the framework of 4.1 the model can be used for 

(i) estimation of SizeA 

(ii) estimation, or after-the-fact measurement of a (partial) SizeB 

(iii) estimation, or after-the-fact measurement, of SizeC. 

In fact, if and when suitable measures of SizeA become available, the model should 

apply there also for measurement and for estimation. Which partial or total size 

estimates or measurements are relevant depends on the purposes for which the 

measurements are made, which are also often related to the development phase at which 

they are required. 

4.3 A COMPONENT AND SYSTEM SIZING MODEL 

Figure 4.2 illustrates the steps in the generic sizing model presented in this dissertation. 

Each of these steps is discussed in detail in following sections. Other related aspects of the 

model are discussed in later sections of this chapter (4 .3.1 - 4.3.7) and the relationship of 

the generic model to the Bailey and Basili [BA IL81l meta-model is discussed in Appendix 

D. 
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Figure 4.2 Generic System Sizing Model 

4.3.1 Categorize by Application Type and Software 
Development Technology 

An application category is a class of functionally and/or structurally similar systems. 

Traditionally, such categories have been very broad, often dividing all systems into just 

three categories, business, real-time and embedded. Boehm identified three categories 

which he termed organic, semi-detached and embedded [BOEH81] while QSM - Fuzzy 

Logic identifies eleven [PUTN87] (including microcode/fim1ware, real-time, avionics, 

system software, command and control, telecom and message switching, scientific, 

process control, mixed applications, unknown applications and business software), and 

ASSET-R three [REIF87] (data processing, scientific and real-time). Generally, those 

sizing models that give a choice of application category have identified a small number 

of categories whose characteristics and size drivers are sufficiently different to warrant 

separate treatment. However, as applications vary widely, a small number of categories 

may not be sufficient to characterize a wide range of applications, particularly since the 
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variability within each category should not be too great if good size prediction is to be 

achieved. It is also possible that some applications may fall between categories. 

Though this activity is called "characterize by application type", this does not imply that 

it is necessary for the division into all application categories or types to be done at one 

time. It can equally well be done incrementally, one category of interest at a time. In 

some development environments there may only be one application category. 

Characterization by application type is not in itself a well-defined process. It is, 

however, a necessary first step in the characterization of a software development 

technology which, in the context of this sizing model, is more precisely described by 

(i) a set (phasep} of development phases, of interest as sizing milestones; for example, 

the case study in Chapter 5 uses the set {Phasel, Phase2} 

(ii) a set (P(phasep)} of specific partitions into component types, characteristic of the 

application category, development environment and development phase; for example, 

the case study in Chapter 5 uses a Phase 1 partition { relations, menus, screens, reports} 

and a Phase2 partition { relations, menus, screens, reports, updates} 

(iii) for each development phase, and for each component type, a vector v(P(phasep)) of 

object types and component characteristics typical of that component type at that 

development phase, and likely to influence its size; for example, the case study in 

Chapter 5 uses the vector (1, Number of relations, Number of data elements, 

Complexity of logic)1 for components of type screen within the Phase2 partition. 

In practice the formulation of these specific descriptors of a software development 

technology is the result of a complex classification process which is influenced by the 

application category, the development methodology (including its life cycle model) and 

the language, or more generally the software engineering environment, used. Since 

these major influences depend primarily on the application category, it has been 

highlighted in Figure 4.2. 

1 the entry 1 in the vector is for a constant term in an estimation equation, see Figure 4.3.5. 
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There are some difficulties in describing classification processes such as the above in 

general terms. The analysis of specific cases in Chapters 5 and 6 should help to further 

clarify many of the concepts. 

The class of software development technologies, as used here, is potentially much 

larger than that of application categories, there often being many commonly used 

software development technologies for one application category. In particular this 

thesis examines four different software development technologies for the application 

category of data-centred business systems. 

The question of the division of broad sets of systems and components into classes is a 

very difficult one, whether the classes are application categories, software development 

technologies or component types. Very few specific guide-lines can be given here as to 

when a new class should be created. This will depend on the sizing requirements of the 

user and is investigated further in an example at a component level in Chapter 5. 

Typically new classes will be considered when an existing class becomes too diverse, 

too many outliers with similar characteristics are present, and too many differences 

requiring ad hoc or other adjustment occur. A general guide-line might be that a class 

should be sufficiently coherent that estimates within it can be made within 25% of actual 

75% of the time [CONT86], some defined maximum mean relative error, or mean 

relative root mean squared error1 is not exceeded, or such other target accuracy that the 

user organization sets is achieved. These are simple enough principles to state, but in 

practice some classes which exhibit greater than desirable variability may simply not be 

divisible into more coherent subclasses on any conceptually satisfactory basis. If any 

two component types, or other classes, turn out to have similar estimation equations, 

consideration should be given to combining them. 

There is however a trade-off between accuracy of estimation and breadth of applicability 

of a classification. For example, software development technologies, in the sense 

defined here, may be comparatively narrow and specific, as are those of Chapters 5 and 

6, which satisfy quite stringent estimation criteria. However, a broad technology 

classification, such as that to which FPA has commonly been applied, may give rather 

more mixed results. 

1relcvant stalislical evaluation criteria are summarized in 5.5.2 
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4.3.2 Fonn Component Partitions and Set up Candidate 
Variable Vectors 

Depending on the scale of a system, the development phase, and what information is 

available, more or less may be known about how many components a system has and 

what kinds of components they are. The components may be at one of a number of 

levels, from sub-projects, or subsystems, down to individual procedures. They may 

have different names, such as modules, tasks, functions, processes, programs, objects, 

entities, relations, etc. Data and procedural specifications may be combined within a 

component, or they may be separated into different components. There may be a single 

component type or there may be a number of different classes. Components may refer 

to specification objects, to design objects, or to implementation objects. The discussion 

below is intended to cover most of these cases, except those where the actual number of 

components, or at least an estimate of the number, is not known. In such a case, of 

course, estimation by summing components is not possible. The model can readily be 

adapted to apply sampling from a known or assumed component population. 

Systems are often specified in terms of particular components or structures, for example 

in a specification based on data flow concepts the components of interest may be: 

data flows 

data stores 

processes 

external entities 

data structures 

data elements 

to which might be added in practice: 

screen/window descriptions 

report descriptions. 

Systems are usually implemented in modules (programs, procedures, definition blocks, 

include blocks, or any distinguishable component) which are often of different types. 
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-------------------- ---

For example, a business system implemented using a 4GL or CASE environment may 

consist of: 

file, entity or relation definitions 

screen, and/or window, definitions 

report definitions 

procedures 

system administration definitions. 

In a Modula-2 environment, one might have, at the design stage 

definition modules 

implementation modules 

procedures. 

The term component may in various contexts include modules, structures, objects or 

other distinguishable and separately countable units. Typically, different component 

types have quite different purposes and their sizes are determined either by different 

variables, or the determining variables have different importance, or a combination of 

both. Note that the components of interest at the requirements phase may be different 

(at least in part) from those at the specifications phase, which may again be different 

from those at design, and possibly again at implementation. It is however expected that 

the components at all phases are closely related developments or refinements of the 

earlier phases. It is difficult to see how the integrity of a development model can be 

preserved if this is not the case. 

A component partition refers to a division of the components of a system at any 

phase or convenient milestone in its life cycle into a mutually exclusive set of 

component types, covering all of the aspects of a system which are of interest at that 

phase of its development. Note that this need not necessarily include all parts of a 

system. It may, for example only cover the application data and its processing, i.e. 

functional aspects (SizeA and SizeB), and omit any overall systems consideration, such 

as system administration, utility or distribution functions (i .e .. SizeC minus SizeB). 

The FPA-based software sizing models and Price SZ (which are di scussed in chapter 

3), apply a greater or fewer number of adjustment factors to a partial size measure to get 

the overall system size of interest. Section 3.2.3 discusses adjustment factors in detail. 
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For each component type, a vector of candidate variables is set up. These 

variables include those from which the size of a component of that type can be 

estimated. The term candidate is used in this context because not all the variables in the 

vector may be used for a particular purpose. For a report component, for example, the 

vector of candidate variables might include: 

number of entities or relations involved 

number of data elements (fields) 

number of sort fields 

number of selection fields 

complexity of selection logic 

number of control breaks 

number of report line types 

complexity of report calculation. 

However, in some circumstances, not all of these may be known and, whether known 

or not, not all may be significant. 

Figure 4.3 illustrates an example of categorization by application type, formation of 

component partitions and the setting up of candidate variable vectors. As noted in 

4.3.5, the first entry in a vector of variables is, by convention, 1. 

For each component partition and, within this, for each component type, an 

availability profile may be constructed showing at what stages of the development 

process, and for what purposes, the particular component partition and candidate 

variable vectors are relevant and when the information that they use is available. 

The criteria for setting up, or selecting, component partitions, will depend on the 

purposes for which a sizing exercise is done. For example, technology productivity 

studies will often use component partitions related as much as possible to the intrinsic or 

specification size of a job rather than using categories which are more dependent on 

how the system is designed and implemented. For software cost estimation the interest 

is often in a measure of the system's total representation size. Thus, the choice of a 

suitable component partition will depend on the purpose for which it is being used. 

Some partitions may well be satisfactory for several sizing purposes, however. 
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Figure 4.3 An Illustration of System Decomposition 

In terms of the general sizing and costing model developed in this chapter, the following 

distinction between component partitions and variable vectors related to SizeA in 

comparison with those related to SizeB and SizeC, is important. SizeA may be difficult 

to measure directly, and some arbitrary or derived measure, such as function points 

may therefore be used for SizeA, while SizeB and SizeC can be measured directly 
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using a primitive measure, such as LOC. The distinction between primitive and 

derived, or composite, measures is examined in more detail in 2.7. 

For clarity and precision, in the following discussion of the model, a subscripting 

convention will be adopted as follows: 

i will relate to the component type, for example in a division of functional components 

into files, screens, reports and procedures, a value of 3 for i would indicate a report 

type, 

j will relate to the vector element concerned, for example a value of 2 for j might 

indicated the 'number of data elements' entry in the vector example shown in the text 

above, 

k will indicate the index of the particular component, for example a value of 20 for k 

would indicate the 20th report, if one were considering report components. 

Thus CJ,2,20, in the context of the examples used, would indicate the number of data 

elements in the 20th report. 

4.3.3 Choose Primitive Size Measures 

The term primitive could be replaced by basic, and both of these terms could be further 

qualified by the adjective common. The size measures are primitive, or basic, in that 

they are low level or elementary measures relating naturally to basic implementation 

structures, such as statements, or LOC. They are common in the sense that they apply 

to all, or most, implementation structures and to all, or most, implementation languages. 

In terms of the general sizing and costing model of 4.1 and figure 4.1, they are 

normally usable as measures of SizeB and SizeC. 

Though, as noted in Chapter 2, the concept of a single size for a system has many 

unresolved problems, in practice systems cannot effectively be compared, nor can 

schedule and cost estimates be subsequently developed for them, without using at least 

one single common measure of size, such as LOC. There may be good reasons to use 

more than one such measure. These measures might include: 
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(a) LOC, source instructions, or delivered source instructions. These tend to be used 

interchangeably, and there is some reason for doing so. For example, in the case study 

of [VERN88] part of the source 'code' was in the form of lines of non-procedural 

information (not organized in any statement format) filled in on specification screens, 

while part was in the form of procedural statements in a one-per-line format. Though 

the procedural statements were clearly source instructions, and the non-procedural 

instructions were not, they could be equated for sizing purposes as LOC. LOC, as 

noted earlier (Chapter 1), are essential as input to most algorithmic costing and 

scheduling models. LOC are a small, but not the smallest, unit useful in this context. 

(b) Token counts. These are at a lower level again than LOC and may have validity in 

some situations, for example in some CASE tools, where no suitable equivalent to LOC 

seems to exist (see 2.2.3). Token counts are the smallest useful unit in this context. 

For the primitive measures selected, it is necessary to have clear and consistent 

definitions, expressed if possible algorithmically, which can be used for automatic 

counting. 

4.3.4 Set up Develop1nent History Data Base 

The term data base is used here in a general sense. It may refer to a conventional data 

base using some data base management system, or it may refer to a set of spreadsheet 

tables. The data base will contain information about the software development 

technologies of interest, including their component types and candidate variable vectors. 

Initial estimation will be based on this data. As each new project or increment is 

completed its data shouid be added to the history data for its technology. The estimators 

can be recomputed, either whenever any new data is added to the data base, or when 

there is evidence that the estimators may have changed significantly; the latter course of 

action will often be desirable for comparative purposes, see 4.3.6 below. Tools should 

be used wherever possible, or development tools instrumented appropriately, to obtain 

the necessary counts and enter them into a data base automatically. 
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4.3.5 Derive Component Size Estimation Equations or 
Algorithms 

Many possible algorithms or estimation procedures could be used for this step, 

including ranking (Curve Fitting [DACS87], SSM [BOZ086]), sampling (SMM 

[BRIT85]), and reference to a data base for selection and comparison with similar 

historical cases (QSM SCS [PUTN87], ESD, SSA [DACS87J), for example. 

In order to be specific, however, a particular estimation method is used here, namely a 

straightforward application of multiple linear regression to data in the history data base 

to derive estimation equations. Estimation will be done on a component by component 

basis. It has been assumed in the following that the dependent variable is the primitive 

common size measure LOC but in principle, it could be any measure of size, or even of 

value. If appropriate, tokens or other suitable measures can be used instead, or in 

addition to LOC. The independent variables to be used are those occurring in a specific 

candidate vector of variables for a component. If there are several such vectors for a 

component, then there will be several estimation equations to be used at different stages 

of the development depending on when the information for the vector entries becomes 

available. 

Thus, for the kth component instance of component type Ci, its size estimate Lik* in 

LOCis 

where 

variable, and 

Wij is the regression coefficient , or more generally weight, of the jth 

Cijk is the value, normally a count, of the jth variable. 

By convention, the first variable in any vector, Cilk, has a value of 1 and assumes the 

role of the constant term in any regression equation. In the rare case (such as Albrecht's 

function point analysis) where there is no constant term, Wil = 0. Thus, in all cases, 

Wj!Cilk = Wil• 
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This convention avoids making a special case of the constant term in regression 

equations. 

The choice of which variables to include in the estimation equation will normally depend 

on which variables in a vector are available (typically related to the development phase) 

and also which variables the regression or other algorithm finds to be significant. 

The estimated size in LOC, L*, of a system S, made up of components from a 

component partition C, whose individual sizes are estimated as above, is 

It is important to stress again that estimation based on regression analysis with LOC as 

the dependent variable, though a powerful and successful technique, is only one of 

many possible approaches that could be adopted within the framework of the model. 

4.3.6 Choose Derived Size Measure and Reference 
Technology 

This step is necessary if productivity studies are to be conducted, either across different 

software development technologies, or as a software development technology changes 

and develops. Productivity is about how efficiently a job is done. To measure it we 

need to know both the size of the job itself and the eventual cost of doing it. Since the 

latter depends strongly on the size of the implementation, in the context of this model 

the following is needed: 

(i) a measure of the inherent size of the job (SizeA), - typically function points, a 

derived measure, and 

(ii) a measure of the size of the software product (SizeB or SizeC, depending on 

what aspects of productivity are being measured) - typically LOC, a 

primitive measure. 

The derived measure, or measures if several are used, will typically be function points, 

or some development or generalization of them, such as the extended function points 

used in ASSET-R [REIF87], or the feature points of SPQR [DACS87]. Such measures 
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are grouped under the term FPA-like and their unit of measurement is called the 

function point. Function points are at a higher level than LOC and, though not 

completely independent of the software technology employed, are closer to 'the size of 

the problem', the size of the system as described in the requirements, or the inherent 

size of the job to be done (SizeA of Figure 4.1), than are LOC. LOC relate more to 

implementation considerations, such as the language used (SizeB and SizeC of Figure 

4.1). 

It is important to reiterate that function points are not in the same category as either LOC 

or token counts. Specifically, function points are a complex, or composite (derived) 

measure, whereas LOC and tokens are simple or primitive measures. Function points 

cannot normally be calculated directly from source code, or its equivalent, whereas LOC 

or tokens can be so calculated. Function points are calculated, or more precisely 

estimated, using techniques essentially similar to those of this model. This is discussed 

in greater detail in 2. 7. 

For technology productivity studies, commonly used or previously used categories 

should be included if comparisons with previous systems measured using them are 

required. For example, for comparison with many existing systems which have used 

Albrecht's function point analysis [ALBR79, ALBR83], the component partition 

logical internal file types 

inputs 

outputs 

rnqumes 

interface file types 

is necessary, together with corresponding candidate variable vectors, such as 

number of file types 

number of record types 

number of data elements. 

This may not be the natural or the best, partition to use. In practice, however, it is a 

partition that can, using suitable conventions, be imposed on most business systems (in 

addition to the preferred partitions) where this is necessary for calibration purposes. 
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4.3. 7 Calibrate Derived Size Measure 

In the case where an FPA-like measure is used, for comparative purposes or for 

technology productivity studies, calibration will be necessary to ensure a consistent unit 

size for the (derived) measure for the purposes for which it is being used. Calibration 

implies the use of a reference software development technology, more simply called a 

reference technology, in which well-established, and sufficiently reliable, function 

point values have been obtained in the past. The reference technology selected must 

also be applicable to the newer systems which use the FPA-like measure being 

calibrated. 

As stated in 4.3.1 the term technology in this context refers to a particular component 

partition, together with a particular variable vector for each component, to which must 

be added, for calibration purposes, a fixed regression equation for each component. 

Often, these will correspond to a particular method of specifying or developing software 

for which these components and counts are the natural ones. In relation to the software 

sizing and costing model of 4.1, the term technology as used here usually applies to 

subparts A and B of the sizing part of that model, though for some total sizing 

purposes, and also in situations involving some software development technologies, 

where it is not possible to separate out the system constraints, some or all of the system 

constraints might also be included, thus including some or all of SizeC in the 

technology. Whether or not the effects of system constraints, or of some of them, are 

measured separately is a matter of separability and of user choice. 

Note that, in this context, the estimation equations should be fixed, not adaptive as 

optionally suggested in 4.2.4 above. Adaptive equations would imply a 'drift' in the 

software development technology. Until there is a significant change, it is unlikely to 

be worth refitting the estimation equations, and when this is done recalibration against 

the reference technology will also be necessary. 

The calibration process, using a reference technology A (typically Albrecht's FPA) for 

calibration of an FPA-like measure in a new technology B, requires the following size 

measures for a number n > 0 of systems Sm: 
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(a) LOC or other primitive measure for development using technology B, 

s(Sm, L, B) 

(b) function points, or similar, in a reference technology A, s(Sm, F, A) 

Calibration of the FPA-like measure for technology B involves the determination of the 

ratio b, which is the number of technology B LOC per reference technology A function 

point for the same set of systems Sm, If equal weights are given to each system Sm, b 

is given by 

b = (1/n)Lm(s(Sm, L, B) / s(Sm, F, A)). 

To detem1ine function points in technology B for both components and systems, it is 

merely a matter of dividing the LOC estimates in 4.3.5 by the calibration factor b. This 

may be done by scaling the weights (or regression coefficients) Wij to new values Wij/b. 

However it is probably better to divide the LOC estimates themselves by the scaling 

factor , thus bringing the role of the latter out into the open. 

A simple example, Table 4.1 may clarify the calibration process. 

System 1 System 2 System 3 System 4 
Size in new technology, B 20000 34000 4500 6000 
Reference technology A Function Points 201 390 ~ 58 

s(Sm, L, B)/s(Sm, F, A) 99.50 87.18 90.00 103.45 

Im 380.13 

b 95.03 

Table 4.1 Determination of Calibration Ratio, b 

The question of the calibration of derived or composite measures is examined in a more 

general context in 4.4. 
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Figure 4.4 An Example of Calibration for New Size Measures for 

Productivity Comparisons 

4.4 CALIBRATION PROCESS FOR NEW SOFTWARE 
MEASURES 

Figure 4.4 gives an example of the calibration process for two new software measures 

(or estimates) in a more general context than in section 4.3.7. On the left, a new 

specification size measure has been formulated (SizeA), either arbitrarily (for example, 

'by debate and trial') or using a primitive specification size measure alone (for example 

tokens in a specification language). This is then calibrated against an existing measure, 

such as function points, for comparison with existing size information. On the right, a 

derived measure from a (partial) SizeB in technology T LOC is calibrated using the 
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method described in section 4. 3. 7. It is clear from the symmetry of the diagram that the 

same principles apply in both cases and that the differences in calibration method are 

minor. For the new specification size measure on the left of Figure 4.4, one could 

obtain a calibration in terms of specification language tokens per reference technology 

function point. For the case on the right of Figure 4.4 one could obtain a calibration in 

terms of technology T primitive measure units per reference function point. 

Ideally, one would like an independent measure of size at each major development 

milestone, and this may eventually become available with CASE tools. In such a case, 

the situation could be as illustrated in Figure 4.5, and the effects of specification-design 

expansion, and design-implementation expansion could be separated and measured 

more precisely. The stages of specification, design and implementation illustrated in 

Figure 4.5 are, of course, just examples. Any definite milestones at which independent 

size measures are obtainable could be used instead of them. 

specification _ _ _ _ _ specification 

design 

implementation _ _ _ _ 

size 

specification-design 
expansion 

ratio 

design 
size 

design-implementation 
expansion ratio 

implementation 
size 

Figure 4.5 An Example of Independent Size Measures at Different 

Stages of Development 
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4.5 ADJUSTMENT FACTORS 

4.5.1 The Role of Adjustment Factors 

The dependence of adjustment factors, if and when they are required, on the purpose 

for which a particular (partial) size is required, is noted in 3.2.3. For the calibration of 

derived size metrics for technology productivity studies (where an approximation to the 

abstract size of the job to be done is usually required) adjustment factors will be of little 

or no interest. However, for product size estimation (which must take account of 

development methods, languages, and constraints) a number of adjustment factors may 

be important. 

The use of adjustment factors in sizing models is reviewed in 3.2.3 where it is noted 

that the FPA approach of up or down adjustments to an average size is inconsistent with 

the concept of component size estimation, or at least unnatural in this context. For this 

reason it is rejected in favour of the approach described below. 

The approach to adjustment factors adopted here is what is believed to be the more 

natural one of 

(i) estimating component sizes as closely, and completely, as possible 

(ii) summing the individual component sizes to obtain a (partial) system size 

(iii) if necessary, adjusting the partial system size upward as appropriate to account for 

factors not included in the partial size obtained from the summed component sizes 

Note that the term partial is used in a similar sense to the mathematical term subset. It 

may include all parts of the system that are of concern. 

The key questions, then, concerning adjustment factors are: 

(i) What factors of importance have been left out? What else needs to be taken into 

account? 

(ii) Where in the system do the omissions, or shortfalls, occur? 
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(iii) What is their nature? Do some of them affect existing component types? Do some 

of them fall into additional component types not yet defined? Do some of them have a 

more or less constant effect, independent of system size? Are some dependent on the 

size of a part, or the whole, of a system? 

These considerations lead to the conclusion that, while provision for adjustment factors 

should be made in any software sizing model that can be termed generic, few rules 

concerning them can be formulated and their use must remain highly dependent on the 

purpose of size estimation and the management environment in which it is used. 

4.5.2 An Adjustment Factor Model 

The treatment of adjustment factors in the sizing model presented here is illustrated in 

Figure 4.6. 

The first step is to determine whether adjustments are necessary or not for present sizing 

purposes. If necessary, determine which adjustment factors are important in the current 

situation. 

The second step is to classify the adjustment factors into five classes within two main 

groupmgs: 

(i) Module adjustment, either new component types are required or only certain 

component types are affected. 

(a) Only some component types are affected by the factor. Factors in this class 

increase the size of certain component types within the system but do not affect 

others, for example user transaction logging which, in a particular environment, 

may affect screens, but not relations, menus or reports. These factors should 

normally be included explicitly as estimation variables in the size estimation 

algorithms of the component types they effect. 
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(b) New component types required. Factors in this class can form separate 

measurable component types in the completed system and should, in general, be 

estimated separately, for example, the update component type of the Phase2 

partition of 5.6.2. 

(ii) Size-dependent factors that affect the whole system. These adjustment 

factors cannot be conveniently identified as increasing the size of any specific 

component types(s) but do increase the size of the system as a whole. They are often 

'hidden' housekeeping functions, such as data base reorganization, systems 

accounting, security, backup and recovery, or other essential systems programming 

utilities. They may be: 

(a) Fixed size adjustment factors . An additive adjustment is appropriate for this 

class. 

(b) System :dze-dependent adjustment factors . Such factors are related to system 

size and show a greater increase in size in large systems than they do in smaller 

systems. A multiplicative adjustment is appropriate. 

(c) Other. Expert judgement is likely to be needed for adjustments which do not fit 

conveniently into one of the other four classes. 

The final step is to apply the appropriate adjustments. Note that in the estimation of any 

specific system the above classes of adjustment factors are not mutually exclusive, and 

any or all of them may be appropriate. 
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Figure 4.6 Adjustment Factor Model 

4.5.3 The Place of Adjustment Factors in this Thesis 

Although adjustment factors have been examined in some detail in the interests of 

completeness, they are not a central feature in the presentation of the model in this 

thesis. After classifying them and providing a framework for their use, if necessary, in 

the final step of the size estimation model, they are not considered or used again here. 

None of the estimates in Chapters 5 and 6 use adjustment factors, except in the 

calibration considerations of 5.8. Where Albrecht's FPA is used, only unadjusted 

function points are estimated. 

4.6 CLASSIFICATION OF THE MODEL 

It is interesting to review where the generic model described in this chapter corresponds 

to the structural classification of software size estimation models described earlier 

(Chapter 3). Figure 4.7 is a reproduction of this structural classification with the 
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addition of shading to show the parts of the classification subsumed in the model; the 

darker the shading the more relevant that class or sub-class is to the model. The model 

fits directly into the major class which estimates size by partitioning a system into 

components. The model is not at all concerned with attempting to size a system as an 

individual whole. Within the broad classification of size estimates from partitioning a 

system into components, it is possible to use the model in a number of different modes. 

The different modes enable variants of the model to be used in all the four sub-classes 

that fall within this classification with a resulting greater or lesser degree of accuracy in 

size prediction. Use of the model in different 'modes' within the four classes is 

described below. 

4.6.1 Several Component Types 

(i) Individual component sizing 

The model fits directly into this group and this is its normal mode of operation. The 

model is different from most other members of this class in that it has no fixed set of 

component types and it makes explicit provision for size estimation during more than 

one phase of software development. This provides the facility for different size drivers 

with varying importance to be identified for component types at different phases. FPA 

has a fixed set of component types with fixed size drivers within component types. 

SSA has a wider set of standard component types from which the user can choose but 

the user must decide subjectively from the range and complexities of the data retrieved 

from a data base where the new module's size will fit. The Itakura and Takayanagi 

approach is in some ways similar to the model but is for one specific component type 

with subjective coefficients for the size driver variables. The model also has some 

similarities to System BANG with its open-ended set of functional primitive types. 

However System BANG divides the system into these primitives from a functional 

viewpoint whereas the component types delineated in the model not only have different 

functions but are also structurally different. 

(ii) Size with average component size 

The model can be used in a mode similar to the size estimation methods in this class. 

To do so the sizes of members of each specific component type will need to be 

investigated and an average size for components of that type computed. This has in fact 

has been done for one component type in an application of the model described in 
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Chapter 6. This was necessary as there were not enough examples of this component 

type to obtain a prediction equation. Using the model in this fashion will not normally 

give estimates as good as those resulting from the use of the model in its normal mode 

unless the sizes within a particular component type have little variability. 

4.6.2 Single Component Type 

(i) Individual component sizing 

The model could be used in a single component type mode if this were required. To do 

this would require all component data to be put together and a single regression (or 

other) prediction equation to be developed from this data. It is possible that some of the 

variables in the component type estimation equations (for example, choices) would only 

be appropriate for some components and for the majority of component instance 

estimates the value for that variable would be zero. It is unlikely that the prediction 

equation would be limited to the three variables used in the Markll equations but the 

model would be similar in some respects to Markll. 
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whole 
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Figure 4.7 Sizing Method Types Subsumed by the Model 
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(ii) Size with average component size 

Using the model in this mode is likely to give the poorest estimates. It reduces the 

model to one similar to that described by Aron [ARON69] (see section 3.2.2 (i) a) 

where the number of components in a system are counted and an average component 

size is used to estimate a total size for a system. 

4.7 SUMlVIARY 

The generic size estimation model described in this chapter is placed in the context of a 

more general model of the whole software sizing, costing and scheduling process, the 

SizeA, SizeB, SizeC model which separates language-dependent aspects (SizeB) and 

system constraint aspects (SizeC) from each other and from functional specification 

aspects (SizeA). The size estimation approach described here builds on the strengths of 

FPA-like methods, generalizes them, and overcomes most of the problems described in 

2.5. l(iv) and 2.5.2 (iii). 

