Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

INTENSIFICATION OF THE ACETONE : BUTANOL : ETHANOL

FERMENTATION USING WHEY PERMEATE

AND CLOSTRIDIUM ACETOBUTYLICUM :

A Preliminary Study

A Thesis presented in partial

fulfilment of the requirements for the degree

of Doctor of Philosophy

in Biotechnology at Massey University

BREIT MILLS ENNIS

1987

ABSTRACT

The use of whey permeate as the fermentation substrate for the acetone:butanol:ethanol production of (solvents), usina C. acetobutylicum P262 was studied. Initial experiments were conducted in a batch mode using sulphuric acid casein whey permeate medium, in an attempt to optimize the culture conditions for maximal extent of lactose utilization and solvents production. A high initial lactose concentration (65-75 g/l) in combination with a culture pH maintained in the region pH 5.4 to 5.6 were the most favourable conditions for solvent An inverse relationship between the lactose utilization production. rate and solvents yield was observed. Solvent productivities were only 60% however, of that achievable with this strain of organism on an industrial scale using a molasses medium, but comparable productivities were obtained using a semi-synthetic medium containing glucose. Hydrolysed-lactose sulphuric acid casein whey permeate medium was investigated as a medium for solvent production. Glucose and galactose were utilized simultaneously, although glucose was used preferentially. Only a small increase in solvents productivity was obtained compared with that obtained using non-hydrolysed permeate.

Experiments were performed in continuous culture using cheese whey permeate medium and alginate-immobilized cells. Significantly greater solvent productivities were obtained, compared with those achieved using free cells in batch culture. Fermentations were operated for over 650 hours with no detectable loss in fermentation performance. The extent of lactose utilization was low, however (less than 40%), and attempts to increase this by the use of pH regulation or a two-stage process were unsuccessful. This fermentation process was described as a biomass volume process (volumetric fraction of alginate beads in the reactor), where the lactose utilization and hence the solvents production, was defined by an inhibitory concentration of butanol, approximately 5 g/1.

An alternative continuous fermentation process using free cells and cheese whey permeate medium was investigated. External cell recycle using cross-flow microfiltration (CFM) membrane plant to continuously separate cells from the fermentation culture and recycle them back to the fermenter was utilized. Biomass was continuously removed from the fermenter in order to achieve a stable biomass concentration. Stable solvents production was not achieved under the range of culture conditions investigated; culture degeneration was attributed to the complex interactive morphological cyclic behaviour of the organism. A tubular CFM unit which could be periodically backflushed to maintain the filtrate flux, was found to be the most suitable of those tested.

The integration of in-situ or in-line solvents recovery with batch culture using free cells, and continuous fermentation using cells immobilized by adsorption to bonechar, was investigated in order to remove toxic solvents and so increase the extent of lactose utilization and solvents productivity. A novel process using gas-stripping with an inert gas, and solvents recovery from the vapour phase by condensation using a cold trap, was described. An increase in lactose utilization and solvents productivity was achieved in both fermentation modes compared with control fermentations. The use of adsorbent resins and a molecular sieve for integrated fermentation solvents recovery was also demonstrated. However, the adsorption of medium components may mitigate against the usefulness of such a process option.

The batch refermentation of batch fermentation effluent treated by gas-stripping to remove solvents was investigated. However, solvent production was favoured only when lactose and nutrients were supplemented to concentrations similar to those present originally. Conversely, fermentation medium treated by gas-stripping to remove solvents could be readily refermented to produce solvents when an existing cell population was used, suggesting that this option of an integrated continuous fermentation-product recovery process may be promising for whey permeate solvent production.

ii

To my parents, Eric and Betty

4

×.

ACKNOWLEDGEMENTS

I wish to acknowledge and thank the following people:

Dr I S Maddox for his guidance and supervision. His encouragement, patience and enthusiasm for this project was greatly appreciated.

Drs A H J Paterson and T D Thomas for their supervision and interest in this project.

