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ABSTRACT 

The long-term behaviour of andesitic stratovolcanoes is characterised by a repetition of 

edifice growth and collapse phases. This cyclic pattern may represent a natural frequency at 

varying timescales in the growth dynamics of stratovolcanoes, but is often difficult to identify 

because of long cycle-timescales, coupled with incomplete stratigraphic records.  

The volcaniclastic ring-plain succession surrounding the 2 518 m Mt. Taranaki, New 

Zealand, comprises a wide variety of distinctive volcanic mass-flow lithofacies with sedimentary 

and lithology characteristics that can be related to recurring volcanic cycles over >190 ka. Debris-

flow and monolithologic hyperconcentrated-flow deposits record edifice growth phases while 

polylithologic debris-avalanche and associated cohesive debris-flow units were emplaced by 

collapse. Major edifice failures at Mt. Taranaki occurred on-average every 10 ka, with five events 

recognised over the last 30 ka, a time interval for which stratigraphic records are more complete. 

The unstable nature of Mt. Taranaki mainly results from its weak internal composite structure 

including abundant saturated pyroclastic deposits and breccia layers, along with its growth on a 

weakly indurated and tectonically fractured basement of Tertiary mudstones and sandstones. As 

the edifice repeatedly grew beyond a critical stable height or profile, large-scale collapses were 

triggered by intrusions preceding magmatic activity, major eruptions, or significant regional 

tectonic fault movements.  

Clasts within debris-avalanche deposits were used as a series of windows into the 

composition of previous successive proto-Mt Taranaki edifices in order to examine magmatic 

controls on their failure. The diversity of lithologies and their geochemical characteristics are 

similar throughout the history of the volcano, with the oldest sample suites displaying a slightly 

broader range of compositions including more primitive rock types. The evolution to a narrower 

range and higher-silica compositions was accompanied by an increase in K2O. This shows that 

later melts progressively interacted with underplated amphibolitic material at the base of the 

crust. These gradual changes imply a long-term stability of the magmatic system. The 

preservation of similar internal conditions during the volcano’s evolution, hence suggests that 

external processes were the main driving force behind its cyclic growth and collapse behaviour 

and resulting sedimentation pattern. 
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to a large rip-up clast). At Waingongoro 4A, the deposit thickens in a small channel and consists 
of a coarse bottom unit with large cobble- to boulder-sized clasts and abundant brecciated 
megaclasts and a thinner upper part characterised by smaller clasts and small rip-up clasts (C). 

Figure 2.40.  61 

 The coastal extent of the Waihi debris-avalanche deposit as well as its type section (TS) and 
reference sections (RS) are shown in A. Blue circles represent outcrops where the deposit is 
exposed; white circles mark its absence. The extrapolated distribution of the deposit to the east 
and its interpreted dispersal axis was based on the dispersal of the Ngaere Formation (B). 

Figure 2.41.  62 

 Stratigraphy of the type section for the Waihi debris-avalanche deposit (2617078/6176430). The 
deposit is exposed near the top of the cliff. The sequence below is made of bedded sands with 
two thick intercalated peat/soil layers. Marine sands and a prominent shellbed form the 
coverbeds of the Rapanui marine bench and separate the volcaniclastic succession from the 
underlying Tertiary mudstone sequence. 

Figure 2.42.  64 

 At its type section Waihi 5 (2620264/6175098), the Waingongoro debris-avalanche deposit is c. 
5 m thick and characterised by abundant small tip-up clasts of the underlying bedded sands. It is 
overlain by the Waihi debris-avalanche deposit (A) from which it is separated by a thin paleosol 
(B).  

Figure 2.43.  64 

 In some locations, the Waignongoro debris-avalanche deposit shows a distinct basal layer of 
subrounded to subangular cobble- to boulder-sized clasts and has a similar appearance as the 
overlying Waihi. 
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Figure 2.44.  65 

 A shows the coastal extent of the Waingongoro debris-avalanche deposit as well as its type 
section (TS) and reference section (RS). Green circles represent outcrops where the deposit is 
exposed; white circles mark its absence. The extrapolated distribution of the deposit to the east 
and its interpreted dispersal axis are similar to the Waihi debris-avalanche de[posit and were 
based on the dispersal of the Ngaere Formation (B). 

Figure 2.45.  66 

 Stratigraphy of the type section for the Waingongoro debris-avalanche deposit 
(2620264/6175098). The deposit is overlain by the Waihi debris-avalanche unit and several 
hyperconcentrated –flow deposits. The bottom of the cliff section is made up of bedded sands 
and Tertiary mudstones. 

Figure 2.46.  67 

 Schematic overview of the stratigraphy at the Waingongoro River mouth and Ohawe Beach. 
The complex valley sequence is the result of repeated incision and subsequent filling of these 
river channels with fluvial sediments and debris-avalanche deposits as well as intercalated 
hyperconcentrated-flow units. The profile is oriented west to east and c. 1.2 km in length. The 
mudstone sequence underlying the volcaniclastic succession is cut by the c. 127 ka Rapanui 
Marine Terrace in the eastern part of this cross-section and by the c. 105 ka Inaha Marine 
Terrace in the western part, resulting in a slight difference in thickness of the Tertiary basement. 

Figure 2.47.  68 

 Overview of the broad Waingongoro River valley at the coast (A), person for scale. Tertiary 
mudstone sequences form the side walls of an ancient, wider valley in the same location. 
Tertiary mudstones are c. 7 m thick at the western side (B) and c. 10 m thick at the eastern side 
C). The confinement of the Waihi debris avalanche to this paleo-channel and its abrupt contact 
to the Tertiary basement confirms the long (>70 ka) existence of this valley (B). 

Figure 2.48.  70 

 A c. 4.5 m-thick mound of the otherwise buried Oeo debris-avalanche deposit crops out at the 
bottom of the cliff at its type section Oeo 7 (A). At this location (2593403/6184081) the deposit 
is characterised by a brecciated, almost clast-supported fabric (B). Hammer for scale, c. 30 cm 
long. 

Figure 2.49.  71 

 A second c. 6 m- high mound of the Oeo-debris avalanche deposit crops out at Oeo 4B (A-B). 
It is overlain by the distinct Puketapu buried forest, which is characterised by a soil with a 
preserved tree stump in growth position (C).The Oeo debris-avalanche deposit consists of 
several monolithologic megaclasts with different sedimentological characteristics (D), arrow 
points to person for scale. The top of the mound is brecciated and clast-supported, while other 
domains (marked by white dotted line) consist of fine-grained matrix and angular-subangular 
clasts of various sizes (E). 
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Figure 2.50.  72 

 The coastal extent of the Oeo debris-avalanche deposit as well as its type section (TS) and 
reference section (RS) are shown in A. Green circles represent the three outcrops where the 
deposit is exposed; white circles mark its absence. The distribution of the deposit was 
extrapolated using the inundation area of the Pungarehu Formation since it is of similar 
thickness and shows similar deposit characteristics (B). Locations Oeo 4B and 7 most likely 
mark the course of its dispersal axis. 

Figure 2.51.  73 

 Stratigraphy of the type section for the Oeo debris-avalanche deposit (2593403/6184081). The 
deposit forms a mound that crops out at the bottom of the cliff and is overlain by the Puketapu 
buried forest. The upper part of the section consists of the Otakeho and Rama debris-avalanche 
deposits that are interbedded with hyperconcentrated-floow units and paleosols. 

Figure 2.52.  75 

 The Mangati debris-avalanche deposit in north Taranaki is characterised by a basal zone of 
coarse cobble-to boulder-sized clasts and large protruding tree logs. It occurs above iron-stained 
cross-bedded sands and is overlain by a thick sequence of peat and andesitic tephra beds. 

Figure 2.53.  76 

 At Okaweu 10, the Opua debris-avalanche deposit is c. 4 m thick and characterised by cobble-to 
boulder-sized clasts in a clay-rich matrix.  

Figure 2.54.  77 

 The mapped extent of the Opua debris-avalanche deposit in the study area is shown in A. 
Brown circles represent outcrops where the deposit is exposed; white circles mark its absence. 
The extrapolated distribution of the deposit based on the observations of this study in 
comparison to the mapped extent (from Neall & Alloway 2004) and dispersal axis are displayed 
in B. 

Figure 2.55.  78 

 In the second, marginal lobe of distribution, the Pungarehu debris-avalanche deposit is 
characterised by an orange-reddish matrix and few, predominantly pebble-sized clasts. It is c. 2 
m thick at Mangahume 4. 

Figure 2.56.  79 

 Map of the observed coastal extent of the Pungarehu debris-avalanche deposit in the study area 
(A). Orange circles represent outcrops where the deposit is exposed; white circles mark its 
absence. The extrapolated distribution of the deposit based on the mapping results of this study 
in comparison to the mapped extent (from Neall & Alloway 2004) and dispersal axis are shown 
in B. 
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Figure 2.57.  80 

 At Kaupokonui 6, the Ngaere debris-avalanche deposit is c. 3.5 m thick and characterised by 
coarse clasts pebble- to boulder-sized clasts. It is overlain by the Motumate debris-avalanche 
deposit and separated from the underlying Rama by a thick hyperconcentrated-flow deposit. 

Figure 2.58.  81 

 Within the Waingongoro River valley, the Ngaere debris-avalanche deposit fills a small fluvial 
channel that was cut into the underlying Waihi debris-avalanche deposit and older fluvial 
sediments (A). The arrow marks the location of the cut and fill inset, which is shown as close-up 
in B. 

Figure 2.59.  82 

 Map of the observed coastal extent of the Ngaere debris-avalanche deposit in the study area (A). 
Orange circles represent outcrops where the deposit is exposed; white circles mark its absence. 
The extrapolated distribution of the deposit inland complements the mapped extent by Neall & 
Alloway (2004) as shown in B. 

Figure 2.60.  85 

 Cross-section of the medial Mt. Taranaki ring-plain succession, exposed in coastal cliff sections 
of the western to southern Taranaki peninsula. Displayed are the dominant marker horizons, 
including debris-avalanche and cohesive debris-flow deposits, prominent peat and soil layers 
that could be laterally correlated as well as Hauriri dune sands and the underlying Tertiary 
mudstone. The extent of the Opunake and Lizzie Bell river systems is also marked. Individual 
lahar deposits and channels could not be displayed due to their limited lateral extent. Pu = 
unnamebd debris-flow deposit in Punehu cathcment, Kau = unnamebd debris-flow deposit in 
Kaupokonui cathcment, Pbf = Puketapu buried forest, ML = Manaia lignite. 

Figure 2.61.  91 

 New stratigraphic concept for the Mt. Taranaki volcanic succession, which combines a 
chronostratigraphic framework and lithostratigraphically defined units. 

Figure 2.62.  93 

 Composite stratigraphic overview of the Mt. Taranaki volcanic succession. The 
chronostratigraphic units are defined based on the volcano’s cyclic behaviour and represent 
phases of growth and collapse. Within this chronostratigraphic framework, the identified 
lithostratigraphic units from this and previous studies (Neall 1979; Neall et al. 1986; Alloway 
1989; Alloway et al. 1995; Neall 2003; Alloway et al. 2005; Platz 2007) are distinguished based on 
their origin and emplacement mechanism. Volcanic units comprise edifice-building lava flows, 
pyroclastic flow deposits and tephras as well as satellite lava domes. The volcaniclastic units 
comprise lahar (hyperconcentrated-flow and debris-flow) and debris-avalanche deposits, which 
are shown based on their dispersal within the northeastern, southeastern and southwestern 
sector of the ring plain. Nonvolcanic sediments include flood deposits, fluvial sediments and 
aeolian sand dunes as well as peat layers. St = stage, SS = sub-stage, EP = eruptive period, EE 
= eruption episode, PF = pyroclastic flow.  
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Figure 3.1.  99 

 Schematic illustration of sediment/water ratio, corresponding flow type, transport and 
depositional mechanisms (from Smith & Lowe 1991). 

Figure 3.2.  103 

 Rheologic classification of sediment-water flows from Pierson & Costa (1987). 

Figure 3.3.  104 

 Classification of solid-water mixtures from Coussot & Meunier (1996). 

Figure 3.4.  120 

 Characteristic lithofacies types and facies variations in Taranaki debris-avalanche deposits from 
source to medial/distal areas are illustrated in A (adapted from Palmer & Neall 1991). 
Photographs show the corresponding geomorphologic characteristics of axial-A (A), axial-B (B) 
and marginal facies (C) of unconfined debris-avalanche deposits at Mt. Taranaki. 

Figure 3.5.  121 

 Fabric of axial-A (A -B), axial-B (C-D) and marginal (E-F) facies of Mt. Taranaki debris-
avalanche deposits. The transition from axial-A to marginal facies is characterised by a decrease 
in overall clast size and thickness and an increase in matrix and megaclasts and large lava blocks 
are gradually disaggregated. Secondary rip-up clasts become more common. 

Figure 3.6.  123 

 Facies types of lahar and lahar-related streamflow deposits (from Scott 1988a). 

Figure 3.7.  128 

 Sedimentary features of Mt. Taranaki and Pouakai debris-avalanche deposits. A: Te Namu 
debris-avalanche deposit thickening in channel at Te Namu Pa. B-C: Basal shearing and 
deformation of the Maitahi debris-avalanche deposit at Oakura Beach. Camera cases for scale 
each c. 10 cm long. D: Basal bouldery layer of the Mangati debris-avalanche deposit near Bell 
Block.  E: Close up of D showing the pumice-rich top of the Mangati debris-avalanche deposit. 
F: The Otakeho debris-avalanche deposit has a greenish base and brownish top half near 
Kaupokonui Stream. 

Figure 3.8.  129 

 Characteristic components of Mt. Taranaki and Pouakai debris-avalanche deposits.A. Matrix-
rich fabric of the Opua Formation with coarse clasts as example of the granular type debris-
avalanche deposit. Hammer for scale, handle c. 30 cm long. B. Fractured clast with jigsaw cracks 
surrounded by clustered clasts of the same lithology within the Maithai Formation. Camera lens 
cap for scale c. 5 cm across. C. Close-up of a fractured block with jigsaw cracks within the 
Pungarehu Formation. Lens cap for scale. D. Large brecciated megaclast observed in the Opua 
Formation close to its main axis of dispersal  E. Small “brecciated clast” within the Maitahi 
Formation. F. Stratified megaclast in the Maitahi Formation, which preserved the original 
stratigraphy of the edifice. Circled hammer for scale. 
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Figure 3.9.  131 

 Photographs showing examples of rip-up clasts found within Mt. Taranaki and Pouakai debris-
avalanche deposits. The most common types consist of soil fragments or peat with intercalated 
tephra beds (A; Waihi Formation), debris-flow deposits (B;Te Namu Formation), 
hyperconcentrated flow deposits (C; Te Namu Formation) and less common fragments of  
underlying sandstone (D; Rama Formation). Ripped up and deformed pieces of Tertiary 
mudstone are limited to the older debris-avalanche deposits (E; Maitahi Formation). Pencil in A 
is c. 15 cm long; sledge hammer handle in E is c. 0.8 m long. 

Figure 3.10.   133 

 Cohesive-type debris-avalanche deposits are characterised by a matrix-rich fabric with only few 
and relatively small clasts (A). The Otakeho Formation also contains abundant pieces of ripped-
up wood up to log-size (B). Megaclasts are rare, considerably rounded and small in size, like this 
example from the Otakeho debris-avalanche deposit (C). Rip-up clasts are typically small and 
rounded and are often fragments of peat beds with interbedded tephras (D). 

Figure 3.11.  133 

 Channelised debris-flow deposits are characterised by a clast-supported fabric and large boulders 
(A). Towards the channel margins they grade into thinner and finer-grained overbank deposits, 
marked by the white arrow (B). 

Figure 3.12.  136 

 Photographs of the different types of hyperconcentrated-flow deposits observed in Taranaki. 
Hammer c. 30 cm long; pencil in B c. 15 cm long. A-B. Coarse- and fine-grained pumice-
/scoria-rich hyperconcentrated-flow deposits were generated during or shortly after 
Plinian/subplinian eruptions. C. Hyperconcentrated-flow deposits that contain dense andesite 
clasts represent the runout of block-and-ash-flow reworking lahars. D. Juvenile breadcrust 
bombs in monolithologic hyperconcentrated-flow deposits indicate syneruptive origin or 
generation shortly after eruptive activity. E. Polylithologic hyperconcentrated-low deposits do 
not seem to be directly related to eruptive periods.  

Figure 3.13.  137 

 Sediment-rich hyperconcentrated flows at Mt. Taranaki emplaced coarse and reverse to 
normally graded, (A) or massive and ungraded units, the latter showing transitions to debris-
flow deposits (B). More dilute flows produced bedded, fine-grained hyperconcentrated-low 
deposits (C). Pumice trains are common in finer-grained, faintly bedded, pumiceous 
hyperconcentrated-flow deposits (D). Pebble-sized clasts transported as bedload, cluster in front 
of larger clasts, which represented a barrier during flow (E). Dish and pillar structures (F) and 
load-induced flame structures (G-H) are common in Mt. Taranaki hyperconcentrated-flow 
deposits and are produced by post-depositional deformation and dewatering processes. 
Hammer c. 30 cm long; shovel handle in C c. 1 m long; lens cap in G c. 5 cm across.  
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Figure 3.14.  138 

 Flows transitional between hyperconcentrated flow and normal streamflow produce deposits 
with laminar bedding (A) or lenticular, cross-bedded units that can often steep channels. 

Figure 3.15.  139 

 Fluvial deposits are common in the Taranaki ring-plain succession and typically consist of cross-
bedded lenses of sand and beds of rounded pebbles (A-B). Aggradational river sequences are 
more poorly sorted and coarser, consisting of pebble- to boulder-sized rounded to subrounded 
volcanic clasts with intercalated cross-bedded lenses of small pebbles and sand (C-D). Pencil for 
scale in D is c. 15 cm long. 

Figure 3.16.  141 

 Paleo-sand dunes within the ring-plain succession consist of alternating thin beds of dark grey, 
very well-sorted fine sands and thicker beds of coarser, light yellow to brownish, well-sorted 
sands (A). They form sequences of >12 m thickness with individual sets of dune sands typically 
being tens of cm to c. 1.5 m thick and showing planar or high-angle cross-stratification (B).  

Figure 3.17.  144 

 Sequence of stacked debris-avalanche (Rama and Otakeho) and debris-flow (DFD, unnamed) 
units at Kaupokonui 1 with little fluvial accumulation (Flu) between events. 

Figure 3.18.  144 

 Cliff section at Middleton Bay 3, which contains the Opua Formation near the top and the Ihaia 
debris-flow deposit at the bottom of the cliff. Channels were cut into the Pungarehu (Pu) and 
Te Namu (TN) debris-avalanche deposits and subsequently filled by debris-flow, 
hyperconcentrated-flow and fluvial deposits. 

Figure 3.19.  146 

 Deposit sequence of a central channel area filled by coarse debris flow and finer-grained 
hyperconcentrated flow deposits towards the top. The coarser channel-fill grades into finer-
grained overbank deposits near the channel margins. 

Figure 3.20.  146 

 Cliff section dominated by stacks of coarse- and fine-grained hyperconcentrated flow deposit. 
Persons for scale. 

Figure 3.21.  147 

 Fluvial deposit sequence characterised by aggradational, coarse sediments in the bottom half 
that are separated from overlying cross-bedded fluvial gravel and sands by several thin 
hyperconcentrated-flow deposits (HF). The cliff section is capped by the Opua debris-avalanche 
deposit. 
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Figure 3.22.  147 

 Deposit sequence dominated by several sets of cross- and planar bedded grey dune sands. Here, 
no paleosols formed within the sequence but some layers are characterised by weathered iron-
stained tops. 

Figure 3.23.  148 

 Stratigraphic columns of the different types of lithofacies associations occurring in the Taranaki 
ring-plain succession: debris-avalanche dominated sequence (A), channel system capped by 
hyperconcentrated-flow deposits (B), series of sheet-like hyperconcentrated-flow deposits with 
interbedded fluvial sediments (C) and sequence of dune sands with interbedded peat layers or 
sandy paleosols (D). Lithofacies elements B-D are typically found between debris-avalanche 
deposits, indicating different types of deposition between collapse events (as indicated by the 
dotted lines). 

Figure 3.24.  152 

 Correlation of debris-avalanche (DA) events with prevailing climate in Taranaki. Climate 
conditions from Newnham & Alloway (2004) and planctonic δ18O isotope record at DSDP site 
594 from Nelson et al. (1993). 

Figure 3.25.  155 

 Warm climates are characterised by reddish-brown organic-rich paleosols with strongly 
developed soil structures (A). In contrast, yellowish loess-rich tephric paleosols reflect cold 
climates (B); the 22.5 ka Kawakawa Tephra is marked by a white arrow. Thick laminated peat 
deposits are common in the ring-plain succession and often preserve interbedded tephra beds 
(C). The Hihiwera Peat is the most prominent peat accumulation of the south-western ring plain 
and at several locations it is interbedded with organic-rich and tephric soils (D). Hammer for 
scale is c. 30 cm long. 

Figure 3.26.  156 

 Map of the Taranaki peninsula showing distinct physiographic units: Taranaki ring plain, 
Pouakai ring plain, Old Surface, remnants of Kaitake and Pouakai Volcanoes, Mt. Taranaki 
edifice above 1100 m, marine terraces, and Taranaki hill country/Tertiary marine sediments (A). 
Swamp areas are shown in white. A digital elevation model (DEM) of the present-day 
geomorphology with these physiographic units is presented in B. 

Figure 3.27.  160 

 A large channel with wavy basal and erosive lateral contacts is shown in photograph A. It is 
filled by a series of coarse channelised debris-flow deposits (Ch), which are overlain by several 
hyperconcentrated-flow units (HFD). A close-up of the channel shows the rectangular lateral 
contact (marked by black arrow) to the Otakeho debris-avalanche deposit (B). Vertical erosion 
stopped, when the channel encountered slightly cemented, iron-stained sands, resulting in a 
relatively straight basal contact (pointed out by white arrows). 
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Figure 3.28.  161 

 Abrupt facies changes from coarse debris-flow deposits (DFD) filling a steep-sided channel to 
finer-grained overbank facies (OF) are shown in A. These facies changes are more gradational in 
wide, gently sloping channels observed within the larger river systems (B). 

Figure 3.29.  162 

 Cliff section showing a series of subsequent channels that were established in adjacent locations 
after previous ones had been filled as pointed out by arrows (A). Other small channels were cut 
in the same location as previous ones (B) and were subsequently filled with coarse 
hyperconcentrated-flow deposits, separated by fluvial sediments (Flu). 

Figure 3.30.  164 

 Location map of the Opunake (Op) and Lizzie Bell (LB) river systems and identified fault lines 
in their vicinity (from Rattenbury et al. 2007) as well as the course of the current Waingongoro 
River channel (Wai). 

Figure 4.1.  187 

 TAS discrimination diagram (after Le Maitre et al. 1989) of analysed debris-avalanche clasts 
showing their range in composition from basalt through to andesite. 

Figure 4.2.  188 

 Variations in SiO2 and lithological proportions for Mt. Taranaki. The oldest debris-avalanche 
sample suites show the widest range in SiO2 content (A). They also contain more primitive, 
basaltic rocks, which are rare in the younger deposits (B). By contrast, the latter comprise a. 
higher proportion of andesite. The total number of analysed samples for each suite is given in 
Table 4.1. 

Figure 4.3.  189 

 K2O vs. SiO2 variation diagrams for Mt. Taranaki (filled diamond) and Pouakai (open circle) 
debris-avalanche clasts. According to the classification of Gill (1981) the volcanics range from 
medium-K, low-Si to high-K, high-Si rocks, with Pouakai clasts showing predominantly lower-K 
contents than Mt. Taranaki. 

Figure 4.4.  190 

 Major element variation as a function of SiO2 content for Mt. Taranaki (filled diamond) and 
Pouakai (open circle) debris-avalanche samples. 

Figure 4.5.   192-193 

 Trace element variation versus SiO2abundance for Mt. Taranaki (filled diamond) and Pouakai 
(open circle) debris-avalanche samples. 

Figure 4.6.  197 

 Chondrite-normalised rare earth element diagrams (normalising values from Sun & 
McDonough, 1989). A: Mt. Taranaki sample suites show enrichment of LREE over HREE, a 
feature characteristic of arc magmas. B: In comparison, Pouakai samples have lower REE 
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contents than Mt. Taranaki rocks (shaded in grey). Three samples are distinct with similar 
abundances of La-Pr but markedly lower concentrations of Nd, Sm and HREE. 

Figure 4.7.  199 

 Composite normalised extended element diagram of selected race and rare earth elements 
normalised to N-MORB for Mt. Taranaki sample suites (normalising values from Sun & 
McDonough 1989). A: Mt. Taranaki rocks show a typical arc signature, characterised by 
enrichment of LILE relative to normal MORB, strong depletion in Nb relative to K, Th, U and 
Pb and enrichment of Pb and Sr over Ce.  B: Andesitic and most basaltic samples of the Mt. 
Taranaki suites show parallel trends of trace and rare earth element with the latter generally 
having lower concentrations of incompatible trace elements. The normalised trace element 
distributions of some basalt clasts are distinct from the overall observed pattern. C: One basaltic 
sample of the Mangati suite (AZ06-73) shows a significantly more subdued arc signature than 
the average Mt. Taranaki rocks (shaded in grey). Two basaltic rocks of the Okawa series (AZ04-
06 and -07) and one clast of the Motunui suite (AZ04-27) show a weak but yet more distinct 
subduction-related trace and rare earth element pattern. 

Figure 4.8.  200 

 Composite normalised extended element diagram of selected race and rare earth elements 
normalised to N-MORB (normalising values from Sun & McDonough 1989) for Pouakai 
samples in comparison to Mt. Taranaki suites (shaded in grey). The three distinct andesite 
samples AZ06-57, -60 and -61 with markedly lower HREE contents are shown in red.  

