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Abstract

This thesis consists of two parts. The first part proposesvanmedel — the Markov-modulated
Hawkes process with stepwise decay (MMHPSD) to investitieeseismicity rate. The MMHPSD
is a self-exciting process which switches among differéaites, in each of which the process has
distinguishable background seismicity and decay rategneter estimation is developed via the
expectation maximization algorithm. The model is appliedlata from the Landers earthquake
sequence, demonstrating that it is useful for modellinghgkea in the temporal patterns of seismic-
ity. The states in the model can capture the behavior of nfanlks, large aftershocks, secondary
aftershocks and a period of quiescence with different baxkgl rates and decay rates. The state
transitions can then explain the seismicity rate changdshaip indicate if there is any seismicity
shadow or relative quiescence.

The second part of this thesis develops statistical metkm@xamine earthquake sequences
possessing ancillary data, in this case groundwater latalatr GPS measurements of deformation.
For the former, signals from groundwater level data at Taag3Nell, China, are extracted for the
period from 2002 to 2005 using a moving window method. A nundfalifferent statistical tech-
niques are used to detect and quantify coseismic respanBeStLove and Rayleigh wave arrivals.
The P phase arrivals appear to trigger identifiable osigitiatin groundwater level, whereas the
Rayleigh waves amplify the water level movement. Identiatmseismic responses are found for
approximately 40 percent of magnitude 6+ earthquakes watlel A threshold in the relationship
between earthquake magnitude and well-epicenter disiaraieo found, satisfied by 97% of the
identified coseismic responses, above which coseismicgeisaim groundwater level at Tangshan
Well are most likely.

A non-linear filter measuring short-term deformation ratarges is introduced to extract sig-
nals from GPS data. For two case studies of a) deep earthgjimlantral North Island, New
Zealand, and b) shallow earthquakes in Southern Califoeniasidden Markov model (HMM) is
fitted to the output from the filter. Mutual information ansily indicates that the state having the
largest variation of deformation rate contains precurgufigrmation that indicates an elevated prob-

ability for earthquake occurrence.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Earthquake Cycles

The earthquake process is observed only through data thetally do not directly reflect the
underlying dynamics. The observations usually consiseobrds of earthquake features such as
magnitude, location and depth, while the underlying dymramior example the accumulation of
stress, remain unobserved. Fedotov (1968) described tieepbof a seismic cycle and suggested
an increasing seismicity rate before the second main shibttleaycle. Note that the earthquake
cycle considered in this thesis refers to a sequence ofstegeeismicity, not to periodic or “char-
acteristic” earthquake cycles. Mogi (1968) also suggesttiadl prior to a main shock, there are
concentrative occurrences of foreshocks in a region neagicenter of the main rupture preceded
by relative seismic quiescence. Bufe and Varnes (1993) arfel & al. (1994) reported an increase
in cumulative regional energy release prior to a large gadke and explored the accelerated mo-
ment release (AMR) model. The statistical version of thiddeiavas studied by Vere-Jones et al.
(2001), Jaumé and Bebbington (2004) and Bebbington et@ll(), all indicating that the AMR
model only models a particular seismic cycle whereas intyethlere may have been multiple such
cycles (e.g., Bufe and Varnes, 1993). However, Hardebeak €2008) found AMR present in data
which were simulated without benefit of AMR. Jaumé and Syke989) reviewed the evidences that
many large earthquakes are preceded by a period of acaedesaismic activity of moderate-sized
earthquakes, and pointed out that the changes in the ledeiMig stress (stress accumulation and

release) during a seismic cycle were the cause of the oltsseismicity changes. This is also
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supported by the study of Sammis and Smith (1999). They sthavgeismic cycle in which a large
event is followed by a shadow period of quiescence and theawaapproach back toward the crit-
ical state, in a scaling region at times close to which thenesvbecome larger and energy release
increases. These, as well as many others, such as Bowmar{%8), Zhuang (2000), Lombardi
et al. (2006) and Pievatolo and Rotondi (2008), indicaté $hesmicity may present a cyclic nature
of some sort.

Hidden Markov models (HMMs) form a remarkably general statal framework for modelling
such partially observed systems, by assuming that the engdxs (or hidden) process is a Markov
chain and the observations are conditionally independsenghe hidden states. The HMM was
initially introduced by Baum and Petrie (1966) as a prolsiiil function of a discrete-time Markov
chain with a finite number of states. There have been exteudgvelopments of this model, includ-
ing the methods of parameter estimation (Rabiner, 1989 lamdeferences therein), extension to
processes where the hidden process is a continuous-timkoielnain with discrete states and the
observation is from a Poisson process such as Markov-mieduiRoisson process (MMPP; Fischer
and Meier-Hellstern, 1993 and the references thereingnsidn to processes where either the ob-
served or the hidden process depends on another obserialeélMarkov-modulated generalized
linear models (MMGLM) for the former, Harte (2005); nonhogeneous hidden Markov models
(NHMM) for the later, Hughes (1993) and the references thitze).

1.1.2 Clustering

To model earthquake processes, there should be more sigmiégtensions to HMMs, as the hidden
process is a continuous-time Markov chain and the obsen&tf earthquake processes are point
processes which often occur in a self-exciting way (a pmig<onsidered to be self-exciting if
it depends on the entire or some of its history which affdugsihtensity function of the process).
None of the existing discrete-time HMMs, MMPPs, MMGLMs anHMMs is adequate to capture
these features simultaneously.

Vere-Jones and Davies (1966) investigated the earthquatkerdm the main seismic region of
New Zealand for the years 1942-1961. The analysis reveasighdicant degree of dependence
among earthquakes and suggested that the earthquakespiaesong the general class of ‘conta-
gious processes’, in which the events already occurrea tfigger new ones. Using the triggered
model suggested by them, investigations of the earthquataeftbm New Zealand in Vere-Jones

(1970) and from 14 regions listed in Table 1 in Hawkes and Aalaoalos (1973) further supported
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such significant correlations between earthquakes. Tragxe applications of the Epidemic Type
Aftershock Sequence (ETAS) model (Ogata, 1988 and substega@ers), in which each earth-
quake is able to produce offspring in the same way as a didgasmle may pass the disease to

other people in epidemics, demonstrate that earthquakpsedent some self-exciting features.

Vere-Jones (1978) proposed the stress release model (SRRNf)ggering between main se-
quence events, which incorporates a deterministic buld{ustress within a single region and its
stochastic release through earthquakes. As reviewed ihiBgtion and Harte (2001; 2003), earth-
quake interaction by means of stress triggering and stiemdosvs (across different regions at a
distance, see also Zheng and Vere-Jones, 1994) has beeacuegited. In order to account for this
interaction, instead of using the SRM, they used the linkeeks release model (LSRM) (Liu et
al., 1998; Lu et al., 1999) to investigate seismicity in nplét regions. Both the SRM and LSRM
were developed for triggering between main sequence ewvahtgwith aftershocks removed, cf.,
Bebbington and Harte, 2001). In order to formulate main kb@nd aftershocks in one model,
a two-node stress release/transfer model was presentedroyk®v and Bebbington (2003) and
Bebbington (2008), which was also shown to be an altern&itlee ETAS model for aftershock se-
quences. The two-node model is a two region version of theNL&Rdescribe main shocks by one
region (or node) and aftershocks by the second node. Bovavka Bebbington (2003) also pointed
out that in sequences which include a secondary sequeggereid by main shocks, a third node
might be added to the two-node model, i.e., a three-node Intidat be considered. These studies
suggest that an assumption of independence of the eventsearthquake catalogue is inadequate

for the analysis of evolution of seismicity.

A Markov-modulated Poisson process (MMPP) is a doubly stetit Poisson process, the in-
tensity of which is controlled by a finite, non-observablentinuous-time Markov chain. It is pa-
rameterized by the-state continuous-time Markov chain with infinitesimal geator@ = (g;;)rx»

and ther Poisson arrival rates, \o, - - - , A, where

s
Qis = — Z dij-
j=1
J#
The event occurrence rate of the process in one particaler istindependent of the previous events
and is thus not suitable here. It is necessary to develop aMie model in which the process
switches among some finite states and the occurrence rdte efénts in each state depends on the

historical events. Instead of the well accepted stochastidels for seismicity analysis such as the
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SRM or the ETAS model, the self-exciting Hawkes process wiponential decay rate (Hawkes,
1971) will be used to formulate the event occurrence ratadai dnidden state. This is because this
Hawkes process, which consists of two types of events, imantg with a Poisson occurrence rate
and offspring generated from an exponential decay ratetHw#arkovian property and is thus
mathematically tractable. For a seismic cycle, the redagiiescence can be considered as a state in
which there are no conspicuous clusters, i.e., with a nigtgidpackground intensity function, while
an immigration-branching rate with different backgroumdi @ecay rates can be assigned to each
of the foreshock and aftershock periods. Note that this §@ine sense a generalization of the two-
node or three-node stress transfer model (Borovkov andiBgtam, 2003), in which the regions
and nodes were pre-identified and fixed. The HMM type modekever, inherits the Markovian
property, which automatically switches into a new regimeade when the underlying dynamics

change.

1.1.3 Ancillary Data

Historically, there has been little data available beydradbserved record of the earthquake cata-
logue. A recent innovation has been the availability oftedlaor ancillary, data which are (hope-
fully) related to the process generating the hazard. Motenaore ancillary data, such as ground-
water level oscillations and GPS measurements of defoomadire becoming available, which may
either be dependent on the original observations (e.gsWato, 1992; Kitagawa and Matsumoto,
1996), or reflect the underlying dynamics (e.g., Roeloftf)&).

Earthquakes disrupt and change hydrologic processesllaliecas or sustained changes are the
two typical anomalous phenomena in groundwater levels ittsw&he Tangshan Well in north-
ern China has long been recognized by Chinese seismolegistsnsitive to seismic disturbances.
There exist more than thirty years of groundwater level nlzgens at this well. Such a long record
as that from Tangshan Well is nearly unique to the best of nawkedge (cf., Elkhoury et al., 2006).
A great number of oscillations of the groundwater level @eorded at the Tangshan Well which
may have been induced by large earthquakes from the glotzdbgae since the advent of 1-minute
digital records in 2001. To date there has been little in thg of a coherent statistical examination
of the possible link between earthquakes and hydrologesdanses. A better understanding of the
whys and wherefores of occurrence or non-occurrence folpan earthquake event is a necessary
first step. The question also remains as to whether the atsoils occur (or are detectable) in all

cases, and what factors affect the response, and by how much.
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A great deal of effort has been put into analysis of anomatdizges in crustal deformation
rates prior to large earthquakes in order to look for warsinfimpending earthquakes. Moti-
vated by the evidences of anomalous changes in deformatiomi@ the 1944 Tonankai earthquake
(M,=8.2) and the 1946 Nankaido earthquaké, (=8.3), the Japanese government has intensively
monitored aseismic deformation with the goal of issuing enivey prior to the next great earthquake
(EERI Committee on the Anticipated Tokai Earthquake andv@warn, 1984). Roeloffs (2006) re-
viewed the evidences of preseismic deformation rate ctsanpech have been found prior to 5 large
earthquakes in Japan, 3 in the USA, 1 in Chile, 1 in Peru and@réece. However, preseismic
deformation rate changes are relatively rare in the exjstecord, even after the wide deployment
of Continuous GPS stations in the early 1990s. Some statisinalyses have been carried out on
anomalies of GPS measurements from the apparent long-terragpthquake slip which may be
related to earthquake occurrences (e.g., Ogata, 2007).is8sssed in Roeloffs (2006), most of
the time it is difficult to detect apparent long-term disglaent. There may exist some anomalous
changes of the deformation rate prior to large earthquéakesdetection of which, however, may
require more sophisticated techniques.

As discussed above, for the groundwater level at Tangshdh the water level oscillations
are buried in millions of data, while for the case of GPS measents of deformation, there are
very few obvious displacements. Therefore, methods foeddien of groundwater level oscilla-
tion signals and extraction of subtle deformation rate gearin GPS measurements are necessary.
The ancillary groundwater level and deformation data ardetrthquake catalogue are observed
independently. Moreover, an earthquake sequence has keg donsidered as a point process,
whereas both the groundwater level and the GPS measureaie@®rmation are continuous time
series (multivariate for the latter case). Hence, methodsdentifying dependence between such

geophysical processes are needed.

1.2 Overview

The two major objectives of this thesis are 1) to develop HMAdet models in which the hidden
process is governed by a discrete-state, continuous-tiar&dv chain, and the observations in each
state are from a self-exciting point process, and 2) to wesstal methods to investigate earthquake
data incorporating ancillary data. Hence, this thesis istsmsf two parts. The first part starts with

a comprehensive review of HMMs including model definitiord ggarameter estimation. It is then
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followed by the development of HMM type models which accofantthe self-exciting feature of
earthquake occurrences. The new HMM type model is calledr&adamodulated Hawkes process
with stepwise decay. An application of this model is dem@tstl using a real data set. The sec-
ond part investigates methodologies of extracting sigfala potential candidates for earthquake-
related processes and detecting association betweersthitng series of events. A brief overview

of each chapter is as follows.

Chapter 2 provides an overview of HMMs. Given that the HMMhiework contains two com-
ponents, the observed part and the hidden (or unobserveappahree of the models mentioned
above, the discrete-time HMM, the NHMM and the MMGLM, can kengralized in one model.
This chapter provides the definition of this concise model tren reviews the three models in

detall, including definitions, parameterizations, andcapagter estimation.

Chapter 3 develops the Markov-modulated Hawkes proce$sstépwise decay (MMHPSD).
An expectation maximization (EM) algorithm for the paraere¢stimation of this model is pro-
posed, along with a detailed implementation algorithm. frethod for evaluating the goodness-
of-fit problem is also provided. Consistency of parametémegion will be demonstrated by sim-

ulation.

Chapter 4 presents a check of the consistency of the pamraast®ation algorithm by way of
a simulation study of the MMHPSD, and an application of thedeido a real data set from the
Landers—Hector Mine sequence. The ETAS model is used tolaienan earthquake catalogue.
The MMHPSD is then fitted to this catalogue in order to see whatning can be attached to
the hidden states the model identifies. The parameter desnfram this simulated catalogue are
used to conduct the consistency test of the estimation itigoias proposed in Chapter 3. A case
study of the earthquake data around Landers is carried ouhi® model. The seismicity rate
changes characterized by this model are compared withtsesoin other investigations. Further

modifications and possible improvements of this model fothegake analysis are discussed.

Chapter 5 provides a detailed review of three statisticdri@mues characterizing the association
between series of events, the coherence, mutual informatid Lin—Lin model, highlighting their
use in earthquake modelling and its ancillary data analg&iherence, which provides a measure of
the degree of linear predictability of one process from hetis inadequate as a measure of general
association for it may be identically O when two series ariaat related. However, such behavior
does not occur for the coefficient of mutual information, ethis a measure of the amount of infor-

mation that one random variable contains about another.Lirkd.in model, which describes the
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influence of a point process input on a point process outmtjaentify linear causal relationships
between one sequence of events and another. The three metmote used to clarify association

and identify causation.

Chapter 6 contains a systematic statistical analysis dhgaake-related groundwater level os-
cillations from the 1-minute digital records of TangshanlMdata since 2001. A method of ex-
tracting signals compatible with coseismic responses tf@mrapproximately two million such data
during the four year period 2002—-2005 is demonstrated, lagid telation to 600 earthquakes of
magnitude 6.0 or greater in the global catalogue duringsiduige period is investigated. Identifiable
coseismic responses are found for approximately 40 peoféme total number of such earthquakes.
The association of the initial oscillations of the grountlvdevel with the arrivals of the earliest P
phase, the earliest S phase, the Love and Rayleigh wavesaargned using the coherence, mutual
information and Lin—Lin model. The detection probabiktief different types of earthquakes are as-
sessed in terms of the earthquake magnitudes, distanglsdand azimuths. The relation between
the well signal characteristics (delay, length, maximunpliode) and the earthquake magnitude,

distance, depth and azimuth is also discussed.

Chapter 7 is devoted to an HMM based investigation of posdibk between GPS measure-
ments of deformation and earthquakes. An exploratory amalyf the earthquake occurrences
around Taupo using HMMs, NHMMs, and MMGLMs with binary dibtrtion for earthquake oc-
currences and the GPS measurements of deformation asagnedlriable is carried out, but none
of the models seems to be informative for understanding tttkenlying dynamics of earthquake
occurrences. Instead, a non-linear filter for the GPS psoedsch serves as a smoothing tool is
introduced. Essentially, it measures the short-term d&dtion rate ranges and is able to extract
useful signals which are distinguishable from the majooitgfhe data. For two case studies of a)
deep earthquakes in the central North Island, New Zealamtbashallow earthquakes in Southern
California, HMMs are fitted to the deformation rate rangethef GPS measurements. The HMMs
classify the deformation data into different patterns WwHimrm proxies for states of the earthquake
cycle. Mutual information is then used to examine whetherdhs any correlation between these
patterns, in particular the Viterbi path, and subsequenpi@vious) earthquakes. The class of GPS
movements identified by the HMM as having the largest ranggefdrmation rate changes is ex-
amined in detail in terms of the precursory character faydagarthquakes. The performance of
possible earthquake forecast is assessed by comparingsidecle (based on model characteris-

tics) with the actual outcome.
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Chapter 8 summarizes the conclusions of this thesis andde®detailed suggestions for future
research involving the development of the HMM type modelsgeophysical data, NHMM and
MMGLM analyses of earthquakes incorporating the filteredSGReasurements as covariate(s),

and further test of HMM analysis of GPS data for earthquakedasting.
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Chapter 2

A General Class of Discrete-time Models

This chapter first introduces a class of general discrate-thidden Markov models, and then
reviews the concepts and parameter estimation issues dothtbe special discrete-time hidden

Markov type models.

2.1 A General Formulation for Discrete-time Models

Consider a system which may be described at any time as bam@foa set of- distinct states,
{1,--- ,r}. Denote the actual state at timmhas.S;. The probability of the system in stajeat timet¢

given the predecessor states is
P(St = ] | St—b St—2> e )

However, in reality, in most of the time this system is notatable, but instead, a set of observa-
tions O; = {Oy,--- , 04y, } can be produced at timewith the system in stat§; € {1,--- ,r}.
Denote the observation sequence®y= (O, --- ,Or), and the hidden state sequenceby-=
(S1,---,S57). In practice, along with the observed process of the systaere might be an-
other set of observed processks= (X, --,Xr), which may not only strongly influence or
directly reflect the hidden state, but also strongly assecidth the observed sequen€e where

Xy =A{Xn, -, Xy} for1 <t < T. We refer to such processes as ancillary data or covariates.
Here we should bear in mind that the proc€sis what we are interested in, and that the prod&ss

provides us ancillary information aboQt. Then the probability 0© being produced by the system
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without assuming the knowledge of the state sequence irhwiieas generated is

P(O|X,0)= > P(0,5|X,0)

all s
=Y P(0]S,X,0)P(5|X,0)
all s
- Z P(017 7OT’517"' 7ST7X-17”’ 7XTa0)P(Sl7”' 7ST‘X-17'” 7XT79)
all s
= P(O1| 81, , 80, Xy, , Xy, 0)P(Sy | Xy, -+, X, 6)-
all s
T
HP(Ot‘Oh 7Ot—1aS17"' 7ST7X-17”’ 7XT79)
t=2
P(S¢| S, ,Si—1, X1, -+, X, 6), (2.1

wheref is the set of parameters.

It is worth noting that the righthand side of the last ste@iri) indicates that the model actually
consists of two parts, the conditional probability of olvsdions given the hidden state sequence
and the covariates, and the transition probability givendbvariates. This structure accounts for a
variety of formulations including some well-known hidderaMov models. Discrete-time hidden
Markov models (HMMs; see Rabiner, 1989 for a comprehensitggitll), nonhomogeneous hidden
Markov models (NHMMs; Hughes and Guttorp, 1994a) and Markmdulated generalised linear
models (MMGLMs; Harte, 2005) are all special cases of theah(itl1).

2.2 Models without Ancillary Data

These models are the ones described in Chapter 2 in MacDanaldZucchini (1997). Let us
assume that there is no ancillary variable available, aadbservations at timeonly depend on

the current hidden state, i.e.
P(Ot|017"' 7Ot—17517"' 7ST79) = P(Ot|St,9)
In addition, assume that the hidden state is a first-ordek®achain

P(Stysla"' 7St—179) = P(St‘St—lae)'
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Then we have

T
P(O|6)= > P(O1|S1,0)P(S110) [[ P(O¢] Si,0)P(S | Si-1,0),
all s t=2

which is an HMM.

The forward-backward procedure, a recursive algorithng eeveloped to efficiently calculate

the likelihood of a hidden Markov model. If the forward vdiie is defined as
(i) = P(O1,--+,04, 8 =1i|0), (2.2)
and the backward variable is defined as
Bi(i) = P(Oy41,-++ ,Or | Sy =1,0), (2.3)

the likelihood can then be calculated recursively by
L(0) = P(Oy,--- ,07[6) = ou(i)By(i). (2.4)

Baum et al. (1970) developed an iterative algorithm to estiinthe parameters for HMMs by
considering the hidden states as missing data, which wasnstwobe equivalent to the expectation
maximization (EM) algorithm of Dempster et al. (1977). Thd Blgorithm is to iteratively perform
the expectation (E) step, which computes an expectatioheofdy likelihood with respect to the
current estimate of the distribution for the missing vaeaband the maximization (M) step, which
computes the parameters that maximize the expected Idifpbkel found on the E step, until the log
likelihood converges. To apply the EM algorithm to an HMMe thbservation® and the hidden

processS form the ‘complete data’. The complete likelihood of an HM$ i

£°0;0,8) = > P(Oy,-- 07,51, ,576)

S1,,8T

T
= > P(S110)P(01]51,0) [[ P(S¢|Si-1,0)P(O¢] S, 0).  (2.5)
S1,-,ST t=2

If 6y is a given parameter estimate, then the E-step of the EMitligors calculating the expectation

Q(97 90) = ES,@Q [log Ec(e; o, S) ‘ O] (2.6)
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with respect taS' andf,. The M-step is obtaining the new estimate
0= arg max Q(6;00). 2.7)

The expected complete log-likeliho@®(0; 6,) is obtained by taking the expectation of the complete

likelihood overS, given the current parameter estimaigsconditional on the observed daiy

Q(8;60) =, P(S1 = j| O1,-++ ,Or, ) log P(S1 = j)
J

T
+Y ) P(Si1 =14,8 =j| 01, ,0r7,00)log P(S; = j| Si—1 = i,0)

t=2 4,5

T
+3°3 " P(S,=j|01,--- ,Or,0)log P(O, | ; = j.0). (2.8)

t=1 j

Then the E-step of the EM algorithm for the HMM is to compute

Ut(j) :P(St :]|017 7OT790)7
UJt(Z,]) = P(St—l = i,St :]|Ol7 7OT790)7

and the M-step is to maximize the second and third terms 8),(2.

T
V(S 160) =Y > wi(i,j)log P(S; = j| Si1 =14, 6) (2.9)
t=2 1ij
and
T r
(O [60) =Y > wi(j)log P(O;|S; = 5,0) (2.10)

t=1 j=1

as functions of = (O, &), where©O represents the set of parameters involved in the obsenvatio

distribution andS is the set of parameters in the transition probability niatri

For geophysical processes, it is common to have multiwnaservations. Taking GPS mea-
surements of deformation for example, there are three coeme of movement (north, east and
up components) for each station. Under fairly general dad the central limit theorem says that
the sum of a large number of independent random variablearhapproximately normal distribu-

tion. For this reason, the normal distribution is widely dige statistics, and in natural and social
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sciences. Therefore the estimation procedure for an HMM wiitservations from a multivariate
normal distribution will be presented here. @t = {Oy, - - - , Oy, } represent the variable of mea-
surement with observed values®f= {01, - , o1, }, Whereoy; is the measurement of component
1 at timet. Suppose that given the current hidden state the measureimesch component is nor-
mally distributed and the measurements of each two comp®meea independent. The process has

the probability density function

n

_ _ 1 (Oti - /Lis)z
forlsi=9) =] e (—T> (2.11)

5

wherey;s ando;s are the mean and standard deviation for the observatiome d@htcomponent in
states. Assume that there arestates. Then the number of parameters to be estimated ipettiief
the model i2nr. Set the transition probability from stai¢o j asP(S; = j | Si—1 = i) = 7,5, and
the initial distribution vector of the Markov chain as= (41, --- , ;). The forward and backward

probabilities, (2.2) and (2.3), are computed from the feillmg equations,

ai(i) = P(01,51 =i|0) = d;f(01]S1 =),

Oét+1('i) = P(017 7Ot+17St 22’9)

= Z at(k)')/kif(ot-l,—l | St—i—l = Z),
k=1
and

Pr(i) =1
5t(i) - P(Ot+17"' 7OT\St = z‘,9)

= Zﬁt+1(j)%jf(0t+1 | St41=7)-

i=1

Given an initial guess of the paramet@ég, assuming that the initial distribution vector of the
Markov chain isdy = (o1, - ,d0r), the forward and backward probabilities can be calculated
using the above formula. The E-step will then be computirapndw given 6, via the following

equations,

. (5)Be(5)

v(j) = P(S¢ =7101, -+ ,0r,0p) = ST aw()Bi)’
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and

wt(l,j) :P(St—l :i7St :j‘ola 7OT790)

_ ag—1(4)vij f(o | Se = 5)Be(4)
> ket (k) B (k) '

The M-step is to maximiz& (& | 6y) in (2.9) with respect to the parameters in the transitiorbpro
ability matrix and¥ (9O | 6y) in (2.10) with respect to the parameters involved in the plag®n
distribution. By maximizing

T
V(S |6y) = ZZwt1]logP(St—]]St1—z S)

t=2 i,j

T
=33 wyli, §)log i

t=2 4,j

we can get the estimates for the transition probabilities as

St wiling)
Z;’:l 23:2 wy (i, j)

Vij =
Then maximizing

T r
U(O|6y) = ZZ j)log P(O;|S; = j,9)

B Y
1 i—1 2m 20]%j

k=1 ki

has a simple solution given by

S Zt 1”t( )0tk 212
ST ) @12
and
Gri = Ztl J) (ot — Hirz)* 213
& \/ Zt 1 0t(J) (219

This forms one step of EM algorithm. To get the parametemegés using this algorithm, we

update the initial guess of the paramefigrusing the estimated parameter from the M-step and
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then iterate the E-step and M-step until the log likelihootverges, or in other words, until the
difference between the log likelihoods from the previowpsind from the current step is less than

a specified tolerance.

2.3 Transition Probabilities Depending on Ancillary Data

When only the transition probabilities change over timeasteling on the ancillary data, the model
is called a nonhomogeneous hidden Markov model (Hughes attdr@, 1994a). Assume that the
process of interest only depends on the current hidden atatés conditionally independent of all

previous observations, i.e.
P(Ot | 017 e >Ot—17 Slv e 7ST7 le e >XT7 0) = P(Ot | St79)7 (214)

and that the ancillary data only indirectly affect the pissEs of interest through the hidden state.

In addition, we assume that the hidden state is a nonhomogesrigst-order Markov chain,
P(St | Sl» T >St—1>X17 o >XT7 9) = P(St | St—hXtv 9) (215)

Note that the transition probability depends on the cotesiX;. Model (2.1) becomes an NHMM.

Increasing interest has arisen in this model after the sséglemodelling of local and regional
precipitation by incorporating synoptic atmospheric ddtaan NHMM framework (Hughes and
Guttorp, 1994a). The model was first introduced to relatgelacale atmospheric data (covariates)
to local hydrologic phenomena such as precipitation (oleskprocess) (Hughes, 1993). In this
class of models, the observed process is supposed to bedreded set of covariates, but the covari-
ates only indirectly affect the observed process througithem unobserved process (i.e. the hidden
states). The unobserved states serve to automaticallyarate the covariates into a few classes that
are most associated with particular patterns of the obSengof interest. The idea is to introduce
an indirect covariate effect to the hidden Markov modelse ©hserved process is assumed to be
conditionally independent given the hidden state. Howebertransition intensities of the hidden
Markov process are allowed to depend on covariates.

Although the models were proposed to model precipitatioa,general NHMM structure is po-
tentially applicable to other settings. In applicationpnder to fit an NHMM to the data of interest,

both the assumptions (2.14) and (2.15) need to be paragerterhssumption (2.14) usually takes



18 CHAPTER 2. A GENERAL CLASS OFDISCRETETIME MODELS

the form of a conditional probability mass function (foratiste random variables) or a conditional
probability density function (for continuous random véalt&s) given the current state. It can be
parameterized according to the empirical distributionhaf observations. If the observed data are
from a Gaussian population, one can consider Model (2.1r1hfe assumption. If a binary data
set is under consideration, for example, earthquake ceecerprocesses in one wlindependent

regions, one can use the independence model (see also Hugh&xaittorp, 1994a),
P(Ot = Oy ’ St = S) = Hﬁ?;l(l — ﬁis)l—Oti (216)
=1

wherep;; is the probability of event occurrence in regiom hidden states, o;; = 1 if the event
occurs on day at region; and 0 otherwise.

When the transition probability matrix depends on the dates, the assumption (2.15) can be
parameterized via some link functions which should ensweR (S, | S;—1, X;) is between 0 and
1,and)_, P(S; =1i|Si—1,X;) = 1. For example, one can use a parameterization which makes use

of the Bayes formula (Hughes and Guttorp, 1994a).\ket= P(S; = j | S;—1 = i) with constraint

Zj Vij = 1, and
P(Xy [ Si-1,5) oc exp(—(Xy — ps,_1,5)E " Xy — ps,_1,8.)'/2),

wherepus, , s, is the mean vector (assumed to vary according to the curnehpast states), arid
is the variance-covariance matrix of the covariates. Assthatzj wi; = i = 0. Applying Bayes

formula it then follows

P(X( | Si1,5)P(S, ] Si1)
P 1, X)) =
(St] i1, Xe) >os, P(X¢|Si—1,81)P(S¢ | Si-1)

X 8,1, exP(—(Xy — p1s,_1,5) 5 ( Xy — ps,_1,5,)'/2). (2.17)

The probabilitiesy;; serves as the baseline transition probabilities of thedmdstate process. The
exponential term characterizes the effect of the covariatethe baseline transition probabilities.
This model can be applied to earthquake modelling incotpagya5PS measurements of deforma-
tion as ancillary data. Normally, this model is easy to handlterms of parameter estimation and
explanation of hidden states.

Having outlined the formulation of the model, the next gioests how to estimate the param-

eters from the observed data. If we tetlenote the model parameters, the likelihood function is
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then

L(0) = P(Oq,--- ,0r Xy, -, X7,0)
= > P(Oy,--,07,51,,Sr| Xy, -, Xr,0), (2.18)
Sy .Sy
The likelihood function appears to be computationallyantable. The forward-backward procedure
developed to solve the HMM can be extended to the NHMM and méhke calculation possible.
Again, assume that the initial distribution vector of therktav chain is§ = (61,---,9,). The

forward variable is defined as

Oél(i) :P(Ol,Sl :Z"Xh"' ,XT,H) :5iP(01 201‘51 :z‘,9),

at+1(i) = P(017 7Ot+175t+1 :Z‘Xla 7XT70)

= Z at(k)P(St—i—l =1 \ Sy = k‘7Xt+1)P(0t+1 = O0¢41 ’ Sty1 = 179),

k=1
it then follows that
L(H) = ZP(Oh e 7OT7 ST =1 ’ X17 o 7XT79) = Z aT(i)' (219)
i=1 i=1

Define the backward variable as

Br(i) =1
/Bt('l) :P(Ot'f‘l?”’ ,OT’St :i7X17"' 7XT79)

= iﬁt+1(j)P(St+1 =718t = 1, X¢41) P(Org1 = 0441 [ Se1 = 5, 0).
j=1
The likelihood function can then be obtained by
L(0) = XT:P(OL'“ ;07,81 =1i]Xy, -, X7,0) = Zr:ﬁl(i)P(()l’Sl = i)mi(x1), (2.20)
i=1 i=1
wherer;(x1) = P(S; = i| X1, 0). Alternatively, the likelihood can be calculated recuesvby

L(0) = as(i)Bi(i). (2.21)
i=1
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Note that an NHMM has the same structure as a standard HMM, dmotsist of two parts, an
observation probability distribution and a transition pawility distribution. The difference is that
the transition probability distribution of an NHMM depends an additional variable. This allows
us to borrow the idea of the EM approach for the standard HM#ktonate the parameters involved
in an NHMM. To apply the EM algorithm here, the observatiésthe hidden procesS, together

with the ancillary dat&X form the ‘complete data’. The complete likelihood is

EC(H,O,S,X): Z P(Ola"'7OT7517'”7ST‘X-1a"'7XTa9)
S1,00,8T

T
= > P(S1]X1,0)P(01|51,0) [ P(St| Si-1,X4,0)P(0; | S, 6).
t=2

S1,00,87
(2.22)
If 0y is a given parameter estimate, then the E-step of the EMidigois
Q(6;6p) = Egg,[log L(6;0,5,X) |0, X]. (2.23)

By comparing to Equation (2.6), the distinguishing poirthit the ancillary datX are affecting the
complete likelihood through the transition probabilitind€Equation (2.23). The M-step is obtaining

the new estimate
6= arg max Q(6;00). (2.24)

The expected complete log-likeliho@®(0; 6,) is obtained by taking the expectation of the complete
likelihood overS at the current parameter estimatity conditional on the observed darandX,

which is
Q(0;60) = P(S1=j|01,--+,07, Xy, ,Xp,0)log P(S1 = j | X1)
J

T
+ZZP(St—1 :iast:j|ol7"' 7OT7X1>"' 7XT790)

t=2 4,5

X logP(St =7 | Sp1= i7Xt79)

T
+3 Y P(Si =70y, 00, Xy, -+, Xp,00)log P(O; | Sy = j.0). (2.25)
t=1 j
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Then the E-step of the EM algorithm for the NHMM is to compute

Ut(j) :P(St :]’017 aOT7X-17”’ 7XT790)
_ ay(5)B:(5)
NGEAD
wt(lvj) = P(St—l = i,St :]|017 7OT7X1>"' 7XT790)
_ a1 (1) P(Sy = j | Si—1 = 4, Xy = %) P(O¢ | Sy = ) B ()
D e 2 1 (D) P(Se = j [ St—1 = 4, Xy = x¢) P(O¢ | S = 5)Be(5)

and the M-step is to maximize

V(D [6y) = Zth )log P(O. | S; = 7,9)

t=1 g

T
V(S |6o) = ZZwt(i,j) log P(St = j | St—1 =14,X4,6)
=2 iy

as functions ob = (O, 6).

The difficult part of the parameter estimation for NHMM is metM-step. The difference be-
tween the complete likelihoods of the HMM and NHMM derivesimhafrom the covariates. This
makes it difficult to obtain an explicit solution for the parater estimation involved in the transi-
tion probability matrix. In application, the maximizatiai ¥ (& | 6,) always requires numerical
optimization. For the maximization oF (O | 6,), one normally can get an explicit solution. Take

Model (2.16) for example, maximizing (9 | 6y) has a simple solution given by

= Zt'Ut( )Otz
Pis =5 us)

However, when more complicated models are considered &pliservations so that there is no
explicit solution anymore, one might consider an altexgathethod of parameter estimation for the

observation distribution part (cf., Hughes and Guttor94t9).

2.4 Observation Mean Depending on Ancillary Data

When the mean of the observations depends on the ancilléay & model is called a Markov-

modulated generalized linear model (Harte, 2005). Assumatthe ancillary data only have influ-
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ence on the process of interest, i.e.
P(Ot‘ola"' 7Ot—17517"' aST7X1a"' 7XT79) = P(Ot’St7Xt79)7

and do not affect the hidden state. In addition, assume ltgahidden state is a homogeneous

first-order Markov chain, i.e.
P(St ‘ S17 e 7St—17X-17 e 7XT70) - P(St ’ St—179)'

If the ancillary data influence the observed processes givraugeneralized linear model (see Mc-
Cullagh and Nelder, 1989 for a comprehensive discussiomefyeneralized linear models), the

model (2.1) then becomes an MMGLM.