Any group of applications that are sufficiently similar in their sizing characteristics can 

be regarded as an application category. Within each application category of interest, 

one or more software development technologies are delineated by defining suitable 

development phases, component partitions and vectors of object types and component 

characteristics typical of that component at that phase of development. Different 

component partitions may be of interest with different application types. The 

component partitions, and their vectors, will depend on the application category, 

development methodology, programming language and software engineering 

environment, stage of development, and the purpose of the measurement or estimation. 

This approach overcomes problems that may occur with a small number of fixed 

application types which may not fit the characteristics of a particular development 

environment or technology. 

As described in detail in 4.3.3 and 4.3.6 the model allows any well-defined primitive 

or derived metric to be used thus better meeting the different purposes for which a size 

estimation and/or measurement model is required and the different styles of expression 

of emerging software technologies. The concept of partial size estimates and 

measurements is introduced and its relationship to different sizing purposes is 

emphasized. 
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The size estimation model described in this chapter is designed to adapt to changes in 

technology. The approach recognizes and uses the technology dependence of 

component types to get better 'SizeB' technology-dependent estimates instead of trying 

to ignore their dependence. 

Although there will be changes in component partitions and vector weightings to meet 

technology changes, the model recognizes the importance of a stable reference measure 

platform for technology productivity studies. A method for calibrating an estimate of 

SizeA of a system in one technology, to other technologies (including later versions of a 

given technology), is described. 

Within the model the choice of weights for components is no longer arbitrary but can 

reflect their comparative sizes (in the chosen metrics), within the technology currently 

being employed. The sizes of these different component types are detennined from 

different variables, or with different estimation coefficients as appropriate using a 

history data base. 

Since such a point has been made of technology-independence in some promotions of 

FPA (though it is not in fact completely technology-independent), it is important to note 

that a choice of component weights for an instance of the proposed model could be 

based on a measure of 'function value delivered to the user' if and when suitable 

metrics for this, or some other suitable measure of utility, are devised. 

With the use of the approach described in this chapter the relative size of each 

component instance will be reflected more closely in the size of the estimate produced. 

This results from each component instance being estimated individually from counts of 

its associated objects in the development phases of interest; thus within a component 

class, a continuous range of sizes is possible, not just a small fixed set of sizes such as 

low, medium and high. This range of size estimates for component instances 

overcomes the criticism of FPA's oversimplified classification of component type 

complexity levels. 

Because the model allows the use of more objective counting methods that may be 

automated the subjectivity inherent in traditional function point counts should be 

reduced. 
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The role of adjustment factors is analysed in relation to the purpose and scope of a 

sizing exercise. A new model for the identification, classification and application of 

adjustment factors is presented. 

The generic nature of the model is emphasized throughout, especially in 4.6 where it is 

shown to subspme all other methods based on component partitioning. 

The application of the general approach, described above, is illustrated in Chapter 5 

where it is applied to a large set of related administrative applications developed using a 

particular software technology. It is applied again in Chapter 6 to a case in which a 

single standard application is developed using three different software technologies. 
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CHAPTER 5 

APPLICATION OF THE SIZING MODEL 

This chapter describes in detail an application of the generic sizing model described in 

Chapter 4 to a data-centred business application developed in a fourth generation 

language. The chapter follows the framework of Chapter 4 with comments on particular 

issues of interest, or difficulties encountered, in applying the general principles and 

procedures of the model. Explanations of the statistical techniques used are included 

where appropriate. Chapter 6 gives three other less detailed examples of the application 

of the model to a system in the same application category developed using other software 

development technologies. 

The application of the generic sizing model in a particular situation results in a sizing 

model instance . However, because this term is cumbersome, 'model' is frequently used 

throughout this chapter instead of 'sizing model instance'. The context should clarify 

any potential ambiguity resulting from this usage. 

5.1 SOURCE DAT A 

The data used in this chapter is 'real world' data obtained from the development of a 

system of administrative applications at the New Zealand Correspondence School over 

the period 1986-1989. The earlier phases of this system have been described in detail in 

[VERN88]. Data used for the development of the sizing model, the reference data, was 

collected between 1986-87 while a later data sample, the test data, used for validation of 

the model was collected subsequently in late 1988 from later increments. In all 

something well in excess of 100,000 LOC have been developed for these applications. 

Though in many aspects the system is representative of its class of data-centred business 

applications, in some other respects it is not typical. In particular, both the data 

complexity and the processing complexity are high for this type of application. The 

Correspondence School caters for exceptions to the normal education system. These 

exceptions are many, varied, complicated and changeable, adding an extra complexity 
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dimension to the system. Though unrepresentative in these respects, the data from this 

system provides a stringent test of the model. One could say, if it will work for this data, 

it will work for any data-centred business application. A summary of the data used in 

this chapter, including both the reference data and the test data is shown in Table 5.1. 

The source data itself is listed in Appendix A (reference data) and Appendix B (test data). 

Reference data Test data 
Module Tvoe n LOC n LOC 

Menus 12 252 
Screen Menus 25 1361 5 247 
Screens 165 13070 41 2615 
Relations 59 766 46 643 
Reports 132 12659 41 5407 
Urx:latcs 47 1455 29 797 
Totals 440 29563 162 9709 

Table 5.1 Application Data Used in this Case Study 

Development data for real world systems is difficult to obtain because most organizations 

do not collect adequate or complete statistics of the development process or products. It 

is fortunate that the business application data used in this dissertation was available. Data 

from other application categories, such as real-time Ada systems, which are much less 

commonly developed in New Zealand, was unavailable. Business information systems 

and data processing applications make up the bulk of the software developed in New 

Zealand but there has been very little research into the size estimation of these types of 

systems. 

Few of the sizing models in the published literature have been developed, or tested, using 

ideal source data sampled from a well-defined and stable population of applications. ln 

general researchers have had to make do with whatever data can be collected, or is 

available. The data used in this study is no exception to this situation. 

One particular, and inevitable problem, with source data in all sizing prediction situations 

is that models are developed using historical data for application to current developments. 

No software development technology is static. Inevitably some changes occur which 

affect the sizing prediction model, even if these are only minor. Developers acquire more 

experience, new techniques emerge, new releases of the system software and application 

142 



development software occur and users become more sophisticated in their demands. For 

these reasons, the population of systems, subsystems or increments to which a prediction 

model is applied is never quite the same, and may in some respects be rather different, 

from the reference population on which the prediction model was based. The user of any 

software sizing model must be aware of this potential problem and aware of changes in 

the environment that may necessitate changes to the model instance. 

Some differences between reference and test populations occurred in this study. This 

resulted in one consequent change to the model instance developed here namely to the 

equation for the prediction of the size of relations. Differences between the reference data 

and test data populations are described as appropriate later in this chapter. 

5.2 APPLICATION CATEGORY 

A clear understanding of the essential nature of the category type is necessary before the 

precise characteristics of a development technology can be established. The following 

description of the application class to which the system of interest in this chapter belongs 

is closely based on [TATE88]. 

The application belongs to a relatively limited class of data processing systems which are 

nevertheless very common in business applications, and are important for this reason. 

They are concerned with data processing rather than data processing. This class may 

be characterized as 

(i) data-centred 

The main activities are keeping a database up to date and extracting information from that 

database as required. Module data dependencies are through the database or through a 

small number of parameters, rather than through a data flow network. 

(ii) few major object classes 

Most, if not all, of the modules which interact with the database can be regarded as 

instances of just a few object classes, such as menus, screens, file-to-file updates or 

reports. These objects inherit their shared behaviour from general, or in some cases 

particular, objects of each class which are further tailored to fit each specific instance. 
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(iii) simple state transition control mechanism 

Inter-module control flow is typically through menus and can be represented as state 

transition diagrams. 

(iv) comparatively low procedural complexity 

This characteristic has several aspects. Firstly, application-specific manipulation, logic 

or calculation represents a relatively small proportion of the total job. However, since 

this part is specific and contains little that can be inherited or delegated, it may represent a 

rather larger proportion of the total effort. Secondly, the procedures embodying this 

logic are in general independent of each other and are called from, or embedded in, the 

database manipulation object instances. As noted in section 5.1, the application data used 

here is not entirely typical in this respect. Though structurally similar, the logic 

procedures tend to occur more frequently and to be more complex than usual. 

Figure 5.1 gives a simplified dia!:,rram of the application class in a schematic data flow 

diagram form. The interaction process represents a menu or screen. The processes Pl to 

P5 represent embedded or called logic mcxlules to meet application-specific needs. Some 

of these are only a handful of lines though in this case study some are quite large. Note 

that the main process types, A, B and C, are not connected directly by data flows, but all 

interact with the database. This is an oversimplification in that the menu-like control 

structure, which is not shown, effectively passes activating information from one process 

to the next; also, it is sometimes convenient to pass a few temporary variables from one 

process to the next. This is best shown on a modified state transition diagram. The 

system structures of interest are the data model and the state transition control diagram, 

not a data flow diagram. 
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Figure 5.1 Schematic Data Flow Diagram of Application Class (from 
[TATE88]) 

This class includes many database applications, whether hosted from a language such as 

COBOL, SQL-based, or implemented using one of a number of 4GLs. Many business 

applications fall more or less into this class. 

5.3 SOFTWARE DEVELOPMENT TECHNOLOGY 

A software development technology which can be applied to an application category 

consists of the development methodology used together with the application development 

language and environment. However, from the point of view of the size estimation 

model many of the details of the development methodology are unimportant. The aspects 

of relevance are those which affect structure, or are size drivers. The development 

methodology also determines what sizing data is available and when this data is available. 

The division of a system into component types and components may be influenced both 

by the methodology and the language used. 
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The application, characterized as a data-centred business system, was defined using an 

entity-relationship data model (mapped into a relational data management system), 

together with associated dictionary definitions for the entities, relationships and attributes 

identified. Transactions and reports, interacting with the data base, were then defined for 

the various functions required of the system. The development strategy was that of 

incremental development. The data model was first defined as completely as possible 

then functionally related groups or subsystems of transactions, reports, etc. were 

developed in succession. 

The software development language used for this system was the fourth generation 

language, ALL (Application Language Liberator) a Microdata product [MICR85] within a 

Pick environment. It is not the purpose of this dissertation to define the language ALL, 

aspects of which are only discussed where appropriate. Readers who wish to know 

more about the language ALL are referred in the first instance to [VERN88] where some 

simple annotated examples are given. This language uses a combination of procedural 

and non-procedural definitions to implement the system components. The non­

procedural part is a 'fill-in-the-forms' 4GL system with the following module types: data 

screens, menu screens, updates, reports, file (relation) definitions and logic modules. 

The logic modules are written in a procedural language and have no independent 

existence, being embedded in the non-procedural modules that call them. The logic 

modules are programmed in a BASIC-like language. 

5.4 PRIMITIVE SIZE MEASURE 

Reference to Figure 4.2 shows that the choice of primitive size measure can be made 

subsequently to characterizing the software development technology. However, since it 

is convenient to discuss component partitioning, variable vectors and module size 

estimation equations together, the choice of primitive size measure precedes that 

discussion here. 

LOC was chosen as the primitive size metric for the software development technology 

because of its de facto importance in this role. The LOC counts did not include comment 

lines and, because the model deals with component size estimation (and in this case 

components do not have associated explicit operating system command sequences), did 
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not include JCL. Each line was counted and no blank lines were included in the final 

LOC counts. 

ALL is a mixed 4GL with both procedural and non-procedural parts. There is no 

established definition of a LOC counting convention for a fourth generation language of 

this type. Because of the lack of an existing LOC counting method for the non­

procedural parts of these languages, which are not made up of lines in the conventional 

sense but of entries in predefined forms on a screen, a new line counting convention, 

which is discussed in more detail below, had to be invented. Logic lines in ALL are 

procedural and, because there is normally one statement per line, they can be counted 

directly. 

5.4.1 Line Counting Convention for the Non-procedural Part 

Table 5.2 shows the different module types used within the ALL development 

environment and the non-procedural form definitions required for each module type. 

Line counting conventions for the non-procedural parts of the modules were investigated 

to obtain counting conventions that relate to the size of the modules. Similar form types 

are used by more than one module type so that similar counting conventions can be used 

across the different module types. To help choose the convention that best represents the 

actual size of the modules the number of tokens entered into the non-procedural modules 

was correlated with two different possible line counting conventions. This correlation 

was done for reports and screens, as the particular combination of forms was different 

for these two module types. In particular, report modules have definitions of the line 

types on the printed output but do not use definitions for screen layouts whereas screen 

modules have definitions of screen layouts but no line type definitions. The four 

definitions used in the remaining three module types are a subset of those used in 

screens. For this reason the other module types have not been investigated separately. 
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Module Tyne Non-procedural Form Definitions Used Procedural Code 

screen function field characterisitcs screen logic 
report function field characteristics line types logic 
menu function menu screen 
relation file fields 
undate function character is Li cs lol!ic 

Table 5.2 Module Type Parts 

The first counting convention counted physical lines, ie. counted every non-empty line 

across the page (or screen) as a single line and ignored whether entry of data was across 

or down the page, in columns or whether the entry tokens involved were related or not. 

Data obtained was stored in a variable called LOCI. 

The second LOC counting convention counted logical lines defined as coherent small 

groups of one or more tokens referring to a single object such as file , data element, 

name, error procedure, date, etc. In some cases there were two or even three logical 

lines per physical line on a screen or on a page. This usually occurred when the 

information was arranged in columns. In other cases, for example, descriptions of some 

report lines containing long literals, one logical line could occupy several physical lines. 

The resulting LOC was called LINES. 

The correlations between tokens and of both LOCI and LINES are shown in Table 5.3. 

The relevant data is in Appendices A4 and A5. 

LOCI LINES 
Reports 0.94 0.85 
Screens 0.91 0.88 

Table 5.3 Correlations of Line Counts with Token Count 

Because the counting convention for LOCI resulted in rather better correlations with 

token counts than that of LINES and seemed more natural, this counting convention was 

used as the basis for the non-procedural line counts. 
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Section 5.6 combines the consideration of module partitions, variable vectors and size 

estimation equations. However before this is done, the statistical techniques used in 

section 5.6 are briefly examined. 

5.5 STATISTICAL TECHNIQUES USED 

5.5.1 Development of Prediction Equations 

The general method for obtaining component size estimations equations was multiple 

linear regression. 

As a preliminary investigation into what variables might be included in these equations, a 

correlation of possible prediction variables with LOC 1 was used as a guide. However, 

some of the variables are applicable to only some of the component instances and hence 

although they may have only a low correlation with LOCI nevertheless may be 

significant size drivers for some individual components. This is seen in the updates 

where control breaks only occur in a small percentage of components. 

A number of regression equations were produced as candidates and investigated for each 

component type. In all several hundred of these equations were investigated but only the 

best of them are presented here. For each component type, the following statistical data 

is derived and presented. 

(1) correlation for the variables of concern with LOCI 

(2) one or more estimation equations 

(3) an evaluation value set for each estimation equation (see 5.5.2) 

(4) standard statistical significance tests1 and related data 

R 2 coefficient of multiple determination 

F variance ratio 

s residual standard deviation 

n number of cases 

df degrees of freedom 

1 The reader is referred to any standard statistical text for a definition of these terms. 
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t values, Student's t for each coefficient 

In general, specific significance levels have not been given along with the F and t values. 

The F ratios are very large in all cases, with significance levels> .9999. The t values are 

also mostly large, with significance levels > .9995 though in a few cases there are t 

values of lower significance, which are usually accompanied by comments. In these 

circumstances it was felt most appropriate just to present the F and t values themselves. 

The estimation equations presented in this chapter were chosen on a number of criteria: 

(1) availability and suitability of data at the particular development phase 

(2) ease of obtaining and counting data 

(3) use of few estimating variables, consistent with estimation evaluation criteria 

(4) intuitive correspondence to a general understanding of the data (naturalness) 

(5) evaluation criteria discussed in 5.5.2. 

Outliers were investigated but none were removed. Where appropriate, comments 

included with each component type discuss some of the outliers. This is a useful 

exercise leading to a better understanding both of the data itself and of the reasons why 

good size estimates are so difficult to obtain in some situations. 

Because the evaluation of an estimation equation is a complex question it warrants 

separate discussion. 5.5.2 discusses this important question. 

5.5.2 Prediction Model Evaluation Criteria 

To evaluate a prediction model Conte et al [CONT86] suggest that the following five 

criteria, which are described briefly below, should each be considered, and the model 

giving the best results overall should be chosen. These criteria are briefly defined in 

sections 5.5.2(i) - (v). 

coefficient of multiple determination, R2, 

mean relative error, RE*, 

mean magnitude of relative error, MRE*, 

prediction at the 25% level, PRED(.25), 
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root mean squared error, RMS and 

relative root mean squared error, RMS*. 

(i) Coefficient of Multiple Determination 

R2, the coefficient of multiple determination, indicates the extent to which a predicted 

value is related to an actual value. It is used to denote the percentage variance accounted 

for by the independent variables used in regression equations. The value of R2 does not 

reflect how closely an actual value and an estimated value correspond to each other in an 

absolute sense. R2 is used to indicate the extent to which an actual value and its 

predicted value are linearly related. R2 is defined for n pairs of actual and estimated 

values as 

n 

I, (actual sizei - estimated sizei )2 

= 
n 

I, (actual sizei - mean actual size)2 

i=l 

(ii) Relative Error and Mean Relative Error 

The relative error (RE) is investigated to see how well an actual value and its predicted 

value relate to each other. RE is defined as: 

RE = actual size - predicted size 
actual size 

and the mean relative error (RE*) for n cases is: 

1 n 
RE*= 0 L,. REi 

i=l 

small values of RE and RE* show that a model gives a good representation of size. 

However in practice large positive REs may be balanced by large negative REs hence a 

small RE* may not always be useful in practice. A large value of RE* can be a useful 

indicator of bias in a prediction model. 
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(iii) Magnitude and Mean Magnitude of Relative Error 

Because of problems that can occur with RE and RE*, the magnitude of the relative error 

(MRE), and mean magnitude of relative error (MRE*), are also investigated. MRE is 

defined as 

MRE = 1 RE 1 = I actual size - predicted size I 
actual size 

positive and negative errors will not cancel each other out and the smaller the value of 

MRE the better the prediction. 

For a set of n cases MRE* is defined as 

1 n 
MRE* = 0 L, MREi 

i=l 

If MRE* is small the model produces on average a good set of predictions. Conte et al 

[CONT86] consider MRE* ~ 0.25 as acceptable for effort prediction models. Similar 

criteria shoulcj apply to size prediction models. 

(iv) Prediction at Level L - PRED(L) 

PRED(L) is defined as 

PRED(L) = ~ fork cases in a set n whose MRE ~ L. n 

If PRED(. l) = 0. 9 then 90% of the predictions for the cases in the set fall within 

10% of their actual value. Conte et al [CONT86] suggest that an acceptable 

criterion for an effort prediction model is PRED(0.25) 2:: 0.75. There is no limit 

on the MRE of the estimates whose predictions exceed 25% of their actual values 

and it is possible for some very poorly predicted values to be present. 
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(v) Mean Squared Error and Relative Root Mean Squared Error 

For a set of n cases mean squared error (SE*) is defined as 

1 n 2 
SE*= n I, (Actual sizei - estimated sizei) 

i=l 

This error represents the mean value of the error minimized by the regression model. 

From SE* the root mean squared error (RMS) can be calculated as 

1 

RMS = (SE*)2 = 
1 n 
n L (actual sizei - estimated sizei )2 

i=l 

and the relative root mean square error (RMS*) is defined as 

RMS*=----RM-=-'=S __ _ 
1 n 
~ L actual sizei 

i=l 

Conte et al suggest that RMS* ::; 0.25 is an acceptable performance criterion for a 

prediction model. 

Because there is no generally accepted standard for the evaluation of prediction models 

Conte et al (CONT86) suggest that the combination of MRE* ::; .25 and PRED(.25) ~ 

.75 can be used, these being the two most important of these criteria in most cases. In 

the tables presented with each component type in the following discussion values that fall 

within an acceptable level, using Conte's criteria, are shown in italics, while those that 

are the best for the particular group within which they fall are shown in bold type. Those 

values shown in bold and italic font are thus the best values for the group and also 

acceptable under the model evaluation criteria discussed above. 

153 



5.6 COMPONENT PARTITIONS 

Two component partitions are investigated. The first partition is at the software 

requirements phase, and the second partition at the the preliminary design phase (see 

3.4). The terms Phase] and Phase2 are used below to refer to these two phases and their 

associated component partitions. Table 3.4 gives a brief list of the documents produced 

and components defined during the relevant phases of a typical lifecycle model. 

Although incremental development was used for the system under discussion, 

requirements were specified and the data base design was completed (for the reference 

data subsystems) before any software development started so that the software 

requirements phase is one that can be considered as appropriate to this particular 

development. The preliminary design, however, was done increment by increment. The 

reference data includes that of several early increments. The test data are sampled from a 

number of later increments. 

5.6.1 Phasel 

At Phasel (in the sense of 5.6) the functions to be provided, user characteristics, 

development/operating/maintenance environments, programming language(s), tools and 

techniques have been defined. For this particular development technology the data base 

design, menu structures, screen and report layouts will be defined in the requirements 

phase. Because of the heavy dependence on menus, the menu structure is also defined 

early. The software development technology is naturally partitioned into the following 

component types: 

menus 

screens 

relations 

reports 

As shown in Table 5.2, these component types have different definition characteristics 

within the ALL environment. 
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(i) Candidate Variable Vectors 

Investigation of the above component types identified the following candidate variables 

for inclusion within the component vectors at Phase 1. 

Menus Screens Reports Relations 

choices dictionary elements report line types data elements 

local variables relations 

data elements dictionary elements 

relations local variables 

choices data elements 

control breaks 

sort fields 

In the above screen and report vectors, data elements are defined as the sum of dictionary 

elements and local variables. Candidate variables were investigated, within their 

component types, for their relationships with the size, in LOC, of components of that 

type. Multiple linear regression was the technique used for this investigation. 

(ii) Menus 

There were two different types of menus. The language provided a non-procedural 

module type called MENU which was very easy to program and required no procedural 

code in its development. This module type is referred to as MM EN U for the rest of this 

discussion. Unfortunately MMENU modules proved to have performance problems. 

This resulted in the majority of menus being programmed using the ALL screen module 

type (called SCRMENUS for the rest of this discussion) instead of the menu module 

type. Two results are therefore shown for menus under the headings MM ENUS and 

SCRMENUS. 

Because the SCRMENU modules had quite different characteristics from the normal 

input and display screen modules (screens) menus programmed using the screen module 

machinery have been kept separate from the normal screen modules, which are discussed 

under (b) Screens below. 
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(a) SCRMENUS 

The prediction equation and evaluation criteria for this component type, using the criteria 

suggested by [CONT86], are presented in table 5.3. The prediction equation gave very 

good results with most of the predicted sizes being very close to actual size, all the 

prediction criteria are well within the acceptable range, a high R2, and F and t ratios 

which are at significance levels beyond the range of most statistical tables. PRED(.09) 

was 92%. Two cases, that could be considered outliers, with their MRE at .24 and .1 8, 

warranted further investigation. This revealed that one of these menus provided 

additional features and the other had extra security features. Data for the SCRM ENU 

component type is included in Appendix A2. 

SCRMENU 
n R112 

SCRMENU 
Prediction Equation 

LOC* = 23.6 + 3.99 choice 

RE* MRE* PRED(.25) RMS RMS* F-ratio 

25 0.948 -0.009 0.052 l 4.37 0 .080 416 

t-ratios elf s 

13.4, 20.4 23 4.49 

Table 5.4 SCRMENU Component Prediction Equation and Evaluation 

Criteria 

(b) MMENUS 

An excellent result was obtained with the prediction model for this component type which 

is presented in Table 5.5. The model predicted size within 6% of actual 100% of the time 

but PRED(.25) has been included in Table 5.5 for consistency. 
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MMENU 
Prediction Ecmation 

LOC* = 7.77 + 2.04 choice 

MMENU 
n R"2 RE* MRE* PRED(.25) RMS RMS* F-ratio t-ratios elf s 

12 0.997 , 0.001 0.0122 0.386 0.018 3918 31.8, 62.6 10 0.42 

Table 5.5 MMENU Component Prediction Equation and Evaluation 
Criteria 

The original data for this component type is included in Appendix A2. Since MMENUS 

were not used later in the case study development, they are only included here for 

completeness and are not considered later. 

The SCRMENU modules had much higher overheads in LOC than the MMENU 

modules and this is reflected in the constants of 24 and 7 .8 respectively in their prediction 

equations. The system-supplied menu mechanism required very little programming. 

However, to do the same thing using the screen module machinery required a logic 

procedure to be called which had four lines of procedural code for each separate menu 

choice. This difference is reflected in the coefficients of the variable choice, 4 for 

SCRMENUS and 2 in MMENUS. 

(iii) Relations 

The results, which are shown in Table 5.6, were good. The variability within the 

relations is caused by definition of operator help messages for data elements (or 

attributes). If the particular attribute was used for the first time a message was normally 

defined while, if the attribute had been defined previously for some other relation, the 

message was already in the system dictionary and was automatically picked up. Relation 

data is included in Appendix A3. 
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RELATION 

RELATION 
Prccliction Equation 

LOC* = 1.37 + 1.88 data elements 

n w,2 RE* MRE* PRED(.25) RMS RMS* F-ratio t-ratios cf s 

59 0.978 -0.021 0.139 0.814 3.10 0.239 2496 2.78, 50.0 57 3.30 

Table 5.6 Relation Component Prediction Equation and Evaluation 
Criteria 

(iv) Screens 

There were 165 screen modules available for analysis. The original data for this section 

is included in Appendix A4. 

Screen object counts 

The following object counts were identified as being possibly relevant to the size of 

screen modules: 

dictionary elements 

local variables 

data elements = dictionary variables + local variables 

relations 

number of choices, if a small menu was included at the bottom of the screen 

All of the above candidate variables, together with transformations of some of them, 

were correlated with the size in LOC of the screen modules. The correlations are shown 

in Table 5.7. 
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Candidate Correlation 
Variable with LOC 

data elements 0.73 
✓ data elements 0.71 
data elements"2 0.74 

relations 0.55 
✓ relations 0.53 
relations"2 0.59 

local variables 0.38 
dictionary clements 0.64 
choices 0.44 

Table 5.7 Correlations of Screen Candidate Variables with LOC 

There was not a great deal of difference between any of the correlations with the different 

versions of data elements or relations so it was decided to investigate several regression 

equations with combinations of data elements and (data elements)2 and with relations and 

(relations)2. Their prediction characteristics were investigated further through the five 

criteria suggested by [CONT86]. The results of the better combinations are shown in 

Table 5.8. 

In this table the prediction equations are shown in groups with each member of the group 

having the same number of variables in its equation. The evaluation criteria are also 

shown in the same groups. The best value for each of the prediction model criteria, 

within a group, is shown in bold type and the best overall value for a particular criterion 

is shown in bold italic type. The prediction equation that gave the best results overall is 

LOC* = 26 + .134 data elements "2 + .618 relationsA2 + 5.8 choice 

which has a value of MRE* ~ .25, a value of PRED(.25) just outside the the suggested 

75% value at 70.3% and an RMS* just over the acceptable .25 value. 
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SCREEN 
Prediction Equation 

1 LOC* = 1.55 + 5.66 data elements 
2 LOC* = 37.9 + 0 .189 data elements112 

3 ~C* = 4.15 + 4.51 data elements + 0.639 relations112 
4 LOC* = 26.2 + 0.157 data elements112 + 4.75 relations 
5 LOC* = 33.3 + 0.151 data elements112 + 0.618 relations112 

6 LOC* = 26.0 + 0.134 data elements112 + 0.618 relations112 + 5.8 choice 
7 LOC* = 1.54 + 3.96 data elements + 0.647 relations112 + 5.17 choice 

R112 RE* MRE* Pred(.25) RMS RMS* F-ratio t-ratios cf s 

1 0.534 -0.087 0.26 0.63 29.6 0.37 186 0.25, 13.7 163 29.8 
2 0.547 -0.116 0.29 0.59 29.2 0.37 197 10.2, 14 162 29.4 

3 0.610 -0.080 0.24 0.65 27.1 0.34 126 0.733, 10.4, 5.62 162 27.3 
4 0.597 -0.096 0.25 0.58 27.5 0.35 120 5.98, 10.8, 4.48 162 27.8 
5 0.620 -0.100 0.26 0.58 26.8 0.34 131 9.4, 10.7, 5.46 162 27.1 

6 0.647 -0.070 0.22 0.70 26 0.3 98.2 6.58, 9.24, 5.67, 3.67 161 26.1 
7 0.632 -0.057 0.23 0.62 26.3 0.33 92.2 .276, 8.70, 5.84, 3.14 161 26.6 

Table 5.8 Screen Component Prediction Equations and Evaluation Criteria 

Investigation of outliers revealed that the number of logic lines has a major effect on the 

size of the code for a screen. This logical complexity cannot be estimated at Phasel 

before the relevant design issues are considered. Complexity can be subjectively 

estimated on an ordinal scale depending on how much is known about the screen. Three 

or five level scales can conveniently be used. This idea is developed further in 5.6.2 

where Phase2 predictions are considered. 