Figure 4.9.  202 

 Variation of 87Sr/86Sr in relation to SiO2 content (A) and age (B) of selected Taranaki debris-
avalanche samples. Most samples are within a narrow range of 87Sr/86Sr isotopic compositions 
but three basalts from the oldest Mt. Taranaki suites are distinct with lower 87Sr/86Sr ratios. 

Figure 4.10.  202 

 Taranaki debris-avalanche clasts show a distinct negative correlation between 87Sr/86Sr and 
143Nd/144Nd isotopic compositions. 

Figure 4.11.  203 

 Lead isotope composition of selected Mt. Taranaki and Pouakai debris-avalanche clasts. A: 
Variation of 207Pb/204Pb in relation to 206Pb/204Pb. B: Plot of 208Pb/204Pb versus 206Pb/204Pb. 

Figure 4.12.  205 

 K2O vs. SiO2 variation diagrams for Taranaki eruptives. Each sample suite is distinct (A) and the 
linear fits of the stratigraphic units show a progressive increase in K2O with decreasing age (B). 

Figure 4.13.  206 

 When plotted versus age, K55 values of the individual sample suites conform closely to an 
exponential curve of increasing K2O with decreasing age. The unusually high K55 value of the 
Oeo suite (marked in red) is a result of the limited number of samples and the resulting steep, 
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short fit on the K2O vs. SiO2 plot (Fig. 4.1). Hence, the unrepresentative value was not included 
in the calculation of the exponential fit. 

Figure 4.14.  207 

 Most LILE are coupled with K2O. On a plot of Ba versus K2O individual stratigraphic suites 
form distinct clusters due to increasing concentrations in these elements with decreasing age (A). 
Lead concentrations show a greater spread of data with age but still define a trend of increasing 
Pb and K2O with decreasing age, which allow a clear distinction between the oldest and 
youngest units (B). 

Figure 4.15.  208 

 Variation of Al2O3 is complex and differences between individual stratigraphic suites seem to 
mainly reflect differences in SiO2 content rather than age trends. Only the youngest eruptives 
are distinct with overall lower concentrations of Al2O3 compared to the other suites. 

Figure 4.16.  208 

 Debris-avalanche samples from Pouakai show lower concentrations in Pb than the Mt. Taranaki 
suites and a constant trend with increasing SiO2 (A). Barium contents are lower for low-silica 
compositions but overlap with the oldest suites from Mt. Taranaki towards higher SiO2 
abundances (B). The Maitahi suite also shows a steeper fractionation trend than the other 
sample suites. 

Figure 4.17.  214 

 Plots showing the differences in HFSE between Mt. Taranaki and Pouakai samples suites. A: 
The Maitahi suite has distinctly lower contents of Hf and marks a relatively constant trend with 
increasing SiO2.  B: Pouakai samples have distinctly lower contents of Zr and Hf than Mt. 
Taranaki rocks, resulting in a distinct cluster for each volcano with only minor overlap. C: The 
differences in Nb and Ta contents are less distinct, with Pouakai samples plotting towards lower 
concentrations but overlapping with Mt. Taranaki rocks. Within ring-plain samples, Nb and Ta 
are linearly correlated, in contrast to the youngest eruptives that have relatively constant Nb at 
varying Ta abundances. 

Figure 4.18.  215 

 Distinction between Pouakai and Mt. Taranaki sample suites based on LREE contents. The 
Maitahi samples have distinctly lower contents of Ce (A) and Nd (B) compared to Mt. Taranaki 
rocks. Pouakai and Mt. Taranaki sample suites form separate clusters with only minor overlap 
on plots of Pr versus Ce (C) and Sm versus Nd (D). 

Figure 4.19.  218 

 A: The plot of K/Nb ratios versus Ce/Pb ratios highlights the increasing slab influences or 
lower crustal interactions with time within the Mt. Taranaki sample suites. The oldest Mt. 
Taranaki debris-avalanche samples show the highest Ce/Pb and lowest K/Nb ratios, while 
Pouakai samples overlap with the 80-10 ka sample suites. One Pouakai rock and one Otakeho 
clast plot at unusually high Ce/Pb ratios. B: The generally higher Ba/Yb ratios of Mt. Taranaki 
and Pouakai eruptives indicate lower degrees of partial melting and more interaction with 
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underplated lower crustal material than at Ruapehu although there is some overlap with older 
Taranaki samples. Mt. Taranaki data from Price et al. (1999), Platz (2007) and Turner (2008); 
Mt. Ruapehu data from Gamble et al. (1993 & 1999) and Waight et al. (1999). 

Figure 4.20.  220 

 86Sr/87Sr versus 143Nd/144Nd diagram for Mt. Taranaki and Pouakai sample suites in comparison 
with data from Ruapehu as well as fields defined by rhyolites and basalts from the Taupo 
Volcanic Zone (TVZ) and Kermadec/Tonga lavas (K/T). Data sources: Graham & Hackett 
1986; Gamble et al 1993, 1999; Ewart et al. 1998; Price et al. 1999; Waight et al 1999. 

Figure 4.21.  222 

 Trace element characteristics of distinct samples from Mt. Taranaki compared to the rest of the 
sample suites. They show a range of LREE abundances and depletion of HREE compared to 
NMORB with the exception of andesite sample AZ06-83 from the Ngaere Formation (A). 
Various degrees of arc signature suggest more than one mantle source for Taranaki magmas (B). 

Figure 4.22.  223 

  The influence of the slab component increases from the Kernadecs/Tonga to the Taranaki 
volcanoes and Ruapehu. Taranaki eruptives show a wide range in Nb/Yb ratios, which reflects 
variations in the mantle source, and some overlap with Ruapehu. Mt. Taranaki data from Price 
et al. 1999, Platz 2007 and Turner 2008. Ruapehu data from Gamble et al. 1993, 1999 and 
Waight et al. 1999. Kermadec/Tonga data from Ewart et al. 1998.  

Figure 4.23.  224 

 Lead isotopic data for Mt. Taranaki and Pouakai samples in comparison with Ruapehu, data 
fields of TVZ and Kermadec-/Tonga-arc (K/T) and the Northern Hemisphere Reference Line 
(NHRL) from Hart (1984). Magmas from both volcanoes form a continuous trend of increasing 
207Pb/204Pb (A) and 208Pb/204Pb (B) ratios at slightly increasing 206Pb/204Pb. Ruapehu rocks are 
more radiogenic and cluster in a small field, while Taranaki magmas show a wider range of 
207Pb/204Pb and 208Pb/204Pb ratios and extend to less radiogenic compositions. Circles W and M 
represent average data (from Price et al. 1999) for Taranaki basement rocks of Waipapa terrane 
and Median Tectonic Zone. The square labelled T represents Ruapehu basement made of 
Torlesse terrane. Other data sources: Gamble et al 1993, 1999 and Price et al. 1999. 

Figure 5.1.  228 

 Composition of feldspars in Mt. Taranaki rocks. A: Compositional range of plagioclase in 100-
130 ka debris-avalanche clasts. B: Rim and core analyses of plagioclase in debris-avalanche 
samples. C: Comparison of plagioclase composition in >100 ka and <10 ka rocks (data from 
Platz 2007, Turner 2008). 

Figure 5.2.  231 

 Composition of pyroxenes in Mt. Taranaki rocks. A: Clinopyroxene and orthopyroxene 
compositions in 100-130 ka debris-avalanche clasts. B: Rim and core analyses of clinopyroxenes 
in debris-avalanche samples. Comparison of clinopyroxene and orthopyroxene compositions in 



 xxviii 

>100 ka and 10 ka rocks is shown in C and D, respectively (data from Stewart et al. 1996, Platz 
2007, Turner 2008). 

Figure 5.3.  234 

 Composition of hornblende in Mt. Taranaki rocks. A: Compositional range of hornblende in 
100-130 ka debris-avalanche clasts (classification after Leake et al. (1997a, b, 2003) based on Si 
versus Mg#*). B: Rim and core analyses of hornblende in debris-avalanche samples. C: 
Comparison of hornblende composition in old and young rocks. (data from Stewart et al. 1996, 
Platz 2007, Turner 2008). *Mg#=100[Mg2+/(Mg2++Fe2+)]minimum Fe3+ after Schumacher 
(1997).  

Figure 5.4.  235 

 Comparison of Ti and Al proportions in hornblende within 100-130 ka debris-avalanche clasts 
and rocks <10 ka. A: TiO2 (wt.%) versus Al2O3 (wt.%) of hornblende crystals. B: Ti versus 
tetrahedral AlIV and C: Ti versus octahedral AlVI. 

Figure 5.5.  238 

  Composition of olivine in Mt. Taranaki rocks. A: Compositional range of olivine in >100 ka 
debris-avalanche clasts. B: Rim and core analyses of olivine in debris-avalanche samples. C-D: 
Comparison of olivine composition in 100-130 ka and <10 ka rocks in a plot of forsterite versus 
CaO(C). 

Figure 5.6.  240 

 Composition of Fe-Ti-oxides in Mt. Taranaki rocks. A: Compositional range of titanomagnetite 
in >100 ka debris-avalanche clasts. B: Comparison of titanomagnetite and ilmenite compositions 
in >100 ka and <10 ka rocks.  

Figure 5.7.  241 

 Plots displaying the compositional range of titanomagnetite in >100 ka debris-avalanche clasts 
in comparison to <10 ka samples. Molecular Al plotted versus Fe2+ (A) and Mg (C). B shows a 
plot of Fe3+# versus Ti/Al ratios (cations per formula unit).  

Figure 6.1.  268 

 Simplified model of cyclic behaviour of stratovolcanoes in general and associated volcanic and 
volcaniclastic sedimentation as observed at Mt. Taranaki. 

Figure 6.2.  277 

 DEM of the Taranaki peninsula showing the direction of collapse that produced the identified 
debris-avalanche deposits in the Mt. Taranaki ring-plain succession. Failures have occurred on 
similar sectors of the edifice during certain time periods, indicating that different parts of the 
edifice were more unstable and thus vulnerable to collapse at different times throughout the 
volcanic history. Dashed axes are based on assumed dispersal of the south-eastern and the 
oldest northern debris-avalanche deposits. Shaded areas illustrate the direction of the two main 
volcanic alignments. Grid references are NZ map grid. 

 



  xxix

LIST OF TABLES 

 
Table 2.1.  27 

 Radiocarbon and amino-acid racemisation dates of important peat deposits. 

Table 2.2.  75 

 Radiocarbon analytical data of selected Taranaki debris-avalanche deposits (DAD).  

Table 2.3.  84 

 Overview of some aspects of Mt. Taranaki debris-avalanche deposits. 

Table 2.4.  90 

 Previous lithostratigraphic units in comparison to new or redefined debris-avalanche deposits. 

Table 3.1.  141-142 

 Sedimentary characteristics and distinction criteria of different types of observed volcanic mass-
flow, fluvial and aeolian deposits.  

Table 4.1.  187 

 Lithologies, SiO2 and K2O ranges of debris-avalanche and edifice sample suites. 

Table 4.2.  196 

 XRF and ICP-MS whole-rock analyses for selected Mt. Taranaki and Pouakai debris-avalanche 
samples. 

Table 4.3.  201 

 Isotope data of analysed debris-avalanche samples. 

Table 5.1.  229 

 Compositions of selected plagioclases of the Motunui and Okawa sample suites. 

Table 5.2.  232 

 Compositions of selected pyroxenes of the Motunui and Okawa sample suites. 

Table 5.3.  236 

 Compositions of selected hornblendes and biotite of the old sample suites. 

Table 5.4.  242 

 Compositions of selected olivines and titanomagnetites of the >100 ka sample suites. 



 xxx 

Table 5.5.  243 

 Selected glass analyses of the Motunui and Okawa sample suites. 

Table 5.6.  244 

 Compositions of selected accessories of the Motunui and Okawa sample suites. 

Table 6.1.  272 

 Factors leading to instability of volcanic edifices.  

 

 

 

 

 



 4 

 
 
 
 
 
 
 
 



 4 

 
 
 
 
 
 
 
 



CHAPTER 1.  

INTRODUCTION 

1.1. RESEARCH PROBLEM  

The volcanic history of Mt. Taranaki is characterised by a series of alternating phases of 

edifice construction and destruction, often through catastrophic debris avalanches (Neall 1979; 

Ui et al. 1986; Palmer & Neall 1991; Palmer et al. 1991; Alloway et al. 2005). This behaviour may 

be typical of many andesitic stratovolcanoes but is poorly understood due to the long time scales 

over which this process operates and the evidence for repeated/older cycles being buried. The 

lack of detailed long-term records from many active stratovolcanoes like Mt. Taranaki makes it 

difficult to understand the processes and driving forces behind their evolution. Similarly, ancient 

successions rarely hold full records of the history of an edifice (Monzier et al. 1999; Capra & 

Macias 2000, 2002; Waythomas et al. 2000; Nehlig et al. 2001; Richards & Villeneuve 2001). 

Hence, hazard assessment inputs and interpretations of eruption and magmatic processes on 

such volcanoes are traditionally concentrated on detailed interpretations of the Holocene 

geologic record (Siebert et al. 1995; Thouret et al. 1995; Scott et al. 1997; Ponomareva et al. 1998, 

2006; Belousov et al. 1999; Waythomas 1999; Waythomas & Miller 1999; Reid et al. 2001), an 

interval that may be too brief to identify longer-term influences on the activity and stability of 

stratovolcanoes. Detailed continuous records from these volcanoes are needed in order to truly 

characterise probable volcanic hazards. 

In addition, it is not known to what extent external factors may have influenced 

construction and destruction processes on volcanic edifices. The extreme climate fluctuations 

over the last 130 ka dramatically changed the landscape in non-volcanic areas in New Zealand 

(Newnham et al 1999). During periods of cold climate, major glaciers formed along the Southern 

Alps of the South Island, with snow-lines lowered around 600-800 m below their current levels 

(Porter 1975; Hellstrom et al. 1998), but only minor glaciation occurred on the North Island 

(McArthur & Shepherd 1990). Seasonal frozen ground occurred on the South Island while 

periglacial activity, along with severe fluvial, and wind erosion shaped the North Island (Pillans et 
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al. 1993). Thick alluvial sequences aggraded (Suggate et al. 1978; Nelson et al 1988; Eden 1989) 

and subsequent degradation created sets of river terraces (Suggate et al. 1978; Eden 1989). 

During warm climate periods, glacioeustatic high sea-level stands occurred, which, in 

combination with tectonic processes, resulted in uplifted marine terrace sequences with overlying 

regressive sediments along the New Zealand coast (Pillans 1983, 1990a, 1990b). It can thus be 

inferred that the climate also played an essential role in the evolution of the volcanic landscape of 

the Taranaki peninsula, in particular during the last glaciation. Climate conditions are not only 

important in controlling the rates of erosion and landscape changes, they may also influence the 

potential of the volcano to fail, or even trigger a collapse (McGuire 1996; Sheridan et al. 1999; 

Scott et al. 2005; Capra 2006). 

Unusually, at Mt Taranaki an almost complete stratigraphic record of distal ring-plain 

successions is exposed due to continuous coastal erosion of the tectonically uplifted areas of 

southern Taranaki (Pillans 1986, 1994). These circumstances make Mt. Taranaki an ideal example 

to study the evolution of a repetitively collapsing stratovolcano in order to better understand the 

processes operating over its life-span. Sequences within the volcaniclastic apron surrounding the 

volcano have been the key to understanding the last c. 26 000 years of volcanic activity (Neall 

1979; Alloway et al. 1995), yet little is known about the older volcanic history preserved in coastal 

ring-plain sequences in south-west and southern Taranaki. These have only been studied as a 

regional mapping project and were later examined from a purely sedimentological perspective 

(Neall 1979; Neall et al. 1986; Palmer & Neall 1991). More detailed mapping and 

sedimentological classification of the older parts of the succession were needed in order to 

establish a comprehensive reconstruction of the lifespan of this volcano for the first time.  

Improved stratigraphic control was also required to extend geochemical studies into the 

early magmatic history of the volcano to evaluate magma evolution since inception of Mt. 

Taranaki volcanism. Until now geochemical work at this andesite volcano was mainly limited to 

the well-known succession of the last 20 ka and comparisons with products from the andesitic 

centres of the TVZ (Price et al. 1992, 1999, 2005; Stewart et al. 1996). Most geochemical studies 

concentrated on the <14 ka present-day edifice, i.e. samples from lava flows (Price et al. 1992; 

Stewart et al. 1996) and pyroclastic units (Platz et al. 2007a, b), and included only a few samples 

from the ring plain (Price et al. 1999). The debris avalanche record studied during this project 

allowed an insight into the geochemical composition of former edifices that existed before 20 ka 

and thus a better understanding of the magmatic evolution of Mt. Taranaki. 
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1.2. REGIONAL GEOLOGIC SETTING 

The subduction of the Pacific plate under the Australian plate has formed a continuous 

and still highly active subduction system that extends for c. 2 800 km from the Tongan Island 

Arc to New Zealand (Ewart et al. 1977; Karig 1970) (Fig. 1.1). It consists of three separate 

segments; the Tonga and Kermadec Arcs lie within oceanic crust, whereas the New Zealand 

(Hikurangi) active margin is formed within continental crust (Cole 1982). The dip of the Benioff 

zone is around 28-30° down to a depth of c. 100 km beneath the Tongan and Kermadec Arc 

volcanoes, after which it steepens from 40-57° beneath the Tongan Islands to 55-71° beneath the 

Kermadec Islands (Sykes 1966; Isacks & Barazangi 1977) and 50-70° beneath New Zealand 

(Adams & Ware 1977; Ewart et al. 1977). Convergence rates increase northwards from 51-53 

(Kermadec) to 75-100 mm yr-1 (Tonga) (Jarrard 1986; DeMets et al. 1990; Parson & Wright 1996) 

and as much as 240 mm yr-1 along the northern Tonga Arc as a result of the active opening of the 

Lau Basin (Bevis et al. 1995). The proto-subduction system first developed along the Tonga-

Kermadec-Vitiaz Arc and is thought to have propagated southwards along the paleo-Pacific 

margin to north of New Zealand by 30 Ma (Ballance et al. 1982; Davey 1982; Mortimer et al. 

1998; King 2000). The present plate boundary configuration dates to ~ 27 Ma with the Tonga-

Kermadec sectors largely remaining intact since 45 Ma (Sdrolias & Muller 2006). A minimum age 

of subduction of the oceanic crust of the Pacific Plate beneath the continental crust of the 

Australian Plate at the Hikurangi margin of c. 25-24 Ma is given by radiometric dates of the 

oldest volcaniclastic deposits exposed onshore, which are attributed to the onset of arc volcanism 

in Northland (Hayward 1993; Herzer 1995; Mortimer et al. 1998; Chanier et al. 1999).  

Chase (1978) assumed that the Pacific Plate is rotating at c. 1.27°/Ma with the relatively 

instantaneous pole of rotation being located at 62°S, 174°E. Later, Wallace et al. (2004) showed 

that deformation processes in the North Island of New Zealand are more complex and 

dominated by several North Island tectonic blocks that rotate at c. 0.5-3.8°/Ma relative to the 

Australian Plate; the poles of rotation (with the exception of that of the Wanganui block) relative 

to the Pacific Plate cluster where the thick and buoyant Chatham Rise impinges on the margin. 

As a result, the convergence between the plates decreases and the subduction becomes 

progressively more oblique beneath the North Island, until at the northern coast of the South 

Island subduction no longer occurs and strike-slip motion along the Marlborough Fault system 

and the Alpine Fault system dominates (Van Dissen & Yeats 1991; Cole et al. 1995; Holt & 

Haines 1995; Collot et al. 1996; Beavan et al. 1999; Norris & Cooper 2000). The Hikurangi 
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170

Figure 1.1 Map showing the Tonga-Kermadec-New Zealand (Hikurangi) subduction system with the Taupo 
Volcanic Zone at its southern end (modified from Smith & Price 2006). On the South Island the plate 
boundary is marked by the strike slip motion of the Alpine Fault system (location of the Alpine Fault after 
Norris & Cooper 2000). Arrows indicate direction and rate (mm yr-1) of present-day plate convergence (from 
Parson & Wright 1996). Map coordinates are degrees of latitude and longitude. 
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margin represents a transitional region between the fast subduction along the Kermadec Arc and 

the intracontinental strike-slip of the South Island (Reading et al. 2001). 

1.2.1. North Island setting 

(i) Tectonic environment 

The Taupo Volcanic Zone (TVZ) is the southern expression of the Tonga-Kermadec 

subduction system and the main locus of continental arc volcanism in the North Island, New 

Zealand (Cole 1979, 1986; Gamble et al. 1993; Wilson et al. 1995) (Fig. 1.1). The NNE-oriented 

zone is c. 300 km long, up to 60 km wide and characterised by thin (12-15 km), extending 

continental crust and exceptionally high heat flow (Stern 1987; Bibby et al. 1995; Hochstein 

1995). The magnitude of total crustal heat transfer in the TVZ is highly anomalous in comparison 

to that of other active arcs, and with 2600 MW/100 km the highest of any subduction setting 

worldwide (Hochstein 1995). The rates of extension in the TVZ are about 7 mm yr-1 in the north 

and 18 mm yr-1 in the south; the subsidence rates are approximately 1-2 mm yr-1 (Cole et al. 

1995). Several authors regard the TVZ as the <2 Ma part of a migrating arc, which has been 

active for more than 20 Ma (Stern 1985, 1987; Cole et al 1995). Over the past 4 Ma, the active 

volcanic front of this arc is thought to have migrated south-eastward at a rate of c. 20 mm yr-1 

from the western part of the so-called Central Volcanic Region to its eastern half, i.e. the TVZ 

(Smith et al. 1989; Cole et al. 1995). This migration is considered to reflect the age and rate of 

asymmetric intra-continental spreading in the central North Island (Stern 1987). However, the 

available age-data together with geochemical and geological evidence may not support the 

concept of progressive southeastward migration of volcanism (Wilson et al. 1995). Instead, 

differences in age and type of volcanism throughout the TVZ may be a result of its variable and 

segmented nature (Wilson et al. 1995).  

(ii) Magmatism 

Volcanic activity in the TVZ started at c. 2 Ma at the Mangakino centre and has 

produced large volumes of rhyolite magmas in the central TVZ (Houghton et al. 1995; Wilson 

1993, 2001; Wilson et al. 1995). In contrast, active andesite volcanism dominates the northern 

and southern extremities of the TVZ (Cole et al. 1986; Houghton & Nairn 1991; Donoghue & 

Neall 1996; Donoghue et al. 1999, Price et al. 2005). The Tongariro Volcanic Centre (TgVC) at 

the southern end comprises four major andesite massifs, Kakaramea, Pihanga, Tongariro, and 

Ruapehu, as well as a few satellite cones (Cole 1978). The oldest exposed lava flows on Tongariro 

were K-Ar dated at 230 and 273 ka respectively (Patterson & Graham 1988; Hobden et al. 1996), 

while the Te Herenga Formation lavas exposed in the Whakapapanui gorge on Mt. Ruapehu are 
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thought to be at least 300 ka (Tanaka et al. 1997). This age is consistent with andesite clasts found 

in the <310 ka O’Leary Conglomerate near Wanganui (Fleming 1953; Pillans 1990b; Bussell & 

Pillans 1992) that petrographically and geochemically match those from the Te Herenga and 

Waihianoa Formations (Parish 1994). Based on these studies, Gamble et al. (2003) give a 

maximum age of c. 340 ka for the inception of volcanism at Ruapehu and Tongariro volcanoes. 

The Taranaki volcanic succession represents the most westerly expression of 

subduction-related volcanism in the North Island (Hatherton 1969). It is located 140 km west of 

the TVZ and has been assumed to lie 180 km above the westward-dipping Wadati-Benioff zone 

(Adams & Ware 1977; Stewart et al. 1996). Mt. Taranaki is recognised as a high-K arc volcano 

and was used by Dickinson and Hatherton (1967) to correlate K2O-content to the depth of the 

underlying Wadati-Benioff zone (K-h relationship). However, more recent data showed that there 

is no definable seismic zone under Mt. Taranaki so that the relationship has become more 

enigmatic (Sherburn & White 2005). Stern et al. (2006) suggested that Taranaki magmatism might 

not be directly related to the present day subduction system but could instead be associated with 

lithospheric delamination. Other authors regarded the Taranaki volcanoes as a remnant of an 

earlier arc because the lineament parallels the Waitakere and Northland arcs (Hochstein et al. 

1986; Briggs et al. 1989; Issac et al. 1994) rather than the NNE-trending TVZ (Cole 1982). 

1.2.2. Taranaki volcanic lineament 

The Taranaki volcanic succession consists of a group of four Quaternary andesite 

volcanoes that are spatially distinct from the contemporaneous andesitic volcanism in the Taupo 

Volcanic Zone (Neall et al. 1986). They form a NW-SE-trending volcanic lineament 

(perpendicular to the arc front) along which volcanism migrated south-eastward through time 

(Fig. 1.2B). The oldest and most deeply eroded centre, referred to as Paritutu Volcano (Arnold 

1959), is found near New Plymouth, slightly offset from the trend defined by the other three 

edifices. It is represented by the remnants of several cumulodomes offshore (the Sugar Loaf 

Islands) and an onshore volcanic spine (Paritutu) K-Ar dated at 1.7 Ma (Stipp 1968). Kaitake 

Volcano is the next younger centre, which was active at c. 575 ka (Stipp 1968) and is now 

reduced to a series of radial ridges around a 654 m high central plateau. Ten kilometres SE of 

Kaitake is the eroded remnant of Pouakai Volcano, which rises up to 1 399 m asl. Volcanic 

activity is thought to have started at c. 670 ka (Neall 2003)and terminated with a catastrophic 

edifice failure producing the Maitahi debris avalanche c. 270 000 years ago (Gaylord et al. 1993). 