The MMGLM assumes that the distribution of the observedarsp variabl€); is indirectly
dependent on the current state of the Markov chain througithan observed covariaf&;. It

assumes that

k
E(Oy) = f (CO + Z Cz‘th'> ;

=1
where the values ofy and(; vary according to the hidden Markov state, af(d) is the inverse
mapping of the link function commonly used in generalizegdr models. Moreover, the responses
are assumed to be conditionally independent given the \afiube Markov chain. To make a
clearer statement, take the density function of the resgpeasable from the exponential family for
example. Assume that the response varidbleas a distribution in the exponential family, taking

the form

P(O; = 04| St = 5, X4, €, ¢) = exp{(0¢&ts — b(&ts))/a(@) + c(og, ¢) }

for some specific functiona(-), b(-) andc(-), where&;s = (os + Zle Cisxyi IS the so called
canonical parameter which depends on the current hiddénsst&or some very commonly used
distributions in the exponential family, such as normahdmnial and Poisson distributions, we can

write this state-dependent distribution for the obseoratias, for the normal distributiaN (1, o2),

1 (ot—,uts)Q
P(O; = 0| St = 5,X4,§,¢) = 5 2exp{—72 3

= exp{(opus — 1s/2)/0” = (0} Jo* + log(2m0?))/2}
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With &5 = 115 = Cos + Sob_y Cisii, & = 02, a(9) = b, b(&ss) = €2,/2 ande(oy, ¢) = — (07 /0? +
log(27a?))/2}; for the binomial distributionB (m, 1),

S 1 m
POy =0 | S = 5,X,&,0) :exp{<otlog <7Mt > —mlog< >> + log (C’Ot)}
1 — s 1 — pus

(2.26)

with &5 = log (prs/(1 — i) = Cos+ 30—y Cisrir @ = 1, (@) = ¢, b(Ess) = mlog(1+¢5+) and
(o, ¢) = log (C'), whereC;* means the combination @fitems fromm; and for the Poisson

distribution P(p),
P(Oy = 04| S; = 5,Xy, &, ¢) = exp{ (o log(pues) — p1es) — log(og) }

with Sts = IOg(Nts) = COS + Zf:l Ciswtiv ¢ =1, a((b) = (b- b(gts) = exp(ﬁts) andc(0t7¢) =
—log(0y).

Set the transition probability from stateto j as P(S; = j|S;—1 = i) = ~i;, and the initial
distribution vector of the Markov chain @s= (d1,---,d,). Letf denote the model parameters.

Similar to a discrete-time HMM, the likelihood function o ®MMGLM
L(Q):P(Ola"'7OT‘X17'” 7XT79) (227)

can be efficiently calculated from the forward-backwardcpdure. Define the forward probabilities

as

ai(i) = P(01,51 =i|Xy,0) = ; P(O1 = 01| S1 = i, X1,0),

at—i—l(i) :P(Ob 7Ot+last :Z|X17 7XT79)

= Zat(k‘)’}’kip(otﬂ = Ot41 \ St+1 = i7Xt+17 9)7
k=1

and the backward probabilities as
/BT(Z) = P(‘ST = Z‘7){17'” 7XT79) =1
/Bt('l) = P(Ot'f‘l?”’ 7OT‘St - Z‘7){17"' 7XT79)

= Bir1()7iP(Os1 = 0141 | Sis1 = 4, Xip1, ).
j=1
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The likelihood can then be calculated recursively by
L(0) = P(Oy,-- ,O7 | Xy, , Xr7,0) = > (i) B i) (2.28)
i=1

According the structure of this model, the EM algorithm ctsode applied for parameter estima-
tion. The observation®, X and the hidden process form the ‘complete data’. The complete

likelihood of an MMGLM is

ﬁC(H,O,S,X): Z P(Ola"'7OT7517'”7ST‘X-17"'7XT79)
S1,,5T

T
= > P(S1]0)P(01]51,X1,0) [ P(S¢| Si-1,0)P(O; | St Xy, 6).
t=2

S1,,S
(2.29)

If 0y is an initial value of the parameter estimate, then the B-steéhe EM algorithm is
Q(6;6p) = Egg,[log L(6;0,5,X) |0, X]. (2.30)

The difference of Equation (2.30) from Equation (2.23) iatttihe ancillary datX are driving the

observations in the former. The M-step is obtaining the nstivete
6 = arg max Q(0;6p).

The expected complete log-likeliho@®(0; 6,) is obtained by taking the expectation of the complete

likelihood overS at the current parameter estimatity; conditional on the observed darandX,

Q(0;6o)
:ZP(Sl :j|017 7OT7X17"' >XT790)10gP(Sl :])

J

T
+ZZP(St—l :iast:jyola'” 7OT7X-17”’ 7XT700)10gP(St:j’St—l 2170)
t=2 i,

T
+ZZP(St :]’017 7OT7X-17”’ aXTaQO)logP(Ot’St :j7Xt79)' (231)
t=1 g

Similar to the procedures in the previous sections, theep-at the EM algorithm for the MMGLM
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is to compute

Ut(j) :P(St :]’017 7OT7X-17”’ 7XT790)
_ o (7)Be(d)
> =1 0t ()Be(d)
'LUt(Z,]) :P(St—l :Z St :j|017 7OT7X17"' 7XT790)

_ a—1(i)7i; P(O¢ | St = j, Xy = x4)5(j)
D it 2y e1()7i P(O¢ | Sy = j, Xy = x¢) B (5)

and the M-step is to maximize

(O [by) = szt )log P(Oy | Sy = j, Xy, O)

t=1 g

T
V(S |6o) = Z Zwt(@j) log P(S = j[Si-1=1,0)
t=2 i,j
as functions of) = (O, &). The estimation of the parameters in the transition prdipatnatrix
is the same as that for discrete-time HMM. The parametemasitn involved in the observation
distribution partW (9O | 6y), is simply maximizing the sum of the individual log-liketibd contribu-
tions of the response variable weighted by the Markov statkabilities;(j). This can be carried

out in R using the “HiddenMarkov” package (Harte, 2005).
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Chapter 3

Markov-modulated Hawkes Process

with Stepwise Decay

3.1 Introduction

As mentioned in Chapter 1, when a Markov-modulated Poissocegs (MMPP) is in one specific
state, say, the event occurrences follow a Poisson process with xateFor a detailed review,
see Fischer and Meier-Hellstern (1993), Rydén (1994),RyaEn (1996). This process has been
applied to model bursty point processes, especially ircegemunications (see, e.g., Heffes and
Lucantoni, 1986). Yet, due to the fact that it has a constemihteoccurrence rate in any particular
state, application of MMPPs to problems involving real datimited.

Bebbington (2007) investigated volcanic inter-onset siroeflank eruptions during 1600—-2006
from Mount Etna using HMMs and MMPPs, where the volcano is alestrated to have longish
periods of Poissonian behavior. For a geophysical protiesse usually exists some additional in-
formation apart from the arrival times. For example, anheprake series often has both spatial and
temporal locations, as well as magnitude. Lv (2009) extdridle MMPP to a Markov-modulated
Poisson process with state-dependent marks. He introcadatitional information to the MMPP in
the form of marks. It provides the potential to analyze sppdémporal point patterns or multivariate
processes. The ground process arrives at a stationary rate.

However, many geophysical processes often occur in a raepandent or self-exciting way.
The events already occurred often trigger new ones. As@mbiotit in Section 1.1, the observable
point process which is governed by the hidden process tendkister with certain period. An

assumption of independence of the observations in a phatistate is no longer suitable here. The
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framework should be extended to the case in which the hid@dde is controlled by a continuous-
time Markov chain, and when sojourning in each state, thervlsl process follows a self-exciting

point process.

Based on the above considerations, this chapter develo@gkoMmodulated Hawkes process
with stepwise decay, a model in which the process switchemgra finite number of states with a
self-exciting occurrence rate of events from a Hawkes m®c& method of estimating the parame-
ters involved in the model using the EM algorithm is thenddtrced. The detailed implementation
algorithm for the parameter estimation is also providedteAthat, how to evaluate the goodness-
of-fit problem is discussed. A simulation algorithm for tlpigocess is also provided so that the
simulated events can be used to examine how the EM algoritbrksafior the parameter estimation

of this model.

3.2 Markov-modulated Hawkes Process with Stepwise Decay

3.2.1 Hawkes Process with Stepwise Decay

The Hawkes process has an extensive application in seigm(dee, e.g., Hawkes and Adamopou-
los, 1973), epidemiology, neurophysiology (see, e.genBatid and Massoulié, 1996), and econo-
metrics (see, e.g., Bowsher, 2007). It is a point-procesdéogne of the autoregressive model in
time series. LetV be a simple point process dh with successive occurrence timés = ¢ty =
0,7y = t1,---,T,, = t,. The historyH, of the process at timeis defined byH; = {¢; : t; < t}.
The Hawkes process was first introduced as a self-excitiing poocess with conditional intensity

function taking the form

AE) 2 A H) = A+ /t gt — w)dN (u),

—00

whereX > 0, g(u) > 0 andfooO g(u)du < 1 (Hawkes, 1971). The process consists of two types of
events, immigrants without extant parents in the proced#apring generated by existing points.
The immigrants arrive in a Poisson process of rgtand each immigrant generates offspring in a
non-stationary Poisson stream of ragte — ). If we let g(t — u) = vne =%, the process will
then have the Markovian property (Daley and Vere-Jones3280d become easy to handle math-
ematically. This model will be imbedded into the hidden Marknodel framework with further

restriction of the intensity function to stepwise decaye Turpose of this restriction is purely for
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the convenience of computation.

For a point proces®V with occurrence timeg, = 0, t1,--- ,t,, the intensity of this process
changes after each event occurs, but stays as a constamiebedach two consecutive events, i.e.

forty, <t <tgy1, A*(t) = N (tg+1), and

N(tesr) = A+ 3 e,

tj<tg

The general conditional intensity function for the process be written as

N (t) = A+ v Z o—n(max{titi<t}—t;)
tj<max{t;:t;<t}
The process consists of a series of immigrants which argeerding to a Poisson process at a
constant rate\. Any immigrant at the point; generates descendantstin- ¢, according to a
stepwise ratene(max{ti:ti<t}=ti) - Note that the only difference of this process from a Hawkes
process with exponential decay is how the immigrants predifspring. In a Hawkes process with
exponential decay, an immigrant at the paingenerates descendantstin- ¢; in a non-stationary
Poisson stream of ratene (') (see Hawkes and Oakes, 1974; Oakes, 1975; Daley and Vere-
Jones, 2003). This new process we will call a Hawkes procdétbssiepwise decay. Denote the
inter-event times of this process by, = 11 — 1y,--- , X, = T,, — T,,—1. The inter-event time
distribution for a point process provides in principle a meaf predicting future events in terms of
the history of the process (see Jowett and Vere-Jones, .1912) inter-event time distribution of

this process is

tn—1+Tn
P(X, <zp|Hi ) =1—exp —/ A+wvn Z e~ Mtn—1=t5) |

tn—1 tj <t7L7 1

=1—expg — ()\ +vn Z e Mtn—1=4) | o

tj<tn—1

=1 —exp{=A"(tn)xn} .

3.2.2 Markov-modulated Hawkes Process with Stepwise Decay

Consider a Hawkes process with stepwise decay the pararwtevhich vary according to an

r-state irreducible Markov process. Denote the infinitesigemerator of the underlying Markov
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process{Y (t)} by Q@ = (qij)rxr @andg; = —qi;, @ = 1,--- ,r. The observed Hawkes process
with stepwise decay is characterized Ay(t), anr x r diagonal matrix with diagonal elements

Ai(t), -+, Ax(t), where

Ai () = Xi +vimi > ermtmadtehi<ii=h) (3.1)
tj<max{t;:t;<t}

tr is the occurrence time of thigh event, and\;, v; andn;, i = 1,--- ,r, are parameters. This
process is said to be in statel < i < r, when the underlying Markov process is in stat&Vhen
this process is in stateat timet, events occur according to a Hawkes process with stepwissgyde
rate \’(¢) as defined in (3.1). This process is called a Markov-moddl&tawkes process with
stepwise decay (MMHPSD) of order Note that in this process, for the ancestors in the history,
the influencing factorsy andn, by which they generate descendants, grandn;, wherei is
the present state, regardless of which state the ancestogeveerated in. This is for the sake of
mathematical tractability. LeY; be the state of the Markov process having gener@at time
t = 0, and letXy = 0. Thekth event of the MMHPSD is associated with the correspondiate s
Y. of the underlying Markov process as well as the tiig & > 1, between thék — 1)st and the

kth event.

The state of the underlying Markov process at tiieY (¢). Let N,,(u) denote the number of
events in the MMHPSD iftt,,—1, t,—1 + u], wheret,, denotes theith event time. Given the history,

the transition probability without arrival is

() = PAY (b1 + ) = j, N () = 0| ¥ (ta-1) =i, My, _, )

It follows that

Then forl < i,j < r and forAu > 0 we have

(n)
H (u+ Au)

=P{Y(th—1 +u+ Au) =j,Ny(u+ Au) =0|Y (tn_1) =4, Hs,_, }

= P{Y(ta1 +u+ Au) = j, Na(u+ Au) = 0,V (tp1 + u) = k|
k=1

Y(tn—l) =1, th71}
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= P{Y(ta1 +u+ Au) =, Na(u) = 0, N((tn—1 + t, tn1 + u+ Au) =
k=1

Y(tn—1+u) =k[Y(tn—1) =14, Hs,_, }
=Y P{Y(tp1+u+Au)=j,N((th_1+uty_1+u+ Aul)=0]
k=1

Np(u) = 0,Y (tny +1u) = k, Y (ta_1) = i, e, |}

X P{Y (tn—1+u) =k,Np(u) =0]Y (tp—1) =4, Hs, .}

=" P{Y (ty1 + Au) = j, No(Aw) = 0| Y (tno1) = k, e, JH (1)
k=1

Z Y (Au)H (u).

Note that the penultimate step requires the conditionaniity between each two consecutive

events to be constant. The probability of the process ranwain statej without arrival is

HY (Au) = PAY (ta-1 + Aw) = j, No(Au) = 0] Y (ta1) = 5, My, }
— P{Y (tr + Au) = 5| Na(Au) = 0,Y (tn-1) = §, Ho, )
X P{Np(Au) = 0|Y (tn-1) = j, He,_, }
= P{Y (tn—1 + Au) = j| Y (tn1) = j}
x P{Nn(Au) = 0|Y (tp—1) = j, Hs, , }

= exp{—q;Au} exp{—\j(t,)Au},

where the last step holds due to the formulation of the iniyefisnction of the Hawkes process with
stepwise decay rate that for < ¢ < tx1, \*(t) = M*(tx+1). Applying the Taylor series expansion

we have that

exp{—qjAu} exp{—)\;(tn)Au}
= exp{—¢qjAu — \j(t,)Au}
=1—qjAu — Nj(t,)Au + o(Au).

It then follows that

(n)
H™ (Au) — 1
: JJ _ *
Ali%o Au =4 (tn),
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and therefore we have far > 0,

Alqlgo Au
" H(T.L)(Au) H(»T-L)(Au) -1
_ T (n) kj (n) Jj
AITILIEO( Z ik (u) Au + ij (u) Au
k=1,k#j
= > B ay — HY () (g + X (t)),
k=1,k#j
which is
Y () = B (w)(g+ Nita) + > HY (g, u>0,
k=1,k#j
and

whered;; = 1 for i = j, and O otherwise. We express this in matrix format as

{ HM (u) = H™ (u)(Q — A*(t,)) (3.2)

HM (0) =1

whereH ™ (u) = {H\!" (u)}, which yieldsH ™ (u) = exp{(Q — A*(t,,))u} for u > 0.

The transition probability matrix of the MMHPSD is then givey

F (g) = / HO () A* (b1 + w)du
0

- /O exp{(Q — A" (ta))u}A* (t 1 + u)dlu,

where the eIementEZ.(f) () = P(Yy =7, X, <z|Y,-1=1,Hy, ,). Thus the transition density

matrix is

F (@) = exp{(Q — A*(t))2}A* ().

LetA = (A, , N\ ), v = (11, ,vp), andn = (my,--- ,n-). Denote® = {Q; \,v,n}. Let

7w = (m1,--- , ) denote the initial distribution vector of the Markov prose z1, - - - , z,, are the
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observed inter-event times, then the likelihood of the petaro is

=1

wherel is anr x 1 vector of ones.
Similar to a standard discrete time HMM problem, the forwand backward probabilities can

be defined as follows. Define the forward probability as

ar(i) = P{Th = t1,--- TN = vy, 0 <t < <typ <t < tN(t)_H,Y(t) =i}
= mexp{(Q — A" (t1))t1 }JA" (t1) - --
x exp{(Q — A (tn())) (v — tnw—1) I (Eve))
x exp{(Q — A (tny+1))(t — tv) teis

wheree; is anr x 1 vector, the elements of which are zeros exceptthentry assigned by 1. We

have thatC = ", ar(i). The backward probability is defined as

Be(j) = P{Tnwy+1 = tnw+1s > T = tnstne <t <tnpgr <0 <tn, Y (t) = j}
= ¢ exp{(Q — A (tny41)) Enw+1 — I (En+1)
x exp{(Q — A" (tn(p)+2)) (En+2 — N+ PA (En(ey42) -+
x exp{(Q — A (tn))(tn — tn—1) }A" (tn)1.

The likelihood can also be expressed as
L= ou(i)By(i).
=1

3.3 The Complete Likelihood

This section provides the complete likelihood of an MMHP SDgess, which will be used in Sec-
tion 3.4 to get the parameter estimation for the processp&pthat the occurrence timgs—=
0,t1,--- ,t, = T froman MMHPSD of order are observed. Let; = t1—tg, - ,xp = tp—tn_1,
which are the inter-event times. Assume that the hidden MepkocessY (¢)} has transitions at
the time-points) < w1 < ue < -+ < uy < T. Defineuy = 0 andu,,,,1 = T, and write

I = [ug_1,ux), andAuy, = up — ug_1, for 1 < k < m + 1. Moreover, denote the state of
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{Y (t)} during I} by sy, let z;, be the number of events iy (do not count the event at= 0), and
let N(t) = #{k : 0 < k < n,t, < t}, i.e. the number of events up to timeLet py = 0 and

pr =21+ -+ zx, for1 <k <m+ 1. Then the complete likelihood @ can be written as
m
L = sy H qske_qSkA“k X _qsk’skJrl e—QSm+1AUm+1
k=1 Gsy,

m+1 zg tpp_1+i
TT T2 (e o) expd — / e (0t b b
t i—1

k=1 i=1 Pr—1ti—

whereq;, = —q,. Taking the logarithm of the complete likelihood and sirfyitig, it then follows

that

IOgEC :ZI{Y( = Z} logﬂ-z Zqul +Zzwm IquU
=1

'l].jl

J#i
+2210gx\* (te)I{Y (ty) =i} — Z/ AL () I{Y (t) =i}dt (3.3)
=1 k=1
:L1+L27

where fori # j, wy; = #{k : 1 < k < m,sp = i,5041 = j} = #{t : 0 < t <
T,Y(t—) = i,Y(t) = j} is the number of jumps o¥ (¢) from state: to state;j in [0,77,
Di = Y tki<k<mit spmit DUk = fOT I{Y (t) = i}dt is the time{Y (¢)} spends in state dur-
ing [0, 77,

L, = ZI{Y( =i}logm; — ZDZQZ + Zzwzy log qij (3.4)
=1

'l].jl

J#i

and

Zlog)\* (t)I{Y (tp) = i} — Z/ AS()I{Y () = i}t (3.5)

=1 k=1

3.4 An EM Algorithm for Parameter Estimation

Having obtained the complete likelihood of the process, B algorithm can then be used to

estimate the parameters. @ is a given parameter estimate, then the E-step of the EMitdigor
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is to calculate the expectation
Q(0;60) = Ey,e,[log LA(O; N(t),Y) [ N(t)] (3.6)

with respect toY” and©®,. The M-step will then be maximizing th@ function to obtain the new

estimate
O = arg max Q(©;0y). (3.7)

The expected complete log-likelihodd(©; O) is obtained by taking the expectation of the com-
plete likelihood overY at the current parameter estima®g conditional on the observed data
{N(s),0 <s<T}.

The parameters involved in the model can then be estimatedrbying out the following steps.
The initial distribution of the Markov process;, can be estimated using the forward and backward

probabilities. Since we have that
ao(i)ﬂo(i) = P{Tl = tl, tee ,Tn = tn, Y(O) = i},

andag(i) = m;, given the observed events, the initial distribution of Markov process can be

estimated by

Given the observed sample p&thV(s),0 < s < T'}, the conditional expectation of the statistics

D; andw;; are
N T
Dy = E{/ Hy () = z‘}dt‘ N(s),0 < s < T}
0

T a()B()
‘/0 ST RGN

and

@y =E {/OT P{Y(t-)=i,Y(t) = j| N(s),0 < s < T}dt}

_ T a()gi Bi())
0 g1 @s(k)Bs (k)

dt. (3.8)
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Under the constraing; = E#i qi; for eachi, the transition probabilities can then be estimated by

calculating

alj: ) ’L.,jzl,"',’l",l.?éj. (39)

p>‘§:>

Then the remaining problem is to estimate the parametetseimtensity function of the Hawkes
process with stepwise decay rate. This can be done by mamaniize conditional expectation @,

in (3.5) given the observationsV(s),0 < s < T'}. This conditional expectation can be expressed

as

D2(0;0¢) =E{L2|N(s),0<s<T}

r n T
:Zﬁbﬁ%mmmwmﬂ%AAWWWWﬂw
k=1

i=1

:ZZ{Mlog(A?(tk»—/k M)\:(tk)dt}-

L
i=1 k=1 k1

N(s),Ogng}

In order to get the estimates of the parameters involvedarnrtensity part, the forward and back-
ward probabilities will be calculated in the E-step, and etigal optimization will then be carried

out to maximizeQz(0; Oy) in the M-step.

3.4.1 Implementation

This section will provide the implementation steps to cauythe parameter estimation. Given the
observed sequenee= {x1, -+ ,z,} of X = {Xy, -, X, }, the likelihood function of the sample

path{N(s),0 < s < T} can be expressed as
P{N(s5),0 < s <T} = p(a") =7 [ [ fP (21, (3.10)
k=1

andp(a™) = [1r_, p(ax | 2*~1), wherep(zy | 7o) = p(x1). Lete, = p(ay | 2% 1),k =1,-- ,n.

Equation (3.8) then becomes

173

n k—
{l}i‘ :Z @ T l_f M H(k)(t _ tk—l)ei
! =1 CF -

le—1

% T A o * . f(l)(wl)
ef exp{(Q — A"(t))(tx — }N (t)dt | [ ~——1).  (3.11)

Cl
l=k+1
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SetL(0) =m, R(n+1) =1, and let

: f
:ﬂH =1, .n (3.12)
=1
:H k=n,- 1. (3.13)
1=k
Since we have
k k
p(zk) = Hcl = ﬂHf(l)(wl)l,
=1 =1

it then follows that

H TG0 409 )1 = Lk - 1) 59 (@)1,

(3.14)

(3.15)
From the definition of the forward and backward probabditree also have the following result,

atk(i)ﬁﬁtk (2) = Li(k)R;(k + 1). (3.16)

Letw = (W;;)rxr. Then we have

=Q" @Z /tk exp{(Q — A"(tx)) (tx — 1) }A" (1)

lk—1

X R(k+1)L(k — 1)H®) (¢t — t;,_1)dt, (3.17)

where® denotes element-by-element multiplication of the two maf. Usingry, = ¢y —tp_1, we

have

_ “\IF
D=Qoy = (3.18)



38 CHAPTER 3. MARKOV-MODULATED HAWKES PROCESS WITHSTEPWISE DECAY

where

T, = /0 exp{(Q — A*(t1)) (k. — @) }A*(te) R(k + DL(k — 1) exp{(Q — A*(tx))w}da.

(3.19)

This integral can be efficiently evaluated by using 2hex 2r block-triangular matrix (Van Loan,
1978; Roberts et al., 2006)

¢ Q — A (txy) A*(tg)R(k+1)L(k—1)
k= ;
0 Q — A*(tg)

andZ; is ther x r upper-right block of the matrixe®~. We also have thaﬁi = W;i/qi;, and the
log-likelihood of the MMHPSD is given by

log £ = Zlogp(wk | k1) = Zlog cx = Zlog(L(k —1)f®) (2)1). (3.20)
k=1 k=1 k=1

To simplify the integral inQ»(©; ©g), we set
n ty, . .
gii =Y Ai(t) / L(Z)ﬁﬁt(z)dt
k=1 th—1

. k-1 X
= %:k) <7T 11 %) | H® (t — t_1)e;

=1 tp—1

) (g
x el exp{(Q — A*(tg))(tr — t)}A* (tg)dlt < H w1> .

C
k41

Let G = diag(g;;). We can obtain that

=3 o [ exp{(@ - At - 034° (1)

k=1 Ck te—1

X R(k+1)L(k — 1) H®) (t — t;,_,)dt

z": A*(ty) @ij

(3.21)
Cr

k=1
and it follows
n

* T
G = Z M7 (3.22)
k=1 Ck
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and
—~ ) o, (), (i) (i) By (4)
Q2(0;0¢) = — ok log (A (tr)) — —— 2\ (ty)dt
o 0) ZZ—;I@E—:I{ I g (A (k) - r (tk)
_Zz{atk ﬁtk )lOg } Zg“
i=1 k=1
Algorithm 3.4.1 Given the initial values\g = (Ao1, -, Aor), Yo = (o1, ,vor), @ndny =
(o1, - s nor)s Qo = (qoij)rxr @Ndmo = (mo1, - -+, mor), @and given the observed occurrence times
to=0,t1,--- ,t, =T froman MMHPSD of order, with inter-event times; = t1 —tg, -+ , 2, =

t, — tn—1, the EM algorithm for the MMHPSD can be carried out as follows
(1) LetL(0) = 7o, and fork = 1,--- ,n, let L(k) = L(k — 1) f®) (x)/L(k — 1) f®) (2)1.
(2) LetR(n+1)=1,andfork =n,--- ,1,let R(k) = f%) (z;)R(k +1)/L(k — 1) f®) (z;)1.

@3) Fork=1,--- ,n, let

Cr =

Q — A(ty) A*(ty)R(k+1)L(k—1)
0 Q — A(ty)

and calculate the matrix®®s. Then sef;, be ther x r upper-right block of this matrix.

(4) Let
_'Z'T
w=Q0o Z (3.23)
k=1
and D; = wj; /qoi;-
(5) We have
log £ = Zlog 1) f®) (2)1)
and the new estimates
@3_%7 ’L.,jzl,"',’l",l.?éj, (324)
qu, i=1,--,r (3.25)

J#Z
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and
7 =moel R(1), i=1,---,r. (3.26)
(6) Fori=1,--- ,randk=1,--- ,n, set
Bix = L(k)esel R(k + 1) = Li(k)R;(k + 1). (3.27)

(7) Let

Then numerically optimize

@ @0 ZZ{atk Btk log )\* tk } ng

=1 k=1

—ZZB,klog ZZ /\* (tx)

i=1 k=1 1=1 k=1

and get estimation for the parametexsy, andy.

(8) Calculate the log likelihood

LLoq =Y _log(L(k — 1)f ¥ (a)1).

k=1

Then by using all the estimated parameters in step (1) i) = 7, and calculate the ‘new’

log likelihood
Lyew ZIOg -1 f(k ('xk)l)

(9) lteratively use{@, K, v,n) in place of(Qo, Ao, 10, m0) and repeat step (1) to step (8) until the

difference in the log likelihoods becomes less than theitetime condition.

One problem is the parameter estimation involvedinwhich requires some numerical op-
timization technique, such as the standard nonlinear agdion technique suggested in Fletcher
and Powell (1963). To carry out this we need the gradientdHessian 0iQ,, which are the partial

first- and second-order derivatives of the functi@p with respect to the parameters. To simplify
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the notations in the derivatives, denote

Sik =i Z e Milbe-1=5)
tj<tp—1
B 1
Ai +vin; th<tk—1 e milt-1ty)’
Dik = Z e Miltk—1—t5) _ i Z e_m(tk—l_tj)(tk_l —t)),

tj<tp—1 tj<tp—1

Vix = —2u; Z 6_77i(tk—1_tj)(tk_1 _ tj) + vin; Z e—m(tkﬂ—tj)(tk_l _ tj)z'

tj<tp—1 ti<tg—1

Gik

Since we already have that

T n
D2(0;00) = Biylog | A +vm; Y e mteamt) )
i=1 k=1 tj<tr_1
T n I
—k )\1‘1'7/@772' Z e_m(tkfl_tj) ,
Ck
i=1 k=1 ti<tp—1

the gradients 0® are given by

20 - ",
2 = > Bl — c—k,
k=1 =1 "

o\
0 "~ Ly
Oui - Z szCzkgzk - Z agzky
k=1 k=1
099 = " Tix
= » BiGipVivik — —ViQik-
o~ 2 2w

The Hessian of the functio@, is given by

Qs E 2
i k=1

82 Q2 “ 2
Qs E 2
onon ; BirCipVi®ik,

41
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0’9 -
67.22 = - Z BirCir&is
k=1

7
9%Qy - - ~ iy
S B C3v:00.E0 + BiCor0i — =% ok,
51/@'377@ kZZI szszchzkfzk kzz:l szZk(sz kzz:l cn ik
Py 3 -~ T
a? - Z BinChvivh, + Z BirGirtbix — Z éﬂh’k-
' k=1 k=1 k=1

(2

The nonlinear optimization technique of Davidon—Fletefawell (see Dennis and Schnabel, 1983)

can then be used to obtain the parameter estimates.

3.5 Goodness-of-fit

3.5.1 Estimated Intensity Function of the Observed Process

After fitting an MMHPSD to a set of observed data, the proligbdf the hidden state occupying
a specific state at timegiven the entire observed process will provide a cleartildi®n of the

underlying process. As discussed in Zucchini and Gutto§®1) and MacDonald and Zucchini
(1997), this probability can be directly calculated usihg torward and backward probabilities

with the estimated parameters,

The estimated intensity function using the parameter esittm can be obtained by

3\\*(75) _ Z :\\2 + 7//\27/7\2 Z e—ﬁi(max{tl:tl<t}—tj) P(St — | HT)

=1 t;<max{t;:t;<t}

= i + Uil i (max{tti<ty—t;) | (B0 3.8
;( +vin Z e j - ( )

t; <max{t;:t;<t}

The estimated intensity function of the MMHPSD processstliates how the model performs.

Algorithm 3.5.1 After fitting an MMHPSD to the data, the estimates of the pamamX = (Xl, e ,Xr),

U=, ,0),andf= (i1, , 1), Q = (Gij)rxr and® = (71, - - - , 7,) are obtained. Given
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the observed occurrence timgs= 0, t1, - - - ,t, = T with inter-event times, = t1—tg, -+ ,x, =
t, — tn,_1, the procedure of estimating the probability of the hiddtesoccupying a specific state

at timet and the intensity function is as follows.
(1) LetL(0) =7, and fork =1,--- ,n,let L(k) = L(k — 1) f%) (2,) /L(k — 1) f®) (2,)1.
(2) LetR(n+1) =1,andfork =mn,--- ,1,let R(k) = f¥) (z;)R(k +1)/L(k — 1) f®) (z;)1.
3) Fori=1,--- ,randty_; <t < tg, set

Pi(t) =L(k — 1) exp{(Q — A"(tx))(t — tr—1)}ei
x €; exp{(Q — A" (t)) (b — 1) }A" (b)) R(k + 1) /e

Thusp;(t) is the estimated probability of the hidden state occupytates at timet.

(4) Fori=1,--- ,randt,_, <t < t, set

T

NOEDS (Xi LD emm“{t“tl<t“f>) Pi(t).

=1 t;<max{t;:t;<t}

which is the estimated intensity function of the MMHPSD.

3.5.2 Residual Analysis

Residual analysis (see, e.g., Ogata, 1988; Bebbington anig,H001) can be used to assess the
utility of the MMHPSD. According to Theorem 7.4.1 in Daley @i¥ere-Jones (2003), if a point

process in time with intensity functiok(t) is rescaled using the random time change

r=A(f) = /0 As)ds, (3.29)

then the rescaled timeis a stationary Poisson process with unit rate. For an obdguint process
with occurrence times,, ts, - - - , t,, the true model for the data is usually unknown. We can fit a
stochastic model to the data and then examine whether tbé fitbdel captures the main features
of the observed point process, or in other words, whether & good approximation of the true

model for the data. Residual analysis is different from othedel selection criteria such as the log
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likelihood ratio test, Akaike Information Criterion (Al@kaike, 1974) which is defined as
AIC = —2log(likelihood) + 2k,
and Bayesian information criterion (BIC; Schwarz, 1978)aliis defined as
BIC = —2log(likelihood) + klog(n),

wherek is the number of parameters to be estimated arig the number of observations. As
pointed out in Bebbington and Harte (2001), the former igiusadentify systematic deviation of
the data from the fitted model. It would indicate a significkttor underlying the data which is
not included in the model. Therefore, it provides an absodwidence of a good fit. The latter three
criteria, however, only suggest which model is relativedjtér and do not guarantee the model is a

good approximation of the true model.

Assume that the estimated intensity functﬁm) is a good approximation of the true intensity

function of the data. The transformed time by the random tihenge

T = A(t;) = /0 iX(s)ds,

which is called the residual point process, is then expetcidit a stationary Poisson process with
unit rate. However, if the transformed time deviates from timit-rate Poisson process, it might
suggest that the fitted model is not sufficient to explain #eures of the data. In order to test
whether the residual point process is a stationary Poissmoegs with unit rate, the following steps

should be conducted.

The Kolmogorov—Smirnov test can be used to check whetheartliaal times have a uniform
distribution over the period of observation. For the fitteMMPSD, the estimated intensity function

(3.28) is used to get the transformed time

t t T R R
A(t) = / A"(s)ds = / Sl Ni+om Y emmaxlii<d=h) | B(s)ds.
0 0 =1 t;<max{t;:t;<s}
Let
M) =N+wm Yy, e mmeut<slot),

t;<max{t;:t;<s}
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For each occurrence time, we then have

= Aty) = /O S R (s)pi(s)ds

i=1

th T
z/’ S X ()pis)d

th—1 j—1

k * l t
=ZZA () H—f““”) O — e
he1 i=1 - G th—1

x e exp{(Q — A*(tn))(tn — 5)}A"(tn ( 11 f(l =) >
l=h+1
After the transformation procedure, the cumulative nundfevents versus the transformed times
7; can be plotted with the 99% confidence limits of the Kolmogefmirnov statistic under the
null hypothesis of the uniform empirical distribution. He cumulative curve exceeds either of the
limits, it may suggest that there is some feature of the dat@aptured by the fitted model.

Let By, = 7 — 71 = A(tg) — A(tg—1), k = 1,--- ,n, andUy, = 1 — exp(—E}). If E}
are independent and identically distributed exponenéiaiom variables, theti; are independent
and uniformly distributed o0, 1). Therefore, in order to examine whether the inter-arriiraet
of the residual process have an exponential distributioe Kiolmogorov—Smirnov statistic can be
used to test whethdr;, have a uniform distribution oft), 1). The method suggested by Hall (1991)
can be adopted to verify the independence of the interartimes and the-test can be used to
check the null hypothesis that the correlation coefficiestiMeenF;, and £, .1 equals zero. Note
that independence implies zero correlation, however, redesef correlation does not necessarily
mean that the two variables are independent. Thereforey, thi¢t-test, the graphical illustration
suggested by Berman (1983) can be used to check whetheiigtegrg pattern in the scatter plot of

U1 againstUy.

3.6 Simulation Algorithm

To see how well the parameter estimation method works, an MBIBI process can be simulated,
and then the model can be fitted to the simulated data set. €hwohproposed above can be used

to estimate the parameters. By comparing the estimatednedees with the true parameters, one
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can see how the parameter estimation method performs.

Algorithm 3.6.1 Given the initial state; = j, the parameters), \;, v, andn;, [ =1,--- ,r, and
the history data set{ C {t < 0}, the following steps can be carried out to generatevents from

an MMHPSD process.
1. Seti =s=1andt; =t =0.

