
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



Random discrete groups of Möbius transformations:
Probabilities and limit set dimensions.

A Thesis presented in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in
Mathematics

at Massey University, Albany, New Zealand

f �x,y��f �x�f �y� for x,y independent

�2

0

2
f�x� �2

0

2

f�y�

0.00

0.05

0.10

November 2017
This thesis represents original work of the author unless otherwise attributed.



0.0 0.2 0.4 0.6 0.8 1.0
r0.0

0.2

0.4

0.6

0.8

1.0
Dimension

Determination of dimension vs isometric circle radius
analytic (blue) and computed (red, green)

Thesis c© 2017

Graeme K O’Brien

Institute for Advanced Study, Massey University, Auckland New Zealand

ALL RIGHTS RESERVED

ii



Acknowledgements

Distinguished Professor Gaven Martin

It was my good fortune to have a great mathematician for my supervisor, but he made me
work for the privilege. With his professional scepticism he made me fight for every claim,
standard challenges were "I don’t believe it", or maybe "It’s either well known or it’s wrong,
I don’t know which". Thanks Gaven.

Associate Professor Shaun Cooper

Thanks Shaun for your encouragement and tenacious insistence that the proof of a particular
theorem be unassailable.

Lynette O’Brien, BBS (Hons), MSc (Mathematics)

Well, who could have a more loving, patient and supportive mathematical wife?

iii



ABSTRACT

This thesis addresses two areas related to the quantification of discrete groups. We study
"random" groups of Möbius transformations and in particular random two-generator groups;
that is, groups where the generators are selected randomly. Our intention is to estimate the
likelihood that such groups are discrete and to calculate the expectation of their associated
geometric and topological parameters. Computational results of the author [55] that indi-
cate a low probability of a random group being discrete are extended and we also assess the
expected Hausdorff dimension of the limit set of a discrete group. In both areas of research
analytic determinations are correlated with computational results. Our results depend on the
precise notion of randomness and we introduce geometrically natural probability measures
on the groups of all Möbius transformations of the circle and the Riemann sphere.
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Chapter 1

Introduction

1.1 Möbius transformations and hyperbolic geometry
We are interested in discrete groups of Möbius transformations because this gives us a way to
understand some of the geometric aspects of hyperbolic spaces. Decomposition of 2-manifolds
into a few structures (spheres, tori and projective planes) has been possible for some time.
Thurston’s geometrisation conjecture (see for example [69]), since proven by Perelman ([57]
for the first of a series of papers), allows the decomposition of any closed 3-manifold into sub
manifolds with precisely eight possible geometric structures which are quotient groups of the
manifold by discrete subgroups of a Lie group on the manifold.

Lie groups are mathematical groups in the usual sense but with the additional property of
topological isomorphism to some smooth (differentiable) manifold. That is, the identifica-
tion of groups of Möbius transformations with groups of hyperbolic isometries has important
connections to 3-manifold theory. The group of Möbius transformations under composition
is homomorphic to a subgroup of 2 × 2 complex matrices under multiplication, unique up
to sign, allowing Möbius transformations to be studied by considering subgroups of the ma-
trix groups GL(2,C) and SL(2,C) for instance via theorems by Jørgensen [36], Gehring and
Martin [21] and Klein (see [25]). The classic works of Ford [20] and Beardon [5] present much
of the mathematical foundation for analysis of discrete groups.

Beardon shows that for any subdomain of Ĉ invariant under a group G of Möbius transfor-
mations, provided the group action is discontinuous then the quotient of the subdomain by
G is a Riemann surface

1.2 Random groups
In this thesis we introduce the notion of a random Fuchsian group. Our ultimate aim is to
study random Kleinian groups, but the Fuchsian case is quite distinct in many ways, for in-
stance the set of precompact cyclic subgroups (generated by elliptic elements) has nonempty
interior in the Fuchsian case, and therefore will have positive measure in any reasonable
imposed measure. For Kleinian groups this is not the case. However, the motivation for
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the probability measure we chose is similar in both cases. We seek something "geometrically
natural" and with which we can perform both computational and mathematical analysis. We
should expect that almost surely (that is with probability one) a finitely generated subgroup
of the Möbius group is free.

1.3 Discrete groups
We shall see that a random two generator group is discrete with probability greater than 1

20
,

a value we conjecture to being close to optimal, and we know with certainty that this value is
less than 1

4
. If we condition by choosing only hyperbolic elements, this probability becomes

1
5

and if we condition by choosing only parabolic elements the probability of discreteness is
1
6
. We also consider such things as whether or not axes of hyperbolic generators cross in

order to get some understanding of the likelihood of different topologies arising. To examine
discreteness we set up a topological isomorphism between n pairs of random arcs on the cir-
cle and n-generator Fuchsian groups. We determine the statistics of a random cyclic group
completely, however, the statistics of commutators is an important challenge with topolog-
ical consequences which we only partially resolve. For instance if we choose two random
hyperbolic elements with pairwise disjoint isometric circles, the quotient space is either the
two-sphere with three holes, or a torus with one hole, the latter occurring with probability 1

3
.

The mathematics of discrete groups of Möbius transformations is the basis of our study of
hyperbolic geometry. We now view Euclid’s parallel postulate as allowing the contrary ex-
istence of other geometries and the successful application of hyperbolic geometry is ample
justification. Hyperbolic geometry is the realm of spaces with constant negative curvature as
opposed to zero curvature for Euclidean spaces and constant positive curvature for spherical
spaces.

With the aid of discrete groups and some deep theorems we can perform topological decom-
position of convoluted surfaces in hyperbolic spaces into much simpler component parts for
which the geometry is locally Euclidean at every point, these surfaces we call manifolds (or
orbifolds if the group contains elements of finite order). A 2-manifold is a two dimensional
surface that we can usually envisage embedded in three-dimensional space while a 3-manifold
is a three dimensional "surface" that we find extremely difficult to envisage at all. There
are well known examples of manifolds that will not even embed in such Euclidean spaces.
The Möbius strip, Klein bottle and projective plane are examples of manifolds which are non
orientable surfaces.

The extended complex plane Ĉ = C+ {∞} is a two dimensional non planar connected space,
topologically a sphere, and we call it the Riemann sphere. We can define two and three-
dimensional hyperbolic space embedded in R2 and R3 respectively as:

H
2 = {z = (x, y) : y > 0}

together with the metric ds = |dz|
|x| of constant negative curvature −1, and
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H
3 = {z = (x, y, t) : t > 0}

together with the metric ds = |dz|
t

.

We also use the Poincaré unit disc model where two dimensional hyperbolic space is emdedded
in the interior D2 of the unit circle and the metric is:

ds =
|dz|

1− |z|2 , |z| < 1.

Information about these spaces together with some formulae we will use from time to time
can be found in Beardon [5].

Möbius transformations are linear fractional functions of the form f(z) =
az + b

cz + d
where

a,b, c,d are complex numbers and the functions map the point z = x + iy to the point
f(z) in the extended complex plane Ĉ. Such functions are differentiable provided c and d
are not both zero, a condition satisfied by a requirement that the products ad and bc are
never equal, and the functions form a group under composition. It turns out that the Möbius
transformation group is isomorphic to the group of orientation-preserving isometries of not
only Ĉ, but of hyperbolic 3-space, they can be shown to act as conformal (that is, with
preservation of angles) transformations in Ĉ, see [5].

If we consider matrix representation of Möbius transformations then for inverses to exist

we must require 2 × 2 complex matrices of the form
(

a b
c d

)
to be non singular, with

ad − bc �= 0. We find that such matrices form a group under multiplication, which group
generates under composition all isometries of Ĉ.

So all conformal automorphisms on the sphere are Möbius transformations and the Möbius
group is homomorphic to groups of matrices in SL(2,C), a group which has representation
mathematically as a differentiable manifold. Möbius transformations can be represented by
matrices in GL(2,C) up to determinant, in SL(2,C) up to ±I (where I is the identity matrix
for GL(2,C) and all subgroups), and uniquely in PSL(2,C) = SL(2,C)/{±I}. Conversely,
matrices in these groups induce Möbius transformations.

Following Gehring and Martin [21] we define the parameters of a two generator group 〈f, g〉
as β and γ where:

β(f) = trace2(f)− 4, β(g) = trace2(g)− 4

and where the commutator of f and g is [f, g] = fgf−1g−1:

γ([f, g]) = trace([f, g])− 2. (1.1)

A discrete subgroup G of Möbius transformations contains no sequence of elements of G that
tends to the identity transformation, this is equivalent to the group inheriting the discrete
topology from SL(2,C) and the discreteness property can be established by demonstrating
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that the identity is isolated (see for example Beardon [5]). Jørgensen [36] proves a necessary
condition for non elementary two-generator groups 〈f, g〉 to be discrete, in terms of the
parameters:

|β(f)|+ |γ([(f, g)])| ≥ 1. (1.2)

Jørgensen also establishes that a non elementary group G of Möbius transformations is dis-
crete if and only if for all f, g ∈ G, the two generator group 〈f, g〉 is discrete, this important
result allows us to restrict analysis to two generator groups. Klein, see for example [25], proves
that if the discs enclosed by the 4 isometric circles of matrices A,B,A−1, B−1 representing
two Möbius transformations and their inverses are mutually disjoint then the two-generator
group 〈A,B〉 is discrete.

Möbius transformations being linear fractional functions, representative transformations in
GL(2,C) can always be reduced to transformations in SL(2,C) and we define Kleinian groups
to be that subgroup of SL(2,C) consisting of all discrete Möbius transformations. If under
a Möbius transformation group there is an invariant disc in Ĉ in which the group action is
discontinuous then the group is Fuchsian and discrete, such are conjugate to subgroups of
SL(2,R) hence have real trace and act as groups of isometries in the Poincaré disc model of
hyperbolic space.

In order to extend the computational results of [55] (which applied quite generally to Möbius
transformations close to the identity) we develop both analytical and computational method-
ologies, quantifying the nature of the sets of discrete groups embedded in Fuchsian or Kleinian
groups via probability distributions that are geometrically natural. Among the objectives
of this thesis are discovery of lower bounds to the probability that particular two generator
groups are discrete and understanding of the likelihood that Jørgensen’s inequality is violated.

1.4 Limit sets
The concept of an accumulation point of a set is well known, that any neighbourhood of the
point no matter how small contains another point of the set. The limit set Λ(G) of a group
G of transformations is defined by Ford [20] to be the set of all accumulation points of the
isometric circle centres of f ∈ G. The fixed points of the generators Xi of G = 〈Xi, |mi=1〉
being invariant under the action of the respective Xi are necessarily contained in Λ(G).

Non commutative finitely generated groups can be specified completely by an infinite set of
sequences of the individual group generators and their inverses. For a two-generator group
〈f, g〉 the possible operations are {f, f−1, g, g−1}, these are the letters of sentences represent-
ing such sequences. We note however that it would be non productive to allow sentences
having any letter and its inverse adjacent, accordingly we will always use reduced sentences
which omit all adjacent combinations of elements of the units of the set of group generators.
It is easy to see that such exclusions also obviate the possibility of any compound words
(sub-sentences) being adjacent to their inverses, that is, a reduced sentence is completely
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reduced, containing no adjacent elements of units of the group.

The group action of a finitely generated group G on a metric space H can then generate the
limit set Λ(G) via the operation of the set W of all infinite sentences of elements of G on all
points p ∈ H . Λ(G) is invariant under the action of G. Further, for all p ∈ H there exist
fixed points τ and infinite sequences of elements γn ∈ G such that γn(p) → τ as n → ∞,
hence Λ(G)(p1)=Λ(G)(p2) ∀p1, p2 ∈ H and given G,H the limit set of the action of G on
H , Λ(G) is unique and can be generated as the closure of the set W acting on any point p ∈ H .

Since the limit set Λ(G) is a group invariant we can generate the set via group operations
on the fixed points of the generators. This is the approach we follow for our computational
determinations.

We will restrict our attention to 2-generator groups G = 〈f, g〉 represented by matrices in
SL(2,C) and the group action on the extended complex plane Ĉ. Surface groups are discrete
and their limit sets are circles. We study the case where G is discrete and the limit set is
totally disconnected and confined to the interiors of the four isometric circles of the matrix
representations of the generators and their inverses. In any sequence γn, as n → ∞ the radii
of the corresponding pairs of isometric circles tend to zero very rapidly and consequently for
any point p ∈ Ĉ, a transformed point p′ = γn p rapidly becomes indistinguishable from a
limit set point. That is, the limit sets can be defined by rapidly convergent sequences.

We can classify group elements by the order of the reduced sentences and will refer to the
resultant classes as generations. For the two generator group 〈f, g〉 we take generation 0 to
be the identity, generation 1 then consists of {f, f−1, g, g−1}. We also classify group actions
and parameters in the same fashion, and in each case the resulting structure is an iterated
function system. The concept was introduced by Barnsley and Demko [4]. Formally, an
iterated function system (IFS) is a finite set of contraction mappings on a complete
metric space and the dynamical system consists of repeated application of these maps.

1.5 Dimension
We adopt the following definition of dimension based on work of Barenblatt [3], Sagan [61]
and Riemann [59]:

Definition 1.1. The dimension function (the dimension) supported on a metric or topological
space is the function that determines the constant factor by which the numerical value of an
entity changes upon passage from one generation to another within a given IFS class.

We define in the normal manner a Lebesgue outer measure via all countable covers ∪iUi

of non-empty subsets Ui ⊂ Rn of bounded diameter as H s
δ (E) = inf

∑∞
i=1 |Ui|s where the

diameter and dimension bounds are respectively 0 < sup |Ui| ≤ δ and 0 < s ≤ ∞. As we
take the limit limδ→0 H s

δ (E) (which always exists) then we have the Hausdorff s-dimensional
outer measure H s(E) = supδ>0 H s

δ (E) for s ∈ R+. There is a unique non-zero non-infinite
value which is the Hausdorff dimension of the set. Anderson and Rocha [1] show that in
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the context of Kleinian groups the Hausdorff dimension is an analytic function.

The resemblance of Hausdorff dimension to the Minkowski (box counting) dimension is ap-
parent if we choose for covering sets only subsets of dimension δ. Mainieri [40] establishes
that the Hausdorff and box counting dimensions agree for fractal sets generated by rapidly
convergent functions. Kleinian groups are by definition discrete and totally disconnected and
their limit sets are necessarily fractal and bounded by the disjoint isometric circles in Ĉ of
the generators. The limit sets can be defined by rapidly convergent sequences, accordingly
we assess Hausdorff dimension via a modification of the box counting process. Since the limit
sets are group invariants then if a measurable dimension exists for such sets then the measure
is also a group invariant, hence our interest.

Noting that the limit sets of ortho-central groups are contained within the unit circle S we
represent each limit point by a single real number in the interval [0, 2π) and consider only
covering balls on S, these are essentially one dimensional boxes on the circular domain. Thus
for computational determination of the Hausdorff dimension we create a minimal coverings
for limit sets E on S with balls of radius ε which map to intervals [2ε(j−1), 2εj) ⊂ R indexed
by j ∈ [1, π

ε
). Should E = S then the set E is 1-dimensional and the number of covering

intervals is N(ε) = π
ε
. We consider S − E �= ∅ and let Ci be constants, clearly whenever E

contains an arc of S we can cover the set with fewer small intervals but the set remains 1-
dimensional and N(ε) = C0× π

ε
say. We recognise that if E �= ∅ is totally disconnected then

the dimension will be some number D = dim(E) | 0 ≤ D ≤ 1, and define the box dimension
(Minkowski dimension) of E to be D = dim(E) | N(ε) = C1

π
εD

. Taking logs and rearranging,
we have D = dim(E) = log(N(ε))

−log(ε)
− C2

log(ε)
. The expression d = log(N(ε))

−log(ε)
will yield a number d for

any minimum covering of a set E by N(ε) intervals of width ε and we note that d → dim(E)
as ε → 0 and that dim(E) is the Hausdorff dimension for limit sets E of ortho-central groups.

Falconer [18] lists requirements that any dimensional measure dim(E) of a set E must sat-
isfy, in our case it is clear that if lim

ε→0
d = dim(E), then d = log(N(ε))

−log(ε)
which is the sum of the

dimension dim(E) and a function C2

log(ε)
of ε alone, must also satisfy Falconer’s requirements,

and specifically if E ⊂ F then dim(E) ≤ dim(F ) ⇒ d(E) ≤ d(F ).

We design and implement several algorithms, improving progressively on techniques similar
to those indicated in the literature.

1.6 Computation
Computer programs to aid analytical calculations and perform computational analysis were
central to this project. Some of these programs were available via commercial or academic
license or on-line by courtesy of various acknowledged authors, others were designed and
written by the author of this thesis for the various phases of this project. Microsoft Vi-
sual Basic 6, the last version ever produced of this superb structured scientific processing
language, was used for implementation of the various algorithms developed and data presen-
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tation was via import into either Mathematica or Corel Draw, in the latter case using the
Visual Basic 6 scripting language feature. Wolfram Mathematica especially has been a useful
tool for preliminary analytical calculations. Occasional use has been made of GeoGebra and
Adobe Illustrator to produce and convert diagrams into postscript files for incorporation into
LATEXdocument files.

Random number generation for matrix entry components is discussed in [55], in essence the
fast methods have inherent aliasing problems while those producing results of high integrity
are prohibitively slow for real-time calculation. For the current project a very large database
of high integrity double precision fixed point random numbers in the range [0, 1] was created
once only using the CryptoSys API [13], this database then being accessed via purpose writ-
ten virtual memory API’s to allow fast random matrix generation. These random numbers
have a higher specification than required by ANSI X9.31, the relevant publications are [54]
and [19]. An additional advantage of the predefined database approach is that any compu-
tational experiment can be duplicated precisely for verification purposes.

1.7 Chapter order
The following is an explanation of the order of subsequent chapters.

• Chapter 2 covers some background theory for the decomposition of hyperbolic surfaces
by Möbius transformations and also introduces concepts essential to the mathematical
and computational analysis of random variables.

• The main results on Fuchsian groups can be found in Chapter 3.

• Chapter 4 develops random variable theory necessary for analysis of isometric circle
intersection topology.

• Chapter 5 covers algorithmic considerations for computation and presents some com-
putational results.

• Chapter 6 is a preliminary investigation into limit sets of some Möbius transformations
and presents both computational and analytic results.
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Chapter 2

Foundations

2.1 Möbius transformations
We will use the symbol M to refer to the Möbius group with representation in SL(2,C).
We will normally be considering transformations of the extended complex plane, and it is
important to note that Möbius transformations map circles to circles (where a straight line
is a circle of infinite radius), see Beardon [5]. With matrix representation of f ∈ M the
trace function defined as the sum of leading diagonal entries is well defined for f as a linear
fractional function, this allows us to refer to trace(f).

Möbius transformations do not generally commute; for g followed by f we would normally
write f(g) = f ◦ g but we will use a product notation fg since by matrix representation of f
by A and g by B the composition f ◦ g is represented by the matrix product AB.

In this thesis complex variables, sometimes treated as vectors, are represented in bold. For
instance, z = x + iy expresses a complex variable in terms of real and imaginary parts and
the conjugate of z is z = x− iy. We write for a vector in polar form z = |z| ei Arg(z) and for

the modulus z = |z|. We will treat the entries a,b, c and d of the matrix A =

(
a b
c d

)
as

vectors through the origin (0, 0) in the extended complex plane.

2.1.1 The cross ratio

We follow Beardon [5] and define the cross ratio of four points z1, z2, z3, z4 ∈ C to be

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)
. (2.1)

Beardon shows that the cross ratio of any four points in Ĉ is invariant under the action of
Möbius transformations. We note that since any three points in Ĉ determine a circle uniquely
and Möbius transformations map circles to circles we can always find specific transformations
f = (z−z1)(z2−z3)

(z−z2)(z1−z3)
to perform such mappings. Specifically, any three points can be mapped to

the points {0, 1,∞} in Ĉ.
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2.1.2 Conjugation

Möbius transformations f and g are conjugate whenever the products fg and gf are identical
transformations. Then we can say that the conjugate of f by g is gfg−1 and f and g are
congugate if and only if f = gfg−1, see for example Beardon [5]. Some parameters are
invariant under conjugation, notably the trace and the cross ratio of four points on a circle.

2.1.3 Classification and fixed points

Möbius transformations can usefully be classified according to the square of the trace or
equivalently according to the parameter β (see e.g. Beardon [5]). Let f be a transformation
in M that maps points in Ĉ to points in Ĉ. Then:

(1) For the identity I =

(
1 0
0 1

)
, trace(±I) = ±2 and trace2(±I) = 4, β(±I) = 0.

(2) If the trace is real and trace2(f) = 4, β(I) = 0 and f is said to be parabolic. Such
transformations have a single fixed point z1 (where z1 = f(z1) in Ĉ), the transformation
translates all but the fixed point in Ĉ and is represented by a matrix conjugate to I.

(3) If the trace is real and trace2(f) < 4, β(I) ≤ 0 and f is said to be elliptic. Such
transformations have infinitely many fixed points (where zi = f(zi), (i ∈ N+) in Ĉ),
the transformation rotates points in Ĉ by an angle α when f is represented by a matrix

conjugate to
(

cos(α) − sin(α)
sin(α) cos(α)

)
.

(4) If the trace is complex then f is said to be loxodromic. Such transformations have two
fixed points (where z1, z2 = f(z1, z2) in Ĉ), the transformation scales (dilates) points

in Ĉ by a factor k ∈ C when f is represented by a matrix conjugate to
(

k 0
0 1

)
.

(5) If the trace is real and trace2(f) > 4, β(I) > 0, then f is said to be hyperbolic. Such
transformations have two fixed points (where z1, z2 = f(z1, z2) in Ĉ), the transforma-
tion scales (dilates) points in Ĉ by a factor k ∈ R when f is represented by a matrix

conjugate to
(

k 0
0 1

)
.