Mt. Taranaki/Egmont Volcano is the youngest and most southerly expression of volcanism 
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along the lineament. Volcanic activity at this centre began >130 ka (Alloway et al. 2005) with the 

last known eruption occurring in AD 1755 (Druce 1966; Neall et al. 1986).  

1.2.3. Geology of the Taranaki peninsula 

Late Cretaceous to Tertiary sedimentary basins in the western North Island include 

Wanganui, King Country (former North Wanganui) and Taranaki Basins (Fig. 1.2A), which are 

considered to be separate depocentres with similar Neogene sedimentary successions (Kamp et 

al. 2004). The Taranaki peninsula represents the largest onshore region within the Taranaki Basin, 

which is principally a subsurface feature lying offshore beneath the continental shelf (King & 

Thrasher 1996). The sedimentary basin sequence is built up of sand-, silt- and mudstones with 

intercalated shell beds, and records a period of regional transgression with higher order eustatic 

sea-level cycles (Kamp et al. 2004) from the late Cretaceous to early Miocene, followed by a 

regressive phase that is still ongoing (King & Thrasher 1996). The underlying basement can be 

divided into Eastern and Western Provinces that are separated by the Median Tectonic Zone 

(MTZ) (Mortimer et al. 1997). The western part of the Taranaki Basin is underlain by Palaeozoic 

and Mesozoic Gondwana rocks of the Western Province. The basement of the eastern part, 

including the Taranaki peninsula, consists of Carboniferous and Early Triassic to Early 

Cretaceous subduction-related volcanic, plutonic, and sedimentary rocks of the MTZ (Bradshaw 

1993; Kimbrough et al. 1994; Sutherland 1999). The greywacke-dominated Eastern Province is 

separated from the MTZ by the Tongaporutu High, east of the Taranaki Fault (Mortimer et al. 

1997). 

The Taranaki Basin is cut by numerous active and inactive Quaternary faults (Fig. 1.2B). 

The Cape Egmont Fault Zone (CEFZ) marks the western limit of deformation related to the 

convergent plate boundary and subdivides the basin into two structural regions, the passive 

Western Stable Platform and the tectonically active Eastern Mobile Belt (King 1991; King & 

Thrasher 1996). The eastern margin of the basin is represented by the Taranaki Fault that 

vertically offset the basement by up to 6 km since the Late Cretaceous. The NE-SW orientation 

of Quaternary and active faults dates from the initial formation of the Tasman Sea (80 Ma), 

including the Inglewood and Norfolk Fault to the northeast of Mt. Taranaki, the Oaonui Fault to 

the south-west, and the Ararata Fault in the south-east (Hull & Dellow 1993). These may no 

longer reflect the current stress field (Sherburn & White 2006). An indicator of the more recent 

stress field is the alignment of volcanic vents, because these tend to lie perpendicular to the 

extension direction (Nakamura 1977). The SSE migration of the Taranaki volcanoes and the N-S 
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alignment of Mt. Taranaki summit, Fanthams Peak and several lava domes (Neall 1971) might 

therefore represent the current stress field (Sherburn & White 2006). 

The present geomorphology of the Taranaki peninsula is not related to its subsurface 

structure but was predominantly formed by the Quaternary volcanism and its products, which 

unconformably overlie the Tertiary basement. Another distinctive geomorphological feature was 

produced by the succession of Pleistocene sea-level high stands, which cut marine terraces into 

the uplifted Tertiary and volcaniclastic sequences in coastal areas of the Taranaki peninsula 

(Chappell 1975; Pillans 1983, 1990a, 1990b). Erosion and redistribution of the volcaniclastic 

deposits around the volcanoes have further shaped the landscape of Taranaki.  

1.3. MT. TARANAKI/EGMONT VOLCANO 

Mt. Taranaki is the second highest mountain of the North Island and volumetrically the 

largest andesitic stratovolcano in New Zealand. It rises up to 2 518 m asl over 25 km, resulting in 

steep upper slopes and a gently dipping distal surface that flattens out towards the sea. The 

conical shape of the volcano is broken on its southern flank by Fanthams Peak, a 1 962 m high 

parasitic cone that is thought to have been active over the last 7 ka (Neall et al. 1986). Exactly 

when the construction of Mt. Taranaki began is not known, but it is recognized as being older 

than 130 000 years (Alloway 1989; Alloway et al. 2005). The Motunui debris-avalanche deposit 

preserved in the coastal cliffs of North Taranaki represents the earliest identified activity (Alloway 

1989). It was cut by the c. 127 ka Rapanui marine bench (Pillans 1983), indicating that it was 

deposited beforehand, and the characteristics and volume of the deposit imply that Mt. Taranaki 

was already a volcanic edifice of considerable height at that time. 

The modern edifice of Mt. Taranaki is made up of lavas and pyroclastic deposits that are 

mostly younger than 14 ka (Neall 1979). These represent only a small component (c. 12 km3) of 

the total volume of material erupted. The record of older volcanic activity is preserved in the 

surrounding ring-plain; a large (>150 km3) apron of volcaniclastic material made up of debris-

avalanche, lahar and fluvial deposits (Neall et al. 1986). It covers an area of c. 1 000 km2 and is 

nearly circular in outline except in the north where the eroded remnants of the older volcanic 

centres formed a physiographic barrier to Mt. Taranaki-sourced mass flows (Fig. 1.3). Volcanic 

debris avalanches, attributed to the failure of former edifices, contributed the largest volume of 

volcaniclastic material to the Taranaki ring plain.  
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Neall (1979) and Neall et al. (1986) recognised at least four debris-avalanche deposits in 

west and south Taranaki, which were named Opua, Warea (the southern lobe Wr3), Pungarehu 

and Stratford Formations. Another three avalanche deposits (Ngaere, Okawa and Motunui 

Formations) of different ages were identified to the north-east and south-east of the volcano 

(Alloway et al. 2005), showing that collapses occurred on different sectors of the cone at different 

times throughout its history (Fig. 1.3). The minimum run-out distance for debris avalanches is 

marked by the present-day coastline of the Taranaki peninsula and generally exceeds 25 km to the 

west, 32 km to the south and 39 km to the north. The northern deposits can be traced for at least 

another 6 km offshore (Alloway et al. 2005). The debris avalanches at Mt. Taranaki were able to 

spread in an unconfined fashion onto the gently dissected ring-plain, forming broad fans around 

the volcano. This resulted in the development of three distinct surface geometries and lithofacies 

distributions that differ from valley-confined debris-avalanche units (Palmer et al. 1991). The 

deposits form a characteristic hummocky landscape with a higher density of large hills along the 

main dispersal axes that reduce in spatial density and size laterally and with increasing distance 

from source. Palmer & Neall (1991) recognised that these debris-avalanche deposits, together 

with their associated debris-flow deposits, record large-scale destructional events. In contrast, 

phases of cone growth comprised series of eruptive periods separated by intervals of quiescence. 

Accumulation on the ring plain during these constructional phases was dominated by lahar 

(debris-flow to hyperconcentrated-flow) deposits as well as tephra falls. Based on the dominant 

lithofacies element, the ring-plain depositional system in south-west Taranaki was split into an 

inferred cone-construction sequence (Opunake Fm) and a sequence representing edifice failure 

(Stratford Fm) (Palmer & Neall 1991). The largest known edifice failure at Mt. Taranaki 

produced the 20 ka Pungarehu Formation for which the calculated onshore volume is c. 7.5 km3 

(Ui et al. 1986a). Its internal structure is characterised by two major components: fragmental rock 

clasts (FRCs) and matrix. FRCs are shattered or deformed pieces of lava and stratified 

volcaniclastic material that represent intact parts of the former volcanic edifice (Alloway et al. 

2005). They are surrounded by inter-clast matrix, which includes clay-sized material. 

Mt. Taranaki lithologies range from vesicular red and black scorias through non-

vesicular to holocrystalline, porphyric lavas of basaltic andesite to andesite composition (Neall et 

al. 1986; Stewart et al. 1996). Common inclusions are fragments of older eruptives and basement 

or cognate rocks such as diorite, gabbro, hornblendite, and Tertiary sediments, as well as rare 

metamorphic and mantle xenoliths (Price et al. 1999). Mt. Taranaki lavas are holocrystalline to 

hypocrystalline with crystal contents of 25-55%. Phenocryst assemblages are dominated by 

plagioclase, clinopyroxene, titanomagnetite, and hornblende with accessory apatite and zircon; 
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Figure 1.3. Geological map of the Taranaki Peninsula showing the distribution of identified debris-avalanche 
deposits and other ring-plain formations; Opn = Opunake Formation and Str = Stratford Formation (modified 
after Neall 1979; Neall & Alloway 2004; Alloway et al. 2005). The Maitahi Formation from Pouakai 
Volcano formed higher terrain, which was not inundated by Mt. Taranaki-sourced mass flows. Cone-forming 
lavas of Mt. Taranaki as well as lavas of the extinct volcanic centres Pouakai and Kaitake are shown in shades 
of grey and black. Rectangles mark the study areas in south-west and northern Taranaki. 
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olivine is present in more primitive lavas while orthopyroxene is extremely rare. Typical 

glomerocrysts comprise clinopyroxene ± titanomagnetite ± plagioclase ± olivine with rare 

amphibole. 

The geochemical composition of Mt. Taranaki eruptives ranges from high-alumina 

basalt through to andesite and is dominated by high-K basaltic andesite (Price et al. 1992). K2O 

abundance varies with time as magmas became progressively more K-rich with decreasing age. 

Overall, Taranaki lavas are markedly more potassic than equivalent andesites at Mt. Ruapehu. 

The trace element distribution in Taranaki volcanics shows a distinct arc-signature characteristic 

of subduction-related magmas, i.e. enrichment in strongly incompatible large ion lithophile 

elements (LILE) such as Rb, Ba and K, strong depletion in Nb relative to K and Th, enrichment 

in Pb over Ce, enrichment of light rare earth elements (LREE) over heavy rare earth elements 

(HREE) and Y (Price et al. 1999). The geochemical characteristics reflect the origin of Taranaki 

magmas from a depleted mantle wedge fluxed by slab fluids. They are interpreted to have 

evolved through a complex combination of magma mixing and assimilation and fractional 

crystallisation (AFC) (Price et al. 1999). 

1.4. OBJECTIVES  

The principle objectives of this thesis were to: 

A. Use Mt. Taranaki to develop a new understanding of the growth dynamics and 

evolution of a stratovolcano from inception to maturity, including spatiotemporal 

physical development and sedimentary characteristics of construction and destruction. 

B. Evaluate the geochemical development and magma evolution within this andesitic 

stratovolcano, through sampling within the sedimentary record. 

C. Test the hypothesis that a cyclic process of edifice growth and destruction occurs at 

stratovolcanoes and to integrate physical, magmatic and climatic influences into a 

model of stratovolcano evolution and resulting sedimentation signatures. 

1.5. METHODS OF STUDY  

Sequences exposed along the coast in south-west Taranaki contain sedimentary records 

that are known to extend back to c. 100 ka (Neall 1979; Palmer & Neall 1991). This project 
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focused on a more detailed remapping of the Opunake and Stratford Formations in south-

western and southern Taranaki. Mapping began with the northernmost and youngest units of the 

exposed volcaniclastic succession and proceeded southwards to the oldest units, which was 

possible due to a slight northward tilt of the strata related to the uplift of the Wanganui Basin to 

the south (Pillans 1994). Hyperconcentrated-flow and debris-flow deposits were grouped into 

composite stratigraphic units or packages because of the large number and narrow distribution 

range of single flow units. Mapping was thus focused on the correlation of deposit packages 

enclosed by distinct marker horizons. The key units for correlation were the easily recognised, 

widespread debris-avalanche deposits as well as continuous soil and peat layers.  

A detailed sediment facies analysis of the exposed range of deposits was used to 

reconstruct volcanic events and other landscape-forming processes throughout the history of Mt. 

Taranaki and to interpret the growth dynamics of the volcanic edifice. Depending on their 

characteristics, the deposits were related to phases of cone-construction, collapse events, or 

periods of volcanic quiescence and landscape adjustment within the cyclic evolution of Mt. 

Taranaki. The events recorded in the volcaniclastic sequence were also correlated to the climatic 

changes that are known to have taken place over the last 130 000 years in this area, including the 

Last Glaciation (Pillans 1994)  

The developed stratigraphy provided the basis for sampling the volcanic products for 

petrographic and geochemical analysis. The identified debris-avalanche deposits were used as a 

window into the composition of past edifices, since their clast assemblages record the 

geochemical character of the volcano up to the time of the collapse. Furthermore, they span the 

entire age range known for the volcano as they occurred from early stages of Mt. Taranaki 

onward. The geochemical analyses of the samples were subsequently used to gain a better 

understanding of long-term changes in the magmatic system of Mt. Taranaki. Geochemical data 

of all collected rock samples was acquired by X-ray fluorescence analysis (XRF) and inductively 

coupled plasma mass spectrometry (ICP-MS); in addition Strontium, Neodymium and Lead 

isotopic analysis of selected samples were carried out. Thin-sections of the oldest debris-

avalanche sample suites were prepared for petrographic classification and analysis of mineral 

compositions of selected lithologies. Together, these data sets provided the basis for 

characterising the magmatic evolution from birth to maturity of this andesite volcano. 

The geochemical data and field records combined were used to reconstruct the 

processes that influenced the cyclic growth and destruction of Mt. Taranaki and to elucidate the 

relative roles of internal and external driving forces behind the volcano’s behaviour. 
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1.6. THESIS CONTENTS 

The following Chapter 2 outlines the newly established stratigraphy of the ring-plain 

succession in south-west Taranaki. It describes the distribution and age of identified debris-

avalanche units as well as volcanic mass-flow and reworked deposits. After developing the 

chronology of volcanic and other events, Chapter 3 focuses on the sedimentological 

characteristics of the different types of ring-plain deposits. These provide the basis for the 

subsequent interpretation of the ring-plain depositional system and landscape evolution. The 

geochemical compositions of clast assemblages, including rare earth and trace element 

characteristics and isotopic fingerprints, are presented in Chapter 4. Here, the debris-avalanche 

clasts are used to geochemically characterise past edifices in order to better understand the 

magmatic system and its evolution. Chapter 5 describes the clast lithologies within the Mt. 

Taranaki debris-avalanche deposits, their petrographic features and the mineralogy of the oldest 

sample suites in comparison to young eruptives to infer changes in crystallisation conditions and 

origin of the volcanic rocks. The stratigraphy, sedimentology and geochemical results are 

combined and discussed in Chapter 6 to develop a model of cyclic growth and destruction of 

andesitic stratovolcanoes, based on Mt. Taranaki. Chapter 7 closes with conclusions and 

recommendations for further work. 



CHAPTER 2.  

STRATIGRAPHY OF THE VOLCANICLASTIC RING-
PLAIN SUCCESSION OF SOUTH-WEST TARANAKI 

2.1. INTRODUCTION 

Ring-plain successions of stratovolcanoes provide a significant long-term record of past 

eruptive and sedimentary events that may not be preserved or exposed closer to source (e.g. 

Cronin & Neall 1997; Lecointre et al. 1998; Belousov et al. 1999; Davidson & De Silva 2000). 

Deposits representing these events can often be dated by applying the radiocarbon method to 

intercalated soil/peat layers and ripped-up fragments of wood, as well as by identifying 

interbedded tephras of known age. This provides the basis for a chronological reconstruction of 

volcano evolution and a stratigraphic overview of volcaniclastic successions. 

Previous studies on and around Mt. Taranaki mainly focused on the younger volcanic 

history. Deposit sequences that built up the modern edifice and younger landscape-shaping parts 

of the volcaniclastic apron surrounding the volcano have been the key to understanding the last 

c. 26 000 years of volcanic activity (Neall 1979; Neall et al. 1986; Alloway et al. 1995; Alloway et 

al. 2005). Yet, little is known about the history prior to this time, since older units are buried by 

tens to hundreds of metres of more recent volcaniclastic deposits. Due to the interplay of coastal 

erosion and tectonic uplift (Pillans 1994), older parts of the ring-plain succession are exposed in 

coastal cliffs in south-west and southern Taranaki with sedimentary records extending back to at 

least 100 000 years (Neall 1979; Palmer & Neall 1991). These were studied as part of a regional 

mapping project and later examined from a sedimentological perspective (Neall 1979; Neall et al. 

1986; Palmer & Neall 1991).  

More detailed mapping of these sequences has enabled a comprehensive reconstruction 

of the earlier volcanic history of Mt. Taranaki. This chapter presents the results from mapping of 

the coastal sections in south-west Taranaki and the developed stratigraphic overview of the older 

ring-plain succession.  
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2.2. STRATIGRAPHY OF MT. TARANAKI 

Volcanic activity at Mt. Taranaki began more than 130 000 years ago as indicated by the 

earliest known volcanic products (Motunui Fm.) that closely underlie the c. 127 ka NT2/Rapanui 

wave cut surface (Alloway et al. 2005). The last known eruptions include the Tahurangi eruption 

of AD1755 (Druce 1966) and the emplacement of the summit dome, considered to be around 

AD1800 (Platz 2007). The volcanic history has been characterised by alternating phases of edifice 

construction and collapse (Neall 1976; Neall et al. 1986; Alloway 1989; Palmer & Neall 1991; 

Alloway et al. 2005), which accumulated a thick volcaniclastic apron around the present 

stratovolcanic cone. Modern Mt. Taranaki is made up of lavas and pyroclastic deposits mostly 

younger than 10 ka. This 12 km3 cone represents only a small component of the total volume of 

material erupted compared to the c. 150 km3 ring plain. The volcanic stratigraphy of the centre 

has been subdivided into two separate groupings: the edifice-forming deposits and those of the 

ring-plain succession (Neall 1979; Neall et al. 1986; Alloway et al. 1995; Alloway et al. 2005). 

These are summarised in the following sections. 

2.2.1. Ring-plain stratigraphy  

Early studies and geological maps of Taranaki subdivided the apron of volcaniclastic 

material surrounding the Taranaki volcanoes into several segments of different ages and origin 

based on geomorphological features and soil properties (Lensen 1959; Grant-Taylor 1964a, 

1964b; Hay 1967; Grant-Taylor & Kear 1970). The formation of these so-called “ring-plains of 

laharic agglomerate” was thought to coincide with periods of Pleistocene glaciation, while the 

corresponding warm interglacial periods were marked by cutting of marine benches (Fleming 

1953; Grant-Taylor 1964a, 1964b; Hay 1967). The idea that ring plain-building lahars were 

restricted to glacial periods was based on the hypothesis that much greater amounts of snow and 

ice would have been on the volcanoes during cold climate conditions. Fossil pollen from deposits 

below most laharic “agglomerates” indicated a warm climate, while those from within several of 

the laharic deposits suggested cold conditions (Grant-Taylor 1964a). The absence of laharic 

breccias during interglacial intervals (during periods of marine incursion) was explained by 

diminution of volcanic activity during warm climates (Grant-Taylor 1964a).  

Five “ring-plains” were attributed to Kaitake and Pouakai Volcanoes and two younger 

ones to Mt. Taranaki (Grant-Taylor 1964a, 1964b; Hay 1967). Activity at Kaitake produced the 

New Plymouth, Eltham and Inglewood lahars (Hay 1967). Subsequently activity at Pouakai 

commenced, which completed the Maitahi ring plain and partly built up the Lepperton ring plain. 
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When activity at Mt. Taranaki started, it formed a ring plain that merged with the Lepperton one 

and two new ones; the Stratford and Opunake lahars. The >50 ka Stratford and 30-38 ka 

Opunake Formations were thought to represent remnants of ring plains formed during the last 

glaciation that were separated by a period of warm climate conditions (Grant-Taylor & Kear 

1970). Erosion of the western part of the Stratford surface during this interval was followed by 

accumulation of the Opunake lahars, which in places lapped on to the Stratford ring plain. 

Distinction of the two surfaces was based on weathering differences and ash cover, with >4 m of 

ash above the Stratford Fm. versus >1 m of ash covering the Opunake Fm. 

Later mapping projects followed a more modern approach in reconstructing the 

volcanic history of the Taranaki peninsula. The former laharic “agglomerates” were interpreted as 

individual debris-avalanche deposits resulting from major collapses of past edifices. Studies by 

Neall (1976, 1979), Neall et al. (1986), Alloway (1989), Gaylord et al. (1993), Neall & Alloway 

(2004), and Alloway et al. (2005) recognised and mapped the distribution of five debris-avalanche 

deposits from Mt. Taranaki and one from Pouakai Volcano. These re-defined or newly-mapped 

formations mostly replace the older units (Fig. 2.1). Exceptions are the oldest surfaces of 

unknown age, which have not been studied in detail, and the volcaniclastic sequence in south-

west Taranaki that is still referred to as Stratford and Opunake Formations.  

The following sections introduce previously identified and mapped stratigraphic units of 

the Taranaki volcanic succession from oldest to youngest: 

(i) Eltham surface and Old Formation 

The Old Formation was originally considered to be part of the Eltham surface (Grant-

Taylor 1964; Hay 1967; Neall 1979) but was found to be older by Neall & Alloway (2004) since it 

forms the base of the coverbeds of the c. 520 ka Ball Marine Terrace (Q13, Kaiatea Marine 

Terrace of Pillans, 1983). It consists of a clay-rich diamicton that forms an elevated and highly 

dissected surface in north-east Taranaki.  

The Eltham Formation comprises a voluminous debris-avalanche deposit in the eastern 

ring-plain sector near the town of Eltham. It occurs near the base of the coverbed sequence of 

the Ararata Marine Terrace (Q11) and is overlain by the c. 360 ka Rangitawa Tephra, suggesting 

an age of >400 ka and hence an origin from Pouakai Volcano (Neall & Alloway 2004).  

(ii) Maitahi Formation  

The Maitahi ring plain was redefined as Maitahi Formation and attributed to a 

catastrophic collapse of Pouakai Volcano. The youngest 40Ar/39Ar date obtained from debris-
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avalanche clasts gives a maximum age of c. 240 ka for the event (Gaylord et al. 1993). A more 

precise age range could not be established since its base is not exposed. The voluminous debris-

avalanche deposit covers a vast area around Pouakai and is best exposed along the north-western 

coast from Oakura to New Plymouth where it forms >40 m high cliffs.  

(iii) Motunui Formation 

The oldest confirmed Mt. Taranaki debris-avalanche deposit, and also the oldest known 

unit derived from this volcano, the Motunui Formation is exposed along the northern coast of 

the Taranaki peninsula (Alloway 1989; Alloway et al. 2005). Its age was estimated based on its 

stratigraphic position in relation to marine terraces. According to an older study, the deposit 

overlies and thus postdates the cutting of the c. 127 ka NT2/Rapanui Marine Terrace (Alloway 

1989). A different age (210-127 ka) was specified by Alloway et al. (2005), who described the 

Motunui Formation as being truncated by the NT2/Rapanui and overlying the NT3/Ngarino 

Marine Terrace.  

Near Turangi Road, a younger marine bench (NT1) is cut into the Motunui Formation. 

NT1 was first correlated to the 81 ka Hauriri Marine Terrace of the Wanganui District (Alloway 

1989) and later to the 105 ka Inaha Marine Terrace of south Taranaki (Neall & Alloway 2004; 

Alloway et al. 2005). In the following, the age of the Motunui Formation is referred to as >130 ka 

according to its chronostratigraphic position below the Rapanui wave-cut surface (Neall & 

Alloway 2004; Alloway et al. 2005).  

(iv) Okawa Formation  

The Okawa Formation comprises a debris-avalanche deposit that was emplaced around 

105 ka as indicated by its stratigraphic position below the Inaha wave cut surface and the fossil 

pollen record preserved in peat beds below and above (Neall 2003; Alloway et al. 2005). It has a 

minimum volume of c. 3.62 km3 and covers >255 km2 in northern and north-eastern Taranaki 

(Alloway 1989). The deposit was mapped from around Inglewood, where it forms a distinctive 

surface with numerous mounds, down the Waiongana Stream and the Manganui-Waitara Rivers 

to the coast.  

(v) Stratford and Opunake Formations 

Due to a thick soil and ash cover, the volcaniclastic sequence in south and southeast 

Taranaki does not exhibit distinct surface characteristics that allow detailed mapping of individual 

units. Hence, while areas in western and eastern Taranaki previously mapped as Stratford and 

Opunake Formations have been redefined, these outdated formations still occur in the southern 
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and south-western sector of the geological map (Neall & Alloway 2004). The main distribution of 

the Stratford Formation is to the east of Manaia, while the Opunake Formation covers the 

coastal areas from Opunake to Manaia. Both comprise similar lithofacies, i.e. laharic, debris-

avalanche and alluvial deposits that accumulated between c. 80-50 ka and 38-30 ka, respectively 

(Grant-Taylor & Kear 1970; Neall 1979). Later sedimentological studies of the south-western 

ring-plain described the occurrence of three debris-avalanche deposits within the Stratford 

Formation and one within the lahar-dominated Opunake Formation (Palmer & Neall 1991; 

Palmer et al. 1991). 

(vi) Ngaere Formation 

The large-volume (>5.85 km3) Ngaere debris-avalanche deposit covers c. 320-500 km2 

of the north-eastern to south-eastern Taranaki ring plain (Alloway 1989; Alloway et al. 2005) and 

forms an extensive hummocky landscape in the south-eastern sector. The deposit pre-dates the 

Kawakawa Tephra and overlies the Tuikonga Tephra, giving a 14C age range of 22.6-23.4 ka for 

the collapse event (Alloway et al. 1995; Alloway et al. 2005). The closely underlying Poto.b tephra 

bed was interpreted to indicate that the triggering of the collapse and the generation of the 

Ngaere debris avalanche was directly related to eruptive activity (Alloway 1989; Alloway et al. 

2005).  

