Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. THE APPLICATION O MATICAL MODEL TO THE DESIGN OF MODIFIED ATMOSPHERE PACKAGING FOR MINIMALLY PROCESSED VEGETABLES

> A thesis presented in Partial Fulfilment of the Requirements for the Degree of Master of Technology in Packaging Technology at

> > Massey University

THOMAS ROY ROBERTSON 1992

ABSTRACT

Mathematical models were applied to the design of modified atmosphere packages for minimally processed vegetables, specifically, celery stalks, peeled garlic and onion slices. A review of the modified atmosphere packaging models developed by other researchers showed that many of the models were very similar, but the major problem encountered were the lack of suitable respiration rate data and optimum modified atmosphere composition data.

A modified atmosphere package for the celery stalks was developed using a simple model that relied on literature information for the recommended modified atmosphere gas composition. Respiration rate data were not required for the determination of the best package design. An optimum package design was found, and by the application of this simple model, other bag sizes could be designed that would be able to maintain the desired modified atmosphere.

For the design of the peeled garlic package, respiration rate data was determined in a closed system using an experimental design technique called Response Surface Methodology. The respiration data generated by this experiment was used in a mathematical model to design the required packages. Subsequent storage trials were unsuccessful, raising doubts about the accuracy of the respiration rate data. A modified atmosphere package was designed using the same method used to design the package for the celery stalks.

Response Surface Methodology was unsuccessfully applied to the determination of respiration rates for onions (sliced to various thicknesses) using a closed system. The use of a dynamic model of a package of sliced onions was also unsuccessful in determining the respiration rates. Further work needs to be undertaken to evaluate experimental design techniques for determining the respiration rates of minimally processed vegetables. This data can then be used in mathematical models to determine the optimum modified atmosphere package design.

The importance of processing hygeine is stressed, with high microbial numbers growing within four days on untreated minimally processed produce, but little growth after washing in antimicrobial solutions before packaging.

ACKNOWLEDGEMENTS

I wish to express my appreciation to the following persons whose help and cooperation made this study possible.

I would like to thank Professor G.L.Robertson, my supervisor, for his constructive criticisms, and knowledgeable guidance throughout the entire study, and during the writing of this thesis.

Great appreciation is due to Dr J.Parle, the Director of Food Technology Research Centre, for his support and helpful suggestions and criticisms for improving the manuscript. Mt thanks also go to the other F.T.R.C. staff members for their on-going support. In particular, I would like to thank Mr W.Johnson for his invaluable assistance with the gas chromatograph, Mr I.Simpson for his assistance in packaging the garlic, and Mrs S.Marshall for help with the preparation of the thesis. A special thanks to Mrs V.Shaw for her knowledge and helpful hints on the use of Word Perfect, and her timely assistance in typing the tables in this thesis.

Two sections of the research were undertaken, in part, as F.T.R.C. commercial contracts for client companies, whom I would like to thank for the supply of fresh garlic and celery, and for their comments on the quality of the packaged vegetables.

I an very grateful to my wife, Sue, and family for their support and encouragement

Thomas R. Robertson

May, 1992

TABLE OF CONTENTS

ABSTRACT ACKNOWLEDGEM TABLE OF CONTE LIST OF TABLES		ii iii iv vii
LIST OF FIGURES		X
CHAPTER 1:	INTRODUCTION 1.1 Introduction 1.2 Modified Atmosphere Package Design	1 1 2
CHAPTER 2:	MODIFIED ATMOSPHERE PACKAGING MODELS 2.1 'Optimum' Model Requirements 2.1.1 Determination of the Gas Diffusion Rate	6 6
	of the Commodity. 2.1.2 Determination of the Commodity Respiration	6
	Rate 2.1.3 Film Characteristics and Permeability 2.1.4 External Factors	6 6 7
	2.1.5 Critical Elements of a Packaging Model 2.2 Tolle (1962)	7 8
	2.3 Jurin and Karel (1963)	9
	2.4 Veeraju and Karel (1966)	12
	2.5 Massignan (1987)	14
	2.6 Marcellin (1974)	14
	2.7 Kok and Raghavan (1984)2.8 Henig and Gilbert (1975)	16 17
	2.9 Hayakawa, Henig & Gilbert (1975)	19
	2.10 Deily and Rizvi (1981)	21
10 C	2.11 Lakin (1987)	22
	2.12 Cameron, Boylan-Pett and Lee (1989)	22
	2.13 Cameron (1990)	25
	2.14 Yang and Chinnan (1988)	25
	2.15 Mannapperuma et al. (1988)	25
	2.16 Model Comparison	28
	2.17 Research Needs	30
	2.19 Concluding Remarks	31
CHAPTER 3:	MATERIALS AND METHODS	32
	3.1 Materials	32
	3.1.1 Celery	.32
-1	3.1.2 Garlic	32
	3.1.2 Onion	32
	3.2 Computer Programmes	33 33
	3.2.1 Quattro Pro	33