Professor R L Earle, Head of the Department of Biotechnology, for his interest in this project.

Dr P S Robertson, Director of the New Zealand Dairy Research Institute, for his permission to undertake this project and interest throughout.

Mr P G Hobman and Dr W J Harper of the New Zealand Dairy Research Institute and Dr K R Marshall of the New Zealand Dairy Board (formerly NZDRI) who were "champions" for my undertaking this project.

Professor D R Woods, of the University of Cape Town, South Africa for the gift of <u>C. acetobutylicum</u> P262 and Dr L E Pearce of the New Zealand Dairy Research Institute for importing this strain and making it available for use.

I gratefully acknowledge my employer, the New Zealand Dairy Research Institute for the receipt of a Post-Graduate Fellowship and a Staff Development Award.

Part of this project was undertaken in the Laboratory of Bioengineering, Department of Chemistry and Chemical Engineering, Delft University of Technology, Delft, The Netherlands. I am indebted to this Department for providing some financial assistance with my research costs and to the following people:

Professor Ir K Ch A M Luyben for his permission to work in this laboratory.

Dr G H Schoutens for arranging many aspects of my visit to Delft, and for her friendship and supervision. Mr J P Lispet and Mr B Kerkdijk for their excellent laboratory support.

I wish to also thank the following people:

Mr J Alger and Mr B Collins of the Department of Biotechnology for their excellent and willing assistance with the many technical matters and laboratory equipment fabrication requirements that arose during this project.

Mr M Stevens, Mr M Yates, Mr D Couling, Dr N Qureshi, Miss C Marshall and Mrs A McCutcheon of the Department of Biotechnology for their excellent laboratory support.

Drs J Mawson and D Cleland of the Department of Biotechnology for their assistance with the cell-recycle mass balance determination and Minitab computer package respectively.

Mr R K Richardson of the New Zealand Dairy Research Institute for some gas chromatography analysis.

Mr D Hopcroft and Mr R Bennett of the Applied Biochemistry Division, Department of Scientific and Industrial Research, for the electron microscope photographs.

Noemi Gutierrez for her friendship.

Mrs S Enoka for her excellent typing of the publications arising from this project.

Mrs C McDonell for her excellent typing of this thesis.

Mrs A Hammer for kindly typesetting Figure captions.

My parents, for their constant support, love and encouragement.

My wife, Christine, for proof-reading, advice on the layout of the thesis, for accompanying me on many, many odd-hour visits to the laboratory, and for her patience, understanding, love and encouragement.

And finally, thanks to the 'Moody Blues', 'Genesis' and Radio Station 92.2XS FM for greatly easing the task of 'writing up'.

TABLE OF CONTENTS

PAGE

ABSTRACT				i
ACKNOWLED	ACKNOWLEDGEMENTS			
TABLE OF C	CONTEN	NTS		v
LIST OF FI	GURES	5		xii
LIST OF TA	BLES			xvii
ABBREVIATI	ONS		*	xxi
CHAPTER 1	INTF	RODUCTION	J	1
CHAPTER 2	CHAPTER 2 PRODUCTION OF ACETONE:BUTANOL:ETHANOL (A.B.E.) BY FERMENTATION			5
	2.1	Introdu	uction	5
	2.2	History	of the A.B.E. fermentation	5
	2.3	Organis	sms	8
	2.4	The fer	mentation process	10
×		2.4.1 2.4.2 2.4.3 2.4.4	Course of fermentation Morphological characteristics 2.4.2.1 Maintenance of cultures Biochemistry of the fermentation Regulation of solvent production	10 11 12 13 18
	2.5	Environ product	mental factors affecting solvent ion	20
		2.5.1 2.5.2	Oxygen sensitivity and Eh requirement Temperature and pH requirement	20 21