(vii) Pungarehu Formation 

The Pungarehu Formation closely overlies the 22.6 ka Kawakawa Tephra and was dated 

at c. 22.1 ka (Neall 1979). It is the most voluminous debris-avalanche deposit known from Mt. 

Taranaki (>7.5 km3) and covers at least 200-250 km2 of the western ring-plain sector (Neall 1979; 

Ui et al. 1983). Its offshore extent is thought to be at least 8 km west of Cape Egmont 

(McDougall & Gibb 1970; Neall 1979) and bathymetric maps show the occurrence of debris 

avalanche mounds on the seafloor to a depth of about 60 m (Shell, BP and Todd Oil Services 

Ltd. 1974). To the south, its extent is obscured due to the progressive overlapping of the younger 

Warea and Opua Formations. The deposit thickness exceeds 60 m in proximal locations and 16 

m near its main dispersal axis at medial coastal outcrops. The most distinctive feature of the 

Pungarehu Formation is its characteristic hummocky surface with mounds ranging in average 

height from 5 m near the coast to 30 m at 300 m altitude (Neall 1979).  

(viii) Warea and Kahui Formations  

The Warea Formation was originally defined as volcaniclastic deposits that were 

emplaced between 16-12 ka (Neall 1972). It consists of four lobes of different lithologies. Lobe 
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Wr1 to the north-west, Wr2 to the south-west and Wr4 to the south-east of Mt. Taranaki filled 

small paleo-channels and intermound areas of the older Pungarehu debris-avalanche deposit and 

were hence interpreted as lahar deposits (Neall 1979). In contrast, the southern lobe Wr3 occurs 

between Oeo and Otakeho Streams and is characterised by small mounds in proximal locations 

and hence attributed to a debris avalanche (Neall 1979). Five debris-flow and hyperconcentrated-

flow deposits on the eastern and north-eastern flanks with a maximum age of 21.5 ka were also 

correlated to the Warea Formation (Alloway 1989). Newer studies of the north-western and 

south-western lobe show that several individual debris-flow and hyperconcentrated-flow deposits 

of various ages (22.5-14.8 ka) occur in all major catchments of the western ring-plain sector 

(Procter et al. 2009). Their wide range of sedimentological characteristics reflects their various 

origins and flow dynamics.  

The Kahui Formation contains a series of block-and-ash-flow and debris-flow deposits 

that were emplaced from 12.5-7 ka and extend up to 20 km from the present summit of Mt. 

Taranaki (Neall 1979). Some debris-flow deposits occur on the north-western flank of the 

volcano and at least 8 were recognised on the lower western flanks, where they fill depressions 

between higher ridges of the Pungarehu Formation. Alloway (1989) correlated a succession of at 

least three cohesive and one non-cohesive debris-flow deposits on the north-eastern flank to the 

Kahui Formation. The units occur in channels of major tributaries and have an implied age range 

of c. 13-7 ka (Neall 1979; Alloway et al. 1992).  

(ix) Opua Formation 

The Opua debris-avalanche deposit (0.35 km2) covers large parts of the western and 

south-western ring plain (Neall 1979). Its surface is covered by mounds generally <20 m in height 

and typically <2 m near the coast. Composite-shaped mounds and internal contacts suggest a 

multiple origin with some mounds consisting of Pungarehu mounds that were subsequently 

covered by the Opua debris-avalanche deposit. The Opua Formation overlies the c. 7 ka BP 

Oakura Tephra and was dated at c. 6.6 ka (Neall 1979). A large amphitheatre between Bob’s 

Ridge and Fanthams Peak is considered to demarcate the source area, which collapsed to 

generate the Opua debris avalanche. The avalanche scarp has since been partly infilled by 

younger lava flows.  

(x) Ngatoro, Te Popo and Hangatahua Formations 

The Ngatoro Formation consists of two debris-flow lobes on the north-eastern and 

eastern flank, the latter of which shows transitions to hyperconcentrated-flow and streamflow 

deposits (Neall 1979; Alloway 1989).  The deposits were emplaced between c. 3.5-3.6 ka.  
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The Te Popo Formation comprises at least two debris-flow units that occur in channels 

and interfluve areas on the eastern flank of Mt. Taranaki, (Alloway 1989). Their implied age is 

2.9-3.1 ka because they are interbedded with Manganui tephra beds.  

The Hangatahua Gravels are c. 400 year old sandy gravels that occur along the Stony 

River in western Taranaki (Neall 1979; Neall et al. 1986). They are thought to have formed during 

floods and reworking of block-and-ash flow deposits following the Maero eruptive episode (Platz 

2007). 

2.2.2. Tephra and edifice stratigraphy 

Mt. Taranaki has experienced frequent explosive pyroclastic eruptions, with most fall 

units distributed in a broad NNE to SSE sector from the present summit (Neall 1972; Alloway 

1989; Alloway et al. 1995; Turner et al. 2008). The oldest tephras are best preserved in peat and 

carbonaceous-rich sediments exposed along the northern coast, including the oldest identified 

tephra located above the Motunui Formation (Alloway 1989). Ring-plain records near the 

volcano are largely buried or have been influenced by post-depositional mixing and weathering, 

thus only allowing a few of the most prominent tephra beds to be identified. Distal outcrops in 

northern Taranaki provide a better record of eruptive activity from >130 to 28 ka (Alloway 

1989). Activity between 100-80 ka produced five distinct major tephra beds and a further seven 

between 80-28 ka. The <28 ka record of eruptive activity is better preserved in the eastern and 

north-eastern ring plain and contains at least 75 individual tephras >107 m3, resulting in an 

average periodicity of one eruption of this magnitude in 330 years (Alloway 1989; Alloway et al. 

1995). Minor eruptive activity between 32-28 ka was followed by frequent, moderate to large 

magnitude eruptions from 28-23.4 ka, which produced a sequence of thirteen tephra beds in 

north-east and central Taranaki and several debris-flow deposits of the Opunake Formation 

(Alloway et al. 1995). A new cycle of intense eruptive activity started at 22.7 ka and is thought to 

have initiated the Ngaere collapse to the east. High-frequency eruptions rapidly rebuilt the edifice, 

before it collapsed to the west to form the Pungarehu debris-avalanche deposit. The collapse was 

followed by intense eruptive activity between 20.2-19.4 ka and sporadic moderate to small 

magnitude eruptions between 18.8-12.9 ka. At the same time, debris and hyperconcentrated flows 

of the Warea Formation were generated on all flanks of the volcano (Neall 1979; Alloway 1989; 

Alloway et al. 1995; Procter et al. 2009).  

The present edifice of Mt. Taranaki is thought to have been predominantly constructed 

over the last 10 000 years, following the deposition of the Warea debris and hyperconcentrated 

flows (Neall et al. 1986). The edifice consists of an older bottom part and a younger symmetrical 
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upper cone, which is slightly offset from the centre of the lower cone (Grant-Taylor 1964a, 

1964b). This is indicated by the abrupt decrease in gully depth above c. 1100 m, a steeper slope of 

the mountain and the termination of some older lava flows and pyroclastic deposits. Grant-

Taylor (1964b) suggested that the top part of the original edifice, which was probably 300 m 

higher than at present, was removed and a younger cone constructed in its place.  

Frequent effusive activity between 12-7 ka produced lava flows (Fig. 2.3) interspersed 

with dome-building episodes, and dome-collapse block-and-ash-flow emplacement on the eastern 

and western flanks (Neall 1979; Neall et al. 1986; Platz 2007), while intense explosive activity 

between 10-8 ka resulted in deposition of eight tephra beds (Alloway et al. 1995). The Warwicks 

grouping contains the oldest lava flows (c. 8 ka), including distinct geomorphic features such as 

Warwicks Castle and Bob’s Ridge, that form the present upper cone (Stewart et al. 1996). 

Following the Opua collapse, emplacement of the Peters Lavas (7-3.3 ka) further built up the 

edifice (Neall 2003) and was accompanied by sporadic small to large tephra emission between 8-

4.4 ka (Alloway et al. 1995). Two large subplinian eruptions produced widespread tephras at 4.1 

ka (Korito Tephra) and 3.6 ka (Inglewood Tephra) as well as at least 3 pyroclastic flows (Neall 

1972; Alloway 1989; Neall et al. 1986; Alloway et al. 1995). The Inglewood eruption was followed 

by deposition of the Ngatoro debris flows (Neall et al. 1986; Alloway 1989). Major eruptive 

activity from the satellite vent Fanthams Peak occurred at c. 3.3 ka and produced several lava 

flows (Neall 1986; Downey et al. 1994; Alloway et al. 1995) with the latest ones possibly as young 

as 1.4 ka (Rosenthal 2005). Frequent, small to moderate sized eruptions from Fanthams Peak 

deposited four closely spaced tephra beds at c. 3.1 to 2.8 ka (Alloway et al. 1995; Turner et al. 

2008). Subsequently, four lava domes were extruded from subsidiary vents on the lower flanks of 

Mt. Taranaki: the Dome, Skinner Hill and the Beehives (Neall 1971; Neall et al. 1986). A period 

of dome-building and dome-collapse block-and-ash-flows on the eastern flanks at 2 ka (Neall et 

al. 1986) was followed by the extrusion of the 1.7 ka Staircase lavas, which partly filled the Opua 

amphitheatre (McGlone et al. 1988; Downey et al. 1994; Stewart et al. 1996; Neall 2003). The 

subplinian Kaupokonui eruption at 1.4 ka preceded the construction of the uppermost part of 

the modern edifice. The youngest lava flows <1.7 ka, which further filled the Opua amphitheatre, 

are summarised in the Skeet grouping and the Summit grouping comprising the present summit 

dome and the Turtle, a prominent lava coulee on the upper NW flanks (Neall 2003). The 

youngest (Maero) eruptive period began around 800 years BP and has been dominated by dome-

forming and collapse episodes (Maero block-and-ash-flows), several smaller eruptions and the 

subplinian Burrell eruption (Cronin et al. 2003; Platz 2007). The Tahurangi eruption in AD1755 
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Figure 2.2.  Lava flow distribution and stratigraphy of the upper portion of the Mt. Taranaki edifice (after Neall 2003). 
Lavas from Fanthams Peak are shown in shades of green and cumulodomes on the flanks of Mt. Taranaki in purple (The 
Dome and Skinner Hill to the north and the Beehives to the south). 
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was considered the last known eruptive activity at Mt. Taranaki (Druce 1966), until Platz (2007) 

suggested a later emplacement of the summit dome some time afterwards. 

2.3. STRATIGRAPHIC CORRELATION (METHODS) 

A stratigraphic framework and chronology of debris-avalanche and lahar deposits of the 

south-western ring plain has been established from detailed field mapping. Radiocarbon ages 

obtained from wood found within, and peat interbedded with, the deposits, and identification of 

rhyolitic tephra marker beds, provided timeframes and chronostratigraphic control of the 

younger sequence. The age of older units was estimated from their stratigraphic position in 

relation to mapped marine terraces as well as cover-bed stratigraphy and tephrochronology (cf. 

Pillans 1983; Neall 1986; Alloway et al. 2005). 

Remapping of the Opunake and Stratford Formations was focused on coastal cross-

sections, which provide continuous lateral exposure. Field investigations started with the 

northernmost and youngest units of the exposed volcaniclastic succession at Arawhata Road and 

proceeded southwards to the oldest units up to the Tangahoe River mouth, where the 

volcaniclastic sequence wedges out. The studied stretch of coastline was divided into 17 segments 

named after streams and rivers to allow a better overview. These segments and the locations of 

studied cliff sections can be found in Appendix 1. 

Lahar (debris-flow to hyperconcentrated-flow) deposits in Taranaki are superficially 

similar in lithology, texture and fabric. This lack of individual diagnostic properties made 

mapping and correlation of separate flow units difficult. A closer examination of the deposits, 

where possible, allowed the identification of, in cases, unique sedimentological features and clast 

assemblages. Detailed sedimentological study was, however, dominantly focused on 

characterising and classifying the different types of flow deposits (cf. Chapter 3). To establish a 

stratigraphic overview and because of the large number and narrow distribution of single flow 

units, genetically related series of hyperconcentrated-flow and debris-flow deposits were grouped 

into stratigraphic intervals. Mapping was focused on the correlation of these deposit packages 

enclosed by distinctive marker horizons. Key units for correlation were the easily recognised, 

widespread debris-avalanche deposits, continuous paleosols and peat layers representing long 

hiatuses in volcaniclastic deposition, and a single rhyolitic tephra derived from the Taupo 

Volcanic Zone.  
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2.4. IDENTIFICATION AND NOMENCLATURE OF MARKER BEDS  

2.4.1. Debris-avalanche deposits 

Debris-avalanche deposits occur frequently in the Taranaki ring-plain succession and are 

easily recognised due to their distinctive sedimentological characteristics (cf. Chapter 3). The 

considerable thickness (typically between 0.5-6 m) of the deposits in combination with a wide, 

continuous lateral distribution makes them the most useful and reliable markers for correlation of 

the volcaniclastic sequences (Fig. 2.3). 

 

2.4.2. Important paleosols and peat sequences 

Most paleosols and peat layers are thin (5-20 cm) and of limited lateral extent, which 

makes them inadequate for correlation. Some paleosols of greater thickness can be traced for 

several hundred meters, rarely up to several kilometers, in lateral exposure, thus allowing some 

correlation of the over- and underlying deposits. Two distinct tephric soils developed into layers 

of medial ash were recognised in western Taranaki by Neall (1972, 1979) and were helpful for 

correlations of the younger succession. The Okato Tephra separates the Pungarehu Formation 

from the overlying Warea debris-flow and hyperconcentrated-flow deposits, while the Oakura 

Tephra is interbedded between the Warea and Opua Formations.  

Ngaere 

Rama 

3.5 m 

Otakeho 

Figure 2.3.  At this location (Kaupokonui 6B), three debris-avalanche deposits (Otakeho, Rama and Ngaere) are exposed, 
which represent important lithological markers for correlation of the volcaniclastic sequence. 
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Since peat typically accumulates in wet depressions, the resulting deposits are often of 

limited lateral extent and lenticular geometry. Two peat/organic soil sequences in the Taranaki 

succession are very thick and relatively widespread in cross-sectional coastal outcrops. Despite 

their variable thickness, they could easily be identified in numerous locations. The radiocarbon 

dates of these important peat sequences from this and former studies are summarised in Table 

2.1. The younger peat sequence is here referred to as Hihiwera Peat because it is thickest in the 

Opunake area, where the uppermost layer was dated at c. 28.8 ka (Fig. 2.4). A correlative was also 

recognised in sections near Manaia. Previous workers obtained several radiocarbon dates of this 

significant deposit at various locations, giving an age range of 30-34.4 ka (Grant-Taylor & Rafter 

1963; Grant-Taylor 1964; McGlone et al. 1984).  

A second prominent organic soil represents an important marker within the oldest parts 

of the succession since they are past the dating limits of the radiocarbon dating method. The 

paleosol is exposed near the present-day sea-level at the bottom of the cliff sections from Punehu 

13 (Fig. 2.5A) to Oeo 7B, where it occurs c. 2-5 m above beach level, overlying a mound of the 

Oeo debris-avalanche deposit (cf. Section 2.5.11). In its northernmost locations, it is 

characterised by the preservation of tree stumps in growth position at its top, which can be found 

amongst beach pebbles below the high water mark (Fig. 2.5B-C). Due to this distinctive feature, 

it is referred to as Puketapu buried forest. It is here assumed to be of similar age as the “Manaia 

Lignite”, which occurs over a coastal stretch of 2.5 km near Inaha Stream (Fig. 2.6). This distinct 

>1 m-thick peat contains pollen assemblages that reflect a full forest cover dominated by 

Dacrycarpus dacrydioides and Podocarpus spicatus and was correlated with the warm interstadial 

conditions of MISS 5a (McGlone et al. 1984). Its age was thus estimated at c. 80 ka. 

TABLE 2.1.   Radiocarbon and amino-acid racemisation dates of important peat deposits. 

Sample number  Age (yrs BP)  Stratigraphic unit  Locations1 

Wk-19143*  28 824 ± 237   Hihiwera Peat (top)  Middleton Bay 9 

NZ331†  34 400 ± 1500   Hihiwera Peat   Middleton Bay 3 

NZ409§  31 800 ± 1800   Hihiwera Peat  Middleton Bay 8 

ANU-1887#  33 300 ± 1100   Hihiwera Peat   Waiokura 5C 

BJP-014##  30 000 ± 20 000  Hihiwera Peat   Waiokura 5C 

Wk-19144*  background  Puketapu buried forest  Oeo 3A 

BJP-010##  95 000 ± 20 000  Manaia Lignite  Waiokura 5C 

1See Appendix for map and grid references of locations. 
14C dates *this study, †Grant-Taylor & Rafter (1963), §Grant-Taylor (1964), #McGlone et al. (1984). 
##Amino acid racemisation dates McGlone et al. (1984). 
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Figure 2.5.  A: The Puketapu buried forest is c. 0.5 m thick at location Punehu 4, where it forms a distinct, continuous 
layer at the bottom of the cliff just above the high tide mark. B-C: Tree stumps in growth position surrounded by beach 

A B 

pebbles mark locations where the actual paleosol occurs below sea level (B: Punehu 13; C: Oeo 4). 

Figure 2.4.  A: At its type locality Middleton Bay 9, the Hihiwera Peat is c. 1.2 m thick with an upper part consisting of 
peat and organic soil beds while the lower part is characterised by tephric and silty paleosols. B: At location Otahi 7 it is c. 
0.8 m thick and of massive appearance. 

A 

B C 
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2.4.3. Rhyolitic tephras 

Four prominent rhyolitic tephras have been found in Taranaki (Wellman 1962; Aitken 

1971; Stewart et al. 1977; Geddes et al. 1981; Alloway 1989; Alloway et al. 1994, 1995, 2005) the 

c. 4 ka Stent Tephra, the c. 22.6 ka Kawakawa Tephra/Aokautere Ash (both from Taupo 

Volcanic Centre; Wilson et al. 1988; Froggatt & Lowe 1990; Wilson 2001), the c. 45 ka Rotoehu 

Tephra from Okataina Volcanic Centre (Vucetich & Puller 1969; Lian & Shane 2000; Shane & 

Sandiford 2003) and the c. 350-400 ka Rangitawa Tephra (Naish et al. 1995). In this study, only 

the Kawakawa Tephra was identified at several coastal locations in western Taranaki. It occurs 

within a prominent soil sequence below the Pungarehu debris-avalanche deposit where the fine 

glassy ash typically forms discontinuous 1-3 cm thick yellow pods of ash (Fig. 2.7).  

2.4.4. Dune sands 

An up to 10 m-thick sequence of well-sorted, high-angle cross-stratified dune sands 

occurs in the older part of the south-western ring-plain succession (Fig. 2.8). The paleo-dune 

field is exposed over a broad stretch of coastline (>15 km) from Taungatara 8 to Wahamoko 10. 

The considerable thickness, wide distribution, intercalated hyperconcentrated-flow deposits, 

numerous thin peat beds, iron-stained weathering horizons and weakly developed soils in the 

tops of individual dune sets indicate that the sands accumulated over a long period of time. Their 

distribution and sedimentary characteristics (cf. Section 3.5.6) resemble those of present-day 

coastal dune fields. The paleo-dune sands typically occur below the Otakeho debris-avalanche 

deposit (cf. Section 2.5.6) to c. 1.4 m below the above described Puketapu buried forest. Such an 

incursion of sand dunes is likely to have been triggered by one of the higher sea-level stands of 

the post-Rapanui succession. From its stratigraphic position the Puketapu buried forest is likely 

to correlate with MISS 5a, hence the age range of the dune sands is estimated at >50 ka but <80 

ka. 
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Figure 2.6. The prominent c. 80 ka Manaia Lignite of McGlone et al. (1984) is c. 1.2 m thick at location Waiokura 6B, 
near the type locality at Inaha Stream. 

Figure 2.7.  In coastal sections of south-west Taranaki, the Kawakawa Tephra occurs in a thick soil sequence below the 
Pungarehu debris-avalanche deposit. The tephra bed is of a distinct creamy colour and can form a continuous horizon (A) or 
appear patchy (B), probably due to falling on a shrubby vegetation cover. The tephra thickness in both photos is c. 2-3 cm. 

A B 

A 

2 m 

B 

Figure 2.8.  Planar and high-angle cross-bedded sets of fine-grained, greyish dune sands with weathered, iron-stained tops 
(A) overlying three fine-grained pumiceous hyperconcentrated-flow deposits (B) at Punehu 1a.  
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2.5. NEW OR REDEFINED DEBRIS-AVALANCHE DEPOSITS 

2.5.1. Motumate debris-avalanche deposit (redefined unit) 

The Motumate debris-avalanche deposit is named after Motumate Stream in south 

Taranaki. The unit occurs in discontinuous exposures over a c. 10.8 km stretch of coastline from 

Oeo 7A to Kaupokonui 7 (Fig. 2.10). At its type locality Kaupokonui 5, the deposit forms a 

prominent c. 3.5 m thick, massive layer near the top of the cliff section (Fig. 2.11A). Here, it is 

characterised by pebble- to cobble-sized, polylithologic (cf. Section 5.3) clasts, rare small 

megaclast <0.5 m and small, rounded rip-up clasts in a clay-rich matrix (Fig. 2.9). Its upper and 

basal contacts are planar with no evidence for erosion. The Motumate debris-avalanche deposit is 

bracketed by two thin paleosols and overlain by a thin hyperconcentrated-flow deposit and thick 

soil (Fig. 2.11B). Two hyperconcentrated-flow deposits and fluvial sediment with interbedded 

paleosols occur directly below the unit. Near the type locality, the Motumate can be traced over c. 

1.8 km, but rapidly thins to either side from 3.5 m to c. 0.8 m, suggesting that it was deposited in 

a relatively deep paleo-channel. The Motumate Formation was identified in three channels west 

of the type section, where its thickness ranges from c. 0.3-1 m. Two further reference sections are 

Wahamoko 1 and 4A, which also mark the margins of a c. 2.3 km wide but relatively shallow 

channel (Fig. 2.12A-B). Within this channel, the deposit is characterised by fewer, pebble- to 

small cobble-sized clasts in >90% matrix and a maximum thickness of c. 1 m (Fig. 2.12C). 

 

Figure 2.9. The Motumate debris-avalanche deposit is exposed near the top of the cliff at its type locality Kaupokonui 5 
(2602779/6180288) and separated from the underlying Ngaere Formation by hyperconcentrated-flow deposits and fluvial 
sediments. 

Motumate 

Ngaere 
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The lenticular deposit geometry, minor thickness and narrow distribution range of the 

Motumate deposit in coastal locations indicate deposition from a relatively small lobe of a debris 

avalanche, which was confined to paleo-channels in these medial areas. Its distribution appears 

similar to that of the southern portion (ou2) of the Opua Formation, which only reached the 

present day coast along two major channels (Neall 1979). Due to its stratigraphic position, 

distribution and sedimentary characteristics, the Motumate debris-avalanche deposit is here 

correlated to the southern lobe of the Warea Formation (Wr3) of Neall (1979). When projected 

towards the volcano, the unit would overlap with the Wr3 lobe. The Wr3 unit is c. 5 km wide and 

>3 m thick at 350 m asl but bifurcates in two <2 m thick lobes along Oeo and Otakeho Streams 

below 240 m asl (Neall 1979). Between 450-250 m <5 m-high mounds occur that become 

progressively smaller to the south along Oeo Stream and are absent where the deposit thins to <2 

m. Figure 2.10 shows the distribution of the Motumate debris-avalanche deposit in coastal 

locations and the inferred origin from the Wr3 lobe. The age of the Motumate debris avalanche is 

constrained via its correlative, the Warea Formation, which is bracketed between the c. 16 ka 

Okato Tephra and the c. 7 ka Oakura Tephra (Neall 1979).  

Some confusion regarding the correlation of the Motumate debris-avalanche deposit has 

been caused by later studies. Alloway et al. (2005) interpret the south-eastern Warea lobe (Wr4) as 

a younger debris-avalanche deposit dated between c. 3.6-4.2 ka. The same deposit is marked as 

Opua Formation on the latest geological map of Taranaki (Neall & Alloway 2004). In contrast, 

Neall (1979) described the deposits, which were mapped to the coast along Kaupokonui Stream, 

as coarse conglomerates and sandstones that grade southwards into soft coarse sands and fine 

gravel that show fluvial bedding and form a planar surface. Based on the descriptions by Neall 

(1979) it is here inferred that the Wr4 lobe was deposited by young (3.6-4.2 ka) debris flows and 

hyperconcentrated flows. This is also implied by exposures of the deposits along Kaupokonui 

Stream, in the vicinity of Kaupokonui township and along the coast, which comprise massive 

stacks of fine-grained hyperconcentrated flow units. Another set of hyperconcentrated-flow units 

with interbedded fluvial sediments exposed at the bottom of the sequence indicates that an earlier 

paleo-stream channel existed at this location, which was subsequently filled by two massive 

debris-avalanche deposits. The absence of the Motumate debris-avalanche deposit in sequences 

near Kaupokonui Stream suggests that the present channel post-dates it. The deposition of the 

Motumate unit most likely filled and blocked the major paleochannel near the type section, 

forcing the stream to change its course. This could have led to reactivation of the Kaupokonui 

Stream channel, which was subsequently filled by fluvial sediments and younger lahar deposits of 

the Wr4 lobe. 
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2 m 

B 

C 

Motumate 

Rama 

Motumate 

Rama 

2 m 

1 m 

A 

Figure 2.12.  Location Wahamoko 1 marks the north-western margin of a shallow channel, to which the Motumate debris 
avalanche was confined (A). The deposit wedges out abruptly at Wahamoko 4a (B) and shows a maximum thickness of 1 
m within the paleo-channel (C). 
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2.5.2. Te Namu debris-avalanche deposit (new unit) 

The Te Namu debris-avalanche deposit is a formerly unknown unit named after Te 

Namu Pa in south-west Taranaki. The deposit first crops out just east of Okaweu Stream 

(Okaweu 1) at the bottom of the sequence. It forms a distinct unit from this outcrop to 

Middleton Bay 3 and was also identified from Waiteika 3 to Taungatara 3, i.e. over at least 8.8 km 

of lateral exposure (Fig. 2.13). From Mangahume 2 to Waiteika 1 only one thin debris-avalanche 

deposit is exposed, which could not be clearly identified. It represents either Te Namu or 

Pungarehu, or both deposits, without inter-beds. The Te Namu debris-avalanche deposit was also 

recognised further inland c. 0.8 km upstream at Waiaua Stream. Its extent farther north is 

unknown since the sequence dips under the present day sea-level. The deposit most likely 

continues for at least the same lateral distance as was observed southwards.  

