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Abstract

This thesis consists of two parts. The first part proposes a new model – the Markov-modulated

Hawkes process with stepwise decay (MMHPSD) to investigatethe seismicity rate. The MMHPSD

is a self-exciting process which switches among different states, in each of which the process has

distinguishable background seismicity and decay rates. Parameter estimation is developed via the

expectation maximization algorithm. The model is applied to data from the Landers earthquake

sequence, demonstrating that it is useful for modelling changes in the temporal patterns of seismic-

ity. The states in the model can capture the behavior of main shocks, large aftershocks, secondary

aftershocks and a period of quiescence with different background rates and decay rates. The state

transitions can then explain the seismicity rate changes and help indicate if there is any seismicity

shadow or relative quiescence.

The second part of this thesis develops statistical methodsto examine earthquake sequences

possessing ancillary data, in this case groundwater level data or GPS measurements of deformation.

For the former, signals from groundwater level data at Tangshan Well, China, are extracted for the

period from 2002 to 2005 using a moving window method. A number of different statistical tech-

niques are used to detect and quantify coseismic responses to P, S, Love and Rayleigh wave arrivals.

The P phase arrivals appear to trigger identifiable oscillations in groundwater level, whereas the

Rayleigh waves amplify the water level movement. Identifiable coseismic responses are found for

approximately 40 percent of magnitude 6+ earthquakes worldwide. A threshold in the relationship

between earthquake magnitude and well–epicenter distanceis also found, satisfied by 97% of the

identified coseismic responses, above which coseismic changes in groundwater level at Tangshan

Well are most likely.

A non-linear filter measuring short-term deformation rate changes is introduced to extract sig-

nals from GPS data. For two case studies of a) deep earthquakes in central North Island, New

Zealand, and b) shallow earthquakes in Southern California, a hidden Markov model (HMM) is

fitted to the output from the filter. Mutual information analysis indicates that the state having the

largest variation of deformation rate contains precursoryinformation that indicates an elevated prob-

ability for earthquake occurrence.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Earthquake Cycles

The earthquake process is observed only through data that generally do not directly reflect the

underlying dynamics. The observations usually consist of records of earthquake features such as

magnitude, location and depth, while the underlying dynamics, for example the accumulation of

stress, remain unobserved. Fedotov (1968) described the concept of a seismic cycle and suggested

an increasing seismicity rate before the second main shock of the cycle. Note that the earthquake

cycle considered in this thesis refers to a sequence of stages of seismicity, not to periodic or “char-

acteristic” earthquake cycles. Mogi (1968) also suggestedthat prior to a main shock, there are

concentrative occurrences of foreshocks in a region near the epicenter of the main rupture preceded

by relative seismic quiescence. Bufe and Varnes (1993) and Bufe et al. (1994) reported an increase

in cumulative regional energy release prior to a large earthquake and explored the accelerated mo-

ment release (AMR) model. The statistical version of this model was studied by Vere-Jones et al.

(2001), Jaumé and Bebbington (2004) and Bebbington et al. (2010), all indicating that the AMR

model only models a particular seismic cycle whereas in reality there may have been multiple such

cycles (e.g., Bufe and Varnes, 1993). However, Hardebeck etal. (2008) found AMR present in data

which were simulated without benefit of AMR. Jaumé and Sykes(1999) reviewed the evidences that

many large earthquakes are preceded by a period of accelerating seismic activity of moderate-sized

earthquakes, and pointed out that the changes in the level ofdriving stress (stress accumulation and

release) during a seismic cycle were the cause of the observed seismicity changes. This is also
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supported by the study of Sammis and Smith (1999). They showed a seismic cycle in which a large

event is followed by a shadow period of quiescence and then a new approach back toward the crit-

ical state, in a scaling region at times close to which the events become larger and energy release

increases. These, as well as many others, such as Bowman et al. (1998), Zhuang (2000), Lombardi

et al. (2006) and Pievatolo and Rotondi (2008), indicate that seismicity may present a cyclic nature

of some sort.

Hidden Markov models (HMMs) form a remarkably general statistical framework for modelling

such partially observed systems, by assuming that the unobserved (or hidden) process is a Markov

chain and the observations are conditionally independent given the hidden states. The HMM was

initially introduced by Baum and Petrie (1966) as a probabilistic function of a discrete-time Markov

chain with a finite number of states. There have been extensive developments of this model, includ-

ing the methods of parameter estimation (Rabiner, 1989 and the references therein), extension to

processes where the hidden process is a continuous-time Markov chain with discrete states and the

observation is from a Poisson process such as Markov-modulated Poisson process (MMPP; Fischer

and Meier-Hellstern, 1993 and the references therein), extension to processes where either the ob-

served or the hidden process depends on another observed variable (Markov-modulated generalized

linear models (MMGLM) for the former, Harte (2005); nonhomogeneous hidden Markov models

(NHMM) for the later, Hughes (1993) and the references thereafter).

1.1.2 Clustering

To model earthquake processes, there should be more significant extensions to HMMs, as the hidden

process is a continuous-time Markov chain and the observations of earthquake processes are point

processes which often occur in a self-exciting way (a process is considered to be self-exciting if

it depends on the entire or some of its history which affects the intensity function of the process).

None of the existing discrete-time HMMs, MMPPs, MMGLMs and NHMMs is adequate to capture

these features simultaneously.

Vere-Jones and Davies (1966) investigated the earthquake data from the main seismic region of

New Zealand for the years 1942–1961. The analysis revealed asignificant degree of dependence

among earthquakes and suggested that the earthquake process is among the general class of ‘conta-

gious processes’, in which the events already occurred often trigger new ones. Using the triggered

model suggested by them, investigations of the earthquake data from New Zealand in Vere-Jones

(1970) and from 14 regions listed in Table 1 in Hawkes and Adamopoulos (1973) further supported
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such significant correlations between earthquakes. The extensive applications of the Epidemic Type

Aftershock Sequence (ETAS) model (Ogata, 1988 and subsequent papers), in which each earth-

quake is able to produce offspring in the same way as a diseased people may pass the disease to

other people in epidemics, demonstrate that earthquakes dopresent some self-exciting features.

Vere-Jones (1978) proposed the stress release model (SRM) for triggering between main se-

quence events, which incorporates a deterministic build-up of stress within a single region and its

stochastic release through earthquakes. As reviewed in Bebbington and Harte (2001; 2003), earth-

quake interaction by means of stress triggering and stress shadows (across different regions at a

distance, see also Zheng and Vere-Jones, 1994) has been wellaccepted. In order to account for this

interaction, instead of using the SRM, they used the linked stress release model (LSRM) (Liu et

al., 1998; Lu et al., 1999) to investigate seismicity in multiple regions. Both the SRM and LSRM

were developed for triggering between main sequence eventsonly (with aftershocks removed, cf.,

Bebbington and Harte, 2001). In order to formulate main shocks and aftershocks in one model,

a two-node stress release/transfer model was presented by Borovkov and Bebbington (2003) and

Bebbington (2008), which was also shown to be an alternativeto the ETAS model for aftershock se-

quences. The two-node model is a two region version of the LSRM to describe main shocks by one

region (or node) and aftershocks by the second node. Borovkov and Bebbington (2003) also pointed

out that in sequences which include a secondary sequence triggered by main shocks, a third node

might be added to the two-node model, i.e., a three-node model might be considered. These studies

suggest that an assumption of independence of the events in an earthquake catalogue is inadequate

for the analysis of evolution of seismicity.

A Markov-modulated Poisson process (MMPP) is a doubly stochastic Poisson process, the in-

tensity of which is controlled by a finite, non-observable, continuous-time Markov chain. It is pa-

rameterized by ther-state continuous-time Markov chain with infinitesimal generatorQ = (qij)r×r

and ther Poisson arrival ratesλ1, λ2, · · · , λr, where

qii = −
r∑

j=1

j 6=i

qij.

The event occurrence rate of the process in one particular state is independent of the previous events

and is thus not suitable here. It is necessary to develop an HMM type model in which the process

switches among some finite states and the occurrence rate of the events in each state depends on the

historical events. Instead of the well accepted stochasticmodels for seismicity analysis such as the
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SRM or the ETAS model, the self-exciting Hawkes process withexponential decay rate (Hawkes,

1971) will be used to formulate the event occurrence rate in each hidden state. This is because this

Hawkes process, which consists of two types of events, immigrants with a Poisson occurrence rate

and offspring generated from an exponential decay rate, hasthe Markovian property and is thus

mathematically tractable. For a seismic cycle, the relative quiescence can be considered as a state in

which there are no conspicuous clusters, i.e., with a negligible background intensity function, while

an immigration-branching rate with different background and decay rates can be assigned to each

of the foreshock and aftershock periods. Note that this is insome sense a generalization of the two-

node or three-node stress transfer model (Borovkov and Bebbington, 2003), in which the regions

and nodes were pre-identified and fixed. The HMM type model, however, inherits the Markovian

property, which automatically switches into a new regime ornode when the underlying dynamics

change.

1.1.3 Ancillary Data

Historically, there has been little data available beyond the observed record of the earthquake cata-

logue. A recent innovation has been the availability of related, or ancillary, data which are (hope-

fully) related to the process generating the hazard. More and more ancillary data, such as ground-

water level oscillations and GPS measurements of deformation, are becoming available, which may

either be dependent on the original observations (e.g., Matsumoto, 1992; Kitagawa and Matsumoto,

1996), or reflect the underlying dynamics (e.g., Roeloffs, 2006).

Earthquakes disrupt and change hydrologic processes. Oscillations or sustained changes are the

two typical anomalous phenomena in groundwater levels in wells. The Tangshan Well in north-

ern China has long been recognized by Chinese seismologistsas sensitive to seismic disturbances.

There exist more than thirty years of groundwater level observations at this well. Such a long record

as that from Tangshan Well is nearly unique to the best of our knowledge (cf., Elkhoury et al., 2006).

A great number of oscillations of the groundwater level are recorded at the Tangshan Well which

may have been induced by large earthquakes from the global catalogue since the advent of 1-minute

digital records in 2001. To date there has been little in the way of a coherent statistical examination

of the possible link between earthquakes and hydrological responses. A better understanding of the

whys and wherefores of occurrence or non-occurrence following an earthquake event is a necessary

first step. The question also remains as to whether the oscillations occur (or are detectable) in all

cases, and what factors affect the response, and by how much.
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A great deal of effort has been put into analysis of anomalouschanges in crustal deformation

rates prior to large earthquakes in order to look for warnings of impending earthquakes. Moti-

vated by the evidences of anomalous changes in deformation prior to the 1944 Tonankai earthquake

(Ms=8.2) and the 1946 Nankaido earthquake (Mw=8.3), the Japanese government has intensively

monitored aseismic deformation with the goal of issuing a warning prior to the next great earthquake

(EERI Committee on the Anticipated Tokai Earthquake and Scawthorn, 1984). Roeloffs (2006) re-

viewed the evidences of preseismic deformation rate changes which have been found prior to 5 large

earthquakes in Japan, 3 in the USA, 1 in Chile, 1 in Peru and 1 inGreece. However, preseismic

deformation rate changes are relatively rare in the existing record, even after the wide deployment

of Continuous GPS stations in the early 1990s. Some statistical analyses have been carried out on

anomalies of GPS measurements from the apparent long-term pre-earthquake slip which may be

related to earthquake occurrences (e.g., Ogata, 2007). As discussed in Roeloffs (2006), most of

the time it is difficult to detect apparent long-term displacement. There may exist some anomalous

changes of the deformation rate prior to large earthquakes,the detection of which, however, may

require more sophisticated techniques.

As discussed above, for the groundwater level at Tangshan Well, the water level oscillations

are buried in millions of data, while for the case of GPS measurements of deformation, there are

very few obvious displacements. Therefore, methods for detection of groundwater level oscilla-

tion signals and extraction of subtle deformation rate changes in GPS measurements are necessary.

The ancillary groundwater level and deformation data and the earthquake catalogue are observed

independently. Moreover, an earthquake sequence has long been considered as a point process,

whereas both the groundwater level and the GPS measurementsof deformation are continuous time

series (multivariate for the latter case). Hence, methods for identifying dependence between such

geophysical processes are needed.

1.2 Overview

The two major objectives of this thesis are 1) to develop HMM type models in which the hidden

process is governed by a discrete-state, continuous-time Markov chain, and the observations in each

state are from a self-exciting point process, and 2) to use statistical methods to investigate earthquake

data incorporating ancillary data. Hence, this thesis consists of two parts. The first part starts with

a comprehensive review of HMMs including model definition and parameter estimation. It is then
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followed by the development of HMM type models which accountfor the self-exciting feature of

earthquake occurrences. The new HMM type model is called a Markov-modulated Hawkes process

with stepwise decay. An application of this model is demonstrated using a real data set. The sec-

ond part investigates methodologies of extracting signalsfrom potential candidates for earthquake-

related processes and detecting association between the resulting series of events. A brief overview

of each chapter is as follows.

Chapter 2 provides an overview of HMMs. Given that the HMM framework contains two com-

ponents, the observed part and the hidden (or unobserved) part, all three of the models mentioned

above, the discrete-time HMM, the NHMM and the MMGLM, can be generalized in one model.

This chapter provides the definition of this concise model and then reviews the three models in

detail, including definitions, parameterizations, and parameter estimation.

Chapter 3 develops the Markov-modulated Hawkes process with stepwise decay (MMHPSD).

An expectation maximization (EM) algorithm for the parameter estimation of this model is pro-

posed, along with a detailed implementation algorithm. Themethod for evaluating the goodness-

of-fit problem is also provided. Consistency of parameter estimation will be demonstrated by sim-

ulation.

Chapter 4 presents a check of the consistency of the parameter estimation algorithm by way of

a simulation study of the MMHPSD, and an application of the model to a real data set from the

Landers–Hector Mine sequence. The ETAS model is used to simulate an earthquake catalogue.

The MMHPSD is then fitted to this catalogue in order to see whatmeaning can be attached to

the hidden states the model identifies. The parameter estimates from this simulated catalogue are

used to conduct the consistency test of the estimation algorithm as proposed in Chapter 3. A case

study of the earthquake data around Landers is carried out for this model. The seismicity rate

changes characterized by this model are compared with results from other investigations. Further

modifications and possible improvements of this model for earthquake analysis are discussed.

Chapter 5 provides a detailed review of three statistical techniques characterizing the association

between series of events, the coherence, mutual information and Lin–Lin model, highlighting their

use in earthquake modelling and its ancillary data analysis. Coherence, which provides a measure of

the degree of linear predictability of one process from another, is inadequate as a measure of general

association for it may be identically 0 when two series are infact related. However, such behavior

does not occur for the coefficient of mutual information, which is a measure of the amount of infor-

mation that one random variable contains about another. TheLin–Lin model, which describes the
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influence of a point process input on a point process output, can identify linear causal relationships

between one sequence of events and another. The three methods can be used to clarify association

and identify causation.

Chapter 6 contains a systematic statistical analysis of earthquake-related groundwater level os-

cillations from the 1-minute digital records of Tangshan Well data since 2001. A method of ex-

tracting signals compatible with coseismic responses fromthe approximately two million such data

during the four year period 2002–2005 is demonstrated, and their relation to 600 earthquakes of

magnitude 6.0 or greater in the global catalogue during thissame period is investigated. Identifiable

coseismic responses are found for approximately 40 percentof the total number of such earthquakes.

The association of the initial oscillations of the groundwater level with the arrivals of the earliest P

phase, the earliest S phase, the Love and Rayleigh waves are examined using the coherence, mutual

information and Lin–Lin model. The detection probabilities of different types of earthquakes are as-

sessed in terms of the earthquake magnitudes, distances, depths and azimuths. The relation between

the well signal characteristics (delay, length, maximum amplitude) and the earthquake magnitude,

distance, depth and azimuth is also discussed.

Chapter 7 is devoted to an HMM based investigation of possible link between GPS measure-

ments of deformation and earthquakes. An exploratory analysis of the earthquake occurrences

around Taupo using HMMs, NHMMs, and MMGLMs with binary distribution for earthquake oc-

currences and the GPS measurements of deformation as ancillary variable is carried out, but none

of the models seems to be informative for understanding the underlying dynamics of earthquake

occurrences. Instead, a non-linear filter for the GPS process which serves as a smoothing tool is

introduced. Essentially, it measures the short-term deformation rate ranges and is able to extract

useful signals which are distinguishable from the majorityof the data. For two case studies of a)

deep earthquakes in the central North Island, New Zealand, and b) shallow earthquakes in Southern

California, HMMs are fitted to the deformation rate ranges ofthe GPS measurements. The HMMs

classify the deformation data into different patterns which form proxies for states of the earthquake

cycle. Mutual information is then used to examine whether there is any correlation between these

patterns, in particular the Viterbi path, and subsequent (or previous) earthquakes. The class of GPS

movements identified by the HMM as having the largest range ofdeformation rate changes is ex-

amined in detail in terms of the precursory character for large earthquakes. The performance of

possible earthquake forecast is assessed by comparing a decision rule (based on model characteris-

tics) with the actual outcome.
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Chapter 8 summarizes the conclusions of this thesis and provides detailed suggestions for future

research involving the development of the HMM type models for geophysical data, NHMM and

MMGLM analyses of earthquakes incorporating the filtered GPS measurements as covariate(s),

and further test of HMM analysis of GPS data for earthquake forecasting.
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Part I

HIDDEN MARKOV TYPE MODELS

FOR EARTHQUAKES
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Chapter 2

A General Class of Discrete-time Models

This chapter first introduces a class of general discrete-time hidden Markov models, and then

reviews the concepts and parameter estimation issues for the three special discrete-time hidden

Markov type models.

2.1 A General Formulation for Discrete-time Models

Consider a system which may be described at any time as being one of a set ofr distinct states,

{1, · · · , r}. Denote the actual state at timet asSt. The probability of the system in statej at timet

given the predecessor states is

P (St = j |St−1, St−2, · · · ).

However, in reality, in most of the time this system is not observable, but instead, a set of observa-

tions Ot = {Ot1, · · · , Otn} can be produced at timet with the system in stateSt ∈ {1, · · · , r}.

Denote the observation sequence byO = (O1, · · · ,OT ), and the hidden state sequence byS =

(S1, · · · , ST ). In practice, along with the observed process of the system,there might be an-

other set of observed processesX = (X1, · · · ,XT ), which may not only strongly influence or

directly reflect the hidden state, but also strongly associate with the observed sequenceO, where

Xt = {Xt1, · · · ,Xtk} for 1 ≤ t ≤ T . We refer to such processes as ancillary data or covariates.

Here we should bear in mind that the processO is what we are interested in, and that the processX

provides us ancillary information aboutO. Then the probability ofO being produced by the system
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without assuming the knowledge of the state sequence in which it was generated is

P (O |X, θ) =
∑

all S

P (O, S |X, θ)

=
∑

all S

P (O |S,X, θ)P (S |X, θ)

=
∑

all S

P (O1, · · · ,OT |S1, · · · , ST ,X1, · · · ,XT , θ)P (S1, · · · , ST |X1, · · · ,XT , θ)

=
∑

all S

P (O1 |S1, · · · , ST ,X1, · · · ,XT , θ)P (S1 |X1, · · · ,XT , θ)·

T∏

t=2

P (Ot |O1, · · · ,Ot−1, S1, · · · , ST ,X1, · · · ,XT , θ)

× P (St |S1, · · · , St−1,X1, · · · ,XT , θ), (2.1)

whereθ is the set of parameters.

It is worth noting that the righthand side of the last step in (2.1) indicates that the model actually

consists of two parts, the conditional probability of observations given the hidden state sequence

and the covariates, and the transition probability given the covariates. This structure accounts for a

variety of formulations including some well-known hidden Markov models. Discrete-time hidden

Markov models (HMMs; see Rabiner, 1989 for a comprehensive tutorial), nonhomogeneous hidden

Markov models (NHMMs; Hughes and Guttorp, 1994a) and Markov-modulated generalised linear

models (MMGLMs; Harte, 2005) are all special cases of the model (2.1).

2.2 Models without Ancillary Data

These models are the ones described in Chapter 2 in MacDonaldand Zucchini (1997). Let us

assume that there is no ancillary variable available, and the observations at timet only depend on

the current hidden state, i.e.

P (Ot |O1, · · · ,Ot−1, S1, · · · , ST , θ) = P (Ot |St, θ).

In addition, assume that the hidden state is a first-order Markov chain

P (St |S1, · · · , St−1, θ) = P (St |St−1, θ).
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Then we have

P (O | θ) =
∑

all S

P (O1 |S1, θ)P (S1 | θ)
T∏

t=2

P (Ot |St, θ)P (St |St−1, θ),

which is an HMM.

The forward-backward procedure, a recursive algorithm, was developed to efficiently calculate

the likelihood of a hidden Markov model. If the forward variable is defined as

αt(i) = P (O1, · · · ,Ot, St = i | θ), (2.2)

and the backward variable is defined as

βt(i) = P (Ot+1, · · · ,OT |St = i, θ), (2.3)

the likelihood can then be calculated recursively by

L(θ) = P (O1, · · · ,OT | θ) =

r∑

i=1

αt(i)βt(i). (2.4)

Baum et al. (1970) developed an iterative algorithm to estimate the parameters for HMMs by

considering the hidden states as missing data, which was shown to be equivalent to the expectation

maximization (EM) algorithm of Dempster et al. (1977). The EM algorithm is to iteratively perform

the expectation (E) step, which computes an expectation of the log likelihood with respect to the

current estimate of the distribution for the missing variables, and the maximization (M) step, which

computes the parameters that maximize the expected log likelihood found on the E step, until the log

likelihood converges. To apply the EM algorithm to an HMM, the observationsO and the hidden

processS form the ‘complete data’. The complete likelihood of an HMM is

Lc(θ;O, S) =
∑

S1,··· ,ST

P (O1, · · · ,OT , S1, · · · , ST | θ)

=
∑

S1,··· ,ST

P (S1 | θ)P (O1 |S1, θ)
T∏

t=2

P (St |St−1, θ)P (Ot |St, θ). (2.5)

If θ0 is a given parameter estimate, then the E-step of the EM algorithm is calculating the expectation

Q(θ; θ0) = ES,θ0
[logLc(θ;O, S) |O] (2.6)
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with respect toS andθ0. The M-step is obtaining the new estimate

θ̂ = arg max
θ

Q(θ; θ0). (2.7)

The expected complete log-likelihoodQ(θ; θ0) is obtained by taking the expectation of the complete

likelihood overS, given the current parameter estimatesθ0, conditional on the observed dataO,

Q(θ; θ0) =
∑

j

P (S1 = j |O1, · · · ,OT , θ0) log P (S1 = j)

+

T∑

t=2

∑

i,j

P (St−1 = i, St = j |O1, · · · ,OT , θ0) log P (St = j |St−1 = i, θ)

+

T∑

t=1

∑

j

P (St = j |O1, · · · ,OT , θ0) log P (Ot |St = j, θ). (2.8)

Then the E-step of the EM algorithm for the HMM is to compute

vt(j) = P (St = j |O1, · · · ,OT , θ0),

wt(i, j) = P (St−1 = i, St = j |O1, · · · ,OT , θ0),

and the M-step is to maximize the second and third terms in (2.8),

Ψ(S | θ0) =

T∑

t=2

∑

i,j

wt(i, j) log P (St = j |St−1 = i,S) (2.9)

and

Ψ(O | θ0) =

T∑

t=1

r∑

j=1

vt(j) log P (Ot |St = j,O) (2.10)

as functions ofθ = (O,S), whereO represents the set of parameters involved in the observation

distribution andS is the set of parameters in the transition probability matrix.

For geophysical processes, it is common to have multivariate observations. Taking GPS mea-

surements of deformation for example, there are three components of movement (north, east and

up components) for each station. Under fairly general conditions the central limit theorem says that

the sum of a large number of independent random variables hasan approximately normal distribu-

tion. For this reason, the normal distribution is widely used in statistics, and in natural and social
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sciences. Therefore the estimation procedure for an HMM with observations from a multivariate

normal distribution will be presented here. LetOt = {Ot1, · · · , Otn} represent the variable of mea-

surement with observed values ofot = {ot1, · · · , otn}, whereoti is the measurement of component

i at timet. Suppose that given the current hidden state the measurement of each component is nor-

mally distributed and the measurements of each two components are independent. The process has

the probability density function

f(ot |St = s) =
n∏

i=1

1

σis

√
2π

exp

(
−(oti − µis)

2

2σ2
is

)
(2.11)

whereµis andσis are the mean and standard deviation for the observations of theith component in

states. Assume that there arer states. Then the number of parameters to be estimated in thispart of

the model is2nr. Set the transition probability from statei to j asP (St = j |St−1 = i) = γij , and

the initial distribution vector of the Markov chain asδ = (δ1, · · · , δr). The forward and backward

probabilities, (2.2) and (2.3), are computed from the following equations,

α1(i) = P (O1, S1 = i | θ) = δif(o1 |S1 = i),

αt+1(i) = P (O1, · · · ,Ot+1, St = i | θ)

=
r∑

k=1

αt(k)γkif(ot+1 |St+1 = i),

and

βT (i) = 1

βt(i) = P (Ot+1, · · · ,OT |St = i, θ)

=

r∑

j=1

βt+1(j)γijf(ot+1 |St+1 = j).

Given an initial guess of the parameter,θ0, assuming that the initial distribution vector of the

Markov chain isδ0 = (δ01, · · · , δ0r), the forward and backward probabilities can be calculated

using the above formula. The E-step will then be computingv andw given θ0 via the following

equations,

vt(j) = P (St = j |O1, · · · ,OT , θ0) =
αt(j)βt(j)∑r
i=1 αt(i)βt(i)

,
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and

wt(i, j) = P (St−1 = i, St = j |O1, · · · ,OT , θ0)

=
αt−1(i)γijf(ot |St = j)βt(j)∑r

k=1 αt(k)βt(k)
.

The M-step is to maximizeΨ(S | θ0) in (2.9) with respect to the parameters in the transition prob-

ability matrix andΨ(O | θ0) in (2.10) with respect to the parameters involved in the observation

distribution. By maximizing

Ψ(S | θ0) =

T∑

t=2

∑

i,j

wt(i, j) log P (St = j |St−1 = i,S)

=
T∑

t=2

∑

i,j

wt(i, j) log γij

we can get the estimates for the transition probabilities as

γ̂ij =

∑T
t=2 wt(i, j)∑r

j=1

∑T
t=2 wt(i, j)

.

Then maximizing

Ψ(O | θ0) =

T∑

t=1

r∑

j=1

vt(j) log P (Ot |St = j,O)

=

T∑

t=1

r∑

j=1

vt(j) log

{
n∏

k=1

1

σkj

√
2π

exp

(
−(otk − µkj)

2

2σ2
kj

)}

has a simple solution given by

µ̂kj =

∑T
t=1 vt(j)otk∑T

t=1 vt(j)
, (2.12)

and

σ̂kj =

√∑T
t=1 vt(j)(otk − µ̂kj)2∑T

t=1 vt(j)
. (2.13)

This forms one step of EM algorithm. To get the parameter estimates using this algorithm, we

update the initial guess of the parameterθ0 using the estimated parameter from the M-step and
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then iterate the E-step and M-step until the log likelihood converges, or in other words, until the

difference between the log likelihoods from the previous step and from the current step is less than

a specified tolerance.

2.3 Transition Probabilities Depending on Ancillary Data

When only the transition probabilities change over time depending on the ancillary data, the model

is called a nonhomogeneous hidden Markov model (Hughes and Guttorp, 1994a). Assume that the

process of interest only depends on the current hidden stateand is conditionally independent of all

previous observations, i.e.

P (Ot |O1, · · · ,Ot−1, S1, · · · , ST ,X1, · · · ,XT , θ) = P (Ot |St, θ), (2.14)

and that the ancillary data only indirectly affect the processes of interest through the hidden state.

In addition, we assume that the hidden state is a nonhomogeneous first-order Markov chain,

P (St |S1, · · · , St−1,X1, · · · ,XT , θ) = P (St |St−1,Xt, θ). (2.15)

Note that the transition probability depends on the covariatesXt. Model (2.1) becomes an NHMM.

Increasing interest has arisen in this model after the successful modelling of local and regional

precipitation by incorporating synoptic atmospheric datavia an NHMM framework (Hughes and

Guttorp, 1994a). The model was first introduced to relate large-scale atmospheric data (covariates)

to local hydrologic phenomena such as precipitation (observed process) (Hughes, 1993). In this

class of models, the observed process is supposed to be related to a set of covariates, but the covari-

ates only indirectly affect the observed process through another unobserved process (i.e. the hidden

states). The unobserved states serve to automatically categorize the covariates into a few classes that

are most associated with particular patterns of the observations of interest. The idea is to introduce

an indirect covariate effect to the hidden Markov models. The observed process is assumed to be

conditionally independent given the hidden state. However, the transition intensities of the hidden

Markov process are allowed to depend on covariates.

Although the models were proposed to model precipitation, the general NHMM structure is po-

tentially applicable to other settings. In application, inorder to fit an NHMM to the data of interest,

both the assumptions (2.14) and (2.15) need to be parameterized. Assumption (2.14) usually takes
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the form of a conditional probability mass function (for discrete random variables) or a conditional

probability density function (for continuous random variables) given the current state. It can be

parameterized according to the empirical distribution of the observations. If the observed data are

from a Gaussian population, one can consider Model (2.11) for this assumption. If a binary data

set is under consideration, for example, earthquake occurrence processes in one orn independent

regions, one can use the independence model (see also Hughesand Guttorp, 1994a),

P (Ot = ot |St = s) =
n∏

i=1

p̃oti

is (1 − p̃is)
1−oti (2.16)

wherep̃is is the probability of event occurrence in regioni in hidden states, oti = 1 if the event

occurs on dayt at regioni and 0 otherwise.

When the transition probability matrix depends on the covariates, the assumption (2.15) can be

parameterized via some link functions which should ensure thatP (St |St−1,Xt) is between 0 and

1, and
∑

i P (St = i |St−1,Xt) = 1. For example, one can use a parameterization which makes use

of the Bayes formula (Hughes and Guttorp, 1994a). Letγij = P (St = j |St−1 = i) with constraint
∑

j γij = 1, and

P (Xt |St−1, St) ∝ exp(−(Xt − µSt−1,St)Σ
−1(Xt − µSt−1,St)

′/2),

whereµSt−1,St is the mean vector (assumed to vary according to the current and past states), andΣ

is the variance-covariance matrix of the covariates. Assume that
∑

j µij = µi = 0. Applying Bayes

formula it then follows

P (St |St−1,Xt) =
P (Xt |St−1, St)P (St |St−1)∑
St
P (Xt |St−1, St)P (St |St−1)

∝ γSt−1,St exp(−(Xt − µSt−1,St)Σ
−1(Xt − µSt−1,St)

′/2). (2.17)

The probabilitiesγij serves as the baseline transition probabilities of the hidden state process. The

exponential term characterizes the effect of the covariates on the baseline transition probabilities.

This model can be applied to earthquake modelling incorporating GPS measurements of deforma-

tion as ancillary data. Normally, this model is easy to handle in terms of parameter estimation and

explanation of hidden states.

Having outlined the formulation of the model, the next question is how to estimate the param-

eters from the observed data. If we letθ denote the model parameters, the likelihood function is
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then

L(θ) = P (O1, · · · ,OT |X1, · · · ,XT , θ)

=
∑

S1,··· ,ST

P (O1, · · · ,OT , S1, · · · , ST |X1, · · · ,XT , θ). (2.18)

The likelihood function appears to be computationally intractable. The forward-backward procedure

developed to solve the HMM can be extended to the NHMM and makes the calculation possible.

Again, assume that the initial distribution vector of the Markov chain isδ = (δ1, · · · , δr). The

forward variable is defined as

α1(i) = P (O1, S1 = i |X1, · · · ,XT , θ) = δiP (O1 = o1 |S1 = i, θ),

αt+1(i) = P (O1, · · · ,Ot+1, St+1 = i |X1, · · · ,XT , θ)

=

r∑

k=1

αt(k)P (St+1 = i |St = k,Xt+1)P (Ot+1 = ot+1 |St+1 = i, θ),

it then follows that

L(θ) =

r∑

i=1

P (O1, · · · ,OT , ST = i |X1, · · · ,XT , θ) =

r∑

i=1

αT (i). (2.19)

Define the backward variable as

βT (i) = 1

βt(i) = P (Ot+1, · · · ,OT |St = i,X1, · · · ,XT , θ)

=
r∑

j=1

βt+1(j)P (St+1 = j |St = i,Xt+1)P (Ot+1 = ot+1 |St+1 = j, θ).

The likelihood function can then be obtained by

L(θ) =

r∑

i=1

P (O1, · · · ,OT , S1 = i |X1, · · · ,XT , θ) =

r∑

i=1

β1(i)P (O1 |S1 = i)πi(x1), (2.20)

whereπi(x1) = P (S1 = i |X1, θ). Alternatively, the likelihood can be calculated recursively by

L(θ) =

r∑

i=1

αt(i)βt(i). (2.21)
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Note that an NHMM has the same structure as a standard HMM, both consist of two parts, an

observation probability distribution and a transition probability distribution. The difference is that

the transition probability distribution of an NHMM dependson an additional variable. This allows

us to borrow the idea of the EM approach for the standard HMM toestimate the parameters involved

in an NHMM. To apply the EM algorithm here, the observationsO, the hidden processS, together

with the ancillary dataX form the ‘complete data’. The complete likelihood is

Lc(θ;O, S,X) =
∑

S1,··· ,ST

P (O1, · · · ,OT , S1, · · · , ST |X1, · · · ,XT , θ)

=
∑

S1,··· ,ST

P (S1 |X1, θ)P (O1 |S1, θ)
T∏

t=2

P (St |St−1,Xt, θ)P (Ot |St, θ).

(2.22)

If θ0 is a given parameter estimate, then the E-step of the EM algorithm is

Q(θ; θ0) = ES,θ0
[logLc(θ;O, S,X) |O,X]. (2.23)

By comparing to Equation (2.6), the distinguishing point isthat the ancillary dataX are affecting the

complete likelihood through the transition probabilitiesin Equation (2.23). The M-step is obtaining

the new estimate

θ̂ = arg max
θ

Q(θ; θ0). (2.24)

The expected complete log-likelihoodQ(θ; θ0) is obtained by taking the expectation of the complete

likelihood overS at the current parameter estimationθ0, conditional on the observed dataO andX,

which is

Q(θ; θ0) =
∑

j

P (S1 = j |O1, · · · ,OT ,X1, · · · ,XT , θ0) log P (S1 = j |X1)

+

T∑

t=2

∑

i,j

P (St−1 = i, St = j |O1, · · · ,OT ,X1, · · · ,XT , θ0)

× log P (St = j |St−1 = i,Xt, θ)

+

T∑

t=1

∑

j

P (St = j |O1, · · · ,OT ,X1, · · · ,XT , θ0) log P (Ot |St = j, θ). (2.25)
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Then the E-step of the EM algorithm for the NHMM is to compute

vt(j) = P (St = j |O1, · · · ,OT ,X1, · · · ,XT , θ0)

=
αt(j)βt(j)∑r

j=1 αt(j)βt(j)

wt(i, j) = P (St−1 = i, St = j |O1, · · · ,OT ,X1, · · · ,XT , θ0)

=
αt−1(i)P (St = j |St−1 = i,Xt = xt)P (Ot |St = j)βt(j)∑r

i=1

∑r
j=1 αt−1(i)P (St = j |St−1 = i,Xt = xt)P (Ot |St = j)βt(j)

.

and the M-step is to maximize

Ψ(O | θ0) =
T∑

t=1

∑

j

vt(j) log P (Ot |St = j,O)

Ψ(S | θ0) =

T∑

t=2

∑

i,j

wt(i, j) log P (St = j |St−1 = i,Xt,S)

as functions ofθ = (O,S).

The difficult part of the parameter estimation for NHMM is in the M-step. The difference be-

tween the complete likelihoods of the HMM and NHMM derives mainly from the covariates. This

makes it difficult to obtain an explicit solution for the parameter estimation involved in the transi-

tion probability matrix. In application, the maximizationof Ψ(S | θ0) always requires numerical

optimization. For the maximization ofΨ(O | θ0), one normally can get an explicit solution. Take

Model (2.16) for example, maximizingΨ(O | θ0) has a simple solution given by

̂̃pis =

∑
t vt(s)oti∑

t vt(s)
.

However, when more complicated models are considered for the observations so that there is no

explicit solution anymore, one might consider an alternative method of parameter estimation for the

observation distribution part (cf., Hughes and Guttorp, 1994b).

2.4 Observation Mean Depending on Ancillary Data

When the mean of the observations depends on the ancillary data, the model is called a Markov-

modulated generalized linear model (Harte, 2005). Assume that the ancillary data only have influ-
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ence on the process of interest, i.e.

P (Ot |O1, · · · ,Ot−1, S1, · · · , ST ,X1, · · · ,XT , θ) = P (Ot |St,Xt, θ),

and do not affect the hidden state. In addition, assume that the hidden state is a homogeneous

first-order Markov chain, i.e.

P (St |S1, · · · , St−1,X1, · · · ,XT , θ) = P (St |St−1, θ).

If the ancillary data influence the observed processes through a generalized linear model (see Mc-

Cullagh and Nelder, 1989 for a comprehensive discussion of the generalized linear models), the

model (2.1) then becomes an MMGLM.