2. User; = q; + Xj+vimj Dy 4 e~"(ti—4) as the rate and generate an inter-event timéom

the exponential distribution.
3. Settyy; = ts + 7;. Generate a uniform random variabié € (0, 1).

— If U > ¢;/r;, then addt; 11 = ts41 into the history. Set=1i+ 1, s = s + 1 and go to
Step 2.

— If U < g;/ri, then this point is a state transition point. Usg/q;)1<k< t0 generate

the next statg,. Setj = y2, s = s + 1 and go to Step 2.
If i = n, then stop.

4. The sequence of times simulated is the generated MMHR&2 5.
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Chapter 4

Simulation Study and an Application of
the MMHPSD

4.1 Introduction

As many geophysical processes occur in a self-exciting imayhich the events already occurred
often trigger new ones, and as the underlying dynamics &selprocesses might be represented as
being governed by a Markov chain, Chapter 3 introduced thektdamodulated Hawkes process
with stepwise decay. In this model the hidden process sedtamong some finite states of a contin-
uous Markov chain and in each state the observed eventw/falgzlf-exciting Hawkes process with
a stepwise decay rate. A parameter estimation method islalssoped by using the EM algorithm
for this model. Before putting this into application, thegraeter estimation algorithm needs to be
validated. Once we have established that the parameterag®in from the EM algorithm performs
reasonably well, an exploratory data analysis of the modedasthquake sequences can be carried
out to study how this model captures seismicity rate changes

There have been many investigations on seismicity rategedsahefore and after the magni-
tude 7.3 Landers earthquake on June 28, 1992, the Big Beageake of magnitude 6.4 which
occurred three hours after the Landers main shock, and @@ rh@gnitude 7.1 Hector Mine earth-
quake thought to have been triggered by aftershocks of thddra earthquake (Felzer et al., 2002).
A significant seismicity rate increase following the Larglearthquake has been observed as far as
600km away from the Landers source region (Hill et al., 198805). Wyss and Wiemer (2000)
investigated the seismicity rate changes for Landers wdotustered data, comparing the data for

the 12 years before Landers earthquake to the 7 years falljpwihey concluded that the 1992 Lan-
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ders earthquake shut off the production of small earthcuiakesome regions (the volumes south
of the future Hector Mine rupture and north of Big Bear) whilereasing the seismicity in the
neighboring regions (the volume surrounding the futuretbteldine hypocenter and north of Lan-
ders). They also detected that on average more small eakbgwvere produced after this shock.
Gomberg et al. (2001) detected an increase of seismiciyfoibwing the Hector Mine earthquake
within 250km from the main shock. Marsan (2003) observesisiity shadows east of the Joshua
Tree rupture, which occurred on April 22, 1992 with a magtétwf 6.1, following the Landers
earthquake. This correlates well with the stress shadowdeted by King et al. (1994) and Mc-
Closkey et al. (2003). Ogata et al. (2003) used residualsisabf the Epidemic Type Aftershock
Sequence (ETAS) model on the Landers aftershock sequeite aifalysis revealed relative qui-
escence about 6 months after the main shock, which lastety megears leading up to the Hector
Mine earthquake. They also detected relative quiescentieiaftershock sequence of the Joshua
Tree earthquake for a period leading up to the Landers reptiftarsan and Nalbant (2005) ob-
served seismicity shadows developing after a few days ofL#melers earthquake in the region of
the Joshua Tree earthquake, which are sometimes precedadtéyces of early triggering. The
MMHPSD will be applied to the sequence of data collected fdmshua Tree, Landers, Big Bear
and Hector Mine to examine how this model captures the seignrate changes in the selected

area.

In this chapter, first, the performance of the EM algorithmtfee parameter estimation of the
MMHPSD is evaluated. The simulation algorithm of this models provided in Chapter 3. An
arbitrary set of parameters is used to simulate 100 segseiddMHPSD events, and the MMH-
PSD is then refitted to each of the simulated sequences. Tampters are estimated using the EM
algorithm for the 100 sequences and the histogram of thergsen estimates is plotted to examine
how the EM algorithm works for the parameter estimation &f thodel. Another simulation study
is conducted via a simulated ETAS sequence. The estimateukity function of the MMHPSD is
compared with the true ETAS intensity to check how well thedela@aptures the simulated data.
The estimated parameters for this simulated earthquakéogake are used to conduct a consistency
test for the parameter estimation of the MMHPSD. After tmaudation studies, a case study of the
model is carried out using the earthquake data around Lanéediscussion section concludes the

chapter.
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4.2 Evaluation of Parameter Estimation Algorithm

Before the MMHPSD is used to investigate any real data, wd teefirst evaluate how the parameter
estimation algorithm proposed in Chapter 3 works for the ehodome arbitrary parameters are
used to generate 100 series of MMHPSD events, each with 38&heations. Then an MMHPSD
is fitted to each of the simulated series of events and the Ejdrighm is used to estimate the
parameters. The self-exciting feature in conjunction whtunderlying Markov structure suggests
that a burn-in period for the simulations might improve tbhegistency, but as we will see, it is not

necessary.

The parameters; = 0.1, Ay = 10, vy = 0.1, 5 = 0.5, 57 = 0.05, 72 = 5, ¢; = 0.001 and
g2 = 0.1 are used to simulate the 100 series of events. The cumutative of a typical sequence of

events is illustrated in Figure 4.1. The obvious jumps @poad to event occurrence rate changes.

Cumulative number of events
2000 3000 4000 5000
1 1

1000

0
I

T T T
0 5000 10000 15000
t (day)

Figure 4.1: Cumulative curve of a simulated MMHPSD sequence with= 0.1, Ao = 10, 1y =
0.1, 5 = 0.5, 11 = 0.05, 73 = 5, g1 = 0.001 andgy = 0.1.

The EM algorithm is used to estimate the parameters. Thednamns of the estimated parameters
are shown in Figure 4.2. From the histograms, we can sedhattimated parameters appear to be
centered around the true parameters, which were used ttasintbie series of events. The sample

means and standard deviations of the estimated paramegdisted in Table 4.1 for reference.
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Figure 4.2: Histograms of the estimates, Ao, 1, D2, 71, A2, §1 andg, of the parameters; = 0.1,
Ao = 10,1 = 0.1, 15 = 0.5, n1 = 0.05, 79 = 5, ¢1 = 0.001 andg, = 0.1 which are indicated in
the graphs using dashed lines.

Table 4.1: The sample means (Est mean) and standard deviations (Bstfshe estimated param-
eters for the simulated MMHPSDs.

Parameter True value Estmean Ests.d.

Y 0.1 0.100  0.003
Ao 10 10.131  0.840
" 0.1 0.100  0.007
vy 0.5 0.496  0.048
m 0.05 0.051  0.006
- 5 5.090  0.948
@ 0.001 0.0010  0.0002
% 0.1 0.110  0.031

4.3 Simulation Study Using a Simulated ETAS Sequence

Having checked the performance of the parameter estimatgworithm for this model using some

arbitrary parameters, we now investigate the performardhi® model using a simulated earth-
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quake catalogue. A well accepted stochastic model, whistbean extensively applied to various
aftershock sequences, will be used to simulate a long ergrgience of events. (A long enough se-
guence is to ensure that we get enough seismic cycles fantbstigation of this Markov-modulated
model, but not too long in order to control the computatiaadt.) MMHPSDs with different num-
bers of states are then fitted to the simulated earthquakégat. This provides insights that will
lead to understanding the structure of the model. After, this estimated parameters are used to
simulate further catalogues of varying lengths to studycthesistency of the parameter estimation

using the EM algorithm.

4.3.1 Fitting MMHPSDs to Simulated ETAS Sequence

The Epidemic Type Aftershock Sequence (ETAS; Ogata, 1988jainand its extensions (Ogata,
1998 and references therein) are nowadays almost invaligleld to investigate the characteristics
of aftershock sequences. The ETAS model is a point procebsasderived based on the following
assumptions. The background rate of events within a givgiomels assumed as a constant,
each event including aftershocks can generate its ownshfieks; the rate of aftershock activity
from an event decays with time following a modified Omori laviich describes the frequency of
aftershocks per unit time interval in the formmweft) = K (¢ + ¢) P (Utsu, 1961), wherd< depends
on the magnitude cutoff of the aftershocks counted:{h), p and ¢ are independent of it; the
average/mean number of aftershocks generated by an eakthqfimagnitudel/; is proportional

to e®(Mi—Mo) ‘where )/, is the magnitude threshold. The conditional intensity fiorcfor ETAS

model is given by

K

_ a(M;—Mo)
At[He) =p+ D e A

ity <t
wheret; are the event occurrence times. In this mogek the occurrence rate for the background
seismic activity, i.e., the immigrants follow a station&gisson process with a constant ratelhe
parameter: is a time delay constant, which is used to correct for thetfeaitthe power law becomes
infinite ast — ¢; goes to 0. It is usually found to be on the order of a fractioa day (e.g., Ogata,
1988; Reasenberg and Jones, 1989; Ogata, 1992; Felzer28(d). The parametercharacterizes
aftershock decay rate and is usually slightly larger thae.d.(Reasenberg and Jones, 1989; Ogata,
1992). The parameter provides a measure of the power of a shock generating itshfieks. For

instance, swarm-type activity has a smadleralue than that of ordinary main shock and aftershock
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activity, and an aftershock sequence with no conspicuczansiary aftershocks has a largevalue
(Ogata, 1987). The paramet&r can be explained as the productivity of events dependent®n t
magnitude threshold/.

Zhuang (2000) used the ETAS model to study the seismicithefearthquake sequence oc-
curred off Cape Palliser at the southeastern tip of Norémi$l New Zealand from January 1, 1978
to May 31, 1996 (996 events in total). The whole period wasddiy visually according to the
magnitude—time plot into four stages: early backgroundoperrelatively quiescent period, main
shock and aftershock sequence, and an active period oafiesthocks.

We use the same study area as in Zhuang (2000). Some 920 a¥ntsinimum magnitude
2.0 are selected from the SSLib package (http://homepaayeslise.net.nz/david.harte/SSLib/, last
accessed on September 22, 2009) within the cylinder cehtdrétitude 41.686S and longitude
175.508E with a radius of 36km and a depth of 40km from Janliatp78 to May 31, 1996. Note
that the catalogue has changed slightly since the year Z00BTAS model is fitted to this sequence
with the maximum likelihood estimates of the parametgrss 0.025, K = 11.002, & = 1.468,
¢ = 0.004 andp = 1.127. The estimated parameters are then used to simulate a sequieB000
events. Figure 4.3 shows the cumulative curve of the siradlaéquence of ETAS events. We can

clearly see the big jumps in the cumulative curve which iatlicseismicity rate changes.
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Figure 4.3: Cumulative curve of the simulated ETAS events.

Next, the MMHPSDs will be fitted to this simulated sequencke Purpose is to examine how
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this model works and what kind of hidden states can be ctaiaet by this model. MMHPSDs
with two, three and four hidden states are fitted to the sefievents. The estimated parameters

for each model are listed in Table 4.2. Note that the stae®m@ered according to the decay rate

Table 4.2: Estimated parameters of the MMHPSDs fitted to the simulafBdlSevents.

State 1 2 3 4
A 0.003 6.324

7 0192 0.583

i 0.044 19.502

A 0.005 0.449 31.108

U 0175 0.446 0.738

i 0.019 1569 51.219

A 0.002 0.067 3.302 53.776
7 0173 0.256 0.889 0.647
i 0.005 0.295 2.608 145.374

1. The estimated)-matrices are, for the two-state model,

. —0.083  0.083
Q= ; (4.1)
8.036 —8.036

for the three-state model,

—0.061 0.026  0.035
1.770  —3.330  1.560 , (4.2)
1.086  49.878 —50.964

o
I

and for the four-state model,

—0.047 0.007  0.023  0.017

. 0447 —1.027 0253  0.326

0= : (4.3)
0.762  8.936 —13.726  4.028

0.078  9.858  99.952 —109.888

Note that the parametercharacterizes the background rate (or the immigrant rat@hs equiv-
alent to the background ratein the ETAS modely describes the aftershock decay rate, arisl

a parameter to ensure a finite total number of descendantsyaframigrant with probability one.
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The main difference between the ETAS model and the Hawkesepsois in the term involving
magnitude and the decay rate term. The ETAS model assuntdsrtkach event, both the time and
magnitude of the event influence the intensity. Howeverctiraditional intensity function of the
Hawkes process is only time-dependent. The decay rate & TAS model follows a power law,
t~P, while that of the Hawkes process is an exponential decagtium ¢~". Let us compare the
two decay functions disregarding the magnitude effect. fvted timet, if we want the two decay
rates to be equal, we will have

P =M,

which provides a relationship betwegmandn as
n= ? log t.

For example, forp = 1.127, estimated from the Cape Palliser data set, and for a given5
days, we have) = 0.363. For thisp andn, the two decay functiong,”” ande~"", versus time

t are plotted in Figure 4.4. It is not difficult to notice that @hwe change), only the slope of

log (Decay rate)

Figure 4.4: The log-scaled decay rate? (dashed) and the log-scaled decay eaté (solid).

the linear solid line varies, with the starting point of tliel always at0,0). This suggests that

for very small and very largeé — ¢;, the ETAS model always has larger decay rate. Moreovetr, in
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the ETAS model, the decay rate is multiplied by the expoaémeirm of the magnitude (which is
always larger than or equal to 1), which makes the ETAS iitemsuch larger than that of the
Hawkes process. The relationship between the Hawkes process arid in the ETAS model is
not as obvious as the other parameters. Assume that thibulistn of earthquake magnitudéd
follows the Gutenberg—Richter distributidog(10)10~2(M—=Mo) The average number of offspring
(triggered per immigrant) predicted by the ETAS model is, (gelmstetter and Sornette, 2002)

400 Kloa*(M—Mg) +00 dt
- ot dMblog(10)10~bM-M) 220 7 7 /
on = / / cs(10)107 tror ")y Gr1p

wherea* = a/log(10) andng = Kb/cP~(b — a*), and is

+o0o
/ vne Mdt = v
0

predicted by the Hawkes process. Given the same numberspirioif), we have that

Lo Kb /+°° dt
S lh—ar fy (1)

For example, fob = 1, « = 1.468, i.e. o* = 0.638, as discussed above, restrainihg< v =

ap < 1 ensures that each immigrant has a finite total number of mfigwith probability one.
However, in the ETAS model, there is no such constraint orpdrameter, i.e., there are cases
whenap > 1. For an aftershock sequence, the ETAS model may provide @ fifod{owever, for
other sequences, it may put too much weight on the magnitifielet hich would result in a higher

intensity than the true intensity of the events.

For the three MMHPSDs with 2, 3 and 4 hidden states fitted tittnellated ETAS sequence,
let us first compare the estimates of the event occurrenes fiam Table 4.2, and then discuss the
transition probability matrices from (4.1), (4.2) and (4.Bor State 1 in each of the three models,
the background rate is smaller than that of the ETAS modelgwsuggests that the immigrants in
State 1 occur in a very low rate. Therefore State 1 in each himdensidered as the ground state.
For the largest state in each of the three models, both tHaggt@md and the decay rates increase
with increasing number of states. For example, in the twatestnodel, the immigrants in State 2
occur at a rate of about 6 events per day; whereas in the fatg+odel, the immigrants in State
4 occur at a rate of about 54 events per day. Moreover, on gedhee offspring in State 4 of the

four-state model have shorter inter-event times (i.egeladecay rate) than that in State 2 of the
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two-state model. Basically, the ground state, State 1,c¢h edthe three models does not have too
much difference from each other. The higher states, howpwesent some sort of cascading style.
The high state in the two-state model is divided into the lEgt medium states in the three-state
model. The latter two states are then separated into thatssh the four-state model. It seems that
the various states capture earthquakes with differentesanfmagnitudes. State 2 in the two-state
model is more related with large and medium events. Statdl&ithree-state model and State 4 in
the four-state model mainly correspond to large earthcgiakbe estimated probability of staying

in each state and the estimated intensity functions argriited in Figures 4.5 to 4.7.
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Figure 4.5: The estimated probability of the hidden state occupyingeStgtop), and the estimated
intensity function (middle) for the two-state MMHPSD. Thettom one is the magnitude-time plot
for the earthquake sequence.
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For the three-state model, the transition intensity mattggests a quick switch of the hidden
state out of State 3, which has the largest intensity reptiegethe period of main shocks, mainly
to State 2. It indicates that after large events, the seigmite increases. State 2 may characterize
the aftershock state, and State 1 is a ground state whichelmasow seismicity rate.

According to the estimated transition intensity matrix ftate transition structure for the four-
state model is that State 4 mostly jumps to State 3 which irikely to make a transition to a

lower intensity State 2, State 2 transits to every statelen@tiate 1 mainly transits to State 3. If we
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Figure 4.6: The estimated probability of the hidden state occupyind esiate (top two), and the
estimated intensity function (third) for the three-stat®MPSD. The bottom one is the magnitude—
time plot for the earthquake sequence.

consider possible foreshocks with their own aftershockthasequence State 3-2, then it seems
that there is a favored transition pattern like State 1-(3(42-3—-2)(the main sequence)-1. State 4
with the largest intensity represents the period of mairckio The seismicity rate increases after
the main shocks (State 2 preceding State 4 has lower sefgmaté than State 3 which follows
State 4). State 3 accounts for the immediate aftershockie ®tate 2 may correspond to swarms,

or smaller aftershocks which are known as secondary atieksh(Richter, 1958).

Now let us compare the true intensity function of the ETAS sioalith the estimated inten-
sity functions for the fitted MMHPSDs with 2, 3 and 4 hiddentsta On average, the intensity
of each of the fitted MMHPSDs is smaller than that of the ETASIeio Figure 4.8 shows the
differences between the log-scaled intensities of the MNBBI4 and the ETAS model normalized
by the log-scaled intensity of the ETAS model. The big spikekcate large differences between
the intensities derived from the MMHPSDs and the ETAS maoelgbecially around the large event
occurrences. This is due to the observation above (cf.r€igut) that the ETAS model has larger
decay rates immediately following an event than the MMHPSirich are further multiplied by

the exponential term of the magnitude and hence result irmrarger ETAS intensities.
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Figure 4.7: The estimated probability of the hidden state occupyindn estate (top three), and the
estimated intensity function (fourth) for the four-statdfPSD. The bottom one is the magnitude—
time plot for the earthquake sequence.

4.3.2 Consistency of the Parameter Estimation

We now proceed to examine the consistency of the paramdit@a¢i®n for the MMHPSDs. Instead
of using some arbitrary parameters, the parameters of thestate MMHPSD estimated from the
simulated ETAS sequence will be used. The parameters: 0.003, Ao = 6.324, v1 = 0.192,

vy = 0.583, 1 = 0.044, ny = 19.502, ¢; = 0.083 andg, = 8.036 are used to simulate four
groups of MMHPSD events. Each group consists of 100 seqaeli@h sequence has 500 events
in Group 1, 1000 events in Group 2, 2000 events in Group 3 a@ Blents in Group 4. Then the

MMHPSD is refitted to each of the simulated sequences anddizeters are estimated.

The boxplot of the estimated parameters for each group isrshio Figure 4.9. We see that
the mean of the parameter estimates of each of the paranwteny close to the true value. From
Group 1 of which each sequence has 500 events to Group 4 diwhah sequence has 5000 events,
the variation of the parameter estimates consistentlyedsess. It suggests that with more events in

the sequence, we get closer estimates to the true values widicates consistency.
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Figure 4.8: The estimated intensity function for the two-state (top)ee-state (middle) and four-
state (bottom) MMHPSDs (log-scaled) minus the true ETA8nasity function (log-scaled).

4.4 MMHPSD Investigation of Earthquake Data around Landers

4.4.1 Earthquake Data around Landers

The magnitude 7.3 Landers earthquake on June 28, 1992 isfdhe most significant, and the
most studied earthquakes in Southern California. It wasquted by the Joshua Tree earthquake
of magnitude 6.1 on April 22, 1992, and followed by the maguhét 6.4 Big Bear earthquake three
hours later, about 35km west of the Landers epicenter. Theldrs aftershock sequence contains
more than 10 large aftershocks of magnitude 5.0 or above.19868 magnitude 7.1 Hector Mine
earthquake struck about 30 km northeast of the Landers esasagion 7 years later. There were
three earlier earthquakes with magnitude larger than calé¢qlb.0 near the Landers source region
between 1976 and 1992, the March 15, 1979= 5.2 earthquake about 23km northwest of Joshua
Tree, the July 8, 1988/ = 5.7 earthquake about 6km southwest of Morongo Valley, and the
December 15, 1988/ = 5.0 earthquake about 12km northeast of Cabazon.

The seismicity in the region around the above events willtbeised. In order to choose the
magnitude threshold, the cutoff should ensure that thégaakes above this magnitude follow the

Gutenberg—Richter (G-R) law, because this is assumed IBTAS formulation. Moreover, on the
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Figure 4.9: Boxplot of the estimated parametérﬁ 5\2, 1, 9, N1, 12, ¢1 andgs for each group. The
true parameters arg = 0.003, Ao = 6.324, v; = 0.192, v, = 0.583, 1 = 0.044, 1o = 19.502,
q1 = 0.083 andg¢, = 8.036 which are indicated in the graphs using dashed lines.

one hand, a reasonably long enough data set is needed to orakihat there are several seismic
cycles. On the other hand, the number of events should béhas$000, otherwise the parameter
estimation will be very time-consuming. Thus the earth@safkom Joshua Tree, Landers, Big
Bear and Hector Mine sequences with minimum magnitude 3 ffanuary 1, 1976 to December
31, 2008 are chosen. The area is between latitude from 38.88L.8N, and longitude from 117.1W

to 116.1W. The maximum depth of the selected earthquakdskia,3and the majority of them are of

local magnitude scale. The frequency—magnitude plot oéhected data is shown in Figure 4.10,
which suggests that the selected earthquakes are comptetelang to the G-R law.

Some 2431 events are selected, including the magnitudean@®drs earthquake which occurred
on June 28, 1992 and the magnitude 7.1 Hector Mine earthquak&ctober 16, 1999. The data
is from the SCSN catalogue which is available from the sauti@alifornia earthquake data center
website (http://www.data.scec.org/index.html, lastessed on September 19, 2009). The locations
of the earthquakes are plotted in Figure 4.11. Figure 4.b%shhe cumulative number of earth-
quakes in the study area during the 33 years. We can clealgeaeeral jumps which indicate

seismicity rate changes. The MMHPSD will be fitted to thisafedlata and what kind of features
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Figure 4.10: The frequency—magnitude plot of earthquakes with minimuagmitude 3.0 in the
area between latitude 33.8N to 34.8N, and longitude 1174W16.1W from January 1, 1976 to
December 31, 2008.

this model captures will be discussed. After that, the dallsbe examined using the ETAS model

with magnitude threshold/, = 3.0 for comparison.

4.4.2 Exploratory Data Analysis Using MMHPSDs

Starting from a two-state MMHPSD, one more state is addeld &ae to investigate the seismicity

rate changes of the study area from 1976 to the end of 200B,thmtresidual point process of

the current model is a stationary Poisson process with atét rAs mentioned in Section 3.5.2 in
Chapter 3, if the residual point process is a stationaryd@aiprocess with unit rate, then the model
is a good approximation of the true model. For each modelrdhedom time changeé — 7 is

considered, i.e., for each occurrence titnehe transformed time

T, — A(tz) = /0 i X(s)ds,

is calculated, which is called the residual process. Theutatme number of the residual process
versus the transformed time; } is then plotted. The two-sided 95% and 99% confidence limits

of the Kolmogorov—Smirnov statistics are indicated by thsteed lines. The cumulative number
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Figure 4.11: Location map of the earthquakes with minimum magnitude 8.hé area between
latitude 33.8N to 34.8N, and longitude 117.1W to 116.1W fréamuary 1, 1976 to December
31, 2008. The large symbol indicate the above mentioned earthquakes, the March 1% 197
M = 5.2 earthquake (NJT), the July 8, 1986 = 5.7 earthquake (MV), the December 15, 1988
M = 5.0 earthquake (C), the April 22, 199% = 6.1 Joshua Tree earthquake (JT), the June 28,
1992 M = 7.3 Landers earthquake (L), the June 28, 1992= 6.4 Big Bear (BB) and the October
16, 1999M = 7.1 Hector Mine earthquake (HM).

versus the transformed time curves for the fitted MMHPSD# ®iand 3 hidden states exceeded
the 95% confidence limits not long before the Landers eadkgw@and then further exceeded the
99% confidence limits after the Big Bear earthquake (see,Egure 4.13 for the plot of the three-
state MMHPSD). The residual process of the MMHPSD with 4 aiddtates, however, is well
approximated by the standard stationary Poisson procegsref4.14 shows that the curve of the
cumulative number of events versus the transformed tinsediese to the line of unit slope and

between both the 95% and 99% confidence limits.

For the MMHPSD with 4 hidden states, fbr=1,--- ,n, let

Ek =Tk — Tk—1 — A(tk) - A(tk_l), (44)
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Figure 4.12: Cumulative number of earthquakes with minimum magnitu@er8the area between
latitude 33.8N to 34.8N, and longitude 117.1W to 116.1W frégemuary 1, 1976 to December 31,
2008. The vertical lines from left to right respectively icate the occurrence times of the magnitude
6.1 Joshua Tree earthquake on April 22, 1992, the magnitilB@leanders earthquake on June 28,
1992, the magnitude 6.4 Big Bear earthquake on June 28, 2882he magnitude 7.1 Hector Mine
earthquake on October 16, 1999.

and

Ui =1 — exp(—E}). (4.5)

We then use the Kolmogorov—Smirnov statistic to test whethehave a uniform distribution on
[0,1). The empirical distribution of/,, is plotted in Figure 4.15. We see that the empirical distribu
tion lies close to the theoretical uniform distribution @) and between both the 95% and 99%
confidence limits. Therefore, the inter-arrival times atpanentially distributed.

The method suggested by Hall (1991) is adopted to verifyritdlependence of the inter-arrival
times. Figure 4.16 shows the plot 8., versusEy, which does not show any evidence of asso-
ciation between the two variables. Since the majority ofvlees of ;. are close to zero, we first
take logarithm of them and then calculate thstatistic of the hypothesis test with the null hypoth-
esis that the correlation coefficient betwdeg(E}),) andlog(Ey1) equals zero. The-statistic is

-1.4514 with aP-value of 0.1468. Thus there is not enough evidence to réjeanull hypothesis.
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Figure 4.13: Cumulative number of the residual process versus the ttemefl time for the MMH-
PSD with 3 states fitted to the earthquakes around Landerssdlid straight line is of unit slope.
The dashed lines indicate the two-sided 95% (longdash) 8%d(8ashed) confidence limits of the
Kolmogorov—Smirnov statistics. The vertical lines fronft ke right respectively indicate the oc-
currence times of the magnitude 6.1 Joshua Tree earthquekerd 22, 1992, the magnitude 7.3
Landers earthquake on June 28, 1992, the magnitude 6.4 Bigd2ethquake on June 28, 1992,
and the magnitude 7.1 Hector Mine earthquake on OctoberdB®.1

The scatter plot ot/;, 1 againstUy, as shown in Figure 4.17, suggests no particular pattenereit
Therefore, we can say that the inter-arrival times are iaddpnt, and hence the fitted MMHPSD

with 4 hidden states is a good approximation of the true Bitgrof the data.

The parameters estimated via the EM algorithm for the featesMMHPSD are shown in Ta-
ble 4.3, together with the parameter estimates for the fitetHPSDs with 2 and 3 hidden states
for comparison. Note that the states are ordered accordiriget decay rate). The estimated
(Q-matrices are, for the two-state model,

. —0.0038  0.0038

Q= ) (4.6)
1.6348  —1.6348
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Figure 4.14: Cumulative number of the residual process versus the ttemefd time for the MMH-
PSD with 4 states fitted to the Earthquakes around Landerssadlid straight line is of unit slope.
The dashed lines indicate the two-sided 95% (longdash) 8%d(8ashed) confidence limits of the
Kolmogorov—Smirnov statistics. The vertical lines are $hene as those in Figure 4.13.

Table 4.3: Estimated parameters of the MMHPSDs fitted to the data arbanders.

State 1 2 3 4
A 0.025 9.325
7 0.380 0.818
i 0.069 21.049
A 0.022 0.220 81.918
U 0272 0.640 0.742
i 0.030 1.327 40.643
A 0.022 0.000 0.783 154.098
7 0.254 0.545 0.914  0.999
i 0.026 0521 19.286 188.787
for the three-state model,
—0.0051 0.0037  0.0014
Q=1 01102 -03499 02397 |, (4.7)

8.3578  16.1655 —24.5233
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Figure 4.15: Empirical distribution ofU (as in Equation (4.5)) for the fited MMHPSD with 4
states to the Landers earthquakes. The solid straightdiatunit slope. The dashed lines indicate
the two-sided 95% (longdash) and 99% (dashed) confidendts lohthe Kolmogorov—Smirnov
statistics.

and for the four-state model,

—0.0066  0.0000 0.0064 0.0002
0.0001  —0.4677  0.0002 0.4674
0.0001 0.0643  —6.1022 6.0378
58.0805 132.6127 121.2158 —311.9090

O
Il

(4.8)

with stationary distributior{0.9652, 0.0315, 0.0032,0.0001). The estimated probability of the hid-
den state occupying each state and the estimated intensityidn of each of the MMHPSDs are
shown in Figures 4.18 to 4.20. Note that the residual arsltsows that the MMHPSD with 4
hidden states is the simplest MMHPSD model which capturesrhin features of the data. Hence
it can be concluded that the four-state model is the ‘bedhimsense. The log likelihood and BIC
value for the fitted MMHPSDs with 2, 3 and 4 hidden states atediin Table 4.4. Among the three
models, the Bayesian information criterion suggests tmafitted MMHPSD with 4 hidden states

is the best fit. Although the BIC may improve with additiontdtes, these parameters cannot be
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Figure 4.17: The scatter plot fot/;., 1 versusUy (as in Equation (4.5)).
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Figure 4.18: lllustration of the fitted two-state MMHPSD. Top: the estieth probability of the
hidden state occupying state 2; middle: the estimated sitiefunction; bottom: the magnitude—
time plot for the Earthquakes around Landers.

Table 4.4: The log likelihood (LL) and BIC for the fitted MMHPSDs respieely with 2 states
(MMHP2S), 3 states (MMHP3S) and 4 states (MMHP4S), and theSmhodel.

MMHP2S MMHP3S MMHP4S ETAS
LL  1760.669 1942.465 2019.240 2020.587
BIC -3458.966 -3767.983 -3851.365 -4002.192

justified by the residual analysis, which shows that the datdready explained by the four-state

model.

The results for the fited MMHPSDs with 2 and 3 hidden statessiwown for comparison,
though they fail to capture some main features of the datay Show a similar feature to that con-
cluded from the analysis of the simulated ETAS sequencegtiief pattern detected using MMHPSD
for the ETAS sequence in Section 4.3.1). The ground stad¢e 3t in the MMHPSD with 2 hidden
states remains in the MMHPSDs with 3 and 4 hidden states. i#mwkeoth the background rate

and the decay rate for the largest state increase when we add more states indadelmWVe see
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Figure 4.19: lllustration of the fitted three-state MMHPSD. Top two pldise estimated probability
of the hidden state occupying states 2 and 3; next two plotsestimated intensity function; bottom:
the magnitude—time plot for the Landers earthquakes.

from Table 4.3 and Figure 4.20 that State 4 corresponds tbahders main shock and its imme-
diate aftermath. In this state, there is a very high immigratate )\, indicating that the events are
not triggered by other events. The decay rate also very high, so these events do not themselves
trigger other events, and~ 1, indicating a period of almost constant activity rate. Trnisy relate

to the multiple segment nature of the Landers event. Stapp8aas to account for the other main
sequence events, and for the major aftershocks, while 3tateh a negligible immigration rate
and a small decay rate, is the principal aftershock statalllyj State 1 has a low immigration rate,

a very low decay rate, and a small valueofCoupled with the long sojourn time implied by (4.8),

we see that this corresponds to a ground, or quiescent, state

Further examining the transition matrix in (4.8), we sed 8tate 4 has a very short sojourn time
(approximately 5 minutes on average), and exits to one oafteeshock states. State 3 appears to
possibly have some precursory properties for State 4, corsunate with the Joshua Tree — Landers
triggering (Hill et al. 1993; 1995). This is further suppemtby the preferred transition from State

1 to State 3. In short, our seismic cycle is identified: Stafgulescent) — State 3 (precursory/main
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Figure 4.20: lllustration of the fitted four-state MMHPSD. Top three plothe estimated prob-
ability of the hidden state occupying each state; next tvabsplthe estimated intensity function;
bottom: the magnitude—time plot for the Landers earthgslake

shock) — [State 4 (main shock) — State 3 (primary aftershpekState 2 (aftershocks) — State 1,
with the steps in brackets being optional, so to speak. Alsitad sequence of 2500 events using

the estimated parameters for the four-state MMHPSD is showigure 4.21.

Again, we notice a similar cascading style to that discusseskection 4.3.1. The conditional
intensity function of a point process in time can be used terpret the inter-event times. Larger
intensities correspond to shorter inter-event times. Rilterabove MMHPSD analysis of the data
using different numbers of states, it is not difficult to wetithat the inter-event times are highly
related with magnitude. Take the fitted four-state modeleikmple. State 4 with the highest
conditional intensity function captures the feature of lligest earthquake; State 3, which has
medium-large intensities, is related to the large-mageitaftershocks; States 1 and 2 with low
intensities correspond to smaller earthquakes. The @vient times indirectly reflect the magnitude
influence. Though we do not include the magnitude effect informulation of the conditional

intensity function, the fitted models still account for thagnitude effect.
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Figure 4.21: Cumulative curve of the simulated MMHPSD events using estith parameters for
the four-state MMHPSD fitted to the earthquakes around Lande events in State 14: events
in State 2/ 1: events in State 3;; events in State 4.

4.4.3 Comparison with the ETAS Model

Now let us examine the data using the ETAS model with magaitineshold), = 3.0. The
ETAS model is fitted to the data and the maximum likelihoodestes of the parameters are listed

in Table 4.5. The estimated intensity function as plotteHBigure 4.22 shows big spikes almost for

Table 4.5: Estimated parameters for the ETAS model fitted to the datanarbanders.

Parameters pu K «a & D
Estimation 0.0208 1.4217 1.6265 0.0381 1.2230

each event, whereas the intensity functions of the MMHP 8Bd to have less and on average lower
spikes. Recall Figure 4.4 which shows that for very small eeny larget — ¢;, the ETAS model
always has larger decay rate than the Hawkes process. Tag igge of the ETAS model multiplied
by the exponential term of the magnitude will therefore pic&lintensities very sensitive to event

magnitude. We can see that not only do large events infludred=TAS conditional intensity
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Figure 4.22: lllustration of the ETAS model fitted to the data around Lasde

function, events with small magnitudes also have strorggetin this intensity function. Comparing
the parameter estimates of the MMHPSD with 4 hidden statéstei of the ETAS model, we see
that the very large background rates and decay rates okStated 4 actually describe the fact that

large magnitudes tend to result in short inter-event times.

The log likelihood and BIC value for the fitted ETAS model aistdd in Table 4.4. We see
that the fitted ETAS model has the largest log likelihood amal $mallest BIC value among the
four models. The BIC is a criterion for model selection amangass of parametric models with
different numbers of parameters. However, for a point gsca smaller BIC does not guarantee
that this model captures the main features of the data. lerdodexamine whether the intensity
of the fitted ETAS model is a good approximation of the truemsity of the observed data, we

examine the residual point process of the fitted ETAS model.

The cumulative number versus the transformed time plotfefitted ETAS model as shown in
Figure 4.23 lies above the line of unit slope and out of bo#¥B% and 99% confidence limits. The
estimated distribution deviates significantly from theditegical one. It suggests that the residual

process of the ETAS fit is not a stationary Poisson processtefdre, the ETAS intensity function
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Figure 4.23: Cumulative number of the residual process versus the tramef time for the fitted
ETAS model to the Landers earthquakes. The solid straighti§ of unit slope. The dashed lines
indicate the two-sided 95% (longdash) and 99% (dahsed)d=mde limits of the Kolmogorov—
Smirnov statistics. The vertical lines are the same as timoSiyure 4.13.

does not capture the observed intensity well. Figure 4.88rlyl shows that after the Joshua Tree
and Hector Mine earthquakes, there are sudden and shokmatimns which are not well captured
by the model. There is also a long acceleration following @opleafter the Big Bear earthquake.
Such features may be corresponding to the activation oinskery aftershock clusters (cf., Marsan

and Nalbant, 2005).