Beardon uses the term strictly loxodromic to denote loxodromic transformations f with non
real β(f) = trace2(f)− 4, that is, hyperbolic transformations are loxodromic but not strictly
loxodromic. We will include the term hyperbolic where such explicitness avoids the possibility
of confusion as in Theorem 2.4.

Theorem 2.1. Let the Möbius transformation g(z) = a z+b
c z+d

be represented by the matrix(
a b
c d

)
. Then for c �= 0 the fixed points of the Möbius transformation g are given by:

z =
a− d±√

β(g)

2c

where β(g) is the complex parameter, trace2(g)− 4.
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Proof. The fixed points of a Möbius transformation g are the solutions in Ĉ to z = a z+b
c z+d

;
that is for f ∈ SL(2,C),

z(cz+ d) = az+ b
therefore

cz2 + (d− a)z− b = 0
(2.2)

and the since the same equation is obtained for the inverse transformation, for c �= 0,
z = d z−b

−c z+a
and there are two fixed points given by:

z =
a−d±

√
(a−d)2+4bc

2c

=
a−d±

√
β(f)

2c
.

(2.3)

Whenever c = 0, (2.2) is linear and the only fixed point in Ĉ is ∞ unless b
d
= 0, in which

case 0 is also a fixed point.

2.1.4 Isometric circles

The concepts of isometric circles as developed by Ford [20] have a close relationship to the
operation of Möbius transformations in the complex plane.

Definition 2.2. An isometric circle is the locus of points in whose neighbourhood distances
are preserved under Möbius transformation.

That such a locus is always a circle for Möbius transformations is easily established since
the transformation group is a Lie group and hence differentiable. Then an isometric circle
defines two disjoint discs in Ĉ one consisting of the interior Df and the other the exterior D′

f

of the bounding circle. Our initial interest is due to Klein’s determination of the relationship
between discreteness of Möbius groups and the disjointedness of the isometric circles of the
matrices representing the group generators.

Theorem 2.3. For the Möbius transformation f(z) = az+b
cz+d

represented by the matrix

A =

(
a b
c d

)
∈ SL(2,C) (2.4)

acting on the extended complex plane Ĉ:

(1) the isometric circles of the matrices induced by Möbius transformations f and f−1 are
of radius 1

|c| and are centered respectively on the points −d
c

and a
c
,

(2) the transformation f sends the centre of the induced isometric circle to infinity and the
point at infinity to the centre of the isometric circle induced by the inverse transforma-
tion f−1,
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(3) the transformation f maps the isometric circle induced by f to that of f−1 and maps
the discs of the isometric circles according to:

Df �→ D′
f−1

D′
f �→ Df−1.

(2.5)

Proof.

(1) We differentiate f(z) = az+b
cz+d

:

df

dz
=

ad− bc

(cz+ d)2

but since the Möbius transformations are represented by matrices in SL(2,C), we may
assume ad− bc = 1 and thus:

df =
dz

(cz+ d)2

We note that

|df | = |dz| ⇔ |cz+ d| = 1 (2.6)

which is the equation of a circle of radius 1
|c| centered on −d

c
. Similarly the inverse

function f(z) = dz−b
−cz+a

yields the equation of a circle of radius 1
|c| centered on a

c
:

|df | = |dz| ⇔ |−cz + a| = 1 (2.7)

so the action of every Möbius transformation on the extended complex plane Ĉ defines
two (possibly co-incident) isometric circles of equal radii.

(2) Since A ∈ SL(2,C) implies ad− bc = 1,

f

(−d

c

)
=

a−d
c

+ b

c−d
c

+ d
=

−ad + bc

−cd+ cd
= ∞ ∈ Ĉ

and if we write the transformation function as z in the form a+b
z

c+d
z

, then:

f (∞) =
a+ 0

c + 0
=

a

c

(3) The centre of the isometric circle of f is −d
c

. Consider a point a vector distance k
c

away
from this centre, then:
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f(−d
c

+ k
c

) = f(k−d
c

)

=
a(k−d

c )+b

c(k−d
c )+d

= ak−ad+bc
ck−cd+cd

= a
c
− 1

ck
.

(2.8)

If |k| = 1 then
(

−d
c

+ k̂
c

)
are points on the isometric circle representing f (since the

isometric circle radius is r = 1
|c|) and according to (2.8) are mapped to points

(
a
c
− k̂

c

)
on the isometric circle representing f−1. When |k| = n > 1 then

(
−d
c

+ nk̂
c

)
are points

outside the isometric circle of f and map to points
(

a
c
− k̂

nc

)
inside the isometric circle

representing f−1 and when |k| = n < 1 then
(

−d
c

+ nk̂
c

)
are points inside the isometric

circle of f and map to points
(

a
c
− k̂

nc

)
outside the isometric circle representing f−1.

If we refer to the single isometric circle of a matrix A we mean that circle represented by
the equation |cz+ d| = 1, if we refer to plural isometric circles of a matrix A we mean both
the isometric circle of A and the isometric circle of A−1, that is, the circle |−cz+ a| = 1. If
we on occasion refer to the isometric circles of, for instance f , we mean those of the matrix
induced by f .

Theorem 2.4. The isometric circles of a matrix representing a Möbius transformation g are
disjoint or tangential if and only if g is hyperbolic or loxodromic.

Proof. By definition (see e.g. Beardon [5]) a Möbius transformation g is hyperbolic or lox-
odromic if and only if |trace(g)| > 2. But the Euclidean distance between isometric circle

centres of a matrix A =

(
a b
c d

)
∈ SL(2,C) representing g (as depicted in Figure 2.1) is

given by:

Δ =
|a+ d|
|c| = r |trace(A)| (2.9)

while the actual separation distance between the isometric circles of A and A−1 is:

δ = r(|trace(A)| − 2). (2.10)

The isometric circles of A ∈ SL(2,C) are then disjoint if and only if |trace(A)| ≥ 2.

We take the term disjoint to mean disjoint or tangential.
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Figure 2.1: Euclidean distance between the isometric circles of a matrix
in SL(2,C).

2.1.5 The axis of a transformation

We define the axis of an isometric circle pair of a matrix to be the unique hyperbolic geodesic
between the centres of the isometric circles in hyperbolic space. We then say that if the axes
of two isometric circle pairs in H2 cross then the pair of transformations represented is
axis-crossing. The axis-crossing condition then divides a matrix group into two equivalence
classes.

2.1.6 Discrete groups

The following Klein combination theorem is at times known as the "ping pong" lemma, a
more recent statement is in [69]:

Theorem 2.5. If the discs enclosed by the four isometric circles of matrices A,B representing
Möbius transformations f, g respectively are mutually disjoint then the group 〈f, g〉 generated
by f and g is discrete and isomorphic in the free product 〈f〉 × 〈g〉.
In view of Theorem 2.4 this allows us to calculate or compute explicit lower bounds for the
probability that groups are discrete.

2.2 Random variables and probability distributions
We use concepts and terminology of probability theory as espoused by Papoulis and Pillai [56],
Kolmogorov [39] and Springer [66] and attempt to reconcile differences between experimental
and analytical approaches. Our "experiments" are actually deterministic mathematics based
on algorithmic manipulation of subsets of a large predetermined set of high integrity uniformly
distributed random numbers.
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2.2.1 Random variables

An algebraic variable is an entity whose value is unknown, changeable, replaceable by any
value in a specified domain of support. A random variable is defined by its probability density
which is of necessity a function everywhere non negative and of unity integrated value over
its domain of support. We use the symbols P for the cumulative distribution function (c.d.f.),
defined as the probability that a random variable is less than a particular value, and P for the
probability density function (p.d.f.), the derivative of the c.d.f. The term distribution may
refer to a portion of the total p.d.f.

We distinguish between analytically and computationally determined distributions; the an-
alytical p.d.f. that describes the distribution is defined via a (possible piecewise) equation,
while a computationally (or experimentally) determined distribution is a set of data points
with implied interpolation to a smooth curve. If we state that any set of computational
or experimental data is (for instance) uniformly distributed, then such is to be taken as a
statistical statement.

2.2.2 Kolmogorov’s σ-fields

Kolmogorov [39] (in translation) defines the concepts of probability based on an algebraic
field F of random events, defined as a set of subsets of a finite set E of elementary events,
and assigns (by way of measure) to each subset A ∈ F a non negative real number PA (called
the probability) such that PE = 1.

Kolmogorov calls his algebraic field a field of probability, and together with complements
this is a set-theoretical σ-field. The product space of two σ-fields is also a σ-field and we
can construct σ-fields from finite sets E of elementary events ξi with associated probabilities
pi where

∑
pi = 1 and for any element A ∈ F (a specific set of elements indexed by i),

PA =
∑

pAi, and PA ∈ [0, 1].

We note that {∅} ∈ F and E ⊂ F. Since F is a field, binary operations apply to elements
of the field and since we can define the structure of the field without reference to specific
(algebraic) binary operations the σ-field is also called in the literature a σ-algebra. In view
of Theorem 2.5, we are mainly concerned with probabilities of isometric circle disjoint inter-
section events only and we will use the term σ-field more loosely to refer to specific restricted
σ-fields F omitting both the null element and all probability complements. We will be using
Kolmogorov’s concepts initially for assessment of probabilities associated with isometric cir-
cle intersections. His general σ-field concept can be specialised via Definition 2.6 in order to
impose an algebra suitable for isometric circle intersection probabilities and we denote such
by Fn:

Definition 2.6. Fn is a σ-field of events whose binary operator is set union and whose ele-
mentary events are the pairwise intersections of n ∈ {2, 4, 6 · · · } isometric circles representing
n
2
∈ N matrices.

Theorem 2.7. For the σ-field Fn of isometric circle intersection events for n
2
∈ N matrices,
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(1) There are n(n−1)
2

elementary events.

(2) The only independent events are elementary and n
2

of the elementary events are inde-
pendent while n(n−2)

2
are dependent.

(3) If the order of the set of elementary events is m then the order of the power set Fm is
2m.

(4) For Fn containing m = n(n−1)
2

elementary events, the m equivalence classes of Fn under
union of k ∈ [1, m] pairwise intersection events are of order

(
m
k

)
, k ∈ [1, m].

Proof.
(1) For n

2
∈ N matrices there are n isometric circles. We choose one of n circles and consider

the intersection with one of the remaining n− 1 circles. Since the order is immaterial
there are n(n−1)

2
ways in which the intersection can occur.

(2) Independent intersection events can only be joint pairwise intersection events, hence
elementary. For independent intersections there is only one way to choose the second
circle of a pair, hence n

2
of the elementary events are independent and n(n−1)

2
−n

2
= n(n−2)

2

are dependent.

(3) The set of non elementary events in Fn is composed of all possible unions of the elemen-
tary events. If we place the elementary events in any specific order and apply a binary
weighting to each then all possible unions (including the elementary events) correspond
to all combinations of these weights. Since the order of the set of elementary events is
m = n(n−1)

2
, the set Fn of events can then be indexed by an m-bit binary number and

accordingly is of order 2m.

(4) The number of equivalence classes is clearly equal to the order of the set of elementary
events and the result follows since the number of subsets of k elementary events in a
set of m such events is

(
m
k

)
.

2.2.3 Experimental definition

Assuming the need for computational analysis, we define an experiment by an algorithm
implemented via a computer program which encapsulates an iteration of a random number
generating algorithm that supplies arguments for specific defined functions. Of the set S of
all possible outcomes of an experiment, actual events T are recorded from specific program
runs. The set S is the domain of a random variable function X indexed by an outcome
reference ξ, a particular instance of which from the event T ⊂ S is X(ξ).
Example 2.8.

Concept symbol example
Experimental outcomes S random matrices
Event T a set of 10, 000, 000 specific matrix pairs A,B
Outcome ξ an index i ∈ [0, 9999999] into the event set
Random variable X(ξ) argument of an entry of a matrix Ai.
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We see that events, outcomes and random variables are quite distinct concepts.

2.2.4 Random events

Algorithms determine the way in which arguments involving random numbers determine
experimental events but to make use of Kolmogorov’s σ-fields we generalise the random
variable definition. As indicated in Section 2.2.3 above, an event is a single outcome of a
set of experiments, depending on the particular parameters under investigation for a given
experiment an event may involve one or more random variables. For our purposes a random
event is a mathematical structure or function of one or more random variables. To every
random variable we can assign a probability density function, hence a probability that the
variable is in any particular domain. Similarly for every random event, the probability is an
expression of the likelihood of some stated circumstance occurring. In our context random
events will usually be joint isometric circle intersections where we indicate by A the isometric
circle of a matrix A and by (A ∩ B) the intersection of the isometric circles of matrices A
and B. That is, P(A∩B) is the probability that the two isometric circles of matrices A and B
intersect.

Example 2.9. The isometric circle intersection event (A∩A−1) is independent of the event
(B ∩ B−1) but (A∩ B−1) is not independent of (A∩A−1) since certainly (A ∩A) �= ∅.

The following is based on Kolmogorov [39]:

Definition 2.10.

(1) For independent random events X, Y , the joint probability is:

PX∩Y = PX PY . (2.11)

(2) For mutually exclusive random events X, Y :

PX∪Y = PX + PY . (2.12)

(3) For random events X, Y :
PX∪Y = PX + PY − PX∩Y . (2.13)

In order to introduce the geometrical results as early as possible we leave the detailed devel-
opment of the necessary probability and random variable concepts in our context to Chapter
4, Chapter 3 which follows here is based on this work. This approach entails a small amount
of repetition.
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Chapter 3

Random Möbius groups and the
Fuchsian space

A Möbius transformation f with matrix representation A ∈ GL(2,C) is a function of eight
real variables. Normalisation to Ã ∈ SL(2,C) leaves the linear fractional function invariant
(f = f̃) but in six real variables. For a set of random Möbius transformations we want to
view each random matrix in SL(2,C) as a random event, which leaves us with the problem of
deciding what is a reasonable way of determining the individual matrix entry distributions.
A number of problems with definition of random matrices are discussed in [55]. It appears
impractical to assign homogeneous uniform distributions to SL(2,C) matrix entries as there
is a determinant condition which sets up a highly non linear mutual constraint between the
matrix entries and any attempt to impose uniform distributions on GL(2,C) prior to normal-
isation is completely non productive. But an even greater problem is that we cannot specify
uniform variables over infinite domains. If large finite domains are used for the variables
defining A then the normalised variables constituting Ã approximate uniform distributions
only when the matrix is close to the identity, [55]. To progress further requires a different
approach to defining a random transformation.

What we are looking for is a geometrically natural way of imposing distributions, preferably
uniform, on random Möbius transformations. Indeed it turns out that an important class
of Möbius transformations does have such natural random matrix representations and their
structure facilitates both calculation and computation of various parameters and specifically
provides rotationally invariant measures. We consider the set F of Möbius transformations:

f =
az + c

cz+ a
: Ĉ �→ Ĉ (3.1)

with matrix representation.

Theorem 3.1. For a set F of matrices of the form
(

a c
c a

)
∈ PSL(2,C), denote by r the

isometric circle radius of a specific matrix A representing f ∈ F . Then:

(1) F forms a group under matrix multiplication.

(2) The trace of f ∈ F is real so F contains no strictly loxodromic elements.
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(3) The isometric circles of A and A−1 of radii r intersect the unit circle S orthogonally
and are centred on the circle of radius R concentric with S where R2 = r2 + 1 and the
determinant condition becomes |a|2 = |c|2 + 1.

(4) The arc length intersection of the isometric circles with S is 2α where tan(α) = r and
sec(α) = R.

(5) F preserves the unit disc D (the interior of the unit circle S) and its exterior D′, hence
F is a Fuchsian group.

Proof. Let elements of G be represented by the matrices:

A =

(
a c
c a

)
, B =

(
e g
g e

)
.

(1) Since matrix multiplication is the group operation, AB =

(
a e+ c g a g + c e
c e+ a g c g + a e

)
.

But a e + c g = c g + a e and c e + a g = a g + c e, so AB ∈ F . Also, since

for A ∈ SL(2,C), a a − c c = 1 and the inverse of A is A−1 =

(
a −c
−c a

)
, we

have AA−1 =

(
a a− c c −a c+ c a
−c a− a c −c c+ a a

)
=

(
1 0
0 1

)
. Hence the set G contains all

products, all inverses of all elements, together with the identity since
(

1 0
0 1

)
is of

the form
(

a c
c a

)
.

(2) trace(A) = a+ a = 2 �e(a) ∈ R.

(3) Inspection of the appropriate triangle in Figure 3.1 shows that the condition for or-
thogonal intersection of an isometric circle with S is that R2 = 1 + r2 where R is the
radius of the circle on which the isometric circles are centred and r = 1

|c| is the isometric
circle radius, then R ≥ r ≥ 1 and orthogonal intersections can occur only for the centre
of the intersecting isometric circle on or outside S. Since the centres of the isometric

circles of a matrix A =

(
a b
c d

)
in SL(2,C) are −d

c
and a

c
,

∣∣∣a
c

∣∣∣ =
∣∣∣∣−d

c

∣∣∣∣ ⇔ a a = d d

and since
∣∣a
c

∣∣ =
∣∣−d

c

∣∣ is the radius R, the orthogonal intersection condition above
implies:

∣∣a
c

∣∣2 = ∣∣−d
c

∣∣2 = 1 + 1
c c

⇔ |a|2 = |d|2 = |c|2 + 1.

(3.2)

If we rewrite this equation as a a − c c = 1 we see that the orthogonal intersection
condition is satisfied by the determinant condition for an element of F to be in SL(2,C).
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(4) From the geometric construction in Figure 3.1, the arc length intersection of the disc
of the isometric circle of an element of F is 2α where sec(α) = R and tan(α) = r.

(5) Since G contains no strictly loxodromic elements, the transformation of any point in Ĉ

consists of an inversion in the isometric circle of the matrix A representing f followed
by a reflection in the perpendicular bisector L of the line joining the centres of this
isometric circle and that of the inverse A−1 (see for example Ford [20]). For elements of
F both isometric circles are centred on a circle C concentric with S, hence this inversion
leaves a point z the same radial distance from the centre of S; that is, if and only if z
is inside S does it remain inside S after the inversion. Again since the isometric circle
of A−1 is centred on C, after the reflection in L f(z) remains inside S if and only if z
was inside S, so G preserves the unit disc D (the interior of the unit circle S) and its
also its exterior D′.

Figure 3.1: Orthogonal intersection of an isometric circle of a trans-
formation with S: defining the isometric circle radius r, the radius R
of the circle on which the isometric circles are centered and the angle
α which is half the intersection arc of the disc of the isometric circle
with S.

Since it is always possible to find a Möbius transformation that maps a circle to any other
circle there are transformations that map any Fuchsian group to F , and we refer to F as
Fuchsian space. We can always find a Möbius transformation that maps S to the real axis,
and since every f ∈ F has isometric circles orthogonal to S, under suitably chosen trans-
formation the isometric circles cross R orthogonally and have their centres on R. Hence we
can construct an algebraic isomorphism, [1, i,−1,−i] �→ [1,∞,−1, 0] : F ≡ PSL(2,R), the
isometry group of two-dimensional hyperbolic space.

F contains both the usual rotation subgroup K of the disc, z �→ ζ2z, |ζ | = 1, and the nilpotent
subgroup (conjugate to the translations); these have the respective matrix representations:
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(
ζ 0
0 ζ̄

)
, |ζ | = 1,

(
1 + it t

t 1− it

)
, t ∈ R. (3.3)

3.1 Distributions on the space of matrices F
We use a notation with brackets to indicate a domain interval in the usual fashion and
subscripts where necessary to distinguish between types of domain. A distribution of a
random variable over a domain is indicated by the symbol ∈, a subscript to ∈ indicates a
specific distribution (for example u for uniform) and a subscript also may indicate a domain
type (for example ◦ for circular).

Example 3.2.

(1) D = [a, b]R is a closed interval domain for a random variable, D ⊂ R.

(2) x ∈u D describes a random variable x distributed uniformly over the (unspecified)
domain D.

We impose distributions on the entries of the matrices

(i)

(
a c
c a

)
(ii)

(
1 + it t

t 1− it

)
∈ F , (3.4)

selecting:

• (i) Unit vectors â =
a

|a| and ĉ =
c

|c| with uniformly distributed angular measure in the

circle S, and

• (ii) t = |c| ≥ 0 so that the half arc length intersection of the isometric circle with S,
α = arctan

(
1
t

)
and also the total arc length intersection 2α are uniformly distributed

[0, π
2
] and [0, π] respectively.

Notice that where the matrix entries are a = a eiθa etc., the product â ĉ = eiθa eiθc = ei(θa+θc)

is uniformly distributed on the circle as a simple consequence of the rotational invariance of
arclength measure. Further, this measure is equivalent to the uniform probability measure
arg(a) ∈ [0, 2π). It is thus clear that this selection process is invariant under the rotation
subgroup K of the circle.

We have |a|2 = t2+1, so if α is uniformly distributed in [0, π
2
], then since t = cot(α) is strictly

decreasing with increasing α on that domain the probability distribution of |a| = cosec(α)
can be calculated via the change of variables formula with result as in the following lemma:

Lemma 3.3. The random variable |a| ∈ (1,∞) has p.d.f. given by:

D|a|(x) =
2

π

1

x
√
x2 − 1

x ∈ (1,∞).
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Another equivalent formulation is the following. We require that the matrix entries a and c
have arguments θa = arg(a) and θc = arg(c) uniformly distributed on R (mod 2π). We write
this as arg(a) ∈u [0, 2π)◦ and arg(c) ∈u [0, 2π)◦ and illustrate with a lemma which follows
from Theorem 3.23.