(v) Reports 

132 report modules were available for investigation. Data for this component type is 

included in Appendix A5. The following candidate variables were investigated for 

possible inclusion in the prediction equation: 
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Candidate Correlation 
Variable with LOC 

line types 0.916 
line types"2 0.900 

relations 0.402 
rclations"2 0.371 

data elements 0.895 
data elements"2 0.940 

sort fields 0.025 
control breaks 0.279 

Table 5.9 Correlations of Report Candidate Variables with LOC 

Line types, (data elements)2 and relations were identified as the most promising variables 

for initial investigation. The equations in Table 5.10 were chosen, after investigation, as 

giving the best results with an increasing number of variables shown in the prediction 

equations. Evaluation criteria for each of these prediction equations are also shown in 

Table 5.10. 
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- REPORTS 
Prediction Equations 

1 LOC* = 41.3 + .124 data elements112 

2 LOC* = 35.5 + .0794 data elcments112 + 2.52 line types 

3 LOC* = 7.69 + .051 data elemcnts112 + 3.57 line types+ 6.85 relations 

4 LOC* = 12.1 + .047 data elements112 + 3.61 line types+ 8.92 relations - 4.84 sort fields 

R112 RE* MRE* PRED(.25) RMS RMS* F-ratio t-ratios cf s 

1 0.88 -0.18 1.82 0.52 32.9 0.34 988 12.5, 31.4 130 32.4 

2 0.91 -0.17 0.33 0.49 28.08 0.3 664 11.7, 10.2, 6.36 129 28.4 

3 0.94 -0.08 0.20 0.73 23.31 0.25 657 1.73, 6.76, 10.1, 7.6 128 23 .7 

4 0.94 0.08 0.23 0.65 22.53 0.24 525 2.65, 6.46, 10.5, 8, 2.99 127 23.0 

Table 5.10 Report Component Prediction Equations and Evaluation 
Criteria 

The values shown in bold are those that give the best results for that particular criterion 

while those shown in italics are those considered acceptable under the model evaluation 

criteria. Using the model evaluation criteria, equation (3) from Table 5.10 is the best 

equation overall although there is not a great deal of difference between equations (3) and 

(4). 

Because there were two quite different types of reports, statistical and non-statistical, 

they were investigated separately to see if instead of using just one vector of estimation 

variables for reports, with a single prediction equation, there should be two component 

types, statistical reports and non-statistical reports each with its own prediction equation. 

The statistical reports were all rather larger than the non-statistical reports; the mean for 

the statistical reports being 357 LOC while the mean for the non-statistical reports was 

71; the overall mean for all reports was 96. The reports were divided into the two groups 

and individual regression equations were developed for the two different types of 

reports. 
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The negative coefficient for sort fields in equation (4), significant at the .995 level, 

requires comment. Reports with several sort fields tended to be more straightforward 

standard control-break reports whereas some of those with few sort fields tended to have 

a more complex and less regular structure and logic. 

(a) Non-statistical Reports 

There were 120 non-statistical reports available for analysis. Correlation of candidate 

estimation variables with LOC are shown in Table 5.11. The prediction equations shown 

in Table 5.12 were those that gave the best results. By comparison with Tables 5.9 and 

5.10 for all reports, it will be seen that, while the individual variable correlations with 

LOC in 5.11 are not as good as those of 5.9, the evaluation criteria of 5.12 are better than 

those of 5.10, though perhaps not sufficiently better to warrant splitting the report 

component types into two. 

Candidate Correlation 
Variable with LOC 

line types 0.502 

relat.ions 0.597 
relations"2 0.612 

data elements 0.767 
data elcments"2 0.727 

sort fields 0.390 
control breaks 0.314 

Table 5.11 Correlation of Candidate Variables with LOC for Non­

statistical Reports 

Equation (1) from Table 5.12 overall gave the best predictions. The prediction equation 

of (1) is somewhat different from the best prediction equation for all reports with data 

elements, rather than (data elements)2, included as one of the independent variables. 

The other independent variables have coefficients that are very similar to those in the 

prediction model for all reports. RMS* is significantly reduced when non-statistical 

reports are investigated on their own. 
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Similar comments to those in (v) above for all reports are relevant with regard to the 

negative coefficients for sort fields in Table 5.12. The t-ratios for sort fields in equations 

(1) and (2) are low, however, with significance levels of only .95 and .9 respectively, 

suggesting that the sort fields effect is only just noticeable in these cases. 

NON-STATISnCAL REPORTS 
Prediction Eauations 

1 LOC* = 12.5 + 1.35 data elements + 3. 76 line types + .807 relations"2 - 2.10 sort fields 
2 LOC* = 20.4 + .032 data elemcnts"2 + 3.94 line types + .828 rclalions"2 - 1. 73 sort fields 
3 LOC* = 7.46 + .042 data elements"2 + 3.59 line types + 8.65 relations - 2.90 sort fields 
4 LOC* = -1.96 + 1.71 data elements+ 3.4 line types+ 8.35 relations - 3.22 sort fields 

R"2 RE* MRE* PRED(.25) RMS RMS* F-ralio t-ratios cf 

1 0.81 -0.06 0.193 0. 75 16. 74 0.24 124 3.37, 4 .83, 10.2, 9.42, 1.78 115 
2 0.81 -0.06 0.209 0.72 17.18 0.25 122 5.87 , 4.6, 11.1, 9.75, 1.44 115 
3 0.80 -0.06 0.217 0.70 17.38 0.25 117 1.89, 6.45, 10.4, 9.35, 2.23 115 
4 0.80 -0 . 05 0.217 0.67 17.5 0.25 115 0.5, 6.29, 9 .32, 8.71, 2.46 115 

Table 5.12 Non-statistical Report Component Prediction Equations and 
Evaluation Criteria 

(b) Statistical Reports 

Twelve statistical reports, making up a fairly homogeneous group, were available for 

analysis. The correlations in Table 5.13 were found between the various candidate 

variables and LOC for this small group of reports. 
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Candidate Correlation 
Variable with LOC 

line types 0.974 

relations 0.792 
relations"2 0.798 

data elements 0.810 
data elemcnts"2 0 .916 

sort fields 0.804 
control breaks 0.398 

Table 5.13 Correlation of LOC with Candidate variables for Statistical 

Reports 

The followin g, prediction equation was identified as the most useful predictor of LOC. 

STA11STICAL REPORTS 
Prediction Eauation 

134.6 + 9.88 relations+ 3.51 line types 

n R"2 RE* MRE* PRED(.25) RMS RMS* F-ratio t-ratios elf s 

12 0.98 -0.002 0.026 12.14 0.034 240 12, 4.07, 13.2 9 14.02 

Table 5.14 Evaluation Criteria for Prediction of Statistical Reports 

When compared to the model evaluation criteria, all of the values fall well within 

acceptable bounds for a prediction model. PRED(.25) is at 100%, MRE* at .026 and 

there is a very low RMS* of .034. PRED(.11) is 100%. When either data elements or 

(data elements)2 are included in the prediction equation they give negative coefficients. 

This seems rather unnatural. In view of the small amount of fairly homogeneous data 

available it may not be possible to obtain a reliable prediction equation from such a small 

sample even though the evaluation criteria appear to be excellent. 
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5.6.2 Later Predictions at Development Phase2 

Phase2 is early in preliminary design, if the life cycle model of Table 3.4 is adopted. In 

the incremental development mode used, different subsystems were designed at different 

times. 

During this phase more detailed knowledge is available. The component partitions 

identified are those of the earlier partition with the addition of updates (which implement 

file-to-file processes). Since updates do not involve outputs to, or inputs from, the user, 

they are not visible at the earlier specification stage (Phase 1 ). There is no need to 

develop additional prediction equations for menus and relations as those already 

developed show good enough results when their evaluation criteria are investigated. 

Moreover, no further information is available concerning them. 

More detailed knowledge (functional descriptions) of reports and screens are available at 

Phase2, although this includes few more objectively countable variables. However, the 

component prediction equations are likely to be improved if the additional knowledge can 

be used in a subjective fashion to give some estimate of the complexity of the logic 

required by a specific component in comparison with other components of the same type. 

As noted in section 5.1, the complexity of logic in this case study is unusually high for 

its application category 

Complexity Measures 

Two complexity measures, a three level (cplx3) and a five level (cplx5) complexity 

measure, were defined for each of the three component types, Screens, Reports and 

Updates, investigated further in Phase2. Values assigned for these complexity measures 

were derived from the number of lines of procedural code in the logics of the various 

components within each component class. In each case the numbers of logic lines of 

each component were ranked and then divided into three or five groups of equal size. 

Each member of a group was then assigned the value of the median member of the 

group. 

(i) Screent, 

In addition to the variables identified earlier there are three others that may usefully be 

included in prediction equations for screens. The first is the number of logical screens 
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that make up a single screen and the other two are the complexity variables cplx3 and 

cplx5. Logical screen are 'screens within screens', ie. portions of a screen with different 

format patterns, often for line items or other repeating groups, or for separate screen 

functions such as a small bottom-of-screen menu. Values given for cplx3 and cplx5 are 

shown in the following tables. 

Screen cplx5 
level range median 

Screen cplx3 
level range median 1 0-5 0 

2 6 - 16 11 
1 0-11 0 3 17 - 30 23 
2 12 - 29 17 4 31 - 61 41 
3 30+ 38 5 62+ 95 

Tables 5.15 and 5.16 summarize the relevant correlations, prediction equations and 

evaluation criteria using the same conventions as previously. The logical screens have 

low correlation and, when tried in prediction equations, are not significant. Cplx5 gives 

rather better estimates than cplx3 though this may be offset somewhat in practice by the 

slightly greater degree of difficulty in reliably assigning a 5-level complexity as against a 

3-level complexity, in a situation of incomplete evidence. The best prediction equation 

with cplx3 is equation (3), and that with cplx5 is equation (5). 

Candidate Correlation 
Variable with LOC 

logical screens 0.22 
cplx3 0.78 
cplx5 0.85 

Table 5.15 Correlation of Phase2 Screen Candidate Variables with LOC 
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SCREEN 
Prediction Equation 

1 LOC* = 19.3 + 0.108 data elements"2 +3.51 relations+ 1.15 cplx3 
2 LOC* = 6.21 + 2.89 data elements + 0.539 relations"2 + 1.13 cplx3 
3 LOC* = 24.2 + 0.101 data elements"2 + 0.508 relations"2 + 1.14 cplx3 

4 LOC* = 27.0 + 0.0797 data elements"2 + 0.400 relations"2 + 0.900 cplx5 
5 LOC* = 22.2 + 0.0816 data elements"2 + 3.11 relations + 0.918 cplx5 
6 LOC* = 29.4 + 0.0983 data elcments"2 + 0.958 cplx5 

7 LOC* = 23 + 0.099 data elcmcnts"2 + 0.513 relations"2 + 1.29 choice+ 1.09 cplx3 

R"2 RE* MRE* PRED(.25) RMS RMS* F-ratio t-ratios cf s 

1 0.72 0.023 0.16 0.82 22.7 0.29 136 5.10, 7.93 3.88, 8.25 161 23.4 
2 0.72 0.080 0.24 0.66 26.9 0.34 140 1.3, 6.94, 5.57, 8.14 161 23.1 
3 0.74 -0.035 0.12 0.82 22.2 0.2 150 7 .73, 7 .65, 5.35, 8.55 161 22.5 

4 0.86 -0.025 0.12 0.90 16.4 0.21 321 12.2, 8. 19, 5.66, 16.4 161 16.6 
5 0.85 0.020 0.11 0.91 16.8 0.21 302 8.20, 8.12, 4. 72, 16.4 161 17 .1 
6 0.83 0.030 0.13 0.87 18.0 0.23 390 12.5, 9.86, 16.3 162 18.1 

7 0.74 0.032 0.15 0.74 22.1 0.28 113 6.69, 7.45, 5.38, .862, 7.46 160 22.5 

Table 5.16 Phase2 Prediction Equations and Evaluation Criteria for 

Screens 

An examination of the Phase2 screen outliers shows two main types. First, a set of very 

simple maintenance screens generated automatically from relation definitions by the 

system BUILDER process. These, even following minor modification, have much 

lower than normal screen complexity, both in logic and in numbers of logical screen 

specifications. The other set are abnormally complex screens, often with five or six 

pages of logic, which is out of all proportion to the data elements and relations they 

process. These outliers reflect the wide range of purposes for which screens are used, 

and illustrate the difficulty of prediction with a very diverse population. 

(ii) Reports 

Additional variables identified at Phase2 for possible inclusion in prediction equations are 

the number of logical reports and the two complexity variables. The values assigned for 

cplx3 and cplx5 were as follows: 
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Report cplx5 
level ranl!;e median 

Report cplx3 
level range median 1 0-6 3 

2 7 - 15 7 
1 0-11 5 3 16 - 24 20 
2 12 - 43 20 4 25 - 63 46 
3 44+ 70 5 63+ 82 

The prediction equations for all reports and their evaluation are shown in Table 5.17. 

Logical reports (a measure of embedded one-to-many or other structures within the report 

data) are not significant. There is very little difference between cplx3 and cplx5 so, for 

simplicity and ease of use, the former is preferred. As can be seen from the small 

corresponding t-ratios, significant at only .9 and .95 respectively, the constant terms in 

these two estimation equations are barely significantly different from zero. 

REPORTS 
Prediction Equations 

1 LOC* = 5.47 + .040 data elcments"2 + 3.4 line types+ 3.09 relations+ .82 cplx3 
2 LOC* = 6.22 + .037 data elements"2 + 3.38 line types + 2.89 relations + .82 cplx5 

R"2 RE* MRE* PRED(.25) RMS RMS* F-ratio t-ratios elf s 

1 0.97 0.002 0.13 0.91 16.73 0.17 978 1.39, 7.37, 13.3, 4.21, 10.9 127 17 .06 
2 0.97 -0.003 0.13 0.88 16.68 0.17 985 1.94, 6.67, 13.3, 3.91, 11 127 

Table 5.17 Phase2 Prediction Equations and Evaluation Criteria for 
Reports 

(a) Non-slatistical Reports 

17.00 

Investigation of non-statistical reports results in the prediction equations shown in Table 

5.18 giving the best results. The values assigned for cplx3 and cplx5 are shown below. 
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Non-sLaLisLical cplx5 
level ranQe median 

Non-sLaLisLical cplx3 
level range median 1 0-5 3 

2 6 - 13 7 
1 0-7 4 3 14 - 21 17 
2 5 - 25 17 4 22 - 52 28 
3 26+ 61 5 53+ 68 

In this case there is again little difference between equations including cplx3 and cplx5, 

with the former giving slightly better results 

NON-STATIS'JJCAL REPORTS 
PredicLion EauaLions 

1 LOC* = 3.62 + 1.52 dala elements + 1.83 line types + 2.48 relations + .87 cplx3 
2 LOC* = 6.17 + 1.11 dala elcmenLs + 2.37 line Lypes + 2.61 relaLions + .996 cplx5 

R"2 RE* MRE* PRED(.25) RMS RMS* F-raLio L-raLios elf s 

1 0.94 -0.010 0.106 0.95 9.65 0.14 433 1.65, 10.0, 8.42, 4.93, 16.6 115 9.85 
2 0.93 -0.017 0.096 0.94 10.11 0.14 391 2 .64 , 6.80, 10.9 , 4 .95, 6.80 115 

Table 5.18 Prediction Equations and Evaluation Criteria for Non­

statistical Reports 

18.30 

An investigation of the report outliers showed substantial logical complexity variations 

largely independent of the other variables, data elements, line types and relations and 

often related to the handling of complicated exceptions. Similar comments to those for 

screens are appropriate. 

(b) Statistical Reports 

The original group of 12 statistical reports was a fairly homogeneous group. This meant 

that it was difficult to assign complexity ratings in a similar manner to that done earlier 

for the other component types. A tentative scale, as shown following, was set up but it 
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is based on too small a sample and is likely to need modification as additional data 

becomes available. 

Statistical Reports Cplx3 
level range median 

1 0-100 86 
2 101-250 200 
3 251+ 291 

Neither the number of logical reports nor the cplx3 variable were found to be significant 

when they were brought into the equations. The Phase2 prediction equations for the 

statistical reports are therefore the same as the Phasel equations. 

(iii) Updates 

This component type is included only in the later of the two partitions, ie. at Phase2. 

These modules perform file-to-file updates and are unlikely to have been defined to the 

necessary level of detail for any component size estimates until this stage. In many cases 

their very existence will not have been noticed until Phase2. Updates tend to be used for 

various file cross-~eferencing or reformatting operations. They have relatively few non­

procedural lines, mainly specifying the files involved. The size of the update 

components is thus very dependent on the size of their associated logic. 47 cases were 

available for analysis. The source data is listed in Appendix A6. The correlations with 

LOC shown in Table 5.19 were obtained and the three and five level complexity values 

were as follows: 

Update cplxS 
level range median 

Updates cplx3 
level range median 1 0 0 

2 1 - 3 3 
0-3 0 3 4-6 5 

2 4-6 5 4 7 - 40 10 
3 7+ 29 5 40+ 80 
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Candidate Correlation 
Variable with LOC 

logical updates -0.107 

relations 0.332 
relations112 0.393 

data elements 0.889 
data elements112 0.909 

sort fields -0.078 
control breaks 0.052 

cplx3 0.926 
cpix5 0.980 

Table 5.19 Correlations of Update Candidate Variables with LOC 

UPDA1ES 
Prediction Equation 

LOC* = 11.05 + 4.82 control breaks + 1.02 cplx5 + 3.01 logical updates 

RE* MRE* PRED(.25) RMS RMS* F-ratio t-ratios cf s 

0.97 -0.02 0.132 0.91 4.69 0.15 401 4.37, 1.86, 34.5, 1.55 43 4.9 

Table 5.20 Prediction Equations and Evaluation Criteria for Updates 

The correlations of update variables with LOC are shown in Table 5.19. There are, 

however, high correlations between data elements and cplx3 (.93) and between data 

elements and cplx5 (.90). This accounts for the fact that a data elements term does not 

occur in the prediction equation of Table 5.20. The dominant tem1 is cplx5, the effect of 

control breaks and logical updates being much less significant as shown by their low t­

ratios (.95 and .9 significance levels respectively). 
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5.6.3 Prediction Equation Summary 

Tables 5.21 and 5.22 shown below summarize the prediction equations obtained for each 

of the component partitions (Phase! and Phase2). 

PHASE 1 ESTIMATION EQUATIONS 

Component 

Menu 
Relation 
Screen 

Eauation 

LOC* = 23.6 + 3.99 choice 
LOC* = 1.37 + 1.88 data elements 
LOC* = 26 + 0.134 data elements"2 + 0.6 I 8 relations"2 + 5.8 choice 

Report LOC* = 7.69 + 0.051 data elements"2 + 6.85 relations+ 3.57 line types 
Non-statistical Rept LOC* = 12.5 + 1.35 data elements+ 0.807 rclations"2 +3 .76 line types-2.10 sort fields 
Statistical Report LOC* = 134.6 + 9.88 relations+ 3.51 line types 

Table 5.21 Phase 1 Estimation equations Summary 

PHASE 2 ESTIMATION EQUATIONS 

Component 

Menu 
Relation 

Equation 

LOC* = 23.6 + 3.99 choice 
LOC* = 1.37 + 1.88 data elements 

Screen LOC* = 22.17 + 0.0816 data elements"2 + 3.11 relations+ 0.918 cplx5 
Report LOC* = 5.47 +0.040 data elements"2 + 3.09 relations+ 3.4 line types+ 0.82 cplx3 
Non-statistical Repc LOC* = 3.62 + 1.52 data elements + 2.48 relations + 1.83 line types + 0.87 cplx3 
Statistical Report LOC* = 134.6 + 9.88 relations+ 3.51 line types 
Update LOC* = 11.05 + 4.82 control breaks+ 3.01 logical updates+ 1.02 cplx5 

Table 5.22 Phase 2 Estimation Equations Summary 

As can be seen from the very large F values, and the large t values, in the evaluation 

criteria tables for the Phase 1 and Phase2 model instances, the regression is accounting 

for almost all the variability and the sum of squares of the residuals is comparatively 

small. The statistical significance levels associated with the related hypotheses that such 

relationships exist and that the coefficients in them are different from zero are thus very 
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high, in most cases beyond the levels of available tables, ie. >> .995 for the F values, 

and mostly >.995 for the t-ratios. This merely confirms the indications given by the 

other evaluation criteria that the model instances are a very good fit to the reference data. 

It is debatable in this case whether there is sufficient difference between the Phase2 and 

Phasel models to warrant using the former, apart from the addition of updates. In practice, 

however, the Phase2 exercise is advisable because it necessitates a new and more careful 

examination of the data which might well h(\ve changed and which should be more 

complete than the Phase 1 data . A discussion of the addititive form of the regression 
\ 

equations and the use of squared tem1s within these equations is included in Appendix D. 

5.7 APPLICATION OF THE DERIVED MODEL INSTANCE 
TO SIZE PREDICTION OF TEST COMPONENTS 

A sample of data from later increments of the same system was taken in order to test the 

sizing model instance developed in 5.1 to 5.6 using the generic model of Chapter 4. 

Basic details of the sample are given in Table 5.1. Except in the case of screen menus 

(SCRMENUS), where only five were available, the sample, though small, was 

representative, being randomly selected. The sample included two in five relations, one 

in two screens, one in ten reports and one in two updates. In sampling theory terms, this 

is essentially a stratified sample [DEMI60]. 

As noted in 5.1, data from later increments is not from the same population as data 

obtained during the initial development of a system. It must be emphasized again that the 

user of any model instance must be sensitive to the possibility of such differences. See 

in particular the change in relation sizes in 5.7.1 (ii) below. 

In each of the result tables shown below the criteria suggested in [CONT86J have been 

calculated for the predictions with the new set of test data. Results for the prediction 

equations with the original or reference data have also been included in the result tables 

for comparative purposes. 
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5. 7.1 Phasel Prediction 

(i) Prediction of Menu Sizes 

As discussed earlier there is only one prediction equation for menus. This equation was 

applied to the five new menus to predict their size. This small set included all menus to 

be developed since the 1986-7 data was collected. The excellent results from this 

prediction are shown in Table 5.23. 

MENUS 
n RE* MRE* Pred(.25) RMS RMS* 

Test data 5 0.003 0.072 

Reference data 25 -0.050 0.160 

1 4.100 0.083 

4.370 0.080 

mean 

49.4 

54.4 

Table 5.23 Prediction Results for Menus (Phases 1 and 2) 

LOC* = 247 which is 100% of the actual LOC of 247. 

(ii) Prediction of Relation Sizes 

The relations shown in the table below were chosen by talcing a random two in five 

sample from a large number of new and revised relations developed in 1988. During this 

time a system error was introduced in a revision of the development software. This error 

mixed up help messages in some cases for the data elements in the relations. As a result, 

the user had not only not added help messages to these new relations but had deleted the 

help messages from the original relations analysed earlier in 5.6.1 (ii). A consequence of 

this change was that the original and now outdated prediction equation gave the following 

much overestimated results (note the large RE* and an MRE* of similar magnitude) 

shown in Table 5.24. 
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REL1 TIONS 
n RE* 

Test Data 46 -0.692 
Reference Data 59 -0.021 

MRE* PRED(.25) RMS RMS* mean 

0.692 
0.139 

0.00 
0.81 

29.40 2.100 13.98 
3.10 0.239 12.98 

Table 5.24 Prediction Results for Relations Using Original Equation 

However if a new prediction equation is developed for the original data with the help 

messages excluded then a new equation 

LOC* = 1.18 + 1.00 data elements 

is obtained. Results for the new prediction equation with the now changed original 

reference data and the test data set are shown below in Table 5.25. In spite of the fact 

that, on average, most of the test data relations have six more data elements than the 

reference data relations, as indicated by their mean sizes, the prediction results are 

excellent. Pred(.25) is 1 and LOC* = 636 which is 99% of the actual LOC of 643. 

RELATIONS 
n 

Test Data 46 
Reference Data 59 

RE* 

0.010 
-0.010 

MRE* PRED(.25) RMS RMS* mean 

0.061 
0.062 

1 
1 

0.48 0.030 13.98 
0.38 0.050 7.49 

Table 5.25 Prediction Results for Relations Using Modified Equation 

(Phases 1 and 2) 

(iii) Prediction of Screen Sizes 

Using what would appear to be the best prediction equation identified from those 

presented in 5.6. l(iv) namely 

LOC* = 26 + 0.134 data elements"-2 + 0.618 relations"-2 + 5.8 choice 

the results shown in Table 5.26 were obtained. 
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SCREENS 
n RE* 

Test Data 41 -0.071 
Reference Data 162 -0.070 

MRE* PRED(.25) RMS 

0.227 
0.220 

0.68 
0.70 

25.72 
26.00 

RMS* 

0.403 
0.300 

Table 5.26 Phasel Prediction of Screens 

mean 

63.76 
80.68 

The test data screens are rather smaller than the reference data screens, 17 lines on 

average, or 21 % smaller. This is because most of the large data entry screens were 

produced during the early stages of development and there is a much smaller proportion 

of such screens in later increments. Nevertheless, the test data predictions have 

evaluation characteristics similar to those of the reference data. Although Pred(.25) is 

only .68, LOC* = 2593 which is 99% of the actual of 2615. 

(iv) Prediction of Report Sizes 

(a) All Reports 

Tables 5.27 - 5.29 show test data prediction results for all reports, non-statistical reports 

and statistical reports. As can be seen from an examination of the mean sizes, the non­

statistical reports in the test data are 43% larger (30 LOC) on average than those in the 

reference data. However, the statistical reports in the test data are smaller than the 

reference data, but probably not significantly so, given the small number of cases 

involved. For all reports, there is a 32% increase in average size. This trend is probably 

typical of the increasing sophistication of reports in later increments of an on-going 

application development. 

In view of the test and reference population differences, it is not surprising that the 

evaluation criteria of Tables 5.27 - 5.29 are worse than those for the reference data, 

though they are not dramatically so. 
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ALL REPORTS 
n RE* MRE* PRED(.25) RMS RMS* mean 

Test data 41 -0.06 0.250 0.61 53.25 0.40 132 

Reference data 132 -0.08 0.200 0.73 23 .31 0.25 96 

Table 5.27 Phasel Prediction of Reports 

Use of the Phasel prediction equation to estimate all reports results in a LOC* = 5126 

which is 95% of the actual of 5407. 

(b) Non-statistical Reports 

NON-STATISTICAL REPORTS 
n RE* MRE* PRED(.25) RMS RMS* mean 

Test data 34 0.01 0.270 0.62 58.33 0.58 100 

Reference data 120 -0.06 0.190 0.75 16.74 0.24 70 

Table 5.28 Phasel Prediction of Non-statistical Reports 

As shown in Table 5.28, use of the Phase 1 prediction equation to estimate the size of the 

non-statistical reports results in a LOC*= 2829 which is 83% of the actual 3397. 

The relatively poor prediction in this case is caused by changes in the population between 

the reference and the test data. There is, however a lesson to be learnt from a comparison 

of the predictions of all reports and those for non-statistical reports. A component type 

which is very narrow and specialized may give better estimates for a stable population but 

it may also be more sensitive to changes in the population of components of that type. 
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(c) Statistical Reports 

STATISTICAL REPORTS 
n RE* MRE* PRED(.25) RMS RMS* mean 

Test data 7 0.022 0.124 0.86 46.51 0.162 287 

Reference data 12 -0.002 0.026 1 12.14 0.034 357 

Table 5.29 Phasel Prediction of Statistical Reports 

Use of the Phase 1 prediction equation for the estimation of statistical reports results in a 

LOC* = 1927 which is 96% of the actual 2010. 

Table 5.33 spmmarizes the effect of partitioning reports into two separate component 

types and of treating them as a single component type. This table shows that the Phasel 

estimates of reports which are treated as a single component type gives a better result 

(95% of actual) than if reports are separated into two component types (88% of actual) 

and the two component type estimates summed. The point made in (b) above is also 

relevant here. 