The MMGLM assumes that the distribution of the observed response variableOt is indirectly

dependent on the current state of the Markov chain through another observed covariateXt. It

assumes that

E(Ot) = f

(
ζ0 +

k∑

i=1

ζiXti

)
,

where the values ofζ0 andζi vary according to the hidden Markov state, andf(·) is the inverse

mapping of the link function commonly used in generalized linear models. Moreover, the responses

are assumed to be conditionally independent given the valueof the Markov chain. To make a

clearer statement, take the density function of the response variable from the exponential family for

example. Assume that the response variableO has a distribution in the exponential family, taking

the form

P (Ot = ot |St = s,Xt, ξ, φ) = exp{(otξts − b(ξts))/a(φ) + c(ot, φ)}

for some specific functionsa(·), b(·) and c(·), whereξts = ζ0s +
∑k

i=1 ζisxti is the so called

canonical parameter which depends on the current hidden state s. For some very commonly used

distributions in the exponential family, such as normal, binomial and Poisson distributions, we can

write this state-dependent distribution for the observations as, for the normal distributionN(µ, σ2),

P (Ot = ot |St = s,Xt, ξ, φ) =
1√

2πσ2
exp

{
−(ot − µts)

2

2σ2

}

= exp{(otµts − µ2
ts/2)/σ

2 − (o2
t /σ

2 + log(2πσ2))/2}
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with ξts = µts = ζ0s +
∑k

i=1 ζisxti, φ = σ2, a(φ) = φ, b(ξts) = ξ2ts/2 andc(ot, φ) = −(o2
t /σ

2 +

log(2πσ2))/2}; for the binomial distributionB(m,µ),

P (Ot = ot |St = s,Xt, ξ, φ) = exp

{(
ot log

(
µts

1 − µts

)
−m log

(
1

1 − µts

))
+ log

(
Cm

ot

)}

(2.26)

with ξts = log (µts/(1 − µts)) = ζ0s+
∑k

i=1 ζisxti, φ = 1, a(φ) = φ, b(ξts) = m log(1+eξts) and

c(ot, φ) = log
(
Cm

ot

)
, whereCm

k means the combination ofk items fromm; and for the Poisson

distributionP (µ),

P (Ot = ot |St = s,Xt, ξ, φ) = exp{(ot log(µts) − µts) − log(ot)}

with ξts = log(µts) = ζ0s +
∑k

i=1 ζisxti, φ = 1, a(φ) = φ, b(ξts) = exp(ξts) andc(ot, φ) =

− log(ot).

Set the transition probability from statei to j asP (St = j |St−1 = i) = γij , and the initial

distribution vector of the Markov chain asδ = (δ1, · · · , δr). Let θ denote the model parameters.

Similar to a discrete-time HMM, the likelihood function of an MMGLM

L(θ) = P (O1, · · · ,OT |X1, · · · ,XT , θ) (2.27)

can be efficiently calculated from the forward-backward procedure. Define the forward probabilities

as

α1(i) = P (O1, S1 = i |X1, θ) = δiP (O1 = o1 |S1 = i,X1, θ),

αt+1(i) = P (O1, · · · ,Ot+1, St = i |X1, · · · ,XT , θ)

=

r∑

k=1

αt(k)γkiP (Ot+1 = ot+1 |St+1 = i,Xt+1, θ),

and the backward probabilities as

βT (i) = P (· |ST = i,X1, · · · ,XT , θ) = 1

βt(i) = P (Ot+1, · · · ,OT |St = i,X1, · · · ,XT , θ)

=

r∑

j=1

βt+1(j)γijP (Ot+1 = ot+1 |St+1 = j,Xt+1, θ).
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The likelihood can then be calculated recursively by

L(θ) = P (O1, · · · ,OT |X1, · · · ,XT , θ) =

r∑

i=1

αt(i)βt(i). (2.28)

According the structure of this model, the EM algorithm can also be applied for parameter estima-

tion. The observationsO, X and the hidden processS form the ‘complete data’. The complete

likelihood of an MMGLM is

Lc(θ;O, S,X) =
∑

S1,··· ,ST

P (O1, · · · ,OT , S1, · · · , ST |X1, · · · ,XT , θ)

=
∑

S1,··· ,ST

P (S1 | θ)P (O1 |S1,X1, θ)

T∏

t=2

P (St |St−1, θ)P (Ot |St,Xt, θ).

(2.29)

If θ0 is an initial value of the parameter estimate, then the E-step of the EM algorithm is

Q(θ; θ0) = ES,θ0
[logLc(θ;O, S,X) |O,X]. (2.30)

The difference of Equation (2.30) from Equation (2.23) is that the ancillary dataX are driving the

observations in the former. The M-step is obtaining the new estimate

θ̂ = arg max
θ

Q(θ; θ0).

The expected complete log-likelihoodQ(θ; θ0) is obtained by taking the expectation of the complete

likelihood overS at the current parameter estimationθ0, conditional on the observed dataO andX,

Q(θ; θ0)

=
∑

j

P (S1 = j |O1, · · · ,OT ,X1, · · · ,XT , θ0) log P (S1 = j)

+

T∑

t=2

∑

i,j

P (St−1 = i, St = j |O1, · · · ,OT ,X1, · · · ,XT , θ0) log P (St = j |St−1 = i, θ)

+
T∑

t=1

∑

j

P (St = j |O1, · · · ,OT ,X1, · · · ,XT , θ0) log P (Ot |St = j,Xt, θ). (2.31)

Similar to the procedures in the previous sections, the E-step of the EM algorithm for the MMGLM
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is to compute

vt(j) = P (St = j |O1, · · · ,OT ,X1, · · · ,XT , θ0)

=
αt(j)βt(j)∑r

j=1 αt(j)βt(j)

wt(i, j) = P (St−1 = i, St = j |O1, · · · ,OT ,X1, · · · ,XT , θ0)

=
αt−1(i)γijP (Ot |St = j,Xt = xt)βt(j)∑r

i=1

∑r
j=1 αt−1(i)γijP (Ot |St = j,Xt = xt)βt(j)

.

and the M-step is to maximize

Ψ(O | θ0) =

T∑

t=1

∑

j

vt(j) log P (Ot |St = j,Xt,O)

Ψ(S | θ0) =
T∑

t=2

∑

i,j

wt(i, j) log P (St = j |St−1 = i,S)

as functions ofθ = (O,S). The estimation of the parameters in the transition probability matrix

is the same as that for discrete-time HMM. The parameter estimation involved in the observation

distribution part,Ψ(O | θ0), is simply maximizing the sum of the individual log-likelihood contribu-

tions of the response variable weighted by the Markov state probabilitiesvt(j). This can be carried

out in R using the “HiddenMarkov” package (Harte, 2005).
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Chapter 3

Markov-modulated Hawkes Process

with Stepwise Decay

3.1 Introduction

As mentioned in Chapter 1, when a Markov-modulated Poisson process (MMPP) is in one specific

state, says, the event occurrences follow a Poisson process with rateλs. For a detailed review,

see Fischer and Meier-Hellstern (1993), Rydén (1994), andRydén (1996). This process has been

applied to model bursty point processes, especially in telecommunications (see, e.g., Heffes and

Lucantoni, 1986). Yet, due to the fact that it has a constant event occurrence rate in any particular

state, application of MMPPs to problems involving real datais limited.

Bebbington (2007) investigated volcanic inter-onset times of flank eruptions during 1600–2006

from Mount Etna using HMMs and MMPPs, where the volcano is demonstrated to have longish

periods of Poissonian behavior. For a geophysical process,there usually exists some additional in-

formation apart from the arrival times. For example, an earthquake series often has both spatial and

temporal locations, as well as magnitude. Lv (2009) extended the MMPP to a Markov-modulated

Poisson process with state-dependent marks. He introducedadditional information to the MMPP in

the form of marks. It provides the potential to analyze spatial-temporal point patterns or multivariate

processes. The ground process arrives at a stationary rate.

However, many geophysical processes often occur in a non-independent or self-exciting way.

The events already occurred often trigger new ones. As pointed out in Section 1.1, the observable

point process which is governed by the hidden process tends to cluster with certain period. An

assumption of independence of the observations in a particular state is no longer suitable here. The
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framework should be extended to the case in which the hidden state is controlled by a continuous-

time Markov chain, and when sojourning in each state, the observed process follows a self-exciting

point process.

Based on the above considerations, this chapter develops a Markov-modulated Hawkes process

with stepwise decay, a model in which the process switches among a finite number of states with a

self-exciting occurrence rate of events from a Hawkes process. A method of estimating the parame-

ters involved in the model using the EM algorithm is then introduced. The detailed implementation

algorithm for the parameter estimation is also provided. After that, how to evaluate the goodness-

of-fit problem is discussed. A simulation algorithm for thisprocess is also provided so that the

simulated events can be used to examine how the EM algorithm works for the parameter estimation

of this model.

3.2 Markov-modulated Hawkes Process with Stepwise Decay

3.2.1 Hawkes Process with Stepwise Decay

The Hawkes process has an extensive application in seismology (see, e.g., Hawkes and Adamopou-

los, 1973), epidemiology, neurophysiology (see, e.g., Br´emaud and Massoulié, 1996), and econo-

metrics (see, e.g., Bowsher, 2007). It is a point-process analogue of the autoregressive model in

time series. LetN be a simple point process onR with successive occurrence timesT0 = t0 =

0, T1 = t1, · · · , Tn = tn. The historyHt of the process at timet is defined byHt = {tl : tl < t}.

The Hawkes process was first introduced as a self-exciting point process with conditional intensity

function taking the form

λ(t)
△
= λ(t |Ht) = λ+

∫ t

−∞
g(t− u)dN(u),

whereλ ≥ 0, g(u) ≥ 0 and
∫∞
0 g(u)du < 1 (Hawkes, 1971). The process consists of two types of

events, immigrants without extant parents in the process and offspring generated by existing points.

The immigrants arrive in a Poisson process of rateλ, and each immigrant generates offspring in a

non-stationary Poisson stream of rateg(t − u). If we let g(t − u) = νηe−η(t−u), the process will

then have the Markovian property (Daley and Vere-Jones, 2003) and become easy to handle math-

ematically. This model will be imbedded into the hidden Markov model framework with further

restriction of the intensity function to stepwise decay. The purpose of this restriction is purely for
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the convenience of computation.

For a point processN with occurrence timest0 = 0, t1, · · · , tn, the intensity of this process

changes after each event occurs, but stays as a constant between each two consecutive events, i.e.

for tk < t < tk+1, λ∗(t) = λ∗(tk+1), and

λ∗(tk+1) = λ+ νη
∑

tj<tk

e−η(tk−tj).

The general conditional intensity function for the processcan be written as

λ∗(t) = λ+ νη
∑

tj<max{tl:tl<t}

e−η(max{tl:tl<t}−tj).

The process consists of a series of immigrants which arrive according to a Poisson process at a

constant rateλ. Any immigrant at the pointti generates descendants int > ti+1 according to a

stepwise rateνηe−η(max{tl:tl<t}−ti). Note that the only difference of this process from a Hawkes

process with exponential decay is how the immigrants produce offspring. In a Hawkes process with

exponential decay, an immigrant at the pointti generates descendants int > ti in a non-stationary

Poisson stream of rateνηe−η(t−ti) (see Hawkes and Oakes, 1974; Oakes, 1975; Daley and Vere-

Jones, 2003). This new process we will call a Hawkes process with stepwise decay. Denote the

inter-event times of this process byX1 = T1 − T0, · · · ,Xn = Tn − Tn−1. The inter-event time

distribution for a point process provides in principle a means of predicting future events in terms of

the history of the process (see Jowett and Vere-Jones, 1972). The inter-event time distribution of

this process is

P (Xn ≤ xn |Htn−1
) = 1 − exp



−

∫ tn−1+xn

tn−1


λ+ νη

∑

tj<tn−1

e−η(tn−1−tj)


dt





= 1 − exp



−


λ+ νη

∑

tj<tn−1

e−η(tn−1−tj)


xn





= 1 − exp {−λ∗(tn)xn} .

3.2.2 Markov-modulated Hawkes Process with Stepwise Decay

Consider a Hawkes process with stepwise decay the parameters of which vary according to an

r-state irreducible Markov process. Denote the infinitesimal generator of the underlying Markov
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process{Y (t)} by Q = (qij)r×r and qi = −qii, i = 1, · · · , r. The observed Hawkes process

with stepwise decay is characterized byΛ∗(t), an r × r diagonal matrix with diagonal elements

λ∗1(t), · · · , λ∗r(t), where

λ∗i (t) = λi + νiηi

∑

tj<max{tl:tl<t}

e−ηi(max{tl:tl<t}−tj ), (3.1)

tk is the occurrence time of thekth event, andλi, νi andηi, i = 1, · · · , r, are parameters. This

process is said to be in statei, 1 ≤ i ≤ r, when the underlying Markov process is in statei. When

this process is in statei at timet, events occur according to a Hawkes process with stepwise decay

rateλ∗i (t) as defined in (3.1). This process is called a Markov-modulated Hawkes process with

stepwise decay (MMHPSD) of orderr. Note that in this process, for the ancestors in the history,

the influencing factors,ν and η, by which they generate descendants, areνi and ηi, wherei is

the present state, regardless of which state the ancestor was generated in. This is for the sake of

mathematical tractability. LetY0 be the state of the Markov process having generatorQ at time

t = 0, and letX0 = 0. Thekth event of the MMHPSD is associated with the corresponding state

Yk of the underlying Markov process as well as the timeXk, k ≥ 1, between the(k − 1)st and the

kth event.

The state of the underlying Markov process at timet is Y (t). LetNn(u) denote the number of

events in the MMHPSD in(tn−1, tn−1 +u], wheretn denotes thenth event time. Given the history,

the transition probability without arrival is

H
(n)
ij (u) = P{Y (tn−1 + u) = j,Nn(u) = 0 |Y (tn−1) = i,Htn−1

}.

It follows that

lim
∆u→0

H
(n)
ij (∆u)

∆u
= qij.

Then for1 ≤ i, j ≤ r and for∆u > 0 we have

H
(n)
ij (u+ ∆u)

= P
{
Y (tn−1 + u+ ∆u) = j,Nn(u+ ∆u) = 0 |Y (tn−1) = i,Htn−1

}

=
r∑

k=1

P{Y (tn−1 + u+ ∆u) = j,Nn(u+ ∆u) = 0, Y (tn−1 + u) = k |

Y (tn−1) = i,Htn−1
}
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=
r∑

k=1

P{Y (tn−1 + u+ ∆u) = j,Nn(u) = 0, N((tn−1 + u, tn−1 + u+ ∆u]) = 0,

Y (tn−1 + u) = k |Y (tn−1) = i,Htn−1
}

=

r∑

k=1

P{Y (tn−1 + u+ ∆u) = j,N((tn−1 + u, tn−1 + u+ ∆u]) = 0 |

Nn(u) = 0, Y (tn−1 + u) = k, Y (tn−1) = i,Htn−1
}

× P{Y (tn−1 + u) = k,Nn(u) = 0 |Y (tn−1) = i,Htn−1
}

=

r∑

k=1

P{Y (tn−1 + ∆u) = j,Nn(∆u) = 0 |Y (tn−1) = k,Htn−1
}H(n)

ik (u)

=
r∑

k=1

H
(n)
kj (∆u)H

(n)
ik (u).

Note that the penultimate step requires the conditional intensity between each two consecutive

events to be constant. The probability of the process remaining in statej without arrival is

H
(n)
jj (∆u) = P{Y (tn−1 + ∆u) = j,Nn(∆u) = 0 |Y (tn−1) = j,Htn−1

}

= P{Y (tn−1 + ∆u) = j |Nn(∆u) = 0, Y (tn−1) = j,Htn−1
}

× P{Nn(∆u) = 0 |Y (tn−1) = j,Htn−1
}

= P{Y (tn−1 + ∆u) = j |Y (tn−1) = j}

× P{Nn(∆u) = 0 |Y (tn−1) = j,Htn−1
}

= exp{−qj∆u} exp{−λ∗j (tn)∆u},

where the last step holds due to the formulation of the intensity function of the Hawkes process with

stepwise decay rate that fortk < t < tk+1, λ∗(t) = λ∗(tk+1). Applying the Taylor series expansion

we have that

exp{−qj∆u} exp{−λ∗j (tn)∆u}

= exp{−qj∆u− λ∗j (tn)∆u}

= 1 − qj∆u− λ∗j(tn)∆u+ o(∆u).

It then follows that

lim
∆u→0

H
(n)
jj (∆u) − 1

∆u
= −qj − λ∗j (tn),
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and therefore we have foru > 0,

lim
∆u→0

H
(n)
ij (u+ ∆u) −H

(n)
ij (u)

∆u

= lim
∆u→0




r∑

k=1,k 6=j

H
(n)
ik (u)

H
(n)
kj (∆u)

∆u
+H

(n)
ij (u)

H
(n)
jj (∆u) − 1

∆u




=
r∑

k=1,k 6=j

H
(n)
ik (u)qkj −H

(n)
ij (u)(qj + λ∗j(tn)),

which is

H
(n)′

ij (u) = −H(n)
ij (u)(qj + λ∗j(tn)) +

r∑

k=1,k 6=j

H
(n)
ik (u)qkj , u > 0,

and

H
(n)′

ij (0) = δij ,

whereδij = 1 for i = j, and 0 otherwise. We express this in matrix format as





H(n)′(u) = H(n)(u)(Q− Λ∗(tn))

H(n)′(0) = I
(3.2)

whereH(n)(u) = {H(n)
ij (u)}, which yieldsH(n)(u) = exp{(Q− Λ∗(tn))u} for u ≥ 0.

The transition probability matrix of the MMHPSD is then given by

F (n)(x) =

∫ x

0
H(n)(u)Λ∗(tn−1 + u)du

=

∫ x

0
exp{(Q− Λ∗(tn))u}Λ∗(tn−1 + u)du,

where the elementsF (n)
ij (x) = P (Yn = j,Xn ≤ x |Yn−1 = i,Htn−1

). Thus the transition density

matrix is

f (n)(x) = exp{(Q− Λ∗(tn))x}Λ∗(tn).

Let λ = (λ1, · · · , λr), ν = (ν1, · · · , νr), andη = (η1, · · · , ηr). DenoteΘ = {Q;λ, ν, η}. Let

π = (π1, · · · , πr) denote the initial distribution vector of the Markov process. If x1, · · · , xn are the
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observed inter-event times, then the likelihood of the parameterΘ is

L(Θ;x1, · · · , xn) = π

{
n∏

i=1

f (i)(xi; Θ)

}
1,

where1 is anr × 1 vector of ones.

Similar to a standard discrete time HMM problem, the forwardand backward probabilities can

be defined as follows. Define the forward probability as

αt(i) = P{T1 = t1, · · · , TN(t) = tN(t), 0 < t1 < · · · < tN(t) ≤ t < tN(t)+1, Y (t) = i}

= π exp{(Q− Λ∗(t1))t1}Λ∗(t1) · · ·

× exp{(Q− Λ∗(tN(t)))(tN(t) − tN(t)−1)}Λ∗(tN(t))

× exp{(Q− Λ∗(tN(t)+1))(t− tN(t))}ei,

whereei is anr × 1 vector, the elements of which are zeros except theith entry assigned by 1. We

have thatL =
∑r

i=1 αT (i). The backward probability is defined as

βt(j) = P{TN(t)+1 = tN(t)+1, · · · , Tn = tn, tN(t) < t ≤ tN(t)+1 < · · · < tn, Y (t) = j}

= e′j exp{(Q− Λ∗(tN(t)+1))(tN(t)+1 − t)}Λ∗(tN(t)+1)

× exp{(Q− Λ∗(tN(t)+2))(tN(t)+2 − tN(t)+1)}Λ∗(tN(t)+2) · · ·

× exp{(Q− Λ∗(tn))(tn − tn−1)}Λ∗(tn)1.

The likelihood can also be expressed as

L =

r∑

i=1

αt(i)βt(i).

3.3 The Complete Likelihood

This section provides the complete likelihood of an MMHPSD process, which will be used in Sec-

tion 3.4 to get the parameter estimation for the process. Suppose that the occurrence timest0 =

0, t1, · · · , tn = T from an MMHPSD of orderr are observed. Letx1 = t1−t0, · · · , xn = tn−tn−1,

which are the inter-event times. Assume that the hidden Markov process{Y (t)} has transitions at

the time-points0 < u1 < u2 < · · · < um < T . Defineu0 = 0 andum+1 = T , and write

Ik = [uk−1, uk), and∆uk = uk − uk−1, for 1 ≤ k ≤ m + 1. Moreover, denote the state of
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{Y (t)} duringIk by sk, let zk be the number of events inIk (do not count the event att = 0), and

let N(t) = #{k : 0 < k ≤ n, tk ≤ t}, i.e. the number of events up to timet. Let ρ0 = 0 and

ρk = z1 + · · · + zk, for 1 ≤ k ≤ m+ 1. Then the complete likelihood ofΘ can be written as

Lc = πs1

{
m∏

k=1

qsk
e−qsk

∆uk × qsk,sk+1

qsk

}
e−qsm+1

∆um+1

×
{

m+1∏

k=1

zk∏

i=1

λ∗sk
(tρk−1+i) exp

{
−
∫ tρk−1+i

tρk−1+i−1

λ∗sk
(t)dt

}}
,

whereqk = −qkk. Taking the logarithm of the complete likelihood and simplifying, it then follows

that

logLc =

r∑

i=1

I{Y (0) = i} log πi −
r∑

i=1

Diqi +

r∑

i=1

r∑

j=1

j 6=i

wij log qij

+

r∑

i=1

n∑

k=1

log λ∗i (tk)I{Y (tk) = i} −
r∑

i=1

∫ T

0
λ∗i (t)I{Y (t) = i}dt (3.3)

=L1 + L2,

where for i 6= j, wij = #{k : 1 ≤ k ≤ m, sk = i, sk+1 = j} = #{t : 0 < t ≤
T, Y (t−) = i, Y (t) = j} is the number of jumps ofY (t) from statei to statej in [0, T ],

Di =
∑

{k:1≤k≤m+1,sk=i} ∆uk =
∫ T
0 I{Y (t) = i}dt is the time{Y (t)} spends in statei dur-

ing [0, T ],

L1 =

r∑

i=1

I{Y (0) = i} log πi −
r∑

i=1

Diqi +

r∑

i=1

r∑

j=1

j 6=i

wij log qij (3.4)

and

L2 =

r∑

i=1

n∑

k=1

log λ∗i (tk)I{Y (tk) = i} −
r∑

i=1

∫ T

0
λ∗i (t)I{Y (t) = i}dt. (3.5)

3.4 An EM Algorithm for Parameter Estimation

Having obtained the complete likelihood of the process, theEM algorithm can then be used to

estimate the parameters. IfΘ0 is a given parameter estimate, then the E-step of the EM algorithm
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is to calculate the expectation

Q(Θ;Θ0) = EY,Θ0
[logLc(Θ;N(t), Y ) |N(t)] (3.6)

with respect toY andΘ0. The M-step will then be maximizing theQ function to obtain the new

estimate

Θ̂ = arg max
Θ

Q(Θ;Θ0). (3.7)

The expected complete log-likelihoodQ(Θ;Θ0) is obtained by taking the expectation of the com-

plete likelihood overY at the current parameter estimateΘ0 conditional on the observed data

{N(s), 0 ≤ s ≤ T}.

The parameters involved in the model can then be estimated bycarrying out the following steps.

The initial distribution of the Markov process,πi, can be estimated using the forward and backward

probabilities. Since we have that

α0(i)β0(i) = P{T1 = t1, · · · , Tn = tn, Y (0) = i},

andα0(i) = πi, given the observed events, the initial distribution of theMarkov process can be

estimated by

π̂i =
α0(i)β0(i)

L .

Given the observed sample path{N(s), 0 ≤ s ≤ T}, the conditional expectation of the statistics

Di andwij are

D̂i = E

{∫ T

0
I{Y (t) = i}dt

∣∣∣∣ N(s), 0 ≤ s ≤ T

}

=

∫ T

0

αt(i)βt(i)∑r
j=1 αs(j)βs(j)

dt

and

ŵij = E

{∫ T

0
P{Y (t−) = i, Y (t) = j |N(s), 0 ≤ s ≤ T}dt

}

=

∫ T

0

αt(i)qijβt(j)∑r
k=1 αs(k)βs(k)

dt. (3.8)
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Under the constraintqi =
∑

j 6=i qij for eachi, the transition probabilities can then be estimated by

calculating

q̂ij =
ŵij

D̂i

, i, j = 1, · · · , r, i 6= j. (3.9)

Then the remaining problem is to estimate the parameters in the intensity function of the Hawkes

process with stepwise decay rate. This can be done by maximizing the conditional expectation ofL2

in (3.5) given the observations{N(s), 0 ≤ s ≤ T}. This conditional expectation can be expressed

as

Q2(Θ;Θ0) = E{L2 |N(s), 0 ≤ s ≤ T}

=

r∑

i=1

E

{
n∑

k=1

log λ∗i (tk)I{Y (tk) = i} −
∫ T

0
λ∗i (t)I{Y (t) = i}dt

∣∣∣∣∣ N(s), 0 ≤ s ≤ T

}

=

r∑

i=1

n∑

k=1

{
αtk(i)βtk (i)

L log (λ∗i (tk)) −
∫ tk

tk−1

αt(i)βt(i)

L λ∗i (tk)dt

}
.

In order to get the estimates of the parameters involved in the intensity part, the forward and back-

ward probabilities will be calculated in the E-step, and numerical optimization will then be carried

out to maximizeQ2(Θ;Θ0) in the M-step.

3.4.1 Implementation

This section will provide the implementation steps to carryout the parameter estimation. Given the

observed sequencex = {x1, · · · , xn} of X = {X1, · · · ,Xn}, the likelihood function of the sample

path{N(s), 0 ≤ s ≤ T} can be expressed as

P{N(s), 0 ≤ s ≤ T} = p(xn) = π

n∏

k=1

f (k)(xk)1, (3.10)

andp(xn) =
∏n

k=1 p(xk |xk−1), wherep(x1 |x0) = p(x1). Let ck = p(xk |xk−1), k = 1, · · · , n.

Equation (3.8) then becomes

ŵij =

n∑

k=1

qij
ck

(
π

k−1∏

l=1

f (l)(xl)

cl

)∫ tk

tk−1

H(k)(t− tk−1)ei

× eTj exp{(Q− Λ∗(tk))(tk − t)}Λ∗(tk)dt

(
n∏

l=k+1

f (l)(xl)

cl
1

)
. (3.11)
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SetL(0) = π, R(n+ 1) = 1, and let

L(k) = π
k∏

l=1

f (l)(xl)

cl
, k = 1, · · · , n (3.12)

R(k) =

n∏

l=k

f (l)(xl)

cl
1, k = n, · · · , 1. (3.13)

Since we have

p(xk) =
k∏

l=1

cl = π
k∏

l=1

f (l)(xl)1,

it then follows that

ck = π
k−1∏

l=1

f (l)(xl)

cl
f (k)(xk)1 = L(k − 1)f (k)(xk)1.

Therefore, we get the following recursive expressions

L(k) =
L(k − 1)f (k)(xk)

L(k − 1)f (k)(xk)1
, (3.14)

R(k) =
f (k)(xk)R(k + 1)

L(k − 1)f (k)(xk)1
. (3.15)

From the definition of the forward and backward probabilities we also have the following result,

αtk(i)βtk (i)

L = Li(k)Ri(k + 1). (3.16)

Let ŵ = (ŵij)r×r. Then we have

ŵT = QT ⊙
n∑

k=1

1

ck

∫ tk

tk−1

exp{(Q− Λ∗(tk))(tk − t)}Λ∗(tk)

×R(k + 1)L(k − 1)H(k)(t− tk−1)dt, (3.17)

where⊙ denotes element-by-element multiplication of the two matrices. Usingxk = tk − tk−1, we

have

ŵ = Q⊙
n∑

k=1

IT
k

ck
(3.18)
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where

Ik =

∫ xk

0
exp{(Q− Λ∗(tk))(xk − x)}Λ∗(tk)R(k + 1)L(k − 1) exp{(Q− Λ∗(tk))x}dx.

(3.19)

This integral can be efficiently evaluated by using the2r × 2r block-triangular matrix (Van Loan,

1978; Roberts et al., 2006)

Ck =


 Q− Λ∗(tk) Λ∗(tk)R(k + 1)L(k − 1)

0 Q− Λ∗(tk)


 ,

andIk is ther × r upper-right block of the matrix eCkxk . We also have that̂Di = ŵii/qii, and the

log-likelihood of the MMHPSD is given by

logL =
n∑

k=1

log p(xk |xk−1) =
n∑

k=1

log ck =
n∑

k=1

log(L(k − 1)f (k)(xk)1). (3.20)

To simplify the integral inQ2(Θ;Θ0), we set

gii =
n∑

k=1

λ∗i (tk)

∫ tk

tk−1

αt(i)βt(i)

L dt

=

n∑

k=1

λ∗i (tk)

ck

(
π

k−1∏

l=1

f (l)(xl)

cl

)∫ tk

tk−1

H(k)(t− tk−1)ei

× eTi exp{(Q− Λ∗(tk))(tk − t)}Λ∗(tk)dt

(
n∏

l=k+1

f (l)(xl)

cl
1

)
.

LetG = diag(gii). We can obtain that

GT =

n∑

k=1

Λ∗(tk)

ck
⊙
∫ tk

tk−1

exp{(Q− Λ∗(tk))(tk − t)}Λ∗(tk)

×R(k + 1)L(k − 1)H(k)(t− tk−1)dt

=

n∑

k=1

Λ∗(tk) ⊙ Ik

ck
, (3.21)

and it follows

G =

n∑

k=1

Λ∗(tk) ⊙ IT
k

ck
, (3.22)
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and

Q2(Θ;Θ0) =

r∑

i=1

n∑

k=1

{
αtk(i)βtk (i)

L log (λ∗i (tk)) −
∫ tk

tk−1

αt(i)βt(i)

L λ∗i (tk)dt

}

=

r∑

i=1

n∑

k=1

{
αtk(i)βtk (i)

L log (λ∗i (tk))

}
−

r∑

i=1

gii.

Algorithm 3.4.1 Given the initial valuesλ0 = (λ01, · · · , λ0r), ν0 = (ν01, · · · , ν0r), and η0 =

(η01, · · · , η0r), Q0 = (q0ij)r×r andπ0 = (π01, · · · , π0r), and given the observed occurrence times

t0 = 0, t1, · · · , tn = T from an MMHPSD of orderr, with inter-event timesx1 = t1−t0, · · · , xn =

tn − tn−1, the EM algorithm for the MMHPSD can be carried out as follows.

(1) LetL(0) = π0, and fork = 1, · · · , n, letL(k) = L(k − 1)f (k)(xk)/L(k − 1)f (k)(xk)1.

(2) LetR(n+ 1) = 1, and fork = n, · · · , 1, letR(k) = f (k)(xk)R(k+ 1)/L(k− 1)f (k)(xk)1.

(3) For k = 1, · · · , n, let

Ck =


 Q− Λ(tk) Λ∗(tk)R(k + 1)L(k − 1)

0 Q− Λ(tk)




and calculate the matrix eCkxk . Then setIk be ther × r upper-right block of this matrix.

(4) Let

w = Q⊙
n∑

k=1

IT
k

ck
, (3.23)

andDi = wii/q0ii.

(5) We have

logL =
n∑

k=1

log(L(k − 1)f (k)(xk)1)

and the new estimates

q̂ij =
wij

Di
, i, j = 1, · · · , r, i 6= j, (3.24)

q̂i =

r∑

j=1

j 6=i

q̂ij, i = 1, · · · , r (3.25)
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and

π̂i = π0ie
T
i R(1), i = 1, · · · , r. (3.26)

(6) For i = 1, · · · , r andk = 1, · · · , n, set

Bik = L(k)eie
T
i R(k + 1) = Li(k)Ri(k + 1). (3.27)

(7) Let

GT =
n∑

k=1

Λ∗(tk) ⊙ IT
k

ck
.

Then numerically optimize

Q2(Θ;Θ0) =

r∑

i=1

n∑

k=1

{
αtk(i)βtk (i)

L log (λ∗i (tk))

}
−

r∑

i=1

gii

=

r∑

i=1

n∑

k=1

Bik log (λ∗i (tk)) −
r∑

i=1

n∑

k=1

Iik

ck
λ∗i (tk)

and get estimation for the parametersλ, ν, andη.

(8) Calculate the log likelihood

LLold =

n∑

k=1

log(L(k − 1)f (k)(xk)1).

Then by using all the estimated parameters in step (1) withL(0) = π̂, and calculate the ‘new’

log likelihood

LLnew =

n∑

k=1

log(L(k − 1)f (k)(xk)1).

(9) Iteratively use(Q̂, Λ̂, ν̂, η̂) in place of(Q0,Λ0, ν0, η0) and repeat step (1) to step (8) until the

difference in the log likelihoods becomes less than the terminative condition.

One problem is the parameter estimation involved inQ2 which requires some numerical op-

timization technique, such as the standard nonlinear optimization technique suggested in Fletcher

and Powell (1963). To carry out this we need the gradients andHessian ofQ2, which are the partial

first- and second-order derivatives of the functionQ2 with respect to the parameters. To simplify
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the notations in the derivatives, denote

ξik = ηi

∑

tj<tk−1

e−ηi(tk−1−tj),

ζik =
1

λi + νiηi
∑

tj<tk−1
e−ηi(tk−1−tj)

,

ϕik =
∑

tj<tk−1

e−ηi(tk−1−tj) − ηi

∑

tj<tk−1

e−ηi(tk−1−tj)(tk−1 − tj),

ψik = −2νi

∑

tj<tk−1

e−ηi(tk−1−tj)(tk−1 − tj) + νiηi

∑

tj<tk−1

e−ηi(tk−1−tj)(tk−1 − tj)
2.

Since we already have that

Q2(Θ;Θ0) =

r∑

i=1

n∑

k=1

Bik log


λi + νiηi

∑

tj<tk−1

e−ηi(tk−1−tj)


−

r∑

i=1

n∑

k=1

Iik

ck


λi + νiηi

∑

tj<tk−1

e−ηi(tk−1−tj)


 ,

the gradients ofQ2 are given by

∂Q2

∂λi
=

n∑

k=1

Bikζik −
n∑

k=1

Iik

ck
,

∂Q2

∂νi
=

n∑

k=1

Bikζikξik −
n∑

k=1

Iik

ck
ξik,

∂Q2

∂ηi
=

n∑

k=1

Bikζikνiϕik −
n∑

k=1

Iik

ck
νiϕik.

The Hessian of the functionQ2 is given by

∂2Q2

∂λ2
i

= −
n∑

k=1

Bikζ
2
ik,

∂2Q2

∂λi∂νi
= −

n∑

k=1

Bikζ
2
ikξik,

∂2Q2

∂λi∂ηi
= −

n∑

k=1

Bikζ
2
ikνiϕik,
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∂2Q2

∂ν2
i

= −
n∑

k=1

Bikζ
2
ikξ

2
ik,

∂2Q2

∂νi∂ηi
= −

n∑

k=1

Bikζ
2
ikνiϕikξik +

n∑

k=1

Bikζikϕik −
n∑

k=1

Iik

ck
ϕik,

∂2Q2

∂η2
i

= −
n∑

k=1

Bikζ
2
ikν

2
i ϕ

2
ik +

n∑

k=1

Bikζikψik −
n∑

k=1

Iik

ck
ψik.

The nonlinear optimization technique of Davidon–Fletcher–Powell (see Dennis and Schnabel, 1983)

can then be used to obtain the parameter estimates.

3.5 Goodness-of-fit

3.5.1 Estimated Intensity Function of the Observed Process

After fitting an MMHPSD to a set of observed data, the probability of the hidden state occupying

a specific state at timet given the entire observed process will provide a clear illustration of the

underlying process. As discussed in Zucchini and Guttorp (1991) and MacDonald and Zucchini

(1997), this probability can be directly calculated using the forward and backward probabilities

with the estimated parameters,

P (St = i |HT ) =
P (T1 = t1, · · · , Tn = tn, Y (t) = i)

P (T1 = t1, · · · , Tn = tn)

=
αt(i)βt(i)

L .

The estimated intensity function using the parameter estimation can be obtained by

λ̂∗(t) =

r∑

i=1


λ̂i + ν̂iη̂i

∑

tj<max{tl:tl<t}

e−bηi(max{tl:tl<t}−tj )


P (St = i |HT )

=
r∑

i=1


λ̂i + ν̂iη̂i

∑

tj<max{tl:tl<t}

e−bηi(max{tl:tl<t}−tj )


 αt(i)βt(i)

L . (3.28)

The estimated intensity function of the MMHPSD process illustrates how the model performs.

Algorithm 3.5.1 After fitting an MMHPSD to the data, the estimates of the parametersλ̂ = (λ̂1, · · · , λ̂r),

ν̂ = (ν̂1, · · · , ν̂r), andη̂ = (η̂1, · · · , η̂r), Q̂ = (q̂ij)r×r and π̂ = (π̂1, · · · , π̂r) are obtained. Given
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the observed occurrence timest0 = 0, t1, · · · , tn = T with inter-event timesx1 = t1−t0, · · · , xn =

tn − tn−1, the procedure of estimating the probability of the hidden state occupying a specific state

at timet and the intensity function is as follows.

(1) LetL(0) = π̂, and fork = 1, · · · , n, let L(k) = L(k − 1)f (k)(xk)/L(k − 1)f (k)(xk)1.

(2) LetR(n+ 1) = 1, and fork = n, · · · , 1, letR(k) = f (k)(xk)R(k+ 1)/L(k− 1)f (k)(xk)1.

(3) For i = 1, · · · , r andtk−1 ≤ t < tk, set

p̂i(t) =L(k − 1) exp{(Q− Λ∗(tk))(t− tk−1)}ei

× e
′

i exp{(Q− Λ∗(tk))(tk − t)}Λ∗(tk)R(k + 1)/ck.

Thusp̂i(t) is the estimated probability of the hidden state occupying statei at timet.

(4) For i = 1, · · · , r andtk−1 ≤ t < tk, set

λ̂∗(t) =

r∑

i=1


λ̂i + ν̂iη̂i

∑

tj<max{tl:tl<t}

e−bηi(max{tl:tl<t}−tj )


 p̂i(t),

which is the estimated intensity function of the MMHPSD.