Lemma 3.4. If arg(a), arg(b) ∈u [0, 2π)◦, then arg(ab), arg(a/b) ∈u [0, 2π)◦.

Definition 3.5. The elements of a set of random variables distributed uniformly over an
interval I ⊂ S are circular uniform.

If θ, η are selected from a uniformly distributed probability measure on [0, 2π), then the p.d.f.
for θ + η ∈ [0, 4π] is as shown in Figure 3.2:

0 2 4 6 8 10 12

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p.d.f of the sum of two random variables u[0,2 ]

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5
p.d.f of Ζ��Α�Β��u�0,2Π��

Figure 3.2: p.d.f. of the sum of two random variables ∈u [0, 2π).

We reduce mod 2π and observe

ζ

4π2
+

4π − ζ − 2π

4π2
=

1

2π

and this gives us once again the uniform probability density on [0, 2π). The result also follows
for θ−η as clearly −η ∈u [0, 2π]R and θ−η = θ+(−η), and also for k θ ∈u [0, 2π)R, k ∈ R as
we will later show that this is an additive group. In what follows we will also need to consider
variables supported in [0, π] or smaller sub intervals and as above we will use nomenclature
such as the α ∈u [0, π]◦ for circular uniform random variables α over any subdomain of a circle.

We will shortly calculate some distributions naturally associated with Möbius transformations
such as traces and translation lengths, but first note that every Möbius transformation of
the unit disc D can be written in the form:

z �→ ζ2
z − w

1− w̄z
, |ζ | = 1, w ∈ D (3.5)

For matrices in the form 3.4 we can see this by setting ζ2 = a/a and w = −c/a. It
follows that |ζ | = 1, and since |c|2 = |a|2 − 1 implies |c| ≤ |a| it is clear that w is a
vector inside D. Furthermore, if we write the arguments of the entry vectors as θa etc., then
ζ2 = a/a = e2iθa therefore ζ = eiθa and w = −c/a = |c|

|a|e
−i(θa+θc) and it follows that both ζ

and w are circular uniform. The matrix representation of (3.5) in the form (3.4 (i)) is:
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ζ2
z − w

1− w̄z
↔

⎛
⎝ ζ√

1−|w|2 − ζw√
1−|w|2

− ζw̄√
1−|w|2

ζ√
1−|w|2

⎞
⎠ .

Then since a = ζ 1√
1−|w|2

, |a| = 1√
1−|w|2

and 2 α = 2 sin−1

(√
1− |w|2

)
∈ [0, π], where the

half intersection arc is α ∈ [0, π
2
],

|w| = |c|
|a| = |cos(α)| .

From the table in Figure 4.3 we have the p.d.f. of cos(θ) for θ ∈u [0, π] as 1

π
√

1−y2
, y ∈ [−1, 1]

and the p.d.f. of |cos(θ)| is 2

π
√

1−y2
, θ ∈ [0, π

2
] y ∈ [0, 1] (which is the same as the p.d.f. of

cos(θ) for θ ∈ [0, π
2
)). Then

α = arccos(|w|) = arcsin(
√
1− |w|2) ∈ [0, π/2]

is uniformly distributed and we find |w| has the p.d.f. as in Figure 3.3.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20
p.d.f of |w| for vector w u[0,2 ]

Figure 3.3: p.d.f. of |w| for the random vector w ∈ D = − c
a
∈u [0, 2π).

But noting that for a transformation f represented by a matrix in the form (3.4 (i)),
c

a
= f(0),

we have the Corollary 3.6:

Corollary 3.6. Let f ∈ F be a random Möbius transformation in the Fuchsian space, then
the p.d.f. for y = |f(0)| is 2

π
√

1−y2
. The expected value of |f(0)| is:

E[[ |f(0)| ]] = 2

π

∫ 1

0

y
1√

1− y2
dy =

2

π
≈ 0.63662.
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3.2 Isometric circles
The isometric circles of the Möbius transformation f defined by (3.1) are the two circles:

C+ =
{ ∣∣∣∣z+ a

c

∣∣∣∣ = 1

|c|
}
, C− =

{
z :

∣∣∣z− a

c

∣∣∣ = 1

|c|
}
.

Then f±1(C±) = C∓. Since |a|2 = 1 + |c|2 ≥ 1, both these circles meet the unit circle in an
arc of magnitude θ ∈ [0, π]. Some elementary trigonometry reveals that

sin

(
θ

2

)
=

1

|a| . (3.6)

Figures 3.4 and 3.5 show respectively the intersections with S ∈ Ĉ of the two isometric circles
of a hyperbolic and an elliptic transformation f ∈ F using nomenclature as in Theorem 2.1;
the figures should be read subject to a rotation by θc. From Theorem 2.1, in hyperbolic space
the fixed points of hyperbolic transformations in F lie on the unit circle and also lie on the
common geodesic between isometric circle centres, this line is the axis of the transformation.
In Ĉ the transformation axis is then parallel to the entry vector e−iθc .

Figure 3.4: Orthogonal intersection of the two isometric circles Cf and
Cf−1 of a hyperbolic transformation f ∈ F with the unit circle S in Ĉ

showing fixed points and isometric circle centres along with the axis of
the transformation. For f parabolic the circles are tangential at their
intersection with S which is the single fixed point.

By our choice of distribution for |a| we obtain the following result:
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Figure 3.5: Orthogonal intersection of the two isometric circles Cf and
Cf−1 of an elliptic transformation f ∈ F with the unit circle S in Ĉ

showing fixed points in the exterior of S.

Lemma 3.7. The arcs determined by the intersections of the finite discs bounded by the
the isometric circles of f chosen according to the distribution (i) and (ii), are centered on
uniformly distributed points of S and have arc lengths uniformly distributed in [0, π].

It is this lemma which supports our claim that the p.d.f. on F is natural and suggests the
way forward for an analysis of random Kleinian groups.

3.3 Distributions on S and the group C

We now consider random variables with uniform distributions over domains within a circle.

3.3.1 Circular uniform distribution

The following two theorems are trivial where points and arcs are algebraic variables rather
than random variables but proofs are included as the consequential development is far from
trivial.

Theorem 3.8. Points on a Euclidean circle have a natural uniform distribution of position
on [0, 2π)◦ unless subject to an imposed distribution.

Proof. Since the Euclidean line R is an additive group of real numbers, points selected without
favour are uniformly distributed over any finite interval I ∈ R, hence specifically so for
the interval [0, 2π) ∈ R. Since Euclidean circles of radius r map bijectively and locally
isometrically onto intervals [0, 2πr) ∈ R, the points on a circle are distributed uniformly.
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While we may regard a point on a circle as an arc of zero magnitude, in general to specify an
arc we require both magnitude and position. From Theorem 3.8 a natural arc has uniformly
distributed position, it is immaterial whether this is defined by start or end points or a mid-
point. However, having chosen a point that specifies the position of an arc α uniformly in S

we cannot say that any other point in α is uniformly distributed even if the arc length of α
is uniformly distributed.

Theorem 3.9. Arcs on a Euclidean circle have a natural uniform distribution of magnitude
in [0, 2π)◦ unless subject to an imposed distribution.

Proof. The result follows from Theorem 3.8 since arcs of Euclidean circles of radius r map
bijectively and locally isometrically onto intervals [0, 2πr) ∈ R. We note that both random
points on a circle and random arc magnitudes modulo 2π are random numbers in [0, 2π).

Corollary 3.10. A point distributed naturally on a circle lies within an arc of magnitude θ
with probability P = θ

2π
.

Then the elements of C are circular uniform. We denote by α◦ an arc of length α in the unit
circle S, noting that any statement about distributions of arcs or points made with respect
to S also applies to arcs or points on any circle.

3.3.2 The group C

Theorem 3.11. The set Cp of all circular uniform random points on S is a group under
addition modulo 2π.

Proof. Let x = a ± b where a and b are real random variables distributed uniformly over a
domain (−k, k)R. Then via the characteristic function method we determine that the random
variable x has distribution D(a±b)R supported on the domain (−2k, 2k)R as follows:

D(a±b)R(x) =
2k − |x|
4k2

− 2k ≤ x ≤ 2k. (3.7)

Suppose now that k = π and that (−2π, 2π)◦ is a circular domain, then since D(a±b)R(x) is an
even symmetrical distribution we superpose the piecewise p.d.f.’s over the two sub domains
(−2π, 0) and [0, 2π) (see Figure 3.2) and conclude that:

a, b ∈u [0, 2π)◦ therefore a± b ∈u [0, 2π)◦.

Hence the set Cp is closed under addition modulo 2π, and contains the inverses of all elements
together with an additive identity, hence Cp is a group.

Corollary 3.12.

(1) The group Cp has for identity the element 2π.

(2) The inverse of θ in Cp is 2π − θ.

Proof. Suppose θ, η ∈ S, then:
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(1) The only solution in Cp to θ + η = θ is η = 2π|mod(2π).

(2) The only solution in Cp to θ + η = 0 is η = 2π − θ.

Theorem 3.13. The set Ca of all circular uniform random arcs on S is a group under union
modulo 2π.

Proof. Let α, β be arcs in S. Then for a point x ∈ S, (x ∈ α)∪(x ∈ β) if and only if x ∈ α∪β,
the result follows from Theorem 3.11.

Corollary 3.14.

(1) The group Ca has for identity the element S.

(2) The inverse of θ in Ca is θ = S\θ.
Proof. Since the group Ca is closed, S is itself an arc (of magnitude 2π) in Ca. Suppose
θ, η ∈ Ca, then:

(1) The only solution in Ca to θ + η = θ is η = 2π|mod(2π) = S.

(2) The only solution in Ca to θ + η = 0 is η = 2π − θ = S\θ.

We note that while the inverse of an element θ of Cp is (2π − θ)|mod(2π) and the identity is
2π, the inverse of an element of Ca is its complement in S and the identity is S itself.

Lemma 3.15. The groups Cp and Ca are homeomorphic.

Accordingly, we will where the context is unambiguous refer to either group of circular uniform
random variables as C and signify a general group operator by

⊕
.

Corollary 3.16. If αi are elements of C with
⊕

αi

⊕
β ∈ C then either β ∈ C or β is

constant.

In the context of Corollary 3.16 we consider a constant point to be fixed in S and a constant
arc be an arc of fixed length (but not necessarily fixed position).

3.3.3 Arcs and points

Theorem 3.17. A random point z on a circle lies outside all of n circular uniform random
arcs with probability P = 1

n+1
. That is,

P(z/∈ ∪n
i=1 αi) =

1

n + 1
αi ∈ C. (3.8)
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Proof. Since the position of a random arc αi on S does not affect the probability that a
random point is in αi we can consider the condition where n random arcs happen to be
contiguous on S, leaving an n + 1th non constant arc αn+1. (In practice no such condition
need be imposed; since Ca is a group the union of arcs in S\ ∪ αi modulo 2π will do just as
well). Then:

∪n+1
1 αi = S.

Since the n original arcs and S (the group identity) are all in Ca we conclude that the n+1th

arc must be constant or in Ca, and since αn+1 is non constant it must be circular uniform.
Then a random point z is in any one of the n+ 1 arcs with equal probability P = 1

n+1
. Now

a point z that is in none of the n original arcs must be in the n+1th arc, hence z lies outside
all the n arcs with probability P = 1

n+1
.

3.3.4 Matrix entry vectors

Definition 3.18. The entry vectors of a matrix in A ∈ GL(2,C) are the complex matrix
entries Amn expressed as vectors where if Amn = z = x+ iy then the vector (x, y) is written
z = |z| earg(z).
We will be interchanging between complex number and vector representations at will, and
using the term entry vector to refer to a matrix entry written in either form. The matrix
entries are not of equal significance, c alone determines the isometric circle radius while a
and d alone occur in the trace of the matrix, and accordingly we will often pair these two
entries together. The entry b having neither distinction will be treated as the dependent
entry for matrices in SL(2,C).

Definition 3.19. If the arguments of the entry vectors a,b, c and d of a matrix A =(
a b
c d

)
∈ GL(2,C) are circular uniform then we say that the matrix A is circular uniform.

The proof of the following theorem shows how the vector representation of complex matrix
entries gives us a new perspective on the meaning of SL(2,C) as a subgroup of GL(2,C).

Theorem 3.20. If the arguments of the entry vectors a,d and c of a matrix A =

(
a b
c d

)
∈

SL(2,C) are circular uniform then the matrix A is circular uniform.

Proof. Suppose A =

(
aeiθa beiθb

ceiθc deiθd

)
∈ SL(2,C), then the determinant condition is:

a eiθad eiθd − b eiθbc eiθc = 1.

We can write this as a vector equation:

ad ei(θa+θd) = bc ei(θb+θc) + 1 ei0. (3.9)

Figure 3.6 shows a representation of the vector summation in (3.9).
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Figure 3.6: What it means for a matrix to be in SL(2,C): vectors
bc ei(θb+θc) and ad ei(θa+θd) are mutually constrained.

If in (3.9) we regard the scalar products ad and bc as parameters then in Figure 3.6 for every
given parameter set {ad, bc}, the blue circle is the locus of points bc ei(θb+θc) as (θb + θc)
varies. To arrive at the locus of points as (θa + θd) varies (the green circle) we must displace
every point on the blue circle by 1 to the right; the locii are then two identical but displaced
circles. That is, the determinant condition for a matrix in SL(2,C) constrains the vectors
bc ei(θb+θc) and ad ei(θa+θd) to a point-by-point bijective relationship for each constant set of
real numbers ad and bc. We have that the vector arguments θa, θd and θc are in C the set of
all circular uniform random variables so this bijective relationship between the locii of the
product vectors means:

(θa + θd) ∈ C ⇔ (θb + θc) ∈ C. (3.10)

But C is an additive group, so:

θa, θd ∈ C ⇒ (θa + θd) ∈ C

therefore, from (3.10),

(θb + θc) ∈ C.

But since θc ∈ C and C is an additive group, unless θb is constant:

θb ∈ C.

The conclusion applies to all sets of real parameters {ad, bc} hence to all matrices in SL(2,C).

Corollary 3.21. If any three of the entry vectors of a matrix in SL(2,C) are circular uniform
then so is the fourth.
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Definition 3.22. If a vector has argument with circular uniform distribution then we say
that the vector is circular uniform.

Theorem 3.23. The set of all circular uniform vectors is a group under addition.

Proof. If we replace the vector 1 ei0 in (3.9) by any constant vector k then the reasoning of
Theorem 3.20 can still be applied. That is, if we generalise (3.9) to:

kvv eiαv = kuu eiαu + k (3.11)

then with reference to Figure 3.7 the vector k applies a constant translation to the vector
kuu. Since translations in R2 are conformal transformations the locii of the points defined
by vectors u and v are related bijectively, and:

αu ∈ C ⇔ αv ∈ C.

By extension, whenever a constant vector k imposes a constraint on a linear combination of
vectors as in (3.12) below:

n−1∑
j=0

kjvj e
iαj = k (3.12)

for scalar multipliers kj and vectors vj = vj e
iαj , then a vector argument αi must be circular

uniform (or constant) if the remaining n − 1 vector arguments are circular uniform. As we
are free to take k = 0 the set of all vectors vj with arguments in C must form an additive
group.

More generally, we can always treat such a constant vector k as the kernel of a homomorphism
which maps the set of vectors {vj} onto a space {uj} such that for each j,

kj �→ kj
|k| ; arg(k) �→ 0

and such a homomorphism (consisting of a dilation and a rotation) will reduce any non zero
constant vector to 1 = 1ei0 as in Theorem 3.20. Since these transformations are conformal
they do not affect whether any particular vectors are circular uniform or not, and we state
the following as corollary:

Corollary 3.24. Neither multiplication of vectors by complex constants nor addition of com-
plex constants affects the condition of circular uniform distribution of components of a random
variable expression.

Theorem 3.11 establishes that {αj ∈u [0, 2π)◦} is an additive group, this is a non trivial
result although {aj ∈ R} is an additive group. Theorem 3.23 establishes that the set of all
circular uniform vectors is an additive group, again this is not a trivial result despite a similar
result for algebraic vectors in R

2. Algebraic results cannot be taken over to random variable
algebra without justification.
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Figure 3.7: Linear combination of two constrained vectors.

Corollary 3.25. If a set of circular uniform vectors {vj} remains circular uniform with the
inclusion of a vector u then u is either circular uniform or constant.

Theorem 3.26. The set of all circular uniform matrices in GL(2,C) is a group.

Proof. It is sufficient to show that a general matrix product AB for A,B circular uniform is

a circular uniform matrix. Suppose A =

(
a eiθa b eiθb

c eiθc d eiθd

)
and B =

(
e eiθe f eiθf

g eiθg e hiθh

)
are

circular uniform matrices in GL(2,C). We form the product:

AB =

⎛
⎝ ae ei(θa+θe) + bg ei(θb+θg) af e−i(θa+θf ) + bh e(θb+θh)

ce ei(θc+θe) + dg ei(cos(θd+θg) cf e−i(θc+θf ) + dh ei(θd+θh)

⎞
⎠ . (3.13)

The result follows from Theorem 3.23 since all entries of AB in (3.13) are linear combinations
of circular uniform vectors.

Theorem 3.27. If a Möbius transformation is represented by a circular uniform matrix in
GL(2,C) then the arguments of the vectors through the isometric circle centres in Ĉ are
circular uniform.

Proof. Suppose A =

(
a b
c d

)
=

(
aeiθa beiθb

ceiθc deiθd

)
, then the vectors through the isometric

circle centres are:

−d
c

= −d eiθd
c eiθc

= −d
c
ei(θd−θc)

a
c

= a eiθa

c eiθc
= a

c
ei(θa−θc)

(3.14)

and the arguments of the vectors to the isometric circle centres are then respectively:
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η = θc − θd

η′ = θa − θc.
(3.15)

Hence from Theorem 3.23, since C is an additive group η and η′ are circular uniform.

Theorem 3.28.

(1) If a, b ∈u [0, 2π)◦ then |a− b| ∈u [0, 2π)◦.

(2) |x| ∈ [−k, k] has the same distribution as 2 x ∈ [0, k] whenever x is symmetrical.

Proof. Using the definition of modulus of a random variable in 4.10, both results follow from
Theorem 3.11 since D(x2−x1)R(x) is an even symmetrical distribution over an interval of R
about 0 and D(x2−x1)◦(x) is uniform over the circle.

Theorem 3.29. Let the arguments of vectors to the isometric circle centres of a circular
uniform matrix be η and η′, then the angular separation d between the centres of the two
isometric circles |η − η′| is distributed uniformly over [0, π)◦.

Proof. From Theorem 3.27 the angular separation between the centres of the two isometric
circles is:

d = |η − η′| = |θc − θd − θa + θc|
= |2θc − θa − θd| . (3.16)

From Theorem 3.28 and since C is an additive group, d is circular uniform. The greatest
angular separation of two points on the complex plane is π.

We now have a converse to Theorem 3.27.

Theorem 3.30. For a matrix in A ∈ SL(2,C) representing a Möbius transformation, let the
vectors defining the isometric circle centres η, η′ (with nomenclature as in Theorem 3.27) be
circular uniform. Then matrix A is circular uniform.

Proof. Since η, η′ are circular uniform, from (3.15) in Theorem 3.27 θc − θd and θa − θc are
circular uniform. Then from Corollary 3.25, (i) either both θc and θd are circular uniform or
η is a constant vector; and (ii) either both θa and θc are circular uniform or η′ is a constant
vector. But since η and η′ are circular uniform they cannot be constant vectors and:

η, η′ ∈u [0, 2π)◦ therefore θc, θa, θd ∈u [0, 2π)◦.

The result follows from Theorem 3.20.

Corollary 3.31. A matrix in SL(2,C) representing a Möbius transformation is circular
uniform if and only if the the vectors defining the isometric circle centres are circular uniform.
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3.4 Traces, disjointedness and discreteness
It can be readily verified that the trace function is invariant under conjugation. The isometric
circles of f can be seen to be disjoint if

∣∣a
c
+ a

c

∣∣ ≥ 2
|c| . This occurs when

|trace(f)| = |a+ a| = 2|�e(a)| ≥ 2.

Thus we wish to find the p.d.f. for the random variable t = |trace(f)|. As |�e(a)| =
|a| |cos(θa)|, for θa ∈u [0, 2π):

Pt≥2 = P�e(a)≥1 = P|a||cos(θa)|≥1 = P|a|≥1/|cos(θa)|

But:

P|a|≥1/ cos(θa) = 1− 2

π

∫ 1/ cos(θa)

1

dx

x
√
x2 − 1

= 1− 2

π
θa. (3.17)

As a/|a| is circular uniform, we have θa uniformly distributed in [0, 2π). Therefore using the
obvious symmetries we may calculate that

P|a+a|≥2 =
2

π

∫ π/2

0

(
1− 2

π
θ

)
dθ =

1

2
.

This proves the following theorem.

Theorem 3.32. Let f ∈ F be chosen randomly from the distribution described in (i) and
(ii). Then the isometric circles of the matrix A representing f are disjoint with probability
equal to 1

2
.

We have the following simple consequence concerning random cyclic groups:

Corollary 3.33. Let f ∈ F be chosen randomly from the distribution described in (i) and
(ii). Then the probability that the cyclic group 〈f〉 is discrete is equal to 1

2
.

Proof. The matrix A represents a hyperbolic Möbius transformation if and only if |trace(A)| >
2. This occurs with probability 1

2
. The set of values of trace(A) ∈ [−2, 2] representing ellip-

tic transformation of finite order or representing parabolic transformations is countable and
therefore has measure zero. The result follows.

We now note the following trivial consequence:

Corollary 3.34. Let f, g ∈ F be chosen randomly from the distribution described in (i) and
(ii). Then the probability that the group 〈f, g〉 is discrete is no more than 1

4
.

