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ABSTRACT 

The use of whey permeate as the fermentation substrate for the 

production of acetone : butanol : ethanol ( solvents ) ,  using 

c. acetobutylicum P262 was studied .  Initial experiments were conducted 

in  a batch mode usi ng sulphuric acid casein whey permeate medium , in an 

attempt to optimize the culture conditions for maximal extent of lactose 

utilization and solvents production. A high initial lactose 

concentration ( 65-75 gil ) in combination with a culture pH maintained in  

the region pH 5 . 4 to 5 . 6 were the most favourable condit ions for solvent 

production . An inverse relationship between the lactose utilization 

rate and solvents yield was observed.  Solvent productivities were only 

60% however ,  of that achievable with this strain of organism on an 

i ndustrial scale using a molasses rred ium , but comparable productivities 

were obtained us ing a semi-synthetic rredium containing glucose . d 
Hydrolysed-lactose sulphuric acid casein whey perrreate medium was 

i nvestigated as a medium for solvent production. Glucose and galactose 

were utilized s imultaneously , although glucose was used preferentially .  

Only a small increase i n  solvents productivity was obtained compared 

with that obtained using non-hydrolysed permeate . 

Experim�nts were performed in continuous culture us ing cheese whey 

permeate rredium and alginate-immobilized cells . Signif icantly greater 

solvent productivities were obtained , compared with those achieved usi ng 

free cells in batch culture . Fermentations were operated for over 650  

hours with no detectable loss in  fermentation performance . The extent 

of lactose util i zation was low, however ( less than 40% ) ,  and attempts to 

increase this by the use of pH regulation or a two-stage process were 

unsuccessfu l .  This fermentation process was described as a biomass 

volume process ( volumetric fraction of alginate beads in the reactor ) , 

where the lactose uti l ization and hence the solvents production , was 

def ined by an inhibitory concentration of butanol , approximately 5 gil .  

An alternative continuous fermentation process usi ng free cells 

and cheese whey permeate rredium was investigated . External cell recycle 

using cross-flow microfi ltration (CFM ) membrane plant to continuously 

separate cells fran the ferrrentation culture and recycle them back to 

the fermenter was uti l ized. B iomass was continuously removed from the 

fermenter in order to achieve a stable biomass concentration .  Stable 
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solvents production was not achieved under the range of culture 

conditions investigated ; culture degeneration was attributed to the 

corrplex interactive rrorphological cycl ic behaviour of the organism. A 

tubular CFM unit which could be periodically backflushed to maintain the 

filtrate flux , was found to be the most suitable of those tested . 

The integration of in-si tu or in-l ine solvents recovery with batch 

culture us ing free cells , and continuous fermentation us ing cells 

irnnobil ized by adsorption to bonechar ,  was investigated in order to 

remove toxic solvents and so increase the extent of lactose uti l i zation 

and solvents productivity .  A novel process using gas-stripping with an 

inert gas , and solvents recovery from the vapour phase by condensation 

us ing a cold trap , was described . An increase in lactose ut i l ization 

and solvents productivity was achieved in both fermentation modes 

canpared w,i th control ferme'ntations . The use of adsorbent resins and a 

molecular I.sieve for integrated fermentation solvents recovery was also 

demonstrated . However ,  the adsorption of medium components may mitigate 

against the usefulness of such a process option .  

The batch refermentation o f  batch fermentation effluent treated by 

gas-stripping to remove solvents was investigated . However ,  solvent 

production was favoured only when lactose and nutrients were 

supplemented to concentrations similar to those present originally .  

Conversely , fermentation medium treated by gas-stripping to remove 

solvents could be readi ly refermented to produce solvents when an 

exist ing cell  population was used , suggesting that this option of an 

integrated continuous fermentation-product recovery process may be 

promising for whey permeate solvent production . 
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