vi

Page

		2.5.3	Carbohydrate sources	21
		2.5.4	Nitrogen and other nutrient requirements	21
		2.5.5	Product inhibition	22
	2.6	The us	e of whey for the A.B.E. fermentation	28
	2.7	Contin	uous fermentation using free cells	32
	2.8	Contin	uous fermentation using immobilized cells	37
		2.8.1	Introduction	37
		2.8.2	Cell immobilization methods	39
			2.8.2.1 Bonding	39
			2.8.2.2 Entrapment	41
		2.8.3	Comparison of cell immobilization methods	42
	4	2.8.4	Cell entrapment in alginate gel	42
		2.8.5	Continuous solvents production using	
			biocatalysts	45
		2.8.6	Kinetic model for solvents production using	
			alginate biocatalysts	49
	2.9	Continu	yous fermentation by free cells using external	
		cell re	ecycle by cross-flow microfiltration	52
		2.9.1	Introduction	52
		2.9.2	Principles of cross-flow microfiltration	53
		2.9.3	Application of CFM to continuous	
			fermentation processes	55
ĸ	2.10	Product	recovery	57
		2.10.1	Recovery by distillation	57
		2.10.2	Alternative product recovery methods	58
CHAPTER 3	MATE	RIALS AN	ID METHODS	61
	3.1	Materia	ls	61
		3.1.1	Microbiological Media	61
		3.1.2	Chemicals	65
		3.1.3	Gases and other materials	66
		3.1.4	Organisms	66

3.2	Sterilization procedures			67
	3.2.1	Media s	terilization	67
	3.2.2	Equipme	nt sterilization	68
	00000	Ederbuie		
3.3	Cleani	ng of gla	ssware	68
3.4	Anaero	bic incub	ation	68
3.5	Analyt:	ical meth	ods	69
	3.5.1	pH meas	urement	69
	3.5.2	Determi	nation of biomass dry weight	69
		3.5.2.1	Free cell cultures	69
-		3.5.2.2	Immobilized cells	69
r	3.5.3	Total ce	ell count	69
	3.5.4	Determin	nation of colony forming units	70
	3.5.5	Analysis	s of solvents and acids	70
	3.5.6	Analysis	s of sugars	73
3.6	Cell immobilization			
	3.6.1	Spore pr	coduction for immobilization	74
	3.6.2	Immobili	zation in calcium alginate gel	75
3.7	Ferment	ation cul	ture conditions	77
	3.7.1	100 ml b	ottle cultures	77
	3.7.2	Preparat	ion of inoculum for batch	
		fermenta	tion cultures	78
	3.7.3	Batch fe	rmentation culture	78
		3.7.3.1	2-litre fermentation apparatus	78
		3.7.3.2	7-litre fermentation apparatus	79
		3.7.3.3	Batch fermenter operation	79
	3.7.4	Continuo	us fermentation using immobilized	
		cells		80
		3.7.4.1	Continuous stirred tank reactor	
			(CSTR) apparatus	80
		3.7.4.2	Fluidized column reactor (FCR)	
			apparatus	82

			3.7.4.3	Determination of alginate bead fraction	84
		3.7.5	Continuo with exte	us fermentation using free cells ernal cell recycle by cross-flow	
			microfil	tration (CFM)	84
			3.7.5.1	Plate and Frame CFM apparatus	84
			3.7.5.2	Hollow Fibre CFM apparatus	89
			3.7.5.3	Tubular CFM apparatus	90
		3.7.6	In-situ g solvents	gas-stripping/condensation for recovery	95
	3.8	Batch	fermentatio	on dilution correction calculation	97
	3.9	Discus	sion of met	chods	98
CHAPTER 4	STRA	IN SELE	CTION AND H	PRELIMINARY EXPERIMENTS	100
	4.1	Introd	uction		100
	4.2	Result	s and Discu	assion	101
		4.2.1	100-ml sca	ale batch fermentation	101
		4.2.2	5-litre sc	ale batch fermentation	107
	4.3	Conclus	sions		113
CHAPTER 5	PROD	UCTION (OF SOLVENTS	BY BATCH FERMENTATION FROM	
	SULP	HURIC AC	CID CASEIN	WHEY PERMEATE USING	
	<u>C.</u> <u>A</u>	CETOBUT	YLICUM P26	2	115
	5.1	Introdu	uction		115
	5.2	Optimiz	ation of b	atch fermentation culture	
		conditi	ons		116
		5.2.1	Results		116
		5.2.2	Discussion		130
		5.2.3	Conclusion	S	138