3.5.2 Residual Analysis

Residual analysis (see, e.g., Ogata, 1988; Bebbington and Harte, 2001) can be used to assess the

utility of the MMHPSD. According to Theorem 7.4.I in Daley and Vere-Jones (2003), if a point

process in time with intensity functionλ(t) is rescaled using the random time change

τ = Λ(t) =

∫ t

0
λ(s)ds, (3.29)

then the rescaled timeτ is a stationary Poisson process with unit rate. For an observed point process

with occurrence timest1, t2, · · · , tn, the true model for the data is usually unknown. We can fit a

stochastic model to the data and then examine whether the fitted model captures the main features

of the observed point process, or in other words, whether it is a good approximation of the true

model for the data. Residual analysis is different from other model selection criteria such as the log
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likelihood ratio test, Akaike Information Criterion (AIC;Akaike, 1974) which is defined as

AIC = −2 log(likelihood) + 2k,

and Bayesian information criterion (BIC; Schwarz, 1978) which is defined as

BIC = −2 log(likelihood) + k log(n),

wherek is the number of parameters to be estimated andn is the number of observations. As

pointed out in Bebbington and Harte (2001), the former is used to identify systematic deviation of

the data from the fitted model. It would indicate a significantfactor underlying the data which is

not included in the model. Therefore, it provides an absolute evidence of a good fit. The latter three

criteria, however, only suggest which model is relatively better and do not guarantee the model is a

good approximation of the true model.

Assume that the estimated intensity functionλ̂(t) is a good approximation of the true intensity

function of the data. The transformed time by the random timechange

τi = Λ(ti) =

∫ ti

0
λ̂(s)ds,

which is called the residual point process, is then expectedto be a stationary Poisson process with

unit rate. However, if the transformed time deviates from the unit-rate Poisson process, it might

suggest that the fitted model is not sufficient to explain the features of the data. In order to test

whether the residual point process is a stationary Poisson process with unit rate, the following steps

should be conducted.

The Kolmogorov–Smirnov test can be used to check whether thearrival times have a uniform

distribution over the period of observation. For the fitted MMHPSD, the estimated intensity function

(3.28) is used to get the transformed time

Λ(t) =

∫ t

0
λ̂∗(s)ds =

∫ t

0

r∑

i=1


λ̂i + ν̂iη̂i

∑

tj<max{tl:tl<s}

e−bηi(max{tl:tl<s}−tj)


 p̂i(s)ds.

Let

λ̂∗i (s) = λ̂i + ν̂iη̂i

∑

tj<max{tl:tl<s}

e−bηi(max{tl:tl<s}−tj).
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For each occurrence timetk, we then have

τk = Λ(tk) =

∫ tk

0

r∑

i=1

λ̂∗i (s)p̂i(s)ds

=

k∑

h=1

∫ th

th−1

r∑

i=1

λ̂∗i (th)p̂i(s)ds

=
k∑

h=1

r∑

i=1

λ̂∗i (th)

∫ th

th−1

p̂i(s)ds

=

k∑

h=1

r∑

i=1

λ̂∗i (th)

ch

(
π

h−1∏

l=1

f (l)(xl)

cl

)∫ th

th−1

H(h)(s − th−1)ei

× eTi exp{(Q− Λ∗(th))(th − s)}Λ∗(th)ds

(
n∏

l=h+1

f (l)(xl)

cl
1

)
.

After the transformation procedure, the cumulative numberof events versus the transformed times

τi can be plotted with the 99% confidence limits of the Kolmogorov–Smirnov statistic under the

null hypothesis of the uniform empirical distribution. If the cumulative curve exceeds either of the

limits, it may suggest that there is some feature of the data not captured by the fitted model.

Let Ek = τk − τk−1 = Λ(tk) − Λ(tk−1), k = 1, · · · , n, andUk = 1 − exp(−Ek). If Ek

are independent and identically distributed exponential random variables, thenUk are independent

and uniformly distributed on[0, 1). Therefore, in order to examine whether the inter-arrival times

of the residual process have an exponential distribution, the Kolmogorov–Smirnov statistic can be

used to test whetherUk have a uniform distribution on[0, 1). The method suggested by Hall (1991)

can be adopted to verify the independence of the inter-arrival times and thet-test can be used to

check the null hypothesis that the correlation coefficient betweenEk andEk+1 equals zero. Note

that independence implies zero correlation, however, absence of correlation does not necessarily

mean that the two variables are independent. Therefore, after thet-test, the graphical illustration

suggested by Berman (1983) can be used to check whether thereis any pattern in the scatter plot of

Uk+1 againstUk.

3.6 Simulation Algorithm

To see how well the parameter estimation method works, an MMHPSD process can be simulated,

and then the model can be fitted to the simulated data set. The method proposed above can be used

to estimate the parameters. By comparing the estimated parameters with the true parameters, one
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can see how the parameter estimation method performs.

Algorithm 3.6.1 Given the initial statey1 = j, the parametersQ, λl, νl andηl, l = 1, · · · , r, and

the history data setH ⊂ {t ≤ 0}, the following steps can be carried out to generaten events from

an MMHPSD process.

1. Seti = s = 1 andti = ts = 0.

2. Useri = qj +λj +νjηj
∑

tl<ti
e−η(ti−tl) as the rate and generate an inter-event timeτi from

the exponential distribution.

3. Setts+1 = ts + τi. Generate a uniform random variableU ∈ (0, 1).

– If U > qj/ri, then addti+1 = ts+1 into the history. Seti = i+ 1, s = s + 1 and go to

Step 2.

– If U ≤ qj/ri, then this point is a state transition point. Use(qjk/qj)1≤k≤r to generate

the next statey2. Setj = y2, s = s+ 1 and go to Step 2.

If i = n, then stop.

4. The sequence of times simulated is the generated MMHPSD process.



47

Chapter 4

Simulation Study and an Application of

the MMHPSD

4.1 Introduction

As many geophysical processes occur in a self-exciting way,in which the events already occurred

often trigger new ones, and as the underlying dynamics for these processes might be represented as

being governed by a Markov chain, Chapter 3 introduced the Markov-modulated Hawkes process

with stepwise decay. In this model the hidden process switches among some finite states of a contin-

uous Markov chain and in each state the observed events follow a self-exciting Hawkes process with

a stepwise decay rate. A parameter estimation method is alsodeveloped by using the EM algorithm

for this model. Before putting this into application, the parameter estimation algorithm needs to be

validated. Once we have established that the parameter estimation from the EM algorithm performs

reasonably well, an exploratory data analysis of the model on earthquake sequences can be carried

out to study how this model captures seismicity rate changes.

There have been many investigations on seismicity rate changes before and after the magni-

tude 7.3 Landers earthquake on June 28, 1992, the Big Bear earthquake of magnitude 6.4 which

occurred three hours after the Landers main shock, and the 1999 magnitude 7.1 Hector Mine earth-

quake thought to have been triggered by aftershocks of the Landers earthquake (Felzer et al., 2002).

A significant seismicity rate increase following the Landers earthquake has been observed as far as

600km away from the Landers source region (Hill et al., 1993,1995). Wyss and Wiemer (2000)

investigated the seismicity rate changes for Landers usingdeclustered data, comparing the data for

the 12 years before Landers earthquake to the 7 years following. They concluded that the 1992 Lan-
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ders earthquake shut off the production of small earthquakes in some regions (the volumes south

of the future Hector Mine rupture and north of Big Bear) whileincreasing the seismicity in the

neighboring regions (the volume surrounding the future Hector Mine hypocenter and north of Lan-

ders). They also detected that on average more small earthquakes were produced after this shock.

Gomberg et al. (2001) detected an increase of seismicity rate following the Hector Mine earthquake

within 250km from the main shock. Marsan (2003) observed seismicity shadows east of the Joshua

Tree rupture, which occurred on April 22, 1992 with a magnitude of 6.1, following the Landers

earthquake. This correlates well with the stress shadows modeled by King et al. (1994) and Mc-

Closkey et al. (2003). Ogata et al. (2003) used residual analysis of the Epidemic Type Aftershock

Sequence (ETAS) model on the Landers aftershock sequence. This analysis revealed relative qui-

escence about 6 months after the main shock, which lasted nearly 7 years leading up to the Hector

Mine earthquake. They also detected relative quiescence inthe aftershock sequence of the Joshua

Tree earthquake for a period leading up to the Landers rupture. Marsan and Nalbant (2005) ob-

served seismicity shadows developing after a few days of theLanders earthquake in the region of

the Joshua Tree earthquake, which are sometimes preceded byinstances of early triggering. The

MMHPSD will be applied to the sequence of data collected fromJoshua Tree, Landers, Big Bear

and Hector Mine to examine how this model captures the seismicity rate changes in the selected

area.

In this chapter, first, the performance of the EM algorithm for the parameter estimation of the

MMHPSD is evaluated. The simulation algorithm of this modelwas provided in Chapter 3. An

arbitrary set of parameters is used to simulate 100 sequences of MMHPSD events, and the MMH-

PSD is then refitted to each of the simulated sequences. The parameters are estimated using the EM

algorithm for the 100 sequences and the histogram of the parameter estimates is plotted to examine

how the EM algorithm works for the parameter estimation of this model. Another simulation study

is conducted via a simulated ETAS sequence. The estimated intensity function of the MMHPSD is

compared with the true ETAS intensity to check how well the model captures the simulated data.

The estimated parameters for this simulated earthquake catalogue are used to conduct a consistency

test for the parameter estimation of the MMHPSD. After the simulation studies, a case study of the

model is carried out using the earthquake data around Landers. A discussion section concludes the

chapter.
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4.2 Evaluation of Parameter Estimation Algorithm

Before the MMHPSD is used to investigate any real data, we need to first evaluate how the parameter

estimation algorithm proposed in Chapter 3 works for the model. Some arbitrary parameters are

used to generate 100 series of MMHPSD events, each with 5000 observations. Then an MMHPSD

is fitted to each of the simulated series of events and the EM algorithm is used to estimate the

parameters. The self-exciting feature in conjunction withthe underlying Markov structure suggests

that a burn-in period for the simulations might improve the consistency, but as we will see, it is not

necessary.

The parametersλ1 = 0.1, λ2 = 10, ν1 = 0.1, ν2 = 0.5, η1 = 0.05, η2 = 5, q1 = 0.001 and

q2 = 0.1 are used to simulate the 100 series of events. The cumulativecurve of a typical sequence of

events is illustrated in Figure 4.1. The obvious jumps correspond to event occurrence rate changes.
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Figure 4.1: Cumulative curve of a simulated MMHPSD sequence withλ1 = 0.1, λ2 = 10, ν1 =
0.1, ν2 = 0.5, η1 = 0.05, η2 = 5, q1 = 0.001 andq2 = 0.1.

The EM algorithm is used to estimate the parameters. The histograms of the estimated parameters

are shown in Figure 4.2. From the histograms, we can see that the estimated parameters appear to be

centered around the true parameters, which were used to simulate the series of events. The sample

means and standard deviations of the estimated parameters are listed in Table 4.1 for reference.
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Figure 4.2: Histograms of the estimateŝλ1, λ̂2, ν̂1, ν̂2, η̂1, η̂2, q̂1 andq̂2 of the parametersλ1 = 0.1,
λ2 = 10, ν1 = 0.1, ν2 = 0.5, η1 = 0.05, η2 = 5, q1 = 0.001 andq2 = 0.1 which are indicated in
the graphs using dashed lines.

Table 4.1: The sample means (Est mean) and standard deviations (Est s.d.) of the estimated param-
eters for the simulated MMHPSDs.

Parameter True value Est mean Est s.d.

λ1 0.1 0.100 0.003
λ2 10 10.131 0.840
ν1 0.1 0.100 0.007
ν2 0.5 0.496 0.048
η1 0.05 0.051 0.006
η2 5 5.090 0.948
q1 0.001 0.0010 0.0002
q2 0.1 0.110 0.031

4.3 Simulation Study Using a Simulated ETAS Sequence

Having checked the performance of the parameter estimationalgorithm for this model using some

arbitrary parameters, we now investigate the performance of this model using a simulated earth-
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quake catalogue. A well accepted stochastic model, which has been extensively applied to various

aftershock sequences, will be used to simulate a long enoughsequence of events. (A long enough se-

quence is to ensure that we get enough seismic cycles for the investigation of this Markov-modulated

model, but not too long in order to control the computationalcost.) MMHPSDs with different num-

bers of states are then fitted to the simulated earthquake catalogue. This provides insights that will

lead to understanding the structure of the model. After this, the estimated parameters are used to

simulate further catalogues of varying lengths to study theconsistency of the parameter estimation

using the EM algorithm.

4.3.1 Fitting MMHPSDs to Simulated ETAS Sequence

The Epidemic Type Aftershock Sequence (ETAS; Ogata, 1988) model and its extensions (Ogata,

1998 and references therein) are nowadays almost invariably used to investigate the characteristics

of aftershock sequences. The ETAS model is a point process and was derived based on the following

assumptions. The background rate of events within a given region is assumed as a constant,µ;

each event including aftershocks can generate its own aftershocks; the rate of aftershock activity

from an event decays with time following a modified Omori law,which describes the frequency of

aftershocks per unit time interval in the form ofn(t) = K(t+ c)−p (Utsu, 1961), whereK depends

on the magnitude cutoff of the aftershocks counted inn(t), p and c are independent of it; the

average/mean number of aftershocks generated by an earthquake of magnitudeMi is proportional

to eα(Mi−M0), whereM0 is the magnitude threshold. The conditional intensity function for ETAS

model is given by

λ(t |Ht) = µ+
∑

i:ti<t

eα(Mi−M0) K

(t− ti + c)p
,

whereti are the event occurrence times. In this model,µ is the occurrence rate for the background

seismic activity, i.e., the immigrants follow a stationaryPoisson process with a constant rateµ. The

parameterc is a time delay constant, which is used to correct for the factthat the power law becomes

infinite ast− ti goes to 0. It is usually found to be on the order of a fraction ofa day (e.g., Ogata,

1988; Reasenberg and Jones, 1989; Ogata, 1992; Felzer et al., 2003). The parameterp characterizes

aftershock decay rate and is usually slightly larger than 1 (e.g., Reasenberg and Jones, 1989; Ogata,

1992). The parameterα provides a measure of the power of a shock generating its aftershocks. For

instance, swarm-type activity has a smallerα value than that of ordinary main shock and aftershock
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activity, and an aftershock sequence with no conspicuous secondary aftershocks has a largeα value

(Ogata, 1987). The parameterK can be explained as the productivity of events dependent on the

magnitude thresholdM0.

Zhuang (2000) used the ETAS model to study the seismicity of the earthquake sequence oc-

curred off Cape Palliser at the southeastern tip of North Island, New Zealand from January 1, 1978

to May 31, 1996 (996 events in total). The whole period was divided visually according to the

magnitude–time plot into four stages: early background period, relatively quiescent period, main

shock and aftershock sequence, and an active period of post-aftershocks.

We use the same study area as in Zhuang (2000). Some 920 eventswith minimum magnitude

2.0 are selected from the SSLib package (http://homepages.paradise.net.nz/david.harte/SSLib/, last

accessed on September 22, 2009) within the cylinder centered at latitude 41.686S and longitude

175.508E with a radius of 36km and a depth of 40km from January1, 1978 to May 31, 1996. Note

that the catalogue has changed slightly since the year 2000.An ETAS model is fitted to this sequence

with the maximum likelihood estimates of the parameters,µ̂ = 0.025, K̂ = 11.002, α̂ = 1.468,

ĉ = 0.004 andp̂ = 1.127. The estimated parameters are then used to simulate a sequence of 3000

events. Figure 4.3 shows the cumulative curve of the simulated sequence of ETAS events. We can

clearly see the big jumps in the cumulative curve which indicate seismicity rate changes.
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Figure 4.3: Cumulative curve of the simulated ETAS events.

Next, the MMHPSDs will be fitted to this simulated sequence. The purpose is to examine how
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this model works and what kind of hidden states can be characterized by this model. MMHPSDs

with two, three and four hidden states are fitted to the seriesof events. The estimated parameters

for each model are listed in Table 4.2. Note that the states are ordered according to the decay rate

Table 4.2: Estimated parameters of the MMHPSDs fitted to the simulated ETAS events.

State 1 2 3 4

λ̂ 0.003 6.324
ν̂ 0.192 0.583
η̂ 0.044 19.502

λ̂ 0.005 0.449 31.108
ν̂ 0.175 0.446 0.738
η̂ 0.019 1.569 51.219

λ̂ 0.002 0.067 3.302 53.776
ν̂ 0.173 0.256 0.889 0.647
η̂ 0.005 0.295 2.608 145.374

η. The estimatedQ-matrices are, for the two-state model,

Q̂ =


 −0.083 0.083

8.036 −8.036


 , (4.1)

for the three-state model,

Q̂ =




−0.061 0.026 0.035

1.770 −3.330 1.560

1.086 49.878 −50.964


 , (4.2)

and for the four-state model,

Q̂ =




−0.047 0.007 0.023 0.017

0.447 −1.027 0.253 0.326

0.762 8.936 −13.726 4.028

0.078 9.858 99.952 −109.888



. (4.3)

Note that the parameterλ characterizes the background rate (or the immigrant rate) which is equiv-

alent to the background rateµ in the ETAS model,η describes the aftershock decay rate, andν is

a parameter to ensure a finite total number of descendants of any immigrant with probability one.
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The main difference between the ETAS model and the Hawkes process is in the term involving

magnitude and the decay rate term. The ETAS model assumes that for each event, both the time and

magnitude of the event influence the intensity. However, theconditional intensity function of the

Hawkes process is only time-dependent. The decay rate of theETAS model follows a power law,

t−p, while that of the Hawkes process is an exponential decay function, e−ηt. Let us compare the

two decay functions disregarding the magnitude effect. At afixed timet, if we want the two decay

rates to be equal, we will have

t−p = e−ηt,

which provides a relationship betweenp andη as

η =
p

t
log t.

For example, forp = 1.127, estimated from the Cape Palliser data set, and for a givent = 5

days, we haveη = 0.363. For thisp andη, the two decay functions,t−p ande−ηt, versus time

t are plotted in Figure 4.4. It is not difficult to notice that when we changeη, only the slope of
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Figure 4.4: The log-scaled decay ratet−p (dashed) and the log-scaled decay ratee−ηt (solid).

the linear solid line varies, with the starting point of the line always at(0, 0). This suggests that

for very small and very larget − ti, the ETAS model always has larger decay rate. Moreover, in
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the ETAS model, the decay rate is multiplied by the exponential term of the magnitude (which is

always larger than or equal to 1), which makes the ETAS intensity much larger than that of the

Hawkes process. The relationship betweenν in the Hawkes process andK in the ETAS model is

not as obvious as the other parameters. Assume that the distribution of earthquake magnitudesM

follows the Gutenberg–Richter distributionb log(10)10−b(M−M0). The average number of offspring

(triggered per immigrant) predicted by the ETAS model is (cf., Helmstetter and Sornette, 2002)

aE =

∫ +∞

0
dt
∫ +∞

M0

dMb log(10)10−b(M−M0)K10α∗(M−M0)

(t+ c)p
= n0

∫ +∞

0

dt
(t+ 1)p

whereα∗ = α/ log(10) andn0 = Kb/cp−1(b− α∗), and is

∫ +∞

0
νηe−ηtdt = ν

predicted by the Hawkes process. Given the same number of offspring, we have that

ν =
K

cp−1

b

b− α∗

∫ +∞

0

dt
(t+ 1)p

.

For example, forb = 1, α = 1.468, i.e. α∗ = 0.638, as discussed above, restraining0 < ν =

aE < 1 ensures that each immigrant has a finite total number of offspring with probability one.

However, in the ETAS model, there is no such constraint on theparameterK, i.e., there are cases

whenaE ≥ 1. For an aftershock sequence, the ETAS model may provide a good fit. However, for

other sequences, it may put too much weight on the magnitude effect which would result in a higher

intensity than the true intensity of the events.

For the three MMHPSDs with 2, 3 and 4 hidden states fitted to thesimulated ETAS sequence,

let us first compare the estimates of the event occurrence rates from Table 4.2, and then discuss the

transition probability matrices from (4.1), (4.2) and (4.3). For State 1 in each of the three models,

the background rate is smaller than that of the ETAS model, which suggests that the immigrants in

State 1 occur in a very low rate. Therefore State 1 in each model is considered as the ground state.

For the largest state in each of the three models, both the background and the decay rates increase

with increasing number of states. For example, in the two-state model, the immigrants in State 2

occur at a rate of about 6 events per day; whereas in the four-state model, the immigrants in State

4 occur at a rate of about 54 events per day. Moreover, on average the offspring in State 4 of the

four-state model have shorter inter-event times (i.e., larger decay rate) than that in State 2 of the
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two-state model. Basically, the ground state, State 1, in each of the three models does not have too

much difference from each other. The higher states, however, present some sort of cascading style.

The high state in the two-state model is divided into the highand medium states in the three-state

model. The latter two states are then separated into three states in the four-state model. It seems that

the various states capture earthquakes with different ranges of magnitudes. State 2 in the two-state

model is more related with large and medium events. State 3 inthe three-state model and State 4 in

the four-state model mainly correspond to large earthquakes. The estimated probability of staying

in each state and the estimated intensity functions are illustrated in Figures 4.5 to 4.7.
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Figure 4.5: The estimated probability of the hidden state occupying State 2 (top), and the estimated
intensity function (middle) for the two-state MMHPSD. The bottom one is the magnitude-time plot
for the earthquake sequence.

For the three-state model, the transition intensity matrixsuggests a quick switch of the hidden

state out of State 3, which has the largest intensity representing the period of main shocks, mainly

to State 2. It indicates that after large events, the seismicity rate increases. State 2 may characterize

the aftershock state, and State 1 is a ground state which has very low seismicity rate.

According to the estimated transition intensity matrix, the state transition structure for the four-

state model is that State 4 mostly jumps to State 3 which is more likely to make a transition to a

lower intensity State 2, State 2 transits to every state, while State 1 mainly transits to State 3. If we
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Figure 4.6: The estimated probability of the hidden state occupying each state (top two), and the
estimated intensity function (third) for the three-state MMHPSD. The bottom one is the magnitude–
time plot for the earthquake sequence.

consider possible foreshocks with their own aftershocks asthe sequence State 3–2, then it seems

that there is a favored transition pattern like State 1–(3–2)–(4–3–2)(the main sequence)–1. State 4

with the largest intensity represents the period of main shocks. The seismicity rate increases after

the main shocks (State 2 preceding State 4 has lower seismicity rate than State 3 which follows

State 4). State 3 accounts for the immediate aftershocks, while State 2 may correspond to swarms,

or smaller aftershocks which are known as secondary aftershocks (Richter, 1958).

Now let us compare the true intensity function of the ETAS model with the estimated inten-

sity functions for the fitted MMHPSDs with 2, 3 and 4 hidden states. On average, the intensity

of each of the fitted MMHPSDs is smaller than that of the ETAS model. Figure 4.8 shows the

differences between the log-scaled intensities of the MMHHSDs and the ETAS model normalized

by the log-scaled intensity of the ETAS model. The big spikesindicate large differences between

the intensities derived from the MMHPSDs and the ETAS model,especially around the large event

occurrences. This is due to the observation above (cf., Figure 4.4) that the ETAS model has larger

decay rates immediately following an event than the MMHPSDs, which are further multiplied by

the exponential term of the magnitude and hence result in much larger ETAS intensities.
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Figure 4.7: The estimated probability of the hidden state occupying each state (top three), and the
estimated intensity function (fourth) for the four-state MMHPSD. The bottom one is the magnitude–
time plot for the earthquake sequence.

4.3.2 Consistency of the Parameter Estimation

We now proceed to examine the consistency of the parameter estimation for the MMHPSDs. Instead

of using some arbitrary parameters, the parameters of the two-state MMHPSD estimated from the

simulated ETAS sequence will be used. The parametersλ1 = 0.003, λ2 = 6.324, ν1 = 0.192,

ν2 = 0.583, η1 = 0.044, η2 = 19.502, q1 = 0.083 andq2 = 8.036 are used to simulate four

groups of MMHPSD events. Each group consists of 100 sequences. Each sequence has 500 events

in Group 1, 1000 events in Group 2, 2000 events in Group 3 and 5000 events in Group 4. Then the

MMHPSD is refitted to each of the simulated sequences and the parameters are estimated.

The boxplot of the estimated parameters for each group is shown in Figure 4.9. We see that

the mean of the parameter estimates of each of the parametersis very close to the true value. From

Group 1 of which each sequence has 500 events to Group 4 of which each sequence has 5000 events,

the variation of the parameter estimates consistently decreases. It suggests that with more events in

the sequence, we get closer estimates to the true values, which indicates consistency.
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Figure 4.8: The estimated intensity function for the two-state (top), three-state (middle) and four-
state (bottom) MMHPSDs (log-scaled) minus the true ETAS intensity function (log-scaled).

4.4 MMHPSD Investigation of Earthquake Data around Landers

4.4.1 Earthquake Data around Landers

The magnitude 7.3 Landers earthquake on June 28, 1992 is one of the most significant, and the

most studied earthquakes in Southern California. It was preceded by the Joshua Tree earthquake

of magnitude 6.1 on April 22, 1992, and followed by the magnitude 6.4 Big Bear earthquake three

hours later, about 35km west of the Landers epicenter. The Landers aftershock sequence contains

more than 10 large aftershocks of magnitude 5.0 or above. The1999 magnitude 7.1 Hector Mine

earthquake struck about 30 km northeast of the Landers source region 7 years later. There were

three earlier earthquakes with magnitude larger than or equal to 5.0 near the Landers source region

between 1976 and 1992, the March 15, 1979M = 5.2 earthquake about 23km northwest of Joshua

Tree, the July 8, 1986M = 5.7 earthquake about 6km southwest of Morongo Valley, and the

December 15, 1988M = 5.0 earthquake about 12km northeast of Cabazon.

The seismicity in the region around the above events will be studied. In order to choose the

magnitude threshold, the cutoff should ensure that the earthquakes above this magnitude follow the

Gutenberg–Richter (G-R) law, because this is assumed in theETAS formulation. Moreover, on the
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one hand, a reasonably long enough data set is needed to make sure that there are several seismic

cycles. On the other hand, the number of events should be lessthan 5000, otherwise the parameter

estimation will be very time-consuming. Thus the earthquakes from Joshua Tree, Landers, Big

Bear and Hector Mine sequences with minimum magnitude 3 fromJanuary 1, 1976 to December

31, 2008 are chosen. The area is between latitude from 33.8N to 34.8N, and longitude from 117.1W

to 116.1W. The maximum depth of the selected earthquakes is 31km, and the majority of them are of

local magnitude scale. The frequency–magnitude plot of theselected data is shown in Figure 4.10,

which suggests that the selected earthquakes are complete according to the G-R law.

Some 2431 events are selected, including the magnitude 7.3 Landers earthquake which occurred

on June 28, 1992 and the magnitude 7.1 Hector Mine earthquakeon October 16, 1999. The data

is from the SCSN catalogue which is available from the southern California earthquake data center

website (http://www.data.scec.org/index.html, last accessed on September 19, 2009). The locations

of the earthquakes are plotted in Figure 4.11. Figure 4.12 shows the cumulative number of earth-

quakes in the study area during the 33 years. We can clearly see several jumps which indicate

seismicity rate changes. The MMHPSD will be fitted to this setof data and what kind of features
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Figure 4.10: The frequency–magnitude plot of earthquakes with minimum magnitude 3.0 in the
area between latitude 33.8N to 34.8N, and longitude 117.1W to 116.1W from January 1, 1976 to
December 31, 2008.

this model captures will be discussed. After that, the data will be examined using the ETAS model

with magnitude thresholdM0 = 3.0 for comparison.

4.4.2 Exploratory Data Analysis Using MMHPSDs

Starting from a two-state MMHPSD, one more state is added each time to investigate the seismicity

rate changes of the study area from 1976 to the end of 2008, until the residual point process of

the current model is a stationary Poisson process with unit rate. As mentioned in Section 3.5.2 in

Chapter 3, if the residual point process is a stationary Poisson process with unit rate, then the model

is a good approximation of the true model. For each model, therandom time changet 7→ τ is

considered, i.e., for each occurrence timeti, the transformed time

τi = Λ(ti) =

∫ ti

0
λ̂(s)ds,

is calculated, which is called the residual process. The cumulative number of the residual process

versus the transformed time{τi} is then plotted. The two-sided 95% and 99% confidence limits

of the Kolmogorov–Smirnov statistics are indicated by the dashed lines. The cumulative number
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Figure 4.11: Location map of the earthquakes with minimum magnitude 3.0 in the area between
latitude 33.8N to 34.8N, and longitude 117.1W to 116.1W fromJanuary 1, 1976 to December
31, 2008. The large symbols� indicate the above mentioned earthquakes, the March 15, 1979
M = 5.2 earthquake (NJT), the July 8, 1986M = 5.7 earthquake (MV), the December 15, 1988
M = 5.0 earthquake (C), the April 22, 1992M = 6.1 Joshua Tree earthquake (JT), the June 28,
1992M = 7.3 Landers earthquake (L), the June 28, 1992M = 6.4 Big Bear (BB) and the October
16, 1999M = 7.1 Hector Mine earthquake (HM).

versus the transformed time curves for the fitted MMHPSDs with 2 and 3 hidden states exceeded

the 95% confidence limits not long before the Landers earthquake and then further exceeded the

99% confidence limits after the Big Bear earthquake (see, e.g., Figure 4.13 for the plot of the three-

state MMHPSD). The residual process of the MMHPSD with 4 hidden states, however, is well

approximated by the standard stationary Poisson process. Figure 4.14 shows that the curve of the

cumulative number of events versus the transformed time lies close to the line of unit slope and

between both the 95% and 99% confidence limits.

For the MMHPSD with 4 hidden states, fork = 1, · · · , n, let

Ek = τk − τk−1 = Λ(tk) − Λ(tk−1), (4.4)
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Figure 4.12: Cumulative number of earthquakes with minimum magnitude 3.0 in the area between
latitude 33.8N to 34.8N, and longitude 117.1W to 116.1W fromJanuary 1, 1976 to December 31,
2008. The vertical lines from left to right respectively indicate the occurrence times of the magnitude
6.1 Joshua Tree earthquake on April 22, 1992, the magnitude 7.3 Landers earthquake on June 28,
1992, the magnitude 6.4 Big Bear earthquake on June 28, 1992,and the magnitude 7.1 Hector Mine
earthquake on October 16, 1999.

and

Uk = 1 − exp(−Ek). (4.5)

We then use the Kolmogorov–Smirnov statistic to test whether Uk have a uniform distribution on

[0, 1). The empirical distribution ofUk is plotted in Figure 4.15. We see that the empirical distribu-

tion lies close to the theoretical uniform distribution on [0,1) and between both the 95% and 99%

confidence limits. Therefore, the inter-arrival times are exponentially distributed.

The method suggested by Hall (1991) is adopted to verify the independence of the inter-arrival

times. Figure 4.16 shows the plot ofEk+1 versusEk, which does not show any evidence of asso-

ciation between the two variables. Since the majority of thevalues ofEk are close to zero, we first

take logarithm of them and then calculate thet-statistic of the hypothesis test with the null hypoth-

esis that the correlation coefficient betweenlog(Ek) andlog(Ek+1) equals zero. Thet-statistic is

-1.4514 with aP -value of 0.1468. Thus there is not enough evidence to rejectthe null hypothesis.
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Figure 4.13: Cumulative number of the residual process versus the transformed time for the MMH-
PSD with 3 states fitted to the earthquakes around Landers. The solid straight line is of unit slope.
The dashed lines indicate the two-sided 95% (longdash) and 99% (dashed) confidence limits of the
Kolmogorov–Smirnov statistics. The vertical lines from left to right respectively indicate the oc-
currence times of the magnitude 6.1 Joshua Tree earthquake on April 22, 1992, the magnitude 7.3
Landers earthquake on June 28, 1992, the magnitude 6.4 Big Bear earthquake on June 28, 1992,
and the magnitude 7.1 Hector Mine earthquake on October 16, 1999.

The scatter plot ofUk+1 againstUk, as shown in Figure 4.17, suggests no particular pattern either.

Therefore, we can say that the inter-arrival times are independent, and hence the fitted MMHPSD

with 4 hidden states is a good approximation of the true intensity of the data.

The parameters estimated via the EM algorithm for the four-state MMHPSD are shown in Ta-

ble 4.3, together with the parameter estimates for the fittedMMHPSDs with 2 and 3 hidden states

for comparison. Note that the states are ordered according to the decay rateη. The estimated

Q-matrices are, for the two-state model,

Q̂ =


 −0.0038 0.0038

1.6348 −1.6348


 , (4.6)
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Figure 4.14: Cumulative number of the residual process versus the transformed time for the MMH-
PSD with 4 states fitted to the Earthquakes around Landers. The solid straight line is of unit slope.
The dashed lines indicate the two-sided 95% (longdash) and 99% (dashed) confidence limits of the
Kolmogorov–Smirnov statistics. The vertical lines are thesame as those in Figure 4.13.

Table 4.3: Estimated parameters of the MMHPSDs fitted to the data aroundLanders.

State 1 2 3 4

λ̂ 0.025 9.325
ν̂ 0.380 0.818
η̂ 0.069 21.049

λ̂ 0.022 0.220 81.918
ν̂ 0.272 0.640 0.742
η̂ 0.030 1.327 40.643

λ̂ 0.022 0.000 0.783 154.098
ν̂ 0.254 0.545 0.914 0.999
η̂ 0.026 0.521 19.286 188.787

for the three-state model,

Q̂ =




−0.0051 0.0037 0.0014

0.1102 −0.3499 0.2397

8.3578 16.1655 −24.5233


 , (4.7)
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Figure 4.15: Empirical distribution ofUk (as in Equation (4.5)) for the fitted MMHPSD with 4
states to the Landers earthquakes. The solid straight line is of unit slope. The dashed lines indicate
the two-sided 95% (longdash) and 99% (dashed) confidence limits of the Kolmogorov–Smirnov
statistics.

and for the four-state model,

Q̂ =




−0.0066 0.0000 0.0064 0.0002

0.0001 −0.4677 0.0002 0.4674

0.0001 0.0643 −6.1022 6.0378

58.0805 132.6127 121.2158 −311.9090



, (4.8)

with stationary distribution(0.9652, 0.0315, 0.0032, 0.0001). The estimated probability of the hid-

den state occupying each state and the estimated intensity function of each of the MMHPSDs are

shown in Figures 4.18 to 4.20. Note that the residual analysis shows that the MMHPSD with 4

hidden states is the simplest MMHPSD model which captures the main features of the data. Hence

it can be concluded that the four-state model is the ‘best’ inthis sense. The log likelihood and BIC

value for the fitted MMHPSDs with 2, 3 and 4 hidden states are listed in Table 4.4. Among the three

models, the Bayesian information criterion suggests that the fitted MMHPSD with 4 hidden states

is the best fit. Although the BIC may improve with additional states, these parameters cannot be
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Figure 4.16: The scatter plot forEk+1 versusEk (as in Equation (4.4)).
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Figure 4.17: The scatter plot forUk+1 versusUk (as in Equation (4.5)).
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Figure 4.18: Illustration of the fitted two-state MMHPSD. Top: the estimated probability of the
hidden state occupying state 2; middle: the estimated intensity function; bottom: the magnitude–
time plot for the Earthquakes around Landers.

Table 4.4: The log likelihood (LL) and BIC for the fitted MMHPSDs respectively with 2 states
(MMHP2S), 3 states (MMHP3S) and 4 states (MMHP4S), and the ETAS model.

MMHP2S MMHP3S MMHP4S ETAS
LL 1760.669 1942.465 2019.240 2020.587
BIC -3458.966 -3767.983 -3851.365 -4002.192

justified by the residual analysis, which shows that the datais already explained by the four-state

model.

The results for the fitted MMHPSDs with 2 and 3 hidden states are shown for comparison,

though they fail to capture some main features of the data. They show a similar feature to that con-

cluded from the analysis of the simulated ETAS sequence (cf., the pattern detected using MMHPSD

for the ETAS sequence in Section 4.3.1). The ground state, State 1, in the MMHPSD with 2 hidden

states remains in the MMHPSDs with 3 and 4 hidden states. However, both the background rateλ

and the decay rateη for the largest state increase when we add more states in the model. We see
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Figure 4.19: Illustration of the fitted three-state MMHPSD. Top two plots: the estimated probability
of the hidden state occupying states 2 and 3; next two plots: the estimated intensity function; bottom:
the magnitude–time plot for the Landers earthquakes.

from Table 4.3 and Figure 4.20 that State 4 corresponds to theLanders main shock and its imme-

diate aftermath. In this state, there is a very high immigration rateλ, indicating that the events are

not triggered by other events. The decay rateη is also very high, so these events do not themselves

trigger other events, andν ∼ 1, indicating a period of almost constant activity rate. Thismay relate

to the multiple segment nature of the Landers event. State 3 appears to account for the other main

sequence events, and for the major aftershocks, while State2, with a negligible immigration rate

and a small decay rate, is the principal aftershock state. Finally, State 1 has a low immigration rate,

a very low decay rate, and a small value ofν. Coupled with the long sojourn time implied by (4.8),

we see that this corresponds to a ground, or quiescent, state.

Further examining the transition matrix in (4.8), we see that State 4 has a very short sojourn time

(approximately 5 minutes on average), and exits to one of theaftershock states. State 3 appears to

possibly have some precursory properties for State 4, commensurate with the Joshua Tree – Landers

triggering (Hill et al. 1993; 1995). This is further supported by the preferred transition from State

1 to State 3. In short, our seismic cycle is identified: State 1(quiescent) – State 3 (precursory/main
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Figure 4.20: Illustration of the fitted four-state MMHPSD. Top three plots: the estimated prob-
ability of the hidden state occupying each state; next two plots: the estimated intensity function;
bottom: the magnitude–time plot for the Landers earthquakes.

shock) – [State 4 (main shock) – State 3 (primary aftershocks)] – State 2 (aftershocks) – State 1,

with the steps in brackets being optional, so to speak. A simulated sequence of 2500 events using

the estimated parameters for the four-state MMHPSD is shownin Figure 4.21.