At its type locality Okaweu 9, the Te Namu is >5 m thick and characterised by 

polylithologic, pebble- to boulder-sized clasts and abundant large rip-up clasts (up to 1.5 m 

across) in a clay-rich matrix (Fig. 2.15A). It is overlain by a distinct soil sequence consisting of 

two dark organic paleosols that are separated by two andesitic tephra beds and an interbedded 

pale pink silt layer (Fig. 2.15B). Above the soil, four hyperconcentrated-flow deposits are 

exposed, separated by thin paleosols (Fig 2.14). The top of the sequence consists of the Opua 

debris-avalanche deposit and an underlying thick soil sequence. The strata below the Te Namu 

are not exposed.  

At reference locality Okaweu 2, the >2 m thick Te Namu is exposed at the bottom of 

the cliff section and characterised by pebble- to boulder-sized clasts as well as large rip-up clasts 

of an underlying peat/soil layer, possibly the Hihiwera Peat (Fig. 2.16B). The sequence above the 

debris-avalanche deposit is more complete at this location (Fig. 2.16A). The Opua Formation 

forms the top of the section and is separated from the Pungarehu Formation by a thick laminated 

paleosol. The Kawakawa Tephra was identified in the soil sequence below the Pungarehu (cf. Fig. 

2.7). It overlies a series of hyperconcentrated-flow deposits and cross-bedded fluvial sands. At 

Heimama 10, the strata below the Te Namu consist of several thin hyperconcentrated-flow 

deposits, cross-bedded fluvial pebbly sands and an intercalated normal to reverse graded 

transitional debris/hyperconcentrated-flow deposit.  A piece of ripped-up wood from within the 

Te Namu debris-avalanche deposit collected at this location gave a maximum age of 29 074 ± 

399 a BP (Wk-16402). At Okaweu 2, a minimum emplacement age of 25 198 ± 167 a BP (Wk-

16401) was obtained from a sample of the overlying paleosol. Further details of radiocarbon 

dates that were obtained to infer the emplacement ages of debris-avalanche deposits from this 

study can be found in Table 2.2.  
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B Figure 2.15.  At its type section (2581432/6195939), the 
Te Namu debris-avalanche deposit is >5 m thick and 
contains pebble- to boulder-sized clasts as well as abundant 
rip-up clasts in a clay-rich matrix (A).  
It is overlain by two distinct organic paleosols that 
embrace two andesitic tephra beds and a pale pink silt 
layer (B). 

A 

Opua 

2 m 

2 m Te Namu 

A 

Opua 
Pungarehu 

Te Namu 

B 
Figure 2.16. At reference locality Okaweu 2, the Te Namu debris-
avalanche deposit is overlain by several hyperconcentrated-flow 
deposits as well as the Opua and Pungarehu Formations near the 
top of the section (A). Here, the Te Namu debris-avalanche deposit 
contains abundant ripped-up fragments of the underlying Hihiwera 
Peat (B). 
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2.5.3. Ihaia debris-avalanche / debris-flow deposit 

A cohesive debris-flow or runout debris-avalanche deposit (Ihaia) is exposed over c. 3.2 

km below the Hihiwera Peat from Okaweu 11 to Middleton Bay 4 (Fig. 2.17). At most outcrops 

it is c. 1 m thick, and up to 1.6 m at its type locality Middleton Bay 3. Here, the deposit is 

characterised by predominantly pebble-sized clasts and abundant pieces of wood in a clay-rich 

matrix (Fig. 2.18). Its base is marked by a thin layer with coarser cobble-sized clasts. A piece of 

wood from within the deposit at this location was dated at 31 522 ± 381 BP (Wk-19142) (cf. 

Table 2.2), which fits in well with the age of the directly overlying Hihiwera Peat. The deposit 

occurs near the bottom of the section and is underlain by fine-grained pumice-rich 

hyperconcentrated-flow deposits (Fig. 2.19).  

The stratigraphic position and age of the Ihaia deposit indicates that it might be a lateral 

equivalent to the Rama debris-avalanche unit (cf. Section 2.5.4). A direct correlation was not 

possible because the Rama is not exposed in coastal cliffs for another 8 km to the south. The 

deposit characteristics on the other hand are similar to the Otakeho debris-avalanche deposit (cf. 

Figure 2.17.  Map of the lateral coastal extent of the Ihaia debris-flow deposit and extrapolated distribution inland. 
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Section 2.5.6), which also contains abundant wood and shows a thin bouldery layer at some 

locations. The young radiocarbon age could in this case represent a dating error due to 

contamination with younger carbon leaching through the profile. A direct correlation with the 

Otakeho debris-avalanche deposit was also not possible because it first crops out 4.4 km farther 

south. A third and here favoured option is that the deposit was produced by a small separate 

debris avalanche that post-dated the Rama event and was roughly confined to the Opunake 

paleo-river system (cf. Chapter 3) between Heimama and Waiaua Streams. Due to its unclear 

origin, the debris avalanche/debris-flow deposit is here informally named Ihaia debris-flow 

deposit after Ihaia Road that runs roughly parallel to its interpreted dispersal axis.  

 

 

Figure 2.18. The c. 1.5 m thick Ihaia debris-flow/debris-avalanche deposit (DFD) consists of >90% matrix with only a 

 

few pebble-sized clasts and abundant pieces of wood at its type section Middleton Bay 3. It is overlain by the Hihiwera Peat. 
The arrow points to a hammer for scale (handle c. 30 cm long). 

Ihaia 
DFD 

Hihiwera Peat

1.5 m 
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2.5.4. Rama debris-avalanche deposit (redefined unit) 

The Rama debris-avalanche deposit represents the most prominent unit within the 

former Stratford Formation and was described by Neall et al. (1986) as a c. 50 000 years old 

debris-avalanche deposit with a minimum thickness of 10 m and a minimum volume of 1.5 km3. 

Later studies by Palmer & Neall (1991) and Palmer et al. (1991) referred to the deposit as 

Stratford Formation debris avalanche 1 with an inferred age of 48 000 years, a maximum 

observed thickness of 17 m, volume of 2.6 km3, and covering an area of 510 km2. Its lateral 

extent (32.1 km) was mapped by Palmer et al. (1991) and is similar to the data presented here. 

Redefining this debris-avalanche deposit was necessary to emphasize its distinct and mappable 

character and to replace the Stratford Formation with a more rigorous stratigraphic subdivision. 

It was named after Rama Road, which is located near Manaia township and runs roughly parallel 

to its interpreted dispersal axis. 

In this study, the Rama debris-avalanche deposit was correlated over a c. 25.5 km long 

stretch of coastline from Punehu 9B to Waingongoro 3 (Fig. 2.20). At its type section, 

Kaupokonui 1, the deposit is c. 5.5 m thick and characterised by pebble- to cobble- and few 

boulder-sized clasts and rip-up clasts in a clay-rich matrix (Fig. 2.21). It also contains large 

brecciated megaclasts up to 5.5 m across, which are common at several locations. It overlies the 

Ihaia debris-flow deposit and the Otakeho debris-avalanche unit (Fig. 2.23). The sequence 

overlying the Rama consists of a series of at least 9 hyperconcentrated-flow deposits with 

interbedded paleosols. These units are also exposed along Kaupokonui Stream near Kaupokonui 

township (Fig. 2.22).  

Reference locality Waiokura 5C corresponds to the Inaha Section described by 

McGlone et al. (1988). Here, the Rama debris avalanche forms a massive c. 8 m-thick marker unit 

near the top of the cliff with similar sedimentological characteristics to its type section (Fig 

2.24A-B). Fine-grained hyperconcentrated-flow deposits, fluvial sands and interbedded peat 

layers occur below the Rama and overlie the Inaha marine bench (cut into the Tertiary mudstone 

sequence at the bottom of the cliff). The Rama is directly overlain by a prominent c. 0.8-1 m 

thick peat sequence (Fig. 2.24B), which is here correlated with the Hihiwera Peat. A radiocarbon 

date of c. 33 300 a BP (ANU-1887, McGlone et al. 1988, cf. Table 2.1) gives a minimum age for 

the Rama debris-avalanche deposit. The top of the cliff section is marked by fluvial sands and 

gravel as well as several hyperconcentrated-flow deposits that thicken in a small channel near 

Inaha Stream. A c. 1.5-2 m thick soil has formed into the top of the volcaniclastic sequence. The 

maximum observed thickness of 12 m at Kaupokonui 7A suggests that the Rama is one of the 

most voluminous debris-avalanche deposits of the southern ring-plain succession.  
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megaclast 

Figure 2.21.  At its type section Kaupokonui 1, the Rama debris-avalanche deposit is c. 5.5 m thick and characterised by 
coarse clasts, few small rip-up clasts and a large brecciated megaclast in a clay-rich matrix. 

Figure 2.22. Near its type section, the Rama is overlain by stacks of fine-grained hyperconcentrated-flow deposits (HFDs) 
with interbedded fluvial sediments (Flu) that are best exposed further inland along Kaupokonui Stream. 

2 m 

rip-up 
clast 

HFDs 

HFDs 

Flu 

topsoil 

Flu 

Flu 
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Figure 2.24. At reference locality Waiokura 5C, the Rama 
dominates the cliff section. It is separated from the Tertiary 
mudstones by bedded marine and fluvial sands and several peat 
layers, including the Manaia Lignite (A). 
The debris-avalanche deposit is overlain by a prominent equivalent 
of the Hihiwera Peat (B). 

5 m 

A 

Manaia Lignite 

Rama 

Tertiary 

B 

1 m 

Debris-flow deposit 

Rama 

Otakeho 

Figure 2.25. An unnamed c. 1.3 m thick cohesive debris-flow deposit is exposed at Kaupokonui 1. It occurs above the 
Otakeho debris-avalanche deposit and is separated from the overlying Rama by cross-bedded fluvial sands. 

Fluvial sands 

Inaha wave-cut surface 

1.5 m 
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2.5.5. Unnamed debris-flow deposit (Kaupokonui Stream) 

An unnamed clay matrix-rich debris-flow deposit is exposed below the Rama debris-

avalanche deposit at Kaupokonui 1. It was referred to as Stratford Fm. 2 by Palmer et al. (1991) 

and described as having a maximum thickness of 1.5 m, a maximum width of 10.7 km, covering 

an area of 90 m2 with a volume of 0.1 km3. Palmer & Neall (1991) attributed this “muddy 

diamicton” to a small debris avalanche that was channelled down the Kaupokonui and 

Waingongoro catchments. In this study, the debris-flow deposit could not be correlated with 

units that occur along the Waingongoro River but was only mapped over c. 1 km from 

Kaupokonui 1-2B (Fig. 2.26).  

It is very matrix-rich and contains mainly pebble- and few cobble-sized clasts, which are 

mostly concentrated near the base of the deposit, giving it a normally graded appearance (Fig. 

2.25). It has a maximum thickness of c. 1.3 m at Kaupokonui 1 but rapidly wedges out. It was 

most likely deposited from the distal portions of a small debris avalanche that was confined to a 

paleo-Kaupokonui Stream. Due to its localised distribution and minor importance, the debris-

flow deposit has not been named. It was emplaced between 50-35 ka as indicated by its 

stratigraphic position between the Rama and Otakeho debris-avalanche deposits. 

 

Figure 2.26.  Mapped coastal extent of the unnamed debris-flow deposit and extrapolated inland distribution along a 
proto-Kaupokonui catchment. 
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2.5.6. Otakeho debris-avalanche deposit (redefined unit) 

A second prominent debris-avalanche deposit was recognised within the Stratford 

Formation (Palmer & Neall 1991; Palmer et al. 1991). This unit was informally named Stratford 

Formation debris avalanche 3 and was thought to have been emplaced c. 80 000 years ago 

(Palmer et al. 1991). Palmer & Neall (1991) described a maximum thickness of 6 m and 32.1 km 

lateral width, with the deposit covering an area of 370 km2 under >1 km3 volcaniclastic material. 

The unit is here named Otakeho debris-avalanche deposit after Otakeho Stream in south 

Taranaki. It was mapped from Taungatara 4 to Waiokura 3A over c. 24.5 km (Fig. 2.30). At its 

type section Wahamoko 10, the Otakeho debris-avalanche deposit is c. 2.5 m thick, massive and 

contains pebble- to cobble-sized clasts and small rip-up clasts in a clay-rich matrix (Fig. 2.27). 

Coarser clasts are rare and the matrix makes up >85% of the deposit. At this locality, abundant 

large holes represent tree casts but the deposit contains only small, scattered pieces of wood. The 

bottom half of the Otakeho has a greenish colour in contrast to the more yellow-brownish top, 

which is even more evident at Kaupokonui 1 (cf. Fig. 2.25). A thin soil has developed into the 

top of the Otakeho, which is separated from the overlying Manaia debris-avalanche deposit by a 

series of thick, coarse, channelised hyperconcentrated-flow deposits that grade into finer-grained 

hyperconcentrated-flow deposits and fluvial sediments (Fig. 2.31). The top of the cliff consists of 

coarse- and fine-grained hyperconcentrated-flow deposits that are covered by a thick soil. The 

sequence below the Otakeho is made up of thin hyperconcentrated-flow deposits and 

intercalated fluvial sands. Cross-bedded dune sands crop out at the very bottom of the section.  

Near reference locality Oeo 1, the Otakeho debris-avalanche deposit is only c. 1 m thick 

and overlies a peat layer rich in large pieces of wood and a thick yellow tephric soil (Fig. 2.28). A 

distinct soil was also formed within the top of the deposit. The bottom of the sequence is 

characterised by massive stacks of dune sands with intercalated peat beds and weakly developed 

paleosols. These distinct units are exposed below the Otakeho over a wide stretch of coastline 

from Taungatara 8 to Wahamoko 10, where they are replaced by stacks of hyperconcentrated-

flow deposits with interbedded fluvial sands. Reference locality Kaupokonui 5 is the type section 

of the Motumate debris-avalanche deposit and was described in detail above. Here, the Otakeho 

debris-avalanche deposit consists almost exclusively of a clay-rich matrix and contains only 

scattered, pebble-sized clasts mostly <5 cm in diameter. It is characterised by abundant ripped-up 

fragments of trees including large logs and large stratified rip-up clasts (Fig. 2.29). 

A wood sample from within the debris-avalanche deposit was collected at a location 

nearby but its age exceeded the limit of the radiocarbon method (cf. Table 2.2). Hence, the age of 

the Otakeho debris-avalanche deposit is estimated to be c. 55 ka. 
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A B 

Figure 2.27.  The Otakeho debris-avalanche deposit is c. 2.5 m thick at its type section Wahamoko 10 
(2600243/6181996).  

Figure 2.28. At Oeo 1, the deposit is only c. 1 m thick and overlies a distinct peat layer and a thick paleosol. 

Figure 2.29  At reference locality Kaupokonui 5, the Otakeho debris-avalanche deposit is very matrix-rich and contains 
several large tree logs (A) and large stratified rip-up clasts >3 m in diameter (B), both marked by arrows. 
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2.5.7. Unnamed debris-flow deposits (Punehu and Kaupokonui Streams) 

A thin clay matrix-rich debris-flow deposit occurs below the Otakeho debris avalanche 

deposit over a short stretch of coastline (0.7 km) from Taungatara 10 to Punehu 3A (Fig. 2.32). 

The deposit is c. 0.5-1 m thick, very matrix-rich (90-95%) and contains small, scattered pebble-

sized clasts (Fig. 2.33). It is separated from the overlying Otakeho debris-avalanche deposit by a 

thin paleosol. The debris-flow deposit is underlain by a thick paleosol and stacks of dune sands at 

Taungatara 10, and peat and pumiceous hyperconcentrated-flow deposits at Punehu 3A. The 

deposit was most likely emplaced by the run-out of a very small debris avalanche that was 

confined to a paleo-Punehu Stream in distal areas. 

Another clay-rich debris-flow deposit occurs at this stratigraphic position at 

Kaupokonui 1A (Fig. 2.32). It is c. 0.8 m thick and separated from the Otakeho by fluvial 

sediment (Fig. 2.34). It appears to have been produced by a similar process as the unnamed 

debris flow at Punehu, i.e. the distal run-out of a very small debris avalanche which was 

channelised down a paleo-Kaupokonui catchment. Both cohesive debris-flow deposits occur at a 

similar stratigraphic position and seem to be of similar age as the below-described Waihi debris-

avalanche deposit. Since a direct correlation was not possible, it is unknown if they represent 

lateral equivalents of the same large debris-avalanche event or individual smaller events. 

 

Pu 

Kau

Figure 2.32. Mapped coastal extent and extrapolated inland distribution of the two unnamed debris-flow deposits along 
proto-Punehu (Pu) and -Kaupokonui (Kau) catchments.
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Figure 2.33. In the Punehu catchment, the unnamed debris-flow deposit below the Otakeho debris-avalanche deposit is c. 
0.6 m thick, very matrix-rich and characterised by small,granule- to  pebble-sized clasts. 

Figure 2.34. In the Kaupokonui catchment, a c. 0.8 m thick unnamed debris-flow deposit occurs below the Otakeho. It is 
underlain by fluvial sands (Flu) and hyperconcentrated-flow deposits (HFDs). 

Debris-flow deposit 

Dune sands 
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Debris-flow deposit 
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2.5.8. Tokaora debris-avalanche deposit (new unit) 

The Tokaora debris-avalanche deposit has not been described previously and was 

named after Tokaora township in south Taranaki. It is exposed over c. 2 km of coastline from 

Waingongoro 2a-5 (Fig. 2.36). At its type section Waingongoro 5, the deposit thickens to c. 3 m 

in a small paleo-channel and wedges out to the east (Fig. 2.35A). It is characterised by pebble- to 

cobble-sized scattered clasts in a dark brownish matrix and a distinct yellowish top, separated 

from a darker basal part by a sharp and wavy boundary (Fig. 2.35B-C). Otherwise similar deposit 

characteristics and clast sizes suggest that the sharp colour difference of the matrix was produced 

by different degrees of weathering and diagenesis of the deposit surface rather than 

sedimentological differences. The Tokaora is overlain by bedded grey transitional 

hyperconcentrated-flow/streamflow deposits and separated from the underlying Waihi debris-

avalanche deposit by a thin layer of rounded fluvial pebbles and sands (Fig. 2.37). The bottom of 

the cliff section is made up of bedded sands with intercalated paleosols and Tertiary mudstone. 

At reference locality Waingongoro 2-2a, the Tokaora debris-avalanche deposit slopes 

down from the higher ridge of Tertiary mudstones into the deep Waingongoro paleo-valley, but 

subsequent erosion has removed it within the centre of the valley.  

The small lateral extent of the Tokaora debris-avalanche deposit suggests that it was 

produced by the channelised run-out of either a smaller debris avalanche or the marginal portion 

of one that was directed to the east, similar to the Ngaere event. Its age can only be roughly 

estimated from its stratigraphic position below the Otakeho and above the Waihi debris-

avalanche deposits suggesting approximately 60 ka. 
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B C 

Figure 2.35. The Tokaora debris-avalanche deposit thickens in a small channel at its type section Waingongoro 5 
(2614414/6178412) and is shown in A. It is characterised by small, predominantly pebble-sized clasts in a dark 
brownish matrix and typically has a yellowish weathered top, marked by white arrows (B-C).  
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2.5.9. Waihi debris-avalanche deposit (new unit) 

The Waihi debris-avalanche deposit is a formerly unknown unit, named after Waihi 

beach near Hawera in south Taranaki. It is exposed over 17.8 km from Waiokura 2A to Waihi 

6B, where the volcaniclastic sequence wedges out and the uplifted Tertiary mud- and sandstone 

succession forms the entire cliff section (Fig. 2.40). The Waihi debris-avalanche deposit is c. 4 m 

thick at its type section Waihi 2. The deposit contains pebble- and cobble-sized clasts (typically 

<10 cm) in a clay-rich matrix and has a high content of pumice clasts. Larger clasts are 

concentrated in a c. 1 m-thick bouldery basal layer (Fig. 2.38). Secondary clasts are abundant, 

including ripped-up fragments of mudstone and pieces of wood. The top of the cliff consists of 

fluvial sands and a thin hyperconcentrated-flow deposit, capped by a thick soil (Fig. 2.41). The 

Waihi directly overlies the Waingongoro debris-avalanche deposit, which shows similar 

sedimentological characteristics (cf. Section 2.5.10).  

At reference locality Waihi 5A, the Waihi debris-avalanche deposit contains pebble- to 

cobble- and some boulder-sized clasts including several large, rounded megaclasts (>5 m across), 

abundant small (c. 0.2-0.5 m in diameter) to fewer medium-sized (1-1.5 m across) rip-up clasts 

and pieces of wood (Fig. 2.39A-B). The deposit is c. 5 m thick and separated from the underlying 

Waingongoro debris-avalanche deposit by a distinct paleosol. At Waingongoro 4A, the Waihi and 

Waingongoro debris-avalanche deposits thicken in a small channel. Here, the Waihi appears to 

consist of two gradational units with different sedimentological characteristics. These most likely 

represent two pulses of a single collapse series. The bottom unit ranges in thickness from 3-5 m 

and is exceptionally coarse. It contains large cobble- to boulder-sized clasts and abundant 

brecciated megaclasts of the same lithology (Fig. 2.39C). In contrast, the upper unit thickens to 2-

3 m and is similar to the Waihi at other locations. It is matrix-rich and contains pebble- to 

cobble-sized clasts as well as small rip-up clasts. 

The debris-avalanche deposit is thickest at Waihi 6 (>9 m), where it filled a small 

channel. The overall deposit thickness, its maximum thickness of 9 m at a runout distance of c. 

45 km, and its sedimentological characteristics suggest that the Waihi debris-avalanche deposit is 

of very large volume. The course of the debris avalanche might have been similar to that of the 

Ngaere debris avalanche with the main body of the flow being directed to the east and a marginal 

part flowing southward to the current coastline area. This distribution pattern would explain the 

limited lateral extent and considerable thickness of the deposit. But since there are no outcrops 

available that cut deep enough into the eastern ring-plain succession, the distribution of the three 

southern debris-avalanche deposits (Tokaora, Waihi and Waingongoro) can only be speculated. 
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Figure 2.38.  The Waihi debris-avalanche deposit shows a distinct coarse basal layer at its type section Waihi 2 
(2617078/6176430) and is sedimentologically similar to the underlying Waingongoro debris-avalanche deposit.  
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Figure 2.39. At reference locality Waihi 5A, the Waihi debris-avalanche deposit is c. 5 m thick and characterised by large, 
rounded megaclasts (A) and abundant rip-up clasts (B). At Waingongoro 4A, the deposit thickens in a small channel and 
consists of a coarse bottom unit with large cobble- to boulder-sized clasts and abundant brecciated megaclasts and a thinner 
upper part characterised by smaller clasts and small rip-up clasts (C). 
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The emplacement age of the Waihi can only be estimated from its stratigraphic position. 

It predates the Otakeho and Tokaora events and overlies the Oeo and Waingongoro debris-

avalanche deposits, giving an approximate age range of c. 80-50 ka (assumed to be emplaced 

most likely at 70 ka).  

2.5.10. Waingongoro debris-avalanche deposit (new unit) 

The Waingongoro debris-avalanche deposit was named after Waingongoro River and 

has not been described elsewhere. It shows similar distribution and deposit characteristics as the 

overlying Waihi unit but is of smaller volume. It was mapped over 16.6 km from Waiokura 2A to 

Waihi 6 (Fig. 2.44). At its type locality Waihi 5, the deposit is about 5 m thick and contains 

pebble- to cobble-sized clasts, including a high content of pumice clasts, few larger boulder-sized 

clasts as well as small rounded rip-up clasts in a clay-rich matrix (Fig. 2.42A). Rip-up clasts 

become more abundant a few hundred metres east at Waihi 5C (Fig. 2.42B). The deposit is 

underlain by a thick laminated soil and separated from the overlying Waihi debris-avalanche 

deposit by a thin but distinct paleosol (Fig. 2.45). A thick laminated soil/peat occurs above the 

Waihi, which is covered by a thick series of bedded sands with intercalated thin peat beds and a 

thick soil at the top of the section. The sequence below the Waingongoro debris-avalanche 

deposit consists of bedded sands that are interbedded with thick soil and peat layers.  

In several locations, the Waingongoro debris-avalanche deposit is characterised by a 

coarse basal layer similar to the Waihi. At reference locality Waingongoro 6, this zone of 

subrounded to subangular cobble- to boulder-sized clasts is very distinct and c. 0.5 m thick (Fig. 

2.43). The upper part of the 1.6 m thick deposit is characterised by smaller clasts. The sequence 

at this location shows a similar stratigraphy as the type section but the two debris-avalanche 

deposits directly overlie each other and lack a paleosol between. The thin, laminar-bedded sands 

above the Waihi are interpreted as being emplaced from transitional hyperconcentrated 

flows/dilute stream flow with interbedded fluvial sands, while the sands below the debris-

avalanche deposits more likely represent dune and beach sands.  