ix

	5.3	Morpho	logical changes in <u>C.</u> acetobutylicum P262	
		during	batch fermentation	139
		5.3.1	Introduction	139
		5.3.2	Results and Discussion	139
	5.4	Batch	fermentation of lactose-hydrolysed permeate	
		and set	ni-synthetic medium containing alucose	141
			ar synthetic hearan containing gracose	111
		5.4.1	Introduction	141
		5.4.2	Results	141
		5.4.3	Discussion	146
CHAPTER 6	CONT	TINUOUS S	SOLVENTS PRODUCTION USING C. ACETOBUTYLICUM	
	P262	2 IMMOBII	LIZED IN CALCIUM ALGINATE GEL	148
	6.1	Introdu	action	148
	6.2	Results		148
			-	110
		6.2.1	Fermentation start-up	148
		6.2.2	The effect of dilution rate (D_t) and bead	
			fraction in the reactor $(1-\varepsilon)$	150
		6.2.3	Effect of temperature	150
		6.2.4	Kinetic model parameter estimation	153
		6.2.5	Effect of added butanol	156
		6.2.6	Effect of pH	159
		6.2.7	Effect of added butyrate	162
		6.2.8	Effect of substrate type	164
×.		6.2.9	Electron microscope examination of alginate	
			beads	167
	6.3	Discuss	ion	171
		2100000		1/1
	6.4	Summary		179
CHAPTER 7	CONT	INUOUS S	OLVENTS PRODUCTION BY FREE CELLS OF	
	C. A	CETOBUTY	LICUM P262 USING EXTERNAL CELL RECYCLE BY	
	CROS	S-FLOW M	ICROFILTRATION	181
	7.1	Introdu	ction	181

					Page
		7.2	Results		182
			7.2.1	Plate and Frame CFM apparatus	182
			7.2.2	Hollow Fibre CFM apparatus	193
			7.2.3	Tubular CFM apparatus	195
		7.3	Discuss	ion	203
		7.4	Summary		214
CHAPTER	8	A CO	MPARI SON	OF IMMOBILIZED CELLS WITH CELL RECYCLE FOR	
		FERM	ENTATION	INTENSIFICATION	220
CHAPTER	9	PROD	UCT RECO	VERY DURING SOLVENT PRODUCTION	225
		9.1	Introduc	ction	225
		9.2	In-situ	gas-stripping/condensation for solvents	
			recovery	!	226
			9.2.1	Introduction	226
			9.2.2	Results and Discussion	226
			9.2.3	Conclusions	235
		9.3	Use of a	adsorbent resins or molecular sieve	
			for solv	vents recovery	237
			9.3.1	Introduction	237
			9.3.2	Results and Discussion	238
			9.3.3	Conclusions	250
CHAPTER	.10	SECON	NDARY BAT	CH FERMENTATION OF WHEY PERMEATE FOLLOWING	
		THE F	REMOVAL C	OF SOLVENTS	251
		10.1	Introduc	tion	251
		10.2	Results	and Discussion	251
		10.3	Conclusi	ons	259
CHAPTER	11	FINAL	, DISCUSS	ION AND CONCLUSIONS	260

.

REFERENCES

				Page
APPENDIX	1	A steady-state mass balance calculation for the continuous fermentation using free cells and cell recycle by cross-flow microfiltration.		293
APPENDIX	2	Conductivity level control probe.		298
APPENDIX	3	Theoretical stripping gas usage rate calculation.		300
APPENDIX	4	Levels of independent variables and fermentation parameters obtained for each trial in the 2^4 experimental design.		304
APPENDIX	5	Levels of independent variables and fermentation parameters obtained for each trial in the 2 ³ experimental design.		305
APPENDICE	S			
6-12		Reprints of publications concerning work described in this thesis.	d 306-1	373

31.

