Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Massey University Library New Zealand & Pacific Collection

FOCAL POINT CHARACTERISTICS AND HABITAT USE CURVES OF UNDERYEARLING BROWN TROUT (Salmo trutta) IN THE KAHUTERAWA STREAM.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Zoology at Massey University

Robert Graham Forlong

1988

ABSTRACT

The physical focal point characteristics of underyearling brown trout (Salmo trutta) were examined by underwater observation in a nursery stream to determine the preferred depths, current speeds and substrates. Each focal point characteristic was analysed with respect to fish activity and age (in months after emergence). Underyearling brown trout in the Kahuterawa stream were found to use focal points with different physical characteristics for different activities. As they aged the Kahuterawa trout moved into swifter, deeper water.

The Physical Habitat Simulation (PHABSIM) of the Instream Flow Incremental Methodology (IFIM) was examined by obtaining habitat use curves from the focal point data, which were compared with habitat relative preference curves. Habitat relative preference curves examine habitat use in relation to habitat availability. It is concluded that habitat relative preference curves should be developed for each activity class of each life stage of the target species. In the case of brown trout, emergent fry should be considered a separate life stage from fingerlings. PHABSIM is criticized because it takes little account of cover and current shelter which are shown to be important factors in focal point choice.

ACKNOWLEDGEMENTS

There are a number of individuals who I would like to thank for their assistance in preparing this thesis. Firstly, I wish to thank my supervisor, Ian Latta for his help and constructive advice throughout the study. I would also like to thank Dr Ian Henderson who read the manuscript and provided very useful feedback on its content and layout as well as providing many interesting comments throughout the study. Steve Pilkington read an early draft of the thesis and his comments were most helpful. Mr Barry Gilliland allowed me access to the Manawatu Catchment Board's information on the Kahuterawa stream. The field officers of the Wellington Acclimatisation society Mr Richard Barker and Mr Peter Taylor provided assistance whenever asked and were of great help in designing the study. My fellow graduate students Ian McGee and Andy Sturmer listened patiently for hours while I extolled the virtues of fish in general and brown trout in particular. Despite this verbal battering they still managed to contribute many useful suggestions. I also owe a debt to Mike Moffat who often left his own work to help solve my computing problems. Landowners Mr Hugh Oxenham and Mr John Hoyles graciously allowed access to the stream. Finally, I would like to extend my gratitude, to my wife, Bronwyn Dalley who was everything from an extra pair of hands in the field to a proof reader, layout person and, most of all, a friend.

CONTENTS

PAGE

ACKNOWLEDGEMENTS		ii
TABLE OF CONTENTS		iii
LIST OF FIGURES		vi
LIST OF TABLES		viii
LOCATION MAP		ix
1 INTRODUCTION.		1
2 STUDY AREA.		8
	2.1 LOCATION.	8
5	2.2 GEOLOGY.	8
	2.3 DISSOLVED OXYGEN AND pH.	9
	2.4 CLIMATE.	9
	2.5 STREAM BIOLOGY.	10
	2.6 STUDY SITES.	11
3 METHODS.		17
	3.1 INTRODUCTION.	17
	3.2 FIELD METHODS	18
	3.2.1 FOCAL POINT SAMPLING	18
	3.2.2 HABITAT SAMPLING	23
	3.3 STATISTICAL TESTS	23
4 CURRENT SPEED.		25
	4.1 INTRODUCTION	25
	4.2 RESULTS	26
4.2.1 CHANGES WITH		

.

		ACTIVITY	26
		4.2.2 CHANGES WITH AGE	33
		4.2.3 RELATIONSHIP TO	
		HABITAT AVAILABILITY	33
	4.3 DISCUSSIO	N	33
		4.3.1 INTRODUCTION	33
		4.3.2 FOCAL POINT	
		CHARACTERISTICS	34
		4.3.3 CHANGES WITH	
		ACTIVITY	37
		4.3.4 CHANGES WITH AGE	39
5 DEPTH.			41
	5.1 INTRODUC	TION	41
	5.2 RESULTS		44
8.		5.2.1 CHANGES WITH	
		ACTIVITY	44
		5.2.2 CHANGES WITH AGE	48
		5.2.3 RELATIONSHIP TO	
		HABITAT AVAILABILITY	48
	5.3 DISCUSSIO	N	48
		5.3.1 FOCAL POINT	
		CHARACTERISTICS	48
		5.3.2 CHANGES WITH	
		ACTIVITY	51
		5.3.3 CHANGES WITH AGE	52
6 SUBSTRATE AND			53
	6.1 INTRODUC	TION	53
	6.2 RESULTS		55
		6.2.1 CHANGES WITH	
		ACTIVITY	55