Actually we can modify (3.17) to determine the p.d.f. for |trace(f)|. We will do this two
ways. For parameter s ≥ 2 let f(s) =

∫ s/2 cos θ

1
dx

x
√
x2−1

dθ = cos−1
(

2 cos(θ)
s

)
, this is the p.d.f.

of sec(θ), x ∈ [1,∞):
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P|trace(f)|≥s = P2|a| cos θa≥s = P|a|≥s/(2 cos θa)

= 1− 2
π

∫ π/2

0

2
π

∫ s/2 cos θ

1

dx
x
√
x2−1

dθ

= 1− 4
π2

∫ π/2

0

cos−1
(

2 cos θ
s

)
dθ.

(3.18)

We are going to use Liebnitz’ rule, since if we differentiate a cumulative probability function
we get a probability distribution:

df(s)

ds
=

2 cos(θ)

s
√

s2 − (2 cos(θ))2

∫
df(s)

ds
dθ =

1

s
tanh−1

(
2 sin(θ)√

s2 − 2 cos(2θ)− 2

)

∫ π/2

0

df(s)

ds
dθ =

1

s
tan−1

(
2

s

)
.

(3.19)

Now

tanh−1(x) =
1

2
log

1 + x

1− x
, so tanh−1

(
2

s

)
=

1

2
log

s + 2

s− 2

while

cosh−1(x) = log(x+
√
x2 − 1)

therefore

cosh−1

(
s√

s2 − 4

)
= log

(
s√

s2 − 4
+

√
s2√
s2 − 4

− 1

)

=
1

2
log

s+ 2

s− 2
.

(3.20)

Hence from (3.18), if F [s] is the distribution corresponding to the probability P|trace(f)|≥2,
then

F [s] =
4

π2 s
cosh−1

( s√
s2 − 4

)
, s ≥ 2 (3.21)

and the total integrated probability over [2,∞) is 1
2

as before. There is another way to see
these results which is more useful as it more clearly relates to the geometry. We work from
a determination of the distribution of the parameter β for transformations in F . We will
require the following lemma:
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Lemma 3.35. The distribution of w = cos2(θ)

sin2(α)
for θ ∈u [0, 2π) and α ∈u [0, π

2
] is given by:

h(w) =
1

π2w

⎧⎪⎨
⎪⎩

log
√
w+1√
w−1

w > 1

log 1+
√
w

1−√
w

0 < w < 1.

(3.22)

Proof. We have the p.d.f.’s of x = cos2(θ) and y = sin2(α) as in Figure 4.3, and these
random variables are identically distributed when both θ and α are identically distributed,
and monotonic for x, y ∈ [0, 1

2
) and also for x, y ∈ (1

2
, 1] and the distributions are anti-

symmetric about 1
2
, hence Theorem 4.16 can be invoked.

f(x) = 1

π
√

x(1−x)
for cos2(θ)

and
f(y) = 1

π
√

y(1−y)
for sin2(α).

(3.23)

Let x = cos2(θ), y = sin2(α) and w = cos2(θ)

sin2(α)
; then w = x

y
, so wy = x and:

y = x× 1

w
. (3.24)

We use the Mellin convolution for quotients as in (4.12), noting that since the distributions
f(x) and f(y) in (3.23) are identical, f2 = f1. For x, y ∈ (0, 1) the upper integration limits
for the convolution integrals according to (3.24) will be y < 1× 1

w
whenever w > 1 and y < 1

otherwise. Accordingly the Mellin convolution for the quotient of the p.d.f.’s over [0,∞)\0
(since we want to ensure differentiability) is a piecewise integral:

h(w) =

⎧⎪⎨
⎪⎩

∫ 1

0
y f(x)f(y)dy w < 1

∫ 1
w
0

y f(x)f(y)dy w > 1

(3.25)

and the indefinite integral embedded in both components of (3.25) is:

∫
y f(yw)f(y)dy =

∫
y 1

π
√

yw(1−yw))

1

π
√

y(1−y)
dy

= 1
π2

√
w

∫
1√

(1−y)(1−yw)
dy

= 1
π2

√
w

2 log
(
w
√

(y−1)+
√

w(yw−1)
)

√
w

= 1
π2w

log
(
w2(y − 1) + w(yw − 1) + 2w

3
2

√
(y − 1)(yw − 1)

)
.

(3.26)

Evaluation of the log term in (3.26) yields:

log
(
w

(
w(2y − 1)− 1 + 2

√
w(y − 1)(yw − 1)

))
=
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⎧⎨
⎩

e0 = log(−w(w + 1− 2
√
w)) at y = 0

e1 = log(w(w − 1)) at y = 1
e1/w = log(−w(w − 1)) at y = 1

w
.

(3.27)

and accordingly the definite integrals in (3.25) evaluate to:∫ 1

0
y f(yw)f(y)dy = 1

π2w
(e1 − e0)

∫ 1
w

0
y f(yw)f(y)dy = 1

π2w
(e1/w − e0).

(3.28)

But if we let v =
√
w then:

e1 − e0 = log(w(w − 1))− log(−w(w + 1− 2
√
w)) = log

(
w(w−1)

−w(w+1−2
√
w)

)
= log

(
(v2−1)

−(v2+1−2v)

)
= log

(
(v−1)(v+1)
−(v−1)2

)
= log

(
(v+1)
−(v−1)

)
= log

(
1+

√
w

1−√
w

) (3.29)

and

e1/w − e0 = log(−w(w − 1))− log(−w(w + 1− 2
√
w)) = log

(
log(−w(w−1))
−w(w+1−2

√
w)

)
= log

(
−(v2−1)

−(v2+1−2v)

)
= log

(
−(v−1)(v+1)

−(v−1)2

)
= log

(
−(v+1)
−(v−1)

)
= log

(√
w+1√
w−1

)
.

(3.30)

The distribution result follows.

3.4.1 The parameter β(f)

Theorem 3.36. For transformation f ∈ F ,

β(f) = 4

(
cos2(θ)

sin2(α)
− 1

)
θ ∈u [0, 2π), α ∈u

[
0,

π

2

]

where 2α is the arc length intersection with S of the isometric circles of A representing f and
θ is the argument of the leading entry of matrix A.

Proof. For f ∈ F represented by a matrix A =

(
a c
c a

)
we have that β(A) ∈ R and for

isometric circles of radii r, the arc length intersection 2α ∈ [0, π] with S can be determined
via:

tan(α) = r =
1

|c| ≥ 0, α ∈
[
0,

π

2

]
Hence from Theorem 3.1 since α ∈ [

0, π
2

]
implies cosec(α) ≥ 0:

|c| = cot(α) ⇒ |a|2 = cot2(α) + 1 ⇒ |a| = cosec(α).
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If the argument of the entry vector a is θ ∈ [0, 2π) then:

�e(a) = cosec(α) cos(θ) =
cos(θ)

sin(α)
.

Hence:
trace(A) = 2 �e(a) = 2

cos(θ)

sin(α)

and:

β(A) = trace2(A)− 4

=
(
2 cos(θ)

sin(α)

)2

− 4

= 4
(

cos2(θ)

sin2(α)
− 1

)
, for θ ∈u [0, 2π), α ∈u [0, π

2
].

(3.31)

We come now to the important result for the parameter β(f) for a random transformation
f ∈ F .

Theorem 3.37. For an element f ∈ F the distribution of the parameter w = β(f) is given
by:

h(w) =
1

π2(w + 4)

⎧⎪⎨
⎪⎩

log
√
w+4+2√
w+4−2

w > 0

log 2+
√
w+4

2−√
w+4

−4 < w < 0.

(3.32)

Proof. For the argument of the leading entry of the matrix θ ∈u [0, 2π), if α ∈u [0, π
2
] such that

2α is the arc length intersection of the isometric circles of A with S then from Theorem 3.36
the parameter β(A) is 4( cos2(θ)

sin2(α)
− 1). Also, from Lemma 3.35 the distribution for w = cos2(θ)

sin2(α)
is:

h(w) =
1

π2w

⎧⎪⎨
⎪⎩

log
√
w+1√
w−1

w > 1

log
√
w+1

1−√
w

0 < w < 1.

(3.33)

We then obtain the distribution of v = w + 1 = cos2(θ)

sin2(α)
+ 1 as:

h(v) =
1

π2(w + 1)

⎧⎪⎨
⎪⎩

log
√
w+1+1√
w+1−1

w > 0

log
√
w+1+1

1−√
w+1

−1 < w < 0.

(3.34)

The justification is Theorem 4.5, and we call on the theorem again to obtain from (3.34) the
distribution of w = 4

(
cos2(θ)

sin2(α)
+ 1

)
as:
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h(w) =
1

4π2
(
w
4
+ 1

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log

√
w
4
+1+1√

w
4
+1−1

w > 0

log

√
w
4
+1+1

1−
√

w
4
+1

−4 < w < 0

(3.35)

and after simplification we have the result.
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Figure 3.8: Distribution of parameter β for random elements of F .

We shortly use (3.32) to find the distribution of the translation length of hyperbolic elements,
but here note that the integral of h(w) over the interval (−4, 0) and also over the interval
(0,∞) both take the value 1

2
, which establishes the following theorem:

Theorem 3.38. A randomly selected element f ∈ F is hyperbolic or elliptic with probability 1
2
.

3.4.2 The parameter γ([f, g])

With our usual matrix representation we put γ = γ([A,B]) = trace([A,B])− 2.

Theorem 3.39. For pairs of elements f, g represented by matrices A,B ∈ F , the γ parameter
is a combination of several non independent components:

γ([A,B]) = cot2(αB)cosec
2(αA) sin

2(θa) + cot2(αA)cosec
2(αB) sin

2(θe)

+ sin2(σ) cot2(αA) cot
2(αB)− cos(σ) cot(αA)

sin(αA)
cot(αB)
sin(αB)

sin(θa) sin(θe).
(3.36)

Proof. Matrices A,B ∈ F can be expressed in terms of the half intersection arc length α and
matrix entry arguments θ as:

A =

⎛
⎜⎝

cos(θa)+i sin(θa)
|sin(αA)|

cos(θc)−i sin(θc)
|tan(αA)|

cos(θc)+i sin(θc)
|tan(αA)|

cos(θa)−i sin(θa)
|sin(αA)|

⎞
⎟⎠ , B =

⎛
⎜⎝

cos(θe)+i sin(θe)
|sin(αB)|

cos(θg)−i sin(θg)

|tan(αB)|

cos(θg)+i sin(θg)

|tan(αB)|
cos(θe)−i sin(θe)

|sin(αB)|

⎞
⎟⎠ . (3.37)
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By forming the product ABA−1B−1 and simplifying we obtain the trace of the commutator
of A and B as:

trace([A,B]) = 2 cos(2(θc − θg)) cot
2(αA) cot

2(αB)− 2 cos(2θa) cot
2(αB)cosec

2(αA)
−2 cos(2θe) cot

2(αA)cosec
2(αB) + 2cosec2(αA)cosec

2(αB)
−8 ξ cos(θc − θg) cot(αA) cot(αB)cosec(αA)cosec(αB) sin(θa) sin(θe)

(3.38)
where ξ = sign(sin(αA) sin(αB) tan(αA) tan(αB) = +1 since αA, αB ∈ [0, π

2
]. We note that

the trace of the commutator depends on the difference σ = θc− θg rather than the individual
vector arguments, and we accordingly calculate γ as:

γ([A,B]) = cos2(αB) sin2(θa)

sin2(αA) sin2(αB)
+ cos2(αA) sin2(θe)

sin2(αA) sin2(αB)
+ (cos2(σ)−1) cos2(αA) cos2(αB)

sin2(αA) sin2(αB)

−2 cos(σ) cos(αA) cos(αB) sin(θa) sin(θe)

sin2(αA) sin2(αB)
.

(3.39)

which leads to the result.

Since the components of the terms of γ([A,B]) in (3.36) exhibit dependence, analytical
calculation of the distribution function is not feasible at present, Figure 3.10 shows compu-
tationally determined distributions of γ([A,B]), first for random elements of F , and then for
hyperbolic elements only. We have the following computational results from this experiment
for 1, 000, 000 outcomes:

Probability random random f, g random f, g
↓ in domain f, g ∈ F elliptic hyperbolic
Pγ([A,B])<−4 0.0664 0 0.2676816
Pγ([A,B])∈[−4,0) 0.040252 0 0.16172425
Pγ([A,B])∈[0,4) 0.363511 0.650488 0.1513727888
Pγ([A,B])>4 0.529837 0.349512 0.41922135423231964

Figure 3.9: Computational experiment, γ([f, g]) for f, g ∈ F .

Note that in Figure 3.9, for random elements of F , Pγ([f,g])<0 = 0.106652 while if the element
pairs are conditioned to be hyperbolic then Pγ([f,g])<0 = 0.429406.
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Figure 3.10: The γ parameter. Left: random elements of F . Right:
random hyperbolic elements of F .

3.4.3 Jørgensen’s inequality

Given that we do not at present have an analytical determination for the distribution of
γ([f, g]), we can still look at the results of a computational analysis of |β(A)| + |γ([A,B])|.
Figure 3.11 shows for 10, 000, 000 pairs of random matrices in F the calculated probabilities
that 〈f, g〉 will be possibly not discrete; the distribution is illustrated in Figure 3.12.

Probability random random f, g random f, g
↓ in domain f, g ∈ F elliptic hyperbolic
P|γ([f,g])|+|β(f)|<1 0.071697 ≈ 1

14
0.09524 ≈ 2

21
0.275322 ≈ 3

11

Figure 3.11: Computational experiment, 1, 000, 000 pairs of elements
of F that fail Jørgensen’s inequality, that is |γ([f, g])|+ |β(f)| < 1.
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Figure 3.12: Jørgensen’s inequality. Left: random elements of F .
Right: random hyperbolic elements of F .
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Overall about 1
14

of pairs of random matrices in F failed Jørgensen’s criterion for discreteness
while about 3

11
of such hyperbolic pairs failed the criterion for discreteness, [36].

3.4.4 Fixed points

The fixed points of a random f ∈ F are solutions to z =
az+ c

cz+ a
, that is, with the represen-

tation of f by the matrix A =

(
aeiθa beiθb

ceiθc deiθd

)
:

z = 1
c

[
± √�e(a)2 − 1 + i �m(a)

]

= a
c

[
±

√
cos2(θa)− 1

a2
+ i sin(θa)

]
e−iθc .

(3.40)

We have chosen arg(c) to be uniformly distributed. There are three cases to consider:

Case 1. f hyperbolic. Then �e(a) > 1 and |z±| = 1 as illustrated in Figure 3.4.
Case 2. f elliptic. Then |�e(a)| ≤ 1 and so

z = i
a

c

[
sin(θa)±

√
cos2(θa)− 1

a2

]
e−iθc

as illustrated in Figure 3.5.
Case 3. f parabolic. Then

2�e(a) = ±2 ⇒ �e(a) = ±1
therefore

z =
a

c
i sin(θa)e

−iθc =
1

c
i �m(a)

(3.41)

which is a single fixed point with argument uniformly distributed in [0, 2π).

Note that the non elliptic fixed points of Fuchsian transformations lie on the unit circle S.
We will shortly establish that P|�e(a)|≤1}= 1

2
.

Lemma 3.40. The Euclidean distance between the fixed points of f ∈ F where the isometric
circles of the representative matrices make intersections of arc length 2α with S is:

d =
β(f)

cos(α)
.

Proof. Suppose the fixed points of f ∈ F are given as in (3.40) by z = |a|
|c| [± x+ i y] e−i θc ,

then with the nomenclature of Theorem 3.1 we have sin(α) = r
R

therefore sin2(α) = r2

r2+1

(see Figure 3.1) and:
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|y2 − y1|2 = 0

|x2 − x1|2 = 4 (�e(a)2 − 1)

= 4
(|a|2 cos2(θa)− 1

)
= 4

(
(|c|2 + 1) cos2(θa)− 1

)
= 4

((
r2+1
r2

)
cos2(θa)− 1

)

= 4
(

cos2(θa)

sin2(α)
− 1

)
= β(f),

(3.42)

the last by Theorem 3.36. The result follows since the separation distance is invariant under
rotation by θc and as illustrated in Figure 3.1 |a|

|c| = R =
√
r2 + 1 = 1

cos(α)
.

This distribution is calculable, but the following approach provides a much more straightfor-
ward calculation for hyperbolic elements of F .

Lemma 3.41. The arc length separation 2φ between the fixed points of f ∈ F where the
isometric circles of the representative matrices make intersections of arc length 2α with S is
given by:

sin(φ) =
sin(θa)

cos(α)
.

Proof. From (3.40) via Pythagoras,

sin(φ) = �m(a)
(�e(a)2−1)+(�m(a)2)

= |a|
|c| sin(θa) =

sin(θa)
cos(α)

. (3.43)

Theorem 3.42. The distribution of w = sin(θ)
cos(α)

for θ ∈u [0, 2π) and α ∈u [0, π
2
] is given by:

h(w) =
2

π2w
log

(
1 + w

1− w

)
− 1 < w < 1 (3.44)

Proof. We have the p.d.f.’s of x = sin(θ) and y = cos(α) (reported in Figure 4.3) and these
are identically distributed when both θ and α are identically distributed, and monotonic for
x, y ∈ [0, 1) and also for x, y ∈ (−1, 0] and the distributions are anti-symmetric about 0,
hence Theorem 4.16 can be invoked. We prove the distribution for the first quadrant only,
x, y ∈ [0, 1), by symmetry the total p.d.f. is four times the contribution calculated.

f(x) = 1
π
√
1−x2 for sin(θ)

and
f(y) = 1

π
√

1−y2
for cos(α).

(3.45)

Let x = sin(θ), y = cos(α) and w = sin(θ)
cos(α)

; then w = x
y
, therefore wy = x and:
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y = x× 1

w
(3.46)

We use the Mellin convolution for quotients as in (4.12), noting that since the distributions
f(x) and f(y) in (3.45) are identical, f2 = f1. For x, y ∈ (0, 1) the upper integration limits
for the convolution integrals according to (3.46) will be y < 1× 1

w
whenever w > 1 and y < 1

otherwise, accordingly the Mellin convolution for the quotient of the p.d.f.’s over [0,∞)\0
(since we want to ensure differentiability) is a piecewise integral:

h(w) =

⎧⎪⎨
⎪⎩

∫ 1

0
y f(x)f(y)dy w < 1

∫ 1
w

0
y f(x)f(y)dy w > 1

(3.47)

and the indefinite integral embedded in both components of (3.25) is:∫
y f(yw)f(y)dy =

∫
y 1

π
√

1−(yw)2
1

π
√

1−y2
dy

= 1
π2

∫
y√

(1−y2)(1−y2w2)
dy

= − 1
π2w

log
(
w2

√
(1− y2 + w

√
1− y2w2

)
.

(3.48)

Evaluation of the log term in (3.48) yields:

log
(
w2

√
(1− y2 + w

√
1− y2w2

)
=⎧⎨

⎩
e0 = log (w(w + 1)) at y = 0

e1 = log
(
w
√
1− w2

)
at y = 1

e1/w = log
(
w
√
w2 − 1

)
at y = 1

w
.

(3.49)

and accordingly the definite integrals in (3.25) evaluate to:∫ 1

0
y f(yw)f(y)dy = − 1

π2w
(e1 − e0)

= 1
π2w

log
(√

1+w√
1−w

)
∫ 1

w

0
y f(yw)f(y)dy = − 1

π2w
(e1/w − e0)

= 1
π2w

log
(√

w+1√
w−1

)
.

(3.50)

The distribution of w = sin(θ)
cos(α)

in all four quadrants is then given by:

h(w) =
4

π2w

⎧⎪⎪⎨
⎪⎪⎩

log
(√

1+w√
1−w

)
w < 1

log
(√

w+1√
w−1

)
w > 1.

(3.51)
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Noting that |a|√
|a|2−1

≥ 0, we restrict to positive values of x = sin(φ). The p.d.f. of the arc

length separation of the fixed points on S of hyperbolic elements of F then reduces to:

h(x) =
4

π2x
log

(
1 + x

1− x

)
, 0 ≤ x < 1.

3.4.5 Translation lengths

Every element f ∈ F which is not elliptic (conjugate to a rotation, equivalently β ∈ [−4, 0))
or parabolic (conjugate to a translation, equivalently β = 0) fixes two points on the circle and
the hyperbolic line with those points as endpoints. The transformation acts as a translation
by constant hyperbolic distance along this line. This distance is called the translation length
τ and this number is related to the parameter β(f), hence to the trace, via the formula [46]:

β = 4 sinh2 τ

2
, τ = cosh−1

(
1 +

β

2

)
. (3.52)

We use the distribution of β as in (3.32)to obtain the distribution for τ via the change of
variables formula.

Theorem 3.43. The p.d.f. of the translation length τ for randomly selected hyperbolic f ∈ F
is given by:

H [τ ] = − 4
π2 tanh

(
τ
2

)
log

(
tanh

(
τ
4

))
or

H [τ ] = 4
π2 tanh

(
τ
2

)
log

(
cosh( τ

2
)−1

cosh( τ
2
)+1

)
.

(3.53)

Proof. For f hyperbolic β(f) ≥ 0 implies τ ≥ 0 and the resultant p.d.f. for w = β(f), f
hyperbolic is from Theorem 3.37:

g(w) =
2

π2(w + 4)
log

√
w + 4 + 2√
w + 4− 2

(3.54)

then:

β = 4 sinh2
(τ
2

)
, therefore β + 4 = 4(sinh2

(τ
2

)
+ 1) = 4 cosh2 τ

2
(3.55)

and also:
√

β + 4 = ±2 cosh
τ

2
. (3.56)

But dβ
dτ

= d(β+4)
dτ

= 4 cosh
(
τ
2

)
sinh

(
τ
2

)
= 2 sinh(τ) and since τ ≥ 0 implies sinh(τ) ≥ 0, from

(3.54) for hyperbolic f ∈ F and w = β(f),

h(w) = 2
π2(β+4)

log
(√

β+4+2√
β+4−2

)
therefore

H(τ) = 2
4π2 cosh2 τ

2

log
(±2 cosh( τ

2
)+2

±2 cosh( τ
2
)−2

)
2 sinh(τ) τ ≥ 0.