Similar to the Waihi, the age of the Waingongoro debris-avalanche deposit could only 

be estimated based on its stratigraphic position below the Otakeho and Tokaora and above the 

Oeo debris-avalanche deposits. It is thought to have been emplaced around 75 ka, with respect to 

the possible age of the Waihi. The interbedded thin soil appears to represent only a short time 

break between the two debris-avalanche deposits and is often missing, indicating that they were 

most likely emplaced within a relatively short period of time. However, it is impossible to 

precisely determine the age of these two units without further dating. 
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Figure 2.42. At its type section Waihi 5 (2620264/6175098), the Waingongoro debris-avalanche deposit is c. 5 m thick 
and characterised by abundant small rip-up clasts of the underlying bedded sands. It is overlain by the Waihi debris-
avalanche deposit (A) from which it is separated by a thin paleosol (B).
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Waihi 

Waingongoro 

Waihi 

Waingongoro 

2 m 

A 

paleosol 

Figure 2.43. In some locations, the Waignongoro debris-avalanche deposit shows a distinct basal layer of subrounded to 
subangular cobble- to boulder-sized clasts and has a similar appearance as the overlying Waihi. 
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2.5.11. Oeo debris-avalanche deposit (new unit) 

The Oeo debris-avalanche deposit is a previously unrecognised unit, which was named 

after Oeo Stream in south-west Taranaki. It crops out at the very bottom of the cliff section in 

two locations, Oeo 4B and 7 (Fig. 2.50). At its type section Oeo 7, the deposit forms a c. 4.5 m-

high and c. 20 m-wide mound at the bottom of the sequence (Fig. 2.48A). The deposit is 

characterised by a brecciated, almost clast-supported fabric with little matrix. Clasts range in size 

from a few cm to c. 1 m in diameter (Fig. 2.48B). The largest lava blocks are fractured and show 

characteristic jigsaw cracks. The deposit appears to consist of several monolithologic domains, 

which are even more obvious at Oeo 4B. The Oeo debris-avalanche deposit is directly overlain 

by a sequence of bedded dune sands with intercalated paleosols and peat beds, including the 

Puketapu buried forest, that wedges against the mound and is not exposed on its top (Fig. 2.51). 

The mound and the sand wedges either side are overlain by the Otakeho debris-avalanche 

deposit followed by a series of at least seven hyperconcentrated-flow deposits with interbedded 

paleosols. The upper part of the sequence consists of the Manaia debris-avalanche deposit in turn 

overlain by at least seven hyperconcentrated-flow deposits with intercalated soils that are capped 

by a thick soil.  

A second debris-avalanche mound is exposed at reference locality Oeo 4B. The mound 

is larger than at the above described section, with a height of c. 5-6 m and a width of c. 40 m (Fig. 

2.49A-B). The deposits wedging on either side of the mound consist of bedded sands with 

intercalated soil/peat beds and the prominent Puketapu buried forest, which is here characterised 

by a soil with a tree stump in growth position (Fig. 2.49C). The top of the sequence is mostly 

overgrown but appears very similar to Oeo 7. The Oeo debris-avalanche deposit is characterised 

by several monolithologic domains that represent individual megaclasts with different 

sedimentological characteristics (Fig. 2.49D). The top of the mound is clast-supported and 

consists exclusively of brecciated, strongly altered andesite. The shattered clasts range in size 

from a few cm to >1 m across. In contrast, a small megaclast and the domain below are 

characterised by a fine-grained matrix and angular-subangular clasts of various sizes (Fig. 2.49E). 

The bottom layer is matrix-rich and contains predominantly subrounded-rounded clasts. The 

base of the deposit is not exposed.  

Due to its stratigraphic position and the thick overlying sequence, the uplift rates in 

South Taranaki were not sufficient to excavate the Oeo debris-avalanche deposit above the 

present day sea-level. Exposure of the top of the deposit is limited to two locations where it 

forms thick mounds that protrude out of the paleo-landscape with later deposits wedging against 

them. These debris-avalanche mounds typically occur near the main axis of dispersal, suggesting a 
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south-westerly distribution of the Oeo. The dispersal limit of the deposit is indicated by its 

absence in exposed sequences of assumed similar age above the Tertiary mudstones from 

Waiokura 5-7. The age range of the Oeo debris-avalanche deposit is given by the closely 

overlying c. 80 ka Puketapu buried forest and the cutting of the Inaha marine bench into the 

underlying Tertiary mudstone sequence at c. 105 ka. Its emplacement age is here estimated at c. 

85-90 ka since it closely predates the formation of the Puketapu buried forest. 

 

Figure 2. 48. A c. 4.5 m-thick mound of the otherwise buried Oeo debris-avalanche deposit crops out at the bottom of the 
cliff at its type section Oeo 7 (A). At this location (2593403/6184081) the deposit is characterised by a brecciated, almost 
clast-supported fabric (B). Hammer for scale, c. 30 cm long. 

A 

B 

2 m 
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Figure 2.49. A second c. 6 m- high mound of the Oeo-debris avalanche deposit crops out at Oeo 4B (A-B). It is overlain by 
the distinct Puketapu buried forest, which is characterised by a soil with a preserved tree stump in growth position (C). The 
Oeo debris-avalanche deposit consists of several monolithologic megaclasts with different sedimentological characteristics (D), 
arrow points to person for scale. The top of the mound is brecciated and clast-supported, while other domains (marked by 
white dotted line) consist of fine-grained matrix and angular-subangular clasts of various sizes (E). 
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2.5.12. Mangati debris-avalanche deposit (redefined unit in Unorth TaranakiU) 

An unnamed debris-avalanche deposit of unknown origin is exposed in coastal cliffs 

near Bell Block (Alloway 1989), which is here named Mangati debris-avalanche deposit after its 

occurrence east of the Mangati Stream. Its lateral extent was not mapped during this study since 

this project focused on the south-western ring-plain succession. However, the unit was included 

in the geochemical study of debris-avalanche deposits (cf. Chapter 4) in order to determine its 

origin. Therefore, the deposit was also studied in terms of its sedimentological characteristics 

over a coastal stretch of c. 2 km east of Bell Block. Here, the deposit is characterised by a 

maximum thickness of 6 m and coarse clasts in a clay-rich matrix (Fig. 2.52). Over most of its 

exposure along the coast north-east of Bell Block, its base is marked by a distinct layer of cobble- 

to boulder-sized rounded to subangular clasts. In some locations, large logs are found within this 

basal layer, which protrude from the deposit at a c. 90° angle, roughly parallel to flow direction. It 

is underlain by cemented, iron-stained, high-angle cross-bedded sands with occasional large tree 

stumps in growth position. These sands are part of the coverbed sequence of the NT3/Ngarino 

marine bench. The Mangati debris-avalanche deposit is separated from the overlying Motunui 

Formation by a thick peat with interbedded andesitic tephra layers. 

 

Figure 2.52. The Mangati debris-avalanche deposit in north Taranaki is characterised by a basal zone of coarse cobble-to 
boulder-sized clasts and large protruding tree logs. It occurs above iron-stained cross-bedded sands and is overlain by a thick 
sequence of peat and andesitic tephra beds. 

2 m 
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Some sedimentological characteristics indicate that the Mangati might represent a lateral 

equivalent of the Maitahi Formation, i.e. the occurrence of ripped-up fragments of mudstone and 

abundant large hornblende crystals within the matrix, in particular in the bottom part of the 

deposit. However, its stratigraphic position overlying the c. 210 ka NT3/Ngarino Marine Terrace 

(cf. Alloway 1989) and its geochemical characteristics (cf. Chapter 4) suggest that it is 

considerably younger. It seems unlikely that the Mangati debris avalanche was produced by a later 

failure of Pouakai Volcano since it was assumed that the enormous Maitahi collapse destroyed 

most of the previous edifice. Also, its distribution pattern and the geochemical composition of 

the contained clast assemblages (cf. Chapter 4) are similar to the overlying Motunui and Okawa 

Formations, suggesting that it most likely represents an early event from an ancestral Mt. 

Taranaki. Its apparent resemblance to the Maitahi Formation could be derived from 

incorporation of underlying Maitahi debris during transport.  

 

 

TABLE 2.2.  Radiocarbon analytical data of selected Taranaki debris-avalanche deposits (DAD). 

Debris- 
avalanche 
unit 

Sample 
number 

 

Sample type, 
stratigraphic 

position 

Laboratory 
number 

Analysis 
method* 

Radiocarbon 
date 

(a BP) 

Inferred 
age 
(ka) 

Pungarehu    AZ05-D01 Peat directly 
below DAD 

 Wk-16398/ 
NZA-22349 

AMS 20 776 ± 170 c. 20 

 AZ05-D11 Organic soil 
above DAD 

 Wk-16401  LSC 25 198 ± 167 c. 29 Te Namu   

 AZ05-D14b Tree log 
from DAD 

 Wk-16402/ 
NZA-22895 

AMS 29 074 ± 399  

Rama    AZ06-D06 Thick peat 
above DAD 

 Wk-19143  LSC 28 824 ± 237 > 35 

Ihaia  AZ06-D04 Wood from 
DAD 

 Wk-19142  LSC 31 522 ± 381 c. 31 

Otakeho    AZ06-D01 Wood from 
DAD 

 Wk-19140  LSC  background  c. 55 

Waihi  AZ06-D02 Large log 
from DAD 

 Wk-19141  LSC  background  c. 70 

*AMS = Accelerator Mass Spectrometry; LSC = Liquid Scintillation Counting. 
Sample locations and grid references are given in Appendix 3A. 
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2.6. DISTRIBUTION OF KNOWN FORMATIONS IN THE STUDY AREA 

2.6.1. Opua Formation  

In the study area, the Opua debris-avalanche deposit makes up the top of the cliff 

sections over a wide stretch of coastline and has a maximal medial width of 14.6 km. It is 

exposed from Arawhata 3-Punehu 1 (11.3 km) with a small marginal lobe being confined to Ouri 

Stream, from Punehu 14-Ouri 1A (0.7 km). This observation matches the coastal distribution of 

the Opua Formation as marked on the geological map of Taranaki by Neall & Alloway (2004) 

(Fig. 2.54). The deposit is thickest (5-8 m) between Heimama and Otahi Streams, along its main 

dispersal axis. Here, it is characterised by abundant pebble- to boulder-sized clasts and large 

megaclasts in a clay-rich matrix (Fig. 2.53). Several small mounds <2 m in height occur in coastal 

cross-sections. Towards the margins, size and number of original clasts decrease while the 

number of rip-up clasts increases. The deposit is covered by a thick soil that makes up the 

present-day surface and typically overlies the distinct Oakura Tephra.  

 

 

Figure 2.53. At Okaweu 10, the Opua debris-avalanche deposit is c. 4 m thick and characterised by cobble-to boulder-
sized clasts in a clay-rich matrix.  
 

2 m 
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2.6.2. Pungarehu Formation 

The Pungarehu debris-avalanche deposit occurs in coastal cliff sections in the north-

western part of the study area over c. 11.5 km. It is continuously exposed from Arawhata 1 to 

Okaweu 6 (2.3 km) and Middleton Bay 3 to Taungatara 2 (4.5 km) and is preserved in small 

channels at Heimama 10 and Otahi 5-7. It last appears in a small channel at Taungatara 9A (Fig. 

2.56). The mapped extent of the Pungarehu debris-avalanche deposit in the study area 

complements the geological map of Neall & Alloway (2004) since the earlier work displays only 

the distribution of surficial deposits. The Pungarehu is thickest at the northern limit of the study 

area (4-8 m) and rapidly thins to c. 1 m at Okaweu 6. The deposit is characterised by abundant 

cobble- to boulder-sized clasts, shattered clasts and megaclasts that become less abundant and 

smaller with decreasing deposit thickness, while the matrix-content and the number of small rip-

up clasts increase (Fig. 2.55). The second main lobe is characterised by a very matrix-rich deposit 

of orange-reddish colour with scattered small clasts and a varying thickness of c 0.8-2 m. The 

Pungarehu is separated from the overlying Opua Formation by the Okato Tephra, one or several 

thin, fine-grained hyperconcentrated-flow deposits of Warea age and the Oakura Tephra. It 

typically directly overlies a laminated soil that contains the Kawakawa Tephra. 

 
Figure 2.55. In the second, marginal lobe of distribution, the Pungarehu debris-avalanche deposit is characterised by an 
orange-reddish matrix and few, predominantly pebble-sized clasts. It is c. 2 m thick at Mangahume 4. 

2 m 

Pungarehu 

Opua 
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2.6.3. Ngaere Formation 

The Ngaere debris-avalanche deposit crops out in the southern part of the study area 

and was correlated over c. 10.7 km laterally. It is exposed continuously from Kaupokonui 5 to 9A 

(c. 4 km) and occurs as thin, matrix-rich, lenticular deposit at Waiokura 6AA (Inaha Stream), 6C, 

8 and Waingongoro 1a-3 (Fig. 2.59). Previously, the Ngaere Formation was only mapped over a 

short stretch of coastline east of the Waingongoro River (Neall & Alloway 2004) but was here 

found to extent farther to the west. The distribution pattern suggests that the marginal parts of 

the debris avalanche were channelled down and reached the present-day coast along one larger 

(Waiokura Stream) and several small paleo-valleys.  

The deposit is thickest (c. 4.5-5 m) at Kaupokonui 8, where it is characterised by pebble- 

to cobble- as well as boulder-sized clasts in a clay-rich matrix, and thins rapidly to 1.5 m towards 

the margins of this distal lobe (Fig. 2.57). It is overlain by fluvial and hyperconcentrated-flow 

deposits with intercalated paleosols/peat beds and in the westernmost locations by the Motumate 

debris-avalanche deposit. Below it is typically separated from the Rama debris-avalanche deposit 

by a series of hyperconcentrated-flow deposits with interbedded paleosols. 

 

Figure 2.57. At Kaupokonui 6, the Ngaere debris-avalanche deposit is c. 3.5 m thick and characterised by coarse pebble- to 
boulder-sized clasts. It is overlain by the Motumate debris-avalanche deposit and separated from the underlying Rama by a 
thick hyperconcentrated-flow deposit. 
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Near the mouth of the Waingongoro River, the deposit is confined to a fluvial channel 

within the paleo-Waingongoro valley that was cut into the underlying Waihi debris-avalanche 

deposit (Fig. 2.58). Both debris-avalanche deposits are interbedded with a thick sequence of 

cross-bedded fluvial sands and gravel confirming the long-lasting existence of this deeply cut 

river valley. The large unconformity reflects filling of the paleo-valley since the Waihi collapse 

while subsequent erosion lead to incision of a new fluvial channel before the Ngaere event. This 

channel was cut into the Waihi unit and filled by the Nagere debris-avalanche deposit. Fluvial and 

volcaniclastic sediments that were deposited in the valley afterwards have been gradually eroded 

until present day. 

 

B 

A 

Waihi 

Ngaere 

Waihi 

Ngaere 

2 m 

Figure 2.58. Within the Waingongoro River valley, the Ngaere debris-avalanche deposit fills a small fluvial channel that 
was cut into the underlying Waihi debris-avalanche deposit and older fluvial sediments (A). The arrow marks the location of 
the cut and fill inset, which is shown as close-up in B. 

2 m 
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2.7. FREQUENCY, VOLUME AND DISTRIBUTION OF TARANAKI DEBRIS-
AVALANCHE DEPOSITS 

At least 14 large and several smaller debris-avalanche deposits have been recognised in 

this and previous studies of the >200 ka record of volcanic activity at Mt. Taranaki (Table 2.3). 

This implies that major slope failures take place on-average every 13 ka. However, collapse events 

are not evenly spaced over time and appear to have become more frequent with maturity of the 

volcano, 6 having occurred in the last 35 ka. The number of debris-avalanche events shown here 

is considered a minimum and does not represent a true estimate of frequency. Other units might 

be buried in the ring-plain sediments, in particular to the east of the volcano where outcrops are 

rare and to the west where no significant uplift has occurred to view older parts of the 

succession. Apparent gaps in the reconstructed volcanic history may therefore simply reflect 

absence of preservation of units, or burial, rather than changes in volcanic behaviour.  

The distribution of the pre-Ngaere debris-avalanche deposits in south-western and 

southern Taranaki was determined from correlation of deposits exposed in coastal cross-sections. 

Due to lack of longitudinal exposure towards the edifice and in some cases incomplete lateral 

exposure where the tilted strata dips below the surface, or the sequence is eroded by fluvial and 

lahar channels, the estimated distributions do not necessarily represent the maximum extent of 

the units. Also, it was not possible to determine the true run-out distances of the Taranaki debris 

avalanches. Their deposits are known to continue onshore for at least 25-45 km from source 

(Table 2.3), and a minimum of a further 6 km offshore to the north (Alloway 2005) and >8 km to 

the west (McDougall & Gibb 1970; Neall 1979). This prevented contouring the complete deposit 

thickness, so that deposit volumes could not be calculated with confidence. Hence, volume 

estimates are minimal and could only be based on comparison to known distributions, maximum 

recorded thicknesses and deposit characteristics of the better exposed surficial deposits in medial 

coastal exposures.  

The deposit volumes of the studied debris-avalanche units were roughly classed in 

relation to the Opua, Pungarehu and Ngaere events (Table 2.3). The Ihaia and unnamed debris 

flows were of very small volume compared to the Opua debris avalanche and hence were 

restricted to small channels when reaching the present day coastline, resulting in thin matrix-rich 

deposits of limited lateral extent. The Motumate was produced by a debris avalanche that was 

confined to major paleo-channels in distal areas. It was significantly smaller than the Opua, but of 

larger volume than the clay-rich debris flows. The Te Namu and Otakeho debris-avalanche 

deposits show similar deposit characteristics, maximum medial thickness and lateral extent as the  
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TABLE 2.3.   Overview of some aspects of Mt. Taranaki debris-avalanche deposits. 

Debris  
avalanche / 
flow unit 

Age 
 
(ka) 

Direction of 
collapse 

 

Max. medial 
thickness 

(m) 

Max. medial 
width 
(km) 

Calculated or 
estimated 
volume 

Runout 
distance 

(km) 

Opua    6.6 * SW 8/6 * 25**  c. 0.35 km3 * 27+ 

Motumate    14-10 † S 3.5 10.8  <Opua  31+ 

Pungarehu    20 § W  8/>16 * 35**  >7.5 km3 * 26+ 

Ngaere   23 # SE 5  10.7/40**  c. 5.85 km3 # 34+ 

Te Namu    29 § SW >5 >8.8  ~ Opua 26+ 

Ihaia   31 § SW 1.6 3.2  <<Opua 25+ 

Rama    >35 § S 12 25.5 <Pungarehu  34+ 
      >2.6 km3 ††  

Unnamed dfd  35-50 † S 1.3 1  <<Opua 30+ 

Otakeho    c. 55 § S >4 24.5  ~ Opua 32+ 
      >1.0 km3 ††  

Unnamed dfd  55-70 † SW 1 0.7  <<Opua 26+ 

Unnamed dfd  55-70 † S 0.5 0.1  <<Opua 30+ 

Tokaora   c. 60 † S 2.5 2  <<Ngaere 35+ 

Waihi    c. 70 † S 8 17.8  >Ngaere 45+ 

Waingongoro    c. 75 † S 5 16.6  ~ Ngaere 44+ 

Oeo    c. 85-90 † S >6 >21 ~ Pungarehu? 34+ 

Okawa    c. 105 # NE 4 9**  c. 3.62 km3 # 39+ 

Motunui   >130 # NE 6 17**  >Okawa 41+ 

Mangati  >210 # NE 6 ??  ~ Okawa? 39+ 

* Neall (1979).  
† Chronostratigraphy this study. 
§ Radiocarbon dating this study (cf. Table 2.2). 
# Alloway et al. (2005).  
** Neall & Alloway (2004).  
†† Palmer & Neall (1991); Palmer et al. (1991). 
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Figure 2.60. Cross-section of the medial Mt. Taranaki ring-
plain succession, exposed in coastal cliff sections of the western to
southern Taranaki peninsula. Displayed are the dominant
marker horizons, including debris-avalanche and cohesive debris-
flow deposits, prominent peat and soil layers t

as well as Hauriri dune sands and the underlying
Tertiary mudstone. The extent of the Opunake and Lizzie Bell
river systems is also marked. Individual lahar deposits and
channels could not be displayed due to their limited lateral extent.
Pu = unnamebd debris-flow deposit in Punehu cathcment, Kau

Kaupokonui , Pbf
= Puketapu buried forest, ML = Manaia lignite.

hat could be laterally
correlated

= unnamebd debris-flow deposit in cathcment
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Opua Formation, indicating that they were of similar size, even though the Opua was calculated 

to have a volume of c. 0.35 km3 (Neall 1979) compared to >1.0 km3 for the Otakeho event 

(Palmer & Neall 1991; Palmer et al. 1991). The suggested deposit volume for the Opua 

Formation appears to be too low compared to estimates of the Pungarehu (Neall 1979), Ngaere 

(Alloway et al. 2005) and Otakeho (Stratford Fm. 3 of Palmer & Neall 1991; Palmer et al. 1991) 

events. Deposit characteristics and thickness of the Rama debris-avalanche deposit indicate that it 

is of larger volume than the Opua but considerably smaller than the Pungarehu Formation. A 

direct comparison to the 5.85 km3 Ngaere is not possible due to the different dispersal directions 

of the two units, but the larger lateral extent of the Ngaere suggests that the size of the Rama 

debris-avalanche deposit lies between the Opua and Ngaere. This matches the calculated volume 

of >2.6 km3 by Palmer & Neall (1991) and Palmer et al. (1991). The dispersal direction of the 

Waihi and the slightly smaller Waingongoro debris-avalanche deposits is similar to the Ngaere 

and their deposit thickness and lateral extent imply that they may have been at least of 

comparable if not larger volume. The maximum medial thickness and lateral distribution of the 

Oeo debris-avalanche deposit are unknown since it only crops out at a few locations at the 

bottom of the sequence. Similar deposit characteristics as the Pungarehu Formation close to its 

dispersal axis suggest that the Oeo event was of a comparable size. The oldest debris-avalanche 

deposits along the northern coast show a similar distribution, with the Motunui being thicker and 

laterally more extensive and hence of larger volume than the c. 3.62 km3 Okawa Formation 

(Alloway et al. 2005). 

The distribution of Mt. Taranaki debris-avalanche deposits was mainly controlled by the 

direction of collapse. Failures occurred on similar sectors of the edifice during certain periods, 

indicating that different parts of the edifice were more unstable and thus vulnerable to collapse at 

different times throughout the volcanic history (Table 2.3). The apparent distribution pattern of 

debris-avalanche deposits may reflect preservation and exposure of specific time packages of the 

succession or could indicate that the direction of collapse was influenced by internal and/or 

external processes, such as local stress regimes within the volcano resulting from its internal 

structure, a dominant direction of dike emplacement, the regional tectonic stress field or the 

slope of the subvolcanic basement (Siebert 1984; Vallance et al. 1995; van Wyk de Vries & Borgia 

1996; Lagmay et al. 2000). 
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2.8. LAHAR STRATIGRAPHY AND CORRELATIONS 

Hyperconcentrated-flow and debris-flow deposits were grouped into stratigraphic 

intervals, because they lack individual diagnostic properties, are numerous and the narrow 

distribution of single flow units did not allow distinction of individual events. These deposit 

packages were correlated by distinct marker horizons interbedded with them, including debris-

avalanche deposits, continuous paleosols and peat layers but these were not sufficient to allow 

lateral correlation of deposits between catchments. Instead, it appears more likely that the 

grouped deposits were produced by separate groups of lahars, representing longer periods of 

sedimentation. In some cases, prominent lithological characteristics allowed the distinction of 

different series of hyperconcentrated-flow deposits, i.e. pumice-rich versus dense andesite-rich 

units.  

At any one location, the ring-plain succession contains similar types of deposits, i.e. 

debris-avalanche and cohesive debris-flow deposits, hyperconcentrated-flow and non-cohesive 

debris-flow deposits with intercalated paleosols, peat layers and few thin tephra beds, channelised 

coarse non-cohesive debris-flow deposits, localised fluvial sediments, and dune sands, reflecting a 

repeating pattern of deposition. Hence, even though the studied coastal cross-sections represent 

only restricted insights into the lahar history at Mt. Taranaki, they provide an overview of 

reccurring types of flows and can be regarded as a window into the likely composition of buried 

parts of the succession. 

A schematic overview of debris-avalanche marker beds, prominent peat layers and 

mappable sedimentary units is presented in Fig. 2.60. Hyperconcentrated-flow deposits and 

channelised debris-flow deposits are common in all parts of the studied volcaniclastic sequences 

in west, south-west and south Taranaki but could not be illustrated on this large scale because of 

their limited extent. The large number of identified events implies that lahars occurred frequently 

throughout the entire volcanic history of Mt. Taranaki.  

2.9. REVISED STRATIGRAPHY OF THE MT. TARANAKI RING-PLAIN 

SUCCESSION 

The stratigraphic overview of volcanic and volcaniclastic deposits at Mt. Taranaki has 

been established by several workers over the past 80 years, during which the understanding of 

volcanic successions has changed significantly. This is reflected in a patchwork of general to more 
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specific, details on the developing geologic map. Early mapping units such as the “Stratford and 

Opunake Lahars” were defined mainly based on their geomorphological properties and soil cover 

and contained a range of different types of deposits that were believed to have formed different 

“ring-plains” (Hay 1967; Grant-Taylor 1964a, 1964b; Grant-Taylor & Kear 1970). In contrast, 

later studies distinguished individual flow units according to their sedimentological characteristics, 

although also often grouping deposits of similar origin and age (Neall 1979; Alloway 1989; Neall 

& Alloway. 2004; Alloway et al 2005).  

The different concepts resulted in a complex stratigraphic terminology for the ring-plain 

succession at Mt. Taranaki. A wide range of different stratigraphic elements were defined as 

individual formations: 

• Single debris-avalanche deposits (Motunui, Okawa, Ngaere, Pungarehu, and Opua 

Formations). 