4.5 Conclusion and Discussion

In this chapter, the performance of the MMHPSD introduce@lvapter 3 is evaluated using both
simulated and real earthquake catalogues. The simulatimties demonstrate that the EM algo-
rithm performs reasonably well for the parameter estinmatioough for a small data size (less than
1000), the parameter estimates may deviate from the truesaln general, the estimates seem to
consistently capture the true parameters.

The simulation study using a simulated ETAS sequence stggest different states of the

MMHPSD seem to capture the magnitude effect parameteriged(¥:—0) in the ETAS model.
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The state with large intensities in the MMHPSD accountsdayé earthquakes, while the state with
low intensities corresponds to earthquakes with small nitagdgs. The fited MMHPSDs to this

simulated sequence perform fairly well in modelling thessgcity of the data set. The comparison
of the decay rate of the ETAS model with that of the Hawkes ggecsuggests that for very small

and very large time intervals, the ETAS model tends to predager intensities.

When we apply this model to the earthquakes from Joshua Teeelers, Big Bear and Hector
Mine, this simple initial model demonstrates differenttestaof seismicity rates. It provides an
exploratory analysis of seismicity rate changes. The fitted-state model suggests that before
(some of) the large events, the March 15, 1979= 5.2 earthquake northwest of Joshua Tree, the
July 8, 1986M = 5.7 earthquake southwest of Morongo Valley, the December 18819 = 5.0
earthquake northeast of Cabazon, the April 22, 1802 6.1 Joshua earthquake, the June 28, 1992
M = 7.3 Landers earthquake, the June 28, 1992— 6.4 Big Bear earthquake, and the October
16, 1999M = 7.1 Hector Mine earthquake, there may exist relative quieseefitie seismicity
rate increased after these events. The transition injensitrix and the probability of staying in

each state also suggest that there may be seismic shadolesgatter the large events.

Note that in Marsan (2003) and Ogata et al. (2003), the seignnate changes were investigated
for different subregions in the vicinity of Landers. Thered, they provided temporal and spatial
details of the seismic shadows. A possible improvement neagaloried out for our analysis of the
MMHPSD on the Landers sequences by dividing the whole atedifferent regions. We can then
investigate the seismicity rate changes in each region. édewyin order to get reliable estimates,
the magnitude threshold may have to be lower than what we ¢tansen since there will be fewer

events in smaller regions.

As discussed in Section 4.4.2, the MMHPSD captures the maimeffect on the inter-event
times, although we do not include a magnitude term in thensitg function. The state with larger
intensities accounts for larger earthquakes or shorter-entent times. The magnitude term in the
ETAS model using an exponential function may be too stromgpaiwith the power law decay
function. As a next step, a magnitude effect/; — M;y)®, could be included in the intensity
function of the MMHPSD. This may provide a better fit to theadand clearer state changes of the
underlying Markov chain, given that the majority of the migwgde effect should be captured by the

above introduced magnitude term.

Finally, we see that although the fitted ETAS model has thgekirlog likelihood and the small-

est BIC value, it does not capture the main features of thatewensidered in this study (there
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may still exist a better fit using the MMHPSD with more statghjch has smaller BIC value than
that of the ETAS model, but computational time precludesoitrf being included in this thesis). If
the data is divided into several intervals each consistingne main shock — aftershock sequence,
and the ETAS model is then fitted to each sequence, we may figtedi sets of parameters for
the sequences (e.g., Ogata et al., 2003). However, for th&iMBD, each state acts as an attractor.
If the features of the event occurrence pattern evolve tsvardifferent attractor, the model will
automatically switch into a different regime (or state)airsmooth’ manner. We do not have to
subjectively divide the entire sequence into differentgavioreover, we see from Figure 4.23 that
the most significant deviations of the curve for the cumwéatiumber of the residual process ver-
sus the transformed time for the ETAS model from the line of slope are the two segments, the
period after the Joshua Tree earthquake but before the tardehquake, and the period not long
after the Big Bear earthquake. The two periods were showe telatively quiescent (Ogata et al.,
2003; Marsan and Nalbant, 2005). The ETAS model fits well iergeriod immediately after the
Landers earthquake. This suggests that the ETAS modelreapieell the features of an aftershock

sequence, but may not be as good a fit for the quiescence éroskequence.

This problem may be inherited from the assumption of the EWdlel. In the ETAS model,

the frequency of the aftershocks triggered by an event f¥jth\/; } is assumed to be

K;
(t —t; + )P

For different magnitudes/;, K; are different with

Ki _ Kea(]\/fi—]\/fo) )

This suggests that for an event with magnitudg, the frequency of aftershocks triggered by the

event is
K

(t—t; + o)

and for a larger event with magnitudé; > M, the frequency becomes

Kea(]\/[i —Mop)

(t—t; +c)p’

which ise®(M:=Mo) times of that of an event with magnitudé,. Note that the empirical formula

e(Mi—Mo) \was found for a sequence of aftershocks triggered by a mairkshith magnitudel/;,
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which describes the total number of aftershocks in the semueBut in the ETAS model, this is
assigned to all the events, including aftershocks and skeexgraftershocks. This may result in a
higher intensity than is consistent with the actual procésgshe MMHPSD, however, we found
distinguishable decay rates for different kinds of seqasntarge for main shock activity, medium

for aftershock activity, medium-small for secondary aftercks and small for quiescence.
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Chapter 5

Statistics on Association Between Series

of Events

5.1 Introduction

Correlation between two or more series of events is ofterssinei in statistics or other scientific
subjects. For the case of earthquakes, the increasinglNigyl of ancillary data relating to records
of earthquake hazard processes, such as observationotordgvater level down wells and defor-
mation measurements from GPS stations, has required tpemivhich can be used to examine if
there is any association between these ancillary variad®arthquake occurrences. The ancillary
data may provide insights into the study of earthquake loténere is indeed association between
the two series of data. This chapter will review three verpamant and popular statistical meth-
ods for ascertaining the association between two pointgases: coherence, mutual information
and the Lin—Lin model. Previous literatures have compahedcbherence with mutual informa-
tion (e.g., Brillinger, 2002; Brillinger, 2003). Howevelp date, none have discussed the three
approaches together. Note that the earthquake occurrareg@®int processes. The ancillary data,
however, are time series, which can be transformed into @3lilences, and hence point processes
(cf., Section 6.4.3 in Chapter 6 and Section 7.2.1 in Chapter

Coherence is a stationary process analog of the traditemmedlation coefficient, taking on val-
ues between 0 and 1 at any given frequency. It is a measure tifiie invariant linear dependence
of the two processes at frequenky(Brillinger, 1975; Brillinger, 1994; Brillinger and Villa1997),
and provides a measure of the degree of linear predictalilibne process from another. When

the coherence function is identically zero, one process$ i®aise in linearly predicting the other.
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When it is identically one, one process gives a perfect fipgadiction of the other (Brillinger,
1994; lyengar, 2001). If it is significantly greater thanaewer a limited frequency range, it im-
plies association between the two processes over thisdneguange.

Mutual information was originally introduced by Shannof48). It is a measure of the amount
of information that one random variable contains about lro(Cover and Thomas, 1991). The
coherence is inadequate as a measure of general assoéiatiomay be identically 0 when two
series are in fact related (Brillinger, 2003; Brillingerda@uha, 2007). Brillinger (2003) proved that
such behavior does not occur for the coefficient of mutuarimition for random variables. The
mutual information coefficient has the property of takingtioa value 0 if and only if the variables
are statistically independent. In this work, we transfolhm possible pairs of random variables, in
the point process context, to pairs of intervals by considethe point process as a 0-1 time series,
and then calculate the mutual information as a function eftitime lag.

A significant cross correlation between two series of eyel{sand N,, doesn’t mean that we

can determine whether
() Ny causesVs;
(i) N, causesVy;
(i) Ny and N, cause each other; or
(iv) some other process causes bothand Vo

(Ogata, 1999). To discriminate among the first three casesgl as to test the significance, Ogata
et al. (1982) suggested a parametric model based on thexsgling and mutually exciting point
processes introduced by Hawkes (1971). The model desthibésfluence of a point process input
on a point process output, or in other words, it can identifgdr causal relationships between one
sequence of events and another (Ogata et al., 1982; Ma aneloBes, 1997). Hence the model is
named the Lin—Lin model. Unlike the previous two cases wiih be defined very generally, this
method applies specifically to point process models.

The data under consideration are functions, particuladizations of stationary processes. In
particular, two types of processes, 0-1 time series and poatesses, are studied. In the following
sections the three statistical methodologies, coherengtjal information, and the Lin—Lin model,
are briefly reviewed. They can be used to characterize tluziasion between two or more series

of events.
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5.2 Coherence

Let (N1, Ny) represent a bivariate point process. lbegt, m = 0,+1,+2,--- and7,, n =
0,+1,+2,--- denote the times of occurrences of tNg and N, events, respectively. For real-

valuedw, let us set

d%l (w) = /OT exp{—iwt}dNi(t) = Z e twom (5.1)
. m
d% (w) = /0 exp{—iwt}dNs(t) = Z e~ Wn (5.2)

wherel" denotes the length of the time period of observation. Thenfaguency domain measure
of association which can be used to assess the linear depsnetween the processas and N,

is defined by

| |Cov{dF, (), dk, (@)}
Jim_[Core{dk, (w), d, (@)} = lim SR

= 2
T—oc Var{d}, (w)}Var{d} (w)} [Byninve (W)5 0 (3:3)

which is called the coherence of the two processes at freguenvhere
Ry, () = lim Corr{dy, (), dk, ()}

is called the coherency at frequengy Note that the coherence is the coherency modulus-squared.
This can be interpreted as the magnitude squared of thdatiwrebetween the finite Fourier trans-

forms of processed’; andN,. The definition of the correlation in variance and covareaterms,

corr{ Ny, No} = cov{Ny, No}/+/var{ Ny }var{N,},

leads to an alternative definition of the coherence as

AN
‘RN1N2(W)‘ - fN1N1(W)fN2N2(W)7 (54)

where fn, n, (w) is @ hybrid cross-spectrum between the point procedseand N, defined as

Frowa (@) = Jim o B{dE, (), dF, (@)}, (55)

The auto-spectrdy, v, (w) and f, n, (w) can be similarly defined.
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Using the method of disjoint sections (Halliday et al., 199B6e complete record, denoted by

T, is divided intoL non-overlapping disjoint sections each of lengthwhereT' = LK. The finite

Fourier transform of thé&h segment! = 1,--- , L) from processV; at frequencyw is defined as
« IK » ,
A5 (w,1) = / e AN (1) ~ e Wom (5.6)
Mwn= [ OEIEDY

(I-1)K < <IK
A similar definition holds fordﬁ2 (w,1). A consistent estimate gfy, n,(w) can be given by

L

Z (w, 1)k (w,1), (5.7)

le Ny (@ 27TL

with similar expressions for the estimation of the autoe:sismﬂefj\flN1 (w) andﬁ\&]\f2 (w). For largeK
andw # 0, the estimated cross-spectrlﬁn1 N, (w) can be interpreted as the covariance between the
components, at frequency, of the processes/; andN,. The estimated auto—spectrugf?p1 N (W),
can be interpreted as the variance at frequenoy the processv; .

The coherence function can be estimated by direct substitof the estimates of the appropri-

ate spectra as

R (@) = — !J?NlNQA(w)P . 58
e = o) P @) ©9)

Coherence functions provide a bounded and normative meadwassociation. In the case of in-
dependence,Ry, v, (w)|? = 0, the distribution of| Ry, n,(w)|? can be evaluated in terms of the
incomplete Beta function with parametdrand (L — 1) (Brillinger, 2001). The pointwis&00a%

confidence limit is given by — (1 — a)'/(:=1) . Thus we will include the level
1—0.05%(L=1 (5.9)

in the following coherence plots as a benchmark of the upp#&r confidence limit under the hy-
pothesis of independence. Estimated values of coheremug Ihelow this line can be taken as
evidence for the lack of a linear association between thepnwoesses, i.e. that zero coherence is

plausible at that frequency (Brillinger, et al., 1976; kil et al., 1995).

The second moment

dyy, (w) = / ! exp{ —iwt }dNy (1) (5.10)
0
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needs to be corrected by subtracting the med (see, for example, Vere-Jones and Ozaki, 1982)

wheren is the average rate. Thus we can use

T
&, () = /0 exp{—iwt}(dNy (t) — fdt)
T
:dl{ﬁ(‘*})_/o exp{—iwt }ndt

i

= d%l (w) " (exp{—iwT} —1).

The estimates are
cjfvl (w) = Ze"“"”" and n = N(T) ),
whereN (T') = #(0,T'). Therefore we obtain

(i}kvl (w) = Z e wom _ Zﬁg) (exp{—iwT} —1).

n

For the method of disjoint sections, we use

(f}kvl (w,l) = Z g wom _ Z]Z(I?) (exp{—iwlK} — exp{—iw(l — 1)K}),

(I-1)K <om<IK

whereN (K) = #((l — 1)K, IK].

5.3 Mutual Information

The mutual information of a bivariate random variablé V') is defined as

Iyy =E {10%2 (;%) } ’

83

(5.11)

(5.12)

(5.13)

(5.14)

where pyy (u, v) is the joint probability mass function, ang;(u) andpy (v) are the marginal

probability mass functions. The mutual information is m@gative and measures the strength

of dependence in thayyy = 0 if and only if U and V' are independent;y, < Iy, if U is

independent ot/ givenV4, and for the continuous cask;y = oo if V = g(U).

When a bivariate variabl@’/, V') has a continuous distribution, the mutual information ol
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as

Iy = / / log, (%) T

One popular mutual information estimator is obtained byssitiiing suitable density estimators
puv(u,v), pr(u) andpy (v) into the above formula (Strong et al., 1998; Antos and Koiatmyis,
2001), which takes the form

T ﬁUV (u7 U) ~
1 ://lo <#> u, v)dudv.
v g2 B0 (Wpv (v) puv(u,v)
We can use either parametric density estimators (Brilinge04) or nonparametric ones (either

histogram-based, Moddemeijer, 1989; or kernel-basedsMad van Aragon, 1982; Joe, 1989;
Granger and Lin, 1994; Moon et al., 1995).

For a bivariate discrete variab{&/, V') with U taking on the values, - -- , K andV taking on
1,---,Jand
P{U =k,V = j} = pi;-

The marginals are then

J K
j=1 k=1

and the mutual information becomes

Pkj
Pk+D+j ’

Iyy = > prjlog,
k?j

assuming thap;, # 0. Letw = {wy; }, with

1, U=kV =,
Wy = )
0, otherwise.

Suppose that there areindependent realization$wy;,l = 1,--- ,n}, of w. The maximum like-

lihood estimates opy; arepy; = >, wxj;/n and the plug-in estimate of the mutual information

(Brillinger, 2004; Brillinger and Guha, 2007) is

~

= ~ Pkj
Iyy = Prjlogy =—2—, (5.15)
kg Pk+P+j
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wherepy. = Zj Prj andpy; = >, Di;. Note that a point process can be transformed into a 0-1
time series, with 1 at the occurrence times (of the procestsPatherwise. The likelihood ratio test

statistic of the null hypothesis that the two variablésndV” are independent is

~

~ Pkj
G? =2n Zpkj logy ——~
kg Dk+D+j

(Christensen, 1997; Brillinger, 2004; Brillinger and Gul2807). The asymptotic null distribu-
tion of G? under the hypothesis of the independencé/cnd V' is X(2J—1)(K—l)' Noticing the
proportional relationship between the estimﬁtef in (5.15) andG?, we have that under the null
hypothesis that the two variablés and V' are independent, the large sample distribution of the

estimate (5.15) iQK(QJ_l)(K_l)/Zn.

5.4 Ogata’s Lin—Lin Model

Consider a point proceqsV; } with intensity function

At) = p+ /tg(t — s)dN, + /t h(t — s)dX,, (5.16)
0 0

where{ X, }, the input process, may be either a point process or a cureif@abcess

X, = /Otx(s)ds

of a stochastic processt). The self-exciting terny(¢) describes the nature of the point process,
while the transfer termh(¢) indicates the strength of the causal relation between et jprocess

X and the outpufV;. When the functiork(¢) = 0, it means there is no causal relationship between
the input and output processes, whereas when the fungtion= 0 andh(t) # 0, it means that
the output process is a doubly stochastic Poisson processawhtensity is modulated only by the
input process (Ogata et al., 1982). Ogata et al. (1982) geapthe following parameterization of

the two response functions
K
g(t) => apthle™ (5.17)
k=1

L
h(t) = bpth e, (5.18)
k=1
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Given the occurrence times of two sequences of evgntsi = 1,--- , I'} (output) and{7,, : m =
1,---, M} (input) over the time interval0, 7], the parameters are estimated by maximizing the

partial log likelihood

T
logLr(0) = 3 logAg(t:) — / No(H)dl,
:0<t; <T 0
wheref denote(y, ¢, a1, - ,ax,b1, -+ ,br). To determine the order&” and L of the response

functions, we use Akaike’s information criteria (AIC; Akai, 1974)
AIC(K,L) = -2 meax(log Lr(0)) + 2(K + L+ 2),

and chooséd< and L which minimize the AlC.

Ogata (1983) suggested the following model to examine ¢ase (

At) =ao+Ps(t) + Cx(t) + Y gn(t—t) + > hx(t—7m).

t; <t Tm <t

The second term on the right-hand side

J
Pi(t) = a;¢;(t/T), 0<t<T,
j=1
represents the evolutionary trend. The total length of theeoved interval is’, and ¢;(-) is a
polynomial of orderj. The third term

K

Crc(t) = {bak—1 cos(2kmt/Th) + by sin(2kmt/Ty) }
k=1

is the Fourier expansion for cyclic effects with a given fixaale lengthTy. The fourth term is
the clustering effect, i.e., a response function of the wiufyocess. The last term describes the
causal relation from the input process to the output procéks last two terms are parameterized
asin (5.17) and (5.18), but with different exponential dei@des for the input and output processes
(see e.g. Ma and Vere-Jones, 1997). If there is no causaioreffrom {7,,,} to the conditional
intensity function\(¢), or to the occurrence oft;}, thenhx(z) = 0 is expected. Maximum
likelihood estimation can be used to estimate the parasated the AIC can be used to determine

the order(s).
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Wang et al. (2010) presented a comparative study of the gtadistics using the groundwater
level data at Tangshan Well in northern China and earthguiiken the global catalogue. A strong
association between the groundwater level oscillatiomstae earthquake occurrences was found,
in which the earthquake occurrences appear to trigger viatel oscillations with a time delay.
The time delay may be related to the seismic wave travel tinoes earthquakes to the well. The
next chapter will provide a detailed investigation of thrkhge and causal relationship between the

groundwater level oscillations and some prominent seighises using the three statistics.
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Chapter 6

Transient Coseismic Responses at

Tangshan Well

6.1 Introduction

Earthquakes disrupt and change hydrologic processes.ti©rgsrologic anomalies have been
observed after earthquakes, such as oscillations or sadtahanges in groundwater levels in wells
(e.g., Montgomery and Manga, 2003, and references therein)

Sustained water level changes in distant wells have beewomstmted by, for example, Coble
(1965), Bower and Heaton (1978), Igarashi et al. (1992), Roeloffs (1998). Using larger sam-
ples, King et al. (1999) and Wang et al. (2004) showed thaetlehanges could be from a num-
ber of physically different classes. However, statistmadlysis (Matsumoto, 1992; Kitagawa and
Matsumoto, 1996; Matsumoto et al., 2003) showed that susfaisied changes occur as the conse-
quence of a very small proportion of earthquakes (apprag@lyp@ane in 500 and one in 2500 in the
latter two studies). They also suggested that there may &xiseshold combining magnitude and
well-epicenter distance above which such changes arg.likel

However, in addition to sustained changes in groundwatet,learthquakes can induce, via the
passage of seismic waves, oscillations in water level witlation of up to a few hours. While sus-
tained changes in groundwater level appear to be rarejdrdarmscillations of groundwater level are
considered much more common. The amplitude, and hencetideteaf such oscillations appears
to be a function of the characteristics of the well-aquifgsteam (Cooper et al., 1965; Kunugi et
al., 2000). The existing literature mainly discusses gdwater level changes at one well related to

seismic waves of a few distant large earthquakes (Liu e1@89; Ohno et al., 1997; Brodsky et al.,
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2003), or at several wells related to one or two earthquakgagawa et al., 2006; Ramana et al.,
2007; Chia et al., 2008). Although Cooper et al. (1965) (¢8® King et al., 1999; Kitagawa et al.,
2006) noted large variability in the response of differeells/to a single earthquake, there appears
to have been no systematic investigation of the variatigdhémresponse of a single well to multiple
earthquakes. No statistical investigation in the spirithafse by Kitagawa and Matsumoto appears
to have been conducted to investigate the variability gdoases, what seismic wave arrivals they

can be associated with, and what characteristics of theqaake influence them.

In this chapter a statistical examination of transient sk responses to distant earthquakes
will be conducted using four years of groundwater level meaments (sampling frequency per
minute, approximately two million data) and the global tagae of earthquakes of minimum mag-
nitude 6.0 during the same period (600 events). The aim isstacionstruct an algorithm to automat-
ically detect oscillations in groundwater level, and estithese as ‘signals’. Secondly, the statistical
methodologies reviewed in Chapter 5 will be adopted to itigate the relationship between these
signals and the arrival times of various seismic waves, niquéar the earliest P phase, S phase,
Love Wave and Rayleigh Wave arrivals. Once the candidate wdnch is most likely related to the
initiation of groundwater oscillations has been found, iit e used to identify those oscillations
that appear to be coseismics in nature, as opposed to defram other causes. The former will
then provide the basis for investigating the detection abdlty, and the well signal characteristics,

as a (statistical) function of the earthquake charactesist

The earthquake characteristics are chosen rather thamtpiades of seismic waves in the
Tangshan area for two reasons. The relationship betweemdwater level movements and seis-
mic waves is well understood (e.g., Cooper et al., 1965; B@amd Heaton, 1978; Liu et al., 1989;
Kunugi et al., 2000). Hence the question of interest is rathe relationship between the earth-
quake, and its manifestation in the distant region of thd,vel that measured by seismic waves
or groundwater level movement. The analysis of the latthileastill very data-intensive, is more

feasible than examining thousands of seismograms, reg@td@uch higher frequency.

In the next section, the data and the pre-processing taobsigsed to ‘clean’ it prior to the
analysis proper will be described. Following is the disaus®f how to utilize statistical analysis to
extract signals from the groundwater level record. Usimgsilynals thus extracted, in Section 6.4, a
dispersion test of Poisson process for both the well siggréds and the earthquake series are used to
examine the cluster properties of the two sequences. Tleaotierence and mutual information are

adopted to calculate the correlation between the well fgaad the various seismic wave arrivals,
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and the Lin—Lin model, a point process technique, is appgleidentify which arrival is the most

probable initiator of the oscillations. The detection #ireld is examined both directly, and via
logistic regression, in Section 6.5. A meta-analysis usmgtiple regression is conducted in the
penultimate section in an attempt to quantify possibletiaia between earthquake and well signal

characteristics. This chapter concludes with a discussiidine results.

6.2 Data

There are more than thirty years of groundwater level olagiens at the Tangshan Well, a well lo-
cated in DaZzhao Park in Tangshan City, 100km southeast §ihBeChina, with longitude 118.18E,
latitude 39.62N and altitude 23.43m above sea level, wisidbcated along the Tangshan fault. The
well (see Figure 6.1(a)) was drilled by the Geology Depaninoé Tangshan Mining, Kailuan Min-
ing Administration in 1969 for the purpose of hydrologic ebstion, with the alternative name

Shanxi Water 2. The borehole drilling terminated on Octo®@r 1969, at a depth of 286.57m.
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Figure 6.1: Tangshan Well (a) and its columnar section (b) (Li Ma, peasaonmmunication).

The alluvium thickness is 10.27m. After drilling, the booddhwas sealed at 207.00m depth, which
was the water depth. A tube with inner diameter 14cm and ti@sk 2mm was set in the borehole
from the ground surface to 154.00m depth. For a detailedogésal column of the well, see Fig-

ure 6.1(b). The natural period of the well-aquifer systens @&.9s in 2002 (Zhang et al., 2002),
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but this varies with the depth of the well water.

Such along record as that from Tangshan Well is rare to theobesr knowledge (cf. Elkhoury
et al., 2006). To date there has been no coherent statiskaatination of the possible link between
earthquakes and the hydrological response of a well witknitlly hundreds of responses, and

little if any statistical analysis has been done for the daftangshan Well.

The observation frequency has increased over time, begjrwith daily observations of water
level on January 1, 1974. From January 1, 1981, analog dligamg with hourly sampling have
been made using monitoring equipment SW40-1 with 1mm gaetisDigital monitoring equip-
ment LN3 for the water level began operating on SeptembeR0®]. These data have precision
0.0005m with a sampling rate of one observation per minue tlae available record extends to the
end of 2005. The time series analysis (state-space modéhonee (Kitagawa and Gersch, 1984;
Kitagawa and Matsumoto, 1996) are not feasible as, aftesrdposing the data into air pressure,
rainfall and earth tide responses, the dominant comporfetiiteoresidual water level appears to
be related to groundwater pumping for industrial use, ofclwhhere is no detailed record. While
we are hence unable to investigate whether or not Tangshédre¥geriences sustained changes
in water level, the question of transient changes remaies.oprom a sampling inspection of the
water level data, including immediately following the lagg and closest earthquakes, water level
oscillations in the well appear to last for at most a few hourkis implies that hourly sampled
data will not be sufficient for detecting and examining theiltetions at this well. However, the
availability of data observed at minute intervals provittes opportunity to examine coseismic re-
sponses which are transient, rather than steps, in the lgagtrover the period 2002—2005 (in total
2,103,840 data, with 88,897 missing). Missing data is dwertamber of causes — electrical failure,
sensor adjustments, and malfunctions such as sensor;leaerecorder or data communication

unit failure (Baojun Yin, personal communication).

The four year record of water levg] is plotted in Figure 6.2, including the occurrence times of
the largest earthquakes during the period, as listed ireTalll. Features worthy of remark include
that the 27 earthquakes with minimum magnitude 7.5 durirgypériod appear to have no sustained
effect on water level, and little in the way of trend or seadorariation. Note the break in the
record in September 2002, where there is no record for a 1Qodagd (14,400 minutes). The
erratic behavior in February and March 2003, and in Octob8b2s due to sensor adjustments and

malfunctions.

The clock time at Tangshan Well is synchronized every wedkd@écsame GPS time by which
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Figure 6.2: Groundwater level record at Tangshan Well from January 0220 December st,
2005. The symbols A—Z and @ indicate the occurrence of egaltess with magnitude greater than
or equal to 7.5 (details in Table 6.1).

earthquake origin times are measured in the NEIC catalogatveen adjustments the clock time
can lag behind the GPS time, with an error always less thae@&thsls, usually less than 30 seconds
(Baojun Yin, personal communication). Thus the average tieading error of groundwater level
record at this well is less than 30 seconds. Since we aredmmsy data sampled by minute, we
chop the earthquake occurrence times to minutes (i.e.,thengeconds), with a consequent average
time reading error for earthquakes of approximately 30 sés0 The well error will lead to water
level movements occurring ‘early’, i.e., the seismic waag®ving ‘late’, whereas the chopping of
earthquake times makes the seismic waves arrive ‘earlyisTline two errors tend to cancel, and the
maximum error in either direction is 1 minute. To test whethe sum of these time reading errors
affects our analysis, we will perform sensitivity tests bpvimg the water level record 1 minute
forward or 1 minute backward, and repeating all analyse® rébults will be compared with that

from the original water level data.



Table 6.1: Earthquakes obtained from the USGS-NEIC catalogue (higdc.usgs.gov/neis/epic/epgiobal.html) with minimum magnitude 7.5 from

January 1, 2002 to December 31, 2005, corresponding to theadg A—Z and @ in Figure 6.2.

(o]
N

Symbol Date Time Latitude Longitude Depth Mag Region Dis to well raith )
yyyymmadd (km) (km)

A 20020102 17:22:48.76 -17.60 167.86 21 7.50 Vanuatu Islands 8184 229.1

B 20020305 21:16:09.13 6.03 124.25 31 7.50 Mindanao, Pimigsp 3784 190.7 g
C 20020819 11:01:01.19 -21.70 -179.51 580 7.70 Fiji Region 8993 2354 T
D 20020819 11:08:24.31 -23.88 178.49 675 7.70 South of théskinds 9428 2326 T
E 20020908 18:44:23.71 -3.30 142.95 13 7.80 Near North Cda¢tw Guinea, P.N.G. 5402 213.7 &
F 20021010 10:50:20.57 -1.76 134.30 10 7.70 Irian Jaya Regidonesia 4885 203.4 4
G 20021102 01:26:10.70 2.82 96.08 30 7.60 Northern Sumaianksia 4660 1455 3
H 20021103 22:12:41.00 63.52 -147.44 4 8.50 Central Alaska 3863 327.7 5
I 20030120 08:43:06.07 -10.49 160.77 33 7.80 Solomon Islands 7094 2274 T
J 20030122 02:06:34.61 18.77 -104.10 24 7.60 Offshore ColMexico 12179 317.4 ('.')
K 20030715 20:27:50.53 -2.60 68.38 10 7.60 Carlsberg Ridge 06 69 119.7 9
L 20030804 04:37:20.13 -60.53 -43.41 10 7.60 Scotia Sea 17365 1569 m
M 20030821 12:12:49.79 -45.10 167.14 28 7.50 South Islanceef Realand 10611 211.9 g
N 20030925 19:50:06.36 41.81 143.91 27 8.30 Hokkaido, JapgioR 2173 284.7 %
O 20030927 11:33:25.08 50.04 87.81 16 7.50 Southwestermi&iBussia 2635 53.8 m
P 20031117 06:43:06.80 51.15 178.65 33 7.80 Ratlslandstiatetslands, Alaska 4749 305.9 8
Q 20040207 02:42:35.21 -4.00 135.02 10 7.50 Nearthe Soutkt@dbRapua, Indonesia 5147 20342
R 20041111  21:26:41.15 -8.15 124.87 10 7.50 Kepulauan Atdonesia 5356 188.5 7
S 20041223 14:59:04.41 -49.31 161.35 10 8.10 North of Madgusiand 10756 206.2 »
T 20041226 00:58:53.45 3.30 95.98 30 9.00 Offthe West Codsbhern Sumatra 4616 1449 3
U 20041226 04:21:29.81 6.91 92.96 39 7.50 Nicobar IslandialRegion 4423 138.0 &
\Y, 20050328 16:09:36.53 2.09 97.11 30 8.60 Northern Sumaianksia 4685 147.2 ¢
w 20050613 22:44:33.90 -19.99 -69.20 115 7.80 Tarapacae Chil 17721 339.7 2
X 20050724 15:42:06.21 7.92 92.19 16 7.50 Nicobar IslandialRegion 4371 136.3 =
Y 20050909 07:26:43.73 -4.54 153.47 90 7.70 New Ireland Re@idN.G. 6094 224.5 E
z 20050926 01:55:37.67 -5.68 -76.40 115 7.50 Northern Peru 96845 334.6

@ 20051008 03:50:40.80 34.54 73.59 26 7.70 Pakistan 3954 83.6
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6.2.1 Well Data Levelling

Groundwater level changes are caused not only by tectoctiorfa such as earth crust deformation
related to earthquakes; but also by non-tectonic factad) as rainfall, air pressure changes, earth
tides, exploitation of mines and underground water. Altftoprocedures for removing tidal and
air pressure effects exist (e.g., Igarashi and Wakita, 18®%hgawa and Matsumoto, 1996), the
available rainfall data is on quite a different time scatej there is no record of industrial pumping.
To avoid difficulty with the non-tectonic factors causingaolges in water level, it is much simpler
to just consider the first differenceg,; — y; of the groundwater level data, which measures the
changes of the groundwater level relative to the previousutei This eliminates ‘slow’ factors
such as air pressure, rainfall, earth tides and pumpindyowitintroducing possible errors from

additional data, leaving only the oscillations, as exefigaliin Figure 6.3. Figure 6.4(a) shows the

Groundwater level by minute (m)
o 20031117.06:43 Magnitude 7.8

3 i Latitude: 51.15 Longitude: 178.65
= Distance from well: 4749.2492km

Groundwater level (m)

° First differences of the water level (m) ‘ M
o .
20031117.06:43 Magnitude 7.8 !

First differences (m)

T T T 1
0 50 100 150 200 250
t (minute)

Figure 6.3: An example of the oscillations of the groundwater level atgshan Well, and their
reduction to first differences. The dashed line indicatesatigin time of the magnitude 7.8 Rat
Islands, Alaska, earthquake of November 17, 2003.

distribution of the first differences of the groundwaterdieivom 2002 to 2005. The 88,897 missing
data translate to a total of 91,477 missing data in the fifigrénces of the groundwater level. The
41 first differences of absolute value larger than or equdlnowere individually examined. It
appears that eight of them may have been caused by largeeakts. The other 33 spikes appear

to have been caused by sensor adjustments and malfunatibics, are irregular and always present
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Figure 6.4: (a): The cumulative distribution of the first differencediué groundwater level (solid),
with dashed line (for comparison) showing the fitted Gaussianulative distribution function with
mean and variance calculated from the first difference d€ta.00025,1.1969)). (b): The cumula-
tive distribution of the lengths of the non-missing intésv@olid), with dashed line (for comparison)
indicating an exponential cumulative distribution fuctiwith rate estimated from the observed in-
tervals ( — exp(—xz/851)).

as either single jumps, or sustained oscillations whiclagsweach their maximum amplitude at the
end of the oscillations (Baojun Yin, personal communiagtidn this case we adopted the following
filtering procedure: if the spike was due to sensor adjustaed the sensor was changed back to the
previous level within two hours, we subtracted the adjustnfimm the original data; if the sensor
was not changed back to the previous level within two hotwes adjustment was simply subtracted
from the relevant first difference. For those spikes causeahdfunctions, the abnormal data was
set to be missing. The data in October 2005, as shown in F@g@reincluded a great number of
sensor adjustments and malfunctions, which could not slgrise reconciled. Hence, only the data
from January 2002 to September 2005 are used here.

After this cleaning procedure, 1,971,360 data from Jan@862 to September 2005 remain to
be investigated, including 88,335 missing data, in the setaf the first differences of groundwater
level. The missing data separate the first difference data2r213 intervals in which there is
no missing datum. The longest length of these intervals j478 and the shortest is 1. There
are 97 intervals with length longer than 1,920, i.e. 32 hourke distribution of the lengths of
the non-missing intervals is shown in Figure 6.4(b). Froim traph we can see that the breaks
do not occur randomly, as the exponential distribution isardit. There appear to be a large
number of breaks at less than 2-hour intervals and at ifteofapproximately 24 hours, which are
almost certainly related to sensor adjustments and madifungc This may affect our analysis in the

following sections.
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6.2.2 Earthquake Data

The earthquakes are taken from the USGS-NEIC catalogug/(h#ic.usgs.gov/neis/epic/epie
lobal.html). This catalogue is considered complete at ntade 5.0. Hence a minimum magnitude
cutoff of 6.0 will be used in this analysis, in order to havdeaist a minimal estimated amplitude
from the seismic waves at the well. Almost all of the seledathquake magnitudes are moment
magnitudes {/,,). Rather than earthquake occurrence times, the arrivastiof the earliest P
phase, the earliest S phase, and the earliest Love and &ayleive arrivals will be used, which

were calculated based on the travel time table provided & and Engdahl (1991).

6.3 Identifying Signals in Well Data

In order to analyze the correlation between the water leseilations and the earthquake occur-
rences, first the well signals have to be identified, whichmadhe times when the oscillations begin
(and end). Given that there are about two million data, itasdly possible to do it manually. A

method to automatically detect the occurrence times oflasons probably due to earthquakes is

needed.