(3.57)
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We note that cosh(x)+1 = 2 cosh2(x
2
) while cosh(x)−1 = 2 sinh2(x

2
) and because application

of the ± signs has no nett effect on evaluation of the fraction:

H(τ) = sinh(τ)

π2 cosh2 τ
2

log
(
coth2 τ

4

)
= 2 sinh(τ)

π2 cosh2 τ
2

log
(
coth τ

4

)
=

4 sinh τ
2
cosh τ

2

π2 cosh2 τ
2

log
(
coth τ

4

)
= 4

π2 tanh
τ
2
log

(
coth τ

4

)
= − 4

π2 tanh
τ
2
log

(
tanh τ

4

)
τ ≥ 0

(3.58)

hence the result.
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Figure 3.13: Distribution of the translation length for randomly se-
lected hyperbolic f ∈ F .

Unlike our earlier distributions, the p.d.f. for τ has all moments. In particular by writing
tanh(τ/2) as 1−e−τ

1+e−τ and tanh(τ/4) as 1−e−τ/2

1+e−τ/2 we observe∫ ∞

0

τ tanh
τ

2
log

[
tanh

τ

4

]
dτ = −π2 log 2

and the expected value of the translation length is

E[[τ ]] = 4 log 2 ≈ 2.77259 . . . (3.59)

3.5 Random arcs on a circle
Let α be an arc on the circle S. We denote its midpoint by mα ∈ S and its arclength
by �α ∈ [0, 2π). Conversely, given mα ∈ S and �α ∈ [0, 2π) we determine a unique arc
α = α(mα, �α) with this data.

A random arc α is the arc uniquely determined when we choose mα ∈ S uniformly (equiva-
lently arg(mα) ∈u [0, 2π)) and �α ∈u [0, 2π). We will abuse notation and also refer to random
arcs when we restrict to �α ∈u [0, π] as for the case of isometric disc intersections. We will
make the distinction clear in context.

A simple consequence of our earlier result is the following corollary.
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Corollary 3.44. If mα,mβ ∈u S and �α, �β ∈u [0, π] then

Pα∩β=∅ =
1

2
.

We need to observe the following lemma.

Lemma 3.45. If mα,mβ ∈u S and �α, �β ∈u [0, 2π), then

Pα∩β=∅ =
1

6
.

We present two proofs:

Proof.

(1) We need to calculate the probability that the argument of ζ = mαmα is greater than
(�α + �β)/2. Now θ = arg(ζ) is uniformly distributed in [0, π]. The joint distribution is
uniform, and so we calculate

Pθ≥�α+�β = 1
π3

∫ ∫ ∫
{θ≥α+β} 1 dθ dα dβ

= 1
π3

∫ π

0

∫ θ

0

∫ θ−α

0
1 dθ dα dβ = 1

6

(3.60)

and the result follows.

(2) By Theorem 3.27 the arguments mα,mβ of the vectors to the centres of the arcs �α, �β
respectively have circular uniform distribution in [0, 2π) and similarly �α, �β ∈ [0, 2π).
Then by Theorem 3.29 the angular distance d = |mα −mβ| ∈ [0, 2π) between the
centres of the arcs is also circular uniform. The separation distance between the circles
is δ = |d| − �α+�β

2
and the distance between the arcs can be calculated:

|d| ∈u [0, 2π)◦ = 1
2
d ∈u [0, 2π]R = d ∈u [0, π]R

then

δ = d ∈u [0, π]R − �α
2
∈u [0, π]R − �β

2
∈u [0, π]R.

(3.61)

The result is a random variable of the form of x1 − x2 − x3 for x1, x2, x3 ∈u [0, π] and
since x1 = d = |mα −mβ|, x2 = �α

2
and x2 =

�β
2

are independent the distribution
D(x1−x2−x3) in (4.37) applies and δ is non negative with probability 1

6
.

3.6 Random arcs to Möbius groups
Given data mα1 ,mα2 ∈ S with arc length �α ∈ [0, π] we determine that the arcs centered on
the mαi

and of length �α determine a matrix which can be calculated by examination of the
isometric circles. We have
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A =

(
a c
c a

)
, c = i

√
mα1mα2 cot

�α
2
, a = i

√
mα1mα2cosec

�α
2

(3.62)

where we make a consistent choice of sign by ensuring that:

c

a
= mα1 cos

�α
2
.

Of course interchanging mα1 and mα2 sends a to −a, so the data uniquely determines the
cyclic group 〈f〉 generated by the associated Möbius transformation:

f(z) = −mα2

z+mα1 cos
�α
2

z cos �α
2
+mα1

and not necessarily f itself. As a consequence we have the following theorem:

Theorem 3.46. There is a one-to-one correspondence between collections of n pairs of ran-
dom arcs and n-generator Fuchsian groups. A randomly chosen f ∈ F corresponds uniquely
to mα1 ,mα2 ∈u S and �α ∈u [0, π].

Notice also that if we recognise the association of cyclic groups with the data and say two
cyclic groups are close if they have close generators, then this association is continuous.

If f is a parabolic element of F , then the isometric circles are adjacent and meet at the
fixed point. Conversely, if two random arcs both of arclength �α are adjacent we have
arg(mα1mα2) = �α, and from (3.62):

a = i

(
cos

�α
2

+ i sin
�α
2

)
cosec

�α
2

= −1 + i cot
�α
2

and trace2(A) − 4 = 0 so the matrix A represents a parabolic transformation. Similarly if
the arcs overlap, then trace2(A) = 2 and A represents an elliptic transformation, then from
Lemma 3.45:

P〈f,g〉is discrete given f,g∈F are parabolic =
1

6
.

Notice that f is parabolic or the identity if and only if �e(a) ∈ {±1}.
Theorem 3.47. Let f, g be randomly chosen parabolic elements in F . Then the probability
that 〈f, g〉 is discrete is at least 1

6
.

Proof. As f and g are parabolic, their isometric discs are tangential and the point of inter-
section lies in a random arc of arclength uniformly distributed in [0, 2π). Discreteness follows
from the Klein combination theorem and Lemma 3.45.

46



3.7 The topology of the quotient space

Two transformations f, g ∈ F acting on Ĉ exhibit two pairs of isometric circles orthogonal to
S. Should all the isometric circles be disjoint (which implies the group 〈f, g〉 is discrete) then
we can construct hyperbolic quotient spaces by identifying the intersection arcs of each pair
of circles in the interior of S. It is clear from consideration of the Ford fundamental domain
[20] that we have two distinct topologies, that is, there are two surfaces whose fundamental
group is isomorphic to F2, the free group on two generators.

(1) Isometric circles of each pair adjacent: Pairing the arcs leaves a hole between each
pair and a single hole between adjacent pairs, that is, taking into account the opposite
direction of group elements along the arc pairs the resultant topology is S2

3, a 2-sphere
with a total of three holes.

(2) Isometric circles of each pair non adjacent: Pairing the arcs results in T 2
1 , a torus with

a single hole.

Thus we can expect that a group Γ = 〈f, g〉 generated by two random hyperbolic elements
of F if discrete, has quotient:

D
2/Γ ∈ {S2

3, T
2
1 }.

We would like to understand the likelihood of one of these topologies over the other, this is the
same thing as asking whether the hyperbolic lines between the fixed points of f and the fixed
points of g cross or not, and this in turn is determined by a suitable cross ratio of the four fixed
points. In fact, the geometry of the commutator γ([f, g]) = trace([f, g]) − 2 determines not
only the topology of the quotient, but also the hyperbolic length of the shortest geodesic; this
is represented by f , g or [f, g] = fgf−1g−1 or by their Nielsen equivalents f−1, g−1, [f, g]−1.

3.7.1 Commutators and cross ratios

We now consider the relation of the parameters of a two-generator group as expressed in
Jørgensen’s inequality (1.2) to the cross ratio of points on S. In the previous section we
analysed the distribution of the trace of a transformation, in order to address the distribution
of the trace of the commutator [A,B] = ABA−1B−1 we consider the γ parameter:

γ([A,B]) = trace([A,B])− 2. (3.63)

We need to understand the cross ratio distribution first. This is because of the following result
from [5], sections §7.23 and §7.24, together with a little manipulation. Beardon’s results in
relation to the hyperbolic distance ρ between hyperbolic lines �1 = [z1, z2] and �2 = [w1,w2]
and their angle of intersection θ are respectively:

[z1,w1, z2,w2] tanh
2
(
1
2
ρ(�1, �2)

)
= 1

and
[z1,w1, z2,w2] sin

2
(
θ
2

)
= 1.

(3.64)
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Theorem 3.48. Let �1, with endpoints z1, z2, and �2, with endpoints w1,w2, be hyperbolic
lines in the unit disc model of hyperbolic space. So z1, z2,w1,w2 ∈ S, the circle at infinity.
Let δ be the hyperbolic distance between �1 and �2, and should they cross, let θ ∈ [0, π/2] be
the angle at the intersection. Then

sinh2
[1
2
(δ + iθ)

]
× [z1,w1, z2,w2] = −1. (3.65)

The number δ + iθ is called the complex distance between the lines �1 and �2, where we put
θ = 0 if the lines do not meet. The proof of this theorem is simply to use Möbius invariance of
the cross ratio. If the two lines do not intersect, we choose the Möbius transformation which
sends {z1, z2} to {−1,+1} and {w1,w2} to {−s, s} for some real s > 1. Then δ = log s and

[−1,−s, 1, s] =
−4s

(1− s)2
=

−4

(eδ/2 − e−δ/2)2
= − 1

sinh2(δ/2)

while if the axes meet at a finite point, we choose a Möbius transformation so the line
endpoints are ±1 and e±iθ and the result follows similarly.

We next recall the result in Equation (6.4) of [46] which allows us to relate the parameters
of a pair of Möbius transformations to cross ratios.

Theorem 3.49. Let f and g be Möbius transformations and let δ+iθ be the complex distance
between their axes. Then

4γ(f, g) = β(f) β(g) sinh2(δ + iθ). (3.66)

For a pair of hyperbolics f and g we have by definition β(f), β(g) > 0, and the axes meet if
and only if the complex distance between the axes is zero. Thus the axes cross if and only
if δ = 0, under which condition sinh2(δ + iθ) = sinh2(iθ) = − sin2(θ) and the axis crossing
condition becomes γ(f, g) ≤ 0. From (3.65) we have then the equivalent condition:

[z1,w1, z2,w2] ≥ 1. (3.67)

To see this we choose the Möbius transformation which sends z1 �→ 1, z2 �→ i,w1 �→ −1 and
w2 �→ z ∈ S say, then:

[z1,w1, z2,w2] =
(1−−1)(i− z)

(1− i)(−1 − z)
= 1− �m(z)

1 + �e(z) + 0 i. (3.68)

Then the image of the axes (and therefore the axes themselves) cross when:

1− �m(z)
1+�e(z)

≥ 1

that is, if and only if
�m(z) ≤ 0.

(3.69)

The result becomes clear as a simple geometric condition if in the disc model of hyperbolic
space we visualise the two hyperbolic lines with endpoints mapped as above on the circle
at ∞. We note that not only is the cross ratio invariant under Möbius transformation, but
since we can always find a Möbius transformation to take a circle to any other a cross ratio
can always be found to take any 3 points to any 3 points. Hence the result in (3.68) that the
cross ratio of four points on a circle is always real.
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3.7.2 Cross ratio of fixed points

Supposing that f and g are randomly chosen hyperbolic elements represented respectively
by matrices A and B in F :

A =

(
a c
c a

)
=

(
a eiθa c e−iθc

c eiθc a e−iθa

)
and

B =

(
e g
g e

)
=

(
e eiθe g e−iθg

g eiθg e e−iθe

)
.

(3.70)

We now want to discuss the probability of the axes of transformations f and g crossing.
Let the fixed points of f and g be respectively z1, z2 and w1,w2. Since the fixed points of
hyperbolic transformations in F lie in S, with reference to (3.40) we may express the fixed
points in terms of some arguments α, β ∈ [0, 2π):

z1 = e−iθceiα = ei(α−θc) z2 = e−iθcei(π−α) = −ei(−α−θc)

w1 = e−iθgeiβ = ei(β−θg) w2 = e−iθgei(π−β) = −ei(−β−θg)

hence
z1 − z2 = 2 cos(α) e−iθc w1 −w2 = 2 cos(β) e−iθg

and
z1 −w1 = ei(α−θc) − ei(β−θg) z2 −w2 = −ei(−α−θc) + ei(−β−θg).

(3.71)

We form the numerator and denominator of the cross ratio:

(z1 − z2)(w1 −w2) = 4 cos(α) cos(β)e−i(θc+θg)

(z1 −w1)(z2 −w2) = (ei(α−θc) − ei(β−θg))(ei(−β−θg) − ei(−α−θc))
= ei(α−β−θc−θg) − e−2iθc − e−2iθg + ei(−α+β−θc−θg)

= e−i(θc+θg)(ei(α−β) + ei(−α+β))− e−2iθc − e−2iθg

= 2 cos(α− β)e−i(θc+θg) − e−2iθc − e−2iθg .

(3.72)

The inverse cross ratio is then:

[z1, z2,w1,w2] = 2 cos(α−β)e−i(θc+θg)

4 cos(α) cos(β)e−i(θc+θg)
− e−2iθc

4 cos(α cos(β)e−i(θc+θg)
− e−2iθg

4 cos(α) cos(β)e−i(θc+θg)

= cos(α) cos(β)+sin(α) sin(β)
2 cos(α) cos(β)

− ei(θg+θc)

4 cos(α) cos(β)
− ei(θc+θg)

4 cos(α) cos(β)

= 1
2

[
1 + tan(α) tan(β)− cos(ψ)

cos(α) cos(β)

] (3.73)

where ψ = θc+θg is circular uniform. We want to understand the statistics of the cross ratio,
and in particular to determine when [z1,w1, z2,w2] > 1, that is when [z1, z2,w1,w2] < 1.
We note that in (3.73) there are two terms in both α and β so the expression is a sum of
non independent variables and so not amenable to analytic determination of the distribution
function. We can however substitute from (3.40) for the general variables used:
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α = tan−1 |a| sin(θa)
±
√

|a|2 cos2(θa)−1

β = tan−1 |e| sin(θe)
±
√

|e|2 cos2(θe)−1

(3.74)

and noting that for hyperbolic elements the respective discriminants are non negative we
compute the distribution as in Figure 3.14 for 4, 000, 000 outcomes:

-2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

1.2

Cross ratio of fp, random pairs of hyperbolic elements in

Figure 3.14: Computed distribution of the inverse cross ratio of fixed
points of pairs of random hyperbolic transformations in F .

Since this is the inverse cross ratio, the axis-crossing condition becomes [z1, z2, w1, w2] ≤ 1,
and we have from the computational experiment:

↓ Probability in domain hyperbolic f, g ∈ F conjectured
P[z1,z2,w1,w2]<0 0.1996453 1

5

P[z1,z2,w1,w2]∈[0,1] 0.60052001 3
5

P[z1,z2,w1,w2]>1 0.199834721 1
5

Figure 3.15: Computational experiment, cross ratio probabilities for
pairs of transformations in F .

Note that the fractional probabilities are here conjectured from the computational experi-
ment, however Corollary 3.60 will confirm the axis-crossing probability of P = 1

5
, as in the

third row of Figure 3.15 above.

In contrast we have the following theorem.

Theorem 3.50. For a matrix group in F two random elements are axis-crossing with prob-
ability P = 1

3
.
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Proof. Suppose f, g ∈ F and Γ = 〈f, g〉. If we choose any three of the isometric circles
representing f, g, f−1 and g−1 then they intersect S as illustrated in Figure 3.16 (Left).

Figure 3.16: Axis crossing geometry for transformations f ∈ F .

Project the ray from the centre of S through the centre of the fourth isometric circle and
designate its intersection with S as z, an example is illustrated in Figure 3.16 (Right). There
are now precisely three circle segments on which z could lie, but only one of these choices
corresponds to the axis-crossing condition.

Since the axes of the transformations pass through the isometric circle centres and the iso-
metric circle centres have circular uniform distribution about the centre of S there are twice
as many non axis-crossing pairs of isometric circles as axis-crossing. That is:

P γ∈Γ axis−crossing = 1
3

P γ∈Γ non axis−crossing = 2
3
.

(3.75)

The argument of this theorem can be reduced to an invocation of Theorem 3.17, with three
isometric centres on S and three arcs between them we wish to know with what probability
a fourth random isometric circle centre is centered on any one of the these arcs. According
to the theorem the answer is P = 1

3
, and the conclusion follows since only choice of that arc

between the two isometric circle centres of the same transformation results in crossing of the
transformation axes.

Together Theorem 3.50 and Corollary 3.60 quantify the degree to which the fixed points are
correlated on the circle. However what we would like to understand is with what probability
γ([f, g]) < 0 for a discrete group 〈f, g〉 with hyperbolic generators, so we turn to a discussion
of positive results for discreteness.

3.8 Discreteness
Notice that γ([A,B]) ∈ [−4, 0] implies (trace([A,B])− 4)2 ∈ [−4, 0] and [A,B] is elliptic and
of finite order on a countable subset of [−4, 0], hence the following theorem:
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Theorem 3.51. If f, g ∈ F are randomly chosen and if γ([f, g]) ∈ [−4, 0], then 〈f, g〉 is
almost surely not discrete.

From the results of the computational experiment reported in Figure (3.9), we have Pγ∈[−4,0] ≈
0.161724 and this is our estimate that the probability that pairs of hyperbolic elements of F
are not discrete and free.

Since independent events X and Y always have no greater probability of occurrence than if
X and Y exhibited any degree of dependence, we can use Theorem 2.5 to give us an obvious
bound: if f, g ∈ F are randomly chosen, then the probability that 〈f, g〉 is discrete is at least
1
64

. We can generalise this conclusion as follows:

Theorem 3.52. For n independent random elements of fn ∈ F , with matrix representation
any distinct m ≤ n(2n− 1) of the elementary isometric circle intersection events correspond
to mutually disjoint intersections with probability P = 1

(n!)m
.

Proof. By Theorem 2.7 the set of independent pairs of intersections in F2n is of order n(2n−1).
Theorems 3.54 and 3.55 generalise via Theorem 4.24 so that each elementary event corre-
sponds to a disjoint intersection with probability 1

n!
. Since these probabilities are independent

any m intersection pairs correspond to disjoint intersections with probability P = 1
(n!)m

.

For n generator groups this number is at least 2−(2n−1)!.

We will improve the lower bound for the probability that 〈f, g〉 is discrete for f, g ∈ F to
P = 1

20
, but this will require some prepatory work.

3.8.1 The Klein combination theorem and isometric circles

The Klein combination theorem has been presented as Theorem 2.5, this provides an easy
method for determining a lower bound for the probability that a group generated by two
random elements of F is discrete. The methodology follows since Theorem 2.4 identifies hy-
perbolic transformations with disjoint isometric circles. Note again that the isometric circles
of F are orthogonal to the unit circle S, and hence have their closest disjoint approach on S.
We have already seen that the isometric discs of a randomly chosen f ∈ F are disjoint with
probability 1

2
and we generalise this slightly in the next section.

3.8.2 Intersections of two isometric circles of elements of F
Lemma 3.53. Let α and β be arcs on S with uniformly randomly chosen midpoints ζα and
ζβ and subtending angles θα and θβ uniformly chosen from [0, π]. Then α and β meet with
probability 1

2
.

Proof. The smaller arc subtended between ζα and ζβ has length Θ = arg(ζαζβ) and is uni-
formly distributed in [0, π]. Then α and β are disjoint if Θ−θα/2−θβ/2 ≥ 0. Since Corollary
3.24 tells us that 2Θ− θα − θβ is uniformly distributed in [−2π, 2π), this number is positive
is with probability 1

2
.
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Some of the following theorems rely on linear combination results obtained via the method
of characteristic functions, relevant distributions for random variables xj ∈u [0, π] are listed
in Figure 4.5.

Theorem 3.54. An element of F represented by a matrix A has isometric circles disjoint
with probability P = 1

2
; that is, for the isometric circles of A:

PA∩A−1 =
1

2
.

Proof. By Theorem 3.27 the arguments η, η′ of the vectors to the centres of the isometric
circles of A,A−1 respectively have circular uniform distribution. Then by Theorem 3.29 the
angular distance d = |η − η′| ∈ [0, 2π) between these centres is also circular uniform. Since
the circles are of identical radius they are centered on the same circle about S and since they
intersect S orthogonally their closest approach is on S. Then the isometric circles subtend
arcs of equal length φ = 2α ∈u [0, π]R with circular uniform distribution. The arc length
separation between the circles is δ = |d| − 2α = |d| − φ and the arc distance between the
isometric circle intersections with S is then:

|d| ∈u [0, 2π)◦ = 1
2
d ∈u [0, 2π)R = d ∈u [0, π]R

and
δ = d ∈u [0, π]R − φ ∈u [0, π]R.

(3.76)

The result is a random variable of the form of x1 − x2 for x1, x2 ∈u [0, π] and since x1 = d
and x2 = φ are independent the distribution in (4.32) applies and δ is non negative with
probability 1

2
.

Theorem 3.55. For two elements of f, g ∈ F , with matrix representation an isometric circle
of f is disjoint from an isometric circle of g with probability P = 1

2
; that is, for the isometric

circles of matrices A and B:

PA∩B = PA∩B−1 = PA−1∩B = PA−1∩B−1 =
1

2
.