LIST OF FIGURES

		Page
2.1	Biochemical pathways of glucose fermentation by butyric acid bacteria	15
2.2	Methods for whole cell immobilization	40
2.3	A schematic diagram of the immobilized cell system showing those measurable parameters necessary for the kinetic model parameter estimation	49
3.1	A schematic diagram of the immobilization equipment	76
3.2	A schematic diagram of the continuous stirred tank reactor and ancillary equipment used with immobilized cells	83
3.3	A schematic diagram of the fluidized column reactor and ancillary equipment used with immobilized cells	83
3.4	The cell recycle (CFM) fermenter head	85
3.5	A schematic diagram of the fermenter and ancillary equipment used for continuous fermentation using external cell recycle with a Millipore® Plate and Frame cross-flow microfiltration (CFM) unit	87
3.6	A photo of the fermenter - Plate and Frame CFM apparatus	88
3.7	A schematic diagram of the fermenter and ancillary equipment used for continuous fermentation using external cell recycle with a Ceraflo® Tubular cross-flow	0.2
2.0	microfiltration (CFM) unit	93
3.8	A photo of the fermenter - Tubular CFM apparatus	94
3.9	A schematic diagram of the integrated batch fermenter - gas stripping/condensation apparatus	96
4.1	Batch fermentation profile at 34° C, for <u>C. acetobutylicum</u> ATCC 824 using sulphuric acid casein whey permeate with no pH control	110

Da		
гa	Ч	C

4.2	Batch fermentation profile at 34°C, for <u>C. acetobutylicum</u> P262 using sulphuric acid casein whey permeate with no pH control	111
5.1	Batch fermentation profile of Run I. Initial pH 5.0, no pH control	118
5.2	Batch fermentation profile of Run II. Initial pH 5.65, no pH control	119
5.3	Batch fermentation profile of Run III. Initial pH 5.65, controlled to not less than pH 5.2	120
5.4	Batch fermentation profile of Run IV. Initial pH 5.8, controlled to not less than pH 5.6	121
5.5	Batch fermentation profile of Run V. Initial pH 5.9, controlled at not less than pH 6.0 for 16 h, then adjusted to pH 4.5	123
5.6	Batch fermentation profile of Run VI. Initial pH 6.2, controlled at not less than pH 6.0 for 11 h	124
5.7	Batch fermentation profile of Run VII. Initial pH 5.55, uncontrolled initially for 17 h, then adjusted to pH 5.5	125
5.8	Batch fermentation profile of Run VIII. Initial pH 5.55, uncontrolled initially for 17 h, then adjusted to pH 6.0	126
5.9	Batch fermentation profile of Run IX. Initial lactose concentration adjusted to 63 g/l. Initial pH 6.1, controlled at not less than pH 6.1 for ll h	128
5.10	Batch fermentation profile of Run X. Initial lactose concentration adjusted to 75 g/l. Initial pH 6.4, controlled at not less than pH 5.6	129
5.11	Plot of solvent yield (g/g lactose utilized) versus maximum	