5. 7.2 Phase2 Prediction 

Tables 5.30 - 5.34 show comparisons between the Phase2 predictions of the test data and 

the reference data. Similar comments to those of 5.7.1 apply, though the results are 

slightly better for reports and slightly worse for screens. This is a little surprising as one 

would expect a later phase with increased knowledge of components would result in 

substantially better estimates for all components. However, the effects of population 

changes are, by their nature, unpredictable. 
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(i) Prediction of Screen Sizes 

SCREENS 
n RE* MRE* PRED(.25) RMS 

Test Data 4 I -0.024 0.133 
Reference Data 162 0.020 0.110 

0.85 
0.91 

17.41 
16.80 

RMS* 

0.278 
0.210 

Table 5.30 Phase2 Prediction of Screens 

mean 

63.76 
80.68 

Pred(.25) has improved from the .68 of Phasel to .85, however LOC* is now 2570 

which is a drop from the earlier 99% of actual to 98%. 

(ii) Prediction of Report Sizes 

( a) All Reports 

REPORTS 
n RE* MRE* PRED(.25) RMS RMS* mean 

Test data 41 -0.02 0.190 

Referencedata 132 -0.01 0.106 

0.71 

0.95 

46.92 0.36 132 

9.65 0.36 96 

Table 5.31 Phase2 Prediction of Reports 

Estimation of total size for all reports shows a slight improvement from the earlier 95% 

of actual to 96%. Pred(.25) has also increased from the earlier .61 to .71. 
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(b) Non-statistical R eports 

The Phasel Pred(.25) of .62 has now improved to .85 and LOC* has also improved 

from the earlier 83% to 89%. 

NON-S1A11STICAL REPORTS 
n RE* MRE* PRED(.25) RMS RMS* mean 

Tcsldata 34 0.04 0.170 0.85 48.28 0.48 100 

Reference data 120 -0.01 0.106 0.95 9.65 0.36 70 

Table 5.32 Phase2 Prediction of Non-statistical Reports 

Table 5.33 shows the effect on estimation, by phase, of the separation of reports into two 

component types. Note that the estimation of all reports as a single component type in 

Phase2 gives better results (96% of actual) than does the splitting of reports into two 

component types (91 % if actual). This is also true of the Phase 1 estimates. The 

population changes between the reference and test data have a greater effect on the more 

specialized size estimates. 

Actual Phasel prediction % Phase2 prediction % 

non-statistical 3397 2829 83 3009 89 
statistical 2010 1927 96 1927 96 

Total 5407 4756 88 4936 91 

All reports 5407 5126 95 5212 96 

Table 5.33 Summary of LOC* for Report Component Types 

(iii) Prediction of Update Sizes 

There was some change in nature of the updates in the test data from that in the reference 
data. Updates had initially been mostly used rebuild file indexes as a result of changes 
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made through screens. The test data updates often have quite a different function in that 

many of them are used for changing data into different file formats required by outside 

agencies. The index rebuilding is now mainly done through the screens, on-line. This 

population change in the updates results in an estimate with Pred(.25) of only .64 and the 

poorest LOC* of any component type. The estimate of 702 LOC is only 88% of actual. 

UPDATES 
n RE* MRE* PRED(.25) RMS RMS* mean 

Tcsldata 28 0.04 0.209 0.64 10.58 0.385 Z7 

Reference data '+7 -0.05 0.125 0.85 6.13 0.198 31 

Table 5.34 Prediction of Updates 

5.7.3 Summary of Prediction 

Table 5.35 gives an overall summary of both the Phase 1 and Phase2 predictions for the 

test data. In spite of the test population differences noted in 5.7 .1 and 5.7 .2, the overall 

estimates at both phases are excellent. These results suggest considerable robustness of 

the model in the face of quite large changes in some of the component type populations. 
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PHASE 1 ESTIMATES 
n LOC Estimate Prcdo/o 

Menus 5 247 247 1.00 
Relations 46 643 636 0.99 
Screens 41 2615 2593 0.99 
Reports 41 5407 5126 0.95 

Total LOC 8912 8602 0.97 

PHASE 2 ESTIMATES 
n LOC Estimate Predo/o 

Menus 5 247 247 1.00 
Relations 46 643 636 0.99 
Screens 41 2615 2570 0.98 
Reports 41 5407 5212 0.96 
Updates 29 797 702 0.88 

Total LOC 9709 9367 0.96 

Table 5.35 Summary of Estimates for Phases 1 and 2 

5.8 CALIBRATION OF A NEW FPA-LIKE METRIC 

A new function point metric, derived using the model instance in this chapter, will be 

called the VFP, to distinguish it from the Albrecht FPA metric, for which the traditional 

abbreviation FP will be used. The software development technology described in this 

chapter will be called technology B; the reference technology, characterized by the FPA 

component type partition, variable vectors and weights, will be called technology A. 

Lines of code in technology B will be denoted by BLOC and estimates of them by 

BLOC*. The calibration method follows section 4.4. However one practical matter 

must be dealt with first, namely ensuring that the partial sizes measured or estimated by 

the two technologies are the same. 
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5.8.1 Matching Partial Sizes 

In technology B one is concerned with the following partial sizes: 

(i) the Phasel partial size consisting of the total BLOC for all relations, menus, screens 

and reports (28100 BLOC for the reference data of Table 5.1) 

(ii) the Phase2 partial size, in which the additional component type, updates, is added to 

the Phasel total (29563 BLOC) 

(iii) the total system size of interest which is approximately 10% higher than the Phase2 

size. This is made up of account security, port and access management, periodic data 

base reorganization, JCL command sequences for overnight and other batch jobs, 

and a miscellaneous set of systems programming jobs. These are not all documented 

or collected in one place, nor can they all be completely identified in the particular 

environment. The approximate total reference system size is 32519 BLOC. 

(iv) The FP count of the reference data set measured using the standard FPA reference 

technology A, which can be imposed on the technology B component partition. The 

relevant correspondences are shown below 

technology A technology B 

files ------------elations 

~npu~s- menus 

1nqumes screens 

outputs ----------reports 

updates (Phase2 only) 

Figure 5.2 Correspondences Between Technologies A and B 
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Some screens are inputs and some inquiries. Updates are not represented at all in 

technology A. The FP count, using FPA, is 2575. Since the adjustment factor was 

1.0, and therefore no adjustment up or down of the raw FP count was necessary, this 

represents an estimate of the total size in FPs. One disturbing feature of the FP count 

for this case was the proportion of screens and reports in the high category. FPA has 

three fixed categories low, average and high (see 2.5.1 ). The criteria for these, set 

out in Table 2.1, were applied rigidly. Nevertheless, the great bulk of both screens 

and reports were in the high category - many indeed far beyond the lower boundary 

of the high category. This indicates that, at least for this application, the fixed low, 

average and high categories of FPA are unsatisfactory. 

5.8.2 Calibration of VFPs 

For the purposes of calibration and comparison three calibration factors can be 

considered as shown below 

REFERENCE DATA 
Functional oartial size Total 

Phase I Phase2 size 

BLOC 28100 29563 -32519 
FPs 2575 2575 2575 
b(BLOC/FP) 10.9 11.5 12.6 

Table 5.36 Calibration Factors for Phases 

For general calibration purposes, a b value of 12.6 is most appropriate, in view of the 

intent of FPA to estimate the total system size. The other b values are used for 

comparative purposes in 5.9. 

The calibration table above illustrates a major difference between the technology of this 

chapter (technology B) and FPA (technology A). FPA estimates total size from summed 

and scaled component contributions which can be adjusted up or down depending 

on factors which may not influence the size of individual components at all. It does not 

measure component sizes directly, which seems unnatural for a method based on 

component size summation. However, for comparative purposes, this difficulty can be 
overcome by using the calibration factors of Table 5.36 for the Phasel and Phase2 paitial 
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sizes, thus enabling the FPA component contributions to be compared directly with the 

technology B component size estimates. 

5.9 COMPARISON OF THE VFP MODEL WITH FPA 

This section aims to answer the question "Is the model instance developed in this chapter, 

the VFP model, better than FPA when applied to the test data used here?" 

The approach taken to answering the question is as follows 

menus 

(i) the test data (a stratified sample) is scaled up by the relevant sampling factors 

for the strata (the component types) to obtain estimates of the actual test data 

populatfon (test total LOC*). Table 5.37 shows the numbers of components in 

the sample strata in column 1, the number of components in the population 

strata in column 2, and the test total LOC* estimates in column 3. The sample 

is random and of sufficient size that test total LOC* must be very close to 

actual. 

-
1 2 3 4 5 6 7 8 9 10 11 12 

Test Test Test total BLOC* % BLOC* % ALOC* % ALOC* % 
samole total LOC* ohasel actual phase2 actual FPs ohasel actual ohase2 actual 

5 5 247 247 1.00 247 1.00 15 164 0 .66 173 0.70 
relations 46 114 1594 1578 0.99 1578 0.99 865 9429 5.92 9948 6.24 
reports 41 410 54120 51414 0.95 51955 0.96 2600 28340 0.52 29900 0.55 
screens 41 82 5228 5176 0.99 5124 0.98 508 5537 1.06 5842 1.12 
updates 28 56 1512 1331 0.88 0 0 0.00 

partial size 1 61189 58415 3988 43469 
partial size 2 62701 60234 3988 45862 
% of actual 0.95 0.96 0.71 0.73 

Table 5.37 Comparison of the Model with FPA 

(ii) the BLOC* estimates for Phasel and Phase2 are obtained from the technology 

B model developed using the reference data whose estimation equations are 

summarized in Tables 5.21 and 5.22. These are compared with 'actual', i.e. 
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test total LOC*, both by component type and in total. Columns 4-7 show that 

the BLOC* results using the VFP model are quite good. 

(iii) The FP values, using FP A, for each component class are shown in column 

8. Again, these are estimates from the stratified sample and must be very close 

to actual. 

(iv) Using the Phase 1 and Phase2 calibration factors of 10.9 and 11.5 

respectively, in reverse, the FPA function points in column 8 can be turned 

into equivalent lines of code, ALOC* at Phasel and Phase2. The percentages 

of actual (column 3) are shown in columns 9-12. 

Given the differences between the VFP model and FPA, it is necessary to go to some 

lengths to set up a fair comparison between the two. By adjusting them to equal Phasel 

and Phase2 partial sizes for the reference data, the component contributions of FPA can 

be compared directly with the component size estimates of the VFP model. 

It will be noted from Table 5.37 that, not only do the FPA component contributions not 

match the VFP model component sizes (i.e. their weightings are quite different) except 

for screens, but the ALOC* totals are also underestimated by large amounts, 29% and 

27% at Phasel and Phase2 respectively. This is a consequence of the different and 

inappropriate component weightings of FPA combined with the different population 

characteristics of the reference and test data sets. Specifically, in the test data set, the 

proportion of relations, which have by far the greatest weight in FPA, was about half that 

in the reference data set, whereas the proportion of reports, which have a low weight in 

relation to their LOC, was more than double that in the reference data set. 

It is also instructive to compare the individual FPA component contributions with the 

corresponding individual VFP model component sizes within component type. This is 

difficult to do directly because the component type weightings are different. For 

example, there is a large systematic underestimation of ALOC* for reports on the part of 

FP A. In order to obtain a direct comparison the ALOC* values for FPA will be scaled so 

that in total they are equal to BLOC* values for the same component type. Having done 

this, the normal evaluation criteria of 5.5.2 are applied. Tables 5.38 and 5.39 show the 

results of such an intra-component type comparison for screens and reports. 
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SCREENS 
(ALOC* values scaled to same total size as BLOC* values) 

n RE* MRE* PRED(.25) RMS RMS* LOC* Actual 

(VFP) BLOC* 41 -0.024 0.133 0.85 17.42 0.273 2570 2615 

(FPA) ALOC* 41 -0.184 0.368 0.46 32.77 0.514 2570 2615 

Table 5.38 Intra-Component Type Comparison of Screen Size Estimates 

The evaluation criteria for the ALOC* derived from FP counts for the screens are clearly 

much worse than the BLOC* estimates. An examination of the individual values shows 

that the ALOC* values have a relatively small range (from 30 - 101) whereas the actual 

range of screen sizes is from 19 - 251. Thus the small screens tend to be overestimated 

by ALOC* (a negative RE) and the large screens tend to be underestimated (a positive 

RE), but relatively the large negatives predominate. 

REPORTS 
(ALOC* values scaled to same total size as BLOC* values) 

n RE* MRE* PRED(.25) RMS RMS* LOC* Actual 

(VFP) BLOC* 41 -0.018 0.190 0.71 46.92 0.356 5212 5407 

(FPA) ALOC* 41 -0.491 0.781 0.10 99.24 0.752 5212 5407 

Table 5.39 Intra-Component Type Comparison of Report Size Estimates 

The evaluation criteria for the FP-derived ALOC* estimates for reports are also much 

worse. The reasons for this are similar to the reasons for the poor screen size estimates, 

but the situation is made much worse by the much greater size range of actual reports 

(from 24 to 468) compared to the low to high FPA/ALOC* range of 80 - 140. It is 

further aggravated by the fact that most of the reports (29 out of 41) were at the high FP 

level, with very few at the average or low level. The fixed FPA levels for low average 

and high outputs were inappropriate for this particular application. 
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In summary 

(i) The VFP model instance here is remarkably robust in relation to this particular case 

where both the sizes and proportions of the component types were markedly different 

in the test population from those of the reference population. 

(ii) The relative FPA component type weightings did not fit the technology B component 

types in terms of LOC required to implement them. As a result individual component 

sizes are poorly estimated (relations overestimated by 600%, reports underestimated 

by 50% ). In addition, changing proportions of component types in a population can 

cause gross estimation errors. 

(iii) The low, average and high classifications of FPA did not fit the data in this case. 

Specifically most of the screens and reports were in the high category, with relatively 

few being average or low. This can be seen from the average FP count for a report of 

260/41 = 6.3 

whereas the standard high, average and low counts are 7, 5, 4 respectively. 

However, having said all this, providing considerable care is exercised, FPA can be 

used, in the absence of anything better, as a basis for initial size estimation. 

[VERN88] describes the successful use of FPA for the estimate of the size of the first 

increments of the Correspondence School system, from which the reference and test 

data used here were later obtained. 

(iv) The restricted range of FP weights for low, average and high components (3, 4, 6 

for inputs; 4, 5, 7 for outputs) is far too narrow to effectively represent the size ranges 

of actual screens (which, including inquiries, covers both ranges) or reports in the 

development technology investigated here. 

5.9 SUMMARY AND CONCLUSIONS 

This chapter presents a detailed case study of the application of the model of Chapter 4 to 

a substantial body of data collected in one particular organization over a period of almost 
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four years. The administrative computer system within this organization represents a 

specific software development technology influenced by many factors, including 

the general application category (data-centred, business) 

special application area aspects (educational exceptions, varied and complex data 

requirements, classification and processing) 

the 4GL technology employed 

the development methodology (data-centred, incremental) 

standards, management, policies, etc. 

The administrative system is quite large (well in excess of 100,000 of 4GL code, 

equivalent to something over 800,000 lines of COBOL code) and the data samples on 

which the model instance is based and tested are themselves substantial (reference data 

29,153 LOC, test data 9709 LOC). 

The case study is thus a realistic application of the model in a modern development 

environment. 

The data centred business application category is characterized in 5.2. 

This category is further specialized for the particular software development technology of 

interest by setting up two component partitions, one during the specification phase 

(Phasel) and one during the early design phase (Phase2), as follows 
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Phasel 

menus 
MMENUS 
SCRMENUS 

relations 
screens 
reports 

all 
non-ststistical 
statistical 

Phase2 

menus 

SCRMENUS only 
relations 
screens 
reports 

all 
non-statistical 
statistical 

updates 
batch file-to-file operations 

The process of setting up vectors of candidate estimation variables is described in detail, 

including statistical and general criteria for selecting the most suitable estimation 

equations. 

Some of the issues involved in splitting a diverse component type are examined in the 

particular case of reports, where two distinct populations, non-statistical and statistical 

reports were present. In this instance, it is debatable whether splitting the report 

component type into two is justified. On balance it is probably not worthwhile in this 

case, but it is an instructive exercise, nevertheless. 

It is noted that no development environment is static and that, as a result, changes in the 

population of systems, subsystems or increments to be estimated, are inevitable with 

time. In this case such changes involved 

(i) relations, where a bug in the development system led to a coding change and 

to a consequent reduction in LOC 

(ii) screens, which were in general simpler in later increments, most of the very 

complex data entry screens having being completed early in the development 

(iii) reports, which tended to become considerably more complex in later 

increments 
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(iv) large changes in the relative numbers of components of different types, there 

being many more reports, fewer relations and fewer screens in later 

increments. 

These differences affect the test data in comparison with the reference data. 

In spite of these population differences, which required changing only the prediction 

equation for relations, the model instance developed here showed remarkable robustness 

in its ability to predict the size of later increments, based on a stratified test sample taken 

from a large population (> 60,000 LOC). 

A new function point measure is calibrated, with FPA as the reference sizing technology, 

using the methods of 4.4, after adjusting for the different basis on which FPA estimates 

final size from components which make up partial size. 

The model instance (called VFP to distinguish it) is compared with what the traditional 

FPA method would have predicted. VFP gives very much better results in all respects 

than FP A. The comparison shows that the actual or implied technology on which FPA is 

based differs from the technology of the case study development and its size in LOC in 

the following respects 

(i) FPA estimates total size from a different partial size, not including updates at 

Phase2 

(ii) The weighting given to different component types by FPA is inappropriate 

(iii) The fixed three-level, low, average, high, component ratings in FPA give 

both far too narrow a range and, in some cases, for example, reports, are 

offset from the real average in the case study technology. 

Obtaining good size measures for effort estimation and scheduling is essential, both for 

systems as a whole and also for subsystems and increments within an on-going 

development environment. 
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This study shows convincingly, for this particular case, that a sizing model instance, 

developed from the generic model of Chapter 4, can give very good sizing estimates. 

These estimates are much better than FPA estimates and also better than conventional 

sizing wisdom would suggest. This is not surprising for a model that builds the 

characteristics of the software development technology into its estimation equations. The 

study also indicates, however, that there is a limit to the accuracy of prediction in the face 

of inevitable changes over time in the software technology used. Specifically, too precise 

a model may be over-sensitive to a drift in the characteristics of the population which is 

the subject of estimation. 

An overall conclusion to this study is that the construction of a successful sizing model 

instance is dependent on real knowledge and experience of both the application area and 

the technology used to implement it. 
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CHAPTER 6 

APPLICATION OF THE MODEL TO OTHER 
TECHNOLOGIES 

This chapter describes three further examples of the application of the generic sizing 

model to a standard data-centred business system implemented using three different 

software development technologies. The framework of chapters 4 and 5 is followed but 

in significantly less detail. The statistical techniques used in chapter 5 are also used 

although again less detail is included. The three examples show the application of the 

model to develop prediction equations for corresponding component partitions for each 

of the different technologies corresponding to the Phasel (or software requirements 

review) partition of Chapter 5. The purpose is to demonstrate that the model is applicable 

to several quite different software development technologies which can be used with the 

class of data-centred business applications. 

6.1 SOURCE DA TA 

The data used in this chapter is the result of three different implementations of a subset of 

the standard IFIP inventory control and purchasing application [IFIP88]. These three 

systems have been developed using software technologies that are different from each 

other and also different from the software technology described in Chapter 5. The three 

systems used in this chapter were developed for use in a Master's thesis on a different 

topic by a graduate student with several years' commercial programming experience. 

Although the inventory systems will not be used commercially, they cannot be 

considered to be 'student programs' in the normal sense. The systems range in size from 

nearly 1500 LOC for the Advanced Revelation implementation to over 5000 LOC for the 

Micro Focus COBOL implementation. Table 6.1 summarizes the number of components, 

n, and total LOC in each of the systems analysed. 

In lines of code, using Boehm's classification [BOEH81 p.65] this application is of small 

to intermediate size in terms of a conventional language, such as COBOL (5127). The 
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implementations in the two fourth generation languages are in the small range (1422 in 

Advanced Revelation and 2116 for Informix 4GL). 

Software Technology n LOC 

Micro-focus COBOL 27 5127 
Informix 4GL 27 2116 
Advanced Revelation 33 1422 

Totals 87 8665 

Table 6.1 Source Data by Software Technology 

6.2 SOFTWARE DEVELOPMENT TECHNOLOGY 

A software technology includes the development methodology used together with the 

programming language and environment (see section 4.3.1). The three inventory system 

implementations described in this chapter were developed using entity-relationship 

modelling [CHEN77] and structured systems analysis [GANE79] followed by a 

modified state transition-based design technique for interactive systems [BEIL81]. All 

three implementations are based on the same data model, set of data flow diagrams, data 

dictionary and state transition diagrams. Any differences in implementation relate to the 

programming languages and environments used in the development of the three systems. 

The development strategy was that of incremental development. The languages used 

were Micro Focus COBOL Level II [MICR83], and two 4GLs, Informix 4GL [INFO87, 

INFO87a] and Advanced Revelation (AREY) [COSM87, COSM87a, COSM87b]. All 

three systems were developed on a large microcomputer under MS-DOS [MICR86]. The 

main characteristics of each of the languages are briefly discussed later in 6.4.1 - 6.4.3. 

6.3 PRIMITIVE SIZE MEASURE 

Once again LOC was chosen as the primitive size measure. This choice was made for the 

same reasons that it was chosen in the previous chapter. The counting convention used 

was that for LOCl (physical lines) described in 5.4.1 with no blank lines, comment lines 

or JCL included. 
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6.4 THE COMPONENT PARTITIONS 

Within each of the software development technologies a component partition is 

investigated which can be considered to be at the same stage in the development process 

as the Phase 1 partition discussed in 5.6.1. In the case of AREY a Phase2 (preliminary 

design) partition is also briefly considered. For the other languages, additional design 

information available at Phase2 for this application is not easily related to countable 

program structures, so there is no difference between the Phase 1 and Phase2 partitions. 

6.4.1 Advanced Revelation 

Advanced Revelation (AREY) [COSM87, COSM87a, COSM87b] is a 4GL which runs 

under an augmented Pick-like operating system which in turn runs under MS-DOS 

[MICR86] on the microcomputer used for the implementation. AREY provides powerful 

screen and form painting facilities linked to a data dictionary as well as features for 

handling menus and file enquiries. It uses a large number of active function key 

combinations to pass from one system-supplied design window to another. AREY also 

provides a procedural programming facility. Programs, subprograms or statements can 

be written in an extended, structured BASIC and can be embedded within forms or 

windows to meet more complex processing requirements than the standard facilities 

provide. AREV's procedural language, R/BASIC, can also be used to provide the 

structure for AREY transaction programs which call non-procedural elements when and 

if required. 

An examination of the characteristics of the implemented functions, or modules, revealed 

that the appropriate component types for the software development technology were 

forms, pop-ups, menus and file listings. This process involved an iterative step before 

forms and windows were combined into one forms component type. 

Forms. This component type includes forms and windows both of which are screen­

based user interactions using a screen painter linked to a data dictionary. Windows are 

primarily input or update and forms primarily output, but both use essentially the same 

mechanisms. Most reports are implemented as forms in this technology. No file or 
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relation component is included explicitly in the AREY component partition since files are 

normally generated as by-products of forms, and all were generated in this way in this 

case. Counting them again separately would amount to double counting. 

Pop-ups are system-generated control key-activated windows presenting lists of 

designated record attributes from a single file from which a selection of one or more 

records from that file can be made. 

Menus are ring menus in a standard format with a help message displayed corresponding 

to the currently highlighted choice. 

File listings are sorted listings, normally of selected records from one file. The listing 

may include some or all fields of all records of a file, or some or all fields of a fixed 

selection of the records of one file, together with standard headings, footings and some 

simple totals. Some fields may contain references to fields in other files which may 

contain similar references, etc., such references being dictionary-specified. File listings 

can normally be programmed in a handful of lines (anything between about 2 and 8 80-

column lines with an average of 5). Only three examples of this component type were 

available in this case with sizes 4, 5 and 5. Because there are so few of them and their 

values are similar, the fixed value of 5 LOC has been included (as shown in Figure 6.1) 

for this component type. 

The data used in the analysis comprised the following components 

Component n u::c 

menu 5 42 
form 1 6 1 291 
pop-up 9 75 
listing 3 1 4 

totals 33 1422 

Table 6.2 AREV Components 

The prediction equations shown in Table 6.3 were obtained after analysis of the data. 

The second prediction equation for forms, including numbers of logics (ie. called BASIC 

subroutines) represents a Phase2 partition (preliminary design) in which additional 

197 



information concerning processing steps is available which can be related to countable 

program structures (subroutines). The predictions for both menus and pop-ups were 

exact hence the F-ratios and t-ratios are shown as oo in this table. As can be seen, though 

the R"2 value is rather low for forms at Phasel (equation (1)), the other evaluation 

criteria indicate a good fit to the data. The Phase2 prediction equation (2) is, however, 

rather better. 

n mean R"2 

1 16 80.7 41.8 

2 16 80.7 55 .6 

3 5 8.4 100 

4 9 8.3 100 

FORMS 
1 LOC* = 41.03 + 9 .4 7 data elements + 1.24 relations 

2 LOC* = 49 .33 + 6.38 data elements+ 9.62 logics 

MENUS 
3 LOC* = 2 + 1 choice 

POPUPS 
4 LOC* = 6 + 1 data elements 

RE* MRE* Prcd(.25) RM S RMS* F-ratio t-ratios 

-0.023 0.135 0.8 I 13 .94 0.173 4.67 3.02, 2.39, 0 .28 

-0.025 0.126 0.88 12. 17 0.151 8.15 4.01, 1.87, 2.04 

() 0 1 () () 00 00 

0 0 I () 0 00 00 

s df 

15.5 13 

13.5 13 

0 4 

0 8 

Table 6.3 Prediction Equations and Evaluation Criteria for AREV 

6.4.2 lnformix 4GL 

p 

0.050 

0.015 

0.000 

0.000 

Informix 4GL [INF087, INF087a] has rather different characteristics from Advanced 

Revelation though it is also described as a 4GL. It has developed from a relational data 
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base management system which has been enhanced to include an SQL implementation 

and a complete high-level (or fourth generation) language, among other features. Special 

facilities include screen-building and menu-building utilities and a report writer. The 

Informix 4GL programming language can be described as conventionally procedural, but 

at a higher level (i.e. requiring fewer statements) than languages like COBOL or BASIC. 

Program units written in C can be called for more complex processing if required but the 

generality of the Informix 4GL programming language for normal data processing made 

this unnecessary in this particular case. 

After some investigation it was found that a suitable component partition for the Informix 

4GL implementation was into the following component types: 

menus 

input/updates 

reports/inquiries. 

The term update in this context is used in a different sense than in 5.6.2. Here it refers to 

a user interaction which changes existing data base information (an input, on the other 

hand, adds new information). The numbers and sizes of the components making up the 

Informix 4GL data set are shown in table 6.4. 

Componcnl n LOC 
menu 5 134 
input/updale 11 1070 
report/inquiry 11 912 

Tola! 27 2116 

Table 6.4 Informix 4GL Components 

It is important to note that the component partitions described above are based on this 

particular, limited case. A more extensive history data base may indicate the need for 

some modification of these partitions. It should also be noted that the partitions were 

only arrived at after careful examination of the components characteristics and several 

partitioning iterations. 
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The prediction equations fitted to the data and the evaluation criteria for these equations 

for the Inforrnix 4GL data set are shown in Table 6.5. 

INPUTS/UPDATES 
LOC* = 54.7 + 8.47 data elements+ 6.26 relations 

REPORTS!INQ UIRJ ES 
LOC* = 56.5 + 0.27 data elements + 12.7 relations 

MENUS 
LOC* = 4.96 + 3.41 choice 

n mean R"2 RE* MRE* Prcd(.25) RMS RMS* F-ratio I-ratios s p 

11 97 .3 0 .59 -0.017 0.)08 11.59 0.119 5.86 4 .07,2.14,1.42 13.6 8 0.025 

11 82.9 0.67 -0.0!5 0.093 0.91 JO 14 0.122 8.19 4.35, 0.06, 3.03 11.9 8 0.010 

5 26.8 0.92 -0.004 0.053 1.43 0.052 33.4 1.28, 5.78 1.79 3 0.005 

Table 6.5 Prediction Equations and Evaluation Criteria for Informix 4GL 

The Informix 4GL menus are shown in Table 6.5 as Pred(.25) = 1 They are, in fact 

rather better than that and are predicted within 10% 100% of the time. The evaluation 

criteria show a very good fit of the prediction equations to the data. 
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6.4.3 Micro Focus Level II COBOL 

Micro Focus Level II COBOL [MICR83, MICR83a] is an extended COBOL which 

includes features intended to provide increased productivity over standard COBOL in a 

PC environment. In particular, it includes a powerful screen-painting facility, Forms-2, 

which substantially reduces the programming required for screen-based inputs and 

outputs. 

The component partition for the Micro Focus COBOL development environment was 

found to be the same as that for Informix 4GL, namely: 

menus 

inputs/updates 

reports/inquiries. 