Again, we notice a similar cascading style to that discussedin Section 4.3.1. The conditional

intensity function of a point process in time can be used to interpret the inter-event times. Larger

intensities correspond to shorter inter-event times. Fromthe above MMHPSD analysis of the data

using different numbers of states, it is not difficult to notice that the inter-event times are highly

related with magnitude. Take the fitted four-state model forexample. State 4 with the highest

conditional intensity function captures the feature of thelargest earthquake; State 3, which has

medium-large intensities, is related to the large-magnitude aftershocks; States 1 and 2 with low

intensities correspond to smaller earthquakes. The inter-event times indirectly reflect the magnitude

influence. Though we do not include the magnitude effect in our formulation of the conditional

intensity function, the fitted models still account for the magnitude effect.
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Figure 4.21: Cumulative curve of the simulated MMHPSD events using estimated parameters for
the four-state MMHPSD fitted to the earthquakes around Landers. ♦: events in State 1,△: events
in State 2,�: events in State 3,◦: events in State 4.

4.4.3 Comparison with the ETAS Model

Now let us examine the data using the ETAS model with magnitude thresholdM0 = 3.0. The

ETAS model is fitted to the data and the maximum likelihood estimates of the parameters are listed

in Table 4.5. The estimated intensity function as plotted inFigure 4.22 shows big spikes almost for

Table 4.5: Estimated parameters for the ETAS model fitted to the data around Landers.

Parameters µ K α c p
Estimation 0.0208 1.4217 1.6265 0.0381 1.2230

each event, whereas the intensity functions of the MMHPSDs tend to have less and on average lower

spikes. Recall Figure 4.4 which shows that for very small andvery larget − ti, the ETAS model

always has larger decay rate than the Hawkes process. The decay rate of the ETAS model multiplied

by the exponential term of the magnitude will therefore produce intensities very sensitive to event

magnitude. We can see that not only do large events influence the ETAS conditional intensity
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Figure 4.22: Illustration of the ETAS model fitted to the data around Landers.

function, events with small magnitudes also have strong effect on this intensity function. Comparing

the parameter estimates of the MMHPSD with 4 hidden states and that of the ETAS model, we see

that the very large background rates and decay rates of States 3 and 4 actually describe the fact that

large magnitudes tend to result in short inter-event times.

The log likelihood and BIC value for the fitted ETAS model are listed in Table 4.4. We see

that the fitted ETAS model has the largest log likelihood and the smallest BIC value among the

four models. The BIC is a criterion for model selection amonga class of parametric models with

different numbers of parameters. However, for a point process, a smaller BIC does not guarantee

that this model captures the main features of the data. In order to examine whether the intensity

of the fitted ETAS model is a good approximation of the true intensity of the observed data, we

examine the residual point process of the fitted ETAS model.

The cumulative number versus the transformed time plot for the fitted ETAS model as shown in

Figure 4.23 lies above the line of unit slope and out of both the 95% and 99% confidence limits. The

estimated distribution deviates significantly from the theoretical one. It suggests that the residual

process of the ETAS fit is not a stationary Poisson process. Therefore, the ETAS intensity function
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Figure 4.23: Cumulative number of the residual process versus the transformed time for the fitted
ETAS model to the Landers earthquakes. The solid straight line is of unit slope. The dashed lines
indicate the two-sided 95% (longdash) and 99% (dahsed) confidence limits of the Kolmogorov–
Smirnov statistics. The vertical lines are the same as thosein Figure 4.13.

does not capture the observed intensity well. Figure 4.23 clearly shows that after the Joshua Tree

and Hector Mine earthquakes, there are sudden and short accelerations which are not well captured

by the model. There is also a long acceleration following a period after the Big Bear earthquake.

Such features may be corresponding to the activation of secondary aftershock clusters (cf., Marsan

and Nalbant, 2005).

4.5 Conclusion and Discussion

In this chapter, the performance of the MMHPSD introduced inChapter 3 is evaluated using both

simulated and real earthquake catalogues. The simulation studies demonstrate that the EM algo-

rithm performs reasonably well for the parameter estimation, though for a small data size (less than

1000), the parameter estimates may deviate from the true values. In general, the estimates seem to

consistently capture the true parameters.

The simulation study using a simulated ETAS sequence suggests that different states of the

MMHPSD seem to capture the magnitude effect parameterized as eα(Mi−M0) in the ETAS model.
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The state with large intensities in the MMHPSD accounts for large earthquakes, while the state with

low intensities corresponds to earthquakes with small magnitudes. The fitted MMHPSDs to this

simulated sequence perform fairly well in modelling the seismicity of the data set. The comparison

of the decay rate of the ETAS model with that of the Hawkes process suggests that for very small

and very large time intervals, the ETAS model tends to produce larger intensities.

When we apply this model to the earthquakes from Joshua Tree,Landers, Big Bear and Hector

Mine, this simple initial model demonstrates different states of seismicity rates. It provides an

exploratory analysis of seismicity rate changes. The fittedfour-state model suggests that before

(some of) the large events, the March 15, 1979M = 5.2 earthquake northwest of Joshua Tree, the

July 8, 1986M = 5.7 earthquake southwest of Morongo Valley, the December 15, 1988M = 5.0

earthquake northeast of Cabazon, the April 22, 1992M = 6.1 Joshua earthquake, the June 28, 1992

M = 7.3 Landers earthquake, the June 28, 1992M = 6.4 Big Bear earthquake, and the October

16, 1999M = 7.1 Hector Mine earthquake, there may exist relative quiescence. The seismicity

rate increased after these events. The transition intensity matrix and the probability of staying in

each state also suggest that there may be seismic shadows notlong after the large events.

Note that in Marsan (2003) and Ogata et al. (2003), the seismicity rate changes were investigated

for different subregions in the vicinity of Landers. Therefore, they provided temporal and spatial

details of the seismic shadows. A possible improvement may be carried out for our analysis of the

MMHPSD on the Landers sequences by dividing the whole area into different regions. We can then

investigate the seismicity rate changes in each region. However, in order to get reliable estimates,

the magnitude threshold may have to be lower than what we havechosen since there will be fewer

events in smaller regions.

As discussed in Section 4.4.2, the MMHPSD captures the magnitude effect on the inter-event

times, although we do not include a magnitude term in the intensity function. The state with larger

intensities accounts for larger earthquakes or shorter inter-event times. The magnitude term in the

ETAS model using an exponential function may be too strong along with the power law decay

function. As a next step, a magnitude effect,(Mi − M0)
α, could be included in the intensity

function of the MMHPSD. This may provide a better fit to the data and clearer state changes of the

underlying Markov chain, given that the majority of the magnitude effect should be captured by the

above introduced magnitude term.

Finally, we see that although the fitted ETAS model has the largest log likelihood and the small-

est BIC value, it does not capture the main features of the events considered in this study (there
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may still exist a better fit using the MMHPSD with more states,which has smaller BIC value than

that of the ETAS model, but computational time precludes it from being included in this thesis). If

the data is divided into several intervals each consisting of one main shock – aftershock sequence,

and the ETAS model is then fitted to each sequence, we may get different sets of parameters for

the sequences (e.g., Ogata et al., 2003). However, for the MMHPSD, each state acts as an attractor.

If the features of the event occurrence pattern evolve towards a different attractor, the model will

automatically switch into a different regime (or state), ina ‘smooth’ manner. We do not have to

subjectively divide the entire sequence into different parts. Moreover, we see from Figure 4.23 that

the most significant deviations of the curve for the cumulative number of the residual process ver-

sus the transformed time for the ETAS model from the line of unit slope are the two segments, the

period after the Joshua Tree earthquake but before the Landers earthquake, and the period not long

after the Big Bear earthquake. The two periods were shown to be relatively quiescent (Ogata et al.,

2003; Marsan and Nalbant, 2005). The ETAS model fits well for the period immediately after the

Landers earthquake. This suggests that the ETAS model captures well the features of an aftershock

sequence, but may not be as good a fit for the quiescence periodof a sequence.

This problem may be inherited from the assumption of the ETASmodel. In the ETAS model,

the frequency of the aftershocks triggered by an event with{ti,Mi} is assumed to be

Ki

(t− ti + c)p
.

For different magnitudesMi,Ki are different with

Ki = Keα(Mi−M0).

This suggests that for an event with magnitudeM0, the frequency of aftershocks triggered by the

event is
K

(t− ti + c)p
;

and for a larger event with magnitudeMi > M0, the frequency becomes

Keα(Mi−M0)

(t− ti + c)p
,

which iseα(Mi−M0) times of that of an event with magnitudeM0. Note that the empirical formula

eα(Mi−M0) was found for a sequence of aftershocks triggered by a main shock with magnitudeMi,
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which describes the total number of aftershocks in the sequence. But in the ETAS model, this is

assigned to all the events, including aftershocks and secondary aftershocks. This may result in a

higher intensity than is consistent with the actual process. In the MMHPSD, however, we found

distinguishable decay rates for different kinds of sequences, large for main shock activity, medium

for aftershock activity, medium-small for secondary aftershocks and small for quiescence.
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Chapter 5

Statistics on Association Between Series

of Events

5.1 Introduction

Correlation between two or more series of events is often an issue in statistics or other scientific

subjects. For the case of earthquakes, the increasing availability of ancillary data relating to records

of earthquake hazard processes, such as observations for groundwater level down wells and defor-

mation measurements from GPS stations, has required techniques which can be used to examine if

there is any association between these ancillary variablesand earthquake occurrences. The ancillary

data may provide insights into the study of earthquake hazard if there is indeed association between

the two series of data. This chapter will review three very important and popular statistical meth-

ods for ascertaining the association between two point processes: coherence, mutual information

and the Lin–Lin model. Previous literatures have compared the coherence with mutual informa-

tion (e.g., Brillinger, 2002; Brillinger, 2003). However,to date, none have discussed the three

approaches together. Note that the earthquake occurrencesare point processes. The ancillary data,

however, are time series, which can be transformed into 0-1 sequences, and hence point processes

(cf., Section 6.4.3 in Chapter 6 and Section 7.2.1 in Chapter7).

Coherence is a stationary process analog of the traditionalcorrelation coefficient, taking on val-

ues between 0 and 1 at any given frequency. It is a measure of the time invariant linear dependence

of the two processes at frequencyλ, (Brillinger, 1975; Brillinger, 1994; Brillinger and Villa, 1997),

and provides a measure of the degree of linear predictability of one process from another. When

the coherence function is identically zero, one process is of no use in linearly predicting the other.
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When it is identically one, one process gives a perfect linear prediction of the other (Brillinger,

1994; Iyengar, 2001). If it is significantly greater than zero over a limited frequency range, it im-

plies association between the two processes over this frequency range.

Mutual information was originally introduced by Shannon (1948). It is a measure of the amount

of information that one random variable contains about another (Cover and Thomas, 1991). The

coherence is inadequate as a measure of general associationfor it may be identically 0 when two

series are in fact related (Brillinger, 2003; Brillinger and Guha, 2007). Brillinger (2003) proved that

such behavior does not occur for the coefficient of mutual information for random variables. The

mutual information coefficient has the property of taking onthe value 0 if and only if the variables

are statistically independent. In this work, we transform the possible pairs of random variables, in

the point process context, to pairs of intervals by considering the point process as a 0-1 time series,

and then calculate the mutual information as a function of the time lag.

A significant cross correlation between two series of events, N1 andN2, doesn’t mean that we

can determine whether

(i) N1 causesN2;

(ii) N2 causesN1;

(iii) N1 andN2 cause each other; or

(iv) some other process causes bothN1 andN2

(Ogata, 1999). To discriminate among the first three cases, as well as to test the significance, Ogata

et al. (1982) suggested a parametric model based on the self-exciting and mutually exciting point

processes introduced by Hawkes (1971). The model describesthe influence of a point process input

on a point process output, or in other words, it can identify linear causal relationships between one

sequence of events and another (Ogata et al., 1982; Ma and Vere-Jones, 1997). Hence the model is

named the Lin–Lin model. Unlike the previous two cases whichcan be defined very generally, this

method applies specifically to point process models.

The data under consideration are functions, particularly realizations of stationary processes. In

particular, two types of processes, 0-1 time series and point processes, are studied. In the following

sections the three statistical methodologies, coherence,mutual information, and the Lin–Lin model,

are briefly reviewed. They can be used to characterize the association between two or more series

of events.
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5.2 Coherence

Let (N1, N2) represent a bivariate point process. Letσm, m = 0,±1,±2, · · · and τn, n =

0,±1,±2, · · · denote the times of occurrences of theN1 andN2 events, respectively. For real-

valuedω, let us set

dT
N1

(ω) =

∫ T

0
exp{−iωt}dN1(t) =

∑

m

e−iωσm (5.1)

dT
N2

(ω) =

∫ T

0
exp{−iωt}dN2(t) =

∑

n

e−iωτn (5.2)

whereT denotes the length of the time period of observation. Then one frequency domain measure

of association which can be used to assess the linear dependency between the processesN1 andN2

is defined by

lim
T→∞

|Corr{dT
N1

(ω), dT
N2

(ω)}|2 = lim
T→∞

|Cov{dT
N1

(ω), dT
N2

(ω)}|2

Var{dT
N1

(ω)}Var{dT
N2

(ω)} = |RN1N2
(ω)|2, (5.3)

which is called the coherence of the two processes at frequency ω, where

RN1N2
(ω) = lim

T→∞
Corr{dT

N1
(ω), dT

N2
(ω)}

is called the coherency at frequencyω. Note that the coherence is the coherency modulus-squared.

This can be interpreted as the magnitude squared of the correlation between the finite Fourier trans-

forms of processesN1 andN2. The definition of the correlation in variance and covariance terms,

corr{N1, N2} = cov{N1, N2}/
√

var{N1}var{N2},

leads to an alternative definition of the coherence as

|RN1N2
(ω)|2 =

|fN1N2
(ω)|2

fN1N1
(ω)fN2N2

(ω)
, (5.4)

wherefN1N2
(ω) is a hybrid cross-spectrum between the point processesN1 andN2, defined as

fN1N2
(ω) = lim

T→∞

1

2πT
E{dT

N1
(ω), dT

N2
(ω)}. (5.5)

The auto-spectrafN1N1
(ω) andfN2N2

(ω) can be similarly defined.
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Using the method of disjoint sections (Halliday et al., 1995), the complete record, denoted by

T, is divided intoL non-overlapping disjoint sections each of lengthK, whereT = LK. The finite

Fourier transform of thelth segment(l = 1, · · · , L) from processN1 at frequencyω is defined as

dK
N1

(ω, l) =

∫ lK

(l−1)K
e−iωtdN1(t) ≈

∑

(l−1)K≤τn≤lK

e−iωσm . (5.6)

A similar definition holds fordK
N2

(ω, l). A consistent estimate offN1N2
(ω) can be given by

f̂N1N2
(ω) =

1

2πLK

L∑

l=1

dK
N1

(ω, l)dK
N2

(ω, l), (5.7)

with similar expressions for the estimation of the auto-spectra f̂N1N1
(ω) andf̂N2N2

(ω). For largeK

andω 6= 0, the estimated cross-spectrum̂fN1N2
(ω) can be interpreted as the covariance between the

components, at frequencyω, of the processesN1 andN2. The estimated auto-spectrum,f̂N1N1
(ω),

can be interpreted as the variance at frequencyω of the processN1.

The coherence function can be estimated by direct substitution of the estimates of the appropri-

ate spectra as

|R̂N1N2
(ω)|2 =

|f̂N1N2
(ω)|2

f̂N1N1
(ω)f̂N2N2

(ω)
. (5.8)

Coherence functions provide a bounded and normative measure of association. In the case of in-

dependence,|RN1N2
(ω)|2 = 0, the distribution of|RN1N2

(ω)|2 can be evaluated in terms of the

incomplete Beta function with parameters1 and(L− 1) (Brillinger, 2001). The pointwise100α%

confidence limit is given by1 − (1 − α)1/(L−1). Thus we will include the level

1 − 0.051/(L−1) (5.9)

in the following coherence plots as a benchmark of the upper95% confidence limit under the hy-

pothesis of independence. Estimated values of coherence lying below this line can be taken as

evidence for the lack of a linear association between the twoprocesses, i.e. that zero coherence is

plausible at that frequency (Brillinger, et al., 1976; Halliday et al., 1995).

The second moment

dT
N1

(ω) =

∫ T

0
exp{−iωt}dN1(t) (5.10)
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needs to be corrected by subtracting the meann̄dt, (see, for example, Vere-Jones and Ozaki, 1982)

wheren̄ is the average rate. Thus we can use

d∗N1
(ω) =

∫ T

0
exp{−iωt}(dN1(t) − n̄dt)

= dT
N1

(ω) −
∫ T

0
exp{−iωt}n̄dt

= dT
N1

(ω) − n̄i

ω
(exp{−iωT} − 1). (5.11)

The estimates are

d̂T
N1

(ω) =
∑

n

e−iωσm and ̂̄n =
N(T )

T
, (5.12)

whereN(T ) = #(0, T ). Therefore we obtain

d̂∗N1
(ω) =

∑

n

e−iωσm − iN(T )

ωT
(exp{−iωT} − 1). (5.13)

For the method of disjoint sections, we use

d̂∗N1
(ω, l) =

∑

(l−1)K<σm≤lK

e−iωσm − iN(K)

ωK
(exp{−iωlK} − exp{−iω(l − 1)K}), (5.14)

whereN(K) = #((l − 1)K, lK].

5.3 Mutual Information

The mutual information of a bivariate random variable(U, V ) is defined as

IUV = E

{
log2

(
pUV (u, v)

pU (u)pV (v)

)}
,

wherepUV (u, v) is the joint probability mass function, andpU(u) and pV (v) are the marginal

probability mass functions. The mutual information is non-negative and measures the strength

of dependence in thatIUV = 0 if and only if U andV are independent,IUV1
≤ IUV2

if U is

independent ofV1 givenV2, and for the continuous case,IUV = ∞ if V = g(U).

When a bivariate variable(U, V ) has a continuous distribution, the mutual information is defined
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as

IUV =

∫ ∫
log2

(
pUV (u, v)

pU (u)pV (v)

)
pUV (u, v)dudv.

One popular mutual information estimator is obtained by substituting suitable density estimators

p̂UV (u, v), p̂U (u) andp̂V (v) into the above formula (Strong et al., 1998; Antos and Kontoyiannis,

2001), which takes the form

ÎUV =

∫ ∫
log2

(
p̂UV (u, v)

p̂U (u)p̂V (v)

)
p̂UV (u, v)dudv.

We can use either parametric density estimators (Brillinger, 2004) or nonparametric ones (either

histogram-based, Moddemeijer, 1989; or kernel-based, Mars and van Aragon, 1982; Joe, 1989;

Granger and Lin, 1994; Moon et al., 1995).

For a bivariate discrete variable(U, V ) with U taking on the values1, · · · ,K andV taking on

1, · · · , J and

P{U = k, V = j} = pkj.

The marginals are then

pk+ = P{U = k} =

J∑

j=1

pkj, p+j = P{V = j} =

K∑

k=1

pkj,

and the mutual information becomes

IUV =
∑

k,j

pkj log2

pkj

pk+p+j
,

assuming thatpjk 6= 0. Letw = {wkj}, with

wkj =





1, U = k, V = j,

0, otherwise.

Suppose that there aren independent realizations,{wkjl, l = 1, · · · , n}, of w. The maximum like-

lihood estimates ofpkj are p̂kj =
∑

l wkjl/n and the plug-in estimate of the mutual information

(Brillinger, 2004; Brillinger and Guha, 2007) is

ÎUV =
∑

k,j

p̂kj log2

p̂kj

p̂k+p̂+j
, (5.15)
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wherep̂k+ =
∑

j p̂kj andp̂+j =
∑

k p̂kj. Note that a point process can be transformed into a 0-1

time series, with 1 at the occurrence times (of the process) and 0 otherwise. The likelihood ratio test

statistic of the null hypothesis that the two variablesU andV are independent is

G2 = 2n
∑

k,j

p̂kj log2

p̂kj

p̂k+p̂+j

(Christensen, 1997; Brillinger, 2004; Brillinger and Guha, 2007). The asymptotic null distribu-

tion of G2 under the hypothesis of the independence ofU andV is X 2
(J−1)(K−1). Noticing the

proportional relationship between the estimateÎUV in (5.15) andG2, we have that under the null

hypothesis that the two variablesU andV are independent, the large sample distribution of the

estimate (5.15) isX 2
(J−1)(K−1)/2n.

5.4 Ogata’s Lin–Lin Model

Consider a point process{Nt} with intensity function

λ(t) = µ+

∫ t

0
g(t− s)dNs +

∫ t

0
h(t− s)dXs, (5.16)

where{Xt}, the input process, may be either a point process or a cumulative process

Xt =

∫ t

0
x(s)ds

of a stochastic processx(t). The self-exciting termg(t) describes the nature of the point process,

while the transfer termh(t) indicates the strength of the causal relation between the input process

Xt and the outputNt. When the functionh(t) ≡ 0, it means there is no causal relationship between

the input and output processes, whereas when the functiong(t) ≡ 0 andh(t) 6= 0, it means that

the output process is a doubly stochastic Poisson process whose intensity is modulated only by the

input process (Ogata et al., 1982). Ogata et al. (1982) proposed the following parameterization of

the two response functions

g(t) =

K∑

k=1

akt
k−1e−ct, (5.17)

h(t) =
L∑

k=1

bkt
k−1e−ct. (5.18)
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Given the occurrence times of two sequences of events{ti : i = 1, · · · , I} (output) and{τm : m =

1, · · · ,M} (input) over the time interval[0, T ], the parameters are estimated by maximizing the

partial log likelihood

logLT (θ) =
∑

i:0≤ti<T

log λθ(ti) −
∫ T

0
λθ(t)dt,

whereθ denotes(µ, c, a1, · · · , aK , b1, · · · , bL). To determine the ordersK andL of the response

functions, we use Akaike’s information criteria (AIC; Akaike, 1974)

AIC(K,L) = −2max
θ

(logLT (θ)) + 2(K + L+ 2),

and chooseK andL which minimize the AIC.

Ogata (1983) suggested the following model to examine case (iv),

λ(t) = a0 + PJ(t) + CK(t) +
∑

ti<t

gN (t− ti) +
∑

τm<t

hX(t− τm).

The second term on the right-hand side

PJ(t) =
J∑

j=1

ajφj(t/T ), 0 < t < T,

represents the evolutionary trend. The total length of the observed interval isT , andφj(·) is a

polynomial of orderj. The third term

CK(t) =
K∑

k=1

{b2k−1 cos(2kπt/T0) + b2k sin(2kπt/T0)}

is the Fourier expansion for cyclic effects with a given fixedcycle lengthT0. The fourth term is

the clustering effect, i.e., a response function of the output process. The last term describes the

causal relation from the input process to the output process. The last two terms are parameterized

as in (5.17) and (5.18), but with different exponential decay rates for the input and output processes

(see e.g. Ma and Vere-Jones, 1997). If there is no causal relation from {τm} to the conditional

intensity functionλ(t), or to the occurrence of{ti}, thenhX(x) = 0 is expected. Maximum

likelihood estimation can be used to estimate the parameters and the AIC can be used to determine

the order(s).
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Wang et al. (2010) presented a comparative study of the threestatistics using the groundwater

level data at Tangshan Well in northern China and earthquakes from the global catalogue. A strong

association between the groundwater level oscillations and the earthquake occurrences was found,

in which the earthquake occurrences appear to trigger waterlevel oscillations with a time delay.

The time delay may be related to the seismic wave travel timesfrom earthquakes to the well. The

next chapter will provide a detailed investigation of the linkage and causal relationship between the

groundwater level oscillations and some prominent seismicphases using the three statistics.
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Chapter 6

Transient Coseismic Responses at

Tangshan Well

6.1 Introduction

Earthquakes disrupt and change hydrologic processes. Drastic hydrologic anomalies have been

observed after earthquakes, such as oscillations or sustained changes in groundwater levels in wells

(e.g., Montgomery and Manga, 2003, and references therein).

Sustained water level changes in distant wells have been demonstrated by, for example, Coble

(1965), Bower and Heaton (1978), Igarashi et al. (1992), andRoeloffs (1998). Using larger sam-

ples, King et al. (1999) and Wang et al. (2004) showed that these changes could be from a num-

ber of physically different classes. However, statisticalanalysis (Matsumoto, 1992; Kitagawa and

Matsumoto, 1996; Matsumoto et al., 2003) showed that such sustained changes occur as the conse-

quence of a very small proportion of earthquakes (approximately one in 500 and one in 2500 in the

latter two studies). They also suggested that there may exist a threshold combining magnitude and

well–epicenter distance above which such changes are likely.

However, in addition to sustained changes in groundwater level, earthquakes can induce, via the

passage of seismic waves, oscillations in water level with duration of up to a few hours. While sus-

tained changes in groundwater level appear to be rare, transient oscillations of groundwater level are

considered much more common. The amplitude, and hence detection, of such oscillations appears

to be a function of the characteristics of the well–aquifer system (Cooper et al., 1965; Kunugi et

al., 2000). The existing literature mainly discusses groundwater level changes at one well related to

seismic waves of a few distant large earthquakes (Liu et al.,1989; Ohno et al., 1997; Brodsky et al.,
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2003), or at several wells related to one or two earthquakes (Kitagawa et al., 2006; Ramana et al.,

2007; Chia et al., 2008). Although Cooper et al. (1965) (see also King et al., 1999; Kitagawa et al.,

2006) noted large variability in the response of different wells to a single earthquake, there appears

to have been no systematic investigation of the variation inthe response of a single well to multiple

earthquakes. No statistical investigation in the spirit ofthose by Kitagawa and Matsumoto appears

to have been conducted to investigate the variability of responses, what seismic wave arrivals they

can be associated with, and what characteristics of the earthquake influence them.

In this chapter a statistical examination of transient coseismic responses to distant earthquakes

will be conducted using four years of groundwater level measurements (sampling frequency per

minute, approximately two million data) and the global catalogue of earthquakes of minimum mag-

nitude 6.0 during the same period (600 events). The aim is to first construct an algorithm to automat-

ically detect oscillations in groundwater level, and extract these as ‘signals’. Secondly, the statistical

methodologies reviewed in Chapter 5 will be adopted to investigate the relationship between these

signals and the arrival times of various seismic waves, in particular the earliest P phase, S phase,

Love Wave and Rayleigh Wave arrivals. Once the candidate wave which is most likely related to the

initiation of groundwater oscillations has been found, it will be used to identify those oscillations

that appear to be coseismics in nature, as opposed to deriving from other causes. The former will

then provide the basis for investigating the detection probability, and the well signal characteristics,

as a (statistical) function of the earthquake characteristics.

The earthquake characteristics are chosen rather than the amplitudes of seismic waves in the

Tangshan area for two reasons. The relationship between groundwater level movements and seis-

mic waves is well understood (e.g., Cooper et al., 1965; Bower and Heaton, 1978; Liu et al., 1989;

Kunugi et al., 2000). Hence the question of interest is rather the relationship between the earth-

quake, and its manifestation in the distant region of the well, be that measured by seismic waves

or groundwater level movement. The analysis of the latter, while still very data-intensive, is more

feasible than examining thousands of seismograms, recorded at much higher frequency.

In the next section, the data and the pre-processing techniques used to ‘clean’ it prior to the

analysis proper will be described. Following is the discussion of how to utilize statistical analysis to

extract signals from the groundwater level record. Using the signals thus extracted, in Section 6.4, a

dispersion test of Poisson process for both the well signal series and the earthquake series are used to

examine the cluster properties of the two sequences. Then the coherence and mutual information are

adopted to calculate the correlation between the well signals and the various seismic wave arrivals,
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and the Lin–Lin model, a point process technique, is appliedto identify which arrival is the most

probable initiator of the oscillations. The detection threshold is examined both directly, and via

logistic regression, in Section 6.5. A meta-analysis usingmultiple regression is conducted in the

penultimate section in an attempt to quantify possible relations between earthquake and well signal

characteristics. This chapter concludes with a discussionof the results.

6.2 Data

There are more than thirty years of groundwater level observations at the Tangshan Well, a well lo-

cated in DaZhao Park in Tangshan City, 100km southeast of Beijing, China, with longitude 118.18E,

latitude 39.62N and altitude 23.43m above sea level, which is located along the Tangshan fault. The

well (see Figure 6.1(a)) was drilled by the Geology Department of Tangshan Mining, Kailuan Min-

ing Administration in 1969 for the purpose of hydrologic observation, with the alternative name

Shanxi Water 2. The borehole drilling terminated on October30, 1969, at a depth of 286.57m.

(a) (b)

Figure 6.1: Tangshan Well (a) and its columnar section (b) (Li Ma, personal communication).

The alluvium thickness is 10.27m. After drilling, the borehole was sealed at 207.00m depth, which

was the water depth. A tube with inner diameter 14cm and thickness 2mm was set in the borehole

from the ground surface to 154.00m depth. For a detailed geological column of the well, see Fig-

ure 6.1(b). The natural period of the well–aquifer system was 21.9s in 2002 (Zhang et al., 2002),
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but this varies with the depth of the well water.

Such a long record as that from Tangshan Well is rare to the best of our knowledge (cf. Elkhoury

et al., 2006). To date there has been no coherent statisticalexamination of the possible link between

earthquakes and the hydrological response of a well with potentially hundreds of responses, and

little if any statistical analysis has been done for the dataat Tangshan Well.

The observation frequency has increased over time, beginning with daily observations of water

level on January 1, 1974. From January 1, 1981, analog observations with hourly sampling have

been made using monitoring equipment SW40-1 with 1mm precision. Digital monitoring equip-

ment LN3 for the water level began operating on September 16,2001. These data have precision

0.0005m with a sampling rate of one observation per minute, and the available record extends to the

end of 2005. The time series analysis (state-space model) methods (Kitagawa and Gersch, 1984;

Kitagawa and Matsumoto, 1996) are not feasible as, after decomposing the data into air pressure,

rainfall and earth tide responses, the dominant component of the residual water level appears to

be related to groundwater pumping for industrial use, of which there is no detailed record. While

we are hence unable to investigate whether or not Tangshan Well experiences sustained changes

in water level, the question of transient changes remains open. From a sampling inspection of the

water level data, including immediately following the largest and closest earthquakes, water level

oscillations in the well appear to last for at most a few hours. This implies that hourly sampled

data will not be sufficient for detecting and examining the oscillations at this well. However, the

availability of data observed at minute intervals providesthe opportunity to examine coseismic re-

sponses which are transient, rather than steps, in the waterlevel, over the period 2002–2005 (in total

2,103,840 data, with 88,897 missing). Missing data is due toa number of causes – electrical failure,

sensor adjustments, and malfunctions such as sensor, water-level recorder or data communication

unit failure (Baojun Yin, personal communication).

The four year record of water levelyt is plotted in Figure 6.2, including the occurrence times of

the largest earthquakes during the period, as listed in Table 6.1. Features worthy of remark include

that the 27 earthquakes with minimum magnitude 7.5 during this period appear to have no sustained

effect on water level, and little in the way of trend or seasonal variation. Note the break in the

record in September 2002, where there is no record for a 10 dayperiod (14,400 minutes). The

erratic behavior in February and March 2003, and in October 2005 is due to sensor adjustments and

malfunctions.

The clock time at Tangshan Well is synchronized every week tothe same GPS time by which
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Figure 6.2: Groundwater level record at Tangshan Well from January 1, 2002 to December st,
2005. The symbols A–Z and @ indicate the occurrence of earthquakes with magnitude greater than
or equal to 7.5 (details in Table 6.1).

earthquake origin times are measured in the NEIC catalogue.Between adjustments the clock time

can lag behind the GPS time, with an error always less than 60 seconds, usually less than 30 seconds

(Baojun Yin, personal communication). Thus the average time reading error of groundwater level

record at this well is less than 30 seconds. Since we are considering data sampled by minute, we

chop the earthquake occurrence times to minutes (i.e., omitthe seconds), with a consequent average

time reading error for earthquakes of approximately 30 seconds. The well error will lead to water

level movements occurring ‘early’, i.e., the seismic wavesarriving ‘late’, whereas the chopping of

earthquake times makes the seismic waves arrive ‘early’. Thus the two errors tend to cancel, and the

maximum error in either direction is 1 minute. To test whether the sum of these time reading errors

affects our analysis, we will perform sensitivity tests by moving the water level record 1 minute

forward or 1 minute backward, and repeating all analyses. The results will be compared with that

from the original water level data.
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Table 6.1: Earthquakes obtained from the USGS-NEIC catalogue (http://neic.usgs.gov/neis/epic/epicglobal.html) with minimum magnitude 7.5 from
January 1, 2002 to December 31, 2005, corresponding to the symbols A–Z and @ in Figure 6.2.

Symbol Date Time Latitude Longitude Depth Mag Region Dis to well Azimuth (◦)
yyyymmdd (km) (km)

A 20020102 17:22:48.76 -17.60 167.86 21 7.50 Vanuatu Islands 8184 229.1
B 20020305 21:16:09.13 6.03 124.25 31 7.50 Mindanao, Philippines 3784 190.7
C 20020819 11:01:01.19 -21.70 -179.51 580 7.70 Fiji Region 9389 235.4
D 20020819 11:08:24.31 -23.88 178.49 675 7.70 South of the Fiji Islands 9428 232.6
E 20020908 18:44:23.71 -3.30 142.95 13 7.80 Near North Coast of New Guinea, P.N.G. 5402 213.7
F 20021010 10:50:20.57 -1.76 134.30 10 7.70 Irian Jaya Region, Indonesia 4885 203.4
G 20021102 01:26:10.70 2.82 96.08 30 7.60 Northern Sumatra, Indonesia 4660 145.5
H 20021103 22:12:41.00 63.52 -147.44 4 8.50 Central Alaska 6338 327.7
I 20030120 08:43:06.07 -10.49 160.77 33 7.80 Solomon Islands 7094 227.4
J 20030122 02:06:34.61 18.77 -104.10 24 7.60 Offshore Colima, Mexico 12179 317.4
K 20030715 20:27:50.53 -2.60 68.38 10 7.60 Carlsberg Ridge 6906 119.7
L 20030804 04:37:20.13 -60.53 -43.41 10 7.60 Scotia Sea 17365 156.9
M 20030821 12:12:49.79 -45.10 167.14 28 7.50 South Island of New Zealand 10611 211.9
N 20030925 19:50:06.36 41.81 143.91 27 8.30 Hokkaido, Japan Region 2173 284.7
O 20030927 11:33:25.08 50.04 87.81 16 7.50 Southwestern Siberia, Russia 2635 53.8
P 20031117 06:43:06.80 51.15 178.65 33 7.80 Rat Islands, Aleutian Islands, Alaska 4749 305.9
Q 20040207 02:42:35.21 -4.00 135.02 10 7.50 Near the South Coast of Papua, Indonesia 5147 203.4
R 20041111 21:26:41.15 -8.15 124.87 10 7.50 Kepulauan Alor, Indonesia 5356 188.5
S 20041223 14:59:04.41 -49.31 161.35 10 8.10 North of Macquarie Island 10756 206.2
T 20041226 00:58:53.45 3.30 95.98 30 9.00 Off the West Coast ofNorthern Sumatra 4616 144.9
U 20041226 04:21:29.81 6.91 92.96 39 7.50 Nicobar Islands, India Region 4423 138.0
V 20050328 16:09:36.53 2.09 97.11 30 8.60 Northern Sumatra, Indonesia 4685 147.2
W 20050613 22:44:33.90 -19.99 -69.20 115 7.80 Tarapaca, Chile 17721 339.7
X 20050724 15:42:06.21 7.92 92.19 16 7.50 Nicobar Islands, India Region 4371 136.3
Y 20050909 07:26:43.73 -4.54 153.47 90 7.70 New Ireland Region, P.N.G. 6094 224.5
Z 20050926 01:55:37.67 -5.68 -76.40 115 7.50 Northern Peru 15968 334.6
@ 20051008 03:50:40.80 34.54 73.59 26 7.70 Pakistan 3954 83.6
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6.2.1 Well Data Levelling

Groundwater level changes are caused not only by tectonic factors, such as earth crust deformation

related to earthquakes; but also by non-tectonic factors, such as rainfall, air pressure changes, earth

tides, exploitation of mines and underground water. Although procedures for removing tidal and

air pressure effects exist (e.g., Igarashi and Wakita, 1991; Kitagawa and Matsumoto, 1996), the

available rainfall data is on quite a different time scale, and there is no record of industrial pumping.

To avoid difficulty with the non-tectonic factors causing changes in water level, it is much simpler

to just consider the first differencesyt+1 − yt of the groundwater level data, which measures the

changes of the groundwater level relative to the previous minute. This eliminates ‘slow’ factors

such as air pressure, rainfall, earth tides and pumping, without introducing possible errors from

additional data, leaving only the oscillations, as exemplified in Figure 6.3. Figure 6.4(a) shows the
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Figure 6.3: An example of the oscillations of the groundwater level at Tangshan Well, and their
reduction to first differences. The dashed line indicates the origin time of the magnitude 7.8 Rat
Islands, Alaska, earthquake of November 17, 2003.

distribution of the first differences of the groundwater level from 2002 to 2005. The 88,897 missing

data translate to a total of 91,477 missing data in the first differences of the groundwater level. The

41 first differences of absolute value larger than or equal to1m were individually examined. It

appears that eight of them may have been caused by large earthquakes. The other 33 spikes appear

to have been caused by sensor adjustments and malfunctions,which are irregular and always present
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Figure 6.4: (a): The cumulative distribution of the first differences ofthe groundwater level (solid),
with dashed line (for comparison) showing the fitted Gaussian cumulative distribution function with
mean and variance calculated from the first difference data (N(0.00025, 1.1969)). (b): The cumula-
tive distribution of the lengths of the non-missing intervals (solid), with dashed line (for comparison)
indicating an exponential cumulative distribution function with rate estimated from the observed in-
tervals (1 − exp(−x/851)).

as either single jumps, or sustained oscillations which always reach their maximum amplitude at the

end of the oscillations (Baojun Yin, personal communication). In this case we adopted the following

filtering procedure: if the spike was due to sensor adjustment and the sensor was changed back to the

previous level within two hours, we subtracted the adjustment from the original data; if the sensor

was not changed back to the previous level within two hours, the adjustment was simply subtracted

from the relevant first difference. For those spikes caused by malfunctions, the abnormal data was

set to be missing. The data in October 2005, as shown in Figure6.2, included a great number of

sensor adjustments and malfunctions, which could not sensibly be reconciled. Hence, only the data

from January 2002 to September 2005 are used here.

