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Abstract

Programmed cell death, or apoptosis, plays a major role in the development of the
nervous system and in the pathogenesis of neurodegenerative diseases. Although
many proteins that play a key role in apoptosis in other systems also appear to
function in neurons, the mechanism that triggers apoptosis in neurons is unknown.
Apoptosis occurs asynchronously in neural and differentiated neuronal cells, which
makes biochemical studies difficult because a small number of cells are at a
particular stage at any one time. Two strategies were devised to overcome

asynchrony during neural cell death.

The first strategy was to separate rat pheochromocytoma (PC12) cells at different
stages of commitment to cell death on the basis of cell density using equilibrium
density gradient centrifugation. Three populations were defined. Cells in population
1 were the most dense and committed to cell death. They showed extensive loss of
mitochondrial cytochrome c, DNA fragmentation, and chromatin condensation.
Population 3 contained live cells that floated to the top of density gradients.
Population 2 displayed some chromatin condensation, yet little DNA fragmentation
and loss of cytochrome c. This population showed upregulation of the pro-death
factor, c-Jun, and downregulation of pro-survival kinase, Akt. Importantly, these
cells could be rescued from death by nerve growth factor (NGF) and thus represent

an intermediate stage of apoptosis, upstream of irreversible commitment.

The second strategy was to create a cell-free system to reconstitute apoptosis. The
addition of cytochrome c to human neuroblastoma (SY5Y) cell extracts activated
caspase-9 and -3, and nucleolytic events in PC12 nuclei. Using this system,
requirements for ATP and phosphatase activity for caspase activation and nuclear
apoptosis were characterised. In addition, pro-survival molecules Akt and Creb

were identified as caspase substrates during apoptosis in vitro.



To assess whether these events occurred in vivo, the kinase inhibitor
staurosporine and the topoisomerase inhibitor camptothecin were used to induce
apoptosis in intact SY5Y cells. The pro-survival signalling kinase Raf-1 was
downregulated during both staurosporine- and camptothecin-induced apoptosis,
but Akt was only downregulated by camptothecin. These studies illustrate the

complex interactions of apoptosis and signalling mechanisms in neural cells.
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