This partition was the result of combining some component types because of their strong 

similarities. Table 6.6 summarizes the numbers, n, and sizes of the components in the 

data set analysed. 

Component n LOC 
menu 5 445 
input/update 11 2280 
report/inquiry 11 2402 

Total 27 5127 

Table 6.6 Micro Focus COBOL Components 

The prediction equations for Micro Focus Level II COBOL, and their evaluation criteria, 

are shown in Table 6.7. 
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INPUTS/UPDATES 
LOC* = 105.0 + 23.4 data elements + 9.74 files 

REPORTS/INQUIRIES 
LOC* = 75.8 + 6.71 data elements+ 58.5 files 

MENUS 
LOC* = 68.13 + 3.26 choice 

n mean RA2 RE* MRE* Prcd(.25) RMS RMS* F-ratio t-ratios s df p 

11 207 0.48 -0 .031 0 .159 0.9 1 33.98 0 164 3.75 2.67 , 2.01 . 0.76 39.9 8 0.065 

11 218 0.91 -0.012 0.086 22 .12 0. I 01 41.3 2.68, 0.73, 6.40 25.9 8 0.001 

5 89 0.91 -0 .001 0 .01 5 0.75 1.43 0.016 28.8 17 .2. 5.37 1.84 4 0.010 

Table 6.7 Prediction equations and Evaluation Criteria for Micro Focus 

COBOL 

Though the reports/inquiries are shown as being predicted within 25% 100% of the time. 

They are in fact rather better than that being predicted within 17% 100% of the time. The 

evaluation criteria show a good fit to the data set. 

6.5 COMPARISON OF THE SIZING MODEL INSTANCES 
FOR THE THREE SOFTWARE DEVELOPMENT 
TECHNOLOGIES 

Figure 6.1 gives a summary of the structure of the three sizing model instances showing 

their development methodologies, languages, component type partitions and variable 

vectors, with estimation coefficient values, at the leaves. 
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Technology A 

E-R data model 
SSA 

Modified state transition 
model 

Advanced Revelation 
(Pick), MS-DOS 

Partition 1 

Application Category 

Data-centred business 
application 

Technology n 

E-R data model 

SSA 
Modified state transition 

rrodel 
Informix 4GL 

(Microsoft C) MS-DOS 

1 ~ 

Partition 1 
Same as Technology C 

Technology C 

E-R data model 
SSA 

Modified state transition 
model 

Micro-focus COBOL 
MS-DOS 

Partition 1 
Same as Technology B 

Menu Form Po u List Menu Input/Update Report/lnq 

2 
1 choice 

41 .03 
9.47 dc's 
1.24 reins 

49.33 
6.38 de's 

6 5 4.96 
1 de's 3.41 choice 

9.62 logics ~ Partition 2 (change 
from Partition 1) 

de's = data elements, reins = relations 

54.7 
8.47 de's 

6.26 reins 

56.5 
0.27 de's 
12.7 reins 

68.13 
3.26 choice 

105 
23.4 de's 
9.74 files 

Figure 6.1 Summary of Sizing Model Instances for Three Software 

Development Technologies 

75.8 
6.71 de's 
58.5 files 

It will be noted that, in spite of the wide differences in the languages and their 

environments (from a compact, powerful Pick-based 4GL to a conventional, though 

enhanced, DOS/COBOL environment), the component partitions have similarities. In 

fact they are the same for technologies B and C. By comparison, technology A includes 
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all input/update components and some report/inquiry components under its form 

component type. Other report/inquiry components are implemented either as pop-ups or 

as file listings. There are also some additional pop-up components with no equivalent 

components at all in the other two technologies. 

There are also similarities between these component partitions and the Phasel component 

partition of 5.6.1, whose menu, screen and report component types correspond as 

follows with the technology B and C component types of this chapter: 

menu ------- menu 

screen-~------- ~npu~update 

rnqmry} 

report 
report/inquiry 

------- report 

Figure 6.2 Component Partition Correspondences 

None of the technologies of this chapter explicitly specifies a separate data model or 

schema, relations being included in one or more of the designated component types. As 

noted in 5.8.1 and Figure 5.2, these component partitions have some similarities with the 

traditional FPA component partition into files, inputs, outputs, inquiries (and external 

interfaces, not used here). 

The similarities of the component partitions in Chapters 5 and 6 are considered to be 

evidence of the underlying and pervasive influence of the application category, namely 

data-centred business systems. It is suggested that component types like these are typical 

of implementations of systems in this application category, and correspond to some 

natural features of such systems. The differences in the component partitions on the 

other hand, are indicative of the differences between the languages employed to 

implement systems within this application category. 

A corollary of these observations is that the FPA component partition has no special 

claims to be technology-independent or language-independent. On the contrary, it would 

appear to characterize some implied, perhaps composite, batch processing-influenced 
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technology (with its separation of input and output component classes) whose further 

details are obscure. As such it should have no special status except as de facto reference 

technology. 

6.6 SUMMARY AND CONCLUSIONS 

In this chapter three different software development technologies, largely characterized 

by their languages (Advanced Revelation, Informix 4GL and Micro Focus Level II 

COBOL) are applied to the standard IFIP inventory control and purchasing system. 

Though of the same general application class, data-centred business systems, this system 

is a very much smaller, simpler and more straightforward case study than that of Chapter 

5. Nevertheless, it is a significant and not atypical application of its general class. It is 

also of a size that takes it out of the toy, student program class. 

The application of the generic model to the implementations in the three different 

technologies was straightforward. However, a good knowledge of the technologies, 

their strengths and natural structures, and their relationship to the data 

modelling/structured analysis menu-based methodology used, was essential for the clear 

definition of component types. 

The three technologies have significant differences. Their products have large size 

differences (a ratio more than 3:1 in the case of Micro Focus COBOL and AREY). They 

have different environments and philosophies, ranging from a Pick-like environment 

with 20-50 active function key combinations and many automatic tools to a conventional 

DOS/COBOL environment, admittedly with some significant extensions. It is therefore 

considered that the three technologies are diverse enough to provide a good indication of 

the range of applicability of the model, at least within the data-centred business 

application category. 

The similarities and differences of the component partitions for the technologies of this 

chapter, that of Chapter 5, and FPA are analysed, revealing both significant similarities 

and significant differences. It is suggested that the similarities are characteristic of the 

common application category and the differences characteristic of the different languages 

used. It is further suggested that the FPA component partition has no special claims to be 

technology-independent or language-independent. As such it should have no special 
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status except as a de facto reference technology in common use. The three model 

instances derived in this chapter each have a close fit to the data. The statistical 

evaluation criteria in each case are also very good. 

The study in this chapter therefore serves to increase one's confidence in the conceptual 

soundness and general applicability of the generic model. 
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CHAPTER 7 

SUMMARY, CONCLUSIONS AND FURTHER WORK 

It is not the purpose of this chapter to give a complete summary of the work of this 

thesis. That purpose is served by the summaries given in the final sections of Chapters 

2-6. The aim of this chapter is firstly to place this work in software sizing in context and 

secondly to briefly identify those topics which the author believes to be the major 

contributions of the thesis. 

7.1 THE CONTEXT OF THIS WORK 

The research into software sizing reported in this thesis has been done in a context which 

is summarized briefly below. Some understanding of the background is necessary for 

the significance of the work to be appreciated. 

(i) There is comparatively little research into software size estimation, except perhaps in 

the areas of large real-time and embedded military systems. In particular, there is very 

little work in the area of business systems and most of what there is does not address 

modern business software development environments, such as fourth generation 

languages. 

(ii) The literature on software size estimation is very thinly scattered through a variety of 

journals, conference proceedings, departmental reports and supplier manuals, without 

any single major concentration of interest. There are no accepted standards for units of 

size measure, for the contents of sizing history data bases, nor for the classification of 

application categories, except perhaps in some very specific defence situations. It is 

perhaps not surprising, therefore, that the classification of software methods and metrics 

prior to this thesis has been fragmentary, incomplete and generally unsatisfactory. 

(iii) Most current software sizing methods are aimed at the prediction of final product size 

in LOC. A number are proprietary products, the details of whose internal workings are a 
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carefully guarded secret. A few methods, notably the FPA family, are intended for 

productivity studies as well as final product sizing, though the concept of software 

productivity is often not clearly defined. 

(iv) At the present time, software size estimation, no matter what method or combination 

of methods is used, gives results of very mixed reliability. For example, in a recent 

controlled test of 6 automated models, variations from a 28% underestimate to an 

overestimate of more than 300% were observed. 

(v) For systems measured in function points, not only is subjectivity a problem, but there 

is also no objective way by which estimates or measurements can be compared with 

actuals. For all that function points are commonly used, what they are still remains 

something of a mystery. 

7.2 MAJOR CONTRIBUTIONS OF THIS THESIS 

Paragraphs 1 - 7 below summarize those topics which are the major contributions of this 

thesis to software size estimation research. These brief summaries should be considered 

within the context of 7 .1. 

1 A Classification of the Purpose of Software Sizing 

There has been some confusion concerning the purpose of software sizing. Some 

software sizing studies are now made for purposes other than traditional final product 

size estimation. In particular, studies of developer productivity and technology 

productivity are becoming common, the latter assuming growing importance as new 

technologies emerge and attempts are made to compare developments that use them. The 

sizes required for different purposes are themselves different in kind. These topics are 

examined and clarified initially in Chapter 1 and thereafter throughout the thesis. 

2 The Separation of Software Size Metrics and Methods 

The author has observed, and indeed experienced, the difficulties of classification that 

result from a single combined treatment of software size metrics and software size 

estimation methods. Separate treatments of these related matters in Chapters 2 and 3 
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allow new classifications to be used that provide new insights, particularly into sizing 

methods. 

3 A Survey and Classification of Software Size Metrics 

A structural classification of software size metrics into textual metrics, object counts, 

vector metrics and composite metrics is given in Chapter 2 and a distinction is drawn 

between primitive metrics such as LOC, and derived metrics, such as function points. 

While the categories themselves are in current use in several different contexts, the 

structured treatment of the topic is new. Within this structure there is a definitive survey 

of software size metrics. 

4 A Survey and Classification of Software Size Estimation Methods 

A new structural classification of software sizing methods is presented which provides 

the main framework for Chapter 3. This classification relates sizing methods to a top­

down structural decomposition of the software to be sized and at its leaves includes the 

more traditional approach-based classification. Besides being a logical and effective 

classification, it also contributes some essential features to the generic sizing model 

developed in Chapter 4. 

5 The Development of a Generic Software Size Estimation Model Based on Component 

Partitioning 

A generic software size estimation model is developed, based on component partitioning, 

from which a wide range of sizing model instances can be derived. The model subsumes 

many structurally similar approaches and is both a generalization and extension of 

existing methods which use component partitioning of one kind or another, in particular 

FPA-like methods. The following objectives which were initially set out in section 1.3 

(4) are achieved by the generic model: 

(1) accommodates a wide range of different sizing purposes and sizing metrics, 

(2) overcomes many of the criticisms of existing models, 

(3) spans much of the software life cycle, but concentrates on the specification 

and preliminary design phases where early size estimates are much in demand, 
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(4) can be based on more objective aspects of software representations from 

specification through to code, but does not necessarily exclude more subjective 

aspects, 

(5) distinguishes metrics which are highly technology-dependent from those that 

are less so, relates them through technology-dependent factors, and provides a 

calibration mechanism for metrics with low technology-dependence (job-size 

metrics), 

(6) builds upon a historical data base of technology-dependent data and includes 

an adaptive mechanism to cope with a shift or change in software technology, 

including recalibration of job-size metrics where necessary, 

(7) can be tailored to specific development environments or technologies for 

greater accuracy, or can be kept more general in applicability, possibly at some 

cost in accuracy, 

(8) aliows for partial sizing to meet a variety of sizing purposes, and 

(9) includes an adjustment factors model which characterizes and classifies 

adjustment factors effectively and provides for flexibility in their use to meet 

different sizing purposes. 

6 The Derivation and Testing of a Realistic Model Instance 

A model instance is developed in detail in the context of a large and complex system of 

data-centred business applications. The construction of the model instance provides not 

only an example of the application of the generic model, but also numerous insights into 

the nature of the model and the ways in which it takes advantage of the characteristics of 

the particular software development technology used to obtain better estimates and 

measures. The model instance is created from a substantial body of reference data, and 

then applied to a later sample of test data. The performance of the model is excellent at 

the system level (within 4%) and also meets or exceeds most statistical evaluation criteria 

at the individual component level (for example, within 25% of actual 75% of the time). 

The model instance is compared with FPA for this particular case and is shown to be 

very much better. This comparison also reveals something of the anatomy and 
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technology dependence of FPA and shows how inappropriate the FPA component type 

weightings are for the software development technology used in this application. 

7 The Applicability of the Model to Other Technologies 

The applicability of the generic model is further demonstrated by its successful 

application to three different software development technologies which are used to 

implement a subset of the standard IFIP inventory and purchasing application. These 

technologies vary from a conventional COBOL PC environment to a highly-specialized 

Pick-based 4GL environment. The three model instances developed provide excellent 

fits to the available data. Some observations are made on the relative influence of the 

application category and the implementation technology on the sizing model. 

7.3 GENERAL CONCLUSIONS 

Following on from the specific contributions highlighted in the previous section, some 

more general conclusions can be drawn from this work: 

1. Structural approaches to the classification of software size estimation methods and 

software size metrics can provide new insights into both methods and metrics. 

2. Models which recognize and take advantage of technology dependence in the sizing 

process can provide more accurate technology-dependent product size measures; 

they can also give better technology-independent measures which allow for, and 

remove, most programming language/environment dependencies and are calibrated to 

be comparable with established function point measures. 

3. The instantiations of the genenc model developed in this thesis demonstrate 

remarkable accuracy and robustness across several different software development 

technologies and in the face of substantial changes over time in the characteristics of 

the population which is the subject of estimation; this gives some confidence in the 

applicability of the generic model to data-centred business applications, though its 

applicability may in fact be much wider than this. 
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7.4 FUTURE RESEARCH WORK 

Future areas for research related closely to this thesis are briefly outlined below. In 

considering these areas it is important to remember that the main difficulties in software 

size estimation research are related to the availability, variety and quality of data, 

including an understanding of the environments in which it has been collected. To obtain 

and analyse a significant body of data from a variety of environments normally requires a 

sustained team effort, including industry participation, over a minimum time span of 

several years. 

1. The application of the model to other application categories and software development 

technologies. This is a major task involving co-operating organizations and a thorough 

knowledge of the application categories and technologies used. 

2. The investigation of specification sizing metrics. For technology productivity studies 

a technology-independent measure of the size of the job to be done is of considerable 

interest. The use of CASE tools and formal or semi-formal specification languages are 

relevant in this type of study. 

3. The investigation of sizing, and its possibly changing relation to effort estimation, in 

the emerging CASE environments, through suitable instrumentation of CASE tools. 

4. A study of system adjustment factors. This is again a major study concerned with the 

purposes of sizing, the sizes required, and the technologies involved. An investigation 

embracing a number of different co-operating organizations would be necessary to 

establish a sufficiently broad base of study. 

5. The development of proposals for standards for data collection for history data bases 

for sizing, costing, scheduling and productivity data. 

The general goal of future work in this area is a better understanding of all the factors 

affecting software size in order that better conceptual models may be developed leading to 

the availability of widely-applicable sizing components within comprehensive costing, 

scheduling and project management tools. 
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GLOSSARY 

4GL fourth generation language (q.v.). 

adjusted function points raw function point value modified up or down by system 

adjustment factors, i.e. the information processing size 

adjusted for the degree of technical difficulty. 

adjustment factors 

algorithmic 

analogs 

application category 

ARCH 

ASSET-R 

factors applied to the raw function points or information 

processing size to account for the degree of technical 

difficulty involved in implementation. Currently there 

are 14 different factors in standard FPA [ALBR79, 

ALBR83, ALBR84] (see 3.2.3, 3.2.3 and 4.5). 

describes a method that uses one or more well defined 

algorithms rather than, for example, expert judgement. 

used in Price SZ (3.2.1 iii) to describe continuous 

variables generally input by sensor devices such as 

radar, temperature, or other real-time input devices 

[DACS87]. 

a class of functionally and/or structurally similar systems 

(see 4.3.1 ). 

architectural constant to deal with the degree of 

centralization or distribution of the application and its 

computers. Used in ASSET-R [REIR87] (see 3.2.2B 

ii). 

Analytical Software Size Estimation Technique - Real 

Time [REIF87] (see 3.2.2 B ii). 
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availability profile 

BANG 

basic measures 

Beta distribution 

BYL 

candidate variables 

CASE tools 

CDR 

CEIS 

for each component partition and within this for each 

component type this profile may be constmcted showing 

at what stages of the development process and for what 

purposes the particular component partition and 

candidate variable vectors are relevant and when the 

information they use is available (see 4.3.2). 

a composite size metric [DEMA82], either System 

BANG, the weight of function to be delivered (based on 

functional primitives and input and output elements at 

their boundaries) or Data BANG (based on counts of 

objects in the data base and the number of their 

relationships) See 2.5.3. 

primitive measures. 

a two parameter family of probability distributions (refer 

to any standard statistical text). 

Before You Leap [GORD87] an automated software cost 

estimation and scheduling model that uses function 

points and COCOMO. 

see 4.3.2. 

Automated tools to aid in software development called 

variously Computer Aided System Engineering or 

Computer Aided Software Engineering tools. 

Critical design review. Takes place at the end of detailed 

design and is followed by implementation. see 3.4. 

Computer Economics, Inc. Sizer [DACS87] (see 3.2.2 

Aid). 
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character count 

COCOMO 

common metrics 

component 

component partition 

composite metrics 

COPMO 

Curve fitting 

Delphi technique 

derived metrics 

a primitive metric based on counts of all single characters 

in an implementation. See 2.2.4. 

COnstructive Cost MOdel, an automated cost and 

scheduling tool [BOEH81]. 

measures that are widely applicable to many development 

methods and to many languages (see 2.6). 

may include modules, structures, objects or other 

distinguishable and separately countable units within a 

system. (see 4.3.2). 

a division of the components of a system at any phase 

into a mutually exclusive set of component types 

covering all the aspects of a system that are of interest at 

that phase of development (see 4.3.2). 

single values produced by the application of functions to 

more than one kind of measure or count. They can be 

considered to be functions of vector metrics and are 

usually also derived metrics (See 2.5). 

COoperative Programming MOdel. A model for 

estimating project and team size [CONT86]. 

see 3.2.2 A i b. 

group consensus technique (see 3.2. l ). 

metrics which are normally composite but in 

addition, are related to some other metric(s), either 

explicitly or implicitly, by some calibration process. 
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developer productivity 

df 

DSI 

DYAR 

ESD 

EXPF 

FAA 

Feature Points 

a measure of developer and/or managerial effectiveness 

within a defined software development environment (see 

1.2.1). 

degrees of freedom. 

delivered source instructions (see 2.2.1 i). 

a count of the unique variables identifiable at the design 

stage (see 3.2.2 A ii a). 

Electronic Systems Division (see 3.2.2 B i b). 

technology expansion factor. Used 111 ASSET-R 

[REIR87J (see 3.2.2B ii). 

Federal Aviation Administration. 

an extended FPA-based approach [SPR86] (see 3.2.2 

B). 

Fourth generation language a commonly used term to describe a variety of modem 

high productivity application development systems. 

FP 

FPA 

function points 

function point (q.v.). 

Function Point Analysis. 

derived composite metric that attempts to measure 

function value that a system provides to a user. It uses 

files in combination with input and output data elements 

or record types as the basic counts from which function 

points are caluculated (see 2.5.1 ). 
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functional bulkiness 

functional primitives 

HIPO 

used in Price SZ [DACS87] to describe the effects of 

software team experience with language and availability 

of software tools. Normal values = 1 more tools < 1 and 

fewer tools > 1 (see 3.2.1 iii) . 

used in the System BANG metric (see 2.5.3). 

Hierarchical Input Output analysis method. 

information processing size term used in FPA to refer to raw or unadjusted function 

points (see 2.5.1). 

input analogs 

I/0 count 

JCL 

KDSI 

KTOC 

line of code 

used in Price SZ (3.2.1 iii); continuous variables 

generally input by sensor devices such as radar, 

temperature or other real time devices [DACS87]. 

total program input/output data element count without the 

weights and processing complexity adjustment applied in 

function point analysis; used in [ALBR83] and treated 

there as being equivalent to Halstead's n*2 (see 3.2.2 B 

ii a) 

Job Control Language. 

thousands of delivered source instructions. 

thousands of tokens. 

see 2.2.1. 

language expansion ratio Normally used in FPA-based size estimation approaches 

where it is a ratio of lines of code per function point for 

specific languages (see Table 3.3). However it is used in 

Price SZ to describe the combination of languages and 
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length 

linguistic approaches 

LOC 

LOC* 

MARKII 

metric vectors 

MLI 

MRE 

MRE* 

n1 

compilers used in the development effort. For size 

output in machine level instructions the value = 1. 

a Software Science metric. The length of a well­

structured program is considered to be a function of 

unique operators and operands N = N1 + N2 (see 2.5.4). 

includes those size estimation approaches that count the 

lexical symbols used in the programmatic expression of 

an algorithm (see 3.3.4). 

lines or line of code. 

estimated lines of code. 

a composite derived metric [SYM088] based on FPA 

that uses input data elements, output data elements and 

entities for each logical transaction type as the basic 

syntactic counts from which function points are 

calculated (see 2.5.2). 

see 2.4. 

machine level instructions. 

magnitude of the relative error (IREI). 

mean magnitude of the relative error. 

number of unique operators 

number of unique operands. 

estimate of n2 (see 3.2.2 A i d). Input/output data item 

counts. The sum of the overall inputs and outputs of an 

application program (see 2.5.4 ii). 
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n 

N 

"N 

non-executable lines 

object code size 

operand 

operator 

partial sizing 

PDR 

PERT 

PFR 

vocabulary metric (n1 + n1). 

total numbers of operators. 

total numbers of operands. 

program size metric (N1 + N2). 

a Software Science metric, estimated length (N) (see 

2.5.4). 

lines containing declarations and other non-imperative 

statements in programs. 

size of compiled code in machine language instructions. 

a symbol used to represent data in a program. 

any symbol or keyword in a program that specifies and 

action, including a separator; any symbol that is not an 

operand. 

summing of component size estimates (see 4.2). 

Preliminary design review. Takes place at the 

completion of the preliminary design and is followed by 

detailed design. 

Project Estimating and Reporting Tool (see 3.2.2 for use 

in size estimation). 

Product feasibility review. Takes place part way through 

the feasibility study and is followed by the software 

requirements phase. 
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PRED(L) 

primitive metrics 

QSM Size Planner 

raw function points 

RE 

reference technology 

RMS 

RMS* 

scaffolding 

SERC 

SLOC 

size calibration factor 

prediction at level L. 

measures that are conceptually simple and can be counted 

directly at some stage in development (see 2.6). 

Quantitative Software Management Size Planner 

[PUTN87] an automated tool that includes three different 

approaches to software size estimation, Fuzzy Logic, 

Function Points and Standard Components Sizing (see 

3.2). 

coefficient of multiple determination. 

information processing size. 

relative error. 

a technology that has well-established and sufficiently 

reliable metrics often (function points) have been 

obtained in the past (see 4.3.6). 

root mean square error. 

relative root mean square error. 

also referred to as test harness. Non-delivered code used 

mainly to construct a testing framework during modular 

development. 

Software Engineering Research Center. 

source lines of code. 

used in Price SZ [DACS87] to describe the effect of the 

user organization's specific know-how or the way the 
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SIZER/FP 

sizing by analogy 

SizeA 

SizeB 

SizeC 

Size-in Size-out 

SLOC 

SMM 

organization implements software projects. Normal 

value= 1 with range expected from 0.7 - 1.5 (3.2.1 iii). 

an FPA-based size estimation model [SPR86] (see 

3.2.2. B i). 

describes approaches relating the size of the proposed 

development to previously developed modules and 

systems of similar function and environmental 

characteristics (see 3.3.1). 

part of the general sizing and costing model presented in 

Chapter 4 (see 4.1). 

part of the general sizing and costing model presented in 

Chapter 4 (see 4.1). 

part of the general sizing and costing model presented in 

Chapter 4 (see 4.1). 

see 3.3.2. 

source lines of code. 

State Machine Model [BRIT83] size estimation approach 

(see 3.2.2 i c). 

software development technology - a combination of the application category, the 

development methodology (including its lifecycle model) 

and the languages or software engineering environments 

used in a particular development situation (see 4.3.1). 

software economics a general area comprising software size, cost, effort and 

schedule estimation, risk and value analysis, productivity 

studies, etc. 
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Software Science 

software size metrics 

SPQR/20 

SRR 

SSA 

SSM 

SVAR 

a set of composite metrics [HALS77] based on counts of 

operators and operands (see 2.5.4). 

quantitative units used to measure the size of software. 

an automated software size and cost estimation model 

[JONE86] (see 3.2.2 B i a). 

Software requirements review. Takes place at the end of 

the feasibility study and is followed by preliminary 

design. 

Software Sizing Analyser (see 3.2.2 B ii b). 