After this cleaning procedure, 1,971,360 data from January2002 to September 2005 remain to

be investigated, including 88,335 missing data, in the dataset of the first differences of groundwater

level. The missing data separate the first difference data into 2,213 intervals in which there is

no missing datum. The longest length of these intervals is 23,478, and the shortest is 1. There

are 97 intervals with length longer than 1,920, i.e. 32 hours. The distribution of the lengths of

the non-missing intervals is shown in Figure 6.4(b). From this graph we can see that the breaks

do not occur randomly, as the exponential distribution is a poor fit. There appear to be a large

number of breaks at less than 2-hour intervals and at intervals of approximately 24 hours, which are

almost certainly related to sensor adjustments and malfunctions. This may affect our analysis in the

following sections.
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6.2.2 Earthquake Data

The earthquakes are taken from the USGS-NEIC catalogue (http://neic.usgs.gov/neis/epic/epicg-

lobal.html). This catalogue is considered complete at magnitude 5.0. Hence a minimum magnitude

cutoff of 6.0 will be used in this analysis, in order to have atleast a minimal estimated amplitude

from the seismic waves at the well. Almost all of the selectedearthquake magnitudes are moment

magnitudes (Mw). Rather than earthquake occurrence times, the arrival times of the earliest P

phase, the earliest S phase, and the earliest Love and Rayleigh wave arrivals will be used, which

were calculated based on the travel time table provided by Kennett and Engdahl (1991).

6.3 Identifying Signals in Well Data

In order to analyze the correlation between the water level oscillations and the earthquake occur-

rences, first the well signals have to be identified, which means the times when the oscillations begin

(and end). Given that there are about two million data, it is hardly possible to do it manually. A

method to automatically detect the occurrence times of oscillations probably due to earthquakes is

needed.

6.3.1 Exponential Decay of Well Oscillations

After examining the oscillations of first differences individually, it appears that each set of oscilla-

tions may possess an exponential decay rate. Investigations of coseismic and noncoseismic water

level changes of another well–aquifer system near Ito City,Shizuoka Prefecture, central Japan sug-

gested that each water level change is followed by a damped harmonic oscillation (Kunugi et al.,

2000). Therefore, an exponential decay function in conjunction with a cosine function can be fitted

to the oscillations in order to get a reasonable decay rate and frequency for the oscillations of the

groundwater level. This will then provide a suitable basis for an algorithm to detect induced changes

in water level.

By choosing the point with the largest amplitude of each set of oscillations as a starting point,

in order to model the oscillation frequency, a cosine modulated exponential function can be fitted to

a cluster of cumulative sumsCt of first differences (i.e., to the values of the original, undifferenced

values, subtracting a constant). The procedure is as follows. Sett = 1 at the location of the largest

amplitude. Letδt = yt+1 − yt, which is the first differences of the groundwater level,C1 = δ1 and
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Ct =
∑

1≤s≤t δs for t > 1. Then we fit the sets of oscillations using the equation

Ct = Ae−a(t+φ) cos

(
2π(t+ φ)

ω

)
+ εt, (6.1)

whereA is the amplitude,a is the cluster decay rate,φ is the phase which allows for the origin to be

somewhat betweent = 0 andt = 1, ω is the frequency andεt is the residual. Model (6.1) involves

four unknown parameters of this well. The real difficulty is that the sampling rate at this well is

one observation per minute, approximately three times the natural period, which is now 20.99s,

(Baojun Yin, personal communication, cf., Section 6.2). Inorder to get the estimated decay rate

of the clusters in the presence of this aliasing effect we need to minimize the sum of the squared

residuals
∑

t g(t, A, a, φ, ω), where

g(t, A, a, φ, ω) =

(
Ae−a(t+φ) cos

(
2π(t+ φ)

ω

)
− Ct

)2

.

However, in practice, at each pointt, we use the minimum ofg(t, θ), and the fitted value at±1

second, which allows for the stated precision in the timing of the water level measurements. A

variety of oscillations corresponding to earthquakes withdifferent ranges of magnitudes, depths

and well–epicenter distances are chosen and then Model (6.1) is fitted to each set of the oscillations.

The estimated frequencyω ≈ 0.33 ± 0.1min−1 (equivalent to20 ± 6s period) and decay rate

a ≈ 0.05 ± 0.03 from this model are consistent with the empirical values of the well parameters.

Two examples with the fitted results are shown in Figure 6.5.
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Figure 6.5: Two examples of cumulative first difference data, and hypothesized exponential damp-
ing showing the aliasing problem between sampling intervaland well response period.
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6.3.2 A Moving-window Detection Algorithm

Recalling the sampling rate of one per minute, a set of oscillations is most easily identified as

an increase in the variability of the data. Hence, in order toidentify where a set of water level

oscillations begins and ends, a moving average method will be used to calculate a series of weighted

variances of the first differences, and then those which are above a certain cutoff are considered to

be signals.

The procedure is that the exponential decay rate estimated above is utilized to calculate a

weighted variance of the first differences. Let{δ′t = (yt+1 − yt)/0.0005 : 1 ≤ t ≤ N} be the

first difference sequence of the water level, measured in unit of 0.0005mm (the measurement pre-

cision) for ease of calculation. Sett = 1 at 00:00, January 1, 2002, and correspondingly, in the

following sections, unless otherwise specified, the time origins (for time in minutes or hours) of

both the water level and earthquake sequences are at this time point. Letl be the length of the

moving window. After some experimentation,l = 10 was chosen, but the results do not appear

to be sensitive to this choice. For each pointt, we calculate two samples of sizel, which are the

weighted first differences for a window either preceding (backward) or following (forward) the point

t, Xt1 = {e−a(t−s)δ′s : t− l + 1 ≤ s ≤ t} andXt2 = {e−a(s−t)δ′s : t ≤ s ≤ t + l − 1}. The ex-

ponential decaye−at acts to down-weight the influence of the points further away from the current

point. Then calculate the variancesVt1 (backward variance) andVt2 (forward variance) ofXt1 and

Xt2,

Vt1 = (1/l)
t∑

s=t−l+1

(
e−a(t−s)δ′s − (1/l)

t∑

s=t−l+1

e−a(t−s)δ′s

)2

and

Vt2 = (1/l)

t+l−1∑

s=t

(
e−a(s−t)δ′s − (1/l)

t+l−1∑

s=t

e−a(s−t)δ′s

)2

,

respectively (as illustrated in Figure 6.6). The missing data in first differences is set to be 0 in order

that the algorithm be conservative (i.e., we do not introduce any false positives). This has little

effect when the intervals contain at most two missing data. However, when there are three or more

missing data in an interval, oscillations may go undetected.

For a given quantile thresholdVc (c is the percentile) of the variances, a cluster within which

every point has a weighted variance larger than or equal toVc is considered as a signal, i.e., some
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Figure 6.6: An illustration of calculating the weighted variance. B-variance: backward variance;
F-variance: forward variance. The earthquake is the May 26,2003, M 7.0, earthquake off the east
coast of Honshu, Japan.

c percent of the data are treated as signals. Starting att = 1, let tb be the first point at which

Vtb1 ≥ Vc, and lette = min{t > tb : Vt2 < Vc}. Call {δt : t ∈ [tb, te]} a signal. Then repeat the

above procedure starting atte until the end of the data. In the following sections, unless otherwise

specified, a signal will be identified by its initiation timeδtb .

This procedure identifies some signals in the period from February 2003 to March 2003 that

appear to have their maximum amplitude at the very last pointof the signal. This nonphysical be-

havior is related to sensor malfunctions and adjustments, as mentioned above, and so these signals

were eliminated from subsequent analysis. Readjustment ofthe sensor can cause apparent changes

in groundwater level, which manifest in the first differencedata as signals of length 1, while tran-

scription errors (of single points) in the data create the appearance of signals of length 2. Hence

signals of less than 3 minutes duration were likewise deleted.
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6.3.3 Determining the Detection Threshold

In order to determine the threshold parameterc,we will borrow some ideas from prediction analysis.

Kagan (1997) discussed prediction evaluation, and considered various measures of prediction effi-

ciency in earthquake prediction, in which three basic ratios were used to evaluate the prediction: (a)

the ratio of the total volume of alarm zones to the total volume of the region; (b) the ratio of missed

qualified (should have been predicted but failed) earthquakes to the total number of such events; and

(c) the ratio of the number of unsuccessful alarms to the total number of alarms. Since identifying

the coseismic responses differs from predictions, and there is no alarm zone involved, we are going

to use a criterion equivalent to class (c) of Kagan (1997). Bydetermining the parameterc, we hope

to maximize

R1 = percentage of earthquakes for which there are coseismic responses detected,

and minimize

R2 = percentage of signals which have no corresponding earthquake,

which we can formulate as maximizing the skill scoreR defined by

R =
R1

R2
. (6.2)

We use the arrival times of the earliest P phase, the earliestS phase, the Love and the Rayleigh

waves to define the coseismic responses. We suppose that a coseismic response is a well signal

following an earthquake within a certain time intervalL minutes after the arrival of each seismic

phase. Note thatR increases monotonically withL asR1 (R2) increases (decreases) monotonically

with L. If a signal has no seismic phase arrival ahead of it within this time interval, we consider it

as a ‘false alarm’. The presence of missing data within the first differences of the water level is a

complicating factor, which we will deal with by ignoring, inboth the numerator and denominator

of the calculation (6.2), earthquakes whose seismic wave arrivals lie within the interval of interest

prior to any missing data.

For c ≤ 5, we use the moving-window detection algorithm to identify well signals for eachc,

using l = 10 anda = 0.05. We restrictedc to less than five percent of the data as five percent of

2 million data is equal to 1,667 hours of signals, which is easily more than any reasonable amount
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of coseismic signals actually contained in the well data. Then for a fixedc and the identified well

signals, we calculateR respectively for the earliest P phase, the earliest S phase,the Love and the

Rayleigh wave arrivals of the earthquake series. The mean, median and mode of thec values at

which theR scores reach the maximum are the same,c = 1.5, i.e. 1.5 percent of water level data

to be considered as well signals, which we will thus use as ourthreshold. The parameterc selected

in this way appears to be independent of the time intervalL which we use to define the coseismic

responses. The number of well signals isolated using these selected parameters is 754.

6.4 Tests of Dependence Between Earthquakes and Well Responses

Having extracted signals from our well data, we will utilizea dispersion test of the Poisson process

for both the well signal series and the earthquake series to examine the cluster properties of the two

sequences. After that we will discuss how to clarify the association between this series of events

and the earthquakes. Various statistical methods have beenadopted to characterize the association

between two or more series of events, among which coherence,mutual information, and the Lin–Lin

model are the most useful for our case.

6.4.1 Clustering Tendencies in Well Signals and the Earthquake Catalogue

Before investigating the correlation between the well signal and earthquake series, we first examine

their properties separately. In this section we will see howthey compare to a Poisson process using

the dispersion test from Cox and Lewis (1966, see Appendix A).

To use the dispersion test statistic to test whether a seriesof events is a Poisson process, we

let N be a point process of lengthT . Divide the observed sequence ofN into k equal intervals of

lengtht. Letn1, n2, · · · , nk denote the number of events in the successive intervals and define

n̄ =
n1 + · · · + nk

k
. (6.3)

Then we calculate the statisticd of n1, n2, · · · , nk,

d =

k∑

i=1

(ni − n̄)2

n̄
. (6.4)

The ratiod/(k − 1) has the expected value of unity for a Poisson process (Cox andLewis, 1966),

and for a large number of observations the distribution ofd is asymptotically proportional to aX 2
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distribution with(k − 1) degrees of freedom (Vere-Jones and Davies, 1966). To test that the series

of events is a Poisson process, we compare the statisticd/(k−1), which is the ratio of the estimated

variance ofN to the estimated mean ofN (Cox and Lewis, 1966), with unity.

The test results show that both the earthquake sequence and the series of 754 well signals are

clustered, although the former is slightly less clustered than the latter (Figure 6.7). The histograms of
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Figure 6.7: Variance against mean plot for well signals (left) and earthquakes (right).

the earthquake occurrence times, well signal beginning times, and the survivor functions of the well

signal inter-event times and well signal lengths are shown in Figure 6.8. The histograms indicate

that the earthquakes and the identified well signals have similar statistical properties. The survival
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Figure 6.8: Time-occurrence histograms of the earthquake occurrence times (top left), well signals
(top right), and the survival functions of the well signal inter-event time (bottom left) and well signal
length (bottom right).
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function of the well-signal inter-event times is not compatible with an exponential decay, confirming

that there is some structure present, neither is the survival function of the well-signal lengths.

6.4.2 Correlations Between Earthquakes and Lagged Well Responses: (a) Coher-

ence Analysis

Missing intervals of length 1 in the water level data set willcause missing intervals of length 2 in the

first difference data set. Accordingly, here in this sectionwe set the first differences in the missing

interval of length 2 as 0. The resulting number of non-missing intervals with length longer than

1,920, i.e. 32 hours is 310. Figure 6.9 shows the coherence between the well sequence and each of

the earliest P phase, the earliest S phase, Love wave and Rayleigh wave arrivals, using disjoint inter-

vals of length 32 hours, respectively. We corrected the second moment by subtracting the mean (see
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Figure 6.9: Coherence plots for well signals and the earliest P phase (top), the earliest S phase
(second row), Love wave (third row) and Rayleigh wave (bottom) arrival times with disjoint in-
tervals each having a length of 32 hours. Solid lines: coherence for well signals and the seismic
phase arrivals; dashed lines: the upper level of the approximate95% confidence interval under the
hypothesis that the two processes are independent.

Chapter 5 for details). Recall that the possible frequencies are limited by the discrete (per minute)

nature of the data, and are not continuous. The graphs show strong association between each of the
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four seismic wave arrivals and the first difference signals at low frequenciesω, apparent associa-

tion up to about 6hr−1 or more than 10 minutes, i.e., the well signals are strongly correlated with

the earthquake occurrences more than 10 minutes after the seismic wave arrivals. The sensitivity

tests by moving the water level record 1 minute forward and 1 minute backward suggest that the

coherence results for the perturbed data are not visibly different from the original plots.

6.4.3 Correlations Between Earthquakes and Lagged Well Responses: (b) Mutual

Information Analysis

Let us consider the mutual information between well signals, denoted byU, and the arrival times

of each of the seismic waves, denoted byV . We first transform the well signal series and the

earthquake series into0-1 sequences, with1 indicating the beginning of the well signal,0 otherwise.

The earthquake series have a1 in the minute of the wave arrival,0 otherwise. We examine the

mutual information between the two series{Ut+u} and{Vt}, whereu is the time lag. The mutual

information results, as shown in Figure 6.10, suggest strong association between the seismic waves

and the well signals. The figure indicates that while the P phase arrival precedes the signal onset,
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Figure 6.10: Mutual information for well signals and the earliest P phase(top), the earliest S phase
(second top), earliest Love wave (third from top) and earliest Rayleigh wave (bottom) arrival times.
The dashed lines show the upper level of the approximate95% confidence interval under the null
hypothesis that the two processes are independent.
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the S phase, Love and Rayleigh wave arrivals appear to occur after some of the signal onsets.

The mutual information results for the well signals identified by using the water level recording

moving 1 minute forward (or backward) can be read directly from Figure 6.10 by moving the plots

1 minute forward (or backward), and show that the conclusionis not sensitive to possible errors in

timing.

An example of the first differences together with seismographs from the nearest seismic station,

Douhe station, is shown in Figure 6.11. The Douhe seismic station is operated by Tangshan Earth-
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Figure 6.11: Example of an S phase arrival initiating well oscillations.The top three plots are
seismographs from Douhe seismic station on the same time scale as the first difference plot of the
groundwater level at the bottom. The solid line on the left-hand side in the figure is the earthquake
occurrence time for the magnitude 7.5 earthquake in Kepulauan Alor, Indonesia on November 11,
2004 (latitude: 8.15S, longitude: 124.87E, well–epicenter distance: 5356.313km). The longdash,
dot-dash, dotted and dashed lines indicate the corresponding earliest P phase, S phase, Love and
Rayleigh wave arrival times for the earthquake, respectively. The letter‘A’ and ‘B’ in the first differ-
ence plot indicate respectively the times when the identified well signal starts and when the signal
reaches its maximum amplitude.

quake Administration, and is located at latitude 39.74N, longitude 118.29E and altitude 55.42m

above sea level, which is 16.3km from Tangshan Well. EDAS-C24 equipment is used to record the

seismographs with a sample rate at 50Hz. The timing is synchronized with GPS time. Figure 6.11
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shows an S phase arrival initiating the well response with the Rayleigh wave amplifying the oscilla-

tions. This is consistent with the conclusion from Cooper etal. (1965) that any type of earthquake

wave that produces dilatation of the aquifer or vertical vibration of the well–aquifer system can

cause the water level in a well to fluctuate, and that Rayleighwaves cause larger fluctuations in

wells than any other wave that has been identified. Figure 8 inBrodsky et al. (2003) also shows that

there is some energy that shows up before the Rayleigh wave arrival.

6.4.4 Earthquakes as an Explanatory Variable for Well Responses

Since we are interested in whether the earthquakes have induced the water level oscillations, we treat

the well signal sequence as the output process and the wave arrival times as the input process(es).

The estimated response functions for the self-exciting part, and the mutually exciting (to the seismic

wave arrivals input) part are shown in Figure 6.12. We see that for the earliest P phase, the self-
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Figure 6.12: Estimated Lin–Lin response functions of well signals with the seismic phase arrival
times: Earliest P phase (solid line), earliest S phase (dashed line), earliest Love wave arrival (dot-
dashed line) and earliest Rayleigh wave arrival (dotted line). Top: Self-exciting response functions
(P, L and R curves coincide). Bottom: Response function fromthe seismic wave arrival.

exciting part is small compared to the mutual exciting part,which clearly shows that the P phase

arrival times do play a part in inducing the water level oscillations at Tangshan Well. The estimated

response functions for the S phase arrivals are very similarto each other, and thus we can not
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conclude whether or not the S phase arrival times play a part in inducing the water level oscillations

at Tangshan Well. The response functions for the Love and theRayleigh wave arrivals both have

much larger self-exciting parts than mutual exciting parts, indicating that the Love and the Rayleigh

wave arrival times do not have a clear causal relation with the initiation of water level oscillations

at Tangshan Well. A sensitivity analysis moving the entire record 1 minute forward or backward

produces almost identical plots, and thus does not alter theconclusions.

6.5 Coseismic Responses and Detection Probability

Having established that there appears to be some correlation between the seismic wave arrivals

and the well signals, we can now examine the detection probability. First the detected and unde-

tected events will be examined directly. Then a logistic regression analysis is used to examine the

association of the probability that a coseismic response isdetected with the earthquake statistics

(magnitude, depth, azimuth and well–epicenter distance).

6.5.1 A Magnitude-distance Threshold for Detection

Kitagawa and Matsumoto (1996), and Matsumoto et al. (2003),in investigating sustained changes

in groundwater level due to distant earthquakes, explainedits occurrence as a function of magnitude

and distance. A threshold combining earthquake magnitude and well–epicenter distance was thus

proposed, above which earthquakes cause coseismic changes. Let us now investigate whether a

similar form of threshold exists for the transient oscillations in the Tangshan Well data, and if so,

how the slope differs from those proposed above.

We have seen above that the P phase arrival is the most strongly associated with the onset

of well oscillations. Moreover, the mutual information forwell signals and P phase arrival times

indicates a strong association between the two series up to 40 minutes time delay. For P phase

arrival times, we calculate the delay times to the start of the well signals from the arrival times.

We will define those well signals as coseismic responses if the corresponding delay times are less

than 40 minutes. This accounts for some 237 earthquakes (approximately 40 percent of the total

number), and approximately 31 percent of the total number ofwell signals. Some 230 of these 237

earthquakes satisfy the relationshipM ≥ 3.02 log10D− 5.50, whereM andD respectively denote

magnitude and well–epicenter distance (km). This threshold line is determined such that the sum of

misclassification of earthquakes below the line, for which there are coseismic responses detected,
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and the misclassification of signals above the line, which have no corresponding earthquakes, is

minimized. This classification by magnitude and distance isshown in Figure 6.13. Note that there
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Figure 6.13: Magnitude versus well–epicenter distance plot. The solid line indicatesM =
3.02 log10(D) − 5.50. Some 230 of 237 coseismic responses satisfy the relationship M ≥
3.02 log10(D)− 5.50. �: the 237 earthquakes which have coseismic responses in the well data (i.e.
there are signals detected within 40 minutes after the P phases arrived);©: the 329 earthquakes for
which there is no coseismic response detected;△: those 34 earthquakes having missing well data in
the 40 minutes following the P phase arrival. The dashed lineM = 3.69 log10(D)− 8.07 indicates
the threshold using the interval of 30 minutes. The threshold using an interval of 50 minutes is the
same as that for 40 minute interval.

were missing data in the well record in the 40 minutes following the earliest P wave arrival for 34 of

the earthquakes. Hence these earthquakes are indicated separately, as detection was inconclusive.

It is instructive to examine the cases of misclassification.Of the 109 earthquakes denoted by

circles above the threshold line (no signal detected), detailed visual inspection of the well record

reveals that most of these are in fact followed by oscillations (which may or may not be coseismic

responses) in groundwater level. These have not been pickedup by the algorithm because the am-

plitudes of the oscillations are below the detection threshold. Recall that this threshold is a balance

between failure to identify, and false identifications. Theexceptions were the 30 earthquakes cat-

egorized in Table 6.2. Four of the seven events denoted by squares under the threshold line were
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Table 6.2: The 30 events denoted in Figure 6.13 by circles above the lineM = 3.02 log10(D)−5.50
for which there are no coseismic responses identified.

Number Description

3 very deep earthquakes with depth larger than 200km
5 deep earthquakes with depth larger than 50km
3 with well signals beginning more than 40 minutes after the

P wave arrived
1 with a well signal that begins earlier (!?) than the earthquake

occurrence time, which would have obscured any response
15 immediately preceded by larger earthquakes (the smaller

earthquake’s response is merged together with the larger’sone)
3 no apparent responses

very shallow earthquakes, while the remaining three earthquakes were followed by well signals

which may have actually been initiated by other earthquakeswhich occurred a few minutes earlier

elsewhere.

The map in Figure 6.14 (inset, Figure 6.15) shows the entire earthquake data set of the 600

events, with symbols, as in Figure 6.13 indicating whether or not the earthquake was detected in the

well level. We see that there is no obvious effect of azimuth on whether or not a coseismic response

is detected.

We can now consider in further detail how each seismic wave appears to affect the well signals.

Table 6.3 categorizes the 237 earthquakes with coseismic responses, according to where the begin-

ning of the well signal, and its maximum amplitude, fall in relation to the seismic wave arrivals. The

Table 6.3: Chronology of well signals and seismic wave arrivals.

between between between Love after
P and S S and Love and Rayleigh Rayleigh

signal initiation 18 32 16 171
maximum signal amplitude 3 5 2 227

relationships with magnitude and well–epicenter distanceare shown in Figure 6.16 and Figure 6.17.

It appears that earthquakes with larger magnitudes tend to have detected coseismic responses be-

fore the Rayleigh wave arrivals, although some earthquakeswith magnitudes less than 7.0 at long

distances tend to induce well signals earlier than the Rayleigh wave arrivals. While the Rayleigh
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Figure 6.14: The global map and earthquakes with minimum magnitude 6.0 from January 1, 2002 to September 30, 2005. #: Tangshan Well;�:
earthquakes for which there are coseismic responses detected;©: earthquakes for which there is no coseismic response detected;△: 34 earthquakes
having missing well data in the 40 minutes following the P wave arrivals. The smallest symbol size is for earthquakes withmagnitude larger than 6 and
smaller than 7; the medium size for earthquakes with magnitude larger than 7 and smaller than 8; and the largest size for earthquakes with magnitude
larger than 8. Inset is Figure 6.15.
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Figure 6.15: The enlarged version of the squared region in Figure 6.14. The symbols denote the
same as in Figure 6.14.

waves are certainly the cause of most of the water level movement, in this well at least, arrivals from

earlier phases are noticeable in many cases.

A sensitivity test for dependence of the results on the time interval used to define a coseismic

response was conducted, using 30 minutes, and 50 minutes, instead of 40 minutes. For a 30 minute

interval, 224 earthquakes have coseismic responses, 341 donot, and 35 had missing well data, while

for a 50 minute interval, 241 have coseismic responses, 328 do not and 31 had missing data. While

the threshold lines for the 40-minute and 50-minute intervals were the same, that for the 30-minute

interval differed, with fewer distant earthquakes having coseismic responses. These appear to be

smaller events where the oscillations are not detectable bythe algorithm until the arrival of the

amplifying surface waves.
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Figure 6.16: Magnitude versus well–epicenter distance plot.�: earthquakes for which there are
coseismic responses detected between the P and the S phase arrivals;△: earthquakes for which there
are coseismic responses detected between the S phase and theLove wave arrivals;©: earthquakes
for which there are coseismic responses detected between the Love and the Rayleigh wave arrivals;
+: earthquakes for which there are coseismic responses detected after the Rayleigh wave arrivals.

6.5.2 Quantifying the Effects of Magnitude, Distance, Depth and Azimuth

A more quantitative analysis of how the detection probability p depends on the earthquake char-

acteristics is possible using logistic regression (see Appendix B for statistical details). Besides

magnitude,M , well–epicenter distanceD (km), and depthH (km), we will use the azimuth angle

ζ (0◦ ≤ ζ < 360◦) from an earthquake to the well, determined as

cos ζ =
1

sin ∆
(cos θS sin θE − sin θS cos θE cos(φS − φE))

sin ζ =
1

sin ∆
sin θS sin(φS − φE),

(Stein and Wysession, 2003), whereθE is the colatitude of an earthquake, equal to90◦−latitude,

φE is the longitude of an earthquake;θS andφS are the colatitude and longitude of the station or

well similarly defined; and∆ is the source-to-receiver distance (in radians). See Figure 6.18 for
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Figure 6.17: Magnitude versus well–epicenter distance plot.�: earthquakes for which there are
coseismic responses detected, which reach the maximum amplitudes between the P and the S phase
arrivals;△: earthquakes for which there are coseismic responses detected, which reach the maxi-
mum amplitudes between the S phase and the Love wave arrivals; ©: earthquakes for which there
are coseismic responses detected, which reach the maximum amplitudes between the Love and the
Rayleigh wave arrivals;+: earthquakes for which there are coseismic responses detected, which
reach the maximum amplitudes after the Rayleigh wave arrivals.

a schematic illustration of the azimuth angleζ (0◦, 90◦, 180◦, 270◦) from an earthquake to the

well. Here, and in the following section, we separate out well–epicenter distance and depth, rather

than using well–hypocenter distance, as the seismic wave propagation effects of shallow and deep

earthquakes differ considerably. We fit model (A-4) in Appendix B to the data and use maximum

likelihood to obtain parameter estimates forb0, bi andb1i. The resulting model is

log

(
p

1 − p

)
= −33.1 + 5.0M − 11.4(log10D − 3.43)2 + 2.6 × 10−5(H − 384.6)2 + ε, (6.5)

where all the included terms are significant at a level of 0.001. The effect of the azimuth is not

significant. The relative strengths of the effects can be gauged by noting that, in the data,30 ≤
5.0M ≤ 45, −8.26 ≤ −11.4(log10D− 3.43)2 ≤ 0 and0 < 2.6× 10−5(H − 384.6)2 < 3.85. The

residualε has standard deviation 0.33, small relative to the other terms, indicating quite a good fit.
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Figure 6.18: A schematic illustration of the azimuth angleζ (0◦, 90◦, 180◦, 270◦) from an earth-
quake to the well.

The fitted results by factor are shown in Figure 6.19. Due to the quadratic terms used in the analysis,

and the dearth of events close to the well, we see that Model (6.5) is only physically meaningful

when the distance is longer than 2690km (log10(D)− 3.43 ≥ 0) and the depth is less than 384.6km

(H − 384.6 ≤ 0) as the sign of effect changes at these lengths.

In principle, Model (6.5) allows one to read off the effect onthe detection probability of a change

in any one of the significant factors. For example, we see thata increase of 1 unit in magnitude will

result in a percentage increase in the probability of detection of

δp

p
=

1 − p

1/(e5 − 1) + p
,

whereδp is the change inp. Similar calculations are possible for the effects of well–epicenter

distance and depth.
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Figure 6.19: The proportion of earthquakes with coseismic responses (points) and the fitted proba-
bility that an earthquake produces a coseismic response (solid lines).

6.6 An Exploratory Analysis of Earthquake–well Signal Interaction

The well signals can be quantified by a set of characteristics(delays, amplitudes and lengths of

well signals), as can the earthquakes (magnitudes, well–epicenter distances, depths and azimuths).

In this section we will conduct some exploratory data analysis to investigate possible structural

relationships between the two sets of characteristics. Another reason for the statistical analysis is to

examine the effect of azimuth, as Tangshan Well is located inan ancient craton, and so there may be

significant deviation from the Kennett and Engdahl (1991) radially symmetric travel-time model.

For P phase arrival times, we calculate∆P as the delay, in minutes, from the arrival of the

earliest P phase to the start of the well signal. A well signalis defined as a coseismic response if∆P

is less than 40 minutes, as above. For those earthquakes for which a coseismic response is defined,

we denote similarly defined delay times for the earliest S phase, and the earliest Love and Rayleigh

wave arrivals by∆S, ∆L and∆R, respectively. The corresponding maximum amplitude and length

of these well signals are denoted byAw (m) andLw (minutes), respectively. Figure 6.20 shows an
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example of the scatter plots for the lengthsLw of the well signals versus the earthquake magnitudes

and well–epicenter distances.
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Figure 6.20: Well signals’ lengths versus well–epicenter distances. The smallest symbols indicate
earthquakes withM larger than 6 and smaller than 7; the medium symbols indicateearthquakes
with M larger than 7 and smaller than 8; and the largest symbols indicate earthquakes withM
larger than 8.

6.6.1 Correlations Between Earthquake and Well Signal Characteristics

In order to further validate our signal extraction algorithm we will calculate the correlation coeffi-

cients between the delay times, and the magnitude, well–epicenter distance, depth and azimuth. We

will also calculate the correlation coefficients between amplitude, and length of the well signal, and

the earthquake characteristics. The results are shown in Table 6.4. We see that earthquake magni-

tudes have the strongest overall effects on the well signal characteristics, negatively correlated with

the delays and positively correlated with the amplitudes and lengths of well signals, all correlations

being significant at a level of0.001. Depth is positively, although less strongly (significant at a level

of 0.05), correlated with the delay. The negative correlations with the maximum amplitudes and

lengths of well signals are not significant. The positive correlation of well–epicenter distance with

the P and S phase delays, and negative correlation with the Love and the Rayleigh wave delays is
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Table 6.4: Correlation coefficients, whereM is the earthquake magnitude,D is the well–epicenter
distance (km),H is the earthquake depth (km),Cζ is cos(azimuth),Sζ is sin(azimuth),∆P is the
P-phase delay, which equals to the time from the earliest P phase arrival to the well signal onset
(minutes),∆S, ∆L and∆R are respectively the S phase delay, Love wave delay and Rayleigh wave
delay similarly defined,Aw is the amplitude of a well signal (m), andLw is the length of a well
signal (minutes).

M log(D) H Cζ Sζ

∆P -0.340 0.447 -0.260 0.017 0.076
∆S -0.401 0.316 -0.290 0.044 0.086
∆L -0.578 -0.390 -0.324 -0.011 0.107
∆R -0.578 -0.487 -0.311 -0.008 0.106
Aw 0.609 -0.109 -0.064 0.011 0.040

log(Lw) 0.803 0.151 -0.023 0.079 -0.015

because Love and Rayleigh waves tend to arrive after the onset of the oscillations and so have minus

delays. Thus the negative correlation for the latter means that longer distances have shorter ‘minus’

delays, and so the delays themselves are larger. These correlations are all significant at a level 0.05,

as are those between well–epicenter distance and signal length. The remaining correlations are not

significant, including all those involving the azimuth.

The correlations give the direction of any effect. For example, larger magnitudes lead to shorter

delays, larger and longer signals. None of which are particularly surprising, which means that

there is no reason to reject our algorithm. It is of more interest to try and quantify the size of any

effect. For those earthquakes with identified coseismic responses, we can use multivariate regres-

sion (see Matsumoto, 1992, for an earlier application to coseismic water level changes), including

interactions between the earthquake characteristics, to investigate the relationship between these

characteristics and the well signal characteristics. See Appendix C for the statistical background. A

very similar approach is the regression metamodel in simulation (Kleijnen, 1979), which likewise

seeks a structural model between the inputs and outputs of animperfectly understood system.

6.6.2 Metamodels for Delay, Amplitude and Length of Well Signals

First let us look at the relationship between the P phase delays and the earthquake statistics. The

final fitted model for∆P is

√
∆P =12.95 − 1.14M + 3.98 log10(D) − 7.57 × 10−6(H − 1453.1)2



6.6. AN EXPLORATORY ANALYSIS OF EARTHQUAKE–WELL SIGNAL INTERACTION 119

+ 0.35Cζ + 0.002MH − 0.01 log10(D)H − 0.004HCζ + ε, (6.6)

(in
√

minutes), where all the included terms are significant at a level of 0.05. The relative sizes of the

effects can be gauged by noting that in the data,−9.72 ≤ −1.14M +0.002MH ≤ 1.62, −11.00 ≤
(3.98 − 0.01H) log10(D) ≤ 16.45, and−0.90 ≤ (0.35 − 0.004H)Cζ ≤ 1.85. The residualε has

standard deviation 0.65, commensurate with the other terms, indicating considerable unexplained

variation. Again, due to the quadratic terms in the model, Equation (6.6) is only physically valid

for earthquakes with depths less than 570km. The equation (6.6) again provides a ‘plug-in’ formula

from which one can extract the effect on delay of a change in one of the significant factors. For

example, an increase of one unit in magnitude results in a decrease of the delay time of(1.14 −
0.002H)2 − 2(1.14 − 0.002H)

√
∆P , where

√
∆P is given by (6.6).

We see that using the radially symmetric travel time table ofKennett and Engdahl (1991) has led

to a systematic error here, as the variation in delay with azimuth is significant, although the size of

the effect is small, compared to the other factors. The quantitative analyses in this section can deal

with azimuth effects directly, and so this systematic errorwill only affect the results if the azimuth

has an effect on the identification of the seismic wave arrival immediately preceding the onset of

well oscillations. However, a chi-squared test on the contingency table (Table 6.5) cross referencing

azimuth (actually the sign ofCζ) and seismic wave indicates that there is no dependence between

the two. As the well signals appear predominately to be initiated 10 or more minutes (see above)

Table 6.5: Contingency table, wherenPS is the number of earthquakes with detected coseismic
responses occurring between the P and the S phase arrivals;nSL for coseismic responses detected
between the S phase and the Love wave arrivals;nLR for coseismic responses detected between the
Love and the Rayleigh wave arrivals; andnR for coseismic responses detected after the Rayleigh
wave arrivals.

nPS nSL nLR nR

azimuth in the range(−π/2, π/2) 2 8 5 49
azimuth in the range(π/2, 3π/2) 16 24 11 122

after the P phase arrival, the size of the azimuth effect indicates that we are unlikely to be missing

any coseismic responses because of the travel time error.

The multivariate regression analysis suggests a relationship between the maximum amplitudes
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of the well signals and the earthquake characteristics of

log10Aw =5.52 − 0.09(M − 12.44)2 − 1.07 log10D

+ 7.02 × 10−6H2 + 0.07Sζ − 0.0007MH + ε, (6.7)

(in units of log10m). All the fitted terms are significant at a level of 0.05. Fromthe data, we have

−3.73 ≤ −0.09(M − 12.44)2 ≤ −1.07, −4.55 ≤ −1.07 log10D ≤ −3.28, −0.87 ≤ 10−6H2 −
0.0007MH ≤ −0.02, and−0.07 ≤ 0.07Sζ ≤ 0.07, from which we can see that the azimuth

effect is negligible compared to the other effects. The residualε has standard deviation 0.30, small

relative to the magnitude and distance effects. Again, Equation (6.7) provides a formula from which

the relative effects of the factors can be calculated. For example, at a depth of 100km, a magnitude

8.0 earthquake produces a signal amplitude approximately 6.5 times as that of a magnitude 7.0

earthquake. An earthquake at distance 12,000km will have a signal amplitude approximately half

that of one at 6,000km, and so on.

For the well signal lengths, the following model is obtained

log10 Lw = 3.07 − 0.21(M − 8.9)2 − 0.27 log10D + 3.67 × 10−6(H − 408.7)2 + ε, (6.8)

(in log10 minutes), where all the terms are significant at a level of 0.001. The azimuth effect is

not significant. The relative sizes of the effects in the dataare−1.77 ≤ −0.21(M − 8.9)2 ≤ 0,

−1.14 ≤ −0.27 log10D ≤ −0.82, and0 ≤ 3.67 × 10−6(H − 408.7)2 ≤ 0.60, respectively, while

Equation (6.8) is obviously only valid forM ≤ 8.9 andH ≤ 408.7. The residualε has standard

deviation 0.25, small relative to distance effect, but possibly indicating some unexplained variation

particularly around large and/or deep events. We can easilyread off effects from Equation (6.8), for

example a magnitude 8.0 earthquake will have a signal approximately 3.4 times as long as that of

a magnitude 7.0 earthquake, while increasing the distance from 6,000km to 12,000km shortens the

signal by about 17%.