iv

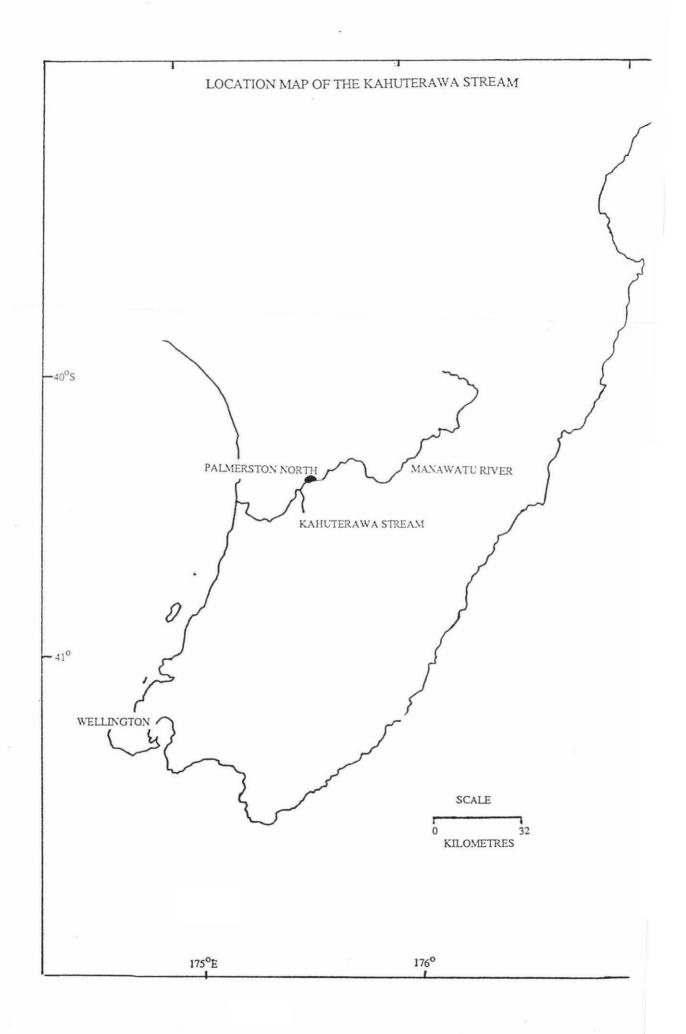
		6.2.2 CHANGES WITH AGE	58
		6.2.3 RELATIONSHIP TO	
		HABITAT AVAILABILITY	58
		6.2.4 TRENCHES AS SHELTER	58
	6.3 DISCUSSION	1	59
		6.3.1 INTRODUCTION	59
		6.3.2 FOCAL POINT	
		CHARACTERISTICS	59
		6.3.3 CHANGES WITH	
		ACTIVITY	63
		6.3.4 CHANGES WITH AGE	63
7 HABITAT PREFER	ENCE CURVES		65
	7.1 INTRODUCI	TION	65
	7.2 DERIVATIO	N OF HABITAT	
	PREFERENCE	CURVES	66
		7.2.1 INTRODUCTION	67
		7.2.2 METHODS	68
	7.3 RESULTS		69
		7.3.1 MEAN CURRENT SPEED	69
		7.3.2 TOTAL DEPTH	74
		7.3.3 SUBSTRATE SIZE	74
	7.4 DISCUSSION	1	83
		7.4.1 INTRODUCTION	83
		7.4.2 MEAN CURRENT SPEED	84
		7.4.3 TOTAL DEPTH	85
		7.4.4 SUBSTRATE SIZE	85
8 CONCLUSIONS.			87
	8.1 FOCAL POIN	VT CHARACTERISTICS	87
	8.2 HABITAT PR	REFERENCE CURVES	88
BIBLIOGRAPHY			91

.

v

LIST OF FIGURES

FIGURE	TITLE	PAGE
4.1	CURRENT SPEED USE BY ACTIVITY (MEAN	
	CURRENT SPEED)	30
4.2	CURRENT SPEED USE BY ACTIVITY (FOCAL POINT	
	CURRENT SPEED)	31
4.3	CURRENT SPEED USE BY ACTIVITY (MAXIMUM	
	ADJACENT CURRENT SPEED)	32
5.1	DEPTH USE BY ACTIVITY (TOTAL DEPTH)	46
5.2	DEPTH USE BY ACTIVITY (FOCAL POINT	
	ELEVATION)	47
6.1	SUBSTRATE USE BY ACTIVITY	56
6.2	SHELTER USE BY ACTIVITY	57
7.1	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	TOTAL DEPTH FOR EMERGENT FRY	70
7.2	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	TOTAL DEPTH FOR RESTING FINGERLINGS	71
7.3	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE	
	OF TOTAL DEPTH FOR STATIONARY	
	SWIMMING FINGERLINGS	72
7.4	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	TOTAL DEPTH FOR FEEDING FINGERLINGS	73
7.5	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	MEAN CURRENT SPEED FOR EMERGENT FRY	75


7.6	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	MEAN CURRENT SPEED FOR RESTING	
	FINGERLINGS	76
7.7	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	MEAN CURRENT SPEED FOR STATIONARY	
	SWIMMING FINGERLINGS	77
7.8	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	MEAN CURRENT SPEED FOR	
	FEEDING FINGERLINGS	78
7.9	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	SUBSTRATE SIZE FOR EMERGENT FRY	79
7.10	COMPARISON OF HABITAT USE CURVE AND	
2	HABITAT RELATIVE PREFERENCE CURVE OF	
	SUBSTRATE SIZE FOR RESTING FINGERLINGS	80
7.11	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	SUBSTRATE SIZE FOR STATIONARY SWIMMING	
	FINGERLINGS	81
7.12	COMPARISON OF HABITAT USE CURVE AND	
	HABITAT RELATIVE PREFERENCE CURVE OF	
	SUBSTRATE SIZE FOR FEEDING FINGERLINGS	82

vii

LIST OF TABLES .

TABLE	TITLE	PAGE
3.1	ON SITE DATA FOR FOCAL POINT DETERMINATION	20
3.2	SHELTER AND SUBSTRATE CODES	22
4.1	CURRENT SPEED USE BY ACTIVITY	28
4.2	CURRENT SPEED USE BY UNDER YEARLING SALMONIDS	35
5.1	DEPTH USE BY ACTIVITY	45
5.2	DEPTH USE BY UNDER YEARLING SALMONIDS	50
6.1	SUBSTRATE USE BY UNDERYEARLING SALMONIDS	62
6.2	MODIFIED WENTWORTH PARTICLE SCALE	61

x