observed lactose utilization rate, g/l.h, for Runs I to X 137

5.12	Batch fermentation profile of Run XI (semi-synthetic medium containing glucose). pH controlled at not less than pH 5.4	143
5.13	Batch fermentation profile of Run XII (lactose-hydrolysed whey permeate, no pH control)	144
5.14	Batch fermentation profile of Run XIII (lactose-hydrolysed whey permeate, pH control to not less than pH 5.4)	145
6.1	The effect of temperature on a continuous fermentation using immobilized <u>C. acetobutylicum</u> . $((1-\epsilon) = 0.20, D_t = 0.60 h^{-1})$. Run IX	152
6.2	Double reciprocal plot of P vs $D_t/(1-\epsilon)$ using data derived from Tables 6.1 and 6.3 for cheese whey permeate medium	157
6.3	The effect of added butanol on a continuous fermentation using immobilized <u>C. acetobutylicum</u> at 30°C ((1- ε) = 0.24, D _t = 0.30 h ⁻¹) Run XI	158
6.4	The effect of pH control on a continuous fermentation using immobilized <u>C. acetobutylicum</u> at 30°C (($1-\varepsilon$) = 0.25, D _t = 0.30 h ⁻¹) Run XIII	160
6.5	The effect of pH control on a continuous fermentation using immobilized <u>C. acetobutylicum</u> at 30°C using cheese whey permeate medium supplemented with 20 g/l lactose $(1-\epsilon) = 0.25$, $D_t = 0.40 h^{-1}$ or $0.44 h^{-1}$) Run XIV	161
6.6	The effect of added sodium butyrate (pH 4.6) on a continuous fermentation using immobilized C. acetobutylicum at 30°C ((1- ε) = 0.25, D _t = 0.29 h ⁻¹) Run XV	163
6.7	Double reciprocal plot of P vs $D_t/(1-\epsilon)$ using data derived from Table 6.4 for semi-synthetic medium containing glucose	166
6.8	Electron microscope photographs of a cross-section of unused calcium alginate beads containing <u>C. acetobutylicum</u> P262	169

xiv

Page

		Page
6.9	Electron microscope photographs (cross-section) taken of alginate beads removed from a continuous fermentation at 34°C at steady state	170
6.10	The solvents productivity $(g/l.h)$ calculated as a function of the dilution rate for a reactor loading $(l-\varepsilon)$ of 0.45, using kinetic parameters derived in Section 6.2.4 for cheese whey permeate	175
7.1	Continuous fermentation profile of Run I (complete biomass recycle, 30°C, Plate and Frame CFM apparatus, Durapore cassette)	185
7.2	Continuous fermentation profile of Run II (biomass removal, 30°C, Plate and Frame CFM apparatus, Durapore cassette)	188
7.3	Continuous fermentation profile of Run III (30°C, Plate and Frame CFM apparatus, Ultrasart cassette)	190
7.4	Continuous fermentation profile of Run IV (semi-synthetic medium containing glucose, 34°C, Plate and Frame CFM apparatus Ultrasart cassette)	192
7.5	Continuous fermentation profile of Run V (30°C, Hollow Fibre CFM apparatus)	194
7.6	Continuous fermentation profile of Run VI (semi-synthetic medium containing glucose, 34°C, Tubular CFM apparatus)	196
7.7	Còntinuous fermentation profile of Run VII (34°C, Tubular CFM apparatus)	199
7.8	Continuous fermentation profile of Run VIII (34°C, Tubular CFM apparatus)	201
7.9	A schematic diagram of the morphological changes observed during batch and continuous fermentation modes by <u>C.</u> <u>acetobutylicum</u> P262 fermenting whey permeate medium	207
9.1	Fermentation profile for the gas-stripping/condensation solvents recovery from a batch fermentation using sulphuric acid casein whey permeate medium	230

xv

9.2 Fermentation profile for the adsorption resin (XAD-16) solvents recovery from a batch fermentation using sulphuric acid casein whey permeate medium 245