PAGE

TABLE OF CONTE	NTS CONTIN	UED:		PAGE
CHAPTER 3:	CONTINUED 3.2.2	Response Experir	e Surface Methodology nental Design Package	33
	3.2.3 3.3 Gas Cor 3.4 Taste Pa		Measurement	34 34 37
CHAPTER 4:		IY STALKS tion re Determina	THE PACKAGING PARAMETERS WITHOUT RESPIRATION DATA ation of Package Size and	38 38 38
	4.2.2 4.2.3 4.3 Results	-	Weight Trials for the Packaged Celery Stalk nel Procedures	38 s 42 42 45
	4.3.1 4.3.2 4.4 Discussio 4.5 Summar	Storage 1 on	ation of pack size and celery weigh rials on the 300g Pack of Celery	
CHAPTER 5:	DESIGNING PEELED GA 5.1 Aim 5.2 Procedur 5.2.1	RLIC re Determina	ED ATMOSPHERE PACKAGE FOR	53 53 53
	5.2.2 5.2.3 5.2.4	modified Pack Size Shelf-life Taste Par 5.2.4.1 5.2.4.2 5.3.4.3	nel Evaluation Sample Preparation Panel Set Up Taste Panel	53 55 56 56 56 56
	5.2.5 5.3 Results	Microbial	Evaluation	57 57
	5.3.1	of oxyger	ation of the optimum combination and carbon dioxide for the atmosphere	57
	5.3.2	Package 5.3.2.1	Design Determination of the Optimum Oxygen Respiration Rate for	63
ж. — — — — — — — — — — — — — — — — — — —	*	5.3.2.2	Package Design Determination of the Optimum Carbon Dioxide Respiration Rate for Package Design	63 66

۷

TABLE OF CONTENTS CONTINUED:

CHAPTER 5 CON	TINUED:	
	5.3.3 Storage Trial Evaluation 5.4 Follow-Up Experiment 5.5 Other Comments	69 72 73
CHAPTER 6:	MODIFIED ATMOSPHERE STORAGE OF PARTIALLY PROCESSED ONIONS 6.1 Dynamic System Respiration Rate Determination 6.1.2 Method 6.1.3 Results 6.1.3.1 Package Atmosphere 6.1.3.2 Calculation of Respiration Rates 6.2 Closed System Respiration Rate Determination 6.2.1 Method 6.2.2 Results 6.2.3 Discussion 6.3 Summary 6.3.1 Dynamic System Determination of Respiration Rates 6.3.2 Closed System Determination of Respiration Rates 6.3.3 General Comments	75 75 75 77 79 82 82 84 89 91 91 91
CHAPTER 7:	SUMMARY AND CONCLUSIONS 7.1 Pre-Treatments 7.2 Pack Construction and Materials 7.2.1 Celery MA Pack Design 7.2.2 Peeled Garlic MA Pack Design 7.2.3 Sliced Onion Package Design 7.3 Mannapperuma and Singh (1990) Model Evaluation 7.4 Further Research	92 92 92 92 93 93 94
REFERENCES		96

AP	PE	N	XIC
			- · · ·

100

PAGE

LIST OF TABLES

P	A	G	F
•		-	-

Table 2.1	Summary of Factors Included in Mathematical Models of Modified Atmosphere Packaging of Fruit and Vegetables.	29
Table 2.2	The Main Area Covered by the Models for Modified Atmosphere Packaging	30
Table 3.1	The Peak Detection Time Intervals for Carbon Dioxide and Oxygen	34
Table 3.2	The Data used to Generate a Standard Curve for Determining the Amounts of Carbon Dioxide and Oxygen from the Peak Area.	36
Table 3.3	Standard Error Calculation for Gas Composition Analysis by the Gas Chromatograph	37
Table 4.1	A Summary of Permeability Ratios for Low Density Polyethylene from Various References	39
Table 4.2	Gas Composition of the Headspace of Packages Containing of Different Weights of Celery.	45
Table 4.3	Results of the Triangle Sensory Evaluation of the Anti-Browning Treatments	48
Table 4.4	Results of the Sensory Evaluation of 300g packs of Celery Stalks Stored at 4°C - 5°C and Packed Air Atmosphere	49
Table 4.5	Microbiological Results of Celery Stalks Before and After Washing and After 28 Days of Storage at 4°C - 5°C Packed Air Atmosphere.	49
Table 5.1	The parameters used to design the experiment	53
Table 5.2	The experimental design developed by the RSM programme	53
Table 5.3	Time and Gas Composition Data from the Response Surface Methodology Experiment	60
Table 5.4	Weight and Free Volume Data for the RSM Experiment	61
Table 5.5	Calculated Carbon Dioxide and Oxygen Respiration Rates for Peeled Garlic.	62
Table 5.6	CO ₂ Respiration Rates and Required Permeability Ratio (β) for Different % Carbon Dioxide and % Oxygen Levels	69