6.7 Discussion

Having been acknowledged as one of the most sensitive wells to seismic disturbances in China, it

appears as if the Tangshan Well acts as the recorder for a natural seismometer formed by the aquifer

system into which the well penetrates. We have proposed an algorithm for automatically detecting
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anomalous transient changes in groundwater level based on amoving average of the variance of the

first differences in water level. The R-score and dispersionanalyses were used to identify the best

well signal series. Analysis of the resulting well signal catalog from the recent data indicates that

the algorithm performs reasonably, although improvement is probably possible, especially if given

a data set of more even quality than used here. A number of different statistical techniques were

then used to detect and quantify coseismic responses to the earliest P phase arrivals.

As noted in Wang et al. (2010), the three statistics, coherence, mutual information and the Lin–

Lin model, examine different types of association. When theproblem of whether or not we can

predict an output series from some input series through a linear relation is considered, coherence

may be a very useful approach to use. It plays a diagnostic role in detecting association between

two processes at certain frequency range. The estimation ofcoherence using the method of disjoint

sections can work around missing data, which appears to be anadvantage of using coherence.

However, the coherence may be identically 0 when two processes are actually correlated. The

coefficient of mutual information overcomes this drawback and takes on the value 0 if and only if

the two processes are statistically independent and thus forms a test of dependence. The mutual

information presents a detailed conclusion about the time lag of the association between the two

processes, as can be seen from Figure 6.10, for example, where the P phases and the well signals are

strongly correlated with the P phases leading the well signals up to 40 minutes. Another important

advantage of mutual information is that it does not really pay any attention to the values of the

processes. In addition to telling us whether the hypothesisof independence is rejected, mutual

information measures the strength of the correlation between two series of events. The drawback of

the mutual information may be that it does not set up naturally for point processes, as we can see

from the formulation as well as the application to the data. But a point process can be transformed

into a time series which is suitable or convenient for mutualinformation analysis.

When we are interested in more than whether the two processesare correlated or not, or in other

words, when we want to make clear which process is the driven process, the coherence and mutual

information analyses become inadequate. The Lin–Lin modelcan identify cases in which either one

of the two processes causes the other, or they cause each other, or some other process causes both

of them. Unlike the generally defined coherence and mutual information, this model was designed

specifically for point processes. The mutual-exciting termbeing identically 0 implies that there is

no causal relationship between the two processes; whereas the self-exciting term being identically

0 while the mutual-exciting term being none zero means that the intensity of the output process is
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modulated only by the input process.

The dispersion tests reveal that the well signal series and the earthquake series are themselves

serially dependent. The coherence analysis concludes thatthe well signal series and the arrivals

of the seismic waves have strong linear correlation, especially at lower frequencies, which may

suggest that the earthquake occurrence times can provide a better linear prediction of the water level

oscillations at lower frequencies. The mutual informationanalysis suggests that the oscillations of

the groundwater level are strongly associated with the seismic wave arrivals, particularly the earliest

P phase, which appears to initially trigger the fluctuations. The results from the Lin–Lin model

indicate that the P phase arrivals are the most likely to be inducing the initial water level oscillations

at Tangshan Well. The role of the S phase arrivals is unclear as the estimated self-exciting and

mutual exciting response functions are similar. This is of interest, as Doan and Cornet (2007)

described a hydraulic transient triggered near an active fault by seismic waves generated more than

10,000km away during the 2003Mw = 7.8 Rat Island earthquake, where the pressure drop occurred

simultaneously with the arrival of the S phase seismic wavesand not during the passage of the

Rayleigh waves. Brodsky et al. (2003) considered the Rayleigh wave, which generates the most

significant dilatation, as being the likely cause of sustained changes in well water level, although

their data also suggested that there may have been some detectable effect prior to the arrival of these

waves in at least one case. The Love and Rayleigh waves do not have a clear causal relation with

the initiation of water level oscillations at this well, although there appears to be a strong relation

with the time of maximum amplitude, consistent with the results of Eaton and Takasaki (1959).

The signal detection algorithm detects coseismic responses for approximately 40% of global

earthquakes with minimum magnitude 6.0. This is certainly alower bound, as the performance

of the algorithm balances this against the false detection probability. A threshold is also found

in the relationship between earthquake magnitude and epicentral distance satisfied by 230 of 237

earthquakes with identified coseismic responses,M ≥ 3.02 log10D−5.50, above which coseismic

changes in groundwater level at Tangshan Well mainly occur.This differs considerably from the

thresholdsM = 2.62 log10D andM = 2.62 log10D + 1, (Kitagawa and Matsumoto, 1996) and

M = 2.45 log10D + 0.45, (Matsumoto et al., 2003) which were obtained for groundwater level at

wells in Japan. However, this threshold still supports the interpretation that the size of the responses

is strongly correlated with the “distance-corrected magnitude”. The differences are largely due to

the consideration of transient, rather than sustained, water level changes, to which we can attribute

the difference in intercepts, although the earthquake catalogue limits also differ. We see from the
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larger slope in the present work that the furthest events, not investigated in Kitagawa and Matsumoto

(1996) and Matsumoto et al. (2003), contribute coseismic responses at a rate below that one might

expect based on the earlier thresholds.

The logistic regression analysis confirms, and quantifies, that earthquake magnitude and well–

epicenter distance have very strong influence on the probability of coseismic detection at Tangshan

Well, while the depth and azimuth of an earthquake have little or negligible effect. Similar formulae

for the effects on the delays, and signal amplitude and length have been obtained via multivariate

regression. The conclusions, firstly that earthquakes withlarger magnitudes, and/or shorter well–

epicenter distances are more likely to induce water oscillations at this well and secondly, that such

earthquakes and/or those at shallower depths tend to have smaller delays before the initiation of

detectable water level oscillations, and oscillations with larger amplitudes and longer duration, are

hardly surprising. More importantly, the fitted formulae provide a means of estimating, or compar-

ing, the observed signal characteristics, and identifyingpossible anomalies. Most importantly of

all, the non-negligible residuals, particularly in the case of the delay function, indicate that there are

factors controlling the rate of oscillation initiation in the aquifer that are not accounted for in the

regression meta model. As there are no events of magnitude greater than 6.0 within 1125km of the

well during the study period, earthquake induced changes inthe well–aquifer system (Rojstaczer et

al., 1995) do not appear to provide the reason. Instead they suggest the presence of large-scale local

inhomogeneities in the well–aquifer system (cf. Igarashi et al., 1992).

The travel-time table of Kennett and Engdahl (1991) was usedin the calculations to obtain

the arrival times of the seismic waves. This travel-time table is of course radially symmetric, and

the Tangshan Well is located in an ancient craton where seismic velocities may be significantly

different from those in a spherical model down to a depth of several hundred kilometers. Our

analysis identified, for events close to azimuth0◦ or 180◦ from the well, a significant effect on

the travel time delays. However, as there is no such effect onthe detection probability, and there

appears to be no effect on which seismic wave arrival immediately precedes the initial response,

our conclusions are not affected. The effect of azimuth on the delay can be calculated using the

regression model if required, while there was negligible effect on the maximum amplitudes and

durations of the water level oscillations. Through a seriesof sensitivity analyses, we have also

shown that all the results are also robust to possible±1 minute time reading errors in the well data.
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Chapter 7

HMM and Mutual Information on GPS

Measurements and Earthquakes

7.1 Introduction

Global Positioning System (GPS) was developed by the UnitedStates Department of Defense in

the 1970s and 1980s as a means of global navigation primarilyfor military users. Several hardware

and data processing developments (Blewitt, 1993) and the fact that GPS could potentially be used to

observe ground motions led it to become a geodetic tool. It provides accurate real-time range mea-

surements for point positioning. A constellation of 24 satellites were launched into near-circular

orbits. Range measurements from 4 satellites are sufficientto solve the 3-dimensional (north, east,

up) location of the receiver. A number of methods have been developed which can improve the ac-

curacy of GPS measurements, such as Wide Area Augmentation System, Differential GPS, Inertial

Navigation System and Assisted GPS. This appears to have caused the heteroscedasticity of the data

mentioned in Section 7.4.

Geodetic anomalies preceding large earthquakes have long been of interest due to well doc-

umented pre-earthquake deformation rate changes observedbefore continuous GPS stations were

widely deployed in the early 1990s (Roeloffs, 2006). The GPSmeasurements provide a good oppor-

tunity for scientists to further investigate pre-, co- and post-seismic deformation anomalies, but there

is much ‘noise’ that needs to be filtered out of the observations. There has been considerable inter-

est in whether GPS measurements have any predictive power for earthquake occurrences. Roeloffs

(2006) reviewed the evidence for aseismic deformation ratechanges prior to earthquakes and listed

at least ten credible examples of tectonic earthquakes preceded by deformation rate changes. Ogata
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(2007) detected slow slip during the three years period leading up to the October 2004 magnitude 6.6

earthquake in the Chuetsu area, central Japan, which was also exhibited in GPS observations around

the rupture source. These anomalies were mostly from the apparent long-term pre-earthquake slip.

However, it is very difficult to detect apparent displacement when there are anomalous changes of

the geodetic measurements, and therefore techniques whichcan detect or extract subtle changes in

GPS measurements, which may be related to earthquakes, are necessary.

Hashimoto et al. (2009) applied an inversion method based onBayesian modelling (Matsu’ura

et al., 2007) to horizontal and vertical velocities from GPSdata and concluded that the slip-deficit

zones identified with this method are potential source regions of large earthquakes. Granat and

Donnellan (2002) and Granat (2003) introduced a hidden Markov model (HMM) based method

which was applied to the GPS data from the southern California region. The application to the daily

displacement time series collected in the city of Claremont, California clearly separated the states

before and after the Hector Mine earthquake in October 1999.Granat (2006) applied this method

to the daily GPS data from more than 100 stations of the Southern California Integrated Geodetic

Network. The results revealed that approximately 70 out of the 127 stations had state changes on the

day when the Hector Mine earthquake occurred. However, the different states are clearly dominated

by the long-term trends of each component of the data, and thestates are entered and existed only

once. For example, see Figure 7.1, which corresponds to Figure 5 in Granat (2006). Thus the

method is not suitable for predictive purposes.

Figure 7.1: (Figure 5 in Granat, 2006) Classification results for a seven-state HMM applied to
the GPS data set collected in the city of Claremont, California. (Granted with permission from
Birkhäuser Verlag AG.)
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Figure 7.2 shows the raw daily time series of the GPS measurements of deformation from a

tectonically quiescent area, Alice Springs in Australia. We compare this daily time series with

Figure 7.2: GPS measurements of deformation at Alice Springs, Australia.

the GPS movements from two tectonically active areas: Taupo(see Figure 7.7 for the average of

the GPS measurements from the three stations, HAMT in Hamilton, NPLY in New Plymouth, and

WANG in Wanganui, minus that from Taupo) and Southern California (see Figure 7.33 for the

baselines between the Chilao Flats (CHIL) and the station LBC2 in Long Beach). Note that the

time series from the latter two cases have the reference frame errors canceled by averaging and

leveling (cf., Section 7.3.2 and Section 7.4.1). The daily time series from Alice Springs are evenly

distributed around the linear trend line, whereas for the time series around Taupo and in Southern

California, irregular spikes, occasional step jumps and trend changes are quite obvious from all three

components, north, east and up. This suggests that the data from the tectonically active areas around

Taupo and in Southern California may behave differently from that from a tectonically quiescent

area, and that the trend of each of the GPS components from thetectonically active areas varies.

The changes in the trend may be related to active earthquake occurrences (See also Section 7.2.1,
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the choice of the number of hidden states for HMMs).

Therefore a non-linear filter is introduced for the GPS process which serves as a smoothing tool.

It is able to extract useful signals which are distinguishable from the majority of the data. This non-

linear filter is the range of the trends estimated for the GPS measurements in the previous 10 days.

Essentially, the trend measures the short-term deformation rate. Consequently, this nonlinear filter

calculates the maximum deformation rate changes in the previous 10 days, and reveals anomalous

spikes in the deformation rate changes. For comparison, Ogata (2007) fitted a straight line to the

time series of the baseline distance between each two stations around the 2004 Chuetsu earthquake

during the period from 1997 towards the end of 2000. He then extrapolated the linear trends until

23 October 2004 and detected deviation of the time series from the predicted linear trends. The cu-

mulated slip preceding the 2004 Chuetsu earthquake is estimated to be roughly equivalent toMw6,

which is very close to the magnitude of the Chuetsu earthquake,Mw6.6. This deviation is actually a

long-term deformation rate change, whereas the variable considered in this chapter is the maximum

short-term deformation rate changes in an interval of fixed length.

Studies concerning earthquake genesis indicate that seismicity may have a cyclic nature of some

sort (Sammis and Smith, 1999; Jaumé and Sykes, 1999; Vere-Jones et al., 2001; Jaumé and Beb-

bington, 2004). GPS measurements of deformation may indirectly reflect the underlying dynamics

(the unobservable or hidden states) for earthquake occurrences with large variations relating to a

period of accelerating moment release and small variationscorresponding to a period of quiescence

(see also Section 7.2.1, the choice of the number of hidden states for HMMs). Let us assume that

the hidden states switch among some phases in a seismic cycle. The transitions between phases or

rather states may be assumed to be governed by a Markov chain.The variation of the deformation

rate depends on the unobservable phases. On the basis of thisassumption, HMMs can be used to

extract signals from GPS data which may be related to earthquakes.

The nonlinear filter, which helps to extract subtle changes from the noise in the GPS data, and

the underlying dynamics, which drives the observed process, form an HMM framework. The HMM

can be used on the filtered GPS measurements to categorize thedata into different states and then

investigate the possible link between each category and theearthquakes. Finding a region which

contains both long GPS data and enough earthquakes is not easy. Two data sets are considered,

one from central North Island, New Zealand and the other fromSouthern California. First the non-

linear filter is introduced, which is a functional of the GPS data, and then HMMs are fitted to this

functional, assuming the underlying dynamics switch amonga finite number of phases in a seismic
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cycle. The model will classify the data into different states, each state suggesting particular dynam-

ics. The Viterbi algorithm (Viterbi, 1967; Forney, 1973) isthus used to track the most probable

sequence of states from the GPS data. After that, the mutual information (MI) between each state

from the most likely state sequence and the earthquake occurrences is calculated to examine if there

is any association. A cross validation by dividing the entire data set into two parts is conducted

for the data around Taupo after this examination to verify the declared association. A possible way

of declaring a “Time of Increased Probability” (TIP) for theconsidered region is then discussed.

Consequently, probability forecasts in time are investigated based on a Logistic regression model.

7.2 Methodology

7.2.1 Hidden Markov Model and Mutual Information Analysis

More than one GPS station will be used and the baselines between stations are calculated in order

to cancel the reference frame errors. This provides us threeseries of GPS measurements, north, east

and up. For the three series, the changes of the trend of GPS movements in the previous 10 days are

considered. Take the north componentNt for example. At each time pointt, a line is fitted to the

data{Ns : t− 9 ≤ s ≤ t} using linear regression and the slope of this line is denotedasTt. Then

for eacht, calculate

Rt = max{Ts : t− 9 ≤ s ≤ t} − min{Ts : t− 9 ≤ s ≤ t}, (7.1)

which is the range of deformation rate changes in the previous 10 days, in other words, variation of

deformation rate in the previous 10 days. Note that actually20 days of data are used for calculating

the variableRt at t. As a result, the first 19 days during the selected time periodwill be excluded

from the following study.

This non-linear filter for the GPS process serves as a smoothing tool. As defined in Equation

(7.1), this nonlinear filter is the range of the trends,Tt, in the previous 10 days. Essentially, the

trendTt measures the short-term deformation rate. Therefore, thisnonlinear filter calculates the

maximum deformation rate change in the previous 10 days. Note that this filter is related to the

maximum acceleration,amax, in the previous 10 days through the formula

Rt =
Tmax − Tmin

∆tmax−min
· ∆tmax−min = amax · ∆tmax−min,
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whereTmax = max{Ts : t − 9 ≤ s ≤ t}, Tmin = min{Ts : t − 9 ≤ s ≤ t}, and∆tmax−min =

|arg maxt−9≤s≤t{Ts : t− 9 ≤ s ≤ t}− arg mint−9≤s≤t{Ts : t− 9 ≤ s ≤ t}|. The purpose of this

filter is to identify anomalous spikes in the deformation rate.

After calculating the range of deformation rate change for each component, north, east and up,

a hidden Markov model (HMM) is used to fit this multivariate data set. A multivariate normal dis-

tribution is adopted for the observations (which are the ranges of deformation rates as calculated in

Equation (7.1)). After fitting the model and estimating the parameters, we want to choose a cor-

responding state sequence which best “explains” the observations. The Viterbi algorithm (Viterbi,

1967; Forney, 1973) can be adopted to find the single best state sequence for the given GPS ob-

servations, i.e., to track the most probable sequence of states for the observed data. The algorithm

finds the sequence of states with maximum probability of occurrence, which is different from max-

imizing the individual likelihood of being in stateSi at timet given the observation sequence and

the fitted model. This algorithm will classify the GPS data into several different categories which

can be shown in a 3-dimensional (north, east, up) plot.

For the problem of how many states for the HMM we shall use, a comparison study via simu-

lation experiment was carried out by Bebbington (2007) to investigate the performances of the four

model selection criteria, Akaike Information Criterion (Akaike, 1974), Bayes Information Criterion

(Schwarz, 1978), the corrected AIC (Hurvich and Tsai, 1989)and the penalized minimum-distance

(MacKay, 2002), for selecting the best number of hidden states for HMMs. The simulation experi-

ment showed that the AIC most consistently estimated the correct number of hidden states, for the

small sample sizes common in volcanology, but for the largersample sizes here, the asymptotic

properties of BIC are more appropriate. For this analysis ofthe GPS measurements, although the

sample sizes are large, the number of states will be determined by a different criterion. It will be

selected in order to minimize the number of parameters used,by avoiding detailed modelling of the

‘noise’, while extracting as much ‘signal’ as possible. More details are provided in the first example.

After determining which model to use, mutual information isused to examine whether there

is any association between each state and the earthquake occurrences. In order to calculate the

mutual information between the hidden states, denoted byU, and the earthquake occurrence times,

denoted byV , the hidden states are transformed into0-1 sequences, with 1 indicating the state we

are interested in, 0 otherwise. For example, if we are interested in a state, says, of a hidden Markov

model, then all the days in which the HMM occupies states will be set as 1, and the days the HMM

spends in the other states will be set as 0. In a similar way, the earthquake series have a1 in the
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day of the earthquake occurrence,0 otherwise. The mutual information between two series{Ut+u}
and{Vt} is examined, whereu is the time lag. The mutual information will then be plotted and

compared with the upper level of the approximate 95% confidence interval under the hypothesis

that the two processes are independent. Significant association at negative time lagsu’s suggests

that the current earthquake occurrence is strongly relatedwith the GPS movements in that state

someu days preceding the occurrence. If the significant association shows up at positive time lags,

it means that the earthquakes have significant influence on the GPS movements which are observed

someu days following the earthquake occurrences.

Note that the approximate 95% confidence interval is calculated for two processes which are not

autocorrelated. However, the Viterbi path is autocorrelated being a Markov chain. In order to check

whether this will affect the confidence interval band, we usethe estimated transition probability

matrix of the model to simulate 1000 series of autocorrelated sequences of Markov chains and use

the number of earthquakes divided by the total number of daysas the rate to generate 1000 series of

Poisson processes. We then calculate the mutual information between the 1000 pairs of each Markov

chain and Poisson process and get the simulated upper 95% confidence level for comparison.

7.2.2 Probability Forecast Using a Logistic Probability Model

A ‘Time of Increased Probability’ (TIP) for large earthquakes in a specified ‘region of investigation’

was first introduced by Keilis-Borok and Kossobokov (1990) when they developed the M8 algorithm

to explore the use of pattern recognition methods to distinguish regions or time periods of heightened

earthquake risk. Harte et al. (2007) used the Critical Series developed by Harte et al. (2003) to

declare a TIP. They then utilized the series as a predictor variable to produce probability forecasts

of a target event in the current time interval. From the mutual information analysis, if some state

shows significant association with the earthquake occurrences at negative time lagu, it means that

the GPS movements in this state are correlated with the earthquakes occurring someu days later. We

therefore consider this state a precursory state. We can then define a TIP as follows. We divide the

entire time period into non-overlapping intervalsJi with equal length ofl days. For each intervalJi,

if there is any day in which the HMM visits the precursory state, we consider the following interval

Ji+1 a TIP. The interval lengthl will be determined according to the mutual information results.

The problem of interest is how the GPS deformation rate ranges influence the probability of

declaring a TIP. The objective here is to determine how the explanatory variable, some variable

of the GPS measurements, in the interval{t : t ∈ Ji} influences the probability,P (Ji+1), that a
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large earthquake occurs in the intervalJi+1. The continuous explanatory variable suggests that a

regression analysis may be suitable. The response variable, either a large earthquake occurrence in

the intervalJi+1 or no earthquake occurrence in this interval, which takes onthe value 1 or 0, is

binary. Instead of using a regression directly for the success probability, one usually transforms the

probability scale from the range(0, 1) to (−∞,∞), and then uses a regression for the transformed

values. Logistic transformation is usually recommended because it is more convenient. Moreover,

it provides a direct interpretation in terms of the logarithm of the odds of success, which is defined

to be the ratio of the probability of a success to the probability of a failure,P (Ji)/(1 − P (Ji)).

Hence we can use logistic regression with binomial errors (see Collett, 1991 for example). LetMi

be some variable of the GPS measurements in the intervalJi. The variableMi is used as a linear

predictor of a target event in the time intervalJi+1 in a Logistic linear regression

f(Ji+1) = β0 + β1Mi,

where

f(Ji+1) = log

(
P (at least one earthquake inJi+1)

1 − P (at least one earthquake inJi+1)

)

is the log-odds ratio. We obtain the probability of a target event in the time intervalJi+1 through

P (at least one earthquake inJi+1) =
exp{f(Ji+1)}

1 + exp{f(Ji+1)}
.

We will fit this model to the data and examine whether there is any significant influence of the GPS

deformation rate ranges on the probability of large earthquake occurrences. The parameters in this

model will be estimated using the glm function in R package.

7.3 Data from Central North Island, New Zealand

We consider data from central North Island, New Zealand, located near the boundary of the Aus-

tralian tectonic plate. According to DeMets et al. (1994), the Pacific and Australian tectonic plates

are converging obliquely at about 42 mm/yr, accommodated bysubduction of the Pacific plate and

deformation of the overlying Australian plate (see Figure 7.3, which corresponds to Figure 1 in

Reyners et al., 2006). The figure also outlines the Taupo Volcanic Zone (TVZ), an active continen-

tal rift in the central North Island. Wallace et al. (2004) showed that the TVZ region has a total
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Figure 7.3: (Figure 1 in Reyners et al., 2006) Digital elevation map of the central North Island,
New Zealand and its tectonic settings. The arrow indicates the velocity of the Pacific plate relative
to the Australian plate (DeMets et al. 1994). The Taupo Volcanic Zone is outlined and subdivided
into three distinct segments: andesite-dominant (AD) conevolcanoes in the northern and southern
segments, and rhyolite-dominant (RD) caldera volcanoes (shown dashed) in the central segment
(Wilson et al. 1995). NIDFB denotes the North Island DextralFault Belt. (Granted with permission
from Wiley-Blackwell.)

predicted extension rate of about 15 mm/yr at the Bay of Plenty, decreasing to< 5 mm/yr near the

southwestern termination of the TVZ. They also showed evidence of clockwise rotation of the fore-

arc east of the TVZ, which is accommodated in the backarc by extension of the TVZ in the north,

and by compression of the Wanganui Basin in the south (Reyners et al., 2006). Reyners (2009)

suggested that the stresses driving the opening of the TVZ continue to be active at its southern ter-

mination which is marked by extensive earthquake activity throughout the crust to depths in excess

of 40 km.

The GPS data can be obtained from the New Zealand GeoNet website (http://www.geonet.org.-

nz/resources/gps/, last accessed on March 31, 2009). The daily estimates of relative coordinates are

determined through the GPS processing using Bernese v5.0 software developed by the Astronomi-

cal Institute of the University of Bern. The coordinates andtheir formal uncertainties are converted

to three dimensional displacement, north, east and up, in millimeters from an initial point. GeoNet

removed some dubious data which are very different from the neighboring data points. We exam-
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ine the resulting ‘raw’ daily GPS time series around Taupo. The continuous GPS stations around

Lake Taupo which have the longest records available online for GPS measurements are HAMT in

Hamilton, NPLY in New Plymouth, and WANG in Wanganui which are located on the west side

of the TVZ; DNVK in Dannevirke, GISB in Gisborne and HAST in Hastings which are located

on the east side of the TVZ; and TAUP in Taupo. See Figure 7.4 for the locations of the stations.

The information on the GPS measurements at these stations are summarized in Table 7.1. The

HAMT

NPLY

WANG

TAUP
GISB

HAST

DNVK

Depth less than 40km
Depth between 40km and 100km
Depth between 100km and 200km
Depth greater than 200km

Continuous GPS stations

174 176 178E

40
39

38
S

Figure 7.4: Location map for the GPS stations and earthquakes around Lake Taupo. The symbol
N indicates the location of a GPS station. The earthquakes areselected from the rectangular area.
The small size of the symbols for earthquakes is for earthquakes with magnitude larger than 4.2
and smaller than 5.1; the large size for earthquakes with magnitude larger than 5.1. The maximum
magnitude of the earthquakes in this area is 5.9.

missing data information during the time period from 2003.06.02 to 2008.12.31 is shown in Ta-

ble 7.1 as well. The longest missing interval for NPLY is 33 days which occurred in early 2004

(2004.01.29—2004.03.01), other than that, the three stations on the west side of the Taupo Vol-

canic Zone have less missing data than the other three. So we will use the GPS measurements from

HAMT, NPLY and WANG from 2004.03.02 to 2008.12.31 (1766 days) to avoid the 33 days missing

data referred to above. Other missing data are interpolatedby setting each of them as the mean of

the non-missing data within the 10 days ahead of and 10 days following the missing point. Note

that this is conservative in the model defined in (7.1).

Earthquakes in a rectangular area around Lake Taupo are chosen between latitude 37.82S and
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Table 7.1: Information of the GPS measurements around Taupo, whereNm is the number of miss-
ing data from 2003.06.02 to 2007.12.31,Lm1 andLm2 are the numbers of missing data in the
intervals which have the most and the second most amount of missing data for each station, and
‘Direction of movement’ means the direction of long-term movement of each station relative to
TAUP.

Station Available record Nm (day) Lm1 (day) Lm2 (day) Direction of movement

DNVK 2002.06.05 — 37 4 4 southwest,down
GISB 2002.05.14 — 58 15 10 southwest,down

HAMT 2003.05.13 — 14 3 3 northwest,down
HAST 2002.09.19 — 46 12 5 southwest,down
NPLY 2003.03.20 — 88 33 10 northwest,down
TAUP 2002.03.22 — 16 5 3 N/A
WANG 2003.04.10 — 12 3 3 northwest,down

39.82S and between longitude 174.72E and 177.12E, from 2004.03.02 to 2008.12.31. The Gutenberg-

Richter law states that the total number of earthquakes in a population that are larger than or equal to

some magnitudeM varies as10bM (Ishimoto and Iida, 1939; Gutenberg and Richter, 1944). It sug-

gests thatlog10(Proportion of events with magnitude> M) is proportional tobM . The frequency–

magnitude plot is shown in Figure 7.5. We can see that there isa change of the slope at magnitude

4.2 and another change at magnitude 5.1. We will therefore consider two cases: earthquakes with
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Figure 7.5: Frequency–magnitude plot for the earthquakes during the period 2004.03.02 to
2007.12.31 in the area between latitude 37.82S and 39.82S and longitude 174.72E and 177.12E.

magnitude larger than or equal to 4.2 (178 events in total) and those larger than or equal to 5.1 (27
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events in total). See Figure 7.4 for the location map of the earthquakes.

7.3.1 NHMM and MMGLM Analyses of the Earthquake Data with Anc illary GPS

Measurements

As a preliminary look to see whether incorporating the original non-filtered GPS baselines into an

HMM framework will help classify the underlying dynamics into different regimes, an exploratory

analysis is carried out using the three different HMMs reviewed in Chapter 2. Firstly, a discrete-

time HMM with binary distribution is fitted to the earthquakeoccurrences around Taupo. Secondly,

an NHMM is used with binary earthquake occurrences as observations and the first differences

of the GPS measurements (three components, north, east and up) as covariates which influence

the transition probabilities via the model (2.17). Thirdly, the data are examined via an MMGLM

with binary earthquake occurrences as observations and thedistance of the first differences of the

GPS measurements to the origin (0,0,0) as a covariate which influences the observed earthquake

sequence via a generalized linear model with Bernoulli family and logit link (2.26). We take a look

at an example with three hidden states for each of the three models. The estimated most likely

sequence of states for each model is tracked via the Viterbi algorithm. The earthquake occurrences

and the Viterbi path for each of the models are plotted in Figure 7.6. We can see that the state

changes in the HMMs appear to be following the earthquakes rather than preceding them, and thus

incorporating the GPS measurements into the HMM framework directly does not seem to provide

any precursory information. The three models are very similar in outcome.

As mentioned in Section 7.1, the irregular spikes in the GPS measurements might be related to

earthquake activity. However, using the original data (first differences) do not seem to help extract

any signals. Therefore, we need to consider some other methods to extract the potential signals,

such as the non-linear filter presented in the previous section.

7.3.2 Hidden Markov Model and Mutual Information Analyses

Analysis of the Entire Data

The GPS measurements of deformation at the three stations, HAMT, NPLY and WANG, are av-

eraged and then subtracted from the measurements at TAUP station, to cancel the reference frame

errors. We get three series of GPS measurements, north, eastand up as shown in Figure 7.7. For

the three series, consider the variableRt, defined in (7.1), of GPS movements, i.e., the range of
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Figure 7.6: Earthquake occurrences and Viterbi paths from the HMM, NHMMand MMGLM
analyses.
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Figure 7.7: GPS movements of HAMT, NPLY and WANG relative to TAUP.

deformation rate observed in the previous 10 days. HMMs starting with 3 hidden states are fitted

to the data. For the sake of easy comparison between models with different numbers of states, the

states are ordered according to the Euclidean distance of the estimated means in each state from the

origin (0,0,0). The log likelihood and the BIC value of each model are listed in Table 7.2. We can
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Table 7.2: The log likelihood (LL) and BIC values of the fitted models to the entire data around
Taupo and in Southern California (CA), where ‘# of S’ is shortfor the number of states in the model.

Taupo
# of S LL BIC # of S LL BIC

3 1660.57 -3127.03 8 2872.05 -4915.41
4 2013.22 -3735.28 9 3047.08 -5093.76
5 2302.17 -4201.20 10 3166.47 -5145.91
6 2549.70 -4569.34 11 3220.44 -5052.27
7 2744.21 -4816.51

CA
# of S LL BIC # of S LL BIC

3 528.01 -841.60 8 3336.89 -5758.41
4 1337.08 -2352.55 9 3573.67 -6042.29
5 2023.04 -3600.77 10 3787.20 -6263.17
6 2586.31 -4587.11 11 4122.24 -6710.59
7 2999.45 -5256.69 12 4178.39 -6583.75

clearly see that the log likelihood is monotonically increasing and the BIC reaches its maximum

when 10 hidden states are considered which implies 159 parameters for less than 2000 data, too

many for stability.

The purpose of this exploratory GPS data analysis using HMMsis to look for precursory signals.

Let us compare the precursory information captured by each of the models. For each of the models

with up to 10 hidden states, the Viterbi algorithm is used to track the most probable hidden state

sequence corresponding to the GPS measurements. It categorizes the data into different classes

each having the mean and standard deviation vectors from thecorresponding state. As discussed in

Section 7.1, the trend of each of the GPS components from tectonically active areas varies largely

compared to that from a tectonically quiescent area. This suggests that the large variations in the

trend may be related to active seismicity. As the aim is to examine whether a large variation of the

trend has any predictive power for large earthquakes, consequently the largest state, the state which

is the furthest from the origin, in each model will be examined. This state, on average, has the largest

variations in the deformation rate. Then, for each model, firstly, the hidden states, denoted byU,

and the earthquake occurrence times with minimum magnitude5.1, denoted byV , are transformed

into 0-1 sequences as described in Section 7.2.1; secondly, the mutual information between the two

series{Ut+u} and{Vt} are calculated with a time lagu. The mutual information between the largest

state of each of the models and earthquakes with minimum magnitude 5.1 is shown in Figure 7.8.
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Figure 7.9 shows the mutual information between the state which mainly accounts for the north-

component movement of each of the HMMs with 7, 8, 9 and 10 hidden states and the earthquakes.

We can see that both the ‘largest’ state with the greatest variation in the deformation rate, and the

state which mainly accounts for the north-component movement present preseismic information.

Table 7.3 lists the number of precursory states in each of themodel with up to 10 hidden states and

the proportion of data in the precursory state(s). Examining the precursory states for the HMM with

10 hidden states down to 6 or 5 hidden states, we can clearly see that the two precursory states meld

into one state in the 5 or 6 state model. Moreover, we are interested in extracting signals from the

GPS measurements, rather than modelling the noise perfectly which is what the model selected by

the BIC tries to do. We want the concentrated information in one state, and thus will concentrate on

the class of movements with the greatest variation. There isa subtle distinction, and thus we will

try and select the number of states on a slightly different criterion.

Table 7.3: The proportion of data in the precursory state(s) for data around Taupo, where ‘# of S’
is short for the number of states in the model, ‘# of P’ is shortfor the number of precursory states
in the model, and ‘proportion’ is the proportion of data in the precursory state(s).

# of S # of P proportion # of S # of P proportion

3 1 0.273 7 2 0.187
4 1 0.139 8 2 0.163
5 1 0.150 9 2 0.154
6 1 0.151 10 2 0.163

Beginning from a three-state model, we add more states one ata time. When the models start to

consistently capture this state with very close means and variances (the distance from the meanµkj

in (2.12) in Section 2.2 of this state in thes state model to that of this state in thes− 1 state model

is less than 0.1mm; for each component the difference of the standard deviationsσkj in (2.13) in

Section 2.2 between the two models is less than 0.05mm) and consisting of nearly the same amount

of the data, saya% of the data (i.e., the proportion of time in this state is constant with±1%, which

is the stationary distribution of the Markov chain occupying this state as defined in Appendix D),

we stop adding more states. The model with the smallest number of parameters among those whose

largest states consist ofa% of the data is then chosen.

The state transitions of the fitted 3, 4, 5 and 6 state models are shown in Figure 7.10. We see

that the proportion of time that the four models spend in the state furthest from the origin (0,0,0) are

respectively 0.273, 0.139, 0.150 and 0.151. The fitted 5 and 6state models consistently capture the
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Figure 7.8: For data around Taupo. (a): Mutual information between the largest state in each of
the HMMs with 3, 4, 5 and 6 hidden states and earthquakes of minimum magnitude 5.1 with a time
lag u. (b): Mutual information between the largest state in each of the HMMs with 7, 8, 9 and
10 hidden states and earthquakes of minimum magnitude 5.1 with a time lagu. The dashed lines
show the upper level of the approximate95% confidence interval under the hypothesis that the two
processes are independent.
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Figure 7.9: For data around Taupo. Mutual information between the statewhich accounts for the
north-component movement in each of the HMMs with 7, 8, 9 and 10 hidden states and earth-
quakes of minimum magnitude 5.1 with a time lagu. The dashed lines show the upper level of the
approximate95% confidence interval under the hypothesis that the two processes are independent.

Table 7.4: The parameter estimates of the fitted five-state HMM for data around Taupo. The nor-
malized means are obtained by subtracting the mean vector ofstate 1 from the mean vector of each
state and then dividing the result by the standard deviationvector of state 1.

State 1 2 3 4 5

Estimated north 0.171 0.338 0.240 0.224 0.514
means east 0.254 0.261 0.248 0.579 0.511

up 1.030 1.140 1.840 1.810 1.960

Estimated north 0.044 0.066 0.066 0.057 0.138
standard east 0.094 0.088 0.072 0.190 0.233
deviations up 0.260 0.310 0.300 0.680 0.742

Estimated state 1 0.911 0.042 0.035 0.012 0.000
transition state 2 0.037 0.892 0.030 0.004 0.037
probability state 3 0.053 0.027 0.889 0.017 0.014
matrix state 4 0.033 0.002 0.027 0.924 0.014

state 5 0.000 0.040 0.015 0.032 0.914

Normalized north 0 3.8 1.6 1.2 7.8
means east 0 0.1 -0.1 3.5 2.7

up 0 0.4 3.1 3.0 3.6
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Figure 7.10: Illustration of state transitions for HMMs with 3 states (a), 4 states (b), 5 states (c) and 6 states (d) for data around Taupo. Circle sizes are
proportional to the stationary distribution of the hidden Markov chain, i.e., the proportion of time in each state, which is shown as the number besides
each circle. The thickness of the arrows is proportional to the transition probabilities. The numbers inside the circles indicate the states and are located
at the means of the states estimated from the fitted model.
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Figure 7.11: Sojourn time distribution for the fitted five-state HMM (thick lines) to the entire data,
with the thin lines (for comparison) indicating Geometric distributions, each with mean calculated
from the sample mean of the sojourn time in each state (Taupo).

furthest state with nearly the same mean and standard deviation for each GPS component, consisting

of about 15% of the entire data. We therefore consider the 5 state hidden Markov model on the

ground of the criterion discussed above. Given that the sojourn time in any state of a homogeneous

discrete-time Markov chain has a Geometric distribution, we conduct a K-S test for the sojourn

time distributions of the fitted five-state model. The P-values of the tests for State 1 to State 5 are,

respectively, 0.1340, 0.2211, 0.0356, 0.1628, and 0.5242,which are not significantly different from

the null hypothesis, given the multiple comparison issue. The sojourn time distribution for each

state is shown in Figure 7.11.