Proof. Suppose the intersection arcs of the circles with S are of lengths 2αA and 2αB ∈u [0, π]R
respectively. By Theorem 3.27 the angular distance between centres of the isometric circles of
each matrix is separately uniformly distributed, accordingly the distribution of the distance
between the centres of dissimilar circle pairs on S can be calculated as:

δ = d ∈u [0, 2π]R − αA ∈u [0, π]R − αB ∈u [0, π]R

= 2d ∈u [0, π]R − αA ∈u [0, π]R − αB ∈u [0, π]R.
(3.77)

This is a random variable of the form of 2x1−x2 −x3 for x1, x2, x3 ∈u [0, π] and since x1 = d
and x2, x3 = αA, αB respectively are all independent the distribution in (4.36) applies and δ
is non negative with probability 1

2
.

The two distributions in Theorems 3.54 and 3.55 are quite different but both symmetrical
about 0, hence the non negative probabilities are identical.

We next consider the more complicated problem of disjoint pairs of arcs not necessarily of
equal magnitude, terming a set of arcs which have no intersections mutually disjoint.
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3.8.3 Intersections of the four isometric circles of two elements of F
We consider the intersection events of the four isometric circles of two independent random
transformations in F .

Theorem 3.56. If two elements of F are represented by matrices A and B then the isometric
circle pairs of A are disjoint while the isometric circles of B are disjoint with probability
P = 1

4
; that is, for the isometric circles of matrices A and B and event e3 in class E2 of F4:

P(A∩A−1)∪(B∩B−1) =
1

4
.

We provide two proofs.

Proof.

(1) Via Kolmogorov’s theorem:
The only independent pair of intersection events in the σ−field F4 is:

{(A∩A−1), (B ∩ B−1)}

and by Theorem 3.54 each elementary event corresponds to disjoint intersection with
probability 1

2
. Then the two independent intersection events {(A∩A−1) and (B∩B−1)}

are disjoint with probability 1
2
× 1

2
= 1

4
.

(2) A geometric proof:

Each of the events (A∩A−1) and (B ∩ B−1)} has p.d.f. according to:

f(x) =
1

π2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π + x −π ≤ x < 0

π − x 0 ≤ x ≤ π

0 elsewhere.

(3.78)

Figure 3.17 represents the probability surface for the joint distribution f(x, y) = f(x)f(y)
of two independent random variables each distributed according to (3.78), but we are
interested in only non negative joint probability represented by the red rectangle in the
first quadrant:

∫ ∫
f(x, y) dx dy =

∫ ∫ (
π−y
π2

) (
π−x
π2

)
dx dy

= xy
4π4 (4π

2 + 1− 2π(x+ y))
(3.79)

and we obtain the total probability of non negativity by evaluating the indefinite inte-
gral in (3.79) over the square representing non negative occurrences:

∫ π

y=0

∫ π

x=0

f(x, y) dx dy =
1

4
.
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f �x,y��f �x�f �y� for x,y independent

�2

0

2
f�x� �2

0

2

f�y�

0.00

0.05

0.10

Figure 3.17: Probability surface for Dx=(x1−x2)×Dy=(x3−x4), xi ∈u [0, π]
corresponding to the independent pair of intersection events in the
σ−field F4, Left: showing the total probability that random vari-
ables x and y are in each sub domain of the supporting domain
of f(x, y), Right: showing the 3-D surface of f(x, y) supported on
[−π, π]× [−π, π].

We cannot make the claim of Theorem 3.52 for events that include any of the dependent
elementary events, another approach is required. There is actually an order relationship that
must be considered and this is the basis of Theorem 3.57. Essentially if the intersection arcs
are in order such that all four events (A∩B), (A∩B−1), (A−1∩B) and (A−1∩B−1) are disjoint
then the events (A ∩ A−1) and (B ∩ B−1) must be always disjoint by reason of the order of
the arcs (for instance as illustrated in Figure 3.18), so such ordering of the random variables
involved constrains the nett probability. The classic work on ordered random variables is
Herbert and Nagaraja, [28].

Theorem 3.57. In the σ-field F4 the elementary events (A ∩ B), (A ∩ B−1), (A−1 ∩ B) and
(A−1∩B−1) for matrices A and B representing random elements of F correspond to mutually
disjoint intersections with probability P = 1

5
. That is, for the isometric circles of matrices A

and B:
P(A∩B)∪(A∩B−1)∪(A−1∩B)∪(A−1∩B−1) =

1

5
. (3.80)

Proof. Let E be the ordered set of random isometric circle intersection arcs {A, B,A−1B−1}
while allowing any cyclic permutation and order in either direction. Then from Theorem 3.17
the probability that a random point on S is excluded from ∪{E} is P = 1

5
. We note that with

this ordering, if ∩{E} = ∅ then necessarily {(A∩A−1)} = ∅ and {(B ∩ B−1)} = ∅ and the
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topology ensures that (3.80) correctly assigns the probability of mutual disjoint occurrence
of the events in E . That is, P∩{E}=∅ = 1

5
.

The importance of Theorem 3.57 is that it supplies corollaries relating to the independence
of independent events and mutual intersection events (3.59), a lower bound for the proba-
bility that a group with two hyperbolic generators in F is discrete (3.58), and eventually to
a lower bound on the discreteness of two-generator subgroups of F (3.61). Notice that the
possible distinct topologies of ordered sets E correspond to the two transformations being
axis-crossing or not. The arcs of A and A−1 being adjacent (which necessitates the adjacency
of the arcs of B and B−1) corresponds to the two transformations being non axis-crossing.

Although at first sight events containing the same random variable would seem to be depen-
dent, Theorem 3.57 indicates that there are circumstances in which this is not so. We have
the following Corollary to Theorem 3.57:

Corollary 3.58. Two randomly chosen hyperbolic transformations f, g ∈ F generate a dis-
crete group 〈f, g〉 with probability at least 1

5
.

Corollary 3.59. The event (A ∩ A−1) ∪ (B ∩ B−1) is independent of the event (A ∩ B) ∪
(A∩ B−1) ∪ (A−1 ∩ B) ∪ (A−1 ∩ B−1).

Figure 3.18: An ordered set of random isometric circle intersection
arcs {A, B,A−1B−1}: the order precludes the intersections A ∩ A−1

or B ∩ B−1 as long as A ∩ B = ∅ etc.

The following corollary supplies a proof of the computationally derived axis-crossing proba-
bility reported in Figure 3.15 for hyperbolic transformations in F .

Corollary 3.60. Let f, g be randomly chosen hyperbolic elements of F . Then the axes of f
and g cross with probability 1

5
.

3.8.4 F is discrete with P ≥ 1
20

One of the main results of this thesis follows.
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Theorem 3.61. Randomly chosen Möbius transformations f, g ∈ F generate a discrete
group 〈f, g〉 with probability at least 1

20
.

Proof. With matrix representation of random transformations in F , two pairs of isometric
circles are independently disjoint with probability P = 1

4
by Theorem 3.56 and mutually

disjoint with probability P = 1
5

by Theorem 3.57. Since these two events are independent
by Corollary 3.59 we conclude that the isometric circles of the matrices induced by f and g
are disjoint with probability P = 1

4
× 1

5
= 1

20
. The result follows from the Klein combination

theorem, 2.5.
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Chapter 4

Probability and random variables

In this supporting chapter we develop theory specifically for mathematical and computational
analysis of isometric circle intersection probabilities on circular domains.

4.1 Isometric circle intersections
Definition 2.10 is usually taken to define of random event independence but we must be very

careful. A single complex matrix A =

(
a b
c d

)
representing a Möbius transformation de-

termines two isometric circles, A and A−1. We will assume that the Möbius transformation
represented by A is in F but the following argument is easily generalised.

The radii r of the two isometric circles of A are identical and the isometric circle centres are
both related to the matrix entry c (and located on a circle of radius

√
1 + r2) so random

events A and A−1 clearly exhibit dependence. However, given any fixed isometric circle radius
the angular position of the isometric circle intersection arcs on S are independent random
variables. We will be working with σ-fields where the elementary events are intersections
of isometric circles with S, and the angular positions of the intersection arcs on S of A,
A−1 B and B−1 are mutually independent random variables and all the elementary events
are pairwise unions of these independent random variables. When we consider the non
elementary intersection events in the σ-field, only the single event A∩A−1 ∪ B ∩ B−1 is the
union of independent events as for instance A ∩ A−1 and A ∩ B have a random variable in
common, the intersection arc of A with S.

Example 4.1.

(1) For a single random matrix A the set of isometric circles is:

S2 = {A,A−1}

and the set of elementary events is:

E2 = {(A∩A−1)}.
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In this case the σ-field is strictly {(A∩A−1), (A∩A−1),∅}, but as indicated in Section
2.2.4 we will use a relaxed form (both here and from now on) since we have little interest
in the event complements or null events:

F2 = {(A ∩A−1)}.
(2) For two random matrices A,B the set of isometric circles is:

S4 = {A,A−1,B,B−1}.
The set of elementary events is:

E4 = {(A∩A−1), (B ∩ B−1), (A∩ B), (A ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)}
and the σ-field is F4 which is the power set of all subsets of E4 and is of order 26, and can
be partitioned into six subsets of orders |F4,k| ∈ {6, 15, 20, 15, 6, 1} each corresponding
to k isometric circle intersection pairs. Computationally determined probabilities for
the entire F4 σ-field for a specific experiment can be found in Section 5.2.

(3) The set of independent events in F4 is {(A∩A−1), (B ∩ B−1)}.
Definition 4.2. The sets of events under union of k ∈ [1, m] pairwise intersection events in
a σ-field of Fn are the m equivalence classes Ek of Fn.

4.2 Domains of support for random variables
A function supported on any one-dimensional domain can always be "straightened" so that
all points are mapped without distortion of distances onto a domain in R, such a statement is
not true for dimensions greater than one. Such a domain is a set E of possibly disconnected
intervals Ii ⊂ R for which a bijective and locally isometric mapping Ψ : D �→ E = ∪iIi maps
a one-dimensional domain D in some Euclidean space onto E ⊂ R with |E| = |D| for all sub
intervals Ii. Theorem 4.3 follows from the fact that R is an additive group.

Theorem 4.3. All linear combinations F = ±x1,±x2, . . . ,±xN of N non negative random
variables identically distributed over a domain which maps to I ∈ R+ result in distributions
of identical form over a domain of magnitude NI ∈ R

+.

Corollary 4.4. With the nomenclature of Theorem 4.3, if n of the random variables in the
expression F have negative signs and p have positive signs then the domain of the resultant
random variable is the union of n negative sub domains and p positive sub domains, where
n+ p = N .

Theorem 4.5. For a random variable distributed over a domain that maps to a union of sub
domains in R:

(1) Scalar multiplication by k ∈ R results in exactly the same mathematical form of distri-
bution as the original random variable but with the resultant function supported on 1

k

times the original interval. That is, for x uniformly distributed over [0, π]:

Pkx∈[0,π]R = 1
k
Px∈[0,kπ]R. (4.1)
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(2) Addition of a signed scalar to a random variable results in a corresponding adjustment
to the domain.

Proof.

(1) Since R is a ring, for any interval I ⊂ R and constant k ∈ R, x ∈ I ⇒ kx ∈ kI, and
since the p.d.f. integrates to 1 over the domain the resultant must be scaled by 1

k
.

(2) If g(x) is supported on [a, b] then g(x)− k is supported on [a− k, b− k].

A direct result of Theorem 4.5 is that we can always replace scaled random variables with
random variables and as a result of Theorem 4.3 linear combinations can be analysed as
sums of random variables. To obtain the p.d.f. of the sum of n signed random variables
distributed over equal sized domains, we merely count the number m of negative signs and
allow the absolute p.d.f. to be positioned on a domain m sub domain magnitudes to the left
of 0. It is trivial to extend this to allow adjustment of all random variables in an expression
so that they are supported on identical domains, or alternatively to replace scalar multiples
of random variables with unmodified random variables over scaled domains.

Definition 4.6. A random variable is symmetrical if its p.d.f. is even.

Then for symmetrical random variables (or those which can be made symmetrical via Corol-
lary 4.4), taking the modulus of the p.d.f. results in a distribution over the positive half
domain only with function values doubled at all points in the range. That is, if a random
variable x is symmetrical with p.d.f. f(x) supported on a domain [−k, k] then:

|f(x)| ∈ [−k, k] = 2 f(x) ∈ [0, k]. (4.2)

4.2.1 Modular domains

Definition 4.7. A modular domain is a closed interval M = [m1, m2] ⊂ R of magnitude
ζ = |m2 −m1| for which the equivalence relation:

∀x ∈ M, x+ ζ = x (4.3)

is satisfied.

Definition 4.8. A circular domain is a modular domain for which the equivalence relation:

∀x ∈ [0, 2π), x+ 2π = x (4.4)

is satisfied.

We note here that the uniform distribution can be seen to be "natural" for a random variable
defined on a modular domain in that the p.d.f. would indicate equal probability of occurrence
of the random variable over the entire domain.
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Example 4.9. Figure 3.2 shows how for a random variable the experimental outcomes in
the two equivalence classes [−2π, 0]R and [0, 2π]R sum to give a net uniform distribution for
the difference between two uniform distributions over [0, 2π)o on a circular (modular) domain.

The important difference between modular domains and intervals of R is brought out by the
following two definitions.

Definition 4.10. The modulus of a random variable X with experimental outcomes ξi dis-
tributed over a sub interval of R is the random variable |X|

R
with experimental outcomes

|ξi|.
Definition 4.11. The modulus of a random variable X distributed over a modular domain
M is the random variable |X|M which is constituted by the mapping of outcomes from all
equivalence classes onto M .

4.3 Functional transformations of random variables
Our objective here is to present for reference or develop methods of calculating p.d.f.’s for
functional combination and composition of random variables of known distribution, we quote
without proof some standard results.

4.3.1 Multi-variable transformations

Theorem 4.12. For transformations y1 = h(x1, x2) and y2 = g(x1, x2) of a joint p.d.f.
f(x1, x2) (where the xi are the pre-images of the yi) with first partial derivatives and having
unique inverses, the resultant joint p.d.f. is given by:

g(y1, y2) = f(h−1(y1, y2), g
−1(y1, y2)) J (4.5)

where J is the Jacobian:

J =

∣∣∣∣∣det
(

∂h−1(y1,y2)
∂y1)

∂h−1(y1,y2)
∂y2)

∂g−1(y1,y2)
∂y1)

∂g−1(y1,y2)
∂y2)

)∣∣∣∣∣ . (4.6)

Hence the bivariate change of variables formula is:

g(y) = f(x1) f(x2)
∣∣∣df(x1)

dy1

df(x2)
dy2

∣∣∣ . (4.7)

In Theorem 4.12, for independent random variables with p.d.f.’s f1 and f2, the Jacobian
evaluates to 1 and we arrive at the same result. Donahue points out that the result can be
used for products and quotients, as in Corollary 4.13 for quotients:

Corollary 4.13. Subject to the monotonicity and differentiability conditions of Theorem
4.14,
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(1) The distribution of the quotient of two random variables X1 and X2 is given by:

g(y1) =

∫
β

fX1,X2(y1 × y2, y2) |y2| dy2

where fX1,X2(x1, x2) is the joint p.d.f. of X1 and X2.

(2) The distribution of the quotient of two independent random variables X1 and X2 is
given by:

g(y) =

∫
β

f1(y1 × y2)f2(y2) |y2| dy2.

(3) The distribution of the quotient of two independent identically distributed random vari-
ables X1 and X2 is given by:

g(y) =

∫
β

f(y1 × y2)f(y2) |y2| dy2.

4.3.2 Change of variables

The results of the previous section lead directly to the familiar change of variables formula:

Theorem 4.14. For strictly increasing or strictly decreasing differentiable transformation ϕ
of a p.d.f. f(x), the resultant p.d.f. is given by:

g(y) = f(ϕ−1(y))
∣∣∣d(ϕ−1(y))

dy

∣∣∣ . (4.8)

Theorem 4.14 allows us to derive a new p.d.f. g(y) from an initial p.d.f. f(x) provided
only that a strict monotonic condition (which is essential to ensure that inverses are well
defined) applies to the transformation ϕ and that the inverse transformation function ϕ−1(y)
is differentiable everywhere on β. In terms of f(x) = ϕ−1(y), provided f(x) (which is y in
(4.9)) is monotonic and its derivative exists over the domain of support then:

g(y) = f(x)

∣∣∣∣dxdy
∣∣∣∣ . (4.9)

4.3.3 Mellin convolutions

We recognise in the equations of Corollary 4.13 the Mellin convolutions for quotients of
random variables (immediately generalisable to products as well) and conclude that the
monotonicity and differentiability conditions for the component functions must apply. It is
not valid to presume that arbitrary functions supplied to a Mellin convolution will result in
appropriate results unless the component functions are first inspected for monotonicity and
differentiability.
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4.3.4 Unary functions

We can successfully use the change-of-variables formula (4.9) to calculate functional trans-
formations of some p.d.f.’s but we are left with the problem of unary functions which do not
meet the monotonicity or differentiability criteria, this does not seem to have had much at-
tention in the published literature apart from consideration by Donahue [15] whose approach
is consistent with that of Theorem 4.15 whose proof is trivial:

Theorem 4.15. If functions that are not strictly increasing or strictly decreasing are piece-
wise monotonic on n partitions of the total domain D then for each partition Dj ⊂ D:

gj(y) = fj(x)

∣∣∣∣dxdy
∣∣∣∣
Dj

x ∈ Dj. (4.10)

Thus each fj(x) makes a contribution gj(y) to the resultant p.d.f. g(y) which must be
assessed by summation of infinitesimal probabilities at each point of the total domain D.
That is, the functions fj(x) derived by piecewise transformation of random variables are
themselves independent random variables which must be combined by an appropriate linear
combination technique such as the characteristic function method. This can be a daunting
procedure unless we are able to invoke symmetry considerations as in Theorem 4.16:

Theorem 4.16. The monotonicity requirement for change-of-variable transformations and
Mellin convolution components can be relaxed to allow functions with precise repetitions over
the same size sub domain whether the sub domain is taken as being in either a positive
direction or a negative direction.

Proof. For any function the shape of the curve represents variation of functional value over the
domain and hence uniquely determines the density of occurrence of values over infinitesimal
sub domains. If n copies of such functional portions of identical density are supported on n
sub domains the density is the same as for a single portion.

4.4 Elements of a random variable algebra
With the provisos of differentiability and monotonicity, the use of Mellin convolutions is very
effective for calculating products and quotients of random variables especially when we in-
clude functions covered by Theorem 4.16. The Fourier convolution methods developed in [55]
for calculation of linear combinations rapidly become unmanageable however for larger num-
bers of random variables, but Springer [66] (especially Theorem 3.2.2 and Equations 2.8.5)
provides the basis of a more practical method for determining in principle the distributions
of linear combinations of independent random variables.

4.4.1 Products and quotients of independent random variables

The Mellin convolution for products and quotients of functions is derived in [55] from the
Fourier convolution as applied to sums and products and also from Donahue’s [15] bivari-
ate distribution theorem (see above: Theorems 4.12 and also Corollary 4.13); the derived
expressions are (apart from nomenclature) the same as Springer’s [66].
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(1) Let w be the product of two differentiable and monotonic distribution functions f1(x)
and f2(y) of non negative independent random variables x and y, then the distribution
g(w) = g(xy) is given by:

g(w) =

∫ ∞

0

1

y
f1

(
w

y

)
f2(y) dy. (4.11)

(2) Let w be the quotient of two differentiable and monotonic distribution functions f1(x)
and f2(y) of non negative independent random variables x and y, then the distribution
h(w) = h

(
x
y

)
is given by:

h(w) =

∫ ∞

0

yf1(wy)f2(y) dy. (4.12)

Both expressions (4.11) and (4.12) are subject to the constraints that the random variables
be independent and non negative and that the functions f1 and f2 (either of which with
interchange of arguments can be regarded as the transformation between domains) must be
monotonic and have first derivatives over the domains of xy or x

y
as appropriate. We recall

that Theorem 4.16 contains a conditional relaxation of the monotonicity requirement.

4.4.2 Linear combinations of independent random variables

The characteristic function φ(t) as defined in (4.13) encapsulates both distribution function
f(x) and the domain of support D in a single complex function, and is the Fourier integral of
a (possibly bounded) p.d.f. f(x) which yields an unbounded complex function which uniquely
determines the p.d.f.:

φ(f(x)) = φ(t) =

∫
D

eitx f(x) dx t, x ∈ R (4.13)

and the appropriate inverse Fourier integral restores the p.d.f.:

f(x) =
1

2π

∫ ∞

−∞
e−itx φ(t) dt t, x ∈ R. (4.14)

Springer [66] (especially Theorem 3.2.2 and Equations 2.8.5) establishes the basis, and his
Theorem 3.2.5 allows the generalisation:

φ(f1(k1x1) + f2(k2x2) + · · · ) = (k1k2 · · · )φ1φ2 · · · (4.15)

where the ki are any real numbers and the φi = φ(fi(xi)) are characteristic functions corre-
sponding to p.d.f.’s fi of independent random variables xi. Application of (4.13), (4.14) and
(4.15) allows us to determine in principle the distributions of linear combinations of indepen-
dent random variables. Such distributions will in general be polynomials defined piecewise
over subdomains.

Definition 4.17. The absolute p.d.f. of a linear combination of random variables is the
polynomial representing the distribution of the sum of the same random variables.
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4.5 Linear combinations via characteristic functions
We will require the following definitions and theorem:

Definition 4.18. The components of a p.d.f. g(x) are the terms in powers of x that sum
to the piecewise polynomial over each subdomain of g(x).