1

··· ···

2

LIST OF TABLES

2.1	End products from the fermentation of glucose by various species of the <u>Clostridium</u> genus modified from (Wood, 1961)	9
2.2	Inhibition by end-products on the growth of <u>C. acetobutylicum</u> ATCC 824 on glucose	25
2.3	Summary of the literature describing solvents production by batch fermentation using whey media	29
2.4	Summary of results from studies investigating continuous production of solvents in chemostat or continuous flow fermentation processes	35
2.5	A summary of the advantages and disadvantages of some microbial cell immobilization methods	43
2.6	Comparison of productivities of various immobilized cell processes for continuous solvents production from synthetic and technical media	47
3.1	Semi-synthetic medium used for the culture screening batch fermentation experiments	62
3.2	Sulphuric acid casein whey permeate medium for batch fermentation experiments	62
3.3	Cheese whey permeate medium for continuous fermentations using immobilized cells or external cell recycle	63
3.4	Semi-synthetic medium for continuous fermentations using immobilized cells	63
3.5	Semi-synthetic medium for continuous fermentations using external cell recycle	63
3.6	Typical composition of cheddar cheese whey permeate and sulphuric acid casein whey permeate	64

xvii

4.1	Production of solvents from sulphuric acid casein whey permeat	ce
	by <u>C.</u> acetobutylicum ATCC 824 and <u>C.</u> acetobutylicum P262	102
4.2	Production of solvents from semi-synthetic medium containing lactose by <u>C. acetobutylicum</u> ATCC 824 and <u>C. acetobutylicum</u> P262	104
4.3	Production of solvents from semi-synthetic medium containing glucose by <u>C. acetobutylicum</u> ATCC 824 and <u>C. acetobutylicum</u> P262	105
4.4	Production of solvents from semi-synthetic medium containing galactose by <u>C. acetobutylicum</u> ATCC 824 and <u>C. acetobutylicum</u> P262	106
4.5	Production of solvents from lactose-hydrolysed sulphuric acid casein whey permeate by <u>C. acetobutylicum</u> ATCC 824 and <u>C. acetobutylicum</u> P262	108
4.6	Production of solvents from semi-synthetic medium containing glucose and galactose by <u>C. acetobutylicum</u> ATCC 824 and <u>C. acetobutylicum</u> P262	109
4.7	Production of solvents at 34° C, from sulphuric acid casein whe permeate by <u>C. acetobutylicum</u> ATCC 824 and <u>C. acetobutylicum</u> P262 in a 5-litre batch fermentation with no pH control	у 112
4.8	Comparison of mean reactor productivities in batch fermentation for different strains of <u>Clostridia</u> using whole whey or whey permeate substrates	n 114
5.1	Summary of fermentation parameters for all experiments used in Section 5.2	117
5.2	Concentrations of residual lactose and undissociated acids at the time of onset of solvents production	135
5.3	Summary of fermentation parameters for all experiments in Section 5.4.2	142

xix

-		
ບລ	0	
га	u	C
_	~	-

6.1	Steady state data obtained on cheese whey permeate medium at	
	30°C using alginate immobilized beads of C. acetobutylicum	
	P262 (as a function of D_t and $(1-\varepsilon)$)	151

- 6.2 Steady state data obtained on cheese whey permeate medium at different temperatures using alginate-immobilized beads of <u>C</u>. <u>acetobutylicum</u> P262 ($D_t = 0.60 h^{-1}$, (1- ϵ) = 0.20, pH 4.1-4.4), Run IX 154
- 6.3 Steady state data obtained on cheese whey permeate medium at 34°C using alginate-immobilized beads of <u>C. acetobutylicum</u> P262 (Dt was varied, $(1-\epsilon) = 0.25$, pH 4.2-4.4), Run X 155
- 6.4 Steady state data obtained on semi-synthetic medium containing glucose at 30°C using alginate immobilized beads of <u>C. acetobutylicum</u> P262 (as a function of D_t and $(1-\epsilon)$ 165
- 6.5 Steady state data obtained on various media at 30°C using alginate-immobilized beads of <u>C. acetobutylicum</u> P262 $((1-\epsilon) = 0.20)$ 168
- 7.1 A summary of the advantages/disadvantages of the various CFM units 217
- 8.1 A comparison of continuous fermentation by alginate-immobilized cells and external cell recycle by cross-flow microfiltration for production of solvents from whey permeate by <u>C.</u> <u>acetobutylicum</u> P262 222
- 9.1 Mass balance data from gas-stripping/condensation recovery of solvents from a model fermentation solution 228
- 9.2 Summary of fermentation parameters for a control (no gas-stripping) and gas-stripping/condensation solvents recovery from a batch fermentation using sulphuric acid casein whey permeate medium and <u>C. acetobutylicum</u> P262 228
- 9.3 Steady-state fermentation data for a "stages-in-series" continuous fermentation process with immobilized cells, using gas-stripping for solvents removal between stages (Run I) and no gas-stripping between stages (Control)
 233