The fitted five-state HMM results are shown in Table 7.4. State5, the furthest from the origin,

has the largest variances for all three components, and apart from the east component, the largest

mean. State 5 does not transit to State 1 and vice versa. The stationary distribution for the Markov

chain, i.e. the proportion of time in each state, is shown in Figure 7.10(c). The Markov chain spends

the least amount of time in State 5 and mostly occupies State 1. State 1 has the least variation in

trend ranges which we consider as a ground state. If we normalize the five states, by subtracting

the mean vector of state 1 from the mean vector of each state and then dividing the result by the

standard deviation vector of State 1, we see how each state moves relative to the ground state. The

resulting normalized means are shown in Table 7.4. State 2 deviates from the ground state largely in
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the north component. The main deviation of State 3 from the ground state is in the up component.

Both the 4th and 5th states appear to deviate in the east and upcomponents, while the 5th state also

has the largest deviation in the north component.

In theory, the standard errors may be calculated using the approximate Hessian of the negative

log likelihood at the minimum. However, this is only valid asymptotically, and the standard errors

obtained this way will be very unstable if the sample size is not large enough (McLachan and Peel,

2000) for the number of parameters. With 55 parameters for less than 2000 data, the results will not

be reliable, and the errors will be highly correlated. Instead, to see how well the HMM fits the data,

we compare the histogram of the deformation rate ranges of each GPS component (north, east and

up) and the mixed density of the five states,

5∑

i=1

πifi(x, µki, σki),

whereπ = (π1, · · · , π5) is the stationary distribution of the estimated transitionprobability matrix,

f(·, ·, ·) is the normal density function,k indicates either north, east or up component,µki is the

estimated mean of componentk in Statei, andσki is the estimated standard deviation of component

k in Statei. Figure 7.12 shows the plots of the histograms of the deformation rate ranges of all three

components along with the estimated mixed density. We can see that the fitted five-state model

captures very well the main features of the data.

The deformation rate changes of GPS east component versus north, up versus north, and up

versus east are plotted in Figures 7.13 to 7.15, with five symbols indicating the different classes (or

states) in which the points are categorized (using the Viterbi algorithm). We see that the ellipse

which illustrates the projected standard deviations of State 5 on the north-east surface centered at

the estimated means does not overlap with that of the other states on that surface. Neither does that

on the north-up surface. However, a large part of the standard deviation ellipse of State 5 on the

east-up surface is covered by that of State 4 (Figure 7.15). It is obvious that State 5 (or the data

in the 5th class) is clearly separated from the other states,except on the east-up surface, where it

is mixed with State 4. The most likely state sequence trackedusing the Viterbi algorithm and the

trend ranges of the GPS movements as calculated in Equation (7.1) are plotted in Figure 7.16. The

occurrence times of the earthquakes with magnitude larger than or equal to 5.1 are also shown in

this figure. We can clearly see spikes in the trend ranges before some of the earthquake occurrences.

Notice that when the HMM visits State 5, a large earthquake often follows. In order to examine
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Figure 7.12: Histograms of the deformation rate ranges along with the estimated mixed normal
density (Taupo).
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Figure 7.13: Scatter plot of the deformation rate ranges of the east component versus that of the
north component. The ellipses illustrate the projected standard deviations for the north and east
directions centered at the estimated means (Taupo).
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Figure 7.14: Scatter plot of the deformation rate ranges of the up component versus that of the north
component. The ellipses illustrate the projected standarddeviations for the north and up directions
centered at the estimated means (Taupo).
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Figure 7.15: Scatter plot of the deformation rate ranges of the up component versus that of the east
component. The ellipses illustrate the projected standarddeviations for the east and up directions
centered at the estimated means (Taupo).
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Figure 7.16: The Viterbi path and the trend changes of the GPS movements inthe previous 10 days
(Taupo), with vertical lines indicating the earthquake occurrence times with magnitude larger than
or equal to 5.1.

whether this association is statistically significant, themutual information between each state and

the earthquake occurrences will be calculated.

The mutual information results for the five-state model are shown in Figure 7.17(a) for earth-

quakes with minimum magnitude 4.2, and in Figure 7.17(b) forearthquakes with minimum mag-

nitude 5.1. For earthquakes with minimum magnitude 4.2, themutual information suggests that

States 3 and 5 show some preseismic information and State 2 may have some postseismic infor-

mation, while the other states show little association withthe earthquakes. When we use a larger

threshold, magnitude larger than or equal to 5.1, the preseismic information in State 5 becomes

stronger, while the other states appear to show little association with the earthquakes. State 5 is thus

the ‘precursory state’. The preseismic information in State 3, which accounts for the up component

movement, weakens when increasing the magnitude threshold. This information may be related to

the cluster effect either of the foreshocks or due to the previous large earthquakes. The postseismic

state, State 2, appears to be mainly associated with small earthquakes. The mutual information be-

tween State 1 and the earthquakes for both magnitude thresholds shows little association. Moreover,

State 1 is the closest to the origin. It may be the background state which suggests little movement

of the underlying dynamics. As for State 4, it is more like an intermediate state between States 2
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and 5, or between mainshock and aftershocks.

In order to validate the significance of the association, thesimulated 95% confidence interval is

calculated. Note that there is no observable clustering in this earthquake data set. We simulate 1000

series of Poisson processes with intensity equal to the number of earthquakes divided by the total

number of days, and 1000 Markov chains using the estimated transition probability matrix from the

fitted 5 state model. The mutual information between the 1000pairs of processes is calculated and

the simulated upper 95% confidence level can then be obtained. The dot-dash lines in Figure 7.17

indicate the simulated confidence levels for comparison. The preseismic information of State 5

is very clearly shown in the plot above the dot-dash line. This verifies that the association is not

arbitrary, and confirms State 5 as a precursory state for the fitted five-state model. Note that by using

6 hidden states, the analysis results in a very similar conclusion to the five-state model in terms of

precursory information. However, the five-state model contains less parameters and hence is more

stable.

Cross validation

In order to verify this association, a cross validation is carried out. A five-state HMM is fitted to

the first half of the GPS data to get the parameter estimates for the model. Then these estimated

parameters are used to track the Viterbi path for the second half of the data. After that the mutual

information between the estimated Viterbi path and the earthquakes occurring during this time pe-

riod is calculated. The estimated parameters are listed in Table 7.5. Consistent with the result for

the entire GPS data, we can see that the furthest state from the origin, State 5, which has the largest

variances for all three components, and State 1 do not transit to each other. The mutual informa-

tion between the estimated Viterbi path for the second half and the corresponding earthquakes are

shown in Figure 7.18(a) for earthquakes with minimum magnitude 4.2, and in Figure 7.18(b) for

earthquakes with minimum magnitude 5.1. The result suggests little association between the Viterbi

path and earthquakes with minimum magnitude 4.2. However, the preseismic information remains

in State 5, which, as shown above, is equivalent to the precursory State 5 for the entire data, when

we use the magnitude threshold 5.1.

Conversely, the HMM is fitted to the second half and calculatethe mutual information for the

first half. The estimated parameters for the second half are listed in Table 7.6. State 5 has the

largest trend ranges and the largest variances for the threecomponents. This state, equivalent to the

precursory State 5 for the entire data, does not transit to State 1 and vice versa. This result is also
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Table 7.5: The parameter estimates of the fitted five-state HMM to the first half of GPS data
(Taupo).

State 1 2 3 4 5

Estimated north 0.177 0.347 0.193 0.246 0.554
means east 0.255 0.266 0.664 0.306 0.503

up 1.029 1.151 1.371 1.891 1.893

Estimated north 0.045 0.070 0.049 0.065 0.154
standard east 0.096 0.081 0.208 0.103 0.226
deviations up 0.268 0.230 0.525 0.361 0.733

Estimated state 1 0.913 0.036 0.011 0.039 0.000
transition state 2 0.035 0.888 0.000 0.055 0.023
probability state 3 0.053 0.000 0.933 0.000 0.014
matrix state 4 0.049 0.035 0.000 0.900 0.016

state 5 0.000 0.055 0.018 0.009 0.918

Table 7.6: The parameter estimates of the fitted five-state HMM to the second half of GPS data
(Taupo).

State 1 2 3 4 5

Estimated north 0.152 0.230 0.333 0.242 0.498
means east 0.187 0.325 0.200 0.530 0.593

up 1.280 1.060 1.580 1.958 1.978

Estimated north 0.035 0.057 0.083 0.064 0.114
standard east 0.041 0.060 0.061 0.171 0.238
deviations up 0.441 0.324 0.513 0.651 0.806

Estimated state 1 0.934 0.024 0.030 0.012 0.000
transition state 2 0.023 0.919 0.032 0.025 0.000
probability state 3 0.016 0.036 0.917 0.008 0.023
matrix state 4 0.019 0.024 0.010 0.927 0.021

state 5 0.000 0.000 0.017 0.054 0.929

consistent with the entire data set. The mutual informationfor the first half, shown in Figure 7.19(a)

for earthquakes with minimum magnitude 4.2, shows some association between the Viterbi path

and earthquakes with minimum magnitude 4.2. The preseismicinformation remains in State 5 and

becomes clearer for larger magnitude threshold (Figure 7.19(b)).

For each of the above models (the HMM fitted to the entire data,the HMM fitted to the first half,

and the one fitted to the second half), the precursory state (State 5) does not transit to State 1. In

addition, State 1 has the smallest mean and standard deviation for the north component in all three
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models. This state shows little association with the earthquake occurrence. It may be the quiescent

state. This further justifies the selection of the number of states in the HMMs.

Analysis Using Only North and East Components

The Euclidean distance of the variableRt from the origin(0, 0, 0) is also calculated, which is

√
R2

Nt +R2
Et +R2

Ut,

and then HMMs are fitted to the data. However, due to the fact that the up component is approxi-

mately 4 times as large as the north or east components and hasabout 3 times the standard deviation

of the other two, it becomes the dominant factor for the Euclidean distance. The Euclidean distance

down-weights the north and east component effects. The HMM analysis on this distance does not

work as well as the analysis on all three components as the calculated Euclidean distance becomes

less informative. Therefore the HMMs are fitted to the north and east components only, and to the

Euclidean distance calculated only using north and east components. As this issue will also affect

the probability forecast using the Euclidean distance, another probability forecast is conducted only

considering the north and east components.

The HMMs are fitted to the deformation rate ranges from the north and east components with

different numbers of hidden states. The state transitions for the fitted 3, 4, 5 and 6 state HMMs are

shown in Figure 7.20. Note that the states are ordered according to the Euclidean distance of the

estimated means in each state from the origin (0,0). The fitted results for the five-state model are

Table 7.7: The parameter estimates of the fitted 5 state HMM for the case when only the north and
east components are considered (Taupo).

State 1 2 3 4 5

Estimated north 0.175 0.345 0.227 0.227 0.525
means east 0.190 0.223 0.345 0.631 0.515

Estimated north 0.045 0.061 0.063 0.062 0.133
s.d. east 0.046 0.065 0.060 0.188 0.229

Estimated state 1 0.913 0.034 0.053 0.000 0.000
transition state 2 0.039 0.887 0.041 0.000 0.033
probability state 3 0.032 0.029 0.906 0.021 0.012
matrix state 4 0.024 0.000 0.043 0.923 0.010

state 5 0.000 0.042 0.011 0.026 0.921
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Figure 7.17: For data around Taupo. (a): Mutual information betweenU andV (for earthquake
magnitude larger than or equal to 4.2) with a time lagu. (b): Mutual information betweenU andV
(for earthquake magnitude larger than or equal to 5.1) with atime lagu. The dashed lines show the
upper level of the approximate95% confidence interval under the hypothesis that the two processes
are independent. The dot-dash line in each plot is the calculated 95% confidence level from the
1000 simulated earthquake series and 1000 simulated Markovchains.
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Figure 7.18: For data around Taupo. (a): Mutual information betweenU andV (for the second half
with earthquakes greater than or equal to 4.2) with a time lagu. (b): Mutual information between
U andV (for the second half with earthquakes greater than or equal to 5.1) with a time lagu. The
dashed lines show the upper level of the approximate95% confidence interval under the hypothesis
that the two processes are independent.
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Figure 7.19: For data around Taupo. (a): Mutual information betweenU andV (for the first half
with earthquakes greater than or equal to 4.2) with a time lagu. (b): Mutual information betweenU
andV (for the first half with earthquakes greater than or equal to 5.1) with a time lagu. The dashed
lines show the upper level of the approximate95% confidence interval under the hypothesis that the
two processes are independent.



154
C

H
A

P
T

E
R

7
.

H
M

M
A

N
D

M
I

O
N

G
P

S
M

E
A

S
U

R
E

M
E

N
T

S
A

N
D

E
A

R
T

H
Q

U
A

K
E

S

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

State transitions

north

ea
st

1 2

3

0.417

0.340

0.243

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

State transitions

north

ea
st

1
2

3

4

0.244 0.221

0.321

0.214

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

State transitions

north

ea
st

1
2

3

4

5

0.234 0.198

0.294

0.130

0.144

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

State transitions

north

ea
st

1

2

3

4

5

6

0.218

0.259

0.173

0.139

0.112

0.099

(d)

Figure 7.20: Illustration of state transitions for HMMs with 3 states (a), 4 states (b), 5 states (c) and 6 states (d) for data around Taupo, using the north
and east components only. Circle sizes are proportional to the stationary distribution of the hidden Markov chain, i.e., the proportion of time in each
state, which is shown as the number besides each circle. The thickness of the arrows is proportional to the transition probabilities. The numbers inside
the circles indicate the states and are located at the means of the states estimated from the fitted model.
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Figure 7.21: The mutual information for data around Taupo only using the north and east com-
ponents. (a): Mutual information betweenU andV (for earthquakes with minimum magnitude
4.2) with a time lagu. (b): Mutual information betweenU andV (for earthquakes with minimum
magnitude 5.1) with a time lagu. The dashed lines show the upper level of the approximate95%
confidence interval under the hypothesis that the two processes are independent.
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listed in Table 7.7. The mutual information between the Viterbi path{Ut+u} and the earthquakes

{Vt} for the five-state model is examined, whereu is the time lag. The mutual information results

are shown in Figure 7.21. The state furthest from the origin,State 5, which has the largest variances

for both north and east components, and State 1, which is the closest state to the origin and has the

smallest variances for both components, do not transit to each other. When the magnitude threshold

is increased, the preseismic information in state 5 becomesstronger, whereas the mutual information

for the other states becomes less significant.

The scatter plot of the deformation rate ranges from the eastcomponent versus that from the

north component, with five symbols indicating the differentstates in which the points are tracked

to be (using the Viterbi algorithm), is shown in Figure 7.22.It is obvious that all 5 states are
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Figure 7.22: Scatter plots of the deformation rate ranges of the east component versus that of the
north component (Taupo). The ellipses illustrate the projected standard deviations for the north
and east directions centered at the estimated means from theHMM fitted to the north and east
components only.

clearly separated from each other. The standard deviation contour projection of each state does not

overlap with the others. The most likely state sequence tracked using the Viterbi algorithm and

the deformation rate ranges of the GPS movements as calculated in Equation (7.1) are plotted in

Figure 7.23, with the occurrence times of the earthquakes with minimum magnitude 5.1. We can

clearly see spikes in the trend ranges before some of the earthquake occurrences. We also notice that
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Figure 7.23: The Viterbi path and the trend changes of the GPS movements (north and east compo-
nents) as calculated in Equation (7.1), with vertical linesindicating the earthquake occurrence times
with magnitude larger than or equal to 5.1 (Taupo).

when the HMM visits State 5, then a large earthquake often follows. The sojourn time distribution

for each state of the fitted 5 state model is shown in Figure 7.24. The P-values of the K-S tests for

State 1 to State 5 are, respectively, 0.1154, 0.1195, 0.0832, 0.4084, and 0.3270, indicating that the

distribution of the sojourn time in each state is approximately Geometric.

We consider the Euclidean distance of the ranges of the northand east components from the

origin (0,0),D1t =
√
R2

Nt +R2
Et. The HMMs are fitted to the distance (with normal distribution

for the observations) with different numbers of hidden states. We examine the mutual information

between the Viterbi path{Ut+u} and the earthquakes{Vt} respectively for the fitted models with

different states, whereu is the time lag. The mutual information results (see, e.g., Figure 7.25 for

the mutual information between the earthquakes and the Viterbi path of the fitted five-state model)

suggest that for the purpose of extracting preseismic signals, using the Euclidean distance is not as

informative as using the separate components.
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Figure 7.24: Sojourn time distribution for the fitted five-state HMM (thick lines) using the north
and east components, with the thin lines (for comparison) indicating Geometric distributions, each
with mean calculated from the sample mean of the sojourn timein each state (Taupo).

7.3.3 Probability Forecast Using Logistic Probability Model

Forecast Using All Three Components of GPS Measurements

According to the mutual information between State 5 and earthquake occurrences with minimum

magnitude 5.1 for the entire data around Taupo (in Section 7.3.2), we define a TIP as follows. We

divide the entire time period into non-overlapping intervals Ji with equal length of 10 days. For each

intervalJi, if there is any day in which the HMM visits State 5, we consider the following interval,

Ji+1, a TIP. A contingency table for testing whether the 5th stateis related with the large earthquake

occurrences can be conducted using the two categorical variables: for each interval, whether it is

a TIP and whether there is any earthquake with minimum magnitude 5.1 occurring in this interval.

The contingency table for this purpose is shown in Table 7.8.It indicates a sensitivity of 0.45 and a

specificity of 0.77. The Chi-squared statistic of this contingency table with the null hypothesis that

the two variables are statistically independent is 4.1865,with a P-value of 0.04. This shows some

evidence (at significance level of 0.05) that, whether the HMM visits State 5 in the current interval

is related to whether there is large earthquake occurrence in the following interval. This further

confirms the mutual information conclusion for State 5.
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Figure 7.25: Mutual information betweenU (for the Euclidean distance calculated from the north
and east components around Taupo, five-state HMM) andV (for earthquake magnitude larger than
or equal to 5.1) with a time lagu. The dashed lines show the upper level of the approximate95%
confidence interval under the hypothesis that the two processes are independent.

Table 7.8: Contingency table, where ‘Yes’ indicates that there is an earthquake with minimum
magnitude 5.1 occurring in the intervalJi+1, and ‘No’ indicates that there is no large earthquake
occurrence in that time interval (Taupo).

Yes No Total

Ji+1 a TIP 10 34 44
Ji+1 not a TIP 12 117 129
Total 22 151 173

Table 7.9 lists the details of the state transitions preceding and following the earthquakes with

magnitude 5.1 and larger. Some 18 out of 26 large earthquakes(about 70 percent) are preceded by

sojourning in State 5 in the previous three states and the state in which the earthquake occurs. The

three state transitions are all within 70 days. Some 13 of them have the transition pattern 2–5, and 7

of them have the pattern 2–5–2. We then look at the three statetransitions following the earthquake

occurrences. After the earthquake occurrences, some 10 outof 26 correspond to that the process

either stays in State 3 and then transits to State 1, or transits to State 3 and then to State 1. Some 8

of the 26 transition patterns transit to State 3 after visiting the state in which earthquakes occurred,
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Table 7.9: State transition pattern for earthquakes with magnitude 5.1 or larger (Taupo). For each
transition pattern, the first three states are the three consecutive states preceding the earthquake
state, the fourth (in bold) is the state in which the earthquake occurred, and the last three are the
three following the earthquake state.

Date Mag Latitude Longitude Depth (km) state transition
2004.04.17 5.5 -37.99 176.69 133.06 2-3-1-4-1-3-1
2004.07.18 5.1 -38.00 176.51 5 1-2-5-2-1-3-2
2004.07.20 5.2 -38.98 174.76 578.47 2-5-2-1-3-2-3
2005.07.31 5.4 -38.38 175.99 192.67 3-1-2-5-2-3-2
2005.08.01 5.7 -37.89 176.36 217.11 1-2-5-2-3-2-1
2006.01.28 5.5 -38.57 175.82 164.36 1-2-5-2-5-3-1
2006.04.08 5.3 -38.36 176.03 155.55 1-3-2-3-4-3-2
2006.06.15 5.5 -38.50 175.86 167.08 1-3-4-1-3-1-4
2006.07.08 5.4 -39.17 176.82 32.78 1-3-1-4-5-2-3
2006.08.21 5.4 -38.55 175.83 158.67 4-5-2-3-1-2-1
2006.11.28 5.5 -38.15 176.86 84.17 2-1-2-5-4-1-4
2007.01.18 5.4 -39.54 175.85 50.85 2-5-4-1-4-1-3
2007.02.04 5.4 -39.09 176.29 56.33 5-4-1-4-1-3-5
2007.06.13 5.1 -38.20 176.34 157.76 1-3-1-4-3-1-2
2007.07.12 5.3 -38.73 176.22 93.69 3-1-4-3-1-2-5
2007.10.04 5.7 -37.84 176.15 282.24 3-4-1-2-1-4-5
2007.10.10 5.1 -38.29 176.42 155.19 3-4-1-2-1-4-5
2007.12.27 5.5 -38.95 175.67 117.48 2-5-2-3-2-5-2
2007.12.28 5.5 -38.77 176.29 79.76 2-5-2-3-2-5-2
2008.07.14 5.1 -38.28 175.84 179.36 1-3-5-4-3-1-3
2008.08.25 5.9 -39.71 176.85 31.83 3-5-4-3-1-3-1
2008.09.01 5.8 -39.10 175.89 85.09 5-4-3-1-3-1-2
2008.10.18 5.5 -38.00 176.24 203.61 3-1-2-5-3-1-2
2008.11.08 5.7 -38.15 176.06 200.83 3-1-2-5-3-1-2
2008.11.14 5.2 -38.28 176.24 156.89 1-2-5-3-1-2-5
2008.12.19 5.8 -38.24 176.13 186.88 1-2-5-4-

and 9 of the 26 transit to State 1 after visiting the state in which earthquakes occurred.

The frequency of the state transitions in Table 7.9 is provided in Table 7.10. The most frequent

transitions are 3–1, 1–2 and 2–5. Moreover, some 13 of the 26 large earthquakes are preceded by

the transition pattern 2–5. We therefore use this transition pattern to define a ‘TIP’ and see how it

works. For each intervalJi, if there is any day in which the HMM visits State 5 and if state2 is

the state preceding State 5, we consider the following interval Ji+1 a TIP. A contingency table for

testing whether this transition pattern is related with thelarge earthquake occurrences can also be

conducted using the two categorical variables: for each interval, whether it is a TIP and whether

there is an earthquake with minimum magnitude 5.1 occurringin this interval (Table 7.11). The test
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Table 7.10:Frequency of state transitions for Table 7.9.

1 2 3 4 5 Total

1 0 18 14 10 0 42
2 7 0 9 0 18 34
3 21 8 0 4 3 36
4 9 0 6 0 4 19
5 0 11 4 7 0 22

Total 37 37 33 21 25 153

Table 7.11: Contingency table, where ‘Yes’ indicates that there is an earthquake with minimum
magnitude 5.1 occurring in the intervalJi+1, and ‘No’ indicates that there is no large earthquake
occurrence in that time interval (Taupo). A TIP is defined using the transition pattern 2–5.

Yes No Total

Ji+1 a TIP 8 22 30
Ji+1 not a TIP 14 129 143
Total 22 151 173

has a sensitivity of 0.36 and a specificity of 0.85. The Chi-squared statistic of this contingency table

with the null hypothesis that the two variables are statistically independent is 4.9334, with a P-value

of 0.026. The P-value has a slight improvement (recall that the P-value for the case when only a

visit to State 5 is used to define a TIP is 0.04). This suggests that a 2–5 transition pattern preceding

large earthquakes may not be a coincidence. The average number of entries to each state between

two consecutive events is listed in Table 7.12. In most cases, the HMM sojourns in State 1 between

earthquakes.

Table 7.12:Average number of entries to each state between two consecutive earthquakes (Taupo).

State 1 2 3 4 5
Ave. number of entries 1.58 1.46 1.46 0.81 0.85

We now examine how the GPS deformation rate ranges influence the probability of declaring a

TIP. We use a Logistic linear predictor for this purpose. Since the hidden State 5 is a combination of

the three GPS components, we consider the Euclidean distance of the ranges from the origin (0,0,0),

Dt =
√
R2

Nt +R2
Et +R2

Ut
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Table 7.13: Logistic regression result for a target event in the time interval Ji+1 with minimum
magnitude 5.1 (Taupo).

Estimate Std. Error z value Pr(> |z|)
β0 -3.2273 0.7400 -4.361 1.29e-05
β1 0.7886 0.4061 1.942 0.0522

whereRNt, REt andRUt are the trend ranges of the GPS north, east and up components,respec-

tively. In order to get a fairly robust linear predictor of a target event, instead of using some extreme

values such as maximum or minimum, we use the mean of the distanceDt in intervalJi,

Mi =
1

10

∑

t∈Ji

Dt,

which is the average distance of the deformation rate rangesfrom the origin in 10 days, as a linear

predictor of a target event in the time intervalJi+1 using the regressionf(Ji+1) = β0+β1Mi, where

f(Ji+1) is the log-odds ratio. The fitted result is shown in Table 7.13. We can see that the regression

coefficient for the predictor is not equal to 0 with a P-value of 0.0522 (or at a significance level of

0.1). The result is plotted in Figure 7.26. This shows that the larger the mean distance of the trend

ranges from the origin in intervalJi, the higher the probability that there will be a large earthquake

occurring in the intervalJi+1. We move the earthquake magnitude threshold lower to 5.0, i.e., the

binary response variable takes on the value 1 when there is anearthquake with magnitude 5.0 or

larger occurring in the intervalJi+1, and 0 otherwise. The fitting result is shown in Table 7.14. The

Table 7.14: Logistic regression result for a target event in the time interval Ji+1 with minimum
magnitude 5.0 (Taupo).

Estimate Std. Error z value Pr(> |z|)
β0 -2.9390 0.6727 -4.369 1.25e-05
β1 0.7890 0.3737 2.111 0.0347

regression coefficient for the predictorMi is now not equal to 0 with a P-value of0.0347 (or at a

significance level of 0.05). The result is plotted in Figure 7.27. The conclusion remains consistent

with that of the magnitude threshold 5.1.

Figure 7.28 shows the scatter plot of the time from the momentof entry in State 5 to the next

event versus the sojourn time of the HMM in State 5. It appearsthat a longer sojourn in State 5 tends
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Figure 7.26: Earthquake occurrence (0-1) in the intervalJi+1 versus Mi plot
(points) with the solid line showing the probability of any magnitude 5.1 or larger
earthquake occurrence in the intervalJi+1 (Taupo). The dashed line indicates
Total number of intervals in which there is earthquake occurrence/Total number of intervals.

to have a shorter time interval to the next event. Figure 7.29is the scatter plot of the time to the next

event versus the minimum distance of the deformation rate ranges from the origin when the HMM

is sojourning in State 5, which does not suggest a strong correlation between the two variables.

Forecast Using Only North and East Components of GPS Measurements

According to the mutual information between State 5 and earthquake occurrences with minimum

magnitude 5.1 when only considering the north and east components, we define a TIP as follows.

We divide the entire time period into non-overlapping intervalsJi with equal length of 10 days. For

each intervalJi, if there is any day in which the HMM visits State 5, we consider the following

intervalJi+1 a TIP. A contingency table for testing whether the fifth stateis related with the large

earthquake occurrences is shown in Table 7.15, which has a sensitivity of 0.45 and a specificity

of 0.81. The Chi-squared statistic of this contingency table with the null hypothesis that the two

variables are statistically independent is 6.1485, with a P-value of 0.0132. The P-value is smaller

than when we use all three components (the P-value of which is0.0408). This confirms that whether

the HMM visits the furthest state from the origin (0,0) in thecurrent interval, which has the largest
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Figure 7.27: Earthquake occurrence (0-1) in the intervalJi+1 versus Mi plot
(points) with the solid line showing the probability of any magnitude 5.0 or larger
earthquake occurrence in the intervalJi+1 (Taupo). The dashed line indicates
Total number of intervals in which there is earthquake occurrence/Total number of intervals.
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Figure 7.28: The scatter plot of the time to the next event versus the sojourn time of the HMM in
State 5 (Taupo).
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Figure 7.29: The scatter plot of the time to the next event versus the minimum distance of the
deformation rate ranges to the origin when the HMM is sojourning in State 5 (Taupo).

Table 7.15: Contingency table for analysis using only north and east components (Taupo), where
‘Yes’ represents that there is an earthquake with minimum magnitude 5.1 occurring in the interval
Ji+1, and ‘No’ indicates that there is no large earthquake occurrence in that time interval.

Yes No Total

Ji+1 a TIP 10 29 39
Ji+1 not a TIP 12 122 134
Total 22 151 173

variances for both components, is related to whether there is large earthquake occurrence in the

following interval.

Again, in order to get a relatively robust linear predictor of a target event, instead of using some

extreme measures such as maximum or minimum, the mean of the distanceD1t in intervalJi

M1i =
1

10

∑

t∈Ji

D1t,

is used as a linear predictor of a target event in the time interval Ji+1 in a Logistic regression

f(Ji+1) = β0 + β1M1i,
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wheref(Ji+1) is the log-odds ratio. The result is shown in Table 7.16. We can see that the regression

Table 7.16: Logistic regression result for a target event in the time interval Ji+1 with minimum
magnitude 5.1, using north and east components only (Taupo).

Estimate Std. Error z value Pr(> |z|)
β0 -3.1704 0.6146 -5.159 2.49e-07
β1 2.5214 1.0823 2.330 0.0198

coefficient for the predictor is not equal to 0 with a P-value of 0.0198 (or at a significance level of

0.05). This result is more significant than when using all three components. Figure 7.30 shows

that the larger the mean distance of the trend ranges from theorigin in intervalJi, the higher the

probability that there will be a large earthquake occurringin the intervalJi+1. We can see that there
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Figure 7.30: Earthquake occurrence (0-1) in the intervalJi+1 versusM1i plot (points) with
the solid line showing the probability of any magnitude 5.1 or larger earthquake occurrence in
the intervalJi+1, using the north and east components only (Taupo). The dashed line indicates
Total number of intervals in which there is earthquake occurrence/Total number of intervals.

are less 0’s for the earthquake occurrences at the further end of large distance values compared to

the plot (Figure 7.26) for Euclidean distance using all three components.
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7.4 Data from Southern California

Let us consider another data set from a different (strike-slip, rather than subduction-related rifting)

tectonic environment, with longer sequences of observations, in Southern California. The southern

part of the San Andreas fault (as shown in Figure 7.31) which forms the tectonic boundary between

the Pacific Plate (on the west) and the North American Plate (on the east) runs through Southern

California. The motion of the San Andreas fault is right-lateral strike-slip. The Pacific Plate moves

CHIL

LBC2

San Andreas Fault (SAF)

Magnitude between 4 and 5

Magnitude between 5 and 6

Magnitude larger than 6

Continuous GPS stations

Pacific Plate

North American Plate

SAF

122 120 118 116W

33
34

35
36

37
N

Figure 7.31: Location map for the GPS stations CHIL and LBC2 and earthquakes in Southern
California. The symbolN indicates the location of a GPS station. The earthquakes areselected
from the rectangular area between latitude (33N,37N) and longitude (116W,120W). The small size
of the symbols for earthquakes is for earthquakes with magnitude larger than 4.0 and smaller than
5.0; the medium size for earthquakes with magnitude larger than 5.0 and smaller than 6.0; and
the large size for earthquakes with magnitude larger than 6.0. The maximum magnitude of the
earthquakes in this area is 7.1.

approximately 48mm/yr to the northwest relative to the North American Plate (DeMets et al., 1987).

The earthquakes occurring here are mainly shallow ones. We choose earthquakes, from the SCEC

catalogue, in a rectangular area in Southern California with latitude between 33N and 37N and lon-

gitude between 116W and 120W, from 1999.01.01 to 2009.06.30. See Figure 7.31 for the location

map of the earthquakes. The frequency–magnitude plot is shown in Figure 7.32, from which we
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elect to consider the earthquakes with magnitude larger than or equal to 4.5 (50 events in total).
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Figure 7.32: The frequency–magnitude plot for the earthquakes during the time period 1999.01.01
to 2009.06.30 in the selected area between latitude 33N and 37N and between longitude 116W and
120W.

The GPS data can be obtained from the SOPAC website (http://sopac.ucsd.edu/cgi-bin/refined-

TimeSeriesListing.cgi, last accessed on August 3, 2009). The daily estimates of relative coordinates

are created by a SOPAC refined model (Nikolaidis, 2002). We examine the resulting ‘raw’ daily

GPS time series in Southern California. Unlike the tectonicenvironment around Taupo, where

there is plate subduction, and active rifting and rotation of the TVZ, the most significant motion

in Southern California is the right-lateral strike-slip ofthe San Andreas fault. The raw GPS time

series shows an obvious long-term trend, for which a direct fit of HMM will not be useful for the

purpose of probability forecast (c.f., Granat, 2003, 2006). Moreover, the GPS times series from

many stations in this area display prominent heteroscedasticity. We therefore consider the baseline

between two stations, one close to the San Andreas fault, CHIL, and one further away from this

fault, LBC2 (as indicated in Figure 7.31), which have the longest records available online and the

least amount of missing data. The missing data are again interpolated by setting each of them as the

mean of the non-missing data within the 10 days ahead of and the 10 days following the missing

point.
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7.4.1 Hidden Markov Model and Mutual Information Analyses

Analysis of the Entire Data

The GPS measurements at LBC2 station are subtracted from themeasurements at CHIL station.

We will then get three series of baselines, north, east and upas shown in Figure 7.33. For the three
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Figure 7.33: Baseline between the GPS stations CHIL and LBC2.

series, the analysis done in Section 7.3.2 is repeated. The log likelihood and BIC values for each of

the model are listed in Table 7.2. Note that the increase of the log likelihood is similar to that of the

data from Taupo. Again the five-state model is chosen by the criterion described in Section 7.2.1,

which captures the most variable state consisting of about 6% of the entire data. The state transition

diagrams for the fitted HMMs with 3, 4, 5 and 6 hidden states areshown in Figure 7.34.

The fitted five-state HMM results are shown in Table 7.17. State 5 has the largest deformation

rate ranges and the largest variances for all three components. It does not transit to State 1 and vice

versa. The stationary distribution for the Markov chain is shown in Figure 7.34(c) as the number

besides each circle. The Markov chain spends the least amount of time in State 5 and mostly

occupies State 1. State 1 has the least amount of changes in trend ranges, and hence is considered

as a ground state. We normalize the five states by subtractingthe mean vector of State 1 from the

mean vector of each state and then dividing the result by the standard deviation vector of State 1.
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Figure 7.34: Illustration of state transitions for HMMs with 3 states (a), 4 states (b), 5 states (c) and 6 states (d) for data from Southern California.
Circle sizes are proportional to the stationary distribution of the hidden Markov chain, i.e., the proportion of time ineach state, which is shown as the
number besides each circle. The thickness of the arrows is proportional to the transition probabilities. The numbers inside the circles indicate the states
and they are located at the means of the states estimated fromthe fitted model.
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Table 7.17: The parameter estimates of the fitted five-state HMM (Southern California). The nor-
malized means are obtained by subtracting the mean vector ofstate 1 from the mean vector of each
state and then dividing the result by the standard deviationvector of state 1.

State 1 2 3 4 5

Estimated north 0.296 0.307 0.588 0.336 0.771
means east 0.289 0.572 0.608 0.387 0.661

up 1.016 1.099 1.351 2.173 3.599

Estimated north 0.102 0.085 0.138 0.093 0.472
standard east 0.088 0.126 0.234 0.143 0.317
deviations up 0.320 0.318 0.447 0.474 1.562

Estimated state 1 0.943 0.026 0.013 0.018 0.000
transition state 2 0.035 0.928 0.023 0.012 0.002
probability state 3 0.020 0.039 0.910 0.019 0.012
matrix state 4 0.043 0.023 0.020 0.891 0.023

state 5 0.000 0.007 0.033 0.042 0.918

Normalized north 0 0.1 2.9 0.4 4.7
means east 0 3.2 3.6 1.1 4.2

up 0 0.3 1.0 3.6 8.1
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Figure 7.35: Scatter plots of the trend ranges of the east components versus that of the north
component. The ellipses illustrates the projected standard deviations for the north and east directions
centered at the estimated means (Southern California).
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Figure 7.36: Scatter plots of the trend ranges of the up components versusthat of the north com-
ponent. The ellipses illustrates the projected standard deviations for the north and up directions
centered at the estimated means (Southern California).
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Figure 7.37: Scatter plots of the trend ranges of the up components versusthat of the east compo-
nent. The ellipses illustrates the projected standard deviations for the east and up directions centered
at the estimated means (Southern California).
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The resulting normalized means are shown in Table 7.17 (see the results of the data around Taupo

in Table 7.4 for comparison). State 2 deviates from the ground state largely in the east component.

The main deviation of State 4 from the ground state is in the upcomponent. The 3rd state appears

to deviate in the north and east components, whereas the 5th state has the largest deviation in all

three components.

The scatter plots of the deformation rate ranges of the east component versus north, up versus

north and up versus east, with five symbols indicating the different classes in which the points

are tracked to be (using the Viterbi algorithm) are shown in Figures 7.35 to 7.37. Comparing to

the scatter plots for the data around Taupo, on the north-east surface, unlike the result for Taupo

(Figure 7.13) that State 5 is clearly separated from the other states, in Southern California, the data in

State 5 are mixed with the other states on this surface (Figure 7.35). However, on the east-up surface,

State 5 is separated from the other states in Southern California (Figure 7.37), whereas for the data

around Taupo, State 5 overlaps with State 4 (Figure 7.15). The common feature of the two data sets

is on the north-up surface, where the ellipse, which illustrates the projected standard deviations of

State 5 centered at the estimated means, does not overlap with that of the other states (Figures 7.14

and 7.36). The most likely state sequence tracked using the Viterbi algorithm and the deformation

rate ranges of the baselines as calculated in Equation (7.1)are shown in Figure 7.38, along with

the occurrence times of earthquakes with minimum magnitude4.5. Spikes in the deformation rate

ranges occur before some of the earthquake occurrences as well. After the HMM visits State 5,

a large earthquake often occurs. We calculate the mutual information between each state and the

earthquake occurrences to examine whether this association is statistically significant.