Software Sizing Model [BOZO86] (see (3.2.2 Ai b). 

a count of the unique variables identifiable at the 

specification stage from a DBMS sub-schema (see 3.2.2 

A ii a). 

system adjustment factors adjustment factors, technical complexity correction 

factors (see 3.2.2). 

system states number of modes of operation of a software system i.e. 

training mode, test and mission modes. U sect as an 

input into Price SZ (see 3.2.1 iii). 

technical complexity factor adjustments taking into account the various technical and 

other factors involved in developing and implementing 

information processing requirements [ALBR79]. This 

factor is used to convert raw function points into 

adjusted function points in FPA and is made up of 14 

general information processing adjustments. 
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technology productivity a measure of the effect of different development 

methodologies, tools or environments on software 

production (see 1.2.1 ). 

tokens the basic syntactical units distinguishable by a compiler 

(see 2.2.3). 

unadjusted function points see raw function points. 

vector metrics 

V 

VAR 

variable vectors 

a set of metrics that frame the purpose of the measurement 

[BASI88] (see 2.4). 

volume, a Software Science metric, the volume of an 

implementation of an algorithm in bits (see 2.5.4). 

number of conceptually unique variables (see 3.2.2 A ii a). 

set of vectors of variables that characterize a component 

partition. 

vector of candidate variables see 4.3.2. 

vocabulary 

volume 

used in Software Science where the vocabulary of a program is 

n = n1+ n2 ie. the sum of unique operators and operands used 

in the program (see 2.5.4). 

a Software Science metric. The volume of an algorithms 

in bits (V = N log2 n) (see 2.5.4). 
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ALL REFERENCE DATA 
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Al ALL Reference MMenus 
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NAME CHOICE LOC Fun ct I on Points 

ADDIM 7 22 3 
ADDROM 4 15 , 3 
DATAENT1M 3 14 3 
JAJI 3 14 3 
JHMENU 5 18 3 

LBLMENU 14 36 3 
MICHAEL 13 34 3 
MICHAEL2 3 14 3 
pend 1m 7 22 3 
pendlm 6 20 3 

PMDENTC 3 14 3 
PT ADM IN 1 10 29 3 
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A2 ALL Reference SCRMENUS 
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Name CHOICE LOC Funct ton Points 

CMDENTB 3 34 3 

CMFENTB 5 42 3 

CMFENTB 7 50 3 

CMLOOK 9 60 3 

CMLOOKT 6 52 3 
DARREL 7 53 3 
DMDOR 8 52 3 
DMOPS 9 57 3 
MMDENT A 3 47 3 
MMDENTB 16 84 3 
mmdentb 16 85 3 
mmfenta 4 38 3 
PMDENTA 3 34 3 

PMDENTB 16 86 3 

PMDENTB 16 87 3 
PMFENT A 4 37 3 
PMFENTB 5 42 3 
PMSENTA 4 38 3 

SMDENTA 3 34 3 
SMDENTB 12 72 3 
SMDENTB 12 87 3 

SMDENTB 13 75 3 
SMDISPAT 5 · 43 3 

SMFENTA 4 38 3 

SMSENTA 4 38 3 
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A3 ALL Reference Relations 
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Name Date elements LOC Adjusted LOC 

Class 2 4 4 

COURSE 8 18 9 

CRSLBLS 7 12 8 

BATCHSTUD 3 5 4 

BATCHADDR 15 24 16 

PtPendCntrl 2 6 3 

PtPendStud 13 28 14 

OTHSCHCLASS 3 7 4 

EXTEX 2 6 3 

FORMGROUP 6 13 7 

WDLREASON 2 6 3 

WORKFILE 2 4 3 

KEYS 2 6 3 

LASRNAME 2 5 3 

STUDCRS 29 47 31 

REPORTLOG 6 8 7 

STDCRSSET 14 26 15 

SSDUPLICATE 4 7 5 

SET 5 12 6 

SENREASON 2 6 3 

SEC SCHOOL 13 27 14 

RJWTELECH 3 8 4 
StPrePh# 6 15 8 

DeptSbj 2 7 4 

STUDENT 81 164 82 

CAT 2 6 3 

ADDREASON 2 4 3 

SBJCRSID 2 7 4 

STPREXSVR 3 9 4 

STPREEXMSUBJ 4 13 5 

PRETECH 5 13 6 

LOGFIL E 2 4 3 

LKEVS 2 6 4 

FMGRPSTIDS 2 7 3 

DEPARTMENT 4 8 5 

STPREESBJ 2 7 3 

STUDADDR 2 5 3 

STEXEX 2 6 3 

STEXMSUB 3 8 5 

CSFORM 2 4 3 

XWDLRSN 2 5 3 

ADDRESS 12 23 13 

ADDLABELS 33 47 34 

TEACHER 8 17 9 

STQUAL 2 6 4 

TELEXCH 3 8 4 

XSTLASTNAME 2 6 3 

STPROG 2 6 3 

STPREPROG 2 6 3 

SUBJECT 4 9 5 

STUDLOGS 3 7 4 

STPREADDR 3 8 4 

STFORM 4 7 6 
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Name Data elements LOC Adjusted LOC 

STCNTRL 2 6 3 
SECSCHSTUD 2 7 3 
SDTPREEXMDT s 12 6 

STCOMMENT 6 10 7 
STCRSSET 2 7 4 
STPREEXM 3 7 4 
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Name Function Points 

Class 7 
COURSE 7 

CRSLBLS 7 
BATCHSTUD 7 
BATCHADDR 7 
PtPendCntrl 7 
PtPendStud 7 
OTHSCHCLASS 7 
EXTEX 7 
FORM GROUP 7 
WDLREASON 7 
WORKFILE 7 

KEYS 7 

LASRNAME 7 
STUDCRS 7 

REPORT LOG 7 
STDCRSSET 7 

SSDUPLICATE 7 
SET 7 
SENREASON 7 
SECSCHOOL 7 
RJWTELECH 7 
StPrePh# 7 

DeptSbj 7 

STUDENT 15 
CAT 7 

ADDREASON 7 
SBJCRSID 7 
STPREXSVR 7 
STPREEXMSUBJ 7 

PRETECH 7 
LOGFILE 7 

LKEYS 7 
FMGRPSTIDS 7 

DEPARTMENT 7 
STPREESBJ 7 
STUDADDR 7 
STEXEX 7 
STEXMSUB 7 
CSFORM 7 

XWDLRSN 7 
ADDRESS 7 
ADDLABELS 7 
TEACHER 7 
STQUAL 7 

TELEXCH 7 
XSTLASTNAME 7 
STPROG 7 

STPREPROG 7 

SUBJECT 7 
STUDLOGS 7 

STPREADDR 7 
STFORM 7 
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Name Function Points 

STCNTRL 7 
SECSCHSTUD 7 
SDTPREEXMDT 7 
STCOMMENT 7 
STCRSSET 7 
STPREEXM 7 
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A4 ALL Reference Screens 

245 



Neme Logical Scrn Dete elements CHOICE 

Addbeck 16 0 

ADDLOOK 15 0 

ADDMAINT 2 13 2 
ADDRSN 3 0 

AJFIX 8 0 

AJFIXADD 3 0 

AJPTCHK 11 0 

AJSTEXSB 1 15 0 

AJWKMK 2 14 0 
AJWORKMK 2 16 3 
BATCHRCV 5 0 
CATM 3 0 

CRSMAINT 11 0 
CRSWDL 2 10 0 
CSCHAWST 15 0 
CSCHCRAD 4 0 
CSCHENR 8 2 
CSCHSET 15 0 

CSCHSTMK 12 0 
CSCHSTWD 13 0 

CSCHSTWD 13 0 
CSCHWKWK 2 14 2 
CSCHWKRN 2 13 2 
CSCHWKRY 2 16 2 
CSCHXMEN 2 19 5 
CSCRSADl 2 12 2 
CSCRSADl 2 12 2 
CSCRSAD2 1 9 3 
CSCRSWD 1 2 15 2 
CSCRSWD2 2 14 4 

CSCSTADR 2 12 3 
CSCSTNME 16 3 
CSCSTPH 2 16 3 
CSDSTCR 1 13 0 

CSEXSN 2 18 2 

CSFMSENT 2 11 2 

CSFORMM 1 3 0 
CSFMSENTX 2 11 2 
CSLCAW 3 23 2 
CSLCLSRL 2 12 2 

CSLENR 3 2 

CSLINSRL 2 10 2 
CSLKENR 1 8 2 

CSLKFMLST 2 10 2 

CSLKFMLSTX 3 10 2 

CSLKSTCM 2 12 2 

CSLKSTCN 2 12 2 

CSLKSUM 3 25 2 

CSLKSUM 3 25 2 

CSLKSUMX 3 21 2 

CSLKSUMX 3 2 1 2 

CSLPREAP 3 22 2 

CSLCSHRL 2 10 2 
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Neme Logic el Scrn Dete elements CHOICE 

CSLSCHRL 2 10 2 
CSLSRNM1 2 9 2 
CSLSRNME 2 9 2 
CSL WORK 3 7 3 
CSL WORK 1 3 16 3 
CSL WORK lX 3 16 3 
CSLXMENT 2 15 2 
CSQLADSB 1 18 2 
CSQLENT 2 25 2 

CSQLLOOK 2 24 2 
CSQLWDEN 2 23 2 
CSQLWDSB 1 18 2 
CSSTCOM 2 12 2 
CSSTDEF 2 18 2 
CSSTUNWD 13 0 
CSSTWDl 2 10 2 
CSSTWD2 2 20 0 
CSSSTWDX 2 11 2 
CSWKMRK 2 14 2 
EXMSUBMT 1 7 0 
EXMCODEM 5 0 
FGMAINT 6 0 
FSBENO 1 9 0 
FSBEND2 1 8 0 
FTQKCHNG 2 24 2 
INSTMAIN 10 0 
IPSTCHEN 6 0 
IXMSCALE 6 0 
JAJCP3M5 2 10 3 
JANESFIX 1 14 0 
JHCRSWDL 2 10 0 
JJBACK 2 18 4 
JJCP3M5 2 13 3 
JJTEST 19 4 
JJTEST 1 2 19 4 
LBLADD 1 13 2 
LBLCHNGE 2 13 2 
LBLLOOK 2 13 2 
LBLOSAD 17 2 
LBLREQST 9 2 
MORELBLS 8 3 
MORELOGS 6 3 

MSCHENRl 28 4 
MSCHENR 1 28 4 
MSCHENR2 2 13 4 
MSCHENR3 4 12 4 
MSCHENR4 3 23 3 
MSCHENR4 3 23 3 
MSENR 1 1 27 2 

MSENR2 2 13 2 

MSENR3 2 10 0 
MSENR4 2 23 3 

MSLKENR 1 1 27 5 
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Name Logical Scrn Data elements CHO I CE 

MSLKENR2 2 13 4 
MSLKENR3 4 12 4 

MSLKENR4 3 23 2 
MWFIXAJ 6 0 
PENDl 12 3 
PRND2 14 3 
PEND2 14 3 
PEND3 14 3 
PEND4 14 3 
PENDR2 14 0 
PSCENR2 2 10 0 
PSCHENR 1 19 0 

PSCHENR 1 19 0 
PSCHENRl 2 13 4 
PSCHENR2 4 12 4 
PSCHENR3 3 23 3 
PSCNENRl 2 13 2 
PSNENR2 2 10 0 
PSCNENR3 2 23 3 
PSCRSADl 2 12 2 
PSCRSAD2 1 9 3 
PSINENR 1 20 3 
PSLKENR 2 20 5 
PSLKENR1 2 13 4 
PSLKENR2 4 12 4 
PSLKENR3 3 23 2 
PSWKRCV 2 13 3 
SBJMAINT 2 7 0 
SCHLMAIN 9 3 
SCHLMAIN 9 3 
SCHRPT 4 2 
SETMAIN 7 0 
SETMAINT 1 6 0 
SSCHl 2 17 4 

SSCH2 3 13 3 
SSCH3 3 15 2 
SSCHE.NRl 2 19 4 
SSCHENR 1 2 19 4 
SSCHENR2 3 15 3 
SSCHENR2 3 13 3 
SSCHENR3 5 16 2 
SSCHENR3 5 16 2 
SSCRSAD1 2 12 2 

SSCRSAD2 11 3 

SSDUPL 7 2 

SSENR 1 2 18 
SSENR2 3 13 
SSENR3 3 15 2 

SSENROL 2 17 1 

SSLBLS 5 0 

SSLKENR 1 2 17 4 
SSLKENR2 3 13 3 

SSLKENR3 5 15 3 
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Name Logic el Scrn Date elements CHOICE 

SSWKRCV 2 16 2 

SSWKRTN 2 13 2 

TCHMAINT s 0 

WKRECCHG 1 15 

XCXLWORK 2 17 

XSSCHENR 2 19 4 
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Neme Function Points Logic Relet1ons 

Addbeck 6 44 3 
ADD LOOK 4 0 1 
ADDMAINT 7 89 2 
ADDRSN 3 0 1 
AJFIX 4 9 2 
AJFIXADD 3 0 
AJPTCHK 4 0 
AJSTEXSB 4 0 1 
AJWKMK 10 0 7 
AJWORKMK 9 179 10 
BATCHRCV 3 0 7 
CATM 3 0 7 
CRSMAINT 3 0 1 
CRSWDL 7 10 4 
CSCHAWST 3 2 1 
CSCHCRAD 3 0 
CSCHENR 8 37 2 
CSCHSET 3 2 1 
CSCHSTMK 7 66 6 
CSCHSTWD 3 0 
CSCHSTWD 3 0 3 
CSCHWKWK 9 26 6 
CSCHWKRN 10 25 7 
CSCHWKRV 10 31 7 
CSCHXMEN 10 74 6 
CSCRSADl 10 10 4 
CSCRSADl 10 10 4 
CSCRSAD2 9 41 4 
CSCRSWD 1 10 26 4 
CSCRSWD2 10 3 1 4 
CSCSTADR 7 21 2 
CSCSTNME 8 38 3 
CSCSTPH 8 39 3 
CSDSTCR 3 0 1 
CSEXSN 9 56 5 
CSFMSENT 9 28 4 
CSFORMM 3 0 1 
CSFMSE iHX 9 28 4 
CSLCAW 7 24 8 
CSLCLSRL 10 13 5 
CSLENR 6 15 1 
CSLINSRL 8 11 3 
CSLKENR 8 30 2 
CSLKFMLST 8 20 3 
CSLKFMLSTX 8 20 3 
CSLKSTCM 8 45 2 
CSLKSTCN 8 45 2 
CSLKSUM 10 34 6 
CSLKSUM 10 34 6 

CSLKSUMX 10 42 7 

CSLKSUMX 10 36 7 
CSLPREAP 10 13 3 
CSLCSHRL 8 9 3 
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Name Fune ti on Points Logic Relations 

CSLSCHRL 8 9 3 
CSLSRNH1 8 14 3 
CSLSRNHE 8 15 3 
CSL WORK 8 17 3 
CSL WORK 1 10 2 1 4 
CSL WORK lX 10 2 1 4 
CSLXHENT 10 17 5 
CSQLADSB 10 55 7 
CSQLENT 10 128 11 
CSQLLOOK 10 5 1 7 
CSQLWDEN 10 75 7 
CSQLWDSB 8 41 3 
CSSTCOH 9 28 3 
CSSTDEF 9 65 3 
CSSTUNWD 4 0 2 
CSSTWD 1 8 13 2 
CSSTWD2 7 38 6 
CSSSTWDX 8 18 2 
CSWKHRK 9 27 6 
EXHSUBHT 3 0 
EXHCODEH 3 0 
FGHAINT 3 0 
FSBENO 1 6 95 4 
FSBEND2 6 24 4 
FTQKCHNG 9 125 9 
INSTHAIN 3 0 1 
IPSTCHEN 4 3 3 
IXHSCALE 3 0 
JAJCP3H5 10 15 6 
JANESFI X 3 0 1 
JHCRSWbl 7 4 4 
JJBACK 9 42 7 
JJCP3H5 9 2 1 5 
JJTEST 9 42 7 
JJTESTl 9 42 3 
LBLADD 6 71 
LBLCHNGE 6 96 
LBLLOOK 7 9 1 
LBLOSAD 6 70 
LBLREQST 7 32 1 
HORELBLS 7 27 2 
HORELOGS 8 25 4 
HSCHENRl 9 96 7 
HSCHENR1 9 197 7 
HSCHENR2 7 44 2 
HSCHENR3 9 19 6 
HSCHENR4 9 33 3 
MSCHENR4 9 33 4 
MSENRl 9 210 9 
MSENR2 7 39 2 
MSENR3 6 4 6 
HSENR4 9 35 6 
MSLKENRl 10 176 3 
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Neme Functl on Polnts Loglc Reletlons 

MSLKENR2 8 16 2 
MSLKENR3 10 16 6 
MSLKENR4 10 12 4 
MWFIXAJ 3 0 1 
PENDi 6 12 
PRND2 7 11 
PEND2 7 11 
PEND3 7 10 
PEND4 6 13 
PENDR2 3 0 1 
PSCENR2 6 4 6 
PSCHENR 6 65 5 
PSCHENR 6 63 5 
PSCHENR1 7 43 2 
PSCHENR2 9 19 6 
PSCHENR3 9 23 4 
PSCNENR1 7 37 2 
PSNENR2 6 4 6 
PSCNENR3 9 35 5 
PSCRSAD1 10 10 4 
PSCRSAD2 9 28 6 
PSINENR 9 87 6 
PSLKENR 10 29 3 
PSLKENR1 8 16 2 
PSLKENR2 10 16 6 
PSLKENR3 10 12 3 
PSWKRCV 10 41 6 
SBJMAINT 6 0 4 
SCHLMAIN 7 7 
SCHLMA IN 7 6 
SCHRPT 7 15 
SETMAIN 6 5 3 
SETMAINT 6 7 3 
SSCHl 9 41 7 
SSCH2 9 29 4 
SSCH3 9 24 7 
SSCHENRl 9 47 3 
SSCHENR 1 9 55 3 
SSCHENR2 9 33 5 
SSCHENR2 9 18 4 
SSCHENR3 10 30 6 
SSCHENR3 10 29 7 

SSCRSADl 10 10 4 
SSCRSAD2 9 29 7 

SSDUPL 7 30 2 
SSENR 1 10 62 8 

SSENR2 9 18 5 
SSENR3 9 36 7 

SSENROL 9 43 7 

SSLBLS 4 2 1 

SSLKENR1 10 19 5 
SSLKENR2 10 13 4 
SSLKENR3 10 15 7 
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Neme Fu net ion Points Logic Rel etl ons 

SSWKRCV 10 38 7 

SSWKRTN 10 25 7 

TCHMAINT 3 0 1 

WKRECCHG 9 8 5 

XCXLWORK 10 11 5 

XSSCHENR 9 42 7 
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Name cplx3 cpl XS LOC 

Addbeck 38 41 90 
ADDLOOK 0 0 43 
ADDMAINT 38 95 138 
ADDRSN 0 0 22 
AJFIX 0 11 41 
AJFIXADD 0 0 22 
AJPTCHK 0 0 37 
AJSTEXSB 0 0 46 
AJWKMK 0 0 51 
AJWORKMK 38 95 242 
BATCHRCV 0 0 26 
CATM 0 0 22 
CRSMAINT 0 0 36 
CRSWDL 0 11 55 
CSCHAWST 0 0 50 
CSCHCRAD 0 0 23 
CSCHENR 38 4 1 65 
CSCHSET 0 0 49 
CSCHSTMK 38 95 109 
CSCHSTWD 0 0 43 
CSCHSTWD 0 0 45 
CSCHWKWK 17 23 76 
CSCHWKRN 17 23 75 
CSCHWKRV 38 41 84 
CSCHXMEN 38 95 133 
CSCRSADl 0 11 59 
CSCRSAD1 0 11 57 
CSCRSAD2 38 41 77 
CSCRSWD 1 17 23 77 
CSCRSWD2 38 41 80 
CSCSTADR 17 23 65 
CSCSTNME 38 41 81 
CSCSTPH 38 41 89 
CSDSTCR 0 0 41 
CSEXSN 38 41 106 
CSFMSENT 17 23 72 
CSFORMM 0 0 21 
CSFMSENTX 17 23 72 

CSLCAW 17 23 98 
CSLCLSRL 17 11 61 
CSLENR 17 11 37 
CSLINSRL 0 11 55 
CSLKENR 38 23 58 
CSLKFMLST 17 23 63 
CSLKFMLSTX 17 23 62 
CSLKSTCM 38 41 88 
CSLKSTCN 38 41 88 
CSLKSUM 38 41 102 
CSLKSUM 38 41 102 
CSLKSUMX 38 41 107 
CSLKSUMX 38 41 101 
CSLPREAP 17 11 80 
CSLCSHRL 0 11 53 
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Name cplx3 cp 1 X5 LOC 

CSLSCHRL 0 11 53 
CSLSRNM1 17 11 54 
CSLSRNME 17 11 55 
CSL WORK 17 23 63 
CSL WORK 1 17 23 78 
CSL WORK 1X 17 23 78 
CSLXMENT 17 23 70 
CSQLADSB 38 41 107 
CSQLENT 38 95 198 
CSQLLOOK 38 41 118 
CSQLWDEN 38 95 142 
CSQLWDSB 38 41 88 
CSSTCOM 17 23 72 
CSSTDEF 38 95 112 
CSSTUNWD 0 0 45 
CSSTWD 1 17 11 52 
CSSTWD2 17 41 96 
CSSSTWDX 17 23 66 
CSWKMRK 17 23 77 
EXMSUBMT 0 0 29 
EXMCODEM 0 0 25 
FGMAINT 0 0 28 
FSBEN01 38 95 133 
FSBEND2 17 23 60 
FTQKCHNG 38 95 195 
INSTMAIN 0 0 36 
IPSTCHEN 0 0 32 
IXMSCALE 0 0 26 
JAJCP3M5 17 11 59 
JANESFIX 0 0 44 

JHCRSWDL 0 0 48 

JJBACK 38 41 102 
JJCP3M5 17 23 68 
JJTEST 38 41 99 
JJTEST 1 38 41 97 
LBLADD 38 95 114 
LBLCHNGE 38 95 142 
LBLLOOK 38 95 138 
LBLOSAD 38 95 119 
LBLREQST 38 41 70 
MORELBLS 17 23 57 
MORELOGS 17 23 56 
MSCHENR1 38 95 165 
MSCHENR1 38 95 266 
MSCHENR2 38 41 89 
M SCHENR3 17 23 84 
MSCHENR4 38 41 10 1 
MSCHENR4 38 41 10 1 
MSENR 1 38 95 280 
MSENR2 38 41 84 
MSENR3 0 0 48 
MSENR4 38 41 97 
MSLKENF~ 1 38 95 237 
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Neme cplx3 cpl X 5 LOC 

MSLKENR2 17 23 60 
MSLKENR3 17 23 79 
MSLKENR4 17 11 78 
MWFIXAJ 0 0 27 
PEND1 17 11 53 
PRND2 0 11 56 
PEND2 0 11 56 
PEND3 0 11 56 
PEND4 17 11 59 
PENDR2 0 0 43 
PSCENR2 0 0 48 
PSCHENR 38 95 123 
PSCHENR 38 95 12 1 
PSCHENR1 38 41 88 
PSCHENR2 17 23 84 
PSCHENR3 17 23 91 
PSCNENR1 38 41 82 
PSNENR 1~ 0 0 49 
PSCNENR3 38 41 96 
PSCRSAD1 0 11 57 
PSCRSAD2 17 23 65 
PSINENR 38 95 14 7 
PSLKENR 17 23 88 
PSLKENR1 17 23 60 
PSLKENR2 17 23 79 
PSLKENR3 17 11 80 
PSWKRCV 38 41 90 
SBJMAINT 0 0 37 
SCHLMAIN 0 11 38 
SCHLMAIN 0 11 38 
SCHRPT 17 11 44 
SETMAIN 0 0 35 
SETMAINT 0 11 36 
SSCH1 38 41 100 
SSCH2 17 23 85 
SSCH3 17 23 85 
SSCHENR 1 38 41 10 1 
SSCHENR 1 38 41 108 
SSCHENR2 38 4 1 92 
SSCHENR2 17 23 74 
SSCHENR3 38 23 134 
SSCHENR3 17 23 135 
SSCRSAD1 0 11 57 
SSCRSAD2 17 23 71 
SSDUPL 38 23 66 
SSENR 1 38 95 124 
SSENR2 17 23 74 
SSENR3 38 4 1 94 
SSENROL 38 41 102 
SSLBLS 0 0 26 
SSLKENR 1 17 23 73 
SSLKENR2 17 11 68 
SSLKENR3 17 11 114 
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Name cplx3 cpl XS LOC 

SSWKRCV 38 41 92 

SSWKRTN 17 23 78 

TCHMAINT 0 0 26 

WKRECCHG 0 11 52 

XCXLWORK 0 11 63 
XSSCHENR 38 41 104 
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Neme Tokens LOC1 LINES 

Addbeck 121 46 90 
ADDLOOK 90 43 43 
ADDMAINT 116 49 50 
ADDRSN 36 22 22 
AJFIX 74 32 32 
AJFIXADD 31 22 22 
AJPTCHK 68 37 37 
AJSTEXSB 86 46 46 
AJWKMK 165 5 1 56 
AJWORKMK 232 63 7 1 
BATCHRCV 47 26 26 
CATM 36 22 22 
CRSMAINT 73 36 36 
CRSWDL 120 45 52 
CSCHAWST 108 48 48 
CSCHCRAD 43 23 23 
CSCHENR 82 28 29 
CSCHSET 108 47 47 
CSCHSTMK 147 43 44 
CSCHSTWD 97 43 43 
CSCHSTWD 109 45 45 
CSCHWKWK 149 50 53 
CSCHWKRN 150 50 53 
CSCHWKRV 164 53 56 
CSCHXMEN 188 59 66 
CSCRSADl 132 49 57 
CSCRSADl 129 47 57 
CSCRSAD2 101 36 38 
CSCRSWD 1 155 5 1 59 
CSCRSWD2 138 49 54 
CSCSTADR 109 44 46 
CSCSTNME 124 43 44 
CSCSTPH 143 50 52 
CSDSTCR 95 41 42 
CSEXSN 163 50 53 
CSFMSENT 13 1 44 47 
CSFORMM 36 2 1 2 1 
CSFMSENTX 125 44 47 
CSLCAW 252 74 88 
CSLCLSRL 136 48 56 
CSLENR 47 22 23 
CSLINSRL 114 44 52 
CSLKENR 82 28 29 
CSLKFMLST 113 43 50 
CSLKFMLSTX 112 42 49 
CSLKSTCM 114 43 50 
CSLKSTCN 114 43 50 
CSLKSUM 226 68 8 1 
CSLKSUM 169 68 8 1 
CSLKSUMX 221 65 78 
CSLKSUMX 221 65 78 
CSLPREAP 178 67 79 
CSLCSHRL 124 44 51 
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Name Tokens LOC1 LIN ES 

CSLSCHRL 114 44 51 
CSLSRNM 1 100 40 48 
CSLSRNME 100 40 48 
CSLWORK 99 46 5 1 
CSL WORK 1 166 57 70 

. CSL WORK 1X 167 57 71 
CSLXMENT 157 53 59 
CSQLADSB 174 52 54 
CSQLENT 255 70 76 
CSQLLOOK 220 67 74 
CSQLWDEN 227 67 74 
CSQLWDSB 140 47 49 
CSSTCOM 122 44 47 
CSSTDEF 148 47 50 
CSSTUNWD 103 45 45 
CSSTWD 1 102 39 45 
CSSTWD2 186 58 65 
CSSSTWDX 114 48 51 
CSWKMRK 154 50 53 
EXMSUBMT 53 29 29 
EXMCODEM 46 25 25 
FGMAINT 50 28 28 
FSBEN01 115 38 39 
FSBEND2 111 36 38 
FTQKCHNG 213 70 77 
INSTMAIN 62 36 36 
I PST CHEN 78 29 29 
IXMSCALE 51 26 27 
JAJCP3M5 121 44 46 
JANES FIX 83 44 44 
JHCRSWDL 110 44 50 
JJBACK 199 60 62 
JJCP3M5 132 47 48 
JJTEST 211 57 58 
JJTEST 1 161 55 57 
LBLADD 98 43 44 
LBLCHNGE 100 46 48 
LBLLOOK 114 47 49 
LBLOSAD 109 49 50 
LBLREQST 83 38 39 
MORELBLS 79 30 3 1 
MORELOGS 84 31 32 
MSCHENR1 226 69 70 
MSCHENR 1 229 69 71 
M SCHENR2 113 45 47 
MSCHENR3 180 65 83 
MSCHENR4 186 68 80 
MSCHENR4 186 68 80 
MSENR 1 248 70 71 
MSENR2 112 45 48 
MSENR3 138 44 50 
MSENR4 202 62 70 
MSLKENR1 183 6 1 63 
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Neme Tokens LOCl LINES 

MSLKENR2 114 44 47 
MSLKENR3 163 63 78 
M SLKENR4 192 66 79 
MWFIXAJ 47 27 27 
PEND1 89 41 43 
PRND2 104 45 46 
PEND2 103 45 45 
PEND3 10 1 46 46 
PEND4 92 46 47 
PENDR2 81 43 43 

PSCENR2 137 44 50 
PSCHENR 172 58 59 
PSCHENR 170 58 58 
PSCHENR1 113 45 47 
PSCHENR2 185 65 83 
PSCHENR3 187 68 80 
PSCNENR1 113 45 47 
PSNENR2 128 45 51 
PSCNENR3 196 61 69 
PSCRSADl 131 47 55 
PSCRSAD2 114 37 39 
PSINENR 187 60 6 1 
PSLKENR 162 59 6 1 
PSLKENR1 117 44 47 
PSLKENR2 165 63 78 
PSLKENR3 194 68 80 
PSWKRCV 146 49 52 
SBJMAINT 93 37 42 
SCHLMAIN 64 3 1 3 1 
SCHLMAIN 64 32 32 
SCHRPT 57 29 30 
SETMAIN 75 30 30 
SETMAINT 69 29 29 
SSCH1 195 59 61 
SSCH2 154 56 68 
SSCH3 173 6 1 74 
SSCHENR 1 155 54 56 
SSCHENR 1 157 53 56 
SSCHENR2 163 59 71 
SSCHENR2 142 56 68 
SSCHENR3 218 104 102 
SSCHENR3 225 106 104 
SSCRSAD1 130 47 55 
SSCRSAD2 133 42 44 
SSDUPL 88 36 37 
SSENR 1 220 62 64 
SSENR2 151 56 65 
SSENR3 168 58 68 
SSENROL 201 59 6 1 
SSLBLS 47 24 24 
SSLKENR 1 153 54 56 
SSLKENR2 144 55 66 
SSLKENR3 217 99 97 
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N(3 mA T0kens LOC1 LINES 

SSWl<R CV .. < (\ 
I ,•,J 54 5 6 

3SWKRTN 169 53 53 
TCHMAINT 42 26 26 
WKRECCHG 124 4 4 44 
XCXL WOR K 160 52 59 
XSSCHENR 215 62 64 
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AS ALL Reference Reports 
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Name Data elements Line types LDC 

ADLBLCR 3 2 78 
ADLBLCR 3 2 77 
ADFTSFC 28 2 125 
ADFTSFC 13 11 127 
ADFTSFC 30 5 134 
ADFTSFC 13 6 125 
CATREP 3 18 
CHECKBT 15 46 
CLASSCH 8 32 
CLASSLS 7 2 26 
COD 4 1 23 
COD3 19 17 119 
COMTRPT 7 7 50 
COUNTGU 11 9 50 
CRSHQWD 6 3 26 
CRCHQWD 11 0 26 
CRDWD 14 8 66 
CRNOFMG 5 1 22 
CRSCH 3 1 28 
CRSLIST 12 8 49 
CRSLIST 12 8 111 
CRSLIST 12 8 47 
CRSLTES 12 8 107 
CRSMKF I 4 2 83 
CRSNME 3 1 17 
CRSUBJ 12 8 50 
CRSWDLH 14 8 61 
CRSWDLH 14 8 66 
CRZIP 3 23 
CS/SS/5 18 9 60 
csss8oF 15 13 110 
csss8o 15 10 112 
DATACHK 24 4 59 
DATACHK 24 4 58 
DATACHK 14 4 114 
DEANZ 4 1 26 
DEFAULT 16 9 70 
DEFAULT 16 9 68 
DEFAULT 16 8 63 
DJCHECK 14 10 70 
DJCHECK 21 9 99 
DJFMLST 17 8 97 
DJINSLS 7 5 35 
FORMLIST 9 3 31 
FORM LIST 10 3 31 
FPLOGCT 15 17 129 
FTSSG 10 3 35 
FTSSG 10 3 35 
IXMRANK 16 10 69 