6.3.1 Exponential Decay of Well Oscillations

After examining the oscillations of first differences indivally, it appears that each set of oscilla-
tions may possess an exponential decay rate. Investigabibooseismic and noncoseismic water
level changes of another well-aquifer system near Ito Sityzuoka Prefecture, central Japan sug-
gested that each water level change is followed by a dampedoméc oscillation (Kunugi et al.,
2000). Therefore, an exponential decay function in cortjonowith a cosine function can be fitted
to the oscillations in order to get a reasonable decay ratdraquency for the oscillations of the
groundwater level. This will then provide a suitable basisan algorithm to detect induced changes
in water level.

By choosing the point with the largest amplitude of each $eisoillations as a starting point,
in order to model the oscillation frequency, a cosine magdl@xponential function can be fitted to
a cluster of cumulative sunts; of first differences (i.e., to the values of the original, iiiedenced
values, subtracting a constant). The procedure is as fell@ett = 1 at the location of the largest

amplitude. Le®; = y:11 — ¢, Which is the first differences of the groundwater level,= ¢; and
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Ct = > 1<« 0s for t > 1. Then we fit the sets of oscillations using the equation
2
Cy = AeH9) cos <M> + &4, (6.1)
w

whereA is the amplitudeq is the cluster decay rate,is the phase which allows for the origin to be
somewhat betweeh= 0 andt = 1, w is the frequency ang is the residual. Model (6.1) involves
four unknown parameters of this well. The real difficulty &t the sampling rate at this well is
one observation per minute, approximately three times #taral period, which is now 20.99s,
(Baojun Yin, personal communication, cf., Section 6.2).otder to get the estimated decay rate
of the clusters in the presence of this aliasing effect wealneaninimize the sum of the squared

residualsy _, g(t, A, a, ¢, w), where

2
g(t, A a,p,w) = <Ae_“(t+¢) cos <M> — Ct> .

w

However, in practice, at each poititwe use the minimum of(t, §), and the fitted value at1
second, which allows for the stated precision in the timifighe water level measurements. A
variety of oscillations corresponding to earthquakes wlifferent ranges of magnitudes, depths
and well-epicenter distances are chosen and then Modgig6itted to each set of the oscillations.
The estimated frequenay ~ 0.33 & 0.1min~! (equivalent t020 + 6s period) and decay rate
a =~ 0.05 £+ 0.03 from this model are consistent with the empirical valueshefwwell parameters.

Two examples with the fitted results are shown in Figure 6.5.
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Figure 6.5: Two examples of cumulative first difference data, and hygsitted exponential damp-
ing showing the aliasing problem between sampling inteawal well response period.
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6.3.2 A Moving-window Detection Algorithm

Recalling the sampling rate of one per minute, a set of agicihs is most easily identified as
an increase in the variability of the data. Hence, in ordeidémtify where a set of water level
oscillations begins and ends, a moving average method evilbied to calculate a series of weighted
variances of the first differences, and then those which laogeaa certain cutoff are considered to

be signals.

The procedure is that the exponential decay rate estimdiedeais utilized to calculate a
weighted variance of the first differences. {&f = (y+1 — v:)/0.0005 : 1 < ¢ < N} be the
first difference sequence of the water level, measured inafir.0005mm (the measurement pre-
cision) for ease of calculation. Set= 1 at 00:00, January 1, 2002, and correspondingly, in the
following sections, unless otherwise specified, the timgins (for time in minutes or hours) of
both the water level and earthquake sequences are at tlasptint. Let!/ be the length of the
moving window. After some experimentatioh,= 10 was chosen, but the results do not appear
to be sensitive to this choice. For each paintve calculate two samples of sizewhich are the
weighted first differences for a window either preceding:lveard) or following (forward) the point
t, Xy = {e =95t — 141 <s<t}andXp = {0t <s<t+1—1}. The ex-
ponential decay % acts to down-weight the influence of the points further awaynfthe current
point. Then calculate the varianc€g (backward variance) and.- (forward variance) ofX;; and

Xt27

t ¢ 2
Vi = (1/1) Z ( at=s)g" — (1/1) Z e—a(t—s>5g>
1

s=t—I+1 s=t—I+

and

t+l—1 t+l—1
W2:(1/1)2< asté/ l/l Zea3t5/>’

s=t

respectively (as illustrated in Figure 6.6). The missintada first differences is set to be 0 in order
that the algorithm be conservative (i.e., we do not intredaay false positives). This has little
effect when the intervals contain at most two missing daawéver, when there are three or more
missing data in an interval, oscillations may go undetected

For a given quantile threshold. (c is the percentile) of the variances, a cluster within which

every point has a weighted variance larger than or equl] is considered as a signal, i.e., some
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Figure 6.6: An illustration of calculating the weighted variance. Braace: backward variance;
F-variance: forward variance. The earthquake is the May@63, M 7.0, earthquake off the east
coast of Honshu, Japan.

c percent of the data are treated as signals. Startirig=at1, let ¢, be the first point at which
Vi1 > Ve, and lett, = min{t > ¢, : Vip < V.}. Call {4 : t € [t,t.]} a signal. Then repeat the
above procedure starting @tuntil the end of the data. In the following sections, unlefeovise

specified, a signal will be identified by its initiation tindg .

This procedure identifies some signals in the period fronrigety 2003 to March 2003 that
appear to have their maximum amplitude at the very last midittie signal. This nonphysical be-
havior is related to sensor malfunctions and adjustmestmentioned above, and so these signals
were eliminated from subsequent analysis. Readjustmahtafensor can cause apparent changes
in groundwater level, which manifest in the first differerdaa as signals of length 1, while tran-
scription errors (of single points) in the data create theeapance of signals of length 2. Hence

signals of less than 3 minutes duration were likewise delete
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6.3.3 Determining the Detection Threshold

In order to determine the threshold parameteve will borrow some ideas from prediction analysis.
Kagan (1997) discussed prediction evaluation, and coresidearious measures of prediction effi-
ciency in earthquake prediction, in which three basic satiere used to evaluate the prediction: (a)
the ratio of the total volume of alarm zones to the total vaushthe region; (b) the ratio of missed
qualified (should have been predicted but failed) earthesi#d the total number of such events; and
(c) the ratio of the number of unsuccessful alarms to the tmtmber of alarms. Since identifying
the coseismic responses differs from predictions, ancetisano alarm zone involved, we are going
to use a criterion equivalent to class (c) of Kagan (1997)d8termining the parameterwe hope

to maximize

R, = percentage of earthquakes for which there are coseisnpomsss detected

and minimize

Ry = percentage of signals which have no corresponding eartkqua

which we can formulate as maximizing the skill scételefined by

R=—.
Ry

(6.2)

We use the arrival times of the earliest P phase, the eaHlipsiase, the Love and the Rayleigh
waves to define the coseismic responses. We suppose thatiancigsresponse is a well signal
following an earthquake within a certain time intendaiminutes after the arrival of each seismic
phase. Note thak increases monotonically with asR; (R2) increases (decreases) monotonically
with L. If a signal has no seismic phase arrival ahead of it withis time interval, we consider it
as a ‘false alarm’. The presence of missing data within tls¢ diifferences of the water level is a
complicating factor, which we will deal with by ignoring, oth the numerator and denominator
of the calculation (6.2), earthquakes whose seismic waweabs lie within the interval of interest
prior to any missing data.

For ¢ < 5, we use the moving-window detection algorithm to identifglMsignals for eacla,
using/ = 10 anda = 0.05. We restricted: to less than five percent of the data as five percent of

2 million data is equal to 1,667 hours of signals, which idlgasore than any reasonable amount



102 QHAPTER 6. TRANSIENT COSEISMIC RESPONSES ATTANGSHAN WELL

of coseismic signals actually contained in the well dataenTfor a fixedec and the identified well
signals, we calculat& respectively for the earliest P phase, the earliest S pliasé,ove and the
Rayleigh wave arrivals of the earthquake series. The meadjam and mode of the values at
which the R scores reach the maximum are the same, 1.5, i.e. 1.5 percent of water level data
to be considered as well signals, which we will thus use astoeshold. The parameteiselected
in this way appears to be independent of the time intebvalhich we use to define the coseismic

responses. The number of well signals isolated using thedseted parameters is 754.

6.4 Tests of Dependence Between Earthquakes and Well Resges

Having extracted signals from our well data, we will utilizelispersion test of the Poisson process
for both the well signal series and the earthquake seriesaimi@e the cluster properties of the two

sequences. After that we will discuss how to clarify the asdgmn between this series of events

and the earthquakes. Various statistical methods havedsmted to characterize the association
between two or more series of events, among which coherendeal information, and the Lin—Lin

model are the most useful for our case.

6.4.1 Clustering Tendencies in Well Signals and the Earthgake Catalogue

Before investigating the correlation between the well aigmd earthquake series, we first examine
their properties separately. In this section we will see by compare to a Poisson process using
the dispersion test from Cox and Lewis (1966, see Appendix A)

To use the dispersion test statistic to test whether a sefiegents is a Poisson process, we

let N be a point process of length. Divide the observed sequence Mfinto £ equal intervals of

lengtht. Letny, no, - - - , ng denote the number of events in the successive intervals efimted
L L 6.3)
k
Then we calculate the statistioof ny,no, -+, ng,
d = Z M (6.4)
— :

i=1

The ratiod/(k — 1) has the expected value of unity for a Poisson process (Coxent, 1966),

and for a large number of observations the distributiod @ asymptotically proportional to &’
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distribution with(k — 1) degrees of freedom (Vere-Jones and Davies, 1966). To tsthid series

of events is a Poisson process, we compare the statjgtic- 1), which is the ratio of the estimated

variance of/N to the estimated mean of (Cox and Lewis, 1966), with unity.

The test results show that both the earthquake sequencé@iseries of 754 well signals are

clustered, although the former is slightly less clusteheshthe latter (Figure 6.7). The histograms of
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Figure 6.7: Variance against mean plot for well signals (left) and egrdkes (right).

the earthquake occurrence times, well signal beginninggjrand the survivor functions of the well

signal inter-event times and well signal lengths are shawhigure 6.8. The histograms indicate

that the earthquakes and the identified well signals haveasistatistical properties. The survival

Frequency

Proportion of y>t

30
I}

1
2006

400

o |
N
o |
—
o 4
o J
} T T T
2002 2003 2004 2005
t (year)
—
N
o
[Te}
o
S
o
T T 1
1 200
t (hour)

Frequency

Proportion of h>t

0.005

30

20

0.2

T
2003

T T 1
2004 2005 2006

t (year)

150
Length (minute)

300
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(top right), and the survival functions of the well signakirevent time (bottom left) and well signal
length (bottom right).
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function of the well-signal inter-event times is not combplat with an exponential decay, confirming

that there is some structure present, neither is the suifuivation of the well-signal lengths.

6.4.2 Correlations Between Earthquakes and Lagged Well Rpsnses: (a) Coher-

ence Analysis

Missing intervals of length 1 in the water level data set wallise missing intervals of length 2 in the
first difference data set. Accordingly, here in this sectianset the first differences in the missing
interval of length 2 as 0. The resulting number of non-migsimtervals with length longer than
1,920, i.e. 32 hours is 310. Figure 6.9 shows the cohererteesbe the well sequence and each of
the earliest P phase, the earliest S phase, Love wave andifawlave arrivals, using disjoint inter-

vals of length 32 hours, respectively. We corrected thersbaooment by subtracting the mean (see
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Figure 6.9: Coherence plots for well signals and the earliest P phagg, (toe earliest S phase
(second row), Love wave (third row) and Rayleigh wave (badt@rrival times with disjoint in-
tervals each having a length of 32 hours. Solid lines: cotwrdor well signals and the seismic
phase arrivals; dashed lines: the upper level of the apmiatei95% confidence interval under the
hypothesis that the two processes are independent.

Chapter 5 for details). Recall that the possible frequenare limited by the discrete (per minute)

nature of the data, and are not continuous. The graphs shomgsissociation between each of the
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four seismic wave arrivals and the first difference signalew frequenciesv, apparent associa-
tion up to about 6hr! or more than 10 minutes, i.e., the well signals are strongtyetated with

the earthquake occurrences more than 10 minutes after idraisavave arrivals. The sensitivity
tests by moving the water level record 1 minute forward andidute backward suggest that the

coherence results for the perturbed data are not visiblgrdiiit from the original plots.

6.4.3 Correlations Between Earthquakes and Lagged Well Rpsnses: (b) Mutual

Information Analysis

Let us consider the mutual information between well signdésioted by, and the arrival times
of each of the seismic waves, denoted Wby We first transform the well signal series and the
earthquake series intb1 sequences, withindicating the beginning of the well signélptherwise.
The earthquake series have an the minute of the wave arrival) otherwise. We examine the
mutual information between the two serigs;.,,} and{V,}, whereu is the time lag. The mutual
information results, as shown in Figure 6.10, suggest gtemsociation between the seismic waves

and the well signals. The figure indicates that while the Psplaarival precedes the signal onset,
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Figure 6.10: Mutual information for well signals and the earliest P phéep), the earliest S phase
(second top), earliest Love wave (third from top) and estrliRayleigh wave (bottom) arrival times.
The dashed lines show the upper level of the approxirdaté confidence interval under the null
hypothesis that the two processes are independent.
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the S phase, Love and Rayleigh wave arrivals appear to oftemrsame of the signal onsets.

The mutual information results for the well signals ideetifiby using the water level recording
moving 1 minute forward (or backward) can be read directyrfri=igure 6.10 by moving the plots
1 minute forward (or backward), and show that the conclugarot sensitive to possible errors in
timing.

An example of the first differences together with seismolgsdpom the nearest seismic station,

Douhe station, is shown in Figure 6.11. The Douhe seismiat#s operated by Tangshan Earth-
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Figure 6.11: Example of an S phase arrival initiating well oscillationEhe top three plots are
seismographs from Douhe seismic station on the same tinte asdhe first difference plot of the
groundwater level at the bottom. The solid line on the leifitdh side in the figure is the earthquake
occurrence time for the magnitude 7.5 earthquake in Kepulalor, Indonesia on November 11,
2004 (latitude: 8.15S, longitude: 124.87E, well-epicextistance: 5356.313km). The longdash,
dot-dash, dotted and dashed lines indicate the corresppredirliest P phase, S phase, Love and
Rayleigh wave arrival times for the earthquake, respdgtiviehe letter'’A’ and ‘B’ in the first differ-
ence plot indicate respectively the times when the idedtifiell signal starts and when the signal
reaches its maximum amplitude.

quake Administration, and is located at latitude 39.74Mgltude 118.29E and altitude 55.42m
above sea level, which is 16.3km from Tangshan Well. EDAS-8Quipment is used to record the

seismographs with a sample rate at 50Hz. The timing is spnited with GPS time. Figure 6.11
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shows an S phase arrival initiating the well response wigtRhyleigh wave amplifying the oscilla-
tions. This is consistent with the conclusion from Coopeaile{1965) that any type of earthquake
wave that produces dilatation of the aquifer or verticalraiion of the well-aquifer system can
cause the water level in a well to fluctuate, and that Rayleigkies cause larger fluctuations in
wells than any other wave that has been identified. FigureB3adsky et al. (2003) also shows that

there is some energy that shows up before the Rayleigh wavalar

6.4.4 Earthquakes as an Explanatory Variable for Well Resposes

Since we are interested in whether the earthquakes havedddine water level oscillations, we treat
the well signal sequence as the output process and the wawed Emes as the input process(es).
The estimated response functions for the self-excitingg pad the mutually exciting (to the seismic

wave arrivals input) part are shown in Figure 6.12. We sekfthiahe earliest P phase, the self-
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Figure 6.12: Estimated Lin—Lin response functions of well signals witke seismic phase arrival
times: Earliest P phase (solid line), earliest S phase &thbkhe), earliest Love wave arrival (dot-
dashed line) and earliest Rayleigh wave arrival (dottegl)lifop: Self-exciting response functions
(P, L and R curves coincide). Bottom: Response function filmerseismic wave arrival.

exciting part is small compared to the mutual exciting pattich clearly shows that the P phase
arrival times do play a part in inducing the water level datibns at Tangshan Well. The estimated

response functions for the S phase arrivals are very sintlaach other, and thus we can not
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conclude whether or not the S phase arrival times play apantiucing the water level oscillations
at Tangshan Well. The response functions for the Love andRthdeigh wave arrivals both have
much larger self-exciting parts than mutual exciting pandicating that the Love and the Rayleigh
wave arrival times do not have a clear causal relation wighititiation of water level oscillations

at Tangshan Well. A sensitivity analysis moving the enteeord 1 minute forward or backward

produces almost identical plots, and thus does not altezghelusions.

6.5 Coseismic Responses and Detection Probability

Having established that there appears to be some correlaétween the seismic wave arrivals
and the well signals, we can now examine the detection piliyal-irst the detected and unde-

tected events will be examined directly. Then a logistia@egion analysis is used to examine the
association of the probability that a coseismic responsketscted with the earthquake statistics

(magnitude, depth, azimuth and well-epicenter distance).

6.5.1 A Magnitude-distance Threshold for Detection

Kitagawa and Matsumoto (1996), and Matsumoto et al. (2d83hvestigating sustained changes
in groundwater level due to distant earthquakes, explatsemtcurrence as a function of magnitude
and distance. A threshold combining earthquake magnitadeagell-epicenter distance was thus
proposed, above which earthquakes cause coseismic chabhgess now investigate whether a
similar form of threshold exists for the transient oscitias in the Tangshan Well data, and if so,
how the slope differs from those proposed above.

We have seen above that the P phase arrival is the most strasgbciated with the onset
of well oscillations. Moreover, the mutual information faell signals and P phase arrival times
indicates a strong association between the two series up toidutes time delay. For P phase
arrival times, we calculate the delay times to the start efwrll signals from the arrival times.
We will define those well signals as coseismic responsegittiresponding delay times are less
than 40 minutes. This accounts for some 237 earthquakesofapyately 40 percent of the total
number), and approximately 31 percent of the total numberadifsignals. Some 230 of these 237
earthquakes satisfy the relationship > 3.02log,, D — 5.50, whereM andD respectively denote
magnitude and well-epicenter distance (km). This threshot is determined such that the sum of

misclassification of earthquakes below the line, for whindéré are coseismic responses detected,
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and the misclassification of signals above the line, whickeh#@ corresponding earthquakes, is

minimized. This classification by magnitude and distancghisvn in Figure 6.13. Note that there
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Figure 6.13: Magnitude versus well-epicenter distance plot. The sdhid IndicatesM =
3.02log;o(D) — 5.50. Some 230 of 237 coseismic responses satisfy the relatjpnshi >
3.02log((D) — 5.50. W: the 237 earthquakes which have coseismic responses irethdata (i.e.
there are signals detected within 40 minutes after the Peghasived)(): the 329 earthquakes for
which there is no coseismic response detectedthose 34 earthquakes having missing well data in
the 40 minutes following the P phase arrival. The dashedlline- 3.69log,(D) — 8.07 indicates
the threshold using the interval of 30 minutes. The threshsing an interval of 50 minutes is the
same as that for 40 minute interval.

were missing data in the well record in the 40 minutes follaytine earliest P wave arrival for 34 of
the earthquakes. Hence these earthquakes are indicatadtedy as detection was inconclusive.

It is instructive to examine the cases of misclassificati@f.the 109 earthquakes denoted by
circles above the threshold line (no signal detected),ilddt&isual inspection of the well record
reveals that most of these are in fact followed by oscilf&i¢nzhich may or may not be coseismic
responses) in groundwater level. These have not been pigkeg the algorithm because the am-
plitudes of the oscillations are below the detection tho&khRecall that this threshold is a balance
between failure to identify, and false identifications. Hxeeptions were the 30 earthquakes cat-

egorized in Table 6.2. Four of the seven events denoted yraegjunder the threshold line were
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Table 6.2: The 30 events denoted in Figure 6.13 by circles above théline 3.02log(D)—5.50
for which there are no coseismic responses identified.

Number Description

3 very deep earthquakes with depth larger than 200km
5 deep earthquakes with depth larger than 50km

3 with well signals beginning more than 40 minutes after the
P wave arrived

1 with a well signal that begins earlier (!?) than the eartigu
occurrence time, which would have obscured any response

15 immediately preceded by larger earthquakes (the smaller
earthquake’s response is merged together with the large€es

3 no apparent responses

very shallow earthquakes, while the remaining three eagkes were followed by well signals
which may have actually been initiated by other earthquakg@sh occurred a few minutes earlier
elsewhere.

The map in Figure 6.14 (inset, Figure 6.15) shows the enairthguake data set of the 600
events, with symbols, as in Figure 6.13 indicating whetherad the earthquake was detected in the
well level. We see that there is no obvious effect of azimuthvbether or not a coseismic response
is detected.

We can now consider in further detail how each seismic wapeas to affect the well signals.
Table 6.3 categorizes the 237 earthquakes with coseissponses, according to where the begin-

ning of the well signal, and its maximum amplitude, fall ifatéon to the seismic wave arrivals. The

Table 6.3: Chronology of well signals and seismic wave arrivals.

between between between Love after
PandS SandLove andRayleigh Rayleigh

signal initiation 18 32 16 171
maximum signal amplitude 3 5 2 227

relationships with magnitude and well-epicenter distaareeshown in Figure 6.16 and Figure 6.17.
It appears that earthquakes with larger magnitudes tendue tietected coseismic responses be-
fore the Rayleigh wave arrivals, although some earthquekigsmagnitudes less than 7.0 at long

distances tend to induce well signals earlier than the Rglyl®ave arrivals. While the Rayleigh
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Figure 6.14: The global map and earthquakes with minimum magnitude @@ ffanuary 1, 2002 to September 30, 2005. #: Tangshan Well;
earthquakes for which there are coseismic responses e@tégt earthquakes for which there is no coseismic responsetddtet: 34 earthquakes
having missing well data in the 40 minutes following the P vavrivals. The smallest symbol size is for earthquakes miégnitude larger than 6 and
smaller than 7; the medium size for earthquakes with madeitarger than 7 and smaller than 8; and the largest size fthoemkes with magnitude =
larger than 8. Inset is Figure 6.15. -
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Figure 6.15: The enlarged version of the squared region in Figure 6.14 syimbols denote the
same as in Figure 6.14.

waves are certainly the cause of most of the water level mewgnn this well at least, arrivals from

earlier phases are noticeable in many cases.

A sensitivity test for dependence of the results on the timerval used to define a coseismic
response was conducted, using 30 minutes, and 50 minusésaihof 40 minutes. For a 30 minute
interval, 224 earthquakes have coseismic responses, 3dt,cend 35 had missing well data, while
for a 50 minute interval, 241 have coseismic responses, 82®tdand 31 had missing data. While
the threshold lines for the 40-minute and 50-minute intsrvwaere the same, that for the 30-minute
interval differed, with fewer distant earthquakes havingaismic responses. These appear to be
smaller events where the oscillations are not detectablthdyalgorithm until the arrival of the

amplifying surface waves.
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Figure 6.16: Magnitude versus well-epicenter distance pllit. earthquakes for which there are
coseismic responses detected between the P and the S pihads;dx: earthquakes for which there
are coseismic responses detected between the S phase &woddheave arrivals{): earthquakes
for which there are coseismic responses detected betwedmtie and the Rayleigh wave arrivals;
+: earthquakes for which there are coseismic responsesetaiter the Rayleigh wave arrivals.

6.5.2 Quantifying the Effects of Magnitude, Distance, Degt and Azimuth

A more quantitative analysis of how the detection probgbji depends on the earthquake char-
acteristics is possible using logistic regression (seeefdjx B for statistical details). Besides
magnitude, M, well-epicenter distanc® (km), and depthH (km), we will use the azimuth angle

¢ (0° < ¢ < 360°) from an earthquake to the well, determined as

cos( = (cosfgsin g — sin fg cos O cos(ps — og))

Sin

. r . .
sin( = oA i Ossin(ops — oR),

(Stein and Wysession, 2003), whelg is the colatitude of an earthquake, equab@s—Iatitude,
og is the longitude of an earthquakg; and¢g are the colatitude and longitude of the station or

well similarly defined; andA is the source-to-receiver distance (in radians). See EiguUk8 for
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Figure 6.17: Magnitude versus well-epicenter distance pllit. earthquakes for which there are
coseismic responses detected, which reach the maximunitades! between the P and the S phase
arrivals; A: earthquakes for which there are coseismic responsestel@techich reach the maxi-
mum amplitudes between the S phase and the Love wave ariivalsarthquakes for which there
are coseismic responses detected, which reach the maximpiiiiades between the Love and the
Rayleigh wave arrivalsi: earthquakes for which there are coseismic responsestelgtechich
reach the maximum amplitudes after the Rayleigh wave dsriva

a schematic illustration of the azimuth angl€0°, 90°, 180°, 270°) from an earthquake to the
well. Here, and in the following section, we separate out-veglicenter distance and depth, rather
than using well-hypocenter distance, as the seismic waygagation effects of shallow and deep
earthquakes differ considerably. We fit model (A-4) in ApgierB to the data and use maximum

likelihood to obtain parameter estimates gy b; andby;. The resulting model is

log (%) = —33.1+5.0M — 11.4(log;y D — 3.43)* + 2.6 x 10~°(H — 384.6)* + ¢, (6.5)
where all the included terms are significant at a level of D.00he effect of the azimuth is not
significant. The relative strengths of the effects can beygdiby noting that, in the datd) <
5.0M <45, -8.26 < —11.4(log,q D — 3.43)2 < 0and0 < 2.6 x 1075 (H — 384.6)2 < 3.85. The

residuale has standard deviation 0.33, small relative to the othengemdicating quite a good fit.
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Figure 6.18: A schematic illustration of the azimuth angjg0°, 90°, 180°, 270°) from an earth-
quake to the well.

The fitted results by factor are shown in Figure 6.19. Dueeagjtiiadratic terms used in the analysis,
and the dearth of events close to the well, we see that Modg) & only physically meaningful
when the distance is longer than 2690Kng(,(D) — 3.43 > 0) and the depth is less than 384.6km
(H — 384.6 < 0) as the sign of effect changes at these lengths.

In principle, Model (6.5) allows one to read off the effecttba detection probability of a change
in any one of the significant factors. For example, we seedliratrease of 1 unit in magnitude will

result in a percentage increase in the probability of dietecif

op 1—p

» Y@ -1 +p

wheredp is the change ip. Similar calculations are possible for the effects of wetlicenter

distance and depth.
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Figure 6.19: The proportion of earthquakes with coseismic responsest§)@nd the fitted proba-
bility that an earthquake produces a coseismic responfié [[ses).

6.6 An Exploratory Analysis of Earthquake—well Signal Interaction

The well signals can be quantified by a set of characteri¢tietays, amplitudes and lengths of
well signals), as can the earthquakes (magnitudes, watkemer distances, depths and azimuths).
In this section we will conduct some exploratory data analys investigate possible structural
relationships between the two sets of characteristicsthfanaoeason for the statistical analysis is to
examine the effect of azimuth, as Tangshan Well is locatedh iancient craton, and so there may be

significant deviation from the Kennett and Engdahl (199#ljally symmetric travel-time model.

For P phase arrival times, we calculale- as the delay, in minutes, from the arrival of the
earliest P phase to the start of the well signal. A well sig;mdefined as a coseismic responsa jf
is less than 40 minutes, as above. For those earthquakesiicin & coseismic response is defined,
we denote similarly defined delay times for the earliest $phand the earliest Love and Rayleigh
wave arrivals byAg, Ay, andAg, respectively. The corresponding maximum amplitude angtle

of these well signals are denoted Ky, (m) andLL,, (minutes), respectively. Figure 6.20 shows an
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example of the scatter plots for the lengths of the well signals versus the earthquake magnitudes

and well—epicenter distances.
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m]
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Figure 6.20: Well signals’ lengths versus well-epicenter distances dmallest symbols indicate
earthquakes with\/ larger than 6 and smaller than 7; the medium symbols indieatthquakes
with M larger than 7 and smaller than 8; and the largest symbolsdteliearthquakes with/
larger than 8.

6.6.1 Correlations Between Earthquake and Well Signal Chaacteristics

In order to further validate our signal extraction algamthve will calculate the correlation coeffi-
cients between the delay times, and the magnitude, wedesfar distance, depth and azimuth. We
will also calculate the correlation coefficients betweerphtmde, and length of the well signal, and
the earthquake characteristics. The results are showrbie 64. We see that earthquake magni-
tudes have the strongest overall effects on the well sigmalacteristics, negatively correlated with
the delays and positively correlated with the amplitudesslangths of well signals, all correlations
being significant at a level ¢£.001. Depth is positively, although less strongly (significainh éevel

of 0.05), correlated with the delay. The negative corretetiwith the maximum amplitudes and
lengths of well signals are not significant. The positiverelation of well—epicenter distance with

the P and S phase delays, and negative correlation with the &id the Rayleigh wave delays is
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Table 6.4: Correlation coefficients, whet# is the earthquake magnitud®, is the well-epicenter
distance (km)H is the earthquake depth (km is cos(azimuth),S¢ is sin(azimuth),Ap is the
P-phase delay, which equals to the time from the earliesta®ehrrival to the well signal onset
(minutes),Ag, A, andApg are respectively the S phase delay, Love wave delay and igaylave
delay similarly definedA,, is the amplitude of a well signal (m), and, is the length of a well
signal (minutes).

M log(D) H Ce Se

Ap -0.340 0.447 -0.260 0.017 0.076
Ag -0.401 0.316 -0.290 0.044 0.086
Ap -0.578 -0.390 -0.324 -0.011 0.107
AR -0.578 -0.487 -0.311 -0.008 0.106
Ay 0.609 -0.109 -0.064 0.011 0.040
log(L,,) 0.803 0.151 -0.023 0.079 -0.015

because Love and Rayleigh waves tend to arrive after the ofiges oscillations and so have minus
delays. Thus the negative correlation for the latter melaaisionger distances have shorter ‘minus’
delays, and so the delays themselves are larger. Theséations are all significant at a level 0.05,
as are those between well-epicenter distance and sigmghlefihe remaining correlations are not

significant, including all those involving the azimuth.

The correlations give the direction of any effect. For exbnlarger magnitudes lead to shorter
delays, larger and longer signals. None of which are pdatilyusurprising, which means that
there is no reason to reject our algorithm. It is of more eseto try and quantify the size of any
effect. For those earthquakes with identified coseismipaeses, we can use multivariate regres-
sion (see Matsumoto, 1992, for an earlier application t@isosic water level changes), including
interactions between the earthquake characteristicsyvstigate the relationship between these
characteristics and the well signal characteristics. SgmeAdix C for the statistical background. A
very similar approach is the regression metamodel in sitiongKleijnen, 1979), which likewise

seeks a structural model between the inputs and outputsiof@erfectly understood system.

6.6.2 Metamodels for Delay, Amplitude and Length of Well Sigals

First let us look at the relationship between the P phase/slelad the earthquake statistics. The

final fitted model forAp is

VAP =12.95 — 1.14M + 3.981og,(D) — 7.57 x 1070 (H — 1453.1)>



6.6. AN EXPLORATORY ANALYSIS OF EARTHQUAKE—WELL SIGNAL INTERACTION 119

+0.35C; + 0.002M H — 0.01logo(D)H — 0.004HC, + ¢, (6.6)

(in vminutes), where all the included terms are significant atel kef 0.05. The relative sizes of the
effects can be gauged by noting that in the dat&,72 < —1.14M 4+ 0.002M H < 1.62, —11.00 <
(3.98 — 0.01H)logyo(D) < 16.45, and—0.90 < (0.35 — 0.004H)C; < 1.85. The residuak has
standard deviation 0.65, commensurate with the other tamdi&ating considerable unexplained
variation. Again, due to the quadratic terms in the modeljdEign (6.6) is only physically valid
for earthquakes with depths less than 570km. The equatiéhd§ain provides a ‘plug-in’ formula
from which one can extract the effect on delay of a change safrthe significant factors. For
example, an increase of one unit in magnitude results in eedse of the delay time dft.14 —

0.002H)? — 2(1.14 — 0.002H )+/Ap, wherey/Ap is given by (6.6).

We see that using the radially symmetric travel time tabl€arfnett and Engdahl (1991) has led
to a systematic error here, as the variation in delay witmatt is significant, although the size of
the effect is small, compared to the other factors. The duadime analyses in this section can deal
with azimuth effects directly, and so this systematic ewikonly affect the results if the azimuth
has an effect on the identification of the seismic wave dritaanediately preceding the onset of
well oscillations. However, a chi-squared test on the cg@ncy table (Table 6.5) cross referencing
azimuth (actually the sign af;) and seismic wave indicates that there is no dependenceéetw

the two. As the well signals appear predominately to beatd@td 10 or more minutes (see above)

Table 6.5: Contingency table, wherepg is the number of earthquakes with detected coseismic
responses occurring between the P and the S phase arriyal$or coseismic responses detected
between the S phase and the Love wave arrivglg; for coseismic responses detected between the
Love and the Rayleigh wave arrivals; ang for coseismic responses detected after the Rayleigh
wave arrivals.

nps NS MNLR MNR

azimuth in the rangé—7/2,7/2) 2 8 5 49
azimuth in the rangér/2,37/2) 16 24 11 122

after the P phase arrival, the size of the azimuth effectatds that we are unlikely to be missing

any coseismic responses because of the travel time error.

The multivariate regression analysis suggests a reldtiprimtween the maximum amplitudes
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of the well signals and the earthquake characteristics of

logo Ay =5.52 — 0.09(M — 12.44)* — 1.07logyy D

+7.02 x 1079H? +0.07S; — 0.0007M H + ¢, (6.7)

(in units oflog;,m). All the fitted terms are significant at a level of 0.05. Frtive data, we have
—3.73 < —0.09(M — 12.44)? < —1.07, —4.55 < —1.07logyy D < —3.28, —0.87 < 107 °H? —
0.000TMH < —0.02, and—-0.07 < 0.07S; < 0.07, from which we can see that the azimuth
effect is negligible compared to the other effects. Thedwedic has standard deviation 0.30, small
relative to the magnitude and distance effects. Again, BEgué6.7) provides a formula from which
the relative effects of the factors can be calculated. Fampte, at a depth of 100km, a magnitude
8.0 earthquake produces a signal amplitude approximatélyies as that of a magnitude 7.0
earthquake. An earthquake at distance 12,000km will havgralsamplitude approximately half
that of one at 6,000km, and so on.

For the well signal lengths, the following model is obtained
logqg Ly = 3.07 — 0.21(M — 8.9)% — 0.27log,o D 4 3.67 x 107%(H — 408.7)> + ¢,  (6.8)

(in log;o minutes), where all the terms are significant at a level 000.0The azimuth effect is
not significant. The relative sizes of the effects in the data—1.77 < —0.21(M — 8.9)2 <0,
—1.14 < —0.27log;y D < —0.82, and0 < 3.67 x 10‘6(H — 408.7)2 < 0.60, respectively, while
Equation (6.8) is obviously only valid fak/ < 8.9 and H < 408.7. The residuak has standard
deviation 0.25, small relative to distance effect, but gmgsndicating some unexplained variation
particularly around large and/or deep events. We can e&sily off effects from Equation (6.8), for
example a magnitude 8.0 earthquake will have a signal appedgly 3.4 times as long as that of
a magnitude 7.0 earthquake, while increasing the distanoe 6,000km to 12,000km shortens the

signal by about 17%.

6.7 Discussion

Having been acknowledged as one of the most sensitive veelsismic disturbances in China, it
appears as if the Tangshan Well acts as the recorder for mhs¢ismometer formed by the aquifer

system into which the well penetrates. We have proposedgamnitiim for automatically detecting
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anomalous transient changes in groundwater level basednawviag average of the variance of the
first differences in water level. The R-score and dispersioalyses were used to identify the best
well signal series. Analysis of the resulting well signaladag from the recent data indicates that
the algorithm performs reasonably, although improvem&ptrobably possible, especially if given

a data set of more even quality than used here. A number @fréiff statistical techniques were

then used to detect and quantify coseismic responses tauiliese P phase arrivals.

