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Abstract 

The use of whey protein products in foods is governed by their nutritional and 

functional properties. Whey protein products have increasingly been applied in a variety of 

food systems as functional ingredients. In order to boost applications of whey protein 

products and to improve, predict and control their functional attributes in food products 

knowledge is required about how they behave functionally under different conditions, e.g. 

when product composition, processing history, protein concentration, pH, salt concentration 

and temperature vary. 

The flow properties of whey protein concentrate solutions were studied in a Bohlin 

rheometer. The effects of protein concentration, temperature, pH and salts on the gelation and 

gel properties of whey protein concentrates and whey protein isolate were also investigated 

in the same rheometer. Differences in gelation between whey protein concentrates, whey 

protein isolate, egg white and B-lactoglobulin were studied. Differences between dynamic 

shear properties determined in a Bohlin rheometer and fracture properties determined in an 

Instron universal testing machine were also studied. 

The flow properties of whey protein concentrate solutions changed from Newtonian 

to pseudoplastic or even thixotropic behaviour, owing to structure formation in the solutions, 

i.e. to increases in protein intermolecular interactions. Such structure formation resulted from 

increases in protein concentration, temperature or CaC12 concentration, and from shifting the 

pH to extreme values. 

Gelation of whey protein was dependent on protein concentration, gelation 

temperature, pH, salt content and lactose content. Salt content was the most important factor 

in determining the gelling properties of various whey protein concentrate products and whey 

protein isolate. Consistent gelling properties could only be achieved when salt content was 

carefully controlled. The degree of protein denaturation and lactose content also led to 

differences in gelling behaviour of whey protein concentrates. 

Whey protein products, when compared with ·egg white, had a higher gelation 
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temperature, a higher minimum protein concentration for gelation, lower initial gelation rate 

and lower gel stiffness. The differences in initial gelation rate and gel stiffness could be 

compensated by adjustment of the salt content of whey protein products. 

Dynamic viscoelastic measurements on whey protein isolate gels in the region of the 

sol-gel transition exhibited simple power law relationships between the storage (G' ) and loss 

(G") moduli and frequency as G' oc ro0·54±0.o2 and G" oc ro051±0.o2, indicating that the gel in the 

region of the sol-gel transition could have the geometry of a fractal. The critical exponents 

calculated from the protein concentration dependence of gelation time and from the site 

percolation model indicated that the gelation of whey protein is a realization of a percolation 

process. 

Compression rigidity modulus (Ec), penetration rigidity (EP), tension rigidity (EJ and 

storage modulus G' all exhibited a similar pattern of variation with pH. G' , Ec, EP and Ev 

which were not closely related to the fracture properties and hardness of whey protein 

concentrate gels, were controlled by electrostatic interactions. The fracture forces and 

hardness were determined by both disulphide bonds and electrostatic interactions, while 

fracture strains were mainly controlled by disulphide bonds. 
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