IXMRANK 15 10 70 

IXMST11 55 65 432 
IXMST12. 55 65 433 

IXMSTAA 55 65 432 
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Name Date elements Line types LOC 

IXMSTAB 55 65 433 
IXMSTAT 55 65 432 
IXMSTAT 55 65 432 
IXMSTA 55 65 431 
LBLIST 8 2 24 
LBLLIST 8 2 24 
LBLNZCH 11 2 34 
LOGCT1 8 5 39 
LOGCT1 12 5 56 
LOGCT2 7 5 37 
LOGCT2 7 5 38 
LOGCT3 9 5 41 
LOGCT4 20 8 62 
LOGCTJH 14 17 130 
LOGHDR1 34 10 82 
LOGHDR5 27 0 112 
MSCRSLS 12 10 51 
MSFMLST 20 8 102 
MWLOGHD 32 1 126 
NMEDIST 7 4 33 
PENDR3 17 15 54 
PENDRPT 7 4 25 
PENDRPT 7 4 24 
PROLLCT 12 8 45 
PROLLCT 11 8 45 
PROLLCT 11 7 51 
PROLLCT 11 8 58 
PROLLCT 13 7 62 
PROLLCT 13 7 63 
PRFCMAY 15 15 123 
PTFCMAY 40 28 156 
PTFMLST 11 10 68 
PRLOGHD 28 1 120 
PTMAYRO 11 16 76 
PTN02DE 6 3 30 
REPORT1 6 8 51 
ROLLCT 1 11 4 38 
SCHLILST 4 3 18 
SCHROL1 6 4 51 
SCHROLZ 19 2 72 

SCHROL 6 2 30 
SCHROL 14 3 70 
SCHROLL 15 3 64 
SCHRPT1 14 2 63 
SCHRPTA 16 2 66 
SCHTOLD 8 4 39 
SCHRPT 12 10 34 
SETDELA 19 9 75 
SETDELAY 19 9 79 
SFCRANK 3 2 45 
SFCRANK 3 2 52 
SFCRANK 3 2 51 
SFCSTAT 9 9 239 
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Name Data elements Line types LOC 

SILOGHD 33 2 154 
SMFMLST 13 10 77 

SROLLCT 11 8 48 
SROLCT 1 11 8 45 
SSACMAV 15 15 123 
SSACMAV 41 29 239 
SSACTMAV 40 29 285 
SSCHKl 18 4 133 
SSCHKl 18 4 135 
SSCHK2 12 7 68 
SSCHK3 12 11 77 
SSCHK3 13 11 77 
SSCHKAJ 11 9 74 
SSFMLST 16 8 75 
SSFMLST 20 10 105 
SSFTMAV 15 15 123 
SSFTMAV 40 28 240 
SSGFORM 8 5 32 
SSGRPT1 24 26 137 
SSGRPT2 39 28 205 
SSLOGHD 33 2 139 
SSLOGHD 29 2 128 
SSLOGHD 30 2 129 
SSLOGRP 30 2 127 
SSMAVRO 40 28 258 
TEST 6 20 
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Name Logic Relations Logical reports 

IXMSTAB 292 7 
IXMSTAT 291 7 
IXMSTAT 291 7 
IXMSTA 290 7 
LBLIST 1 
LBLLIST 
LBLNZCH 8 
LOGCT1 5 3 
LOGCTl 16 4 
LOGCT2 5 2 
LOGCT2 6 2 
LOGCT3 5 4 
LOGCT4 12 4 
LOGCTJH 5 1 5 
LOGHDR1 21 6 1 
LOGHDRS 58 8 3 
MSCRSLS 6 6 
MSFMLST 43 5 1 
MW LOG HD 63 10 3 
NMEDIST 7 1 
PENDR3 7 1 
PENDRPT 2 
PENDRPT 1 1 
PROLLCT 7 2 
PROLLCT 7 2 
PROLLCT 16 
PROLLCT 21 
PROLLCT 24 
PROLLCT 24 1 
PRFCMAY 46 2 
PTFCMAY 86 2 1 
PTFMLST 22 4 2 
PRLOGHD 62 9 3 
PTMAYRO 33 2 1 
PTNO2DE 7 
REPORT1 18 1 
ROLLCT 1 7 2 1 
SCHLILST 0 1 1 
SCHROL1 20 4 2 
SCHROL2 2 1 5 3 
SCHROL 2 3 2 
SCHROL 2 1 5 3 
SCHROLL 15 4 3 

SCHRPT1 21 5 3 
SCHRPTA 2 1 5 3 

SC HT OLD 5 4 2 
SCHRPT 0 1 
SETDELA 13 5 
SETDELAY 16 5 
SFCRANK 21 6 
SFCRANK 28 6 
SFCRANK 27 6 
SFCSTAT 201 7 
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Name Log1 c Rel at1 ons Logical reports 

SILOGHD 82 12 4 
SMFMLST 25 5 2 
SROLLCT 10 2 
SROLCTl 7 2 
SSACMAV 46 2 
SSACMAV 109 3 

SSACTMAV 86 2 
SSCHKl 79 10 4 
SSCHKl 79 10 4 
SSCHK2 22 4 2 
SSCHK3 25 5 2 
SSCHK3 25 5 2 
SSCHKAJ 28 4 2 
SSFMLST 20 5 2 
SSFMLST 43 5 2 
SSFTMAV 46 2 
SSFTMAV 86 2 
SSGFORM 3 2 
SSGRPTl 74 1 
SSGRPT2 111 1 1 
SSLOGHD 70 11 4 
SSLOGHD 68 10 3 
SSLOGHD 68 10 3 
SSLOGRP 67 9 3 
SSMAVRO 88 2 
TEST 0 
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Name Log I c Relations Logical reports 

ADLBLCR 53 6 
ADLBLCR 52 6 
ADFTSFC 71 8 2 
ADFTSFC 82 7 1 
ADFTSFC 73 9 2 
ADFTSFC 82 7 
CATREP 
CHECKBT 14 3 
CLASSCH 3 4 2 
CLASSLS 0 3 2 
COD 3 2 
COD3 37 2 
COMTRPT 10 2 
COUNTGU 12 2 
CRSHQWD 4 2 
CRCHQWD 4 2 
CRDWD 19 7 
CRNOFMG 3 1 
CRSCH 9 3 
CRSLIST 6 6 
CRSLIST 65 9 
CRSLIST 4 6 
CRSLTES 61 9 
CRSMKF I 61 2 
CRSNME 0 2 
CRSUBJ 7 6 
CRSWDLH 14 7 
CRSWDLH 19 7 
CRZIP 5 2 1 
CS/SS/5 7 4 3 
CSSS80F 58 5 1 
CSSS80 63 5 
DATACHK 16 3 
DATACHK 15 3 1 
DATACHK 65 6 4 
DEANZ 7 2 
DEFAULT 18 4 

DEFAULT 16 4 
DEFAULT 13 4 

DJCHECK 20 5 
DJCHECK 31 7 3 
DJFMLST 43 5 2 
DJINSLS 6 2 
FORM LIST 3 2 
FORMLIST 3 2 
FPLOGCT 49 5 
FTSSG 7 2 
FTSSG 7 2 
IXMRANK 17 5 
IXMRANK 17 5 
IXMSTl 1 291 7 
IXMST 12 292 7 
IXMSTAA 291 7 
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Neme Sort fl el ds Control breaks cp 1 X 3 

ADLBLCR 3 2 70 
ADLBLCR 3 2 70 
ADFTSFC 2 0 70 
ADFTSFC 4 2 70 
ADFTSFC 3 70 
ADFTSFC 4 2 70 
CATREP 1 0 5 
CHECKBT 1 0 20 
CLASSCH 3 0 5 
CLASSLS 0 5 
COD 5 
COD3 2 2 20 
COMTRPT 1 2 5 
COUNTGU 2 3 20 
CRSHQWD 0 0 5 
CRCHQWD 0 0 5 
CRDWD 5 3 20 
CRNOFMG 1 0 5 
CRSCH 2 0 5 
CRSLIST 5 2 5 
CRSLIST 5 2 70 
CRSLIST 4 2 5 
CRSLTES 5 2 70 
CRSMKFI 3 2 70 
CRSNME 0 0 5 
CRSUBJ 5 2 5 
CRSWDLH 5 3 20 
CRSWDLH 5 3 20 
CRZIP 0 5 
CS/5S/s 4 2 5 
CSSSBOF 5 2 70 
csssso 5 2 70 
DATACHK 1 0 20 
DATACHK 0 20 
DATACHK 1 0 70 
DEANZ 2 0 5 
DEFAULT 3 2 20 
DEFAULT 3 2 20 
DEFAULT 2 1 20 
DJCHECK 4 2 20 
DJ CHECK 7 3 20 
DJFMLST 3 2 20 
DJINSLS 2 0 5 
FORMLIST 2 5 
FORM LIST 2 1 5 
FPLOGCT 3 3 70 
FTSSG 2 5 
FTSSG 2 5 
I XMRANK 2 1 20 
I XMRANK 4 2 20 
IXMST 11 2 2 70 
IXMST 12 2 2 70 
IXMSTAA 2 2 70 

269 



Neme Sort f I el ds Control breaks cpl X3 

IXMSTAB 2 2 70 
IXMSTAT 2 2 70 
IXMSTAT 2 2 70 
IXMSTA 2 2 70 
LBLIST 1 0 5 
LBLLIST 5 0 5 
LBLNZCH 2 0 5 
LOGCT1 1 2 5 
LOG CT 1 2 20 
LOGCT2 2 5 
LOGCT2 2 5 
LOGCT3 1 2 5 
LOGCT4 3 4 20 
LOGCTJH 2 3 70 
LOGHDR1 4 1 20 
LOGHDRs 4 0 70 
MSCRSLS 5 2 5 
MSFMLST 3 2 20 
MWLOGHD 5 70 
NMEDIST 1 5 
PENDR3 0 5 
PENDRPT 0 5 
PENDRPT 0 5 
PROLLCT 2 5 
PROLLCT 2 5 
PROLLCT 2 20 
PROLLCT 2 20 
PROLLCT 1 2 20 
PROLLCT 1 2 20 
PRFCMAV 2 1 70 
PTFCMAV 1 2 70 
PTFMLST 3 20 
PRLOGHD 5 2 70 
PTMAVRO 2 2 20 
PTN02DE 0 1 5 
REPORT1 2 2 20 
ROLLCT1 1 2 5 

SCHLILST 1 0 5 

SCHROLi 2 0 20 
SCHROL2 4 0 20 
SCHROL 1 0 5 

SCHROL 3 0 20 
SCHROLL 3 0 20 
SCHRPT1 2 0 20 
SCHRPTA 2 0 20 
SCHTOLD 4 1 5 

SCHRPT 0 0 5 
SETDELA 5 3 20 
SETDELAV 5 3 20 
SFCRANK 2 20 
SFCRANK 2 20 
SFCRANK 2 20 
SFCSTAT 1 70 

270 



Name Sort ft elds Control breaks C p 1 X 3 

SILOGHD 6 2 70 
SMFMLST 5 2 20 
SROLLCT 2 5 

SROLCT1 2 5 

SSACMAY 2 1 70 
SSACMAY 2 2 70 
SSACTMAY 1 2 70 
SSCHK1 1 0 70 
SSCHK1 1 0 70 
SSCHK2 5 2 20 
SSCHK3 5 2 20 
SSCHK3 5 2 20 
SSCHKAJ 2 20 
SSFMLST 3 1 20 
SSFMLST 3 2 20 
SSFTMAY 2 1 70 
SSFTMAY 2 70 
SSGFORM 2 5 

SSGRPT1 0 70 
SSGRPT2 2 3 70 
SSLOGHD 6 1 70 
SSLOGHD 5 70 
SSLOGHD 5 70 
SSLOGRP 5 70 
SSMAYRO 1 2 70 
TEST 5 0 5 
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Name LINES LOC1 function points cplx5 

ADLBLCR 24 25 5 46 
ADLBLCR 24 25 5 46 
ADFTSFC 52 54 7 82 
ADFTSFC 38 45 7 82 
ADFTSFC 57 61 7 82 
ADFTSFC 33 43 7 82 
CATREP 17 17 4 3 
CHECKBT 32 32 5 7 
CLASSCH 29 29 7 3 
CLASSLS 24 26 5 3 
COD 19 20 4 3 
COD3 35 82 5 46 
COMTRPT 3 1 40 5 7 
COUNTGU 28 38 5 7 
CRSHQWD 21 22 5 3 
CRCHQWD 18 22 5 3 
CRDWD 36 47 7 20 
CRNOFMG 18 19 4 3 
CRSCH 19 19 4 7 
CRSLIST 32 43 7 3 
CRSLIST 35 46 7 82 
CRSLIST 32 43 7 3 
CRSLTES 35 46 7 46 
CRSMKFI 2 1 22 4 46 
CRSNME 17 17 4 3 
CRSUBJ 32 43 7 7 
CRSWDLH 36 47 7 7 
CRSWDLH 36 47 7 20 
CRZIP 18 18 4 3 
CS/SS/5 49 53 7 7 
CSSS80F 35 49 7 46 
CSSS80 38 52 7 46 
DATACHK 40 43 7 20 
DATACHK 40 43 7 7 
DATACHK 45 49 7 82 
DEANZ 19 19 4 7 
DEFAULT 35 52 7 20 
DEFAULT 35 52 7 20 
DEFAULT 34 50 7 7 
DJCHECK 37 50 7 20 
DJCHECK 55 68 7 46 

DJFMLST 40 54 7 46 
DJINSLS 23 29 5 3 
FORMLIST 22 28 5 3 
FORMLIST 22 28 5 3 
FPLOGCT 41 80 7 46 
FTSSG 22 28 5 7 
FTSSG 22 28 5 7 
IXMRANK 36 52 7 20 
I XMRANK 37 53 7 20 
IXMST 11 87 164 7 82 
IXMST12 87 164 7 82 
IXMSTAA 87 164 7 82 
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Neme LINES LOC1 function points cplxs 

IXMSTAB 87 164 7 82 
IXMSTAT 87 164 7 82 
IXMSTAT 87 164 7 82 
IXMSTA 87 164 7 82 
LBLIST 20 23 4 3 
LBLLI ST 20 23 4 3 
LBLNZCH 24 26 4 7 
LOGCT1 2 1 34 5 3 
LOG CT 1 27 40 7 20 
LOGCT2 24 32 5 3 
LOGCT2 24 32 5 3 
LOGCT3 28 36 7 3 
LOGCT4 35 50 7 7 
LOGCTJH 52 90 7 46 
LOGHDR1 51 64 7 20 
LOGHDR5 54 54 7 46 
MSCRSLS 34 45 7 3 
MSFMLST 41 59 7 46 
MWLOGHD 62 63 7 46 
NMEDIST 21 26 4 7 
PENDR3 41 47 4 7 
PENDRPT 2 1 23 4 3 
PENDRPT 21 23 4 3 
PROLLCT 28 38 5 7 
PROLLCT 28 38 5 7 
PROLLCT 23 35 4 20 
PROLLCT 25 37 4 20 
PROLLCT 24 38 4 20 
PROLLCT 24 39 4 20 
PRFCMAV 32 77 5 46 
PTFCMAV 168 192 7 82 
PTFMLST 36 46 7 20 
PRLOGHD 57 58 7 46 
PTMAVRO 35 43 5 46 
PTN02DE 19 23 4 7 
REPORT! 25 33 4 20 
ROLLCT 1 24 31 5 7 
SCHLILST 19 18 4 3 
SCHROLi 28 31 7 20 
SCHROL2 47 51 7 20 
SCHROL 24 28 5 3 
SCHROL 41 49 7 20 
SCHROLL 41 49 7 7 
SCHRPT1 39 42 7 20 
SCHRPTA 42 45 7 20 
SC HT OLD 31 34 7 3 
SCHRPT 28 34 4 3 
SETDELA 37 62 7 7 
SET DELAY 37 63 7 20 
SFCRANK 24 24 7 20 
SFCRANK 24 24 7 46 
SFCRANK 24 24 7 46 
SFCSTAT 30 38 7 82 
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Neme LINES LOC1 funct 1 on points cpl XS 

SILOGHD 7 1 72 7 82 
SMFMLST 40 52 7 46 
SROLLCT 28 38 5 7 
SROLCT1 28 38 5 7 
SSACMAV 32 77 5 46 
SSACMAV 58 130 7 82 
SSACTMAV 136 208 7 82 
SSCHK1 50 54 7 82 
SSCHK1 52 56 7 82 
SSCHK2 37 46 7 20 
SSCHK3 41 52 7 20 
SSCHK3 41 52 7 20 
SSCHKAJ 37 46 7 46 
SSFMLST 40 55 7 20 
SSFMLST 45 62 7 46 
SSFTMAV 32 77 5 46 
SSFTMAV 82 154 7 82 
SSGFORM 22 29 5 3 
SSGRPT1 42 63 5 82 
SSGRPT2 48 95 5 82 
SSLOGHD 69 69 7 82 
SSLOGHD 60 60 7 82 
SSLOGHD 60 6 1 7 82 
SSLOGRP 59 60 7 82 
SSMAVRO 98 170 7 82 
TEST 20 20 4 3 
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AS.I Non-Statistical Reports 
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Name Date elements Line types Rel ett ons 

ADLBLCR 3 2 6 
ADLBLCR 3 2 6 
ADFTSFC 28 2 8 
ADFTSFC 13 11 7 
ADFTSFC 30 s 9 
ADFTSFC 13 6 7 
CATREP 3 
CHECKBT 1 S 1 3 
CLASSCH 8 1 4 
CLASSLS 7 2 3 
COD 4 1 2 
COD3 19 17 2 
COMTRPT 7 7 2 
COUNTGU 11 9 2 
CRSHQWD 6 3 2 
CRCHQWD 11 0 2 
CROWD 14 8 7 
CRNOFMG s 1 
CRSCH 3 3 
CRSLIST 12 8 6 
CRSLIST 12 8 9 
CRSLIST 12 8 6 
CRSLTES 12 8 9 
CRSMKFI 4 2 2 
CRSNME 3 2 
CRSUBJ 12 8 6 
CRSWDLH 14 8 7 
CRSWDLH 14 8 7 
CRZIP 3 2 
CS/SS/s 18 9 4 
CSSS80F 1 S 13 s 
CSSS80 1 S 10 s 
DATACHK 24 4 3 
DATACHK 24 4 3 
DATACHK 14 4 6 
DEANZ 4 1 2 
DEFAULT 16 9 4 
DEFAULT 16 9 4 
DEFAULT 16 8 4 
DJCHECK 14 10 s 
DJCHECK 2 1 9 7 
DJFMLST 17 8 s 
DJINSLS 7 s 2 
FORM LIST 9 3 2 
FORM LIST 10 3 2 
FPLOGCT 15 17 s 
FTSSG 10 3 2 
FTSSG 10 3 2 
IXMRANK 16 10 s 
IXMRANK 1 S 10 s 
LBLIST 8 2 
LBLLIST 8 2 
LBLNZCH 11 2 
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Name Date elements Line types Relet1ons 

LOGCTl 8 5 3 
LOGCTl 12 5 4 
LOGCT2 7 5 2 
LOGCT2 7 5 2 
LOGCT3 9 5 4 
LOGCT4 20 8 4 
LOGCTJH 14 17 5 
LOGHDR1 34 10 6 
LOGHDR5 27 0 8 
MSCRSLS 12 10 6 
MSFMLST 20 8 5 
MWLOGHD 32 10 
NMEDIST 7 4 
PENDR3 17 15 
PENDRPT 7 4 
PENDRPT 7 4 
PROLLCT 12 8 2 
PROLLCT 11 8 2 
PROLLCT 11 7 
PROLLCT 11 8 
PROLLCT 13 7 
PROLLCT 13 7 1 
PRFCMAY 15 15 2 

PTFCMAY 40 28 2 
PTFMLST 11 10 4 
PRLOGHD 28 9 
PTMAYRO 11 16 2 
PTN02DE 6 3 
REPORTl 6 8 1 
ROLLCT 1 11 4 2 
SCHLILST 4 3 1 
SCHROL1 6 4 4 
SCHROL2 19 2 5 
SCHROL 6 2 3 
SCHROL 14 3 5 
SCHROLL 15 3 4 
SCHRPTl 14 2 5 
SCHRPTA 16 2 5 
SCHTOLD 8 4 4 
SCHRPT 12 10 1 
SETDELA 19 9 5 
SETDELAY 19 9 5 
SFCRANK 3 2 6 

SFCRANK 3 2 6 

SFCRANK 3 2 6 

SILOGHD 33 2 12 
SMFMLST 13 10 5 
SROLLCT 11 8 2 
SROLCTl 11 8 2 
SSACMAY 15 15 2 

SSCHKl 18 4 10 
SSCHK1 18 4 10 
SSCHK2 12 7 4 
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Name Data elements Line types Relations 

SSCHK3 12 11 5 
SSCHK3 13 11 5 
SSCHKAJ 11 9 4 
SSFMLST 16 8 5 
SSFMLST 20 10 5 
SSFTMAV 15 15 2 
SSGFORM 8 5 2 
SSGRPT1 24 26 
SSGRPT2 39 28 
SSLOGHD 33 2 11 
SSLOGHD 29 2 10 
SSLOGHD 30 2 10 
SSLOGRP 30 2 9 
TEST 6 
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Name Logf c Logf cal Reports Sort Fields 

ADLBLCR 53 1 3 
ADLBLCR 52 1 3 
ADFTSFC 71 2 2 
ADFTSFC 82 1 4 
ADFTSFC 73 2 3 
ADFTSFC 82 4 
CATREP 
CHECKBT 14 1 1 
CLASSCH 3 2 3 
CLASSLS 0 2 
COD 3 1 
C0D3 37 2 
COMTRPT 10 1 
COUNTGU 12 2 
CRSHQWD 4 0 
CRCHQWD 4 0 
CROWD 19 5 
CRNOFMG 3 1 
CRSCH 9 2 
CRSLIST 6 5 
CRSLIST 65 5 
CRSLIST 4 4 
CRSLTES 61 5 
CRSMKF j 61 3 
CRSNME 0 0 
CRSUBJ 7 5 
CRSWDLH 14 5 
CRSWDLH 19 5 
CRZIP 5 1 
CS/SS/5 7 3 4 
csss8oF 58 1 5 
csSS8o 63 5 
DATACHK 16 
DATACHK 15 
DATACHK 65 4 
DEANZ 7 2 
DEFAULT 18 3 
DEFAULT 16 3 
DEFAULT 13 2 
DJCHECK 20 4 
DJCHECK 31 3 7 
DJFMLST 43 2 3 
DJINSLS 6 2 
FORM LIST 3 2 

FORMLIST 3 2 

FPLOGCT 49 3 
FTSSG 7 2 
FTSSG 7 2 

IXMRANK 17 2 

IXMRANK 17 4 

LBLIST 
LBLLIST 1 5 
LBLNZCH 8 2 
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Name Logic Logical Reports Sort Fields 

LOGCTl 5 
LOG CT 1 16 
LOGCT2 5 
LOGCT2 6 
LOGCT3 5 1 
LOGCT4 12 3 
LOGCTJH 5 1 1 2 
LOGHDRl 2 1 1 4 
LOGHDR5 58 3 4 
MSCRSLS 6 5 
MSFMLST 43 1 3 
MWLOGHD 63 3 5 
NMEDIST 7 1 
PENDR3 7 
PENDRPT 2 
PENDRPT 
PROLLCT 7 
PROLLCT 7 
PROLLCT 16 
PROLLCT 2 1 
PROLLCT 24 
PROLLCT 24 1 
PRFCMAY 46 2 
PTFCMAY 86 1 1 
PTFMLST 22 2 3 
PRLOGHD 62 3 5 
PTMAYRO 33 2 
PTNO2D~ 7 0 
REPORT1 18 2 
ROLLCT 1 7 1 
SCHLILST 0 1 
SCHROLl 20 2 2 
SCHRDL2 2 1 3 4 
SCHROL 2 2 1 
SCHROL 2 1 3 3 
SCHROLL 15 3 3 
SCHRPT1 2 1 3 2 
SCHRPTA 2 1 3 2 
SCHTOLD 5 2 4 
SCHRPT 0 0 
SETDELA 13 5 
SETDELAY 16 5 
SFCRANK 2 1 2 
SFCRANK 28 2 
SFCRANK 27 1 2 
SILOGHD 82 4 6 
SMFMLST 25 2 5 
SROLLCT 10 1 
SROLCTl 7 1 
SSACMAY 46 2 
SSCHKl 79 4 
SSCHK1 79 4 1 
SSCHK2 22 2 5 
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Nome Log I c Loglcol Reports Sort Fields 

SSCHK3 25 2 5 
SSCHK3 25 2 5 
SSCHKAJ 28 2 2 
SSFMLST 20 2 3 
SSFMLST 43 2 3 
SSFTMAV 46 2 
SSGFORM 3 2 
SSGRPT1 74 0 
SSGRPT2 1 1 1 2 
SSLOGHD 70 4 6 
SSLOGHD 68 3 5 
SSLOGHD 68 3 5 
SSLOGRP 67 3 5 
TEST 0 5 
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Neme Control Breeks cpl X3 cplxs LOC 

ADLBLCR 2 60 68 78 
ADLBLCR 2 60 28 77 

ADFTSFC 0 60 68 125 
ADFTSFC 2 60 68 127 
ADFTSFC 1 60 68 134 
ADFTSFC 2 60 68 125 
CATREP 0 4 3 18 
CHECKBT 0 17 17 46 
CLASSCH 0 4 3 32 
CLASSLS 0 4 3 26 
COD 1 4 3 23 
COD3 2 60 28 119 
COMTRPT 2 17 7 50 
COUNTGU 3 17 7 50 
CRSHQWD 0 4 3 26 
CRCHQWD 0 4 3 26 
CROWD 3 17 17 66 
CRNOFMG 0 4 3 22 
CRSCH 0 17 7 28 
CRSLIST 2 4 7 49 
CRSLIST 2 60 68 111 
CRSLIST 2 4 3 47 
CRSLTES 2 60 68 107 
CRSMKF I 2 60 68 83 

CRSNME 0 4 3 17 

CRSUBJ 2 4 7 50 
CRSWDLH 3 17 17 61 
CRSWDLH 3 17 17 66 
CRZIP 0 4 3 23 
CS/SS/5 2 4 7 60 
CSSS80F 2 60 68 110 
CSSS80 2 60 68 112 
DATACHK 0 17 17 59 
DATACHK 0 17 17 58 
DATACHK 0 60 68 114 
DEANZ 0 4 7 26 

DEFAULT 2 17 17 70 
DEFAULT 2 17 17 68 
DEFAULT 1 17 7 63 
DJCHECK 2 17 17 70 
DJCHECK 3 60 28 99 
DJFMLST 2 60 28 97 

DJINSLS 0 4 7 35 

FORM LIST 4 3 31 
FORM LIST 4 3 31 
FPLOGCT 3 60 28 129 
FTSSG 4 7 35 

FTSSG 4 7 35 

IXMRANK 1 17 17 69 

IXMRANK 2 17 17 70 

LBLIST 0 4 3 24 
LBLLIST 0 4 3 24 

LBLNZCH 0 17 7 34 
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Name Control Breaks cp 1 X 3 Cpl X 5 LOC 

LOGCTl 2 4 3 39 
LOGCTl 2 17 17 56 
LOGCT2 2 4 3 37 
LOGCT2 2 4 7 38 
LOGCT3 2 4 3 41 
LOGCT4 4 17 7 62 
LOGCTJH 3 60 28 130 
LOGHDR1 1 17 17 82 
LOGHDR5 0 60 68 112 
MSCRSLS 2 4 7 51 
MSFMLST 2 60 28 102 
MWLOGHD 60 68 126 
NMEDIST 4 7 33 
PENDR3 0 4 7 54 
PENDRPT 0 4 3 25 
PENDRPT 0 4 3 24 
PROLLCT 2 4 7 45 
PROLLCT 2 4 7 45 
PROLLCT 2 17 17 51 
PROLLCT 2 17 17 58 
PROLLCT 2 17 28 62 
PROLLCT 2 17 28 63 
PRFCMAY 1 60 28 123 
PTFCMAY 2 60 68 156 
PTFMLST 1 17 28 68 
PRLOGHD 2 60 68 120 
PTMAYRO 2 60 28 76 
PTN02DE 1 4 7 30 
REPORTl 2 17 17 51 
ROLLCT 1 2 4 7 38 
SCHLILST 0 4 3 18 
SCHROL1 0 17 17 51 
SCHROL2 0 17 17 72 