Definition 4.19. The pieces of a p.d.f. g(x) are the piecewise portions of g(x) over the
subdomains that sum to the domain of support for g(x).

Definition 4.20. The sign function is:

sign(ω) =

⎧⎨
⎩

1 ω > 0
0 ω = 0
−1 ω < 0

(4.16)

4.5.1 A closed form for the p.d.f. of a sum of independent random
variables

We will require the Fourier transform of 1
tn

.

Theorem 4.21. The integral In =
∫ ∞
−∞

1
tn
eiωtdt has a closed form expression for all n:

In =
inωn−1

(n− 1)!
π sign(ω). (4.17)

It is important to note that by writing 1
tn

, we do not literally mean the function that is
the reciprocal of the nth power of t. Instead, what is meant is that " 1

tn
is the homogeneous

distribution defined by the distributional derivative (−1)n

(n−1)!
dn

dxn log |x|" —see Erdelyi [16], (Entry
310).

Proof. We refer to a table of Fourier transforms, e.g. [16], (Entry 310).

Theorem 4.22. The absolute distribution of a linear combination of n independent random

variables
n∑

j=1

aj uniformly distributed over [0, k] is a polynomial of degree n − 1, is defined

piecewise on n sub domains of [0, nk], and is given by:

g(x) =
n(−1)n

2kn

n∑
j=0

(−1)j

j!(n− j)!
(jk − x)n−1 sign(jk − x ).

Proof. We consider the n non zero independent random variables aj ∈u [0, k], k ∈ R. For all
integers j ∈ [1, n] the distributions f(aj) identically uniform over [0, k] are f(aj) =

1
k

and 0
elsewhere and the appropriate characteristic functions according to (4.13) are identical and
of the form:

φ(f(y)) = φy(t) =

∫ k

0

1

k
eity dy =

1

itk
(eitk − 1) (4.18)
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and for the sum of n random variables with identical uniform distributions φ:

n∏
j=1

φj =
1

intnkn
(eitk − 1)n. (4.19)

With binomial expansion this becomes:

n∏
j=1

φj =
1

intnkn

n∑
j=0

(−1)n−j n!

j!(n− j)!
eijtk. (4.20)

This being the characteristic function of the sum of the n random variables ∈u [0, k], we
apply the inverse transformation according (4.14) to obtain the resultant distribution on the
piecewise sub intervals of [0, nk], that is, for:

x ∈ [0, k], x ∈ [k, 2k] · · · x ∈ [(r − 1)k, rk] · · · x ∈ [(n− 1)k, nk] :

g(x) = 1
2π

∫ ∞
−∞ e−itx

n∏
j=1

φj dt

= 1
2inknπ

∫ ∞
−∞

1
tn
e−itx

n∑
j=0

(−1)n−j n!
j!(n−j)!

eijtk dt

= (−1)nn!
2inknπ

n∑
j=0

(−1)j

j!(n−j)!

∫ ∞
−∞

1
tn
ei(jk−x)t dt.

(4.21)

Let ω = jk − x for j ∈ {0, 1, · · · , n}, then the equation becomes:

g(ω) =
n!(−1)n

2inknπ

n∑
j=0

(−1)j

j!(n− j)!

∫ ∞

−∞

1

tn
eiωt dt (4.22)

then:

g(ω) =
n!(−1)n

2inknπ

n∑
j=0

(−1)j

j!(n− j)!
In. (4.23)

With ω = jk − x, In is a function of x:

In = inωn−1

(n−1)!
π sign(ω)

= inπ
(n−1)!

(jk − x)n−1 sign(jk − x )

(4.24)

supported piecewise on the n subdomains of the absolute p.d.f. g(x), these are the intervals:

[0, k), · · · , [(m− 1)k,mk), · · · , [(n− 1)k, nk)

where interval m is [(m− 1)k,mk). Then sign(jk − x ) takes values as follows for x ∈ m:
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Figure 4.1: Values of sign(jk − x ).

↓ Interval j = 0 j = 1 j = 2 j = 3 j = 4
m = 1 : x ∈ (0, k) −1 1 1 1 1
m = 2 : x ∈ (k, 2k) −1 −1 1 1 1
m = 3 : x ∈ (2k, 3k) −1 −1 −1 1 1
m = 4 : x ∈ (3k, 4k) −1 −1 −1 −1 1
m = 5 : x ∈ (4k, 5k) −1 −1 −1 −1 −1

sign(jk − x ) = −1 j < m
sign(jk − x ) = +1 j ≥ m

(4.25)

and we show in Figure 4.1 some early evaluations of sign(jk − x ). When the expression for
In from (4.17) is substituted into (4.23), j becomes an index into the n + 1 integrals in the
expression for g(x), hence the expression (jk − x)n−1 sign(jk − x ) must be evaluated in terms
of j and applied to each jth term for each sub domain m. From (4.23):

g(x) = n!(−1)n

2inknπ

n∑
j=0

(−1)j

j!(n−j)!
In

= n!(−1)n

2inknπ

n∑
j=0

(−1)j

j!(n−j)!
inπ

(n−1)!
(jk − x)n−1 sign(jk − x )

= n(−1)n

2kn

n∑
j=0

(−1)j

j!(n−j)!
(jk − x)n−1 sign(jk − x ).

(4.26)

Example 4.23.

(1) For n = 1 we arrive back at a uniform distribution over [0, k], in the evaluated form of
(4.26) there is only one subdomain:

g(x) = − 1

2k

(
(−x)0(−1) + (−1)(k − x)0(1)

)
= − 1

2k
(−1− 1) =

1

k
.

(2) For n = 2 from (4.26) we have to consider both x ∈ [0, k) (m = 1) and x ∈ [k, 2k) (m =
2) where sign(jk − x ) is determined via (4.25) (or see Table 4.1):

g(x)m=1 = 2
2k2

(
1
2
(−x)1(−1) + (−1)(k − x)1(1) + 1

2
(2k − x)1(1)

)
= 1

k2

(
x
2
− (k − x) + 2k−x

2

)
= x

k2
,

(4.27)
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g(x)m=2 = 2
2k2

(
1
2
(−x)1(−1) + (−1)(k − x)1(−1) + 1

2
(2k − x)1(1)

)
= 1

k2

(
x
2
−+k − x) + 2k−x

2

)
= 2k−x

k2
.

(4.28)

Hence:

g(x) =

⎧⎨
⎩

x
k2

x ∈ [0, k)

2k−x
k2

x ∈ [k, 2k]
(4.29)

which is the distribution Dx1+x2 where x1, x2 ∈u [0, k] as derived via characteristic
functions.

4.5.2 Probabilities for linear combinations

Theorem 4.24. For a linear combination g(x) of independent uniformly distributed random
variables, the probability that a random variable x is in the subdomain m of g(x) (that is,
that x is in the interval [(m−1)k,mk]) is independent of the subdomain size and is given by:

Px∈m =
(−1)n

2

n∑
j=0

(−1)j

j!(n− j)!
[(j + 1−m)n sign(j + 1 −m)− (j −m)n sign(j −m)] .

Proof. Integration of the expression (4.26) for the p.d.f. over [(m− 1)k,mk] gives the prob-
ability that x is in that particular subdomain:

∫ mk

(m−1)k
g(x) dx = − (−1)n

2kn

n∑
j=0

(−1)j

j!(n−j)!
[(jk − x)n sign(jk − x )]

mk
x=(m−1)k

therefore

Px∈m = − (−1)n

2kn

n∑
j=0

(−1)j

j!(n−j)!
kn [(j −m)n sign(k(j −m))

− kn (j − (m− 1))n sign(k(j − (m − 1 ))]

= (−1)n

2

n∑
j=0

(−1)j

j!(n−j)!
[(j + 1−m)n sign(j + 1 −m)− (j −m)n sign(j −m)] .

(4.30)

4.6 Some distributions of trigonometric functions via the
change of variables formula

We determine the distributions of some trigonometric functions via the change of variables
formula. We are free to chose monotonic regions where the shape of the curve on its sub
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domain is representative of all such sub domains, again up to sign, and elsewhere in this
thesis the term monotonic is taken to mean including the considerations of Theorem 4.16.
In the case of trigonometric functions reference to Figure 4.2 shows that considerable simpli-
fication results by recognising the symmetries and phase shifts. Then the p.d.f.’s of the pairs
{sin(x), cos(x)}, {cosec(x), sec(x)}, {tan(x), cot(x)}, {sin2(x), cos2(x)}, {cosec2(x), sec2(x)}
and {tan2(x), cot2(x)} are by elementary calculation identical, see Figure 4.4.
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Figure 4.2: Polarity and phase of trigonometric functions.

Function set Distribution name, Monotonic p.d.f. range
Representative: f(x)=y domain rep. of y

{sin(x), cos(x)} Dcos(x) [0, π) 1

π
√

1−y2
(−1, 1)

{cosec(x), sec(x)} Dcosec(x) (0, π
2
], [π

2
, π) 2

πy
√

y2−1
(1,∞)

{cot(x), tan(x)} Dcot(x) (0, π] 1
π(1+y2)

(−∞,∞)

{sin2(x), cos2(x)} Dcos2(x) (0, π), (π, 2π) 1

π
√

y(1−y)
(0, 1)

{cosec2(x), sec2(x)} Dcosec2(x) (0, π
2
), (π

2
, π) 1

πy
√
y−1

(1,∞)

{cot2(x), tan2(x)} Dcot2(x) [0, π
2
), (π

2
, π] 1

π(1+y)
√
y

(0,∞)

Figure 4.3: Distributions of some trigonometric functions.
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Figure 4.4

4.7 Some distributions via characteristic functions
We record some relevant results of calculation via the characteristic function method for some
distributions g(x) =

∑n
i=1 kixi where ki ∈ N for individual random variables xi ∈u [0, π], see

Figures 4.5 and 4.6.
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(1) D(x1+x2), Pg(x)>0 = 1:

g(x) =
1

π2

⎧⎨
⎩

x 0 ≤ x < π

2π − x π ≤ x ≤ 2π.
(4.31)

(2) D(x1−x2), Pg(x)>0 =
1
2
:

g(x) =
1

π2

⎧⎨
⎩

π + x −π ≤ x < 0

π − x 0 ≤ x ≤ π
(4.32)

(3) D|x1−x2|, Pg(x)>0 = 1:

g(x) =
2(π − x)

π2
. (4.33)

(4) D(x1−2 x2), Pg(x)>0 =
1
4
:

g(x) =
1

2π2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2π + x x ∈ [−2π,−π)

π x ∈ [−π, 0)

π − x x ∈ [0, π].

(4.34)

(5) D(2 x1−x2), Pg(x)>0 =
3
4
:

g(x) =
1

2π2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π + x x ∈ [−π, 0)

π x ∈ [0, π)

2π − x x ∈ [π, 2π].

(4.35)

Figure 4.5: Some distributions Dx of linear combinations of indepen-
dent random variables calculated via characteristic functions, xi ∈u

[0, π] and the distribution function is g(x) =
∑n

i=1 kixi where ki ∈ N.
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(6) D(2 x1−x2−x3), Pg(x)>0 =
1
2
:

g(x) =
1

4π3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 + 4πx+ 4π2 −2π ≤ x < −π

−x2 + 2π2 −π ≤ x < π

x2 − 4πx+ 4π2 π ≤ x ≤ 2π.

(4.36)

(7) D(x1−x2−x3), Pg(x)>0 =
1
6
:

g(x) =
1

2π3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 + 4πx+ 4π2 −2π ≤ x < −π

−2x2 − 2πx+ π2 −π ≤ x < 0

x2 − 2πx+ π2 0 ≤ x ≤ π.

(4.37)

Figure 4.6: Some further distributions of linear combinations of in-
dependent random variables calculated via characteristic functions,
xi ∈u [0, π] and the distribution function is g(x) =

∑n
i=1 kixi where

ki ∈ N.
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Chapter 5

Computational determinations

Computation has been used to provide both prediction and confirmation of analytic deter-
minations and also to give a clear view of results where the mathematics is too long and
complicated or no clear mathematical methodology is yet apparent.

5.1 Algorithmic considerations

To generate matrices A =

(
a c
c a

)
representing random elements of F we take three ran-

dom numbers from the virtual memory uniform random number database (see the main thesis
introduction) and scale according to the desired domain. These random numbers become the
arguments θa and θc in [0, 2π) where a = |a| eiθa and c = |c| eiθc , and the arc length 2α of
the intersection of the isometric circles of A with S in [0, π] where cos(α) = r (the isometric
circle radius as in Figure 3.1). Generation of the full complex matrix from these three real
random numbers is accomplished via Theorem 3.1.

Our primary objective is to determine via Jørgensen’s and Klein’s Theorems some compu-
tational bounds for the probability that two-generator groups 〈f, g〉 of random elements of
f, g ∈ F are discrete, accordingly we generate pairs of suitable matrices A,B and assess
probabilities that the corresponding isometric circles are disjoint. Once we have a set of
such matrices then calculation and the application of constraints allows the assessment of
distributions for any matrix or matrix pair parameter. To obtain probabilities we simply
count occurrences that meet specified constraints.

Noting that analytical results seem to yield isometric circle intersection probabilities express-
able as simple vulgar fractions, it would be useful to be able to express computational results
in terms of fractions rather than decimal numbers. Accordingly we have designed an algo-
rithm to identify computational results with such fractions following an approach reminiscent
of that of Sylvester [68] in converting vulgar fractions of the form m

n
≤ 1 to sums of Egyptian

fractions (indexed by i) of the form
∑

1
ai

. Inspection of the results allows determination of
the probable validity or otherwise of vulgar and Egyptian fraction identification in each case.
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Figure 5.1: σ-field bit encoding for F4.

5 4 3 2 1 0
(A−1 ∩ B−1) (A−1 ∩ B) (A∩ B−1) (A ∩ B) (B ∩ B−1) (A∩A−1)

For any matrix A =

(
a b
c d

)
∈ SL(2,C), according to (2.9) the Euclidean separation

δ between the two isometric circles can be calculated from |trace(A)| = |a+ d| and the
isometric circle radius rA = 1

|c| :

d =
|a+ d| − 2

|c| = rA(|trace(A)| − 2). (5.1)

For elements of F represented by matrices we can also compute from Theorem 3.1 the arc
length separation between the isometric circles as:

δ = |η − η′|◦ − 2 rA. (5.2)

Similar calculations allow all combinations of arc length separations between the isometric
circles of two (or more) pairs of matrices A and B to be determined and incorporated into
the disjointedness assessment algorithms for the isometric circles of elements of 〈A,B〉.

5.2 F4 σ-field probabilities
For the four isometric circles of the matrices A,B,A−1, B−1, we consider the set S of all
possible pairwise intersections of an isometric circle with another. Clearly:

S = {(A∩A−1), (B ∩ B−1), (A∩ B), (A ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)}
and we can define a σ-field F4 on S whose elements include all possible combinations of
intersections of these elementary elements. We proceed to compute the disjointedness proba-
bilities for all 64 elements of the field with a sample space of say 10, 000, 000 pairs of matrices
representing transformations in F . The index into the σ-field is in accordance with the en-
coding in the 6−bit word (least significant bit last) incremented by 1 as indicated in Figure
5.1. The computed probabilities for elements of the σ-field for 1, 000, 000 matrices represent-
ing transformations in F as expressed in terms of Egyptian fractions are shown in Figures
5.2 to 5.7.

5.2.1 Detailed analysis

We analyse the F4 σ-field disjoint probabilities as presented in Figures 5.2 to 5.7. The com-
putationally determined events are tabulated as follows: Index is a decimal representation of
the 6-bit number incremented by 1 defined to index the elements of F4, Count is the number
of random events that meet specified intersection criteria for the particular experiment, Frac-
tion is the unadjusted Egyptian fraction corresponding most closely to Count

1000000
, Adjust is the
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Figure 5.2: class E1 of F4: 1000000 pairs of matrices, 1 circle pair of 6
disjoint.

Index Count Pairs Fraction Adjust Intersections
1 4999470 1 1/ 2 -1/ 18868 (A∩A−1)
2 5002400 1 1/ 2 +1/ 4167 (B ∩ B−1)
4 4997550 1 1/ 2 -1/ 4082 (A∩ B)
8 5000169 1 1/ 2 +1/ 59172 (A∩ B−1)
16 4998850 1 1/ 2 -1/ 8696 (A−1 ∩ B)
32 4999870 1 1/ 2 -1/ 76923 (A−1 ∩ B−1)

Figure 5.3: class E2 of F4: 1000000 pairs of matrices, 2 circle pairs of
6 disjoint.

Index Count Pairs Fraction Adjust Intersections
3 2502297 2 1/ 4 +1/ 4354 (A ∩A−1), (B ∩ B−1)
5 2914945 2 1/ 3 -1/ 24 (A ∩A−1), (A∩ B)
6 2917363 2 1/ 3 -1/ 24 (B ∩ B−1), (A∩ B)
9 2916726 2 1/ 3 -1/ 24 (A ∩A−1), (A∩ B−1)
10 2918071 2 1/ 3 -1/ 24 (B ∩ B−1), (A∩ B−1)
12 2915031 2 1/ 3 -1/ 24 (A ∩ B), (A ∩ B−1)
17 2915999 2 1/ 3 -1/ 24 (A ∩A−1), (A−1 ∩ B)
18 2916956 2 1/ 3 -1/ 24 (B ∩ B−1), (A−1 ∩ B)
20 2915712 2 1/ 3 -1/ 24 (A ∩ B), (A−1 ∩ B)
24 2917970 2 1/ 3 -1/ 24 (A ∩ B−1), (A−1 ∩ B)
33 2916920 2 1/ 3 -1/ 24 (A ∩A−1), (A−1 ∩ B−1)

34 2919107 2 1/ 3 -1/ 24 (B ∩ B−1), (A−1 ∩ B−1)

36 2916979 2 1/ 3 -1/ 24 (A ∩ B), (A−1 ∩ B−1)

40 2917891 2 1/ 3 -1/ 24 (A ∩ B−1), (A−1 ∩ B−1)

48 2915478 2 1/ 3 -1/ 24 (A−1 ∩ B), (A−1 ∩ B−1)

75



Figure 5.4: class E3 of F4: 1000000 pairs of matrices, 3 circle pairs of
6 disjoint.

Index Count Pairs Fraction Adjust Intersections
7 1667486 3 1/ 6 +1/ 12205 (A ∩A−1), (B ∩ B−1), (A∩ B)
11 1667972 3 1/ 6 +1/ 7661 (A ∩A−1), (B ∩ B−1), (A∩ B−1)
13 1872805 3 1/ 5 -1/ 79 (A ∩A−1), (A∩ B), (A ∩ B−1)
14 1563197 3 1/ 6 -1/ 97 (B ∩ B−1), (A∩ B), (A∩ B−1)
19 1667470 3 1/ 6 +1/ 12448 (A ∩A−1), (B ∩ B−1), (A−1 ∩ B)
21 1561401 3 1/ 6 -1/ 95 (A ∩A−1), (A∩ B), (A−1 ∩ B)
22 1874869 3 1/ 5 -1/ 80 (B ∩ B−1), (A∩ B), (A−1 ∩ B)
25 1876194 3 1/ 5 -1/ 81 (A ∩A−1), (A∩ B−1), (A−1 ∩ B)
26 1875468 3 1/ 5 -1/ 80 (B ∩ B−1), (A∩ B−1), (A−1 ∩ B)
28 1874863 3 1/ 5 -1/ 80 (A ∩ B), (A ∩ B−1), (A−1 ∩ B)
35 1668740 3 1/ 6 +1/ 4823 (A ∩A−1), (B ∩ B−1), (A−1 ∩ B−1)

37 1875005 3 1/ 5 -1/ 80 (A ∩A−1), (A∩ B), (A−1 ∩ B−1)

38 1876133 3 1/ 5 -1/ 81 (B ∩ B−1), (A∩ B), (A−1 ∩ B−1)

41 1563412 3 1/ 6 -1/ 97 (A ∩A−1), (A∩ B−1), (A−1 ∩ B−1)

42 1876479 3 1/ 5 -1/ 81 (B ∩ B−1), (A∩ B−1), (A−1 ∩ B−1)

44 1875237 3 1/ 5 -1/ 80 (A ∩ B), (A ∩ B−1), (A−1 ∩ B−1)

49 1873468 3 1/ 5 -1/ 79 (A ∩A−1), (A−1 ∩ B), (A−1 ∩ B−1)

50 1563073 3 1/ 6 -1/ 97 (B ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

52 1874603 3 1/ 5 -1/ 80 (A ∩ B), (A−1 ∩ B), (A−1 ∩ B−1)

56 1876166 3 1/ 5 -1/ 81 (A ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

76



Figure 5.5: class E4 of F4: 1000000 pairs of matrices, 4 circle pairs of
6 disjoint.