LIST OF TABLES CONTINUED:

1	1	t	t
v	I	ł	ł

		PAGE
Table 5.7	Data Used to Design the Bag Dimensions for Peeled Garlic	69
Table 5.8	Calculated Bag Dimensions, Weight of Garlic and Gas Composition for Peeled Garlic	69
Table 5.9	Days at the Specified Temperature until the Garlic was Unacceptable	70
Table 5.10	Results of the Taste Panel Evaluation of Peeled Garlic Stored at 5°C	70
Table 5.11	Gas Composition of the Garlic Packages after 7 Weeks at 5°C	71
Table 5.12	Comparison of Carbon Dioxide Respiration Rates of Whole Garlic and Celery	72
Table 5.13	Gas Composition of the Modified Atmosphere in the 30μ Polyethylene Package During Storage at 5°C	73
Table 5.14	Results of the sensory Evaluation of Peeled Garlic in the Redesigned Bag Stored at 5°C	73
Table 6.1	Oxygen Level inside the polyethylene bag containing 100g of 5mm Sliced Pukekohe Longer Keeper onions	77
Table 6.2	Oxygen levels inside the polyethylene bags containing 100g of whole PLK onions	78
Table 6.3	Carbon dioxide levels measured in the polyethylene bag containing 5mm sliced PLK onions	78
Table 6.4	Carbon dioxide levels measured in a polyethylene bag containing 100g of whole onion	79
Table 6.5	Calculated Oxygen respiration rates for 5mm sliced PLK onions	79
Table 6.6	Calculated Carbon Dioxide respiration rates for 5mm PLK onions	80
Table 6.7	Calculated Oxygen respirations rates for whole peeled PLK onions	80

LIST OF TABLES CONTINUED:

1	1		2	-
- F	'ŀ	11	3	
	-	11		-

Table 6.8	Calculated Carbon Dioxide respiration rates for whole peeled PLK onions	81
Table 6.9	Microbial results of the 5mm sliced PLK onions throughout the storage period	82
Table 6.10	The Variables and Levels for the RSM for Sliced Onion	82
Table 6.11	The Experiment Plan Design by the RSM Programme for Sliced Onion	83
Table 6.12	Time and Gas Composition Data from the Response Surface Methodology Experiment on Sliced Onion Stored at 5°C	86
Table 6.13	Weight and Free Volume Data for the RSM Experiment	87
Table 6.14	The Calculated Carbon Dioxide and Oxygen Respiration Rates for Sliced Onion	88
Table 6.15	RSM Confidence Statement for the Sliced Onion Respiration Experiment	89

ix

LIST OF FIGURES

	P	AGE
Figure 1.1	Factors to Consider in the Design of Processing and Packaging Procedures for Minimally Processed Produce	3
Figure 1.2	A Model of the Commodity and its Environment Showing the Types of Barriers which can be Used to Establish a Modified Atmosphere	4
Figure 2.1	Comparison of Predicted and Observed Concentrations of Oxyge and Carbon Dioxide in Polyethylene Bags Containing Apples, from Jurin & Karel (1963))	en 11
Figure 2.2	Comparison of the Predicted and the Experimentally Observed Gas Concentrations (from Veeraju and Karel(1966)) (Note: the Package was Redesigned After 44 Hours)	13
Figure 2.3	The Changes in Gas Composition in a Package of Artichokes, Designed by Marcellin's Model, During Storage Trials (from Marcellin (1974))	15
Figure 2.4	The Changes in Gas Composition in a Package of Carrot, Designed by Marcellin's Model, During Storage Trials (from Marcellin (1974))	16
Figure 2.5	A Comparison Between Henig & Gilbert's model calculations and the Experimental Results of the Atmosphere Change in a Plasticized Polyvinyl Chloride Film Package Containing Tomatoes (Henig & Gilbert (1975))	19
Figure 2.6	Predicted permeability characteristics of a polymeric film required to maintain a given concentration of O ₂ for a range of weights of red tomatoes at 25°C in a sealed package environment. (Cameron <u>et al.</u> (1989))	24
Figure 3.1	Diagram of the Peaks Detected by the GC from a Sample Atmosphere.	35
Figure 4.1	Recommended Modified Atmospheres for Storage of Vegetables (Mannapperuma and Singh (1990))	40
Figure 4.2	Triangle Taste Panel Procedures Form	41
Figure 4.3	Celery Storage Trial Taste Panel Procedure Form	43
Figure 4.4	Celery Storage Trial Taste Panel Form	44
Figure 4.5	Gas Composition of the Packages Containing Different Weights of Celery at Day 7 and 11.	46