		Page
9.4	Steady-state fermentation data for a two-stage continuous fermentation process with immobilized cells, using gas-stripping for solvents removal between stages (Runs II and III)	236
9.5	Adsorption of model fermentation solution components using various adsorbents at 30°C	240
9.6	Adsorption of components from various model fermentation solutions by Silicalite, XAD-4 and XAD-16 resins, at 30°C	242
9.7	Steady state fermentation data for a two-stage continuous fermentation process with immobilized cells, using an adsorbent resin XAD-16 for solvents removal between stages	247
9.8	Steady state fermentation data for a two-stage continuous fermentation process with immobilized cells, using the molecular sieve Silicalite for solvents removal between stages	249
10.1	Independent variables and levels chosen in determination of various fermentation parameters from the further batch fermentation of fermentation effluent treated by gas-stripping to remove solvents (2^4 experiment)	253
10.2	Linear regression equations describing the relationships between medium composition and various fermentation parameters (2^4 experiment)	255
10.3	Independent variables and levels chosen in determination of various fermentation parameters from the further batch fermentation of fermentation effluent treated by gas-stripping to remove solvents (2^3 experiment)	257
10.4	Linear regression equations describing the relationships between medium composition and various fermentation parameters (2^3 experiment)	258
11.1	Summary of investigative work for the intensification of the ABE fermentation	263

xx

ABBREVIATIONS

°C	degrees Celcius
CM	centimetre
g	gram
h	hour
1	litre
m	metre
mg	milligram
min	minute
ml	millilitre
ារា	millimetre
rpm	revolutions per minute
μl	microlitre
М	mojlar

OTHER ABBREVIATIONS

CA	acetone concentration (g/l)
CB	butanol concentration (g/l)
C _E	ethanol concentration (g/l)
CHAC	acetic acid concentration (g/l)
C _{HBu}	butyric acid concentration (g/l)
CL	lactose concentration (g/l)
C _{B,max}	maximal butanol concentration (g/l)
C _{so}	feed substrate concentration (g/l)
Cs	effluent substrate concentration (g/l)
C _{xs}	biomass in solid phase (g/l)
C _X	biomass in liquid phase (g/l)
$\Delta C_{\rm S}$ or ΔS	5 consumed substrate concentration (g/l)
d.w.	dry weight
D or Dt	dilution rate based on the total reactor volume (h^{-1})
(1-ε)	bead fraction of alginate beads in the reactor (l. alginate/l)
D _t /(1-ε)	normalized dilution rate (1/1. alginate h)
[¢] vi	volumetric flow rate in (l/h)
\$vo	volumetric flow rate out (l/h)
k	ratio of butanol/acetone (g/g)
Р	specific butanol production rate (g. butanol/l. alginate h)

Prod	volumetric fermenter productivity (g/l.h)
rs	substrate consumption rate (g/l.h)
r _{max}	maximal specific substrate consumption rate (g. substrate/
	1. alginate h)
Vt	total working volume (1)
Y	solvents yield based on substrate consumed $(g/g) =$
	$(C_{A} + C_{B} + C_{E})/\Delta S$
Ysb	butanol yield on substrate (g/g)
Yss	total solvents yield on substrate (g/g)
Y _{SX}	biomass yield factor on substrate (g d.w./g)
Umax	maximum growth rate (h ⁻¹)
>	greater than
<	less than
% w/v	percentage weight by volume

à

xxii