As noted in Wang et al. (2010), the three statistics, colveramutual information and the Lin—
Lin model, examine different types of association. Whengrablem of whether or not we can
predict an output series from some input series througheatinelation is considered, coherence
may be a very useful approach to use. It plays a diagnosticinofletecting association between
two processes at certain frequency range. The estimatiooh&rence using the method of disjoint

sections can work around missing data, which appears to bdwamtage of using coherence.

However, the coherence may be identically 0 when two presease actually correlated. The
coefficient of mutual information overcomes this drawbank takes on the value 0 if and only if
the two processes are statistically independent and thussfa test of dependence. The mutual
information presents a detailed conclusion about the tegeof the association between the two
processes, as can be seen from Figure 6.10, for examples tieclP phases and the well signals are
strongly correlated with the P phases leading the well $sgmato 40 minutes. Another important
advantage of mutual information is that it does not really pay attention to the values of the
processes. In addition to telling us whether the hypothekisdependence is rejected, mutual
information measures the strength of the correlation betvteo series of events. The drawback of
the mutual information may be that it does not set up natufall point processes, as we can see
from the formulation as well as the application to the datat 8point process can be transformed

into a time series which is suitable or convenient for mubairmation analysis.

When we are interested in more than whether the two procasse®rrelated or not, or in other
words, when we want to make clear which process is the drivecegs, the coherence and mutual
information analyses become inadequate. The Lin—Lin meoaieidentify cases in which either one
of the two processes causes the other, or they cause eachartkeme other process causes both
of them. Unlike the generally defined coherence and mutdiatriration, this model was designed
specifically for point processes. The mutual-exciting té&emg identically O implies that there is
no causal relationship between the two processes; whdreaelf-exciting term being identically

0 while the mutual-exciting term being none zero means thairttensity of the output process is
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modulated only by the input process.

The dispersion tests reveal that the well signal series lam@arthquake series are themselves
serially dependent. The coherence analysis concludeghiatell signal series and the arrivals
of the seismic waves have strong linear correlation, eafect lower frequencies, which may
suggest that the earthquake occurrence times can provieltea linear prediction of the water level
oscillations at lower frequencies. The mutual informatéoralysis suggests that the oscillations of
the groundwater level are strongly associated with therseigave arrivals, particularly the earliest
P phase, which appears to initially trigger the fluctuatiofitie results from the Lin—Lin model
indicate that the P phase arrivals are the most likely to 8edimg the initial water level oscillations
at Tangshan Well. The role of the S phase arrivals is uncledhe estimated self-exciting and
mutual exciting response functions are similar. This isrdériest, as Doan and Cornet (2007)
described a hydraulic transient triggered near an activié i seismic waves generated more than
10,000km away during the 2003, = 7.8 Rat Island earthquake, where the pressure drop occurred
simultaneously with the arrival of the S phase seismic ware$ not during the passage of the
Rayleigh waves. Brodsky et al. (2003) considered the Rglyleiave, which generates the most
significant dilatation, as being the likely cause of sustdichanges in well water level, although
their data also suggested that there may have been somtabgeaxifect prior to the arrival of these
waves in at least one case. The Love and Rayleigh waves dawetahclear causal relation with
the initiation of water level oscillations at this well, lattugh there appears to be a strong relation

with the time of maximum amplitude, consistent with the issaf Eaton and Takasaki (1959).

The signal detection algorithm detects coseismic respofseapproximately 40% of global
earthquakes with minimum magnitude 6.0. This is certainlgveer bound, as the performance
of the algorithm balances this against the false detectrobgbility. A threshold is also found
in the relationship between earthquake magnitude and mpétalistance satisfied by 230 of 237
earthquakes with identified coseismic respondés; 3.021og,, D — 5.50, above which coseismic
changes in groundwater level at Tangshan Well mainly octhis differs considerably from the
thresholdsM = 2.62log,y D and M = 2.62log,, D + 1, (Kitagawa and Matsumoto, 1996) and
M = 2.45log,, D + 0.45, (Matsumoto et al., 2003) which were obtained for groundwistee| at
wells in Japan. However, this threshold still supports tterpretation that the size of the responses
is strongly correlated with the “distance-corrected magta”. The differences are largely due to
the consideration of transient, rather than sustainecenetel changes, to which we can attribute

the difference in intercepts, although the earthquakdamaa limits also differ. We see from the
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larger slope in the present work that the furthest eventsnuestigated in Kitagawa and Matsumoto
(1996) and Matsumoto et al. (2003), contribute coseisnsparases at a rate below that one might
expect based on the earlier thresholds.

The logistic regression analysis confirms, and quantifiest, éarthquake magnitude and well—
epicenter distance have very strong influence on the priityahfi coseismic detection at Tangshan
Well, while the depth and azimuth of an earthquake have littinegligible effect. Similar formulae
for the effects on the delays, and signal amplitude and fehgte been obtained via multivariate
regression. The conclusions, firstly that earthquakes laitier magnitudes, and/or shorter well—
epicenter distances are more likely to induce water o$ioitia at this well and secondly, that such
earthquakes and/or those at shallower depths tend to haakesmielays before the initiation of
detectable water level oscillations, and oscillationshdarger amplitudes and longer duration, are
hardly surprising. More importantly, the fitted formulaeyide a means of estimating, or compar-
ing, the observed signal characteristics, and identifydngsible anomalies. Most importantly of
all, the non-negligible residuals, particularly in theeas the delay function, indicate that there are
factors controlling the rate of oscillation initiation ihe aquifer that are not accounted for in the
regression meta model. As there are no events of magnitedeegrthan 6.0 within 1125km of the
well during the study period, earthquake induced changdimell-aquifer system (Rojstaczer et
al., 1995) do not appear to provide the reason. Instead tlggest the presence of large-scale local
inhomogeneities in the well-aquifer system (cf. Igaraslalg 1992).

The travel-time table of Kennett and Engdahl (1991) was usdtie calculations to obtain
the arrival times of the seismic waves. This travel-timdeab of course radially symmetric, and
the Tangshan Well is located in an ancient craton where geigefocities may be significantly
different from those in a spherical model down to a depth eksd hundred kilometers. Our
analysis identified, for events close to azimdthor 180° from the well, a significant effect on
the travel time delays. However, as there is no such effecherdetection probability, and there
appears to be no effect on which seismic wave arrival imntelgigorecedes the initial response,
our conclusions are not affected. The effect of azimuth endblay can be calculated using the
regression model if required, while there was negligibkeafon the maximum amplitudes and
durations of the water level oscillations. Through a sedksensitivity analyses, we have also

shown that all the results are also robust to possidleninute time reading errors in the well data.
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Chapter 7

HMM and Mutual Information on GPS

Measurements and Earthquakes

7.1 Introduction

Global Positioning System (GPS) was developed by the UrStades Department of Defense in
the 1970s and 1980s as a means of global navigation prinfarityilitary users. Several hardware
and data processing developments (Blewitt, 1993) and thtéifat GPS could potentially be used to
observe ground motions led it to become a geodetic tool.olides accurate real-time range mea-
surements for point positioning. A constellation of 24 Baéts were launched into near-circular
orbits. Range measurements from 4 satellites are suffitiestlve the 3-dimensional (north, east,
up) location of the receiver. A number of methods have beegsldped which can improve the ac-
curacy of GPS measurements, such as Wide Area Augmentatgians, Differential GPS, Inertial
Navigation System and Assisted GPS. This appears to haged#ue heteroscedasticity of the data
mentioned in Section 7.4.

Geodetic anomalies preceding large earthquakes have ey &f interest due to well doc-
umented pre-earthquake deformation rate changes obseefert continuous GPS stations were
widely deployed in the early 1990s (Roeloffs, 2006). The @&R&Asurements provide a good oppor-
tunity for scientists to further investigate pre-, co- andtpseismic deformation anomalies, but there
is much ‘noise’ that needs to be filtered out of the obseraatidhere has been considerable inter-
est in whether GPS measurements have any predictive poweafinquake occurrences. Roeloffs
(2006) reviewed the evidence for aseismic deformationalagéages prior to earthquakes and listed

at least ten credible examples of tectonic earthquakeegeecby deformation rate changes. Ogata
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(2007) detected slow slip during the three years periodigadpb to the October 2004 magnitude 6.6
earthquake in the Chuetsu area, central Japan, which waexdibited in GPS observations around
the rupture source. These anomalies were mostly from tharepplong-term pre-earthquake slip.
However, it is very difficult to detect apparent displacem&hen there are anomalous changes of
the geodetic measurements, and therefore techniques wduictietect or extract subtle changes in

GPS measurements, which may be related to earthquakesaassary.

Hashimoto et al. (2009) applied an inversion method basd8ayesian modelling (Matsu'ura
et al., 2007) to horizontal and vertical velocities from Gdda and concluded that the slip-deficit
zones identified with this method are potential source regiof large earthquakes. Granat and
Donnellan (2002) and Granat (2003) introduced a hidden Markodel (HMM) based method
which was applied to the GPS data from the southern Caldaegion. The application to the daily
displacement time series collected in the city of Clarem@atifornia clearly separated the states
before and after the Hector Mine earthquake in October 1@3@nat (2006) applied this method
to the daily GPS data from more than 100 stations of the Saut@alifornia Integrated Geodetic
Network. The results revealed that approximately 70 outefli27 stations had state changes on the
day when the Hector Mine earthquake occurred. However,iffezeht states are clearly dominated
by the long-term trends of each component of the data, anst#tes are entered and existed only
once. For example, see Figure 7.1, which corresponds tad-igun Granat (2006). Thus the

method is not suitable for predictive purposes.
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Figure 7.1: (Figure 5 in Granat, 2006) Classification results for a sestate HMM applied to
the GPS data set collected in the city of Claremont, Califorr(Granted with permission from
Birkhauser Verlag AG.)
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Figure 7.2 shows the raw daily time series of the GPS measnesnof deformation from a

tectonically quiescent area, Alice Springs in Australiae dmpare this daily time series with
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Figure 7.2: GPS measurements of deformation at Alice Springs, Auatrali

the GPS movements from two tectonically active areas: Tgsee Figure 7.7 for the average of
the GPS measurements from the three stations, HAMT in HamiNPLY in New Plymouth, and
WANG in Wanganui, minus that from Taupo) and Southern Califo (see Figure 7.33 for the
baselines between the Chilao Flats (CHIL) and the statio@2 B Long Beach). Note that the
time series from the latter two cases have the referenceefiemors canceled by averaging and
leveling (cf., Section 7.3.2 and Section 7.4.1). The daithetseries from Alice Springs are evenly
distributed around the linear trend line, whereas for theetseries around Taupo and in Southern
California, irregular spikes, occasional step jumps aaddrchanges are quite obvious from all three
components, north, east and up. This suggests that therdataife tectonically active areas around
Taupo and in Southern California may behave differentlyrfrihat from a tectonically quiescent
area, and that the trend of each of the GPS components frotedtaically active areas varies.

The changes in the trend may be related to active earthquaiterences (See also Section 7.2.1,
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the choice of the number of hidden states for HMMS).

Therefore a non-linear filter is introduced for the GPS pssaghich serves as a smoothing tool.
It is able to extract useful signals which are distinguisbdimm the majority of the data. This non-
linear filter is the range of the trends estimated for the GRRSsurements in the previous 10 days.
Essentially, the trend measures the short-term deformasite. Consequently, this nonlinear filter
calculates the maximum deformation rate changes in théquew.0 days, and reveals anomalous
spikes in the deformation rate changes. For comparisontadga07) fitted a straight line to the
time series of the baseline distance between each tworsaiound the 2004 Chuetsu earthquake
during the period from 1997 towards the end of 2000. He therapslated the linear trends until
23 October 2004 and detected deviation of the time series the predicted linear trends. The cu-
mulated slip preceding the 2004 Chuetsu earthquake isa&siihto be roughly equivalent td,,6,
which is very close to the magnitude of the Chuetsu earthejudk 6.6. This deviation is actually a
long-term deformation rate change, whereas the variabisidered in this chapter is the maximum

short-term deformation rate changes in an interval of fieegjth.

Studies concerning earthquake genesis indicate thatiséismay have a cyclic nature of some
sort (Sammis and Smith, 1999; Jaumé and Sykes, 1999; Yers kt al., 2001; Jaumé and Beb-
bington, 2004). GPS measurements of deformation may icttlireeflect the underlying dynamics
(the unobservable or hidden states) for earthquake ocmasewith large variations relating to a
period of accelerating moment release and small variatongsponding to a period of quiescence
(see also Section 7.2.1, the choice of the number of hiddgassfor HMMSs). Let us assume that
the hidden states switch among some phases in a seismic &y&dransitions between phases or
rather states may be assumed to be governed by a Markov dfanvariation of the deformation
rate depends on the unobservable phases. On the basis aéshimption, HMMs can be used to

extract signals from GPS data which may be related to eaaltesu

The nonlinear filter, which helps to extract subtle changesfthe noise in the GPS data, and
the underlying dynamics, which drives the observed prodess an HMM framework. The HMM
can be used on the filtered GPS measurements to categoridatthento different states and then
investigate the possible link between each category anédhbqguakes. Finding a region which
contains both long GPS data and enough earthquakes is not Bas data sets are considered,
one from central North Island, New Zealand and the other fmathern California. First the non-
linear filter is introduced, which is a functional of the GP&8al and then HMMs are fitted to this

functional, assuming the underlying dynamics switch amafigite number of phases in a seismic
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cycle. The model will classify the data into different sgteach state suggesting particular dynam-
ics. The Viterbi algorithm (Viterbi, 1967; Forney, 1973)tlus used to track the most probable
sequence of states from the GPS data. After that, the mutfcamation (MI) between each state

from the most likely state sequence and the earthquake recmas is calculated to examine if there
is any association. A cross validation by dividing the entlata set into two parts is conducted
for the data around Taupo after this examination to verig/dhclared association. A possible way
of declaring a “Time of Increased Probability” (TIP) for tlkensidered region is then discussed.

Consequently, probability forecasts in time are investigdbased on a Logistic regression model.

7.2 Methodology

7.2.1 Hidden Markov Model and Mutual Information Analysis

More than one GPS station will be used and the baselines betstations are calculated in order
to cancel the reference frame errors. This provides us #ages of GPS measurements, north, east
and up. For the three series, the changes of the trend of GR&meats in the previous 10 days are
considered. Take the north componéntfor example. At each time poirit a line is fitted to the
data{N; : t — 9 < s < t} using linear regression and the slope of this line is denasdd. Then

for eacht, calculate
Ri=max{T; :t—9<s<t} —min{T, :t—9 <s <t} (7.1)

which is the range of deformation rate changes in the previdudays, in other words, variation of
deformation rate in the previous 10 days. Note that actfllgays of data are used for calculating
the variableR, att. As a result, the first 19 days during the selected time pewxitidbe excluded
from the following study.

This non-linear filter for the GPS process serves as a smmgptbol. As defined in Equation
(7.1), this nonlinear filter is the range of the trends, in the previous 10 days. Essentially, the
trend7; measures the short-term deformation rate. Thereforentiméinear filter calculates the
maximum deformation rate change in the previous 10 dayse W@t this filter is related to the

maximum accelerationy,,., in the previous 10 days through the formula

R, = Tinax — Timin

- A . AZL/max—min = Amax * Atmax—min;
tmax — min
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whereT o = max{Ts : t — 9 < s < t}, Tipin = min{Ts : t — 9 < s < t}, andAtax — min =
larg max, g {Ts 1t —9 < s <t} —argming g, {75 :t—9 < s < t}|. The purpose of this

filter is to identify anomalous spikes in the deformatiorerat

After calculating the range of deformation rate change &mhecomponent, north, east and up,
a hidden Markov model (HMM) is used to fit this multivariatetalget. A multivariate normal dis-
tribution is adopted for the observations (which are thgearf deformation rates as calculated in
Equation (7.1)). After fitting the model and estimating ttegmeters, we want to choose a cor-
responding state sequence which best “explains” the oséiseng. The Viterbi algorithm (Viterbi,
1967; Forney, 1973) can be adopted to find the single best stafuence for the given GPS ob-
servations, i.e., to track the most probable sequence tefsstar the observed data. The algorithm
finds the sequence of states with maximum probability of oecice, which is different from max-
imizing the individual likelihood of being in stat§; at timet given the observation sequence and
the fitted model. This algorithm will classify the GPS dattiseveral different categories which

can be shown in a 3-dimensional (north, east, up) plot.

For the problem of how many states for the HMM we shall use,raparison study via simu-
lation experiment was carried out by Bebbington (2007) vestigate the performances of the four
model selection criteria, Akaike Information CriterionKdike, 1974), Bayes Information Criterion
(Schwarz, 1978), the corrected AIC (Hurvich and Tsai, 1988) the penalized minimum-distance
(MacKay, 2002), for selecting the best number of hidderestédr HMMs. The simulation experi-
ment showed that the AIC most consistently estimated theconumber of hidden states, for the
small sample sizes common in volcanology, but for the lasganple sizes here, the asymptotic
properties of BIC are more appropriate. For this analysihefGPS measurements, although the
sample sizes are large, the number of states will be detechbiy a different criterion. It will be
selected in order to minimize the number of parameters useayoiding detailed modelling of the

‘noise’, while extracting as much ‘signal’ as possible. lldetails are provided in the first example.

After determining which model to use, mutual informatiorused to examine whether there
is any association between each state and the earthqualkeresmes. In order to calculate the
mutual information between the hidden states, denoted,tand the earthquake occurrence times,
denoted by, the hidden states are transformed ibtd sequences, with 1 indicating the state we
are interested in, O otherwise. For example, if we are istetkin a state, say of a hidden Markov
model, then all the days in which the HMM occupies statdll be set as 1, and the days the HMM

spends in the other states will be set as 0. In a similar waygtitthquake series havd @n the
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day of the earthquake occurrenfetherwise. The mutual information between two sefi€s, ., }
and{V;} is examined, where is the time lag. The mutual information will then be plottentia
compared with the upper level of the approximate 95% conéeenterval under the hypothesis
that the two processes are independent. Significant atisocé negative time lags’'s suggests
that the current earthquake occurrence is strongly relaiddthe GPS movements in that state
someu days preceding the occurrence. If the significant assoaiatiows up at positive time lags,
it means that the earthquakes have significant influenceeo® Bt movements which are observed
someu days following the earthquake occurrences.

Note that the approximate 95% confidence interval is caledlfor two processes which are not
autocorrelated. However, the Viterbi path is autocoresldieing a Markov chain. In order to check
whether this will affect the confidence interval band, we tise estimated transition probability
matrix of the model to simulate 1000 series of autocorrdlatguences of Markov chains and use
the number of earthquakes divided by the total number of dayke rate to generate 1000 series of
Poisson processes. We then calculate the mutual informiagittveen the 1000 pairs of each Markov

chain and Poisson process and get the simulated upper 95erwe level for comparison.

7.2.2 Probability Forecast Using a Logistic Probability Madel

A ‘Time of Increased Probability’ (TIP) for large earthqeskin a specified ‘region of investigation’
was firstintroduced by Keilis-Borok and Kossobokov (1990gw they developed the M8 algorithm
to explore the use of pattern recognition methods to distgigregions or time periods of heightened
earthquake risk. Harte et al. (2007) used the Critical Sateveloped by Harte et al. (2003) to
declare a TIP. They then utilized the series as a predictaabla to produce probability forecasts
of a target event in the current time interval. From the miunfarmation analysis, if some state
shows significant association with the earthquake occoe®at negative time lag, it means that
the GPS movements in this state are correlated with theqgaakies occurring somedays later. We
therefore consider this state a precursory state. We cardisfine a TIP as follows. We divide the
entire time period into non-overlapping intervalswith equal length of days. For each interval;,
if there is any day in which the HMM visits the precursory state consider the following interval
Jir1 a TIP. The interval lengthwill be determined according to the mutual information t&su
The problem of interest is how the GPS deformation rate ramgfiuence the probability of
declaring a TIP. The objective here is to determine how tlagatory variable, some variable

of the GPS measurements, in the interjial ¢ € J;} influences the probabilityP(J;11), that a
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large earthquake occurs in the interval ;. The continuous explanatory variable suggests that a
regression analysis may be suitable. The response varéitiler a large earthquake occurrence in
the interval J; 11 or no earthquake occurrence in this interval, which takethernvalue 1 or 0, is
binary. Instead of using a regression directly for the ssgq@obability, one usually transforms the
probability scale from the rang®, 1) to (—oo, o0), and then uses a regression for the transformed
values. Logistic transformation is usually recommendethhbse it is more convenient. Moreover,

it provides a direct interpretation in terms of the logaritbf the odds of success, which is defined
to be the ratio of the probability of a success to the prolighiff a failure, P(.J;)/(1 — P(.J;)).
Hence we can use logistic regression with binomial errage (Sollett, 1991 for example). Lat/;

be some variable of the GPS measurements in the intdyvalhe variable)M/; is used as a linear

predictor of a target event in the time interval ; in a Logistic linear regression

f(Jiy1) = Bo + B M;,

where

P(at least one earthquake Jf, 1) >

(Jir1) = log (1 — P(at least one earthquake R, ;)

is the log-odds ratio. We obtain the probability of a targedre in the time interval/;+; through

P(at least one earthquake.if ;) = - ixé)}jﬁffszzl)})}‘
i1

We will fit this model to the data and examine whether theraissagnificant influence of the GPS
deformation rate ranges on the probability of large eadkguoccurrences. The parameters in this

model will be estimated using the glm function in R package.

7.3 Data from Central North Island, New Zealand

We consider data from central North Island, New Zealandatkxat near the boundary of the Aus-
tralian tectonic plate. According to DeMets et al. (1994 Pacific and Australian tectonic plates
are converging obliquely at about 42 mm/yr, accommodatesubygluction of the Pacific plate and
deformation of the overlying Australian plate (see Figur®, hich corresponds to Figure 1 in
Reyners et al., 2006). The figure also outlines the TaupcaviddcZone (TVZ), an active continen-

tal rift in the central North Island. Wallace et al. (2004psaled that the TVZ region has a total
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Figure 7.3: (Figure 1 in Reyners et al., 2006) Digital elevation map @&f tentral North Island,
New Zealand and its tectonic settings. The arrow indicdtes/élocity of the Pacific plate relative
to the Australian plate (DeMets et al. 1994). The Taupo \MdtcZone is outlined and subdivided
into three distinct segments: andesite-dominant (AD) cmieanoes in the northern and southern
segments, and rhyolite-dominant (RD) caldera volcanoesw(is dashed) in the central segment
(Wilson et al. 1995). NIDFB denotes the North Island DexEallt Belt. (Granted with permission
from Wiley-Blackwell.)

predicted extension rate of about 15 mm/yr at the Bay of |elgcreasing tec 5 mm/yr near the
southwestern termination of the TVZ. They also showed evadef clockwise rotation of the fore-
arc east of the TVZ, which is accommodated in the backarc Bnsion of the TVZ in the north,
and by compression of the Wanganui Basin in the south (Reyeteal., 2006). Reyners (2009)
suggested that the stresses driving the opening of the TYidnee to be active at its southern ter-
mination which is marked by extensive earthquake activitpaghout the crust to depths in excess

of 40 km.

The GPS data can be obtained from the New Zealand GeoNette/¢hisp://www.geonet.org.-
nz/resources/gps/, last accessed on March 31, 2009). Tihegtimates of relative coordinates are
determined through the GPS processing using Bernese viiwase developed by the Astronomi-
cal Institute of the University of Bern. The coordinates @meir formal uncertainties are converted
to three dimensional displacement, north, east and up,limraters from an initial point. GeoNet

removed some dubious data which are very different from #ightoring data points. We exam-
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ine the resulting ‘raw’ daily GPS time series around Tauphe Tontinuous GPS stations around
Lake Taupo which have the longest records available onbn&PS measurements are HAMT in
Hamilton, NPLY in New Plymouth, and WANG in Wanganui whichedocated on the west side
of the TVZ; DNVK in Dannevirke, GISB in Gisborne and HAST in stangs which are located
on the east side of the TVZ; and TAUP in Taupo. See Figure t.thfolocations of the stations.

The information on the GPS measurements at these statiersuarmarized in Table 7.1. The
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Figure 7.4: Location map for the GPS stations and earthquakes arounel Takpo. The symbol
A indicates the location of a GPS station. The earthquakesedeeted from the rectangular area.
The small size of the symbols for earthquakes is for eartkegiavith magnitude larger than 4.2
and smaller than 5.1; the large size for earthquakes witmrhalg larger than 5.1. The maximum
magnitude of the earthquakes in this area is 5.9.

missing data information during the time period from 208302 to 2008.12.31 is shown in Ta-
ble 7.1 as well. The longest missing interval for NPLY is 33slavhich occurred in early 2004
(2004.01.29—2004.03.01), other than that, the threeosiston the west side of the Taupo Vol-
canic Zone have less missing data than the other three. Sallws&the GPS measurements from
HAMT, NPLY and WANG from 2004.03.02 to 2008.12.31 (1766 dagsavoid the 33 days missing
data referred to above. Other missing data are interpolatesbtting each of them as the mean of
the non-missing data within the 10 days ahead of and 10 ddlgsving the missing point. Note

that this is conservative in the model defined in (7.1).

Earthquakes in a rectangular area around Lake Taupo arerchesween latitude 37.82S and
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Table 7.1: Information of the GPS measurements around Taupo, wNgfés the number of miss-
ing data from 2003.06.02 to 2007.12.30,,; and L,,» are the numbers of missing data in the
intervals which have the most and the second most amountssimgi data for each station, and
‘Direction of movement’ means the direction of long-termvament of each station relative to
TAUP.

Station Available record N,, (day) L., (day) L,.» (day) Direction of movement

DNVK  2002.06.05 — 37 4 4 southwestown
GISB 2002.05.14 — 58 15 10 southwedbwn
HAMT  2003.05.13 — 14 3 3 northwesdpwn
HAST  2002.09.19 — 46 12 5 southwedgwn
NPLY  2003.03.20 — 88 33 10 northwesipwn
TAUP  2002.03.22 — 16 5 3 N/A
WANG  2003.04.10 — 12 3 3 northwestown

39.82S and between longitude 174.72E and 177.12E, from@8@2 to 2008.12.31. The Gutenberg-
Richter law states that the total number of earthquakes apalption that are larger than or equal to
some magnitudé/ varies asl0®™ (Ishimoto and lida, 1939; Gutenberg and Richter, 1944)udt s
gests thatog,,(Proportion of events with magnitude M) is proportional tabA/. The frequency—
magnitude plot is shown in Figure 7.5. We can see that theaemnge of the slope at magnitude

4.2 and another change at magnitude 5.1. We will therefonsider two cases: earthquakes with

o - 00000 o
%0,

logio(Proportion of Events with Magnitude > m)

m

Figure 7.5: Frequency—magnitude plot for the earthquakes during thege004.03.02 to
2007.12.31 in the area between latitude 37.82S and 39.82®agitude 174.72E and 177.12E.

magnitude larger than or equal to 4.2 (178 events in total)those larger than or equal to 5.1 (27
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events in total). See Figure 7.4 for the location map of thithgaakes.

7.3.1 NHMM and MMGLM Analyses of the Earthquake Data with Ancillary GPS

Measurements

As a preliminary look to see whether incorporating the odjinon-filtered GPS baselines into an
HMM framework will help classify the underlying dynamicgdndifferent regimes, an exploratory
analysis is carried out using the three different HMMs rexgdd in Chapter 2. Firstly, a discrete-
time HMM with binary distribution is fitted to the earthquakecurrences around Taupo. Secondly,
an NHMM is used with binary earthquake occurrences as oasens and the first differences
of the GPS measurements (three components, north, eastparas wovariates which influence
the transition probabilities via the model (2.17). Thirdlye data are examined via an MMGLM
with binary earthquake occurrences as observations andigtence of the first differences of the
GPS measurements to the origin (0,0,0) as a covariate whittlences the observed earthquake
sequence via a generalized linear model with Bernoulli laamd logit link (2.26). We take a look
at an example with three hidden states for each of the thredelsio The estimated most likely
sequence of states for each model is tracked via the Vit&gbrithm. The earthquake occurrences
and the Viterbi path for each of the models are plotted in FEgui6. We can see that the state
changes in the HMMs appear to be following the earthquakiéershan preceding them, and thus
incorporating the GPS measurements into the HMM framewodctly does not seem to provide
any precursory information. The three models are very ainiil outcome.

As mentioned in Section 7.1, the irregular spikes in the GleGsurements might be related to
earthquake activity. However, using the original datat(fifferences) do not seem to help extract
any signals. Therefore, we need to consider some other netiooextract the potential signals,

such as the non-linear filter presented in the previousmecti

7.3.2 Hidden Markov Model and Mutual Information Analyses
Analysis of the Entire Data

The GPS measurements of deformation at the three statioNg|THNPLY and WANG, are av-
eraged and then subtracted from the measurements at TAtishsta cancel the reference frame
errors. We get three series of GPS measurements, northarehsip as shown in Figure 7.7. For

the three series, consider the varialilg defined in (7.1), of GPS movements, i.e., the range of
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Figure 7.6: Earthquake occurrences and Viterbi paths from the HMM, NHMMI MMGLM
analyses.

GPS measurements at HNW relative to Taupo, 040302-081231
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Figure 7.7: GPS movements of HAMT, NPLY and WANG relative to TAUP.

deformation rate observed in the previous 10 days. HMMdistawith 3 hidden states are fitted
to the data. For the sake of easy comparison between modélslifferent numbers of states, the
states are ordered according to the Euclidean distance eftimated means in each state from the

origin (0,0,0). The log likelihood and the BIC value of eachdsl are listed in Table 7.2. We can
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Table 7.2: The log likelihood (LL) and BIC values of the fitted models tetentire data around
Taupo and in Southern California (CA), where # of S’ is sHortthe number of states in the model.

Taupo

#of S LL BIC #0of S LL BIC
3 1660.57 -3127.03 8 2872.05 -4915.41
4 2013.22 -3735.28 9 3047.08 -5093.76
5 2302.17 -4201.20 10 3166.47 -5145.91
6 2549.70 -4569.34 11 3220.44 -5052.27
7 274421 -4816.51

CA
#of S LL BIC #of S LL BIC
3 528.01 -841.60 8 3336.89 -5758.41
4 1337.08 -2352.55 9 3573.67 -6042.29
5 2023.04 -3600.77 10 3787.20 -6263.17
6 2586.31 -4587.11 11 4122.24 -6710.59
7 2999.45 -5256.69 12 4178.39 -6583.75

clearly see that the log likelihood is monotonically in@ieg and the BIC reaches its maximum
when 10 hidden states are considered which implies 159 gaeasnfor less than 2000 data, too

many for stability.

The purpose of this exploratory GPS data analysis using HMMslook for precursory signals.
Let us compare the precursory information captured by e&titeanodels. For each of the models
with up to 10 hidden states, the Viterbi algorithm is usedré@k the most probable hidden state
sequence corresponding to the GPS measurements. It ¢agsgtive data into different classes
each having the mean and standard deviation vectors frogotihesponding state. As discussed in
Section 7.1, the trend of each of the GPS components frororiieelly active areas varies largely
compared to that from a tectonically quiescent area. Trggesis that the large variations in the
trend may be related to active seismicity. As the aim is toréma whether a large variation of the
trend has any predictive power for large earthquakes, cuesely the largest state, the state which
is the furthest from the origin, in each model will be exandin€his state, on average, has the largest
variations in the deformation rate. Then, for each modedtl§irthe hidden states, denoted by
and the earthquake occurrence times with minimum magniutiedenoted by, are transformed
into 0-1 sequences as described in Section 7.2.1; secondly, thahmiftrmation between the two
series{U,, } and{V; } are calculated with a time lag The mutual information between the largest

state of each of the models and earthquakes with minimum itoagn5.1 is shown in Figure 7.8.
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Figure 7.9 shows the mutual information between the staiehmmainly accounts for the north-

component movement of each of the HMMs with 7, 8, 9 and 10 mddates and the earthquakes.
We can see that both the ‘largest’ state with the greategti@r in the deformation rate, and the
state which mainly accounts for the north-component movemeesent preseismic information.
Table 7.3 lists the number of precursory states in each ahibdel with up to 10 hidden states and
the proportion of data in the precursory state(s). Exargitive precursory states for the HMM with

10 hidden states down to 6 or 5 hidden states, we can cle&lhaethe two precursory states meld
into one state in the 5 or 6 state model. Moreover, we aredsted in extracting signals from the
GPS measurements, rather than modelling the noise pgrigith is what the model selected by
the BIC tries to do. We want the concentrated informationna state, and thus will concentrate on
the class of movements with the greatest variation. Theaesigbtle distinction, and thus we will

try and select the number of states on a slightly differeit¢con.

Table 7.3: The proportion of data in the precursory state(s) for dadaraadt Taupo, where ‘# of S’
is short for the number of states in the model, ‘# of P’ is sli@rthe number of precursory states
in the model, and ‘proportion’ is the proportion of data ie {recursory state(s).

#0of S #of P proportion #ofS #ofP proportion

3 1 0.273 7 2 0.187
4 1 0.139 8 2 0.163
5 1 0.150 9 2 0.154
6 1 0.151 10 2 0.163

Beginning from a three-state model, we add more states angrae. When the models start to
consistently capture this state with very close means ananaes (the distance from the meayy
in (2.12) in Section 2.2 of this state in thestate model to that of this state in the- 1 state model
is less than 0.1mm; for each component the difference ofttmedard deviations; in (2.13) in
Section 2.2 between the two models is less than 0.05mm) argistiog of nearly the same amount
of the data, say% of the data (i.e., the proportion of time in this state isstant with+1%, which
is the stationary distribution of the Markov chain occumythis state as defined in Appendix D),
we stop adding more states. The model with the smallest nuafiparameters among those whose
largest states consist a% of the data is then chosen.

The state transitions of the fitted 3, 4, 5 and 6 state modelstzown in Figure 7.10. We see
that the proportion of time that the four models spend in tategurthest from the origin (0,0,0) are

respectively 0.273, 0.139, 0.150 and 0.151. The fitted 5 astdt6 models consistently capture the
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Figure 7.8: For data around Taupo. (a): Mutual information between #ngdst state in each of
the HMMs with 3, 4, 5 and 6 hidden states and earthquakes ofmaim magnitude 5.1 with a time
lag u. (b): Mutual information between the largest state in eafcthe HMMs with 7, 8, 9 and

10 hidden states and earthquakes of minimum magnitude Shlanime lagu. The dashed lines
show the upper level of the approxima&&), confidence interval under the hypothesis that the two
processes are independent.
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Figure 7.9: For data around Taupo. Mutual information between the sthieh accounts for the
north-component movement in each of the HMMs with 7, 8, 9 additiden states and earth-
quakes of minimum magnitude 5.1 with a time lagThe dashed lines show the upper level of the
approximated5% confidence interval under the hypothesis that the two psaseare independent.

Table 7.4: The parameter estimates of the fitted five-state HMM for desarad Taupo. The nor-
malized means are obtained by subtracting the mean vecstatef1 from the mean vector of each
state and then dividing the result by the standard deviatéator of state 1.

State 1 2 3 4 5
Estimated north 0.171 0.338 0.240 0.224 0.514
means east 0.254 0.261 0.248 0.579 0.511

up 1.030 1.140 1.840 1.810 1.960

Estimated north 0.044 0.066 0.066 0.057 0.138
standard east 0.094 0.088 0.072 0.190 0.233
deviations up 0.260 0.310 0.300 0.680 0.742

Estimated state1 0.911 0.042 0.035 0.012 0.000
transition state2 0.037 0.892 0.030 0.004 0.037
probability state3 0.053 0.027 0.889 0.017 0.014
matrix state4 0.033 0.002 0.027 0.924 0.014
state5 0.000 0.040 0.015 0.032 0.914

Normalized north 0 3.8 1.6 1.2 7.8
means east 0 0.1 -0.1 3.5 2.7
up 0 0.4 3.1 3.0 3.6
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furthest state with nearly the same mean and standard ideviat each GPS component, consisting
of about 15% of the entire data. We therefore consider thate stidden Markov model on the
ground of the criterion discussed above. Given that theusnjome in any state of a homogeneous
discrete-time Markov chain has a Geometric distributior, s@nduct a K-S test for the sojourn
time distributions of the fitted five-state model. The P-eslof the tests for State 1 to State 5 are,
respectively, 0.1340, 0.2211, 0.0356, 0.1628, and 0.52Ath are not significantly different from
the null hypothesis, given the multiple comparison issue $ojourn time distribution for each
state is shown in Figure 7.11.