х

xi LIST OF FIGURES CONTINUED: PAGE Figure 4.6 Gas Composition of the 300g Package of Celery over the Storage Trial Period 47 Figure 4.7 The Graph of the Shelf-Life of the Modified Atmosphere Packaged Celery Stalks Stored at 17°C, 10°C and 5°C 50 The Procedure Form Used for the Taste Panel Evaluation Figure 5.1 of the Packaged Peeled Garlic 58 The Taste Panel Form Used for the Garlic Taste Evaluation Figure 5.2 59 RSM Developed Topographical Map of the Oxygen Respiration Figure 5.3 Rate at Different Oxygen and Carbon Dioxide Levels for Peeled Garlic. 65 RSM Developed Topographical Map of the Carbon Dioxide Figure 5.4 Respiration Rate at Different Oxygen and Carbon Dioxide Levels for Peeled Garlic 67 Figure A2.1 XY Plot of the Effect of Three CO, Levels on the Oxygen Respiration Rate at Different Oxygen Levels 105 Figure A2.2 XY Plot of the Effect of Three CO₂ Levels on the Carbon Dioxide Respiration Rate at Different Oxygen Levels 106 Figure A2.3 XY Plot of the Effect of Three O, Levels on the Oxygen Respiration Rate at Different Carbon Dioxide Levels 107 Figure A2.4 XY Plot of the Effect of Three O, Levels on the Carbon Dioxide Respiration Rate at Different Carbon Dioxide Levels 108 Figure A3.1 Oxygen Respiration Rate Topographical Map Drawn by "Surfer" 109 Figure A3.2 Oxygen Respiration Rate 3-Dimensional Diagram Drawn by "Surfer" 110 Figure A3.3 Carbon Dioxide Respiration Rate Topographical Map Drawn by "Surfer" 111 Figure A3.4 Carbon Dioxide Respiration Rate 3-Dimensional Diagrams Drawn by "Surfer" 112

LIST OF FIGURES CONTINUED:

Figure A6.1	XY Plot of the change in O_2 respiration rate at three slice thicknesses, 5mm, 10mm and 15mm at 2% CO_2	120
Figure A6.2	XY Plot of the change in CO ₂ respiration rate at three slice thicknesses, 5mm, 10mm and 15mm at 2% CO ₂	121
Figure A6.3	XY Plot of the change in O_2 respiration rate at three slice thicknesses, 5mm, 10mm and 15mm at 4% CO_2	122
Figure A6.4	XY Plot of the change in CO_2 respiration rate at three slice thicknesses, 5mm, 10mm and 15mm at 4% CO_2	123
Figure A6.5	RSM generated Topographical Map of the CO ₂ model at an onion slice thickness of 18mm	124
Figure A6.6	RSM generated Topographical Map of the CO ₂ model at an onion slice thickness of 15mm	125
Figure A6.7	RSM generated Topographical Map of the CO ₂ model at an onion slice thickness of 10mm	126
Figure A6.8	RSM generated Topographical Map of the CO ₂ model at an onion slice thickness of 5mm	127
Figure A6.9	RSM generated Topographical Map of the CO ₂ model at an onion slice thickness of 2mm	128
Figure A6.10	RSM generated Topographical Map of the O ₂ model at an onion slice thickness of 18mm	129
Figure A6.11	RSM generated Topographical Map of the O ₂ model at an onion slice thickness of 15mm	130
Figure A6.12	RSM generated Topographical Map of the O_2 model at an onion slice thickness of 10mm	131
Figure A6.13	RSM generated Topographical Map of the O_2 model at an onion slice thickness of 5mm	132
Figure A6.14	RSM generated Topographical Map of the O ₂ model at an onion slice thickness of 2mm	133

xii

PAGE