• Groupings of deposits of the same or similar origin and thus with similar 

characteristics that were emplaced during a certain time span but in different areas, 

such as debris-flow and hyperconcentrated-flow deposits confined to different 

catchments (Warea, Kahui, Ngatoro, and Te Popo Formations). 

• Groupings of different types of deposits that accumulated over a defined period of 

time (ring-plains of laharic agglomerate), distinguished by the geomorphology of the 

landscape (Opunake and Stratford Formations).  

Other terms used to define groupings of deposits within the stratigraphic succession are 

based on origin, sedimentological or geomorphic characteristics, such as:   

• Volcanic flow deposits (Kahui debris flows, Maero block-and-ash-flow deposits) 

• Flood deposits (Hangatahua gravels and sands) 

• Tephra beds (e.g. Inglewood Tephra, Burrell Lapilli, Saunders Ash, Newall Ash and 

Lapilli)  

• Lava flows (e.g. Summit Group, Staircase Lavas, Warwicks Castle, The Turtle) 

This inconsistent terminology has created a non-uniform stratigraphic view of the Mt. 

Taranaki volcanic succession. Also, remapping the former Opunake and Stratford Formations 

showed a greater complexity of volcaniclastic lithofacies and allowed a more detailed 

reconstruction of the past volcanic activity at Mt. Taranaki that needs to be added to the 

previously established stratigraphy (Table 2.4).  
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TABLE 2.4. Previous lithostratigraphic units in comparison to new or redefined debris-avalanche deposits. 

Previous work This study 

Formation 
Debris-avalanche 
deposits 

Age 

New and redefined 
debris-avalanche 
(DAD) and debris-
flow (DFD) deposits 

Age 

Opua Fm. Opua c. 6.6 ka1  c. 6.6 ka 

Warea Fm. Wr3 lobe 12-14 ka2 Motumate DAD c. 12 ka 

Pungarehu Fm. Pungarehu 22.1 ka1  c. 20 ka 

Ngaere Fm. Ngaere c. 23 ka3,4  c. 23 ka 

Opunake Fm. 
38-30 ka5 unnamed 33 ka2 Te Namu DAD c. 29 ka 

  Ihaia DFD >31 ka 

unnamed c. 50 ka6 
Stratford Fm. 
debris avalanche 1 c. 48 ka2 

Rama DAD >35 ka 

Stratford Fm. 
debris avalanche 2  Unnamed DFD, 

Kaupokonui Stream c. 40-50 ka 

Stratford Fm. 
debris avalanche 3 c. 80 ka2 Otakeho DAD c. 55 ka 

  Unnamed DFD, 
Punehu Stream   

  Unnamed DFD, 
Kaupokonui Stream  

  Tokaora DAD c. 65 ka 

  Waihi DAD c. 70 ka 

  Waingongoro DAD c. 75 ka 

Stratford Fm. 
80-50 ka5 

  Oeo DAD 85-90 ka 

Okawa Fm.  >105 ka3,4  >105 ka 

Motunui Fm.  >130 ka3,4  >130 ka 

 Unnamed 190 -210 ka3 Mangati DAD c. 200 ka 

1 Neall 1979 
2 Palmer et al. 1991 
3 Alloway 1989 
4 Alloway et al. 2005 
5 Grant-Taylor & Kear 1970 
6 Neall et al. 1986 
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A larger number of debris-avalanche deposits were identified than formerly described, 

as well as a wide variety of volcanic mass-flow and reworked deposits. The different lithofacies 

show a repeating pattern of deposition, and can be related to phases of cone-construction or 

collapse events, depending on their sedimentological characteristics (cf. Palmer et al. 1991). This 

study illustrates that debris-avalanche deposits were produced frequently and regularly, and that 

the volcanic history of Mt. Taranaki was characterised by repeated edifice growth and 

destruction. Hence, basing the stratigraphic nomenclature of the volcanic (and volcaniclastic) 

succession at Mt. Taranaki on the apparently cyclic volcanic behaviour would provide a more 

uniform structure and clearer overview of past volcanic and sedimentary events.  

A new concept that offers a more consistent and uniform nomenclature for the entire 

volcaniclastic succession is presented in Fig. 2.61. It also offers a more logical and intuitive way to 

understand the repeated sequence of events that have made up the geological history of Mt. 

Taranaki. It is based on chronostratigraphic time frames and mapped lithostratigraphic units (cf. 

Salvador 1994). Here, each Stage is defined as one complete volcanic cycle. Each cycle can be 

subdivided into a Substage that represents a phase of cone construction and a Substage that 

comprises the subsequent major edifice collapse event. The cone growth substage includes 

individual eruptive periods, which again consist of eruptive episodes. During the periods of 

edifice growth and collapse, a wide range of volcanic, volcaniclastic and other sedimentary 

deposits are produced, which can be mapped and distinguished based on their lithologic 

properties. These lithostratigraphic units can be classified as Formations, Members and single 

mappable units of different origin and then incorporated into the suggested chronostratigraphic 

framework. 

This new structure is applied here to the known and newly identified volcanic and 

volcaniclastic events at Mt. Taranaki. The resulting revised stratigraphy of the entire known 

volcanic succession of Mt. Taranaki is shown in Fig. 2.62. 
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Figure 2.62. Composite stratigraphic overview of the Mt. Taranaki volcanic succession. The chronostratigraphic units are defined based on the volcano’s cyclic behaviour and represent phases of
growth and collapse. Within this chronostratigraphic framework, the identified lithostratigraphic units from this and previous studies (Neall 1979; Neall et al. 1986; Alloway 1989; Alloway
et al. 1995; Neall 2003; Alloway et al. 2005; Platz 2007) are distinguished based on their origin and emplacement mechanism. Volcanic units comprise edifice-building lava flows, pyroclastic
flow deposits and tephras as well as satellite lava domes. The volcaniclastic units comprise lahar (hyperconcentrated-flow and debris-flow) and debris-avalanche deposits, which are shown based on
their dispersal within the northeastern, southeastern and southwestern sector of the ring plain. Nonvolcanic sediments include flood deposits, fluvial sediments and aeolian sand dunes as well as
peat layers. St = stage, SS = sub-stage, EP = eruptive period, EE = eruption episode, PF = pyroclastic flow.
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2.10. CONCLUSIONS 

Early geological maps of the Taranaki peninsula date back to the 1920s and were based 

on the concept that ring-plain aggradation was limited to glacial periods, while warm climates 

resulted in the cutting of marine benches. Later studies mapped individual units based on their 

sedimentological characteristics and subsequently added more detail to the geological map. The 

older units were mostly replaced except for remnants in south-west Taranaki that are still referred 

to as the Opunake and Stratford Formations. Remapping of these composite formations in 

coastal cliff exposures revealed a great complexity of volcaniclastic lithofacies and a larger 

number of debris-avalanche deposits than previously described. These represent distinct units 

that could be easily recognised and correlated laterally. Overall, five new debris-avalanche 

deposits were identified and named Te Namu, Tokaora, Waihi, Waingongoro and Oeo 

Formation. Four previously described units were renamed (Motumate, Rama, Otakeho and 

Mangati Formation), their stratigraphic position redefined and their lateral distribution mapped in 

more detail (except for the Mangati in north Taranaki). A number of cohesive debris flow-

deposits were recognised, which most likely represent the distal runout of smaller, confined 

debris avalanches. Correlation of the known Opua, Pungarehu and Ngaere Formations showed a 

greater lateral extent in coastal cliff sections than displayed on the geological map.  

Overall a minimum of 14 large debris-avalanche deposits occur within the volcaniclastic 

ring-plain record of Mt. Taranaki, indicating one major slope failure on average every 13 000 

years. The deposits reflect a range in volume from small <0.1 km3 debris flows to rare 

exceptionally large >7.5 km3 debris avalanches. The exact run-out distance of Taranaki debris 

avalanches could not be determined, but the deposits extend c. 26-45 km onshore and at least 

another 6-8 km offshore. Their lateral width in coastal cross-sections ranges from c. 9-35 km 

with a medial deposit thickness of 2.5 to >16 m.  

Hyperconcentrated-flow and non-cohesive debris-flow deposits are another common 

element of the studied volcaniclastic sequences, indicating that lahars occurred frequently at Mt. 

Taranaki. Lahar deposits were grouped into stratigraphic intervals since their large number and 

similar characteristics did not allow mapping of individual units. A stratigraphic overview of the 

older ring-plain succession was based on the correlation of directly and indirectly dated debris- 

avalanche marker beds and interbedded packages of lahar deposits. This chronological 

reconstruction of events showed that the same pattern of deposition was repeatedly produced 

throughout the existence of Mt. Taranaki. 
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The previously complex and non-uniform stratigraphic terminology in Taranaki is 

replaced with a suggested new stratigraphic scheme that is based on the identified repeating 

pattern of deposition. This model provides a more consistent nomenclature and 

chronostratigraphic framework that can be applied to the entire volcanic and volcaniclastic 

succession at Mt. Taranaki. 

 



CHAPTER 3.  

SEDIMENTARY CHARACTERISTICS OF MT. 
TARANAKI RING-PLAIN DEPOSITS 

3.1. INTRODUCTION 

This chapter concentrates on the interpretation of the accumulation history and 

characteristics of the Mt. Taranaki ring-plain succession based on the previously developed 

chronology of volcanic and other events.  

The sedimentary sequences along the northern and southern Taranaki coast represent a 

cross-section through medial ring plain settings and show a variety of volcaniclastic and reworked 

epiclastic deposits, including debris-avalanche, lahar, tephra, fluvial and aeolian units (Neall 1979; 

Neall et al. 1986; Palmer & Neall 1991; Alloway 2005). The exposed deposits display a wide range 

in sedimentary characteristics between different lithofacies types and stratigraphic layers, as well 

as variations within individual units laterally and longitudinally. These sedimentological 

differences reflect the diverse origins of the deposits, varying emplacement mechanisms, 

depositional conditions, paleophysiography and paleoclimatic conditions. 

The aims of this sedimentological study are:  

a) To characterise and classify the different types of ring-plain deposits. 

b) To relate sedimentological changes to the nature of volcanic activity and changes in 

eruptive style. 

c) To determine the influence of paleogeomorphology and climate on the ring-plain 

depositional system. 

d) To elucidate the evolution of the south-western and southern ring plain of Mt. 

Taranaki within the framework of a complex interaction of pyroclastic, volcaniclastic 

and other sedimentary events that reflect landscape construction and erosion during 

the last 100 ka. 
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3.2. CLASSIFICATION OF VOLCANIC MASS-FLOWS 

A range of approaches have been developed in order to gain a better understanding of 

the behaviour of mass movements and subaerial flows of water-sediment mixtures (“lahars”) on 

volcanoes. These encompass various scientific sub-disciplines based on morphology and 

sedimentology of deposits, direct observation and measurement of the processes, physical models 

of flow characteristics and dynamics, and theory of material behaviour and rheology (e.g. 

Takahashi 1981; Costa 1984; Costa & Williams 1984; Johnson & Rodine 1984; Pierson 1986; 

Qian & Wan 1986; Smith 1986; Iverson & Denlinger 1987; Pierson & Costa 1987; O’Brien & 

Julien 1988; Smith & Lowe 1991; Whipple & Dunne 1992; Coussot & Meunier 1996; Iverson 

1997b; Cronin et al. 1999, 2000; Iverson & Vallance 2001; Pierson 2005). A variety of criteria 

were used by these authors to explain the wide range of characteristics of volcanic mass-flows, 

including triggering mechanism, sediment composition, solid fraction, relative bed roughness, 

velocity, duration, bed slope, material behaviour, and physical processes during flow. This has 

resulted in diverse mass-flow classifications that often contradict each other, especially when they 

are based only on individual quantitative criteria or are unable to cover all phenomena (Bradley & 

McCutcheon 1985). Classifications based on parameters related to flow dynamics are difficult to 

use for field studies (Smith 1986), and mechanical flow aspects can vary from one event to 

another or during a single event (Coussot & Meunier 1996). The following section gives an 

overview of existing classification models for volcanic mass-flows in order to illustrate relevant 

distinction criteria and their influence on the characteristics of the resulting deposits. 

3.2.1. Depositional models 

The morphology and sedimentology of deposits has been used by several authors to 

distinguish between different types of volcanic mass-flows (Pierson & Scott 1985; Smith 1986; 

Walton & Palmer 1988; Rodolfo 1989; Warresback & Turbeville 1990; Palmer & Neall 1991), 

mainly based on the concept of hyperconcentrated flow by Beverage & Culbertson (1964). Their 

empirical boundaries defined hyperconcentrated flow as having a sediment concentration 

between 40-80 wt% (20-60 vol.%) with a combination of increased viscosity, buoyancy and 

dispersive stress between grains as the primary grain-support mechanism. 

Smith (1986, 1987a) noted that these concentration-based flow boundaries could not 

directly be applied to field records. Instead, he used field criteria to characterise the range of 

sediment-water flow with fully turbulent, dilute streamflow and viscous, laminar debris flow as 

end members (Fig. 3.1). Normal streamflow produces a variety of lithofacies ranging from 
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cross- or horizontally bedded sands to massive, clast-supported, imbricated gravel, which reflect a 

traction-dominated, grain-by-grain sedimentation. Debris-flow deposits exhibit features 

characteristic of en masse emplacement and support of largest clasts by cohesive matrix strength, 

buoyancy, and dispersive pressure, i.e. matrix support, lack of stratification and grading or 

presence of reverse grading. Hyperconcentrated flow is regarded as intermediate between debris 

flow and normal streamflow. The resulting deposits show features that are incompatible with 

either debris-flow or normal streamflow deposition, including horizontal or no stratification, 

common normal grading, clast-support with a poorly sorted, polymodal matrix and poor 

imbrication. Deposition from these high-discharge, but relatively low concentration flows 

involves rapid grain-by-grain aggradation from both suspension and traction (Smith & Lowe 

1991). 

The depositional criteria used to interpret and identify different types of volcanic mass 

flows (Smith 1986; Scott 1988a) may not correspond to the flow conditions described by 

empirical or rheological definitions (Smith & Lowe 1991). Cases of direct observation and 

measurement of the flow event and comparison to the resulting deposits have allowed a better 

understanding of flow processes and depositional conditions. 
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Figure 3.1.  Schematic illustration of sediment/water ratio, corresponding flow type, transport and depositional mechanisms 
(from Smith & Lowe 1991). 
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Pierson & Scott (1985) observed the gradual transformation of the 19 March 1982 lahar 

at Mount St. Helens from debris flow into a hyperconcentrated flow and linked their observation 

to the characteristics of the resulting deposits. The flow transformation resulted from progressive 

downstream changes in sediment concentration mainly due to dilution by incorporation of 

overrun stream water in a turbulent mixing zone and progressive settling of the coarsest particles 

in the granular phase. The flow transition started at a sediment concentration of 78 wt.% (57 

vol.%) at the head of the flow and worked its way back to the debris flow tail. It was marked by 

an improvement in sorting, decrease in sediment concentration, mean grain size, mean velocity 

and peak discharge. The hyperconcentrated streamflow phase had a peak sediment concentration 

of 61 wt.% (37 vol.%), which lagged behind peak discharge. Coarse sand and low density gravel 

were held in suspension. The high suspended sediment concentrations dampened turbulence and 

resulted in a laminar flow with an oily, glassy smooth surface but large-scale turbulence near the 

bed. With decreasing sediment concentrations turbulence increased, observed as the occurrence 

of large standing and breaking antidune waves. 

Flow behaviour could be directly linked to the resulting sediments. The deposits 

produced by the debris flow phase showed an extremely wide range in grain size (clay to gravel), 

very poor to extremely poor sorting, total lack of cross-stratification, matrix-support, common 

inverse grading (coarsening upward) near bottom and normal grading (fining upward) near the 

top. The flow transformation was reflected in the progressive replacement of the debris-flow 

deposit from bottom upward by a hyperconcentrated-flow unit above a gradational, but locally 

sharp contact. The so-called lahar runout facies was characterised by a coarse sandy, clast-

supported openwork texture with distinctly less fines than the debris-flow unit, poor sorting, faint 

horizontal stratification, with an overall massive appearance and locally small, isolated lenses of 

gravel at various levels especially near the margins, surface layers of logs, woody debris and 

pumice clasts.  

Scott (1988a) links flow behaviour of the transforming lahar and deposit characteristics 

to the sediment support mechanisms of the different observed flow phases. He suggests that the 

textural changes record a continuous multiple physical support mechanism (dilatant flow and 

turbulent flow) in debris and hyperconcentrated flow. The sediment suspension in debris flows is 

a result of high yield strength, buoyancy and dispersive stress from particle interactions, with 

turbulence being limited to the flow front. With increasing dilution and sediment loss, yield 

strength and buoyancy decline and grain support and transport through internal grain collisions 

becomes progressively less effective. The smooth laminar nature and slick, oily appearance of the 

hyperconcentrated flow, together with the deposit characteristics, support the assumption that 
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turbulence was damped and subordinate during the main wave of sediment transport (cf. Cronin 

et al. 1997, 1999). The occurrence of standing waves, the surface expression of antidune 

bedforms, shows that turbulence played at least a local role and became more effective during 

later, more dilute parts of the hyperconcentrated flow phase.  

A study by Cronin et al. (2000) based on flow observation, dip samples and the 

depositional record demonstrated that diluted channelised lahars can be vertically stratified. The 

developed depositional model divided the flow into a basal, mostly channel-confined, coarse, 

sediment-concentrated part with debris-flow-like rheology and a diluted, finer grained surface 

layer with hyperconcentrated flow properties. During observation of the event, the lahar surface 

showed features typical of hyperconcentrated flow, i.e. viscous and oily appearance with damped 

turbulence, periodical downstream-pointing V-shaped standing waves (Pierson & Scott 1985, 

Cronin et al. 1997, 1999; Pringle & Cameron 1997) and average sediment concentrations of 37 

vol% (61 wt.%). The channel portion of the flow produced massive, bouldery, very poorly 

sorted, matrix-supported deposit wedges that pinched into voluminous, finer-grained, poorly 

sorted, faintly bedded upper and laterally contiguous marginal overbank deposits. 

3.2.2. Physical models 

Physical models to distinguish different types of volcanic mass-flows are based on flow 

dynamics as well as the mechanical properties of the solid components and the fluid.  

In a geologic context, flow is the continuous, irreversible deformation of a material 

(typically a mixture of solids, water and air) in response to applied stress (gravity applied as a 

shear stress) (Pierson & Costa 1987). Newtonian fluids are single-phase liquids, like water, that 

flow under any applied stress (Pierson & Costa 1987) and their fluid viscosity (the ratio of applied 

stress to the rate of shear) depends on temperature and pressure (White 2006). Fluid mechanics 

are dominated by viscous fluid forces acting on the channel boundaries and on individual 

entrained sediment grains, but there are only negligible interactions with each other (Pierson 

2005). Volcanic mass-flows, on the other hand, are often described as Bingham or viscoplastic 

fluids with uniform intrinsic shear strengths (Middleton & Hampton 1976; Pierson 1980; Major 

& Voight 1986; Blair & McPherson 1994; Kim et al. 1995; Coussot & Proust 1996; White 2006). 

These flows behave as a rigid body at low stresses and will only flow once a critical shear stress 

(or yield strength) has been exceeded (Pierson & Costa 1987; Coussot & Proust 1996). Resistance 

to flow is thus the result of viscosity and material strength (Vallance 2000). The viscosity 

increases with increasing sediment concentration and increasing clay content (Major 1993). The 

models describe the mechanical behaviour of a substance based on the concept of viscosity but 
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neglect other important flow properties such as particle interactions (Vallance 2000). These play a 

major role in the collisional grain flow theory of the Bagnold model, according to which flow 

only occurs if gravitational driving forces overcome grain-collision stresses (Bagnold 1954; Lowe 

1976; Takahashi 1991; Major & Iverson 1999; Vallance 2000). 

To characterise the bulk behaviour of two-phase sediment-water mixtures including the 

complicated interactions between solid and fluid forces, other rheological criteria need to be 

considered. The term rheology was introduced by Eugene Bingham, based on Heraclitus's 

famous expression “panta rhei - everything flows” (Bingham 1922) and deals with the deformation 

and flow behaviour of material under the influence of an applied stress. The rheologic character 

of a fluid is primarily a function of its composition, i.e. the relative proportions of components, 

grain-size distribution, physical and chemical properties of the contained solids (Pierson & Costa 

1987).  

Pierson & Costa (1987) developed a classification of sediment-water mixtures based on 

thresholds in rheologic behaviour according to deformation rate (mean flow velocity) and 

sediment concentration, with a constant composition of components (Fig. 3.2). The transition 

from “liquid” normal streamflow to “plastic” hyperconcentrated flow is marked by the 

acquisition of a yield strength. An abrupt, rapid increase in yield strength due to the onset of 

internal friction allows static suspension of gravel and inception of liquefaction behaviour, and 

thus represents the transition from hyperconcentrated flow to “slurry flow”. Granular flow 

begins when the sediment concentration increases to the point where the mass loses the ability to 

liquefy and the bulk behaviour is dominated by friction and grain collisions. Even though 

rheology ignores some mechanistic details, rheological definitions of different types of flows can 

be compared to laboratory and experimental tests as well as field observations (Pierson 2005). 

Experimental studies by Major & Pierson (1990, 1992) showed that the bulk rheological 

behaviour of fine-grained (<2 mm) debris flows is not only affected by the total sediment 

concentration but is also strongly influenced by the proportion of sand. At a given sediment 

concentration, a high sand content decreases the yield strength and viscosity of the mixture. In 

general, with increasing content of coarser particles, the sediment concentration has to increase 

to maintain the uniform integrity of the slurry. If the sediment concentration is too low, the 

slurry integrity is degraded by particle settling and the mixture separates into two independent 

phases: sediment in water. For fines-rich mixtures the sediment concentration required to 

maintain integrity is considerably lower (0.44) than for sand-rich flows (0.66). Where the sand 

concentration exceeds 0.2, the flow behaviour of the granuloviscous fluid is dominated by 

frictional interactions of sand grains, explained by changes in packing density, particle distribution 
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and orientation as well as formation and destruction of coherent clusters of grains (Major & 

Pierson 1992). 

Based on the two criteria discussed by Major & Pierson (1990, 1992), Coussot & 

Meunier (1996) developed a simple classification of mass-flows (Fig. 3.3). In addition to the 

sediment concentration they included the type of particles within the flow (fine, cohesive and/or 

coarse, cohesionless, granular material). The approximate limits between the different types of 

mass movements reflect common ideas on the main physical distinction between flow types. The 

transition from hyperconcentrated flow to debris flow corresponds to a critical percentage of 

solid fraction, which depends on the material type. The transition from debris flow to debris 

avalanche is marked by the critical percentage of solid fraction dependant on material type, upon 

which fracturing occurs in response to deformation. 

Iverson (1997a, 1997b) developed a model for debris-flow motion and deposition based 

on fluid mechanical properties that contradicts intrinsic viscoplastic yield strength implied by the 

Bingham model, pervasive grain-collision stresses suggested by the Bagnold model, or the 

assumption of uniform dissipation of excess pore-fluid pressure. According to this newer theory, 

Figure 3.3.  Classification of solid-water mixtures from Coussot & Meunier (1996). 
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debris flows behave primarily as variably liquefied Coulomb grain flows, in which intergranular 

friction, and thus flow resistance, is strongly influenced by the variable pressure of pore water 

containing suspended fine sediment. The wide range of potential pore-fluid pressure forces 

results in a deforming granular mass that can exhibit both solid and fluid behaviour. High pore-

fluid pressures cause low material strength (liquefaction) and the liquefied mass behaves like a 

viscous fluid with low flow resistance, whereas in the absence of fluid pressure it acts like a 

deforming Coulomb material with high lateral stresses and flow resistance.  

Experiments by Major & Iverson (1999) on the role of pore-fluid pressure for debris 

flow transport and deposition support Iverson’s (1997a, 1997b) theory. Their study showed that 

the fluid pressure within the flow is high enough to liquefy the debris. Excess pore-fluid pressure 

dissipates significantly only during post-depositional consolidation (Major 2000), with debris-flow 

deposits >1m thick maintaining elevated fluid pressure and depressed frictional stress for several 

minutes to days, except at the margins (Pierson & Scott 1985; Major & Iverson 1999).  Most 

natural debris flows are, thus, likely to deposit sediment that is mostly liquefied but impounded 

by high-friction debris at the flow margins. Pierson (1984) observed that coarse clasts moved to 

the front and margins of the flow, which stopped when the driving forces could no longer 

overcome the strength of the marginal rim. This observation was confirmed by Major & Iverson 

(1999) who showed that fluid pressure rises abruptly after the passage of the flow front, 

indicating that the leading edges of the flow exhibit very low pore-fluid pressure. Debris-flow 

deposition thus results from grain-contact friction and bed friction focused at the flow front and 

margins where high pore-fluid pressure is absent.  

3.2.3. Transitions  

Few studies link direct observation of flow behaviour and depositional processes to the 

characteristics of the resulting deposits. Most lack the observation and measurement of the flow 

event or only cover parts rather than the whole event from initiation to deposition, and the 

interpretation of the deposits is often not sufficient to fully understand the processes involved 

(Major 1997). Large-scale experimental studies can provide these linkages because they allow 

observation of flow processes and comparison of the results to “real-world” events and deposits 

(Iverson et al. 1992; Iverson 1997a; Major 1997; Major & Iverson 1999).  