The mutual information between the two series with a time lagu is shown in Figure 7.39, which

suggests that State 5 shows some preseismic information, while State 3, which accounts for the

movement in north and east directions, has a bump around 15 days following earthquake occur-

rences which may suggest some postseismic information.Theother states show little association

with the earthquakes. The dot-dash lines in Figure 7.39 indicate the simulated 95% confidence level

for comparison. The preseismic information of State 5 is very clearly shown in the plot above the

dot-dash line. This again verifies that the association is not arbitrary. We thus consider State 5 in

the fitted five-state model as the precursory state. The sojourn time distribution for each state of the

fitted five-state model is shown in Figure 7.40. The P-values of the K-S tests for State 1 to State

5 are 0.1693, 0.1605, 0.0439, 0.0425, and 0.3017, respectively. Although the P-values for States 3

and 4 are low, the model still appear reasonable, given the multiple comparison problem and small
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Figure 7.38: The Viterbi path and the trend changes of the GPS movements ascalculated in Equa-
tion (7.1), with vertical lines indicating the earthquake occurrence times with magnitude larger than
or equal to 4.5 (Southern California).
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Figure 7.39: Mutual information betweenU andV (for earthquake magnitude larger than or equal
to 4.5) with a time lagu (Southern California). The dashed lines show the upper level of the
approximate95% confidence interval under the hypothesis that the two processes are independent.
The dot-dash line in each plot is the calculated 95% confidence level from the 1000 simulated
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Figure 7.40: The sojourn time distribution for the fitted five-state HMM (thick lines), with the
thin lines (for comparison) indicating Geometric distributions, each with mean calculated from the
sample mean of the sojourn time in each state (Southern California).

Since there are 50 earthquakes with minimum magnitude 4.5 ina more than 10 year period in

Southern California, including 15 earthquakes on the same day, October 16, 1999, we have about

30 occurrence times over the10+ years as the time unit we are considering is per day. A cross

validation is thus not suitable for this data set due to the sparse data.

Analysis Using Only North and East Components

The Euclidean distance of the variableRt to the origin(0, 0, 0) is again dominated by the up com-

ponent, given that the up component is approximately 4 timesas large as the other two components

and has over 3 times the standard deviation of the other two. It down-weights the north and east

component effects. Therefore, the Euclidean distance using all three components is less informa-

tive. Thus the HMMs are fitted to the north and east componentsonly, and to the Euclidean distance

calculated only using north and east components. Subsequently, another probability forecast using

the north and east components only is conducted.

The HMMs are fitted to the deformation rate ranges from the north and east components with

different numbers of hidden states. The state transition diagrams of the fitted 3, 4, 5 and 6 state

HMMs are shown in Figure 7.41. The mutual information between the Viterbi path{Ut+u} and the
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Figure 7.41: Illustration of state transitions for HMMs with 3 states (a), 4 states (b), 5 states (c) and 6 states (d) for data from Southern California,
using the north and east components only. Circle sizes are proportional to the stationary distribution of the hidden Markov chain, i.e., the proportion
of time in each state, which is shown as the number besides each circle. The thickness of the arrows is proportional to the transition probabilities. The
numbers inside the circles indicate the states and are located at the means of the states estimated from the fitted model.
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Table 7.18: The parameter estimates of the fitted five-state HMM for the case when only the north
and east components are considered (Southern California).

State 1 2 3 4 5

Estimated north 0.286 0.278 0.521 0.319 0.740
means east 0.220 0.380 0.411 0.601 0.814

Estimated north 0.096 0.076 0.092 0.087 0.368
s.d. east 0.055 0.058 0.107 0.096 0.226

Estimated state 1 0.910 0.077 0.013 0.000 0.000
transition state 2 0.054 0.853 0.036 0.056 0.001
probability state 3 0.028 0.035 0.881 0.029 0.027
matrix state 4 0.000 0.059 0.017 0.904 0.020

state 5 0.003 0.000 0.035 0.033 0.929
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Figure 7.42: Mutual information betweenU (for trend ranges from north and east components,
5 state HMM) andV (for earthquake magnitude larger than or equal to 4.5) with atime lagu
(Southern California). The dashed lines show the upper level of the approximate95% confidence
interval under the hypothesis that the two processes are independent.

earthquakes{Vt} for the fitted five-state model is examined. The parameter estimates of the five-

state model are shown in Table 7.18. The mutual information is shown in Figure 7.42. For the fitted

five-state model, State 5 is the furthest from the origin (0,0) and has the largest variances for both

components. State 1, which is the closest state to the origin, does not transit to State 5. Moreover,

the other two pairs of states that have negligible probability of transiting to each other are States 1

(the ground state) and 4 (which accounts for the east movement), and States 2 (which deviates from
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the ground State 1 in the east component but the mean of which is half of that of State 4) and 5.

The mutual information suggests that State 5 may show some preseismic information, but not as

strong as when we use all three components. It seems that there is a favored transition pattern to the

precursory state, State 1–2–4–5. However, there are not enough (earthquake) data to test whether

this pattern will provide additional precursory information as done in Section 7.3.3 for the data set

around Taupo.

The scatter plot of the deformation rate ranges from the north component versus that from the

east component, with five symbols indicating the different states in which the points are tracked

to be is shown in Figure 7.43. The first four states cluster at their centers, while State 5 spread
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Figure 7.43: Scatter plot of the trend ranges of the east component versusthat of the north com-
ponent. The ellipses illustrates the projected standard deviations for the north and east directions
centered at the estimated means (Southern California).

at large values for the two components. The standard deviation contour projection of each state is

separated from the others. The most likely state sequence tracked using the Viterbi algorithm and the

deformation rate ranges of the baselines as calculated in Equation (7.1) are plotted in Figure 7.44.

Spikes in the deformation rate ranges show up before some of the occurrences of the earthquakes

with minimum magnitude 4.5. When the HMM visits State 5, a large earthquake often follows. The

sojourn time distribution for each state of the fitted 5 statemodel is as shown in Figure 7.45. The

P-values for the K-S tests for State 1 to State 5 are 0.0292, 0.0025, 0.0216, 0.1235, and 0.2650,
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Figure 7.44: The Viterbi path and the trend changes of the GPS movements (north and east com-
ponents) as calculated in Equation (7.1) (Southern California), with vertical lines indicating the
earthquake occurrence times with magnitude larger than or equal to 4.5.

respectively.

7.4.2 Probability Forecast Using Logistic Probability Model

Forecast Using All Three Components of GPS Measurements

According to the mutual information between State 5 and earthquake occurrences with minimum

magnitude 4.5 for the case when the entire data were used (seeSection 7.4.1), we define a TIP with

the interval length of 20 days. A contingency table for testing whether the fifth state is related with

the large earthquake occurrences is conducted using the twocategorical variables and is shown in

Table 7.19, which has a sensitivity of 0.35 and a specificity of 0.83. The Chi-squared statistic of

this contingency table with the null hypothesis that the twovariables are statistically independent

is 3.1232, with a P-value of 0.077. This shows weak evidence (at significance level of 0.1) that

visits by the HMM to State 5 are not independent of large earthquake occurrences in the following

interval.

Repeating the Logistic linear regression using the linear predictorMi, the mean of the distance

Dt in the intervalJi, with results shown in Table 7.20, we see that the regressioncoefficient for the

predictor is not equal to 0 with a P-value of0.0575 (or at a significance level of 0.1). The result is
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Figure 7.45: The sojourn time distribution for the fitted five-state HMM (thick lines), with the
thin lines (for comparison) indicating Geometric distributions, each with mean calculated from the
sample mean of the sojourn time in each state (Southern California).

Table 7.19:Contingency table for data from Southern California, where‘Yes’ indicates that there is
an earthquake with minimum magnitude 4.5 occurring in the intervalJi+1, and ‘No’ indicates that
there is no large earthquake occurrence in that time interval.

Yes No Total

Ji+1 a TIP 8 28 36
Ji+1 not a TIP 15 138 153
Total 23 166 189

plotted in Figure 7.46. It shows that the larger the mean distance of the deformation rate ranges

from the origin in the intervalJi, the higher the probability that there will be a large earthquake

occurring in the intervalJi+1.

Forecast Using Only North and East Components of GPS Measurements

We define a TIP using the five-state HMM results when we only consider north and east components

with the interval length of 20 days. The contingency table for testing whether the fifth state is related

with the large earthquake occurrences is shown in Table 7.21. The sensitivity of the test is 0.39, and

the specificity is 0.73. The Chi-squared statistic of this contingency table with the null hypothesis
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Figure 7.46: Earthquake occurrence in the intervalJi+1 versus Mi plot (points)
with the solid line showing the probability of any magnitude4.5 or larger earth-
quake occurrence in the intervalJi+1 (Southern California). The dashed line indicates
Total number of intervals in which there is earthquake occurrence/Total number of intervals.

that the two variables are statistically independent is 0.9022, with a P-value of 0.3422. It becomes

less significant when we use only the north and east components than when we use the entire data.

Table 7.20: Logistic regression result for a target event in the time interval Ji+1 with minimum
magnitude 4.5 (Southern California).

Estimate Std. Error z value Pr(> |z|)
β0 -2.7724 0.4955 -5.595 2.20e-08
β1 0.4592 0.2418 1.899 0.0575

Table 7.21: Contingency table for analysis using only north and east components, where ‘Yes’ in-
dicates that there is an earthquake with minimum magnitude 4.5 occurring in the intervalJi+1, and
‘No’ indicates that there is no large earthquake occurrencein that time interval (Southern Califor-
nia).

Yes No Total

Ji+1 a TIP 9 45 54
Ji+1 not a TIP 14 121 135
Total 23 166 189
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This suggests that ignoring the up component will remove some information from the baselines

between the two stations. This is consistent with the mutualinformation results.

Similarly using a Logistic regression to the data using the mean of the distanceD1t in the

intervalJi, M1i, as a linear predictor of a target event in the time intervalJi+1, with result shown

in Table 7.22, we see that the regression coefficient for the predictor is significantly not equal to

0 with a P-value of0.0961 (or at a significance level of 0.1). This result is less significant than

that of the Euclidean distance using all three components. The result is plotted in Figure 7.47. It

Table 7.22: Logistic regression result for a target event in the time interval Ji+1 with minimum
magnitude 4.5, using north and east components only (Southern California).

Estimate Std. Error z value Pr(> |z|)
β0 -2.9195 0.6316 -4.622 3.79e-06
β1 1.4320 0.8606 1.664 0.0961
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Figure 7.47: The earthquake occurrence in the intervalJi+1 versus M1i plot (points)
with the solid line showing the probability of any magnitude4.5 or larger earth-
quake occurrence in the intervalJi+1 (Southern California). The dashed line indicates
Total number of intervals in which there is earthquake occurrence/Total number of intervals.

again confirms that we may lose some information when we do notinclude the up component in our

analysis on the baselines from the two stations.
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7.5 Conclusion and Discussion

As discussed in the Section 7.1, the data from tectonically active areas may behave differently from

that from a non-tectonic area. The trend of each of the GPS components from the tectonic areas

varies on a large scale. In order to examine whether large variations in trend changes contain some

precursory signals for large earthquakes, a non-linear filter is developed for the GPS process. It is a

smoothing tool and is useful for extracting signals which are distinguished from the majority of the

data. As defined in Section 7.2.1, this nonlinear filter essentially measures the maximum deforma-

tion rate changes in the previous 10 days. This filter and the underlying dynamics of earthquakes

form the hidden Markov model framework. Therefore the HMM isused to investigate the filtered

GPS data and then classify the data into different categories via the Viterbi algorithm. The associa-

tion between each category and the earthquake sequence is then examined by mutual information.

For the data around Taupo, it seems that large variations in the deformation rate may provide

precursory information for large earthquakes. This pre-seismic information becomes stronger after

discarding smaller earthquakes, a lot of which are aftershocks. This confirms that State 5 may pos-

sess some precursory signals for large earthquakes. The Chi-squared test for the contingency table

also shows that State 5 is related to subsequent earthquake occurrences. Later on, the regression

analysis for the TIP confirms that the further the GPS deformation rate variations depart from the

origin the more likely there will be an earthquake occurrence in the TIP. The largest state in each

of the fitted HMMs with up to 10 hidden states also presents some preseismic information for large

earthquakes. However, as mentioned in Section 7.3.2, the precursory state in the five-state model

splits into two states in the fitted HMMs with 7, 8, 9 and 10 hidden states, both of which presented

precursory information. Furthermore, the fitted 10 state model with the minimum BIC value has

159 parameters for 1747 days data, too many for stability. The data from Southern California may

possess a similar precursory behavior. The chosen model also has 5 hidden states. The furthest state

from the origin shows precursory information for large earthquakes, but more (earthquake) data is

required for confirmation

For the data around Taupo, State 3 in the five-state model alsoshows some preseismic informa-

tion, though when we increase the magnitude threshold to 5.1, the preseismic information becomes

weaker than using magnitude threshold 4.2. This may correspond to some cluster effect either of

small foreshocks or due to the previous large earthquakes. The post-seismic information (from the

mutual information results) in State 2 disappeared after deleting the small earthquakes. The state

transitions of the fitted hidden Markov model as illustratedin Figure 7.10(c) suggest that State 5 is
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most likely to transit to State 2. State 2 is also likely to transit to State 5. This state may be the

postseismic state which is more related with aftershocks. The mutual information shows little as-

sociation of State 1 with the earthquake occurrences. State1 has the smallest means and variations

for both the north and up components and the process spends most of the time in this state. Note

that States 1 and 5 do not transit to each other. Apart from each state being more likely to stay in its

own, States 2, 3 and 4 are all most likely to transit to State 1.This may suggest that State 1 consists

of the background noise for the GPS measurements of deformation and corresponds to a quiescence

period of the underlying dynamics.

Note that State 3 in the five-state model for the data in Southern California shows postseismic

information for the large earthquakes. This state deviatesfrom the background State 1 mainly in the

north and east components. We also notice that the main deviation of the postseismic State 2 from

the background State 1 for the data around Taupo is in the north component. Both the postseismic

states are not related to movements in the up component. Due to the nature of the GPS measure-

ments, the up component is much larger than the north or east components and has larger standard

errors than that of the other two components, hence the Euclidean distance calculated from all three

components is dominated by the up component. Therefore, an HMM analysis on this distance does

not perform as well as the analysis on the multivariate displacement data. We conducted the proba-

bility forecast only considering the north and east components for comparison. The result suggests

that for the data around Taupo using only the two components improves the probability forecast,

whereas for the data in Southern California, not considering the up component may remove some

information. The Taupo Volcanic Zone is a subduction-related rift zone and hence deformation in

the up component tends to follow crustal extension (and thinning) during an earthquake, i.e., the

up component for the data around Taupo contains postseismic, not precursory information. How-

ever, the tectonic environment in Southern California is different, being predominantly strike-slip.

If, prior to an event, the strike-slip fault is held fixed, thestrain may cause the ground to buckle,

which corresponds to up motion. Hence, ignoring the up component may lose some precursory

information for large earthquakes.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

This thesis has contributed to two topics in parallel. Firstly, assuming the existence of an earth-

quake cycle (for example, mainshock–aftershock–quiescence–precursory seismicity), a new HMM

type model is proposed. This model can be used to capture a self-exciting process which switches

among some different phases (or states) in each of which the process has a distinguishable charac-

teristic. Secondly, two nonlinear filters are developed to extract signals from millions of data or data

with subtle changes, which can not be easily detected by visual examination. A method to combine

two very different methods, HMMs and mutual information, isintroduced to investigate the link

between two processes. For the former, unlike the traditional HMM and MMPP, the distinctive fea-

ture of this new HMM type model, MMHPSD, is the incorporationof a self-exciting point process

into a continuous-time hidden Markov chain. The existing self-exciting models can only capture

one or several fixed or pre-identified phases in one (seismic)cycle. For example, the ETAS model

formulates aftershock sequences, while the two-node stress release/transfer model can capture main

shocks and aftershocks. The new model, however, while characterizing the self-exciting feature

of each phase, switches into a new regime automatically whenever the feature of the event occur-

rences evolves towards a different attractor. For the latter, the extracted signals from the Tangshan

Well data using the nonlinear filter were demonstrated to be strongly associated with large global

earthquakes. The combined method of an HMM and mutual information on the filtered GPS data

around Taupo and in Southern California revealed some preseismic signals. With more testing and

longer data sequences, GPS measurements may be able to provide some probability forecast for

large earthquakes.
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The parameter estimation for the new HMM type of model incorporating a time-varying con-

ditional intensity function is nowhere near trivial. This issue is further discussed in Section 8.2.1.

Due to the computational difficulty in solving the integration of a time-varying matrix exponential,

we restricted the conditional intensity function to vary only when a new event occurs and remains

constant between two consecutive events, which results in the MMHPSD. Under this constraint,

a method for estimating the parameters via EM algorithm was developed, which involves a nu-

merical optimization in the M-step for estimating the parameters in the Hawkes intensity function.

The residual analysis for point processes is borrowed to evaluate the goodness-of-fit for this model.

Simulation is employed to demonstrate the consistency of the parameter estimation.

Compared to the ETAS model, the Hawkes process always has lower intensity at very short

and very long times after an event. This is due to the fact thatthe ETAS model assumes that the

aftershocks decay in a power law fashion, whereas the Hawkesprocess assumes an exponential

decay rate. As discussed in Section 4.3.1, the power law decay always tends to have larger values

at extreme time intervals. Moreover, in the ETAS intensity function the decay rate is multiplied

by the exponential term of the magnitude always larger than 1, which thus results in very large

ETAS intensity. When we fit the MMHPSDs to the simulated ETAS sequence, on average, the

estimated intensity of each of the fitted models is smaller than the true ETAS intensity. It appears

that various hidden states of the MMHPSD correspond to different magnitude effects parameterized

aseα(Mi−M0) in the ETAS model. In particular, the state with large (small) intensities captures large

(small) earthquakes.

The exploratory data analysis of the MMHPSD to the earthquake sequence around Landers

shows that this model is useful in modelling changes of the temporal patterns of seismicity. The

states in the model can capture the behavior of main shocks, large aftershocks, secondary after-

shocks and a period of quiescence with different backgroundrates and decay rates. The state tran-

sitions can then explain the seismicity rate changes and hence indicate if there is any seismicity

shadow or relative quiescence. The ETAS model is purely an immigration-branching process. The

advantage of this model over the ETAS model is that this modeluses seismic cycles rather than

only immigration-birth framework, and when the seismicityrate changes, the model automatically

switches into a different regime (or state) in a seismic cycle. This is especially useful for a long

sequence with several state changes. One may use the change-point analysis for the ETAS model

to account for the seismicity changes. Firstly, estimatingthe change point is not an easy procedure

in the way that one has to try as many points as possible to determine one change point. Even if



8.1. CONCLUSIONS 187

the time points of the events are used as the candidates, a great number of models have to be fitted.

Secondly, it is common that there may be more than one change point in the sequence. For the

change point analysis, one has to determine one change pointfirst, and then for the data preceding

this change point, the analysis can be repeated to determineanother change point, and so on. The

procedure can be very complicated and time-consuming. The MMHPSDs, however, can handle a

large data set with many state changes without manually dividing the data into different segments.

An R-package was developed for this model. Since this involves numerical optimization inside

the EM loop, the parameter estimation program is somewhat time-consuming. In Chapter 4, the

model was selected based on a residual analysis. Starting from a two state MMHPSD, one more

state is added each time until the residual point process of the current model becomes a stationary

Poisson process with unit rate, i.e. until the current modelcan capture the main features of the data.

It is likely that there are still better models with more states which may have smaller AIC and BIC

values than the ETAS model. But including more states means more parameters to be estimated via

numerical optimization. In order to get estimates close to the true parameters, a wide range of initial

values should be tried, resulting in a longer computation time.

For the investigation of a possible link between earthquakes and the ancillary data, we reviewed

several statistics which can be used to quantify the association between series of events. Coher-

ence describes the strength of linear association between two series in frequency domain. Mutual

information measures the information that two random variables share. The advantage of using the

mutual information is that it equals to 0 if and only if the twovariables are statistically independent,

whereas the coherence may be identically 0 when two series are actually related. Though the two

statistics are not naturally set up for point process context, we can transform the processes of interest

into 0-1 time-series. If we are further interested in whether one process causes another, the above

two statistics are not adequate any more. In this case, we canuse the Lin–Lin model to examine the

linear causal relationship between two processes.

For the ancillary well data, we introduced a variance-basedmoving average method and showed

how signals compatible with coseismic responses can be extracted using this method from approx-

imately two million groundwater level data. We then adoptedthe aforementioned three statistics

to investigate the relation between the identified well signals and 600 earthquakes of magnitude

6.0 or greater in the global catalogue during this same period. Identifiable coseismic responses are

found for approximately 40 percent of the total number of such teleseismic earthquakes. The ini-

tial oscillations of the groundwater level appear to be strongly associated with the arrivals of the
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earliest P phase, although the maximum amplitude usually follows the arrival of the later Love and

Rayleigh waves. The detection probability, and well signalcharacteristics (delay, length, maximum

amplitude) are quantified as functions of earthquake characteristics (magnitude, distance, depth and

azimuth), showing that the response contains considerablevariation, as yet not understood.

This idea is then extended to the analysis of possible link between GPS measurements of defor-

mation and earthquakes. The difference is that the GPS measurements consist of multivariate data

from three dimensions, north, east and up. Moreover, the well responses to earthquakes appear to

be oscillations, however, the anomalous changes in the deformation data which may be related with

earthquakes are either long-term apparent displacement (see, e.g., Ogata, 2007), or subtle changes

for which it is necessary to have some techniques to detect orextract the anomalies. We developed

an algorithm to first filter the raw GPS data and then used the HMMs on the filtered data to get

signals which may be possible precursors.

For two case studies of a) deep earthquakes in central North Island, New Zealand, and b) shal-

low earthquakes in Southern California, an HMM fitted to the short-term deformation rate ranges of

the GPS measurements can classify the deformation data intodifferent patterns which form prox-

ies for states of the earthquake cycle. Mutual information can be used to examine whether there

is any relation between these patterns, in particular the Viterbi path, and subsequent (or previous)

earthquakes. The class of GPS movements identified by the HMMas having the largest range of

deformation rate changes, appear to have some precursory character for earthquakes with minimum

magnitude 5.1 (central North Island, New Zealand, 26 earthquakes in 1747 days) and 4.5 (Southern

California, 50 earthquakes in 3815 days). We defined a “Time of Increased Probability” (TIP) as

being a 10-day interval (central North Island, New Zealand)or a 20-day interval (Southern Califor-

nia) following entry (as identified by the Viterbi algorithm) into the “precursory” hidden state, and

examined the performance of this as a possible forecast of subsequent earthquakes. The purpose of

this study was to examine whether there is any causal relationship between the GPS measurements

of deformation and the earthquakes. The analysis shows thatindeed there may be some weak causal

relationship between the two.

8.2 Future Research

This research is working on the interface of statistics, geophysics and geodesy. Earthquake analysis

is of great importance in terms of both exploring the nature of earthquakes and forecasting earth-
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quakes. Statistical models play an important part not only in understanding the earthquake process

itself, but also in the probability forecast of earthquakesand estimation of hazard from earthquakes.

This research focuses on the two aspects in the way of developing suitable stochastic models to

investigate the seismicity rate changes and incorporatingancillary data to examine the seismic re-

sponses and possible earthquake forecasting. The twofold nature of this research and the research

findings in this thesis give rise to new challenges for the future research. Possible extensions and

further analyses which this thesis does not cover are suggested in the following subsections.

8.2.1 Markov-modulated Hawkes Processes with Time-varying Decay

The proposed MMHPSD switches among some finite states according to a Markov transition rate

matrix with a self-exciting occurrence rate of the events from a Hawkes process in which the inten-

sity of this process changes after each event occurrence butremains a constant between each two

consecutive events. The conditional intensity function ofthis process is

λ∗(t) = λ+ νη
∑

tj<max{tl:tl<t}

e−η(max{tl:tl<t}−tj), (8.1)

not the original Hawkes process with conditional intensityfunction

λ∗(t) = λ+ νη
∑

tj<t

e−η(t−tj ). (8.2)

This is for the sake of parameter estimation. Note that when calculating the transition probability

without arrivalH(n)
ij (u), the ordinary differential equation (3.2) has to be solved.If the conditional

intensity function takes the form of (8.2), the ordinary differential equation will become





H(n)′(u) = H(n)(u)(Q− Λ∗(tn−1 + u))

H(n)′(0) = I
(8.3)

and the solution for this equation isH(n)(u) = exp{(Q−Λ)u+ ΛIn(tn−1 + u)} for u ≥ 0, where

Λ =




λ1 · · · 0

. ..

0 · · · λr


 , ΛIn(t) =




λIn

1 (t) · · · 0

. . .

0 · · · λIn
r (t)


 ,
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andλIn

i (t) = νi
∑

tl<tn
(e−ηi(t−tl) − e−ηi(tn−1−tl)). This will cause difficulty when carrying out

the EM algorithm for the parameter estimation. The reason isthat when the conditional intensity

function (8.2) is used, as a consequence of the change of the ordinary differential equation, Equation

(3.17) becomes

ŵT =QT ⊙
n∑

k=1

1

ck

∫ tk

tk−1

exp{(Q− Λ)(tk − t) + ΛJk(t)}Λ∗(tk)R(k + 1)L(k − 1)

× exp{(Q− Λ)(t− tk−1) + ΛIk(t)}dt, (8.4)

where⊙ denotes term-by-term multiplication of the two matrices. Consequently, the integral

Ik =

∫ tk

tk−1

exp{(Q− Λ)(tk − t) + ΛJk(t)}Λ∗(tk)R(k + 1)L(k − 1)

× exp{(Q− Λ)(t− tk−1) + ΛIk(t)}dt, (8.5)

has to be calculated. To the best of our knowledge, there doesnot exist an easy way to do this. How-

ever, when the stepwise decay rate (8.1) is used, this problem can be easily solved. As an analytical

solution for the integration (8.5) is difficult to solve, onemay consider integrating it numerically.

Again, a numerical solution is not easy as well given that there is a matrix exponential in the inte-

grand with each element of the matrix being a function oft. If this integration problem is solved,

then we can carry on analyzing the earthquake data using the HMM type model incorporating the

original Hawkes process with exponential decay rate.

Another possible extension would be using the power law decay rate (i.e., Omori-Utsu formula),

which is well known as the best empirical temporal-distribution of aftershocks, instead of the ex-

ponential decay rate. This would result in many new challenges to our mathematical calculations

given that we will lose the Markovian property.

8.2.2 MMHPSD with Marks

When the MMHPSD is applied to the earthquake sequences from Landers, Big Bear, Hector Mine

and Joshua Tree, this simple initial model accounts for different states of earthquake occurrence

rates. It provides an exploratory analysis of earthquake occurrences. As discussed in Section 4.4.2,

the model interprets the magnitude effect on the inter-event times although no magnitude term is

included in the intensity function. The state with the biggest conditional intensity function captures

the features of the largest earthquakes which have short inter-event times. The state with the smallest
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intensities occupies the times when small earthquakes occur. This suggests that there may be a

possible way to improve this model by including the magnitude effect in the intensity function. As

pointed out in Chapter 4, the magnitude term in the ETAS model, parameterized as an exponential

function, may be too strong along with the power law decay function. However, a power law,

(Mi −M0)
α, may be suitable to be included in the intensity function of the MMHPSD. This may

improve the fitting to the data if this magnitude term can capture the majority of the magnitude

effect. Each state might account for a longer sequence of events which could be a period of an

aftershock sequence following a large earthquake, a periodof swarms, or a period of foreshocks

indicating accelerating seismic activity preceding a large earthquake.

8.2.3 NHMM and MMGLM Analysis of Earthquakes with Ancillary GPS Data

It has been shown that indeed there may be some weak causal relationship between the GPS mea-

surements of deformation and the earthquakes. The GPS measurements of deformation reflects

some of the underlying dynamics for earthquake occurrences. For future research, the GPS mea-

surements can be incorporated as ancillary data (or covariate) into the HMM framework to investi-

gate earthquake occurrences. Whether/how the GPS measurements influence earthquake occurrence

modelling can be examined using HMMs incorporating the GPS measurements via three different

ways. For any dayt, the observation of interest here can be any earthquake occurrence (with mag-

nitude greater than or equal to a thresholdM0) in the time periodIt = (t, t+ l) days. It is a binary

variable,Ot, taking on the value 1 when there is any magnitudeM0 or greater earthquake occurring

in the time intervalIt, and 0 otherwise. The covariate can be the current Euclideandistance of the

GPS trend ranges to its origin (0,0,0),Dt. The following three models can be considered:

1. HMM with





P (Ot |O1, · · · ,Ot−1, S1, · · · , ST ) = P (Ot = ot |St = s) = pot
s (1 − ps)

1−ot

P (St |S1, · · · , St−1) = P (St = j |St−1 = i) = pij

(8.6)

whereps is the probability of earthquake occurrence in states, andpij is the transition prob-

ability from statei to j;
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2. NHMM with





P (Ot |O1, · · · ,Ot−1, S1, · · · , ST ,D1, · · · ,DT ) = P (Ot = ot |St = s) = pot
s (1 − ps)

1−ot

P (St |S1, · · · , St−1,D1, · · · ,DT ) = P (St |St−1,Dt)

(8.7)

where the parameterps remains the same as in the HMM, and the transition probabilities can

be determined by

logitP (St = 2 |St−1 = 1,Dt) = a1 + b1Dt,

logitP (St = 1 |St−1 = 2,Dt) = a2 + b2Dt,

P (St = 1 |St−1 = 1,Dt) = 1 − P (St = 2 |St−1 = 1,Dt)

P (St = 2 |St−1 = 2,Dt) = 1 − P (St = 1 |St−1 = 2,Dt),

with parametersa1, b1, a2 andb2;

3. MMGLM with





P (Ot |O1, · · · ,Ot−1, S1, · · · , ST ,D1, · · · ,DT ) = P (Ot = ot |St = s,Dt = dt)

= exp
{(
ot log

(
µts

1−µts

)
− log

(
1

1−µts

))}

P (St |S1, · · · , St−1) = P (St = j |St−1 = i) = pij

(8.8)

where the link function islog (µts/(1 − µts)) = ζ0s + ζ1sdt with parametersζ0s andζ1s for

states at timet.

Model (8.6) does not include any covariate effect. It modelsthe earthquakes in a simple way which

has binary event occurrences. In Model 8.7, the covariate, GPS measurements, indirectly reflects the

observed process (earthquakes) through the hidden process(underlying dynamics). The underlying

dynamics classifies the GPS measurements into several classes, which most probably reflect certain

earthquake occurrence patterns. Model 8.8 assumes that theearthquake occurrences are directly

related to the GPS measurements and the GPS measurements do not influence the transitions of the

hidden states. Another possibility would be considering the time to next event as the observation

for the three models with an exponential distribution, and the Euclidean distance of the GPS trend

ranges to its origin (0,0,0) as a covariate.
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8.2.4 Testing of HMM Analysis of GPS Data for Earthquake Forecasting

A 10-day moving window was used in the nonlinear filter (7.1) introduced in Section 7.2.1 for anal-

ysis of the GPS measurements. A test of how the choice of the window length may influence the

mutual information can be done to examine the window length effect. The window length here acts

as a smoothing parameter which determines the degree of smoothness. In addition, analysis of the

prediction success versus the earthquake characteristics, the depths, distances, focal mechanisms

and sources of the earthquakes, can be carried out, along with a sensitivity analysis on the earth-

quake catalogue used (the choice of magnitude threshold, depth and location of the earthquakes).

In Chapter 7, the TIP intervals for probability forecasts were chosen to be 10 days for Taupo and

20 days for Southern California. A further investigation ofthe selection of this TIP interval by

balancing false alarms and missed events may improve the probability forecast.

In Chapter 7, the mutual information was calculated by transforming the data into bivariate

binary series. According to the definition in Chapter 5, it may be worthwhile to directly con-

sider the mutual information between the short-term deformation ranges of the GPS measurements

(RN , RE , RU ) and the earthquake binary series. The definition of the mutual information would

need to be extended to the multivariate case.

Also of interest would be examining whether the distance from the fault axis or station has any

influence on the predictability of earthquakes using the procedure in Chapter 7. Moreover, GPS

measurements at more locations from different tectonic settings, with various types of mechanisms,

may provide further insights into probability forecastingfor large earthquakes.
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Appendix

A. Dispersion Test (Cox and Lewis, 1966)

Let n1, n2, · · · , nk denotek observations for a discrete random variableN and let

n̄ =
n1 + · · · + nk

k
. (A-1)

A standard test for the hypothesis that theni’s are observations of a Poisson variate is the dispersion

test for homogeneity based on the statistic

d =

k∑

i=1

(ni − n̄)2

n̄
. (A-2)

The statisticd divided byk − 1 is the ratio of the estimated variance ofN to the estimated mean

of N , and the test is roughly a comparison of this ratio with its true value of unity under the null

hypothesis. Possible alternative hypotheses are that theni’s are non-Poisson and serially correlated.

B. Logistic Regression Analysis

For the purpose of exposition, we will momentarily denote the magnitudeM , log-scaled well–

epicenter distancelog10(D), depthH, and the sine and cosine functions of the azimuth (given

that the azimuth is an angle, we use the sine and cosine functions of the azimuth)Sζ andCζ by

xi, i = 1, 2, 3, 4, 5. If the probability that an earthquake causes a coseismic response isp, then

the probability of an observationy (wherey is either a coseismic response or not, 1 or 0) has the

Bernoulli distribution

P (y) = py(1 − p)1−y.
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The random variabley has a mean ofp. Our objective is to determine how the explanatory variables

(in this case, the magnitude, log-scaled well–epicenter distance, depth, sine and cosine functions of

azimuth) influence the probability valuep. These five continuous explanatory variables, which we

will denote byx1, x2, x3, x4 andx5, suggest that a multiple regression analysis may be suitable. The

responsey is binary. Instead of using a regression directly for the success probability, one usually

transforms the probability scale from the range(0, 1) to (−∞,∞), and then use a regression for the

transformed values. Logistic transformation is usually recommended because it is more convenient.

Moreover, it provides a direct interpretation in terms of the logarithm of the odds of success, which

is defined to be the ratio of the probability of a success to theprobability of a failure,p/(1 − p).

Hence we can do logistic regression with binomial errors (see Collett, 1991 for example).

In order to check the interactions between the earthquake statistics as well, we fit a logistic

model with maximal interactions between explanatory variables,

log

(
p

1 − p

)
=b0 +

5∑

i=1

bixi +

4∑

i=1

5∑

j=i+1

bijxixj +

3∑

i=1

4∑

j=i+1

5∑

k=j+1

bijkxixjxk

+

2∑

i=1

3∑

j=i+1

4∑

k=j+1

5∑

l=k+1

bijklxixjxkxl + b6x1 · · · x5 + ε (A-3)

to the data, whereε is the residual. Then by using stepwise regression and comparing the Akaike

information criteria (Akaike, 1974) of the resulting models, we can identify the best model. Here it

turns out that none of the interactions had a significant effect, and that the AIC of the linear regres-

sion model without interactions was significantly smaller (difference in AIC is greater than 2) than

that of the models with interactions. Therefore, we do not need to include the interactions between

explanatory variables in our analysis. However, since non-parametric smoothers in generalized ad-

ditive models suggest some nonlinearity of the variables, particularly the log-scaled well–epicenter

distance and the depth, we did include squared terms for the explanatory variables in the logistic

model.

Therefore, after eliminating the interaction terms
∑4

i=1

∑5
j=i+1 bijxixj ,

∑3
i=1

∑4
j=i+1

∑5
k=j+1

bijkxixjxk,
∑2

i=1

∑3
j=i+1

∑4
k=j+1

∑5
l=k+1 bijklxixjxkxl and b6x1 · · · x5 in model (A-3), and

adding the quadratic terms
∑4

i=1 b1ix
2
i , we fit the model

log

(
p

1 − p

)
= b0 +

5∑

i=1

bixi +

4∑

i=1

b0ix
2
i + ε. (A-4)
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Note thatx2
4 + x2

5 = sin2 ζ + cos2 ζ = 1, and hence we only need to include one of the quadratic

terms ofx4 andx5.

C. Multiple Regression Analysis

We first use scatter plots and generalized additive models using non-parametric smoothers to ex-

amine whether there is nonlinearity in the relationship between∆P and the statisticsxi, between

Aw and the earthquake statistics, and betweenLw and the earthquake statistics. This will suggest

whether we should include squared terms in the regression. Then the tree model will be used to

indicate whether the interaction structure of the data is complex. If it is complex, we then need to

include interaction terms in the analysis. Preliminary analysis also suggested that transformation of

the response variable∆P , Aw andLw improved the fitting results. Thus we fit the model

z = b0 +
5∑

i=1

bixi +
4∑

i=1

5∑

j=i+1

bijxixj +
4∑

i=1

b0ix
2
i + ε

(with squared effects and interactions between the earthquake statistics) to the data. Herez is
√

∆P

in the case of delay analysis,log10(Aw) andlog10(Lw) for amplitude and length analyses;ε is the

residual and theb’s are parameters to be estimated.

D. Stationary Distribution of a Markov Chain

Assume{Sn} is a Markov chain in the state space{1, · · · , r} with P = (pij)r×r and Pn =

(p
(n)
ij )r×r, where

pij = P (Sn = j|Sn−1 = i)

and

p
(n)
ij = P (Sn = j|S0 = i).

According to the Chapman-Kolmogorov equation, we have

Pn = Pn−kPk.
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Let pn = (P (Sn = 1), · · · , P (Sn = r)) denote the probability distribution ofSn. Given that

pn = pn−1P, (A-5)

it follows that

pn = p0P
n.

By lettingpn = pn−1 = π in Equation (A-5), we have

π = πP. (A-6)

The solution ofπ to (A-6) is called the stationary distribution of the Markovchain.
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