The fitted five-state HMM results are shown in Table 7.4. Skatbe furthest from the origin,
has the largest variances for all three components, and fapar the east component, the largest
mean. State 5 does not transit to State 1 and vice versa. atienstry distribution for the Markov
chain, i.e. the proportion of time in each state, is showngufe 7.10(c). The Markov chain spends
the least amount of time in State 5 and mostly occupies Staftdte 1 has the least variation in
trend ranges which we consider as a ground state. If we nizentdle five states, by subtracting
the mean vector of state 1 from the mean vector of each stdt¢hen dividing the result by the
standard deviation vector of State 1, we see how each statesmelative to the ground state. The

resulting normalized means are shown in Table 7.4. Stateidtds from the ground state largely in
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the north component. The main deviation of State 3 from tloeigd state is in the up component.
Both the 4th and 5th states appear to deviate in the east atmhyponents, while the 5th state also

has the largest deviation in the north component.

In theory, the standard errors may be calculated using theaipnate Hessian of the negative
log likelihood at the minimum. However, this is only validyasptotically, and the standard errors
obtained this way will be very unstable if the sample sizeoislarge enough (McLachan and Peel,
2000) for the number of parameters. With 55 parameters $srtlean 2000 data, the results will not
be reliable, and the errors will be highly correlated. lasteo see how well the HMM fits the data,
we compare the histogram of the deformation rate rangescbf &S component (north, east and

up) and the mixed density of the five states,

5
> mifi(@, i, oki)s
=1
wherer = (71, -+ , m5) is the stationary distribution of the estimated transifoabability matrix,
f(,-,-) is the normal density functiork indicates either north, east or up componen;, is the
estimated mean of componénin Statei, andoy; is the estimated standard deviation of component
k in Statei. Figure 7.12 shows the plots of the histograms of the defoomaate ranges of all three
components along with the estimated mixed density. We cartlssd the fitted five-state model

captures very well the main features of the data.

The deformation rate changes of GPS east component versils np versus north, and up
versus east are plotted in Figures 7.13 to 7.15, with five §snhdicating the different classes (or
states) in which the points are categorized (using the Mitggorithm). We see that the ellipse
which illustrates the projected standard deviations ofeSsaon the north-east surface centered at
the estimated means does not overlap with that of the otagssbn that surface. Neither does that
on the north-up surface. However, a large part of the stahdaviation ellipse of State 5 on the
east-up surface is covered by that of State 4 (Figure 7.15%. dbvious that State 5 (or the data
in the 5th class) is clearly separated from the other statesgpt on the east-up surface, where it
is mixed with State 4. The most likely state sequence tracisiay the Viterbi algorithm and the
trend ranges of the GPS movements as calculated in Equdatibnate plotted in Figure 7.16. The
occurrence times of the earthquakes with magnitude lalgar 6r equal to 5.1 are also shown in
this figure. We can clearly see spikes in the trend rangeséestome of the earthquake occurrences.

Notice that when the HMM visits State 5, a large earthquakenofollows. In order to examine
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Figure 7.16: The Viterbi path and the trend changes of the GPS movemetitis jorevious 10 days
(Taupo), with vertical lines indicating the earthquakewcence times with magnitude larger than
or equal to 5.1.

whether this association is statistically significant, mtmetual information between each state and

the earthquake occurrences will be calculated.

The mutual information results for the five-state model da@ in Figure 7.17(a) for earth-
quakes with minimum magnitude 4.2, and in Figure 7.17(b)efnthquakes with minimum mag-
nitude 5.1. For earthquakes with minimum magnitude 4.2 ntiikual information suggests that
States 3 and 5 show some preseismic information and Statey hava some postseismic infor-
mation, while the other states show little association \thith earthquakes. When we use a larger
threshold, magnitude larger than or equal to 5.1, the meseiinformation in State 5 becomes
stronger, while the other states appear to show little @stsoc with the earthquakes. State 5 is thus
the ‘precursory state’. The preseismic information in &&twhich accounts for the up component
movement, weakens when increasing the magnitude threshbid information may be related to
the cluster effect either of the foreshocks or due to theipusviarge earthquakes. The postseismic
state, State 2, appears to be mainly associated with smdibeakes. The mutual information be-
tween State 1 and the earthquakes for both magnitude thdssttmws little association. Moreover,
State 1 is the closest to the origin. It may be the backgrotetg svhich suggests little movement

of the underlying dynamics. As for State 4, it is more like ateimediate state between States 2
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and 5, or between mainshock and aftershocks.

In order to validate the significance of the association sthmulated 95% confidence interval is
calculated. Note that there is no observable clusteringigngarthquake data set. We simulate 1000
series of Poisson processes with intensity equal to the auwfearthquakes divided by the total
number of days, and 1000 Markov chains using the estimatedition probability matrix from the
fitted 5 state model. The mutual information between the 06 of processes is calculated and
the simulated upper 95% confidence level can then be obtaiffeel dot-dash lines in Figure 7.17
indicate the simulated confidence levels for comparisone piteseismic information of State 5
is very clearly shown in the plot above the dot-dash line.sMarifies that the association is not
arbitrary, and confirms State 5 as a precursory state forttkd five-state model. Note that by using
6 hidden states, the analysis results in a very similar cgiah to the five-state model in terms of
precursory information. However, the five-state model amst less parameters and hence is more

stable.

Cross validation

In order to verify this association, a cross validation igied out. A five-state HMM is fitted to
the first half of the GPS data to get the parameter estimatethdomodel. Then these estimated
parameters are used to track the Viterbi path for the secalidbhthe data. After that the mutual
information between the estimated Viterbi path and thengaglkes occurring during this time pe-
riod is calculated. The estimated parameters are liste@loteT7.5. Consistent with the result for
the entire GPS data, we can see that the furthest state feorithin, State 5, which has the largest
variances for all three components, and State 1 do not tremeach other. The mutual informa-
tion between the estimated Viterbi path for the second haldftae corresponding earthquakes are
shown in Figure 7.18(a) for earthquakes with minimum magl@t4.2, and in Figure 7.18(b) for
earthquakes with minimum magnitude 5.1. The result sugdigtse association between the Viterbi
path and earthquakes with minimum magnitude 4.2. Howelverpteseismic information remains
in State 5, which, as shown above, is equivalent to the psecyiState 5 for the entire data, when
we use the magnitude threshold 5.1.

Conversely, the HMM is fitted to the second half and calcutaéemutual information for the
first half. The estimated parameters for the second halfisted!|in Table 7.6. State 5 has the
largest trend ranges and the largest variances for the toreaponents. This state, equivalent to the

precursory State 5 for the entire data, does not transitate tand vice versa. This result is also
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Table 7.5: The parameter estimates of the fitted five-state HMM to the fiedf of GPS data
(Taupo).

State 1 2 3 4 5

Estimated north 0.177 0.347 0.193 0.246 0.554
means east 0.255 0.266 0.664 0.306 0.503
up 1.029 1.151 1.371 1.891 1.893

Estimated north 0.045 0.070 0.049 0.065 0.154
standard east 0.096 0.081 0.208 0.103 0.226
deviations  up 0.268 0.230 0.525 0.361 0.733

Estimated statel 0.913 0.036 0.011 0.039 0.000
transition state 2 0.035 0.888 0.000 0.055 0.023
probability state3 0.053 0.000 0.933 0.000 0.014
matrix state4 0.049 0.035 0.000 0.900 0.016

state 5 0.000 0.055 0.018 0.009 0.918

Table 7.6: The parameter estimates of the fitted five-state HMM to thersghalf of GPS data
(Taupo).

State 1 2 3 4 5

0.152 0.230 0.333 0.242 0.498
0.187 0.325 0.200 0.530 0.593
1.280 1.060 1.580 1.958 1.978

Estimated north  0.035 0.057 0.083 0.064 0.114
standard east 0.041 0.060 0.061 0.171 0.238
deviations up 0.441 0.324 0.513 0.651 0.806

Estimated statel 0.934 0.024 0.030 0.012 0.000
transition  state2 0.023 0.919 0.032 0.025 0.000
probability state3 0.016 0.036 0.917 0.008 0.023
matrix state4 0.019 0.024 0.010 0.927 0.021

state5 0.000 0.000 0.017 0.054 0.929

Estimated north
means east
up

consistent with the entire data set. The mutual informdftoithe first half, shown in Figure 7.19(a)
for earthquakes with minimum magnitude 4.2, shows somecagsm between the Viterbi path
and earthquakes with minimum magnitude 4.2. The preseigifdomation remains in State 5 and
becomes clearer for larger magnitude threshold (Figure(i) 1L

For each of the above models (the HMM fitted to the entire dagaHMM fitted to the first half,

and the one fitted to the second half), the precursory state(S) does not transit to State 1. In

addition, State 1 has the smallest mean and standard devfatithe north component in all three
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models. This state shows little association with the eaidkg occurrence. It may be the quiescent

state. This further justifies the selection of the numbettates in the HMMs.

Analysis Using Only North and East Components

The Euclidean distance of the varialite from the origin(0, 0, 0) is also calculated, which is

VB + Ry, + RY,.

and then HMMs are fitted to the data. However, due to the fattttie up component is approxi-
mately 4 times as large as the north or east components amthbiais3 times the standard deviation
of the other two, it becomes the dominant factor for the Eileelh distance. The Euclidean distance
down-weights the north and east component effects. The HMalysis on this distance does not
work as well as the analysis on all three components as toalatdd Euclidean distance becomes
less informative. Therefore the HMMs are fitted to the norid eaast components only, and to the
Euclidean distance calculated only using north and easpoaents. As this issue will also affect
the probability forecast using the Euclidean distancettargrobability forecast is conducted only
considering the north and east components.

The HMMs are fitted to the deformation rate ranges from théhnand east components with
different numbers of hidden states. The state transitionthe fitted 3, 4, 5 and 6 state HMMs are
shown in Figure 7.20. Note that the states are ordered dogotd the Euclidean distance of the

estimated means in each state from the origin (0,0). Thelfigsults for the five-state model are

Table 7.7: The parameter estimates of the fitted 5 state HMM for the cdmmwnly the north and
east components are considered (Taupo).

State 1 2 3 4 5
Estimated north 0.175 0.345 0.227 0.227 0.525
means east 0.190 0.223 0.345 0.631 0.515
Estimated north 0.045 0.061 0.063 0.062 0.133
s.d. east 0.046 0.065 0.060 0.188 0.229

Estimated statel 0.913 0.034 0.053 0.000 0.000
transition state 2 0.039 0.887 0.041 0.000 0.033
probability state3 0.032 0.029 0.906 0.021 0.012
matrix state 4 0.024 0.000 0.043 0.923 0.010
state 5 0.000 0.042 0.011 0.026 0.921
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Figure 7.17: For data around Taupo. (a): Mutual information betwé&eand V' (for earthquake
magnitude larger than or equal to 4.2) with a timedagb): Mutual information betweeti andV
(for earthquake magnitude larger than or equal to 5.1) witma lagu. The dashed lines show the
upper level of the approximat® % confidence interval under the hypothesis that the two pesses
are independent. The dot-dash line in each plot is the bil95% confidence level from the
1000 simulated earthquake series and 1000 simulated Matiaias.
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Figure 7.18: For data around Taupo. (a): Mutual information betw&eandV” (for the second half
with earthquakes greater than or equal to 4.2) with a timesla@p): Mutual information between
U andV (for the second half with earthquakes greater than or equalll) with a time lag:. The
dashed lines show the upper level of the approxirfafe confidence interval under the hypothesis
that the two processes are independent.
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Figure 7.19: For data around Taupo. (a): Mutual information betwéeandV (for the first half
with earthquakes greater than or equal to 4.2) with a timelg): Mutual information betweeth
andV (for the first half with earthquakes greater than or equal 19 With a time lagu. The dashed
lines show the upper level of the approxima&; confidence interval under the hypothesis that the
two processes are independent.
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listed in Table 7.7. The mutual information between the Mit@ath{U,,,} and the earthquakes
{V,} for the five-state model is examined, wherés the time lag. The mutual information results
are shown in Figure 7.21. The state furthest from the origiate 5, which has the largest variances
for both north and east components, and State 1, which iddkest state to the origin and has the
smallest variances for both components, do not transitdb ether. When the magnitude threshold
is increased, the preseismic information in state 5 becatn@sger, whereas the mutual information
for the other states becomes less significant.

The scatter plot of the deformation rate ranges from the @asponent versus that from the
north component, with five symbols indicating the differstdtes in which the points are tracked

to be (using the Viterbi algorithm), is shown in Figure 7.2R.is obvious that all 5 states are
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Figure 7.22: Scatter plots of the deformation rate ranges of the east cnemt versus that of the
north component (Taupo). The ellipses illustrate the pteg standard deviations for the north
and east directions centered at the estimated means frotdNi\é fitted to the north and east

components only.

clearly separated from each other. The standard deviatiotoar projection of each state does not
overlap with the others. The most likely state sequence&kadaising the Viterbi algorithm and
the deformation rate ranges of the GPS movements as ca&dulatquation (7.1) are plotted in
Figure 7.23, with the occurrence times of the earthquakés minimum magnitude 5.1. We can

clearly see spikes in the trend ranges before some of tHegeatte occurrences. We also notice that
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Figure 7.23: The Viterbi path and the trend changes of the GPS movemaeumntih @nd east compo-
nents) as calculated in Equation (7.1), with vertical limecating the earthquake occurrence times
with magnitude larger than or equal to 5.1 (Taupo).

when the HMM visits State 5, then a large earthquake oftdovisl The sojourn time distribution
for each state of the fitted 5 state model is shown in Figuré. 7The P-values of the K-S tests for
State 1 to State 5 are, respectively, 0.1154, 0.1195, 0,@88284, and 0.3270, indicating that the

distribution of the sojourn time in each state is approxatyaGeometric.

We consider the Euclidean distance of the ranges of the mmidheast components from the
origin (0,0), D1, = 1/ R%, + R%,. The HMMs are fitted to the distance (with normal distribatio
for the observations) with different numbers of hiddenegatWe examine the mutual information
between the Viterbi pathlU,,, } and the earthquaked/;} respectively for the fitted models with
different states, where is the time lag. The mutual information results (see, e.igute 7.25 for
the mutual information between the earthquakes and thebvipath of the fitted five-state model)
suggest that for the purpose of extracting preseismic Egnaing the Euclidean distance is not as

informative as using the separate components.
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with mean calculated from the sample mean of the sojournitine@ch state (Taupo).

7.3.3 Probability Forecast Using Logistic Probability Mockel
Forecast Using All Three Components of GPS Measurements

According to the mutual information between State 5 andhgagke occurrences with minimum
magnitude 5.1 for the entire data around Taupo (in Sectid8r2),.we define a TIP as follows. We
divide the entire time period into non-overlapping intésv with equal length of 10 days. For each
interval .J;, if there is any day in which the HMM visits State 5, we consitife following interval,
Ji+1, a TIP. A contingency table for testing whether the 5th gtatelated with the large earthquake
occurrences can be conducted using the two categoricablesi for each interval, whether it is
a TIP and whether there is any earthquake with minimum madaib.1 occurring in this interval.
The contingency table for this purpose is shown in Table [T idicates a sensitivity of 0.45 and a
specificity of 0.77. The Chi-squared statistic of this cogéncy table with the null hypothesis that
the two variables are statistically independent is 4.1868 a P-value of 0.04. This shows some
evidence (at significance level of 0.05) that, whether theNH¥isits State 5 in the current interval
is related to whether there is large earthquake occurrentieei following interval. This further

confirms the mutual information conclusion for State 5.
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Figure 7.25: Mutual information betweef/ (for the Euclidean distance calculated from the north
and east components around Taupo, five-state HMM)laffitr earthquake magnitude larger than
or equal to 5.1) with a time lag. The dashed lines show the upper level of the approxidsite
confidence interval under the hypothesis that the two pesseare independent.

Table 7.8: Contingency table, where ‘Yes’ indicates that there is athgaake with minimum
magnitude 5.1 occurring in the intervd],,, and ‘No’ indicates that there is no large earthquake
occurrence in that time interval (Taupo).

Yes No Total

Jiy1aTIP 10 34 44
JiypnotaTIP 12 117 129
Total 22 151 173

Table 7.9 lists the details of the state transitions premedind following the earthquakes with
magnitude 5.1 and larger. Some 18 out of 26 large earthquakesit 70 percent) are preceded by
sojourning in State 5 in the previous three states and the istavhich the earthquake occurs. The
three state transitions are all within 70 days. Some 13 ofhthave the transition pattern 2-5, and 7
of them have the pattern 2-5-2. We then look at the threetstatsitions following the earthquake
occurrences. After the earthquake occurrences, some 16f @6t correspond to that the process
either stays in State 3 and then transits to State 1, or tsaiesBtate 3 and then to State 1. Some 8

of the 26 transition patterns transit to State 3 after vigithe state in which earthquakes occurred,
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Table 7.9: State transition pattern for earthquakes with magnitudeoblarger (Taupo). For each
transition pattern, the first three states are the threeecotise states preceding the earthquake
state, the fourth (in bold) is the state in which the earthguaccurred, and the last three are the
three following the earthquake state.

Date Mag Latitude Longitude Depth(km) state transition
2004.04.17 5.5  -37.99 176.69 133.06 2-3-1-3-1
2004.07.18 5.1  -38.00 176.51 5 1-28t-3-2

2004.07.20 5.2  -38.98 174.76 578.47 2-3-3-2-3
2005.07.31 54  -38.38 175.99 192.67 3-5-2-3-2

2005.08.01 5.7 -37.89 176.36 217.11 1-2-83-2-1
2006.01.28 55  -38.57 175.82 164.36 1-2-5-3-1
2006.04.08 5.3 -38.36 176.03 155.55 1-3-2-3-2
2006.06.15 5.5  -38.50 175.86 167.08 1-3-3-1-4
2006.07.08 5.4  -39.17 176.82 32.78 1-3-5-2-3
2006.08.21 54  -38.55 175.83 158.67 4-3-2-2-1
2006.11.28 55  -38.15 176.86 84.17 2-52-1-4
2007.01.18 54 -39.54 175.85 50.85 2-3-4-1-3
2007.02.04 5.4  -39.09 176.29 56.33 5-4-1-3-5
2007.06.13 5.1  -38.20 176.34 157.76 1-3-3-1-2
2007.07.12 5.3 -38.73 176.22 93.69 3-B4-2-5
2007.10.04 5.7 -37.84 176.15 282.24 3-2-1-4-5
2007.10.10 5.1  -38.29 176.42 155.19 3-2-1-4-5
2007.12.27 55  -38.95 175.67 117.48 2-3-2-5-2
2007.12.28 55  -38.77 176.29 79.76 2-3-2-5-2
2008.07.14 5.1  -38.28 175.84 179.36 1-3-8-1-3
2008.08.25 5.9 -39.71 176.85 31.83 3-84-3-1
2008.09.01 5.8 -39.10 175.89 85.09 5-4-3-1-2

2008.10.18 5.5  -38.00 176.24 203.61 3-5-3-1-2
2008.11.08 5.7 -38.15 176.06 200.83 3-5-3-1-2
2008.11.14 5.2  -38.28 176.24 156.89 1-2-3-2-5
2008.12.19 5.8 -38.24 176.13 186.88 1-2-5-

and 9 of the 26 transit to State 1 after visiting the state irctvkearthquakes occurred.

The frequency of the state transitions in Table 7.9 is predimh Table 7.10. The most frequent
transitions are 3-1, 1-2 and 2-5. Moreover, some 13 of tharg@ learthquakes are preceded by
the transition pattern 2-5. We therefore use this tramspiattern to define a ‘TIP’ and see how it
works. For each interval;, if there is any day in which the HMM visits State 5 and if states
the state preceding State 5, we consider the followingvatef; . ; a TIP. A contingency table for
testing whether this transition pattern is related withltrge earthquake occurrences can also be
conducted using the two categorical variables: for eadtmniat, whether it is a TIP and whether

there is an earthquake with minimum magnitude 5.1 occuiririgis interval (Table 7.11). The test
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Table 7.10: Frequency of state transitions for Table 7.9.

1 2 3 4 5 Total

0O 18 14 10 O 42

7 0 9 0 18 34

8 0 4 3 36

9 0 6 0 4 19

5 0 11 4 7 O 22
Total 37 37 33 21 25 153

A OwWDNPF
N
=

Table 7.11: Contingency table, where ‘Yes’ indicates that there is athgaake with minimum
magnitude 5.1 occurring in the intervd],,, and ‘No’ indicates that there is no large earthquake
occurrence in that time interval (Taupo). A TIP is definechgghe transition pattern 2-5.

Yes No Total

Jiy1aTIP 8 22 30
JiyinotaTIP 14 129 143
Total 22 151 173

has a sensitivity of 0.36 and a specificity of 0.85. The Chiasgd statistic of this contingency table
with the null hypothesis that the two variables are stagdly independent is 4.9334, with a P-value
of 0.026. The P-value has a slight improvement (recall thatR-value for the case when only a
visit to State 5 is used to define a TIP is 0.04). This suggbstsat 2-5 transition pattern preceding
large earthquakes may not be a coincidence. The averageenwhéntries to each state between
two consecutive events is listed in Table 7.12. In most gadkesHMM sojourns in State 1 between

earthquakes.

Table 7.12: Average number of entries to each state between two comgeeatrthquakes (Taupo).

State 1 2 3 4 5
Ave. number of entries 1.58 1.46 1.46 0.81 0.85

We now examine how the GPS deformation rate ranges influéecerobability of declaring a
TIP. We use a Logistic linear predictor for this purpose.cBithe hidden State 5 is a combination of

the three GPS components, we consider the Euclidean distditice ranges from the origin (0,0,0),

Dy = \/R?w + R%, + RZ,
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Table 7.13: Logistic regression result for a target event in the timenval .J;; with minimum
magnitude 5.1 (Taupo).

Estimate Std. Error z value Pr(> |z|)

Bo -3.2273 0.7400 -4.361  1.29e-05
B 0.7886 0.4061 1.942 0.0522

where Ry, Rg; and Ry, are the trend ranges of the GPS north, east and up comporesysc-
tively. In order to get a fairly robust linear predictor ofaaget event, instead of using some extreme

values such as maximum or minimum, we use the mean of thendesf; in interval J;,

1
Mi==5> D,
ted;

which is the average distance of the deformation rate rafigasthe origin in 10 days, as a linear
predictor of a target event in the time interv&l ; using the regressiof((J;+1) = Bo+ 1 M;, where
f(Ji+1) is the log-odds ratio. The fitted result is shown in Table 7\/8 can see that the regression
coefficient for the predictor is not equal to 0 with a P-valii€ ©522 (or at a significance level of
0.1). The result is plotted in Figure 7.26. This shows thatléinger the mean distance of the trend
ranges from the origin in interval;, the higher the probability that there will be a large eantde
occurring in the intervall; ;. We move the earthquake magnitude threshold lower to &0 the
binary response variable takes on the value 1 when there eadinquake with magnitude 5.0 or

larger occurring in the interval,, 1, and 0 otherwise. The fitting result is shown in Table 7.14e Th

Table 7.14: Logistic regression result for a target event in the timernval .J; ;; with minimum
magnitude 5.0 (Taupo).

Estimate Std. Error z value Pr(> |z|)

Bo -2.9390 0.6727 -4.369  1.25e-05
61 0.7890 0.3737 2.111 0.0347

regression coefficient for the predictdf; is now not equal to 0 with a P-value 6f0347 (or at a
significance level of 0.05). The result is plotted in Figurg7/ The conclusion remains consistent
with that of the magnitude threshold 5.1.

Figure 7.28 shows the scatter plot of the time from the morméentry in State 5 to the next

event versus the sojourn time of the HMM in State 5. It appteaisa longer sojourn in State 5 tends
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Figure 7.26: Earthquake occurrence (0-1) in the interval;,; versus M; plot
(points) with the solid line showing the probability of anyagnitude 5.1 or larger
earthquake occurrence in the interval;;; (Taupo). The dashed line indicates
Total number of intervals in which there is earthquake ommwe Total number of intervals.

to have a shorter time interval to the next event. Figure i& 2% scatter plot of the time to the next
event versus the minimum distance of the deformation ratgesfrom the origin when the HMM

is sojourning in State 5, which does not suggest a stron@letion between the two variables.

Forecast Using Only North and East Components of GPS Measuneents

According to the mutual information between State 5 andhgagke occurrences with minimum
magnitude 5.1 when only considering the north and east coers, we define a TIP as follows.
We divide the entire time period into non-overlapping iugds .J; with equal length of 10 days. For
each intervalJ;, if there is any day in which the HMM visits State 5, we consitlee following
interval J;..1 a TIP. A contingency table for testing whether the fifth siateelated with the large
earthquake occurrences is shown in Table 7.15, which hagsitigity of 0.45 and a specificity
of 0.81. The Chi-squared statistic of this contingencyédabhith the null hypothesis that the two
variables are statistically independent is 6.1485, withalBe of 0.0132. The P-value is smaller
than when we use all three components (the P-value of whizgl®#8). This confirms that whether

the HMM visits the furthest state from the origin (0,0) in @@rent interval, which has the largest
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Figure 7.27: Earthquake occurrence (0-1) in the interval;,; versus M; plot
(points) with the solid line showing the probability of anyagnitude 5.0 or larger
earthquake occurrence in the interval;;1 (Taupo). The dashed line indicates
Total number of intervals in which there is earthquake ommwe Total number of intervals.
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Figure 7.28: The scatter plot of the time to the next event versus the sojtimne of the HMM in
State 5 (Taupo).
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Figure 7.29: The scatter plot of the time to the next event versus the mimndistance of the
deformation rate ranges to the origin when the HMM is sojomgrin State 5 (Taupo).

Table 7.15: Contingency table for analysis using only north and eastpmrants (Taupo), where
‘Yes’ represents that there is an earthquake with minimurgmtade 5.1 occurring in the interval
Ji+1, and ‘No’ indicates that there is no large earthquake oetwe in that time interval.

Yes No Total

Jiy1aTIP 10 29 39
JiypnotaTIP 12 122 134
Total 22 151 173

variances for both components, is related to whether tlelarge earthquake occurrence in the

following interval.

Again, in order to get a relatively robust linear predictbadarget event, instead of using some

extreme measures such as maximum or minimum, the mean oistaeckD+; in interval .J;

1
Mui = 15 > Dy,
tedJ;

is used as a linear predictor of a target event in the timevale; ., in a Logistic regression

f(Jix1) = Po + Bi1My;,
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wheref(J;11) is the log-odds ratio. The resultis shown in Table 7.16. Wesese that the regression

Table 7.16: Logistic regression result for a target event in the timenval .J;; with minimum
magnitude 5.1, using north and east components only (Taupo)

Estimate Std. Error z value Pr(> |z|)

Bo -3.1704 0.6146 -5.159  2.49e-07
B 2.5214 1.0823 2.330 0.0198

coefficient for the predictor is not equal to 0 with a P-valii€®d 9198 (or at a significance level of
0.05). This result is more significant than when using ak¢hcomponents. Figure 7.30 shows
that the larger the mean distance of the trend ranges frorartgm in interval J;, the higher the

probability that there will be a large earthquake occuriimthe intervalJ; ;. We can see that there
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Figure 7.30: Earthquake occurrence (0-1) in the interval ; versusMi; plot (points) with
the solid line showing the probability of any magnitude 5rllarger earthquake occurrence in
the interval J;.1, using the north and east components only (Taupo). The ddsieindicates
Total number of intervals in which there is earthquake ommae Total number of intervals.

are less 0's for the earthquake occurrences at the furtlieofelarge distance values compared to

the plot (Figure 7.26) for Euclidean distance using alléhtemponents.
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7.4 Data from Southern California

Let us consider another data set from a different (strikg-shther than subduction-related rifting)
tectonic environment, with longer sequences of obsemsgtim Southern California. The southern
part of the San Andreas fault (as shown in Figure 7.31) whicim$ the tectonic boundary between
the Pacific Plate (on the west) and the North American Platah{e east) runs through Southern

California. The motion of the San Andreas fault is righelal strike-slip. The Pacific Plate moves

pd
a
™
North American Plate °
© |
™
n _|
™
&
Pacific Plate ° %
&
< | 1
™ —— San Andreas Fault (SAF) |
<& Magnitude between 4 and 5 ‘ o o
0 Magnitude between 5and 6 .
O Magnitude larger than 6
. A Continuous GPS stations
9 -

T f T T
122 120 118 116W

Figure 7.31: Location map for the GPS stations CHIL and LBC2 and earthgsiak Southern
California. The symbola indicates the location of a GPS station. The earthquakeseleeted
from the rectangular area between latitude (33N,37N) andifode (116W,120W). The small size
of the symbols for earthquakes is for earthquakes with ntadeilarger than 4.0 and smaller than
5.0; the medium size for earthquakes with magnitude lardgan 6.0 and smaller than 6.0; and
the large size for earthquakes with magnitude larger th@Gn he maximum magnitude of the
earthquakes in this area is 7.1.

approximately 48mm/yr to the northwest relative to the Rdwnerican Plate (DeMets et al., 1987).
The earthquakes occurring here are mainly shallow ones.Hiese earthquakes, from the SCEC
catalogue, in a rectangular area in Southern Californik latitude between 33N and 37N and lon-
gitude between 116W and 120W, from 1999.01.01 to 2009.0658@ Figure 7.31 for the location

map of the earthquakes. The frequency—magnitude plot isrsh Figure 7.32, from which we
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elect to consider the earthquakes with magnitude larger dhaqual to 4.5 (50 events in total).

logyo(Proportion of Events with Magnitude > m)
o

0000,

coo®o0o00000O0O0O

T T T T T T

2 3 4 5 6 7
m

Figure 7.32: The frequency—magnitude plot for the earthquakes duriagithe period 1999.01.01
to 2009.06.30 in the selected area between latitude 33N ANchBd between longitude 116W and
120W.

The GPS data can be obtained from the SOPAC website (htipaisucsd.edu/cgi-bin/refined-
TimeSeriesListing.cgi, last accessed on August 3, 20083.dRily estimates of relative coordinates
are created by a SOPAC refined model (Nikolaidis, 2002). Warexe the resulting ‘raw’ daily
GPS time series in Southern California. Unlike the tect@rgironment around Taupo, where
there is plate subduction, and active rifting and rotatibithe TVZ, the most significant motion
in Southern California is the right-lateral strike-sliptbe San Andreas fault. The raw GPS time
series shows an obvious long-term trend, for which a dirécf fiHMM will not be useful for the
purpose of probability forecast (c.f., Granat, 2003, 200@preover, the GPS times series from
many stations in this area display prominent heteroscetgsiWe therefore consider the baseline
between two stations, one close to the San Andreas faultlL Gitld one further away from this
fault, LBC2 (as indicated in Figure 7.31), which have thegest records available online and the
least amount of missing data. The missing data are aganpoiéded by setting each of them as the
mean of the non-missing data within the 10 days ahead of andQtdays following the missing

point.
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7.4.1 Hidden Markov Model and Mutual Information Analyses
Analysis of the Entire Data

The GPS measurements at LBC2 station are subtracted fromeéhsurements at CHIL station.

We will then get three series of baselines, north, east arasighown in Figure 7.33. For the three

baseline for chil-lIbc2

60
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Figure 7.33: Baseline between the GPS stations CHIL and LBC2.

series, the analysis done in Section 7.3.2 is repeated.ofHéélihood and BIC values for each of
the model are listed in Table 7.2. Note that the increaseeoldy likelihood is similar to that of the
data from Taupo. Again the five-state model is chosen by titerion described in Section 7.2.1,
which captures the most variable state consisting of abdubithe entire data. The state transition
diagrams for the fitted HMMs with 3, 4, 5 and 6 hidden statesshmvn in Figure 7.34.

The fitted five-state HMM results are shown in Table 7.17. SBalhas the largest deformation
rate ranges and the largest variances for all three comgniédoes not transit to State 1 and vice
versa. The stationary distribution for the Markov chainhswn in Figure 7.34(c) as the number
besides each circle. The Markov chain spends the least anobuime in State 5 and mostly
occupies State 1. State 1 has the least amount of changemdhranges, and hence is considered
as a ground state. We normalize the five states by subtrattnmean vector of State 1 from the

mean vector of each state and then dividing the result bytdmelard deviation vector of State 1.
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Table 7.17: The parameter estimates of the fitted five-state HMM (Soutklifornia). The nor-
malized means are obtained by subtracting the mean vecstatef1 from the mean vector of each
state and then dividing the result by the standard deviamtor of state 1.

State 1 2 3 4 5
Estimated north 0.296 0.307 0.588 0.336 0.771
means east 0.289 0.572 0.608 0.387 0.661
up 1.016 1.099 1.351 2.173 3.599
Estimated north  0.102 0.085 0.138 0.093 0.472
standard east 0.088 0.126 0.234 0.143 0.317
deviations up 0.320 0.318 0.447 0.474 1.562
Estimated state1 0.943 0.026 0.013 0.018 0.000
transition state2 0.035 0.928 0.023 0.012 0.002
probability state3 0.020 0.039 0.910 0.019 0.012
matrix state4 0.043 0.023 0.020 0.891 0.023
state 5 0.000 0.007 0.033 0.042 0.918
Normalized north 0 0.1 2.9 0.4 4.7
means east 0 3.2 3.6 1.1 4.2
up 0 0.3 1.0 3.6 8.1
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Figure 7.35: Scatter plots of the trend ranges of the east componentsisvéinat of the north
component. The ellipses illustrates the projected staldiavriations for the north and east directions

centered at the estimated means (Southern California).
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Figure 7.36: Scatter plots of the trend ranges of the up components vérausf the north com-
ponent. The ellipses illustrates the projected standavéhtiens for the north and up directions
centered at the estimated means (Southern California).
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Figure 7.37: Scatter plots of the trend ranges of the up components vérausf the east compo-
nent. The ellipses illustrates the projected standardatiewis for the east and up directions centered
at the estimated means (Southern California).
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The resulting normalized means are shown in Table 7.17 feeeesults of the data around Taupo
in Table 7.4 for comparison). State 2 deviates from the giatate largely in the east component.
The main deviation of State 4 from the ground state is in theampponent. The 3rd state appears
to deviate in the north and east components, whereas thedbthias the largest deviation in all

three components.

The scatter plots of the deformation rate ranges of the easpanent versus north, up versus
north and up versus east, with five symbols indicating thiemdint classes in which the points
are tracked to be (using the Viterbi algorithm) are shownigufes 7.35 to 7.37. Comparing to
the scatter plots for the data around Taupo, on the northseaface, unlike the result for Taupo
(Figure 7.13) that State 5 is clearly separated from ther atiages, in Southern California, the data in
State 5 are mixed with the other states on this surface (Eig®5). However, on the east-up surface,
State 5 is separated from the other states in Southern @adifFigure 7.37), whereas for the data
around Taupo, State 5 overlaps with State 4 (Figure 7.15.cbimmon feature of the two data sets
is on the north-up surface, where the ellipse, which ilatsts the projected standard deviations of
State 5 centered at the estimated means, does not overlaphaitof the other states (Figures 7.14
and 7.36). The most likely state sequence tracked using iteebi/algorithm and the deformation
rate ranges of the baselines as calculated in Equation &rel3hown in Figure 7.38, along with
the occurrence times of earthquakes with minimum magnituie Spikes in the deformation rate
ranges occur before some of the earthquake occurrencesllasAfter the HMM visits State 5,

a large earthquake often occurs. We calculate the mutuainiation between each state and the

earthquake occurrences to examine whether this associatiatistically significant.