Index Count Pairs Fraction Adjust Intersections
15 1020886 4 1/ 10 +1/ 479 (A ∩A−1), (B ∩ B−1), (A∩ B), (A∩ B−1)
23 1020733 4 1/ 10 +1/ 482 (A ∩A−1), (B ∩ B−1), (A∩ B), (A−1 ∩ B)
27 1250825 4 1/ 8 +1/ 12121 (A ∩A−1), (B ∩ B−1), (A∩ B−1), (A−1 ∩ B)
29 1129524 4 1/ 9 +1/ 543 (A ∩A−1), (A ∩ B), (A ∩ B−1), (A−1 ∩ B)
30 1130264 4 1/ 9 +1/ 522 (B ∩ B−1), (A∩ B), (A ∩ B−1), (A−1 ∩ B)
39 1250968 4 1/ 8 +1/ 10331 (A ∩A−1), (B ∩ B−1), (A∩ B), (A−1 ∩ B−1)

43 1022281 4 1/ 10 +1/ 449 (A ∩A−1), (B ∩ B−1), (A∩ B−1), (A−1 ∩ B−1)

45 1129843 4 1/ 9 +1/ 534 (A ∩A−1), (A ∩ B), (A ∩ B−1), (A−1 ∩ B−1)

46 1131016 4 1/ 9 +1/ 502 (B ∩ B−1), (A∩ B), (A ∩ B−1), (A−1 ∩ B−1)

51 1021289 4 1/ 10 +1/ 470 (A ∩A−1), (B ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

53 1129217 4 1/ 9 +1/ 552 (A ∩A−1), (A ∩ B), (A−1 ∩ B), (A−1 ∩ B−1)

54 1130384 4 1/ 9 +1/ 519 (B ∩ B−1), (A∩ B), (A−1 ∩ B), (A−1 ∩ B−1)

57 1130691 4 1/ 9 +1/ 511 (A ∩A−1), (A ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

58 1130956 4 1/ 9 +1/ 504 (B ∩ B−1), (A∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

60 1416854 4 1/ 7 -1/ 853 (A ∩ B), (A∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

Figure 5.6: class E5 of F4: 1000000 pairs of matrices, 5 circle pairs of
6 disjoint.

Index Count Pairs Fraction Adjust Intersections
31 721950 5 1/ 14 +1/ 1305 (A ∩A−1), (B ∩ B−1), (A ∩ B), (A ∩ B−1), (A−1 ∩ B)
47 722634 5 1/ 14 +1/ 1198 (A ∩A−1), (B ∩ B−1), (A ∩ B), (A ∩ B−1), (A−1 ∩ B−1)

55 722257 5 1/ 14 +1/ 1255 (A ∩A−1), (B ∩ B−1), (A ∩ B), (A−1 ∩ B), (A−1 ∩ B−1)

59 722884 5 1/ 14 +1/ 1163 (A ∩A−1), (B ∩ B−1), (A ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

61 812054 5 1/ 12 -1/ 470 (A ∩A−1), (A ∩ B), (A ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

62 812755 5 1/ 12 -1/ 486 (B ∩ B−1), (A ∩ B), (A ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)

Figure 5.7: class E6 of F4: 1000000 pairs of matrices, 6 circle pairs of
6 disjoint.

Index Count Pairs Fraction Adjust Intersections
63 500000 6 1/ 20 +1/∞ (A ∩A−1), (B ∩ B−1), (A ∩ B), (A ∩ B−1), (A−1 ∩ B), (A−1 ∩ B−1)
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signed adjustment fraction that is possibly used to convert results to vulgar fractions, Inter-
sections specifies the actual disjoint event in terms of specific elementary events. To analyse
the results sensibly, we check against the computed σ-field F6 for the isometric circle inter-
sections of three matrices representing transformations in F , average the close-to-constant
adjustment fraction denominators to a multiple of the first and then take first (probability)
and second (adjustment) fractions to a common denominator to achieve a conjectured vul-
gar fractional result. The rationale for the reduction to vulgar fractions being the observed
correlation with specific analytical results, we expect the wider experimental results to bear
a close relationship to such fractions. There is of course some degree of subjectivity with the
above process especially where denominators are close but not identical, but inspection of
the tables in Figures 5.2 to 5.7 seems sufficient justification of the process. The tables also
bring out the equivalence of elements of F4 under topological intersection, this observation
suggests Definition 5.1:

Definition 5.1. The equivalence classes of a σ-field Fn are the sets of elements of the field
with identical isometric circle intersection topology.

We apply this definition to specific cases, Figure 5.8 illustrates this diagramatically and
includes conjectured probabilities for the equivalence classes of F4. It is a nice statistical fluke
that as reported in Figure 5.7 for this particular experiment, precisely 500, 000 of 1, 000, 000
pairs of matrices of all six isometric circles are disjoint.

Figure 5.8: Diagrammatic representation showing computational re-
sults for all possible intersection topologies (represented by a blue pair
for the isometric circles of A and a red pair for the isometric circles of
B) for the σ-field F4, the geometric topologies are disjoint with prob-
ability Pdisjoint as indicated. The modifier "?" denotes a conjectured
vulgar fraction close to the actual computed probability, uncertain be-
cause of greater magnitude adjustments.
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Figure 5.8 tabulates intersection probabilities for the four isometric circles of two matrices;
analytically determined values of F4 elements provide the following correlations:

(1) Intersections involving pairs of isometric circles ((A∩A−1) etc) indices 1, 2, 4, 8, 16 and
32: Pdisjoint =

1
2
.

(2) The sole independent double intersection ((A∩A−1), (B∩B−1), index 3), Pdisjoint =
1
4
.

(3) The mutual intersection probability PA,Bdisjoint
= 1

20
.
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Chapter 6

Limit sets of Möbius transformations

We begin a limited examination via iterated function systems of the statistics of the dimension
of the limit set, a near proxy at least for the Hausdorff dimension.

6.1 Random Fuchsian groups

The fixed points of a random f ∈ F represented by a matrix A =

(
a c
c a

)
are solutions

to the same quadratic equation (3.40) and one should therefore expect some correlation. We
have chosen the isometric circle intersection arc 2α = arg(c) to be uniformly distributed and
so the argument of either fixed point, say z+, is uniformly distributed. The arc length 2η
between these points according to Theorem 3.53 is distributed according to:

Y (η) =
4

π2
tanh(η) log

cosh(η) + 1

cosh(η)− 1
. (6.1)

Since P|�e(a)|≤1 = 1
2
, elliptic and hyperbolic elements occur with equal probability and we

calculate the derivative in the case of hyperbolic elements f ∈ F :

f(z) =
az + c

cz+ a
therefore

f ′(z) = a(cz+ a)−1 − (az + c)(cz+ a)−2c =
1

(cz+ a)2
.

(6.2)

Substituting from(3.40):

|f ′(z±)| =
1

|cz± + a|2 =
1∣∣∣i�m(a)±√�e(a)2 − 1 + a

∣∣∣2

=
1∣∣∣�e(a)±√�e(a)2 − 1

∣∣∣2 .
(6.3)

Hence |f ′(z+)| < 1 and z+ is an attracting fixed point, with z− being repelling. Note that
|f ′(z+)| |f ′(z−)| = 1. The number mf = |f ′(z+)| ∈ (0, 1) is called the multiplier of f .
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Lemma 6.1. The multiplier of a hyperbolic Möbius transformation is a conjugacy invariant.

Proof. By this we mean that if h is a Möbius transformation and f hyperbolic, then g =
h ◦ f ◦ h−1 is hyperbolic and has mg = mf . To see this note that g has fixed points h(z±)
and further that gn = h ◦ fn ◦ h−1, so that h(z+) is the attracting fixed point. Then:

mg = |g′(h(z+)| =
∣∣h′(f(h−1(h(z+)))

∣∣ ∣∣f ′(h−1(h(z+)))
∣∣ ∣∣(h−1)′(h(z+))

∣∣
= |h′(z+)| |f ′(z+)|

∣∣(h−1)′(h(z+))
∣∣ = mf .

The fixed points of f ∈ F are on S, so to compute the multiplier we can arrange by conjugacy
that the fixed points are ±1 and that the axis of f (the hyperbolic line joining the fixed points)
is the interval (−1, 1) ⊂ R. This becomes apparent when we consider the situation in Figure
3.4 where vectors a and c rotate away from each other to become parallel, then both isometric
circles come down to the real axis and t = |c|

|a| =
√
1− 1

|a|2 . Then f represented by the matrix

A =

(
a c
c a

)
has the form f(z) =

z+ t

1 + tz
for t ∈ [0, 1). We have:

f ′(z) =
1

1 + tz
− z+ t

(1 + tz)2
t =

1 + tz− t(z+ t)

(1 + tz)2
=

1− t2

(1 + tz)2

hence the multiplier:

mf = |f ′(1)| = 1− t

1 + t
.

We recall that the translation length of a transformation is by definition:

τ(f) = min
z∈D

ρD(z, f(z))

and ρD is the hyperbolic metric of the disc. Noting that f(0) = t the transformation f takes
the point (0, 0) to (0, t) and that in the unit disc model of hyperbolic space the distance
between these points is ρD = log

(
1+t
1−t

)
we have the following theorem:

Theorem 6.2. Let f ∈ F be a hyperbolic transformation. Then mf = e−τ , where τ = τ(f)
is the translation length of f .

Lemma 6.3. Let f ∈ F be a hyperbolic Möbius transformation. Then the multiplier of the
transformation is:

mf = 1
/ [

1 + 2(�e(a)2 − 1)
(
1 +

√
1 + 1

�e(a)2−1

)]
for f ∈ F . (6.4)

Proof. Since cosh−1(x) = log(x+
√
x2 − 1) and from (3.52) we have τ = cosh−1(1 + β

2
), then

for f ∈ F :

1 + β
2
+

√
(1 + β

2
)2 − 1 = 1 + β

2
+

√
1 + β2

4
+ β − 1 = 1 + β

2

(
1 +

√
1 + 4

β

)

= 1 + 2(�e(a)2 − 1)
(
1 +

√
1 + 1

�e(a)2−1

) (6.5)
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hence:

τ = log
(
1 + 2(�e(a)2 − 1)

(
1 +

√
1 + 1

�e(a)2−1

))
for f ∈ F (6.6)

and the result follows.

We have the p.d.f of the translation length for randomly selected hyperbolic f ∈ F from
equation 3.53, the change of variables formula now allows us to calculate the distribution of
the multiplier.

Theorem 6.4. For randomly selected hyperbolic f ∈ F the p.d.f. for the multiplier Mf is:

Mf(m) =
4

π2m

1−m

1 +m
log

(
1 +

√
m

1−√
m

)
, m ∈ [0, 1]. (6.7)

Proof. Re-writing 3.53 in exponential form, we have:

H [τ ] = − 4

π2

eτ − 1

eτ + 1
log

eτ/2 − 1

eτ/2 + 1

= − 4

π2

1− e−τ

1 + e−τ
log

1−√
e−τ

1 +
√
e−τ

=
4

π2

1−m

1 +m
log

(
1 +

√
m

1−√
m

)
(6.8)

and the result follows since m = e−τ implies log (m) = −τ so
∣∣ dτ
dm

∣∣ = 1
m

.
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pdf of multiplier mf of a random hyperbolic element of

Figure 6.1: The p.d.f. for the multiplier mf of a random hyperbolic
element of F .

We calculate that the expected value of the multiplier is 1− 8
π2 ≈ 0.1894.

Lemma 6.5. We can relate the multiplier m and translation length τ to the geometry of the
isometric circle by noting that 1

t
= 1√

1−1/|a|2
=

√
1 + r2 which is the radius R of the circle

on which the isometric circles are centred. Then:
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(1) 1
t
= R =

√
r2 + 1.

(2) m = R−1
R+1

=
√
r2+1−1√
r2+1+1

= (
√
r2+1−1)2

r2
.

(3)
√
m =

√
r2+1−1

r
, 1√

m
= r√

r2+1−1
.

(4) τ = log R+1
R−1

= log
(√

r2+1+1√
r2+1−1

)
.

(5) 1−m
1+m

= 1
R
= 1√

r2+1
= t.

(6) 1+
√
m

1−√
m

= r +R = r +
√
r2 + 1.

(7) M(m) = 4(R+1)
π2R(R−1)

log(R + r).

Corollary 6.6. The multiplier of r ∈ F represented by the matrix A =

(
a c
c a

)
is:

mf =
|a| − |c|
|a|+ |c|

and again clearly mf < 1 for isometric circle radii greater than zero and the fixed point z+
of f is attracting.

6.2 Iterated function systems
Hutchinson [32] showed that every IFS has a unique nonempty compact (closed and bounded)
invariant set Λ. In our setting we will consider the group Γ = 〈f, g〉 generated by two random
hyperbolic elements f and g and the IFS generated by {f, g, f−1, g−1} on a subset Ω ⊂ S.
For the Fuchsian group Γ this invariant set Λ is called the limit set, denoted Λ(Γ) and a little
theory quickly reveals that the limit set is the closure of the fixed point sets of the hyperbolic
elements of Γ, unless Γ has an abelian subgroup of finite index. This latter case occurs with
probability 0 if f and g are randomly chosen.

As we have noted, a key invariant of a Fuchsian group is the Hausdorff dimension of its limit
set. If Γ is generated by randomly chosen hyperbolic elements of F and we wish to discuss
the statistics of the Hausdorff dimension, we have a number of issues to consider, some of
them quite intractable. These are:

(1) Γ is a group acting on S and so cannot be uniformly contracting.

(2) We want to consider only those Γ which are discrete (otherwise Λ(Γ) = S).

(3) As far as we are aware the Hausdorff dimension of the limit set of any particular
Fuchsian group is unknown, unless that dimension happens to be 1. Thus we must find
a computable proxy for the Hausdorff dimension.

With respect to the first two questions we will restrict our attention to the case where f and
g have disjoint isometric circles which we now discuss.
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6.2.1 Isometric circles

The isometric circles of a hyperbolic Möbius transformation in F represented by the ma-

trix A =

(
a c
c a

)
with |a|2 − |c|2 = 1 are:

C± = {z : |cz± a| = 1} = {z : |f ′(z)| = 1}.

The isometric discs are the finite regions bounded by the isometric circles. We recall lemma
3.7 which supports our claim that the p.d.f. on F is natural. Let us denote the arcs formed
by the intersection of the isometric discs with the circle by α±(f). Notice that:

f(S \ α−) = α+, and f−1(S \ α+) = α−.

Thus if f and g are hyperbolic Möbius transformations then α+(f)∩α−(f) = ∅ and if further
α±(f)∩α±(g) = ∅, then an elementary argument using the Klein combination theorem shows
that 〈f, g〉 is discrete. Thus:

Ω = �h∈{f,g}α±(h).

Then Ω consists of four intervals on S and each element of the function system {f, g, f−1, g−1}
will map three of these intervals inside another as a contraction:

f : Ω \ α−(f) ↪→ α+(f), f−1 : Ω \ α+(f) ↪→ α−(f),

g : Ω \ α−(g) ↪→ α+(g), g−1 : Ω \ α+(g) ↪→ α−(g).
(6.9)

Thus the set Ω and the functions {f, g, f−1, g−1} are "similar" to an iterated function system.

6.2.2 Similarity dimension

If f\Ω and g\Ω were similarities we could have defined the similarity dimension of the invari-
ant limit set following Moran [52] who shows that the similarity dimension would equal the
Hausdorff dimension given the "open set condition". Our restriction to the case of Fuchsian
groups with disjoint isometric circles will give us this open set condition. We would therefore
like to explore the notion of similarity dimension.

For an IFS with contraction ratios λi for the ith element of the generating set, the similarity
dimension is defined to be the unique number d such that

λd
1 + λd

2 + · · ·λd
N = 1 (6.10)

The number 1 on the right-hand side reflects the fact the dimension calculation is in Eu-
clidean space.

A Fuchsian group Γ acts almost transitively on its limit set Λ(Γ) in the following sense. If
f ∈ Γ, then the set of fixed points of elements of Γ with the same multiplier mf as that
of f is dense in Λ(Γ). To see this note that if z+ is the attracting fixed point of f , then
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{h(z+) : h ∈ Γ} is closed and invariant under Γ. Since z+ ∈ Λ(Γ), elementary considerations
show that {h(z+) : h ∈ Γ} = Λ(Γ) as the limit set is the smallest closed invariant set. Then
note that h(z+) is the fixed point of h ◦ f ◦ h−1 and mh◦f◦h−1 = mf . Thus the local scaling
properties of the limit set are influenced by the elements with the largest multiplier. Next,
we know that if the isometric discs are disjoint but S is contained in Ω then Λ(Γ) = S and
the dimension is therefore equal to 1. This suggests we adjust the right-hand side of (6.10)
to accommodate this fact, together with the fact that the derivative of no element of the
generating set is constant on any interval.

6.3 A calibration group
At this point we focus on an example. Choose isometric circle radius r > 0 and generators
fr, gr with the respective matrix representations:

A =

⎛
⎝

√
1 + 1

r2
1
r

1
r

√
1 + 1

r2

⎞
⎠ , B =

⎛
⎝

√
1 + 1

r2
i
r

−i
r

√
1 + 1

r2

⎞
⎠ (6.11)

then:

α±(fr) = D(±
√
1 + r2, r), α±(gr) = D(±i

√
1 + r2, r).

fix(f) = ±1, fix(g) = ±i.

We then have disjoint isometric circles if r ≤ 1 and α±(f) ∪ α±(g) = S if and only if r = 1.
We set Γr = 〈fr, gr〉 and Λr = Λ(Γr). For the group Γr the isometric circles vary as illustrated
in Figure 6.2.

We observe that the Hausdorff dimension Hdim(Λr) = 1 if r = 1 and Hdim(Λr) → 0 as r → 0.
We calculate the multipliers to be

mfr = mgr =
(
√
r2 + 1− 1)2

r2
.

This gives:

1

r
=

1

2

[ 1√
m

−√
m

]
= sinh(τ/2) (6.12)

Thus the condition r = 1 implies sinh(τf/2) = sinh(τg/2) = 1. In the calculation of dimension
we have the two multipliers having the same value in (6.10) which suggests that we look at
the dimension of Γr as having the form λd = γ for some constant γ. We replace the multiplier
λ by γ/r2, as an average derivative. We find then that:

[ γ
r2

]d
= γ.

We have d = 1 when r = 1. Experiment reveals that γ = 2#generators to capture the rate of
growth of the group. We then define the number d so that :
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Figure 6.2: Calibration group Γr.

[
4 sinh(τf/2) sinh(τg/2)

]d
= 4. (6.13)

Equivalently:

[ 4

r2

]d
= 4, or

[
16
√
mfmg

(1−mf )(1−mg)

]d

= 4.

We are going to call the number d defined in (6.13) a "dimension" but as it stands this dimen-
sion depends on the choice of generators f and g and will be different for another choice, say
f and fg. This dimension is a function of a single parameter for the group Γr, for instance
the translation length of the transformation or the isometric circle radius r. However, the
generating pairs are all Nielson equivalent as our group is isomorphic to the free group on two
generators. Our set up implies that the generators we have chosen have largest multipliers.
This dimension is a conjugacy invariant, it depends on the two generators of smallest trans-
lation length, however we will show that this is a reasonable proxy for Hausdorff dimension.

For the group Γr we can calculate the distribution of the dimension d. In terms of the matrix
A above we have A1,1 =

√
1 + 1

r2
and for a random group we have |A1,1| = 1

sin(α)
with α

uniformly distributed in [0, π/2]. Although r = tan(α) (since
√
1 + 1

r2
= 1

sin(α)
), we require

r ≤ 1 so α ∈u [0, π/4] and we have:
[ 4

tan2(α)

]d
= 4, d =

log 4

log 4/ tan2(α)
=

log 2

log(2 cot(α))

The p.d.f. for tan(α) is 1
π(1+y2)

. We use the change of variables formula via the function
t �→ log 2

log 2/t
whose inverse is s �→ 21−

1
s . Thus the p.d.f. of the "dimension" is:
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D(d) =
2

1
d
+3 log(2)

π (41/d + 4) d2
(6.14)

which is plotted in Figure 6.3.
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Analytic p.d.f of the dimension of the calibration group

Figure 6.3: Analytically determined p.d.f of dimension for Γr from
(6.14).

6.4 Covering set computational determinations
Our motivation is to be able to assess the validity of the dimensional analyses of the previ-
ous section by more traditional computational methods. Mainieri [40] establishes that the
Hausdorff and box counting dimensions agree for fractal sets generated by rapidly convergent
functions. Kleinian and Fuchsian groups are by definition discrete and totally disconnected
and their limit sets are necessarily fractal and bounded by the disjoint isometric circles of
the generators. Accordingly we assess Hausdorff dimension via a box counting process for
two groups, the calibration group Γr and the single generator subgroup F1 ⊂ F .

6.4.1 Algorithms

The constraints for computation are bit length of numbers, accessable storage capacity and
processing speed, and these three factors have influenced the original algorithm design cre-
ated by the author for this project. The two-pass algorithm using a modified "breadth first"
technique (as defined in [53]) allows generation of the IFS data points sufficient to enable
dimensional calculations for two-generator groups in SL(2,C) up to 16 generations with res-
olution up to 10−15. Generation 1 consists of the four fixed points in Ĉ under action of the
matrices induced by the group generators f and g, generation 2 is the set of points deter-
mined by {(g, g−1◦fix+(f), f ix−(f)), (f, f−1◦fix+(g), f ix−(g))} of order 8 while subsequent
generations j are determined by operations in each case on the three reduced sentences based
on points in generation j − 1.
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6.4.2 Some results

The requirement for rapid convergence being verified computationally, we have calculated
estimates for the Hausdorff dimension of the limit sets of the groups Γr and F1 for 0 < r ≤ 1
using the algorithm discussed above. The results are plotted in Figure 6.4 against isometric
circle radius r for a sequence of choices of r together with a plot of our "dimension" defined
using (6.13). Data points for the simpler calibration group Γr required less computation time
to build than those for F1; despite this the (Γr) data point (0.95, 0.895694) (green) took three
weeks to build while the F1 data point (0.015, 0.14332) (red) took only a few seconds. For
very low values of r erratic results occur as the compiler runs into accuracy problems.

0.0 0.2 0.4 0.6 0.8 1.0
r0.0

0.2

0.4

0.6

0.8

1.0
Dimension

Determination of dimension vs isometric circle radius
analytic (blue) and computed (red, green)

Figure 6.4: Dimension of the limit sets of Γr (red points) and of F1

(green points) together with a curve (blue) for d from (6.13).

Inspection of Figure 6.4 shows that for both the calibration group Γr and the Fuchsian
group F1 we seem to have reasonable alignment of computation results with the analytical
"dimension" d = log(4)

log(4/r2)
derived from (6.13).
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