SCHROL 0 4 3 30 
SCHROL 0 17 17 70 
SCHROLL 0 17 17 64 
SCHRPT1 0 17 17 63 
SCHRPTA 0 17 17 66 
SCHTOLD 1 4 3 39 
SCHRPT 0 4 3 34 
SETDELA 3 . 17 7 75 
SETDELAY 3 17 17 79 
SFCRANK 17 17 45 
SFCRANK 60 28 52 
SFCRANK 1 60 28 51 
SILOGHD 2 60 68 154 
SMFMLST 2 17 28 77 
SROLLCT 2 17 7 48 
SROLCT1 2 4 7 45 
SSACMAY 1 60 28 123 
SSCHK1 0 60 68 133 
SSCHK1 0 60 68 135 
SSCHK2 2 17 28 68 
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Nome Control Breaks cpl X3 cpl XS LDC 

SSCHK3 2 17 28 77 
SSCHK3 2 17 28 77 
SSCHKAJ 60 28 74 
SSFMLST 1 17 17 75 
SSFMLST 2 60 28 105 
SSFTMAY 60 68 123 
SSGFORM 4 3 32 
SSGRPT1 1 60 68 137 
SSGRPT2 3 60 68 205 
SSLOGHD 60 68 139 
SSLOGHD 60 68 128 
SSLOGHD 60 68 129 
SSLOGRP 60 68 127 
TEST 0 4 3 20 
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Name Data elements Line Types Log1 cal Reports 

IXMST 11 55 65 
IXMST 12 55 65 
IXMSTAA 55 65 
IXMSTAB 55 65 
IXMSTAT 55 65 
IXMSTAT 55 65 
IXMSTA 55 65 
SFCSTAT 9 9 
SSACMAV 41 29 
SSACTMAY 40 29 
SSFTMAV 40 28 
SSMAYRO 40 28 
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Name Sort Fields Control Breaks cplx3 

IXMST11 2 2 87 
IXMST 12 2 2 87 
IXMSTAA 2 2 87 
IXMSTAB 2 2 175 
IXMSTAT 2 2 175 
IXMSTAT 2 2 291 
IXMSTA 2 2 291 
SFCSTAT 1 1 291 
SSACMAV 2 2 291 
SSACTMAV 2 291 
SSFTMAY 2 291 
SSMAVRO 2 291 
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Name logics Relations LOC 

IXMST11 291 7 432 
IXMST 12 292 7 433 
IXMSTAA 291 7 432 
IXMSTAB 292 7 433 
IXMSTAT 291 7 432 
IXMSTAT 291 7 432 
IXMSTA 290 7 431 
SFCSTAT 201 7 239 
SSACMAY 109 3 239 
SSACTMAY 86 2 285 
SSFTMAY 86 2 240 
SSMAYRO 88 2 258 
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A6 ALL Reference Updates 
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Name Cont ro I breaks Dete elements Logical updates 

Adlblcr 0 6 
Agefix 0 2 
Adfixrs 0 1 
ajfixu 0 7 2 
Best id 0 2 
Btchclr 0 1 

Chngefm 0 3 
Chngesf 0 

Chngefn 0 3 
Crsmk 1 0 26 
Crsmk2 0 26 
Crsmk3 0 26 
Crsmk4 0 26 1 
Crssumu 0 13 2 
Crssumu 13 1 
Crsup 1 0 2 1 
Cslwk 0 5 2 

Csstwd3 0 7 
Cuscrse 0 0 2 
Custrst 0 0 

Custid 0 2 
Lblcust 0 2 
Logflag 0 2 
Morel bl 0 2 
Morel bl 0 2 
Morelog 0 3 

Ptpen1u 0 2 
Sfcbset 0 3 

SSduplu 0 8 

SSfmfix 0 6 
Stschnm 0 5 
Xcrnum 2 
Xfcform 4 
Xf cform 4 
Xrpstcr 0 2 1 
Xrpstcr 0 0 2 
Xrschst 0 0 2 

Xrschst 0 3 1 

Xrstcrs 0 2 1 

Xrstcrs 0 0 2 
Xrstln 0 0 

Xrstln 0 0 

Xrstsch 0 4 
XRSTSCHU 0 4 
Xrstsp 0 0 1 

Xrstsp 0 0 2 

Xrstsp 0 0 1 
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Name Relations Sort Fields cpl X3 cpl X5 

Adlblcr 3 0 10 10 
Agefix 0 10 10 
Adfixrs 0 3 3 
ejfixu 3 0 10 10 
Best id 1 0 10 10 
Btchclr 0 3 3 
Chngefm 0 3 3 
Chngesf 0 3 3 
Chngefn 0 3 3 
Crsmk 1 4 0 88 88 

Crsmk2 3 0 88 88 
Crsmk3 4 0 88 88 

Crsmk4 3 0 88 88 

Crssumu 3 2 10 34 
Crssumu 2 4 10 34 
Crsup1 0 10 34 
Cslwk 4 3 3 
Csstwd3 1 1 10 10 

Cuscrse 2 0 3 3 
Custrst 3 0 3 3 
Custid 0 10 34 

Lblcust 0 10 34 
Logfleg 3 3 
Morel bl 3 3 

Morel bl 3 3 

Morelog 3 3 
Ptpen1u 1 0 10 38 

Sfcbset 2 0 3 3 

SSduplu 2 0 10 10 

SSfmfix 2 0 3 3 

Stschnm 2 0 3 3 

Xcrnum 2 10 10 

Xfcform 3 10 10 
Xfcform 3 10 10 
Xrpstcr 3 0 3 3 

Xrpstcr 2 0 3 3 

Xrschst 2 2 3 3 
Xrschst 3 3 3 3 

Xrstcrs 3 0 3 3 

Xrstcrs 2 0 3 3 

Xrstln 3 2 3 3 

Xrstln 2 2 3 3 

Xrstsch 3 0 3 3 

XRSTSCHU 3 0 3 3 

Xrstsp 3 0 3 3 

Xrstsp 2 0 3 3 

Xrstsp 3 0 3 3 
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Neme logics LOC 

Adlblcr 6 2 1 
Agefix 6 19 
Adfixrs 5 18 
ejfixu 10 32 
Bestid 10 23 
Btchclr 3 18 
Chngefm 4 16 
Chngesf 3 16 
Chngefn 3 15 
Crsmk 1 80 97 
Crsmk2 96 112 
Crsmk3 80 97 
Crsmk4 96 112 
Crssumu 29 52 
Crssumu 25 42 
Crsup 1 28 39 
Cslwk 4 26 
Csstwd3 10 26 
Cuscrse 0 18 
Custrst 0 14 
Custid 43 56 
Lblcust 46 59 
Logfleg 5 20 
Morel bl 3 19 
Morel bl 3 18 
Morelog 4 20 
Ptpen1u 38 51 
Sfcbset 3 14 
SSduplu 6 22 
SSfmfix 5 20 
Stschnm 3 18 
Xcrnum 6 24 
Xf cf orm 18 37 
Xfcform 19 38 
Xrpstcr 4 20 
Xrpstcr 0 18 
Xrschst 0 18 
Xrschst 3 20 
Xrstcrs 5 20 
Xrstcrs 0 18 
Xrstln 0 16 
Xrstln 0 16 

Xrstsch 3 18 
XRSTSCHU 3 18 
Xrstsp 0 13 
Xrstsp 0 18 
Xrstsp 0 13 
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ALL TEST DAT A 
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Appendix B TcsL Menus 

Menu Number choice LOC Prcd RE m abs f1<2 

1 3 34 35.77 -0.05 1 0.0521 3.1329 
2 3 44 35.77 0.19 2 0.187 67.7329 
3 14 78 79.66 -0.02 3 0.0213 2.7556 
4 6 45 47.74 -0.06 4 0.0609 7.5076 
5 6 46 47.74 -0.04 5 0.0378 3.0276 --247 246.68 0.01 100% 0.3591 84.1566 

RE* MRE* mean 
mean 0.003 0.0718 16.83132 
49.4 RMS 

4.102599 
RMS* 

0.083049 
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Appendix B Test Relations 

RELATION Data Actual Predicted 
NAME clements LOC LOC 

ANOMOLIES 5 6 10.77 
BATCHMARK 6 7 12.65 
BKUPSTUD 100 101 189.37 
BatchSets 4 5 8.89 
BtCntrol 2 3 5.13 
CALENDAR 7 8 14.53 
CNTTEST 3 4 7.01 
CRSROLL 3 5 7.01 
CRSWDLS 2 3 5.13 
CSFOFORM 2 3 5.13 
CLASSES 2 3 5.13 
CRSROLL 2 4 5. 13 
DECHECK 1 2 3.25 
DEPTMSG 8 9 16.41 
DEPTBATCH 2 4 5. 13 
EPA 8 9 16.41 
EICHRN 2 3 5.13 
EXMCHRSN 2 4 5.13 
FI'JLUIDISCAT 2 3 5.13 
GDACOUNT 14 15 27.69 
GKEYS 2 4 5.13 
GDSTUD 2 4 5.13 
INACTSTUD 6 7 12.65 
INSTPREXM 3 4 7.01 
INACTSTQUAL 2 3 5.13 
LOGOF 7 8 14.53 
OMNZCS 6 7 12.65 
PRCLASS 3 4 7.01 
PTCOUNT 2 3 5.13 
PTPRLBL 6 7 12.65 
PWDTCH 2 3 5.13 
QSSTUDENT 76 77 144.25 
QSTQUAL 2 4 5.13 
ROLLSTATS 178 179 336.01 
SCHSTUDCRS 3 4 7.01 
SFCDATA 8 9 16.41 
SSDUPLICAT 4 5 8.89 
STDCRSSP 15 16 29.57 
STEXMSUB 16 17 31.45 
SECSTUDCRS 4 5 8.89 
STPSTSET 2 3 5.13 
TCHLEAVE IO 12 20.17 
TCHSBJ 3 5 7.01 
WORKGD 2 3 5.13 
WSRPREPROG 2 3 5.13 
XTEACHER 45 46 85.97 

643 1168.46 
mean prc<l mean 

13.97826 25.4013 
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B3 ALL Test Screens 
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Appendix B Test Screens 

Function Input Output menu total 
number FPs data elements data elements FPs Fps cplx3 

1 7 10 12 3 10 38 
2 7 5 13 3 10 38 
3 3 12 1 3 0 
4 6 13 1 6 0 
5 3 13 1 3 0 
6 3 3 0 3 0 
7 5 4 4 3 8 0 
8 3 3 2 3 6 17 
9 3 7 3 0 
10 4 3 3 3 7 17 
11 4 3 3 3 7 17 
12 5 2 2 5 0 
13 3 2 3 0 
14 4 3 3 3 7 0 
15 3 5 3 0 
16 3 7 0 3 0 
17 3 12 3 0 
18 5 4 5 5 17 
19 4 4 3 4 38 
20 4 1 3 4 38 
21 4 4 4 3 7 38 
22 7 33 3 10 38 
23 7 12 8 3 10 38 
24 3 6 4 3 6 38 
25 7 13 7 3 IO 38 
26 4 4 4 4 38 
27 4 4 4 3 7 38 
28 7 9 8 3 10 17 
29 7 7 10 3 10 38 
30 7 1 12 3 10 17 
31 7 2 20 3 10 38 
32 6 7 4 3 9 38 
33 4 2 5 4 17 
34 5 5 5 3 8 17 
35 5 2 10 3 8 17 
36 4 1 2 3 7 17 
37 4 1 5 4 0 
38 4 1 2 3 7 0 
39 4 2 1 4 0 
40 3 7 0 3 0 
41 3 5 0 3 0 

sum sum 
188 66 
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Appendix B Test Screens 

Function Data 
number LOC logic cplx5 cplx3 elements relations choice 

1 251 179 95 38 22 IO 3 
2 174 113 95 38 18 9 3 
3 36 0 0 0 12 I 0 
4 45 0 0 0 14 3 0 
5 43 0 0 0 14 1 0 
6 22 0 0 0 3 1 0 
7 37 0 0 0 8 5 2 
8 44 15 11 17 5 3 
9 30 0 0 0 7 0 
IO 49 14 11 17 6 2 2 
11 47 13 11 17 6 2 2 
12 35 7 11 0 4 4 0 
13 19 0 0 0 2 1 0 
14 36 8 11 0 6 2 2 
15 26 0 0 0 5 0 
16 30 0 0 0 7 1 0 
17 38 0 0 0 12 1 0 
18 63 24 23 17 9 6 0 
19 31 3 0 38 7 3 0 
20 33 6 11 38 4 0 0 
21 51 18 23 38 8 3 2 
22 116 45 41 38 34 6 3 
23 126 64 95 38 20 4 2 
24 97 61 41 38 IO 1 2 
25 107 42 41 38 20 8 2 
26 62 28 23 38 8 1 0 
27 70 33 41 38 8 2 2 
28 98 28 23 17 17 7 2 
29 138 35 41 38 17 7 3 
30 84 27 23 17 13 5 2 
31 121 37 41 38 22 7 2 
32 72 31 41 38 11 4 2 
33 66 25 23 17 7 2 0 
34 80 23 23 17 IO 8 2 
35 66 15 11 17 12 3 2 
36 26 1 0 17 3 1 2 
37 36 7 11 0 6 3 0 
38 26 1 0 0 3 2 
39 28 7 11 0 3 0 
40 30 0 0 0 7 1 0 
41 26 0 0 0 5 1 0 

2615 

63.78 
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Appendix B Test Reports 

FUNCTION Data Relations Sort Line LOGICS cplx3 cplx5 LOC 
Number elements Fields Types 

1 59 5 3 24 121 70 82 236 
2 42 1 2 29 113 70 82 242 
3 55 7 2 68 295 70 82 447 
4 62 1 0 22 234 70 82 327 
5 62 4 3 26 106 70 82 222 
6 16 9 5 10 38 20 46 101 
7 12 3 3 12 29 20 46 78 
8 30 4 2 16 87 70 82 169 
9 23 3 2 6 83 70 82 135 
10 20 5 3 8 16 20 20 82 
11 12 4 5 10 9 5 7 56 
12 15 5 2 14 17 20 20 43 
13 24 6 2 14 21 20 20 89 
14 23 5 3 15 23 20 20 97 
15 5 2 0 1 7 5 7 31 
16 5 2 0 1 3 5 3 24 
17 11 4 4 7 3 5 3 45 
18 6 1 0 5 1 5 3 35 
19 21 5 2 14 15 20 7 79 
20 10 3 1 14 14 20 7 64 
21 15 5 5 10 11 5 7 69 
22 11 5 4 7 11 5 7 54 
23 6 4 1 6 18 20 20 55 
24 11 4 4 11 6 5 7 55 
25 11 5 6 7 27 20 46 82 
26 8 3 4 7 20 20 20 59 
27 18 5 3 17 62 70 46 131 
28 17 6 5 7 50 70 82 116 
29 16 5 5 13 37 70 46 104 
30 42 1 2 29 113 70 82 279 
31 42 2 2 31 116 70 82 280 
32 51 1 0 27 99 70 82 199 
33 11 5 12 5 20 20 20 72 
34 3 6 2 2 17 20 20 48 
35 22 2 2 13 22 20 20 87 
36 37 3 3 5 167 70 82 234 
37 13 6 6 3 28 20 46 78 
38 20 6 3 10 37 20 46 106 
39 18 5 4 IO 45 70 46 104 
40 21 7 5 14 299 70 82 363 
41 32 6 2 6 165 70 82 230 

Total 
5407 
Mean 
132 
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Appendix B Test Reports 

FUNCTION Function 
Number Points 

1 7 
2 5 
3 7 
4 5 
5 7 
6 7 
7 5 
8 7 
9 7 
10 7 
11 7 
12 7 
13 7 
14 7 
15 4 
16 4 
17 7 
18 4 
19 7 
20 5 
21 7 
22 7 
23 5 
24 7 
25 7 
26 5 
27 7 
28 7 
29 7 
30 5 
31 7 
32 5 
33 7 
34 5 
35 7 
36 7 
37 7 
38 7 
39 7 
40 7 
41 7 

Tola! 
260 
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Appendix B Non-stats Reports 

Report Data Relations Sort Line 
No elements REL Fields Types LOGICS cplx3 CPLX5 LOC 
5 62 4 3 26 106 61 68 222.00 
6 16 9 5 10 38 61 28 101.00 
7 12 3 3 12 29 61 68 78.00 
8 30 4 2 16 87 61 28 169.00 
9 23 3 2 6 83 61 68 135.00 
10 20 5 3 8 16 17 17 82.00 
11 12 4 5 10 9 17 7 56.00 
12 15 5 2 14 17 17 17 43.00 
13 24 6 2 14 21 17 17 89.00 
14 23 5 3 15 23 17 28 97.00 
15 5 2 0 1 7 4 7 31.00 
16 5 2 0 1 3 4 3 24.00 
17 11 4 4 7 3 4 3 45.00 
18 6 1 0 s 1 4 3 35.00 
19 21 5 2 14 15 17 17 79.00 
20 10 3 I 14 14 17 17 64.00 
21 IS 5 5 10 11 17 7 69.00 
22 11 5 4 7 11 17 7 54.00 
23 6 4 1 6 18 17 17 55.00 
24 11 4 4 11 6 4 7 55.00 
25 11 5 6 7 27 61 28 82.00 
26 8 3 4 7 20 17 17 59.00 
27 18 5 3 17 62 61 68 131.00 
28 17 6 5 7 50 61 28 I 16.00 
29 16 5 5 13 37 61 28 104.00 
33 11 5 12 5 20 17 17 72.00 
34 3 6 2 2 17 17 17 48.00 
35 22 2 2 13 22 17 28 87.00 
36 37 3 3 5 167 61 68 234.00 
37 13 6 6 3 28 6 1 28 78.00 
38 20 6 3 10 37 61 28 106.00 
39 18 5 4 10 45 61 28 104.00 
40 21 7 5 14 299 61 68 363.00 
41 32 6 2 6 165 61 68 230.00 

3397 
mean 
99.91 
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Appendix B StaLisLical RcporLS 

Function Data Relations Sort Linc 
Number clements Fields Types LOGICS cplx3 TOTLOC 

1 59 5 3 24 121 200 236 
2 42 1 2 29 113 200 242.00 
3 55 7 2 68 295 291 447.00 
4 62 1 0 22 234 291 327.00 
30 42 1 2 29 113 200 279.00 
31 42 2 2 31 116 200 280.00 
32 51 1 0 27 99 86 199.00 

2010 
mean 
287.14 

307 



BS ALL Test Updates 

308 



Appendix B Test UpdaLCs 

Function Data Logical Control 
Number LOC elements Updates Breaks Logic cplx3 cplx5 

1 24 8 1 0 8 29 10 
2 17 2 1 0 2 0 3 
3 12 1 1 0 1 0 3 
4 46 16 1 0 28 29 10 
5 34 13 1 0 21 29 10 
6 39 13 2 0 18 29 10 
8 41 11 1 0 24 29 10 
9 22 4 1 0 7 29 10 
10 79 12 1 0 63 29 80 
11 43 10 1 0 26 29 10 
12 21 6 1 0 6 5 5 
13 12 0 1 0 0 0 0 
14 22 3 2 0 3 0 3 
15 31 2 1 0 18 29 10 
16 27 4 2 1 3 0 0 
17 29 7 1 0 13 29 10 
18 26 3 2 I 3 0 3 
19 26 5 I 0 12 29 10 
20 19 4 1 0 4 5 3 
21 13 1 0 1 0 3 
22 25 2 0 11 29 10 
23 22 8 0 8 29 10 
24 18 2 I 0 5 5 5 
25 35 IO 1 0 21 29 10 
26 17 2 1 0 2 0 3 
27 16 2 1 0 2 0 3 
28 15 2 1 0 3 0 3 
29 66 8 6 0 11 29 10 

Total 
797 

Mean 
21.48 
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APPENDIX C 

OTHER SOFTWARE DEVELOPMENT TECHNOLOGIES 
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Cl Menus for Three Technologies 

Lines of code 
Name Choices AREY Informix COBOL 
MLI 5 7 23 86 
ML2 8 10 31 93 
ML3 5 7 20 84 
MIA 8 10 33 96 
:rvn.,5 6 8 27 86 
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C2 COBOL and INFORMIX Input/Updates 

Informix COBOL 
NAME Relations/Files Data Elements LOC LOC 
SSUl 1 2 69 126 
SSU2 1 2 101 208 
SSU4 2 4 84 184 
SSU5 4 85 163 
SSU6 4 3 100 202 
SSU7 1 2 66 141 
NTSl 2 4 102 265 
NTS3 1 4 108 250 
MSLl 3 4 115 219 
MSL4 3 4 116 263 
MSL6 3 6 124 259 

total total 
1070 2280 
mean mean 

97.273 207.273 
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C3 COBOL and INFORMIX Reports/Inquiries 

Informix COBOL 
Relations/Files Data elements LOC LOC 

NTS2 1 4 68 172 
SSU3 1 2 60 148 
MSL7 3 5 110 308 
MSLS 3 5 105 307 
MSL2 3 3 104 307 
MSL3 4 5 104 303 
POI 3 5 71 264 
NTS4 1 4 74 174 
INQ2 1 4 72 147 
INQl 1 2 70 126 
INQ3 1 3 74 146 

total total 
912 2402 

mean mean 
82 .91 218.36 
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C3.ADV ANCED REVELATION Forms 

AREY 
Relations Data elements Logics LOC 

SSUl 1 2 0 48 
SSU2 1 2 0 59 
SSU4 2 4 0 82 
SSU5 1 4 0 81 
SSU6 4 3 0 68 
SSU7 1 2 0 55 
NTSl 2 4 0 92 
NTS3 1 4 0 92 
MSLl 3 4 0 75 
MSL4 3 4 2 116 
MSL6 3 6 2 111 
MSL7 3 5 1 81 
POI 3 5 1 65 
MSL2 3 3 2 92 
MSL3 4 5 2 93 
MSL5 3 5 1 81 

total 
1291 
mean 

80.6875 

0.8125 

314 



CJ.ADVANCED REVELATION Pop-Ups 

AREV 
Name Data elements LOC 
INQl 2 8 
DAT I 7 
INQ2 4 10 
ITS 2 8 
WDL 2 8 
INQ3 3 9 
SOH 2 8 
RPL 4 10 
SLD I 7 

total 
75 

mean 
8.33 
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APPENDIX D 

Relationship of the Generic Model to the Bailey and Basili Meta-Model 

In 1981 Bailey and Basili [BATL8 1] suggested a meta-model for software development 

resource expenditures. The generic model described in this thesis shows similarities to this 

model in that both are meta-models requiring tailored instantiation in order to be applied by 

users in their own organizations. Different users of these models will develop different 

prediction eq uations ta ilored to their own development environme nt based on a few 

important size (or cost) drivers. I lowever on another level the models are quite different. 

The Bailey and Basili model computes a standard effort which is then adjusted by factors 

from the environment which account for variations from thi s standard effon. The generic 

model on the other hand sizes each sys tem component individually within its appropriate 

component type and then sums the individual contributions. There is some similarity in the 

treatment of adjustment factors, which are critical ly surveyed in section 4 .5.2, but are not 

used in the instantiations in the thesis . The resemblance in overall approach between the 

Bailey and Basili meta-model and the gene ric model is much the same as that between the 

Bailey and Basili model and any generalized FPA-like method which needs to be tailored to 

each particular environment. 

To instantiate the gene ric model within a particular environment requires the user, briefly, 

to do the following: 

choose a size measure 

form component partitions based on software technology 

set up a vector of size driver variables for each component type 

derive size estimation equations for each component type by multiple regression or 

some other technique; individual component es timates will be summed 

during actual use to get system estimates 

assess the need for overall adjustment factors; if needed, choose an appropriate set 

from a number of possible adj ustmen t approaches, some multiplicative, 

some add itive. 
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To instantiate the Bailey and Basili model within a particular environment requires the user, 

briefly, to do the following: 

choose and define measures of size and effort 

select the fom1 of the baseline equation to get a measure of standard effort; this is 

found by fitting a curve through a scatterplot of effort versus size data 

calculate an initial base-line for use in the model using multiple regression or some 

other method 

collect factors which account for projects that are abnormal 

choose a set of factors to explain these variations 

estimate the necessary factor values by multiple regression 

predict the deviations of the points from the computed base-line 

convert the error ratio back to multiplicative factors and incorporate them into the 

standard effort equation to give a revised effort equation. 

Form of Regression Equations 

Some comment should be made regarding both the form of the component size estimation 

models and the occurrence of squared tem1s within the resulting regression equations. 

The additive form of component size estimation models can be supported for two reasons. 

a) The definition (programming) of a component in the 4GL used is done in two parts, 

a non-procedural part and a procedural logic part. The non-procedural part for a 

component definition is made up of a series of forms (Table 5.2 lists the forms 

required for the various component types). The non-procedural forms comprise 

two parts, a fixed part with some required and some optional inputs, and a variable 

part. The number of lines entered in the variable part depends on the complexity of 

the components being defined including the number of logical components 

contained within a single physical component (essentially a nesting level in the 

range 0-4 ), the number of data elements used, the number of relations accessed, 

etc. Typically a fonn is concerned with one aspect of a component, e.g. relations, 

data e lements or line types, not with several, except perhaps implicitly. The logic 

part of a component is programmed in a procedural language and the number of 

LOC in this part varied from 0-300 LOC with a median of 4 LOC. The total of all 
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logic lines made up a little under 40% of the system on which the development of 

the model is based. The total lines of code used is the sum of the lines in the non­

procedural forms and the logic. The additive nature of the regression model for 

each component type bears a strong correspondence to the way in which a set of 

different forms, whose separate sizes are affected largely by different single size 

drivers, are combined in an essentially additive way to form a complete component. 

b) Median polish [HOAG83, HOAG851, a technique for investigating an appropriate 

form of a model to use with a particular set of data, was used with both screen and 

report data. This investigation showed no pattern in a diagnostic plot of residuals to 

suggest that an additive fit was inappropriate or that either a multiplicative or other 

form of non-additive fit would be more appropriate. 

Squared data elements terms are used in Phase I and 2 equations for both screens and 

reports while a squared relations term occurs in the phase 1 equations for screens. It 

should be noted that the use of these squared terms did not improve the model's R2 greatly 

but did give a marginally better fit. Where these squared terms are included in the 

equations it is for the following reasons: 

Without them the residuals from the regression equations tended to form a curved band 

suggesting that an improved tit would result from the inclusion of a quadratic expression of 

one or more of the terms I HOAG831- In all cases where a squared term was significant in 

a regression, the corresponding linear term was not significan t and was therefore removed. 

a) Screens 

Phasel screen equations contain both (data elements)2 and relations2, while phase2 

equations (including a complexity term), drop out relations2 and use relations instead. This 

suggests that relations2 in the phase I screen eq uations is accounting for some of the 

procedural logic which is explained in phase2 by cplx5. This would not be surprising as 

much of the logic is concerned with manipulating data which has been read from or is to be 

written to relations. The amount of logic concerned directly or indirectly with file (relation) 

processing tends to grow quadratically with the number of relations involved. 

The squared data elements tern, occurs in both phase I and phase2 equations for possibly 

more complex reasons. Introduction of a cplx5 tenn in the phase2 equations decreases the 

(data elements)2 coefficient to nearly half its original value but it still remains a statistically 
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significant factor though it is actually accounting for only very few lines of code except at 

quite high data element levels. The change in the (da ta elements)2 coefficient between 

phase 1 and phase2 suggests that for the phase I equation, (data elements)2 is accounting 

for some of the procedural logic. However data elements contribute to the size of a screen 

in several ways: 

in their definition which occurs in the fields form; 

in their prompts and labels (which wi ll actually appear on the screen), in the screen 

definition form; 

in the size o f the screen c haracteristics form which is likely to increase considerably 

with increasing numbers of data e lements, the increase often resulting from having 

several logical screens within the one physical screens; 

in the number of procedural logic items required wh ich increases with the number 

of data elements processed. 

It is this multiplicity of effect that is likely to be responsible for data elements appearing as a 

squared term in the screen equations. 

b) Reports 

The (data elements)2 term is present in report equations at both phase 1 and 2. The 

introduction of a cplx3 term reduces the coefficien t in the phase2 equation. The reasons for 

inclusion of a (data elements)2 term in the report equations are similar to those described 

above for screens. 

During data exploration, a number of d ifferent models were tried, including other powers 

of additive terms, first order interactions, and some multiplicative models. None of these 

gave fits with R2 values as good as the models finally adopted. 

Both the statistical analysis and an intuitive understanding of the data in relation to the 

model support the valid ity of the model as does the fact that it is a very good fit to the data, 

predicting the s ize of the test system within 97% of actual LOC at phase 1 and 96% of 

actual at phase2. 
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