The mutual information between the two series with a timed&gshown in Figure 7.39, which
suggests that State 5 shows some preseismic informatiote ®tate 3, which accounts for the
movement in north and east directions, has a bump around yiGfdbowing earthquake occur-
rences which may suggest some postseismic informationoitier states show little association
with the earthquakes. The dot-dash lines in Figure 7.32atdithe simulated 95% confidence level
for comparison. The preseismic information of State 5 iy \aearly shown in the plot above the
dot-dash line. This again verifies that the association isartrary. We thus consider State 5 in
the fitted five-state model as the precursory state. The sojoue distribution for each state of the
fitted five-state model is shown in Figure 7.40. The P-valdab® K-S tests for State 1 to State
5 are 0.1693, 0.1605, 0.0439, 0.0425, and 0.3017, resphcti&lthough the P-values for States 3

and 4 are low, the model still appear reasonable, given thépteucomparison problem and small
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Figure 7.38: The Viterbi path and the trend changes of the GPS movemega@dated in Equa-
tion (7.1), with vertical lines indicating the earthqual@orrence times with magnitude larger than
or equal to 4.5 (Southern California).
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Figure 7.39: Mutual information betweety andV (for earthquake magnitude larger than or equal
to 4.5) with a time lagu (Southern California). The dashed lines show the upper levéhe
approximated5% confidence interval under the hypothesis that the two psaseare independent.
The dot-dash line in each plot is the calculated 95% confieldecel from the 1000 simulated
earthquake series and 1000 simulated Markov chains.
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Figure 7.40: The sojourn time distribution for the fitted five-state HMMi¢k lines), with the
thin lines (for comparison) indicating Geometric disttibns, each with mean calculated from the
sample mean of the sojourn time in each state (Southerno@ahi.

Since there are 50 earthquakes with minimum magnitude 4a5more than 10 year period in
Southern California, including 15 earthquakes on the saaye @ctober 16, 1999, we have about
30 occurrence times over tH®+ years as the time unit we are considering is per day. A cross

validation is thus not suitable for this data set due to tteespdata.

Analysis Using Only North and East Components

The Euclidean distance of the variald® to the origin(0, 0,0) is again dominated by the up com-
ponent, given that the up component is approximately 4 timsdarge as the other two components
and has over 3 times the standard deviation of the other tivdown-weights the north and east
component effects. Therefore, the Euclidean distancegualrthree components is less informa-
tive. Thus the HMMs are fitted to the north and east compormans and to the Euclidean distance
calculated only using north and east components. Substyummother probability forecast using
the north and east components only is conducted.

The HMMs are fitted to the deformation rate ranges from théhnand east components with
different numbers of hidden states. The state transitiagrdims of the fitted 3, 4, 5 and 6 state

HMMs are shown in Figure 7.41. The mutual information betwte Viterbi path{U;,, } and the
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Table 7.18: The parameter estimates of the fitted five-state HMM for tlee ehen only the north
and east components are considered (Southern California).

State 1 2 3 4 5
Estimated north 0.286 0.278 0.521 0.319 0.740
means east 0.220 0.380 0.411 0.601 0.814
Estimated north 0.096 0.076 0.092 0.087 0.368
s.d. east 0.055 0.058 0.107 0.096 0.226

Estimated statel 0.910 0.077 0.013 0.000 0.000
transition state 2 0.054 0.853 0.036 0.056 0.001
probability state3 0.028 0.035 0.881 0.029 0.027
matrix state 4 0.000 0.059 0.017 0.904 0.020
state 5 0.003 0.000 0.035 0.033 0.929
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Figure 7.42: Mutual information betweet/ (for trend ranges from north and east components,
5 state HMM) andV (for earthquake magnitude larger than or equal to 4.5) witme lag «
(Southern California). The dashed lines show the uppet tEvine approximate5% confidence
interval under the hypothesis that the two processes aep@mtient.

earthquakegV;} for the fitted five-state model is examined. The parametématts of the five-
state model are shown in Table 7.18. The mutual informag@hown in Figure 7.42. For the fitted
five-state model, State 5 is the furthest from the origin)(@@d has the largest variances for both
components. State 1, which is the closest state to the odgies not transit to State 5. Moreover,
the other two pairs of states that have negligible prolighili transiting to each other are States 1

(the ground state) and 4 (which accounts for the east movgnaenl States 2 (which deviates from
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the ground State 1 in the east component but the mean of whilalfi of that of State 4) and 5.
The mutual information suggests that State 5 may show sosseijsmic information, but not as
strong as when we use all three components. It seems thatisreefavored transition pattern to the
precursory state, State 1-2—4-5. However, there are nogbn@arthquake) data to test whether
this pattern will provide additional precursory infornwatias done in Section 7.3.3 for the data set
around Taupo.

The scatter plot of the deformation rate ranges from thehnoomponent versus that from the
east component, with five symbols indicating the differaates in which the points are tracked

to be is shown in Figure 7.43. The first four states clustehaeir tcenters, while State 5 spread
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Figure 7.43: Scatter plot of the trend ranges of the east component vérausf the north com-
ponent. The ellipses illustrates the projected standavihiilens for the north and east directions
centered at the estimated means (Southern California).

at large values for the two components. The standard demiatntour projection of each state is
separated from the others. The most likely state sequesteetl using the Viterbi algorithm and the
deformation rate ranges of the baselines as calculateduatteq (7.1) are plotted in Figure 7.44.
Spikes in the deformation rate ranges show up before sonteeaddcurrences of the earthquakes
with minimum magnitude 4.5. When the HMM visits State 5, géaearthquake often follows. The
sojourn time distribution for each state of the fitted 5 stat&lel is as shown in Figure 7.45. The

P-values for the K-S tests for State 1 to State 5 are 0.029926, 0.0216, 0.1235, and 0.2650,
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Figure 7.44: The Viterbi path and the trend changes of the GPS movemeaitd (and east com-
ponents) as calculated in Equation (7.1) (Southern Calidy with vertical lines indicating the
earthquake occurrence times with magnitude larger thaqualeo 4.5.

respectively.

7.4.2 Probability Forecast Using Logistic Probability Mocel
Forecast Using All Three Components of GPS Measurements

According to the mutual information between State 5 andhgadke occurrences with minimum
magnitude 4.5 for the case when the entire data were use&¢éstien 7.4.1), we define a TIP with
the interval length of 20 days. A contingency table for tegtivhether the fifth state is related with
the large earthquake occurrences is conducted using thedtggorical variables and is shown in
Table 7.19, which has a sensitivity of 0.35 and a specificitQ.83. The Chi-squared statistic of
this contingency table with the null hypothesis that the tmoables are statistically independent
is 3.1232, with a P-value of 0.077. This shows weak evideatsi@nificance level of 0.1) that
visits by the HMM to State 5 are not independent of large eaidke occurrences in the following
interval.

Repeating the Logistic linear regression using the lineadiptor /;, the mean of the distance
D, in the intervalJ;, with results shown in Table 7.20, we see that the regressiefiicient for the

predictor is not equal to 0 with a P-value @575 (or at a significance level of 0.1). The result is
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Figure 7.45: The sojourn time distribution for the fitted five-state HMMigk lines), with the
thin lines (for comparison) indicating Geometric disttibns, each with mean calculated from the
sample mean of the sojourn time in each state (Southerno@ahj).

Table 7.19: Contingency table for data from Southern California, wh¥es’ indicates that there is
an earthquake with minimum magnitude 4.5 occurring in therval J; 1, and ‘No’ indicates that
there is no large earthquake occurrence in that time interva

Yes No Total

Jiy1aTIP 8 28 36
JiyinotaTIP 15 138 153
Total 23 166 189

plotted in Figure 7.46. It shows that the larger the mearadist of the deformation rate ranges
from the origin in the interval/;, the higher the probability that there will be a large eautic

occurring in the intervall; ;1.

Forecast Using Only North and East Components of GPS Measuneents

We define a TIP using the five-state HMM results when we onliar north and east components
with the interval length of 20 days. The contingency tabladsting whether the fifth state is related
with the large earthquake occurrences is shown in Table T124 sensitivity of the test is 0.39, and

the specificity is 0.73. The Chi-squared statistic of thistomency table with the null hypothesis
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Figure 7.46: Earthquake occurrence in the interval;,; versus M; plot (points)
with the solid line showing the probability of any magnitudk5 or larger earth-
quake occurrence in the interval,;; (Southern California). The dashed line indicates
Total number of intervals in which there is earthquake ommwe/ Total number of intervals.

that the two variables are statistically independent i9229 with a P-value of 0.3422. It becomes

less significant when we use only the north and east competiggnt when we use the entire data.

Table 7.20: Logistic regression result for a target event in the timenval .J;; with minimum
magnitude 4.5 (Southern California).

Estimate Std. Error z value Pr(> |z|)

Bo -2.7724 0.4955 -5.595  2.20e-08
B1  0.4592 0.2418 1.899 0.0575

Table 7.21: Contingency table for analysis using only north and eastpmrants, where ‘Yes’ in-
dicates that there is an earthquake with minimum magnitusl®eecurring in the interval; .1, and
‘No’ indicates that there is no large earthquake occurrendkat time interval (Southern Califor-
nia).

Yes No Total

Jiy1aTIP 9 45 54
JisanotaTIP 14 121 135
Total 23 166 189
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This suggests that ignoring the up component will removeesarformation from the baselines

between the two stations. This is consistent with the mutiiatmation results.

Similarly using a Logistic regression to the data using treamof the distancé,; in the
interval .J;, My;, as a linear predictor of a target event in the time interyal , with result shown
in Table 7.22, we see that the regression coefficient for thdigtor is significantly not equal to
0 with a P-value 00.0961 (or at a significance level of 0.1). This result is less sigaifi than

that of the Euclidean distance using all three componerttg. résult is plotted in Figure 7.47. It

Table 7.22: Logistic regression result for a target event in the timenval .J; 1 with minimum
magnitude 4.5, using north and east components only (Sou@wifornia).

Estimate Std. Error z value Pr(> |z|)

Bo -2.9195 0.6316 -4.622  3.79e-06
61 1.4320 0.8606 1.664 0.0961
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Figure 7.47: The earthquake occurrence in the intervgl.; versus Mp; plot (points)
with the solid line showing the probability of any magnitudé5 or larger earth-
quake occurrence in the interval;; (Southern California). The dashed line indicates
Total number of intervals in which there is earthquake oesnee/ Total number of intervals.

again confirms that we may lose some information when we donnhide the up component in our

analysis on the baselines from the two stations.
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7.5 Conclusion and Discussion

As discussed in the Section 7.1, the data from tectonicaliye@areas may behave differently from
that from a non-tectonic area. The trend of each of the GP$onents from the tectonic areas
varies on a large scale. In order to examine whether largatiaars in trend changes contain some
precursory signals for large earthquakes, a non-linear fitdeveloped for the GPS process. Itis a
smoothing tool and is useful for extracting signals whiah @istinguished from the majority of the
data. As defined in Section 7.2.1, this nonlinear filter eBasjnmeasures the maximum deforma-
tion rate changes in the previous 10 days. This filter and tiieeillying dynamics of earthquakes
form the hidden Markov model framework. Therefore the HMMised to investigate the filtered
GPS data and then classify the data into different categoréethe Viterbi algorithm. The associa-
tion between each category and the earthquake sequenes isxamined by mutual information.

For the data around Taupo, it seems that large variationseimdéformation rate may provide
precursory information for large earthquakes. This pisrsie information becomes stronger after
discarding smaller earthquakes, a lot of which are aftetshoT his confirms that State 5 may pos-
sess some precursory signals for large earthquakes. ThegGared test for the contingency table
also shows that State 5 is related to subsequent earthqoekerences. Later on, the regression
analysis for the TIP confirms that the further the GPS deftionaate variations depart from the
origin the more likely there will be an earthquake occureeircthe TIP. The largest state in each
of the fitted HMMs with up to 10 hidden states also presentsespraseismic information for large
earthquakes. However, as mentioned in Section 7.3.2, #wusory state in the five-state model
splits into two states in the fitted HMMs with 7, 8, 9 and 10 laddstates, both of which presented
precursory information. Furthermore, the fitted 10 statel@hovith the minimum BIC value has
159 parameters for 1747 days data, too many for stabilitg ddta from Southern California may
possess a similar precursory behavior. The chosen moddhasss hidden states. The furthest state
from the origin shows precursory information for large bgttakes, but more (earthquake) data is
required for confirmation

For the data around Taupo, State 3 in the five-state modeshtsws some preseismic informa-
tion, though when we increase the magnitude threshold tatelpreseismic information becomes
weaker than using magnitude threshold 4.2. This may carrebpo some cluster effect either of
small foreshocks or due to the previous large earthquakies.pdst-seismic information (from the
mutual information results) in State 2 disappeared aftéatig the small earthquakes. The state

transitions of the fitted hidden Markov model as illustraite@igure 7.10(c) suggest that State 5 is
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most likely to transit to State 2. State 2 is also likely tongiato State 5. This state may be the
postseismic state which is more related with aftershockse Mutual information shows little as-
sociation of State 1 with the earthquake occurrences. $thdés the smallest means and variations
for both the north and up components and the process spergtsoifrtbe time in this state. Note
that States 1 and 5 do not transit to each other. Apart froiin state being more likely to stay in its
own, States 2, 3 and 4 are all most likely to transit to Stafehis may suggest that State 1 consists
of the background noise for the GPS measurements of defiomeatd corresponds to a quiescence
period of the underlying dynamics.

Note that State 3 in the five-state model for the data in Sont@alifornia shows postseismic
information for the large earthquakes. This state deviates the background State 1 mainly in the
north and east components. We also notice that the maintieviaf the postseismic State 2 from
the background State 1 for the data around Taupo is in thé sorhponent. Both the postseismic
states are not related to movements in the up component. dihe hature of the GPS measure-
ments, the up component is much larger than the north or eagtanents and has larger standard
errors than that of the other two components, hence thedaaaiidistance calculated from all three
components is dominated by the up component. ThereforeMiv Enalysis on this distance does
not perform as well as the analysis on the multivariate dispient data. We conducted the proba-
bility forecast only considering the north and east comptsér comparison. The result suggests
that for the data around Taupo using only the two componemgsaves the probability forecast,
whereas for the data in Southern California, not considetfi® up component may remove some
information. The Taupo Volcanic Zone is a subduction-esatift zone and hence deformation in
the up component tends to follow crustal extension (anchthg) during an earthquake, i.e., the
up component for the data around Taupo contains postseisati@recursory information. How-
ever, the tectonic environment in Southern California feedent, being predominantly strike-slip.
If, prior to an event, the strike-slip fault is held fixed, thiain may cause the ground to buckle,
which corresponds to up motion. Hence, ignoring the up carappmay lose some precursory

information for large earthquakes.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

This thesis has contributed to two topics in parallel. Birsissuming the existence of an earth-
quake cycle (for example, mainshock—aftershock—quiesegarecursory seismicity), a new HMM
type model is proposed. This model can be used to capturd-ex®#ing process which switches
among some different phases (or states) in each of whichrdeegs has a distinguishable charac-
teristic. Secondly, two nonlinear filters are developedxtoeet signals from millions of data or data
with subtle changes, which can not be easily detected byahes@mination. A method to combine
two very different methods, HMMs and mutual information,irngroduced to investigate the link
between two processes. For the former, unlike the traditiBiMM and MMPP, the distinctive fea-
ture of this new HMM type model, MMHPSD, is the incorporatioha self-exciting point process
into a continuous-time hidden Markov chain. The existinkf-egciting models can only capture
one or several fixed or pre-identified phases in one (seistydg. For example, the ETAS model
formulates aftershock sequences, while the two-nodessteésase/transfer model can capture main
shocks and aftershocks. The new model, however, while cteizing the self-exciting feature
of each phase, switches into a new regime automatically exezrthe feature of the event occur-
rences evolves towards a different attractor. For ther]atie extracted signals from the Tangshan
Well data using the nonlinear filter were demonstrated tottmgly associated with large global
earthquakes. The combined method of an HMM and mutual irdion on the filtered GPS data
around Taupo and in Southern California revealed some ipresesignals. With more testing and
longer data sequences, GPS measurements may be able tdepsowme probability forecast for

large earthquakes.
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The parameter estimation for the new HMM type of model inooating a time-varying con-
ditional intensity function is nowhere near trivial. Thisue is further discussed in Section 8.2.1.
Due to the computational difficulty in solving the integaatiof a time-varying matrix exponential,
we restricted the conditional intensity function to varyyowhen a new event occurs and remains
constant between two consecutive events, which resuliseMMMHPSD. Under this constraint,
a method for estimating the parameters via EM algorithm wasldped, which involves a nu-
merical optimization in the M-step for estimating the paedens in the Hawkes intensity function.
The residual analysis for point processes is borrowed tluateathe goodness-of-fit for this model.

Simulation is employed to demonstrate the consistencyeop#ttameter estimation.

Compared to the ETAS model, the Hawkes process always has lotensity at very short
and very long times after an event. This is due to the factttt@ETAS model assumes that the
aftershocks decay in a power law fashion, whereas the HapaE®ss assumes an exponential
decay rate. As discussed in Section 4.3.1, the power lawyddeays tends to have larger values
at extreme time intervals. Moreover, in the ETAS intensiipdtion the decay rate is multiplied
by the exponential term of the magnitude always larger thawhich thus results in very large
ETAS intensity. When we fit the MMHPSDs to the simulated ETASgeence, on average, the
estimated intensity of each of the fitted models is smallanttihe true ETAS intensity. It appears
that various hidden states of the MMHPSD correspond torgiffemagnitude effects parameterized
ase®Mi—Mo) in the ETAS model. In particular, the state with large (siriatiensities captures large

(small) earthquakes.

The exploratory data analysis of the MMHPSD to the earthgusdquence around Landers
shows that this model is useful in modelling changes of thepteal patterns of seismicity. The
states in the model can capture the behavior of main shoakge bftershocks, secondary after-
shocks and a period of quiescence with different backgroates and decay rates. The state tran-
sitions can then explain the seismicity rate changes andehiewlicate if there is any seismicity
shadow or relative quiescence. The ETAS model is purely amigmation-branching process. The
advantage of this model over the ETAS model is that this madek seismic cycles rather than
only immigration-birth framework, and when the seismiaitye changes, the model automatically
switches into a different regime (or state) in a seismic eydhis is especially useful for a long
sequence with several state changes. One may use the ghaingenalysis for the ETAS model
to account for the seismicity changes. Firstly, estimatirgchange point is not an easy procedure

in the way that one has to try as many points as possible tondiet® one change point. Even if
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the time points of the events are used as the candidatesatangmaber of models have to be fitted.
Secondly, it is common that there may be more than one chaoige ip the sequence. For the

change point analysis, one has to determine one changefpsinand then for the data preceding
this change point, the analysis can be repeated to deteanisther change point, and so on. The
procedure can be very complicated and time-consuming. TkMISDs, however, can handle a

large data set with many state changes without manuallgidiyithe data into different segments.

An R-package was developed for this model. Since this imshlumerical optimization inside
the EM loop, the parameter estimation program is somewhed-donsuming. In Chapter 4, the
model was selected based on a residual analysis. Startingdrtwo state MMHPSD, one more
state is added each time until the residual point procedseotirrent model becomes a stationary
Poisson process with unit rate, i.e. until the current modalcapture the main features of the data.
It is likely that there are still better models with more statvhich may have smaller AIC and BIC
values than the ETAS model. But including more states meame parameters to be estimated via
numerical optimization. In order to get estimates closééatue parameters, a wide range of initial

values should be tried, resulting in a longer computatioreti

For the investigation of a possible link between earthgsi@iel the ancillary data, we reviewed
several statistics which can be used to quantify the agsmtibetween series of events. Coher-
ence describes the strength of linear association betwegsdries in frequency domain. Mutual
information measures the information that two random Wdem share. The advantage of using the
mutual information is that it equals to O if and only if the twariables are statistically independent,
whereas the coherence may be identically 0 when two sermeacanally related. Though the two
statistics are not naturally set up for point process canvex can transform the processes of interest
into 0-1 time-series. If we are further interested in whethree process causes another, the above
two statistics are not adequate any more. In this case, wesgthe Lin—Lin model to examine the

linear causal relationship between two processes.

For the ancillary well data, we introduced a variance-baseding average method and showed
how signals compatible with coseismic responses can baatett using this method from approx-
imately two million groundwater level data. We then adoptteel aforementioned three statistics
to investigate the relation between the identified well algrand 600 earthquakes of magnitude
6.0 or greater in the global catalogue during this same @efatentifiable coseismic responses are
found for approximately 40 percent of the total number ofhstedeseismic earthquakes. The ini-

tial oscillations of the groundwater level appear to bergilp associated with the arrivals of the
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earliest P phase, although the maximum amplitude usudltyfs the arrival of the later Love and
Rayleigh waves. The detection probability, and well sigrtedracteristics (delay, length, maximum
amplitude) are quantified as functions of earthquake cheniatics (magnitude, distance, depth and

azimuth), showing that the response contains considevabiation, as yet not understood.

This idea is then extended to the analysis of possible limkéen GPS measurements of defor-
mation and earthquakes. The difference is that the GPS measnots consist of multivariate data
from three dimensions, north, east and up. Moreover, theregbonses to earthquakes appear to
be oscillations, however, the anomalous changes in therdafmn data which may be related with
earthquakes are either long-term apparent displacemesit 3., Ogata, 2007), or subtle changes
for which it is necessary to have some techniques to detesttoact the anomalies. We developed
an algorithm to first filter the raw GPS data and then used thévidMn the filtered data to get
signals which may be possible precursors.

For two case studies of a) deep earthquakes in central Nglethd, New Zealand, and b) shal-
low earthquakes in Southern California, an HMM fitted to thers-term deformation rate ranges of
the GPS measurements can classify the deformation datdiffécent patterns which form prox-
ies for states of the earthquake cycle. Mutual informatian be used to examine whether there
is any relation between these patterns, in particular ther®ipath, and subsequent (or previous)
earthquakes. The class of GPS movements identified by the FBINBaving the largest range of
deformation rate changes, appear to have some precursangotér for earthquakes with minimum
magnitude 5.1 (central North Island, New Zealand, 26 eagkegs in 1747 days) and 4.5 (Southern
California, 50 earthquakes in 3815 days). We defined a “Timaaeased Probability” (TIP) as
being a 10-day interval (central North Island, New Zealamd) 20-day interval (Southern Califor-
nia) following entry (as identified by the Viterbi algorithrimto the “precursory” hidden state, and
examined the performance of this as a possible forecastsksuent earthquakes. The purpose of
this study was to examine whether there is any causal rekitip between the GPS measurements
of deformation and the earthquakes. The analysis showsittetd there may be some weak causal

relationship between the two.

8.2 Future Research

This research is working on the interface of statistics pysics and geodesy. Earthquake analysis

is of great importance in terms of both exploring the natureasthquakes and forecasting earth-
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quakes. Statistical models play an important part not amlyriderstanding the earthquake process
itself, but also in the probability forecast of earthqua&ed estimation of hazard from earthquakes.
This research focuses on the two aspects in the way of demglgpitable stochastic models to
investigate the seismicity rate changes and incorporatiwjlary data to examine the seismic re-
sponses and possible earthquake forecasting. The twaddldlenof this research and the research
findings in this thesis give rise to new challenges for thariresearch. Possible extensions and

further analyses which this thesis does not cover are stagyjasthe following subsections.

8.2.1 Markov-modulated Hawkes Processes with Time-varymDecay

The proposed MMHPSD switches among some finite states dngai@ a Markov transition rate
matrix with a self-exciting occurrence rate of the eventerfra Hawkes process in which the inten-
sity of this process changes after each event occurrenceeimains a constant between each two

consecutive events. The conditional intensity functiothdf process is

/\*(t) = A+ vn Z e—n(max{tl:tl<t}—tj)’ (81)

t;<max{t;:t;<t}

not the original Hawkes process with conditional inten§iflyction

N (1) =A+wn Yy e ), (8.2)

ti<t

This is for the sake of parameter estimation. Note that wiacutating the transition probability
without arrivalHZ.(;L) (u), the ordinary differential equation (3.2) has to be solMéthe conditional

intensity function takes the form of (8.2), the ordinaryfeliéntial equation will become

H™' (u) = H™ (u)(Q — A*(ty—1 + u))

(8.3)
HMW (0) =1

and the solution for this equation i (u) = exp{(Q — A)u + A" (t,_1 +u)} for u > 0, where

N - 0 )\{”(t) 0

0 - A\ 0 A

T



190 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

and A" (t) = v; 32, oy (e7ml=0) — emmilln-1=10)) This will cause difficulty when carrying out
the EM algorithm for the parameter estimation. The reasdhaswhen the conditional intensity
function (8.2) is used, as a consequence of the change ofdhmaoy differential equation, Equation

(3.17) becomes

" =QT o) % /tk exp{(Q — A)(tx —t) + AT*(t)}A* (t3)R(k + 1) L(k — 1)
k=1

tp—1

x exp{(Q — A)(t — ty_1) + A% (¢)}dt, (8.4)
where® denotes term-by-term multiplication of the two matricesn€equently, the integral

Zo= [ exp{(Q - M)t~ 1)+ MO ()RG:+ DG~ 1)

te—1

% exp{(Q — A)(t — t_1) + AL (1)}, (85)

has to be calculated. To the best of our knowledge, therertiesist an easy way to do this. How-
ever, when the stepwise decay rate (8.1) is used, this protda be easily solved. As an analytical
solution for the integration (8.5) is difficult to solve, oney consider integrating it numerically.
Again, a numerical solution is not easy as well given thatehg a matrix exponential in the inte-
grand with each element of the matrix being a functior.off this integration problem is solved,
then we can carry on analyzing the earthquake data using Mid Bype model incorporating the
original Hawkes process with exponential decay rate.

Another possible extension would be using the power lawydesie (i.e., Omori-Utsu formula),
which is well known as the best empirical temporal-distiiiinu of aftershocks, instead of the ex-
ponential decay rate. This would result in many new chabsng our mathematical calculations

given that we will lose the Markovian property.

8.2.2 MMHPSD with Marks

When the MMHPSD is applied to the earthquake sequences fanmdrs, Big Bear, Hector Mine
and Joshua Tree, this simple initial model accounts foedifiit states of earthquake occurrence
rates. It provides an exploratory analysis of earthquakemences. As discussed in Section 4.4.2,
the model interprets the magnitude effect on the inter+etigres although no magnitude term is
included in the intensity function. The state with the bigfgeonditional intensity function captures

the features of the largest earthquakes which have shertérent times. The state with the smallest
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intensities occupies the times when small earthquakesr.odthis suggests that there may be a
possible way to improve this model by including the magretedfect in the intensity function. As
pointed out in Chapter 4, the magnitude term in the ETAS maquielameterized as an exponential
function, may be too strong along with the power law decayction. However, a power law,
(M; — My)®, may be suitable to be included in the intensity functionhef MMHPSD. This may
improve the fitting to the data if this magnitude term can gepthe majority of the magnitude
effect. Each state might account for a longer sequence ait®wehich could be a period of an
aftershock sequence following a large earthquake, a pefi@varms, or a period of foreshocks

indicating accelerating seismic activity preceding ad¢aegrthquake.

8.2.3 NHMM and MMGLM Analysis of Earthquakes with Ancillary GPS Data

It has been shown that indeed there may be some weak cawsainship between the GPS mea-
surements of deformation and the earthquakes. The GPS rasamts of deformation reflects
some of the underlying dynamics for earthquake occurrenges future research, the GPS mea-
surements can be incorporated as ancillary data (or coepirao the HMM framework to investi-
gate earthquake occurrences. Whether/how the GPS meanisanfluence earthquake occurrence
modelling can be examined using HMMs incorporating the GR&surements via three different
ways. For any day, the observation of interest here can be any earthquakereace (with mag-
nitude greater than or equal to a threshafg) in the time period/;, = (¢,t + 1) days. Itis a binary
variable,Oy, taking on the value 1 when there is any magnitddigor greater earthquake occurring
in the time intervall;, and O otherwise. The covariate can be the current Euclidestaince of the

GPS trend ranges to its origin (0,0,0);. The following three models can be considered:

1. HMM with

P(O;]0y, -+ ,04 1,81, - ,57) = P(Oy = 0| S; = 8) = p2t(1 — ps)'
P(S;[S1, -+ ,8i-1) = P(S; = j | Si—1 = i) = pij

(8.6)

wherep; is the probability of earthquake occurrence in stgtandp;; is the transition prob-

ability from statei to j;
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2. NHMM with

P(Ot‘o:h”’7Ot—17S17”'7ST7D17”’7DT):P(Otzot’StZS):pgt(l_ps)l_()t
P(St’S:h”’ 7St—17D17”’ 7DT) :P(St‘St_l,Dt)
8.7)

where the parameter, remains the same as in the HMM, and the transition probigsildan

be determined by

»
I

215121 =1,D;) = a1 + b1 Dy,

+b2Dta

PSt 1’St1—1Dt P(St:2’5t_1:1,Dt)

e
"
I

P(St = 1’St—1 = 27Dt)7

( ) =
|Og|tP(St =1 ’ Si_1 =2 Dt)
( )
( )

2| 5,1 =2, D,

with parameters, b1, as andb,;
3. MMGLM with

P(0O;|Oy, -+ 041,81, ,Sp, D1, ,Dr) = P(Oy = 0, | Sy = 5, Dy = dy)
= exp { (ouog (25 ) ~tog (=) )}
P(Sy |81, ,Sie1) = P(Sy = j | Siey = i) = pyj
(8.8)

where the link function i$og (pss/(1 — pss)) = Cos + C15d¢ With parameterg, and(y for

states at timet.

Model (8.6) does not include any covariate effect. It modedsearthquakes in a simple way which
has binary event occurrences. In Model 8.7, the covarid®§ @easurements, indirectly reflects the
observed process (earthquakes) through the hidden proetsrlying dynamics). The underlying
dynamics classifies the GPS measurements into severaslagsich most probably reflect certain
earthquake occurrence patterns. Model 8.8 assumes thatttigjuake occurrences are directly
related to the GPS measurements and the GPS measurementdrdftuance the transitions of the
hidden states. Another possibility would be considering ttme to next event as the observation
for the three models with an exponential distribution, amal Euclidean distance of the GPS trend

ranges to its origin (0,0,0) as a covariate.
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8.2.4 Testing of HMM Analysis of GPS Data for Earthquake Foreasting

A 10-day moving window was used in the nonlinear filter (7ritjoduced in Section 7.2.1 for anal-
ysis of the GPS measurements. A test of how the choice of thdomi length may influence the
mutual information can be done to examine the window lenfféce The window length here acts
as a smoothing parameter which determines the degree otlsness. In addition, analysis of the
prediction success versus the earthquake characteridieslepths, distances, focal mechanisms
and sources of the earthquakes, can be carried out, alohgavgiensitivity analysis on the earth-
quake catalogue used (the choice of magnitude threshgidh @éad location of the earthquakes).
In Chapter 7, the TIP intervals for probability forecastsevehosen to be 10 days for Taupo and
20 days for Southern California. A further investigationtioé selection of this TIP interval by
balancing false alarms and missed events may improve tialipitily forecast.

In Chapter 7, the mutual information was calculated by fiansing the data into bivariate
binary series. According to the definition in Chapter 5, ityniee worthwhile to directly con-
sider the mutual information between the short-term deéfdion ranges of the GPS measurements
(RN, Rg, Ry) and the earthquake binary series. The definition of the rhirté@mation would
need to be extended to the multivariate case.

Also of interest would be examining whether the distancenftbe fault axis or station has any
influence on the predictability of earthquakes using thegdore in Chapter 7. Moreover, GPS
measurements at more locations from different tectoninggst with various types of mechanisms,

may provide further insights into probability forecastiiog large earthquakes.
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Appendix

A. Dispersion Test (Cox and Lewis, 1966)

Letny,no,--- ,n, denotek observations for a discrete random variaMeand let

n— w (A-1)

A standard test for the hypothesis that thi&s are observations of a Poisson variate is the dispersion
test for homogeneity based on the statistic

=2

(ni —n)
d= —_ A-2
; - (A-2)
The statisticd divided byk — 1 is the ratio of the estimated variance Sfto the estimated mean
of IV, and the test is roughly a comparison of this ratio with itetvalue of unity under the null

hypothesis. Possible alternative hypotheses are that thare non-Poisson and serially correlated.

B. Logistic Regression Analysis

For the purpose of exposition, we will momentarily denote thagnitude)M, log-scaled well—
epicenter distancég;,(D), depth H, and the sine and cosine functions of the azimuth (given
that the azimuth is an angle, we use the sine and cosine dasctif the azimuth)5: and C: by
;1 = 1,2,3,4,5. If the probability that an earthquake causes a coseisrsjuorese i, then
the probability of an observation (wherey is either a coseismic response or not, 1 or 0) has the

Bernoulli distribution
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The random variablg has a mean gf. Our objective is to determine how the explanatory varigble
(in this case, the magnitude, log-scaled well-epicentgadtce, depth, sine and cosine functions of
azimuth) influence the probability valye These five continuous explanatory variables, which we
will denote byzq, z2, x3, T4 andxs, suggest that a multiple regression analysis may be seitdlle
responsey is binary. Instead of using a regression directly for thecegs probability, one usually
transforms the probability scale from the rar{gel) to (—oo, 00), and then use a regression for the
transformed values. Logistic transformation is usualboramended because it is more convenient.
Moreover, it provides a direct interpretation in terms @ thgarithm of the odds of success, which
is defined to be the ratio of the probability of a success toptiedability of a failure,p/(1 — p).

Hence we can do logistic regression with binomial errors Sellett, 1991 for example).

In order to check the interactions between the earthquakestats as well, we fit a logistic

model with maximal interactions between explanatory Vdes,

log < ) =by + Zb x; + Z Z bijrix; + Z Z Z bijrx;x Ty

le i+1 i=1 j=i+1 k=j+1
5

2 3
Z Z Z Z bijklxixjwkwl +bgxr1---x5+¢€ (A-3)

j=it+1k=j+11=k+1

to the data, where is the residual. Then by using stepwise regression and camgpthe Akaike
information criteria (Akaike, 1974) of the resulting moslelve can identify the best model. Here it
turns out that none of the interactions had a significancefend that the AIC of the linear regres-
sion model without interactions was significantly smalldifférence in AIC is greater than 2) than
that of the models with interactions. Therefore, we do nedhi® include the interactions between
explanatory variables in our analysis. However, since parametric smoothers in generalized ad-
ditive models suggest some nonlinearity of the variablagjqularly the log-scaled well-epicenter
distance and the depth, we did include squared terms fongbl@reatory variables in the logistic

model.

Therefore, after eliminating the interaction terig_, 37, ) bijaizj, Yoy S imivt Sonejit

bijkxixjwk, Zi:l Zj:i—i—l zk:j—i—l Zl:k—i—l bijklxixjwkwl and bgxq - - - 5 in model (A-3), and

adding the quadratic term}s;_, by;z7, we fit the model

log< >—b0—|—meZ+Zbom +e. (A-4)
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Note thatz? + 22 = sin? ¢ + cos? ( = 1, and hence we only need to include one of the quadratic

terms ofz4 andxs.

C. Multiple Regression Analysis

We first use scatter plots and generalized additive modétg un-parametric smoothers to ex-
amine whether there is nonlinearity in the relationshipMeein A p and the statistics;, between
A,, and the earthquake statistics, and betwegrand the earthquake statistics. This will suggest
whether we should include squared terms in the regressibien The tree model will be used to
indicate whether the interaction structure of the data mpdex. If it is complex, we then need to
include interaction terms in the analysis. Preliminarylgsia also suggested that transformation of

the response variabld p, A,, andL,, improved the fitting results. Thus we fit the model
5 4 5 4
z = by + Zbixi + Z Z bijrix; + Zboﬂg +e
i=1 i=1 j=i+1 i=1

(with squared effects and interactions between the eaategstatistics) to the data. Herés «/Ap
in the case of delay analysisig;,(A.,) andlog,q(L,,) for amplitude and length analysesis the

residual and thé’s are parameters to be estimated.

D. Stationary Distribution of a Markov Chain

Assume{S,} is a Markov chain in the state spa¢e,--- ,r} with P = (p;;)rx, andP,, =

(pg?))w, where

Pij = P(Sn :j‘Sn—l = Z)

and

i) = P(S, = jISo = ).

According to the Chapman-Kolmogorov equation, we have

P, =P, _,P;.
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Letp, = (P(S, =1),---, P(S, = r)) denote the probability distribution &f,. Given that

pn = pn—1P7 (A‘S)

it follows that

pn = poP".

By letting p,, = p»—1 = 7 in Equation (A-5), we have
™ =nP. (A-6)

The solution ofr to (A-6) is called the stationary distribution of the Markovain.
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