Experimental small-scale, cohesionless debris flows show behaviour similar to natural 

flows, e.g. a pulsing nature and transport in kinematic flow surges, as well as a leading flow edge 

marked by dry saltating, coarse particles, followed by a wet massive flow body (Major 1997). The 

depositional processes and geomorphological features of the resulting deposits were strongly 
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influenced by the water content of the source material. Unsaturated flows developed relatively 

thick lobes with a high aspect ratio, subtle to prominent arcuate ridges, steep, blunt margins and a 

gravel-dominated surface sedimentology. They were formed by successive surges that were partly 

overriding and partly shoving forward debris from previous waves. Debris emplacement migrated 

from the toe of the deposit upslope, i.e. from distally to proximally, and primarily through 

horizontal accretion. Saturated flows on the other hand, produced longer and thinner deposits 

with a low aspect ratio, low relief, flat surfaces, and variably shaped margins ranging from steep 

and blunt, especially distally, to tapered and wedge-shaped, with locally poorly developed levees, 

and clusters and streaks of coarse clasts at the surface that mark the boundary of flow surges. The 

deposits developed by incremental vertical rather than horizontal accretion from shallow, 

successively overlapping surges; later surges locally pushed into and shouldered aside sediment, 

and commonly overrode earlier debris or were deflected by it (Major 1997).  

Within the flows there was typically an elongation of the source particle mass during 

transport. The general horizontal position of the source debris was retained even though 

progressive sedimentary accretion resulted in an exchange of the initial horizontal positions of 

source particles. The deposits were characterised by inverse grading of particles >8 mm, a lack of 

the coarsest particle fraction in the lowermost 5 cm of the deposit, better sorting of clasts at the 

surface and a massive, homogenous, unsorted internal texture. Longitudinal or lateral grain size 

variations do not occur due to the short runout and rapid, near-source deposition of the small-

scale experimental debris flows. The complex depositional history and incremental accretion is 

only reflected in the deposit morphology and surface texture, while the internal texture of the 

deposits fails to provide a link between deposit character and flow behaviour. The only evidence 

of incremental vertical accretion can be found near the margins where finer-grained, poorly 

sorted debris locally overlies well-sorted gravel from the leading edge of the flow. Instead, the 

massive, matrix-supported nature of debris-flow deposits led to an apparent “misinterpretation” 

of en masse emplacement (Takahashi 1981; Fink et al. 1981; Pierson 1981; Innes 1983; Costa 1984; 

Major & Voight 1986; Blair & McPherson 1994; Kohlbeck et al. 1994; Kim et al. 1995).  

Rheological properties, i.e. yield strength and viscosity, of the flow are often estimated 

from the deposits (Johnson & Rodine 1984) and the relation between the largest “suspended” 

clast and bed thickness has been used to infer processes of deposition, grain support mechanisms 

and strength properties (Walton & Palmer 1988; Collinson & Thompson 1989; Arguden & 

Rodolfo 1990). Experimental results show that the deposit thickness does not reflect flow 

strength and composition because the finest-grained flows produced the thinnest deposits (Major 

1997). Interpretation of the deposit thickness based on the Bingham concept would suggest that 
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these flows had the lowest plastic yield strength, which contradicts rheometric experiments that 

show increasing yield strength with increasing content of fine-grained material (Major & Pierson 

1992). Finer-grained debris flows spread out more thinly because they sustain a high pore-fluid 

pressure for longer, even near margins, due to lower permeability and greater compressibility 

(Major & Iverson 1999). 

As shown by the experimental studies (Major 1997; Major & Iverson 1999), multiple 

flows of similar source material produce deposits that cannot be distinguished from each other 

due to a massive homogeneous texture, the lack of grain size variations and erosion surfaces, and 

thus appear to be the result of a single flow event. The lack of a stratigraphic contact between 

individual flow units is a result of the low effective stress state of the first unit and its unstable 

nearly liquefied character. Stacked deposits from separate flows might only be distinguished from 

each other by distinctive source material, facies variations over long travel distance, prolonged 

deposition by longitudinally sorted flows or sufficient time to develop unconformities. This is 

important for hazard implications as the frequency of events may be underestimated while their 

magnitude may be overestimated. 

3.2.4. Spectrum of sediment-water flow 

The wide range of models and classifications reflect the large variety of processes within 

the sediment-water flow spectrum that seem to grade from one to another without obvious 

boundaries (Pierson & Costa 1987). In the following, boundaries and distinction criteria of 

different flow types are summarised. 

The original definition of hyperconcentrated flow was based on a sediment 

concentration of 40-80 wt.% (20-60 vol.%; Beverage & Culbertson 1964). Later studies showed 

that the concentration thresholds can only be used as an approximation as they vary depending 

on the grain-size distribution and grain density of the sediment mixtures (Pierson 2005). 

Hyperconcentrated flow behaviour was observed within sediment concentrations of 25-78 wt.% 

(11-57 vol.%; Pierson & Scott 1985), 36 -75 wt.% (18-54 vol.%) for silt- and clay-rich lahars 

(Cronin et al. 1999) and 8-11 to 19-37 vol.% for finer and better sorted mixtures from China 

(Pierson 2005). 

Smith (1986) defined the boundaries of hyperconcentrated flow and debris flow based 

on deposit characteristics. Hyperconcentrated-flow deposits are distinguished from debris-flow 

deposits by the lack of matrix support or reverse grading and the occurrence of normal grading 

and horizontal stratification. Criteria of distinction from normal streamflow deposits are a lack of 

cross-stratification, very poor sorting, weak imbrication, and the occurrence of clast alignment in 
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gravel facies. These reflect sediment support in hyperconcentrated flows by grain-dispersive 

forces, turbulence and buoyancy and emplacement through grain-by-grain settling and traction 

along the channel bed. Sediment in debris flows is kept in suspension by matrix strength, 

buoyancy and grain-dispersive pressure and deposition has been misinterpreted to occur en masse. 

Large-scale experiments later showed that massive, unstratified debris-flow deposits were formed 

by a combination of vertical and horizontal incremental accretion from successively overlapping 

surges (Major 1997).  

Some authors defined the boundary between normal streamflow and hyperconcentrated 

flow as transition from Newtonian to non-Newtonian fluid and the acquisition of a measurable 

yield strength (Qian et al. 1981; Pierson & Costa 1987). Normal streamflow has very low 

sediment concentration and larger particles are solely transported as bedload. Sediment in 

hyperconcentrated flows is held in suspension by a combination of processes (cf. Pierson & Scott 

1985, Cronin et al 1997, 1999, 2000; Pringle & Cameron 1997; Major et al 2005; Pierson 2005). 

The suspended fines in water (carrier fluid) produce a yield strength and high fluid viscosity, 

which, in combination with turbulence and grain interactions, enables the intermittent, dynamic 

suspension of large quantities of coarse sediment (sand and fine gravel) at high concentrations 

(Cronin et al. 1997, 1999; Pierson 2005). Upwelling of fluid displaced by the downward settling 

of some of the grains adds an additional buoyancy mechanism that allows the mixture to hold 

more sand (Druitt 1995; Major 2003), which can be observed as a swirling reticulate pattern at 

the lahar surface (Cronin et al. 1999). The coarser grains move independent from finer particles 

and are selectively deposited during flow where velocity and, thus, turbulence are decreasing 

(channel margins with lower flow depth, in eddies or hydraulic jumps) or where dilution results in 

the loss of suspension competence (flow front or tributary inflows) (Pierson & Scott 1987; 

Cronin et al. 2000; Pierson 2005). Selective settling of suspended particles results in faintly 

stratified deposits with some degree of sorting (Smith 1986; Pierson & Scott 1986; Scott 1988a; 

Cronin et al. 1997, 1999). Furthermore, significant bedload transport occurs in a concentrated 

zone of intense bed shear, referred to as a traction carpet (Hanes & Bowen 1985; Todd 1989; 

Sohn 1997; Cronin et al. 2000; Manville et al. 2000). Traction carpet deposition occurs along 

channel thalwegs where flow velocities and thus bed shear stresses are high (Pierson 2005). The 

coarse bed load induces turbulence near the bed, while the upper part of the flow can be non-

turbulent (observed as a smooth, oily appearance), or behave like a rigid plug depending on the 

sediment concentration (Pierson & Scott 1985; Cronin et al. 1997; Major et al. 2005; Pierson 

2005). There appears to be no sharp boundary between the dense zone of sliding, rolling and 
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saltating bedload and the intermittently suspended load (Hanes & Bowen 1985; Todd 1989; Sohn 

1997; Cronin et al. 2000; Manville et al. 2000; Pierson 2005). 

The upper threshold and transition to debris flow is the point at which physical and 

electrochemical particle interactions start to dominate and selective deposition is hindered due to 

frictional forces between grains and dense grain packing (Coussot & Piau 1994; Coussot 1995; 

Druitt 1995; Iverson 1997b; Major 2003; Pierson 2005). This process produces massive, poorly 

sorted and unstratified deposits (Smith 1986; Pierson & Scott 1986; Scott 1988a; Cronin et al. 

1997, 1999). Later studies showed that debris flows can be regarded as variably liquefied 

Coulomb grain flows in which pore-fluid pressure controls intergranular friction and the degree 

of liquefaction (Iverson 1997a, 1997b; Major & Iverson 1999). The transition to granular flow is 

marked by the loss of the ability to liquefy, i.e. pore-fluid pressures are no longer in excess of 

hydrostatic pressures and grain-to-grain contacts and particle collisions dominate (Pierson & 

Costa 1987). 

3.3. TERMINOLOGY OF VOLCANIC MASS-FLOWS 

In general, volcanic mass-flows are gravity-driven (sometimes accelerated by volcanic 

explosions), involve substantial volumes of poorly sorted rock particles as their primary solid 

component, and span a wide range of volumes, peak discharges, velocities, compositions, bulk 

rheologies, and flow hydraulics (Pierson 1998). The nomenclature used to distinguish different 

types of volcanic mass-flows is inconsistent and often misleading (Pierson & Costa 1987). Some 

terms include diverse geologic processes such as “mudflow”, which was applied to different types 

of mass movements ranging from slow plastic deformation to rapid, turbulent sediment-water 

flow (Lowe 1979; Pierson & Costa 1987). On the other hand, a single flow can encompass a wide 

variety of fluid-dynamic characteristics and show transformations, which can lead to the use of 

diverse terms to describe the same event, such as lahar, debris flow, hyperconcentrated flow, 

mudflow, debris torrent, mud flood etc (Pierson & Scott 1985; Pierson & Costa 1987; Cronin et 

al. 1999; Major et al 2005). The puzzling variety of names and confusing nomenclature is mainly a 

result of the interdisciplinary character of volcanic mass-flow processes, and divergences in 

opinion. Scientists of different fields, i.e. sedimentology, physics and mechanics, deal with the 

problem from different points of view and apply a range of methods, including field 

characteristics, direct observation and measurement of the event, theoretical physical and 

mechanical models of flow and material behaviour, as well as depositional and physical 

experiments, in order to define the different flow types. The developed classification schemes are 
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used parallel in the literature and are often subject to the respective author’s preference. The 

following section intends to clarify the meaning of terms and definitions used in this thesis. 

3.3.1. Volcanic debris avalanches 

Debris avalanches are very rapid, wet (but unsaturated), inertial, granular flows 

generated by large-volume landslides from the flanks of volcanoes (Varnes 1958, 1978; Ui 1983; 

Schuster & Crandell 1984; Pierson & Costa 1987). They involve large volumes of debris ranging 

from 0.05 to 45 km3, may travel distances greater than 100 km and reach velocities as high as 78 

m s-1 (Siebert et al. 1987; Crandell 1989; Stoopes & Sheridan 1992). The initial sliding motion of 

the rock mass involves non-turbulent translational transport of the material with relatively small 

deformations, mainly along internal fractures, and thus favours proximal preservation of the 

original strata that formed the failed edifice (Siebe et al. 1992; Coussot & Meunier 1996; Shea et 

al. 2008). The typically small water component does not play a major role during landslide 

transport, which is characterised by solid particle interactions such as collisions, adhesion and 

friction (Coussot & Meunier 1996; Iverson 2005). A transition from rockslide to flowing 

avalanche usually takes place at the base of the volcano and involves stronger deformation and 

disaggregation of the material (Siebe et al. 1992). Granular debris avalanches can also transform 

into cohesive debris flows through entrainment of water or water-saturated sediments (e.g. 

Palmer et al. 1991; Scott et al. 1995; Vallance & Scott 1997). Prior to the 1980 eruption of Mount 

St. Helens the resulting deposits were mostly termed “lahars” without distinction between debris-

flow and debris-avalanche origin (e.g. Neall 1976a, 1976b, 1979; Crandell 1971). 

In this thesis, the identification of debris-avalanche processes and deposits is based on 

distinctive sedimentary and geomorphic features such as the occurrence of shattered and jigsaw 

cracked clasts, megaclasts, large rip-up clasts, a clay-rich, matrix-supported fabric and the display 

of hummocks and mounds along the main axis of dispersal and closer to source (cf. Section 

3.4.2.). These characteristics have been described in post-Mount St. Helens studies and allow the 

differentiation of debris-avalanche from other volcanic mass-flow deposits (e.g. Voight et al 

1981, 1983; Siebert 1984; Ui 1983; Ui et al. 1986b; Crandell 1989; Glicken 1991; Stoopes & 

Sheridan 1992). 

3.3.2. Lahars 

The Indonesian term lahar has been used for a variety of volcanic mass-flows with 

different properties as well as for the generated deposits (Escher 1922; Van Bemmelen 1949; 

Neall 1976a, 1976b; Crandell 1971; Fisher & Schmincke 1984). Smith & Fritz (1989) redefined 
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lahar as “a general term for a rapidly flowing mixture of rock debris and water (other than normal 

streamflow) from a volcano. A lahar is an event; it can refer to one or more discrete processes, 

but does not refer to a deposit.” The term lahar includes both debris flows and 

hyperconcentrated flows generated on volcanoes (Smith & Fritz 1989; Smith & Lowe 1991), 

because a single flow event can involve both rheologic flow types and multiple flow 

transformations (Pierson 1998). 

Here, lahar is used as a general term to summarise gravity-driven, rapidly flowing 

mixtures of rock debris and water from a volcano, with a higher sediment concentration than 

normal streamflow, and includes non-cohesive debris flows as well as hyperconcentrated flows. 

The resulting volcaniclastic sediments are referred to as lahar deposits. 

3.3.3. Debris flows 

Debris flows are complex, flowing mixtures of sediment and water that exhibit an 

internal yield strength or resistance to shear, derived from grain collisions (frictional resistance to 

shear) and cohesion between clay-/silt-sized particles (Iverson & Denlinger 1987; Pierson & 

Costa 1987; Smith & Lowe 1991; Coussot & Meunier 1996). Cohesive debris flows contain more 

than 3-5 wt.% clay particles and were also referred to as mudflows or mudslides in the literature 

(cf., Varnes 1978; Coussot & Piaut 1994; Scott et al. 1995, 2001). Most volcanic debris flows, 

however, are clay-poor and non-cohesive; they can rather be regarded as water-saturated 

modified-granular flows (Costa & Williams 1984; Fisher & Schmincke 1984; Smith & Lowe 1991; 

Major 1996, 1997; Major et al. 2005). Debris flows are defined as highly concentrated, often >60 

vol.% (80 wt.%) of solid fraction, relatively homogeneous, non-Newtonian, pseudo-single-phase 

gravitational flows of sediment and water in which a broad distribution of grain sizes, commonly 

including gravel, is vertically well mixed (Costa 1984, 1988; Pierson & Costa 1987; Wan & Wang 

1994; Major 1997; Cronin et al. 2000; Vallance 2000; Pierson 2005). Debris flow motion is of a 

transient nature, typically comprising a series of surges that develop as a result of mechanical 

instability (Major & Pierson 1990; Coussot & Meunier 1996; Major 1997; Major & Iverson 1999; 

Iverson 2005). Flow behaviour is strongly influenced by interactions between the solid and fluid 

components, i.e. grain-grain collisions and viscous fluid flow (Wan & Wang 1994; Coussot & 

Piaut 1994; Coussot 1995; Iverson 1997; Major et al 2005).  

In this study deposits from both cohesive and non-cohesive debris flows were identified 

that are interpreted to have been produced by various generation mechanisms. In Taranaki, 

debris-flow deposits associated with volcanic debris avalanches are characterised by considerable 

amounts of matrix clay (>3-5 wt. %) and can be classified as cohesive debris flows (Scott et al. 
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1995; Vallance & Scott 1997). In contrast, debris-flow deposits related to lahars are typically clay-

poor (<3 wt. %) and are referred to as non-cohesive debris flows (Scott 1988a). 

3.3.4. Hyperconcentrated flows 

Hyperconcentrated flows are generated from floods through erosion and entrainment of 

sediment, or through transformation of large non-cohesive debris flows by dilution and selective 

deposition (Pierson & Scott 1985; Cronin et al. 1997; Major et al. 2005; Pierson 2005). The term 

was introduced by Beverage & Culbertson (1964) who described hyperconcentrated streamflows 

as having sediment concentrations between 40 and 80 wt% (20 to 60 vol.%). However, this 

definition can only serve as a rough guide, because the particle-size distribution, grain density and 

composition of the fine fraction within the flow also play important roles for the flow behaviour 

and flow transition thresholds (Pierson 1986; Cronin et al. 1999, 2000; Pierson 2005). Pierson & 

Costa (1987) redefined hyperconcentrated flow based on the sediment concentration required to 

generate the onset of a measurable internal yield strength and hence temporary suspension or 

hindered settling of coarse particles.  

In general, hyperconcentrated flow is a turbulent, gravity-driven, non-Newtonian, two-

phase flow of water and sediment, intermediate in sediment concentration between dilute, fully 

turbulent, normal streamflow and viscous, generally laminar flow (Smith 1986; Smith & Lowe 

1991; Pierson 2005). Sediment is supported by grain-dispersive forces, turbulence and buoyancy 

and is emplaced through grain-by-grain settling and traction at the base of the flow (Hanes & 

Bowen 1985; Smith 1986; Smith & Lowe 1991; Sohn 1997; Pierson 2005). 

This thesis deals with the resulting deposits rather than the actual flow, so the flow 

conditions can only be inferred. Thus, classifications based on deposit characteristics are included 

in addition to the above described flow observations and physical models.  

3.3.5. Normal streamflow 

Normal streamflow is fully turbulent, with sediment concentrations that are insufficient 

to change the Newtonian properties of flowing water. Turbulence is the principal sediment-

support and transport mechanism (Smith 1986; Pierson & Costa 1987; Costa 1988). 

Transportation occurs by traction, in a grain-by-grain fashion and larger particles are transported 

as bedload, i.e. in traction carpets or by saltation (Hanes & Bowen 1985; Smith & Lowe 1991; 

Sohn 1997). The critical sediment concentration at which streamflow becomes a non-Newtonian 

fluid and thus grades into hyperconcentrated flow depends on the grain-size distribution, clay 

content and clay mineralogy, but is often around 20 % by volume (Pierson & Costa 1987).  
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In the Taranaki ring plain succession, normal streamflow behaviour is mainly reflected 

by deposits of major and minor fluvial systems as well as some transitional volcaniclastic flow 

deposits.  

3.3.6. Flow transformations and transitions 

Lahars are a common feature in volcanic terrains. Their formation requires an adequate 

water source, abundant unconsolidated debris, substantial relief at the source and a triggering 

event (Vallance 2000). Lahars may be of primary (syn-eruptive) or secondary (post-eruptive or 

unrelated to eruptive activity) origin and can be initiated by a variety of mechanisms (Neall 1976; 

Waitt et al. 1983; Cronin et al. 1997; Mothes et al. 1998; Hodgson & Manville 1999; Lavigne et al. 

2000; Vallance 2000; van Westen & Daag 2005; Németh & Martin 2007). Lahars can be triggered 

by pyroclastic flows entering streams, phreatomagmatic explosions or directed blasts (Neall 

1976b, Vallance 2000). Furthermore, lahars can form after sudden melting of a glacier or snow 

and ice by hot pyroclastics, lava flows, or growing lava domes, as well as an elevated heat gradient 

due to hydrothermal and magmatic fluids in the upper edifice (Janda et al. 1981, Pierson et al. 

1990; Pierson & Janda 1994, Branney & Gilbert 1995, Cronin et al. 1996a, Thouret et al. 1998, 

Manville et al. 2000, Stern 2004; Major et al. 2005). Some flows are associated with existing crater 

lakes and are produced by an eruption through the crater lake or from a non-volcanic crater lake 

rim failure (Cronin et al. 1996a; 1999, Lecointre et al. 1998, Manville et al. 1998). Rain-triggered 

lahars often occur after large explosive eruptions, e.g. Mt. Pinatubo in the Philippines (Newhall & 

Punongbayan 1996; Chorowicz et al. 1997, van Westen & Daag 2005, Carranza & Castro 2006) 

or Mt. Merapi in Indonesia (Lavigne et al. 2000, Lavigne & Thouret 2002), and represent a major 

hazard especially in equatorial latitudes and temperate zones of high rainfall. 

Debris flows can form by a variety of transformations from different kinds of flows, i.e. 

by water incorporation from pyroclastic flows and debris avalanches as well as from floods 

through sediment erosion and entrainment (Neall 1976a; Janda et al. 1981; Waitt et al. 1983; Scott 

1988a; Pierson et al. 1990; Pierson & Janda 1994; Branney & Gilbert 1995; Newhall & 

Punongbayan 1996; Mothes et al. 1998; Thouret et al. 1998; Hodgson & Manville 1999; Lavigne 

et al. 2000; Vallance 2000; Lavigne & Thouret 2002; Major et al. 2005; van Westen & Daag 2005; 

Carranza & Castro 2006; Németh & Martin 2007). The sediment-water ratio within a flow can 

change longitudinally due to bulking or depositional processes as well as laterally, due to flow 

depth and velocity variations.  

Confined lahars with low clay contents typically transform from debris flow to 

hyperconcentrated flow at some point along their path due to progressive incorporation of water 
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and continuous sedimentation (Janda et al. 1981; Pierson & Scott 1985, Lowe et al. 1986, Smith 

1986, Major & Scott 1988; Scott 1988a, 1988b; Alloway 1989; Major & Newhall 1989; Smith & 

Lowe 1991; Scott et al. 1995; Major et al. 1996; Pringle & Cameron 1997; Thouret et al. 1998; 

Cronin et al. 1999, 2000; Lavigne et al. 2000; Lavigne & Suva 2004; Major et al. 2005). With 

distance and further dilution, more sediment is transported as bedload, deposits are more 

distinctly stratified and high-angle cross-bedding can be formed (Cronin et al 2000), which 

reflects gradation into normal streamflow  (Pierson & Scott 1985; Scott 1988a; Scott et al. 1995). 

This gradual dilution and transformation process only affects lahars that are small compared to 

the volume of available water along the river catchment; it does not significantly influence the 

rheology and flow behaviour of large-volume lahars (Cronin 2000, Lavigne & Thouret 2000). 

Pierson & Scott (1985) suggested that the progressive head to tail dilution of the lahar 

with stream water leads to the development of a hyperconcentrated flow phase preceding the 

main debris flow body. The fluid component of the flow separates from and outruns the 

sediment-rich component, producing a lag between the two flow components (Scott 1988a). A 

later study by Cronin et al. (1999) showed that the initial portion of a lahar wave is stream water 

pushed along the channel in front of the lahar rather than fluid separated from the bulk flow. The 

lahar is essentially an invading solution that contrasts with the resident stream water which is 

pushed ahead. The studied non-cohesive lahars showed four phases: resident stream water 

pushed ahead of the lahar, a downstream-lengthening mixing zone between stream water and the 

lahar, the relatively undiluted original lahar, and the tail of the lahar surge. The resident stream 

water portion indicates that lahars do not entrain and mix perfectly with water sources in their 

paths. The increasing lag between peak stage and peak sediment concentration described by Scott 

(1988a) is hence probably due to lengthening of the mixing interval between streamflow and 

lahar with distance from source.  

A distinct change in slope or widening of the channel can cause a more abrupt 

transformation from debris flow to hyperconcentrated flow (Cronin et al. 2000). For example, 

the 25/09/95 lahar from Mt. Ruapehu, New Zealand, spread out over a broad area when it exited 

a confined gorge onto the Whangaehu fan, which led to a loss of flow competence and flow 

depth encouraging sediment deposition. In contrast to dilution by addition of water, this type of 

flow became water-rich through a sudden loss of velocity and a consequential loss of sediment 

load (Cronin et al. 2000). Under certain circumstances, i.e. strong erosive energy of the flow in 

combination with a high supply of loose sediment along the flow path, a hyperconcentrated flow 

can bulk up and transform into a debris flow (Costa 1984; Pierson & Scott 1985; Scott 1988a, 

1988b; Smith & Lowe 1991; Scott et al. 1995; Major et al. 2005). A transition from 
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hyperconcentrated flow to debris flow can also occur due to rapid loss of water through 

infiltration into the surface of the underlying volcaniclastic and fluvial sequences (Smith 1986). 

The Taranaki deposits appear to have been produced by a range of all the different flow 

types within the sediment-water spectrum described above. Their characteristics, transitions and 

lateral changes exposed in cross-section in the coastal cliffs of the Taranaki peninsula were 

documented in order to construct a spatial-temporal model of ring plain evolution, and to 

interpret the flow and sedimentation process operating over various time and spatial scales. 

3.4. VOLCANIC MASS-FLOW DEPOSITS 

3.4.1. Volcaniclastic ring-plain successions 

The term “ring plain” was introduced from studies in New Zealand for “flat or nearly 

flat land in a nearly circular or annular area surrounding Mount Egmont” (Morgan & Gibson 

1927). Subsequently the term was applied more generally to the low-relief alluvial plains and fans 

surrounding the volcanoes of the central North Island, i.e. Mt. Ruapehu and Mt. Tongariro 

(Palmer et al. 1993; Cronin et al. 1996; Cronin & Neall 1997; Lecointre et al. 1998; Donoghue & 

Neall 2001). Smith (1987a, 1987b) used the term volcaniclastic apron instead of ring plain to 

describe “relatively thin (<0.5 km) accumulations of volcaniclastic material adjacent to volcanoes 

that possess wedge-shaped cross-section thinning away from source”. These sequences were 

dominated by debris-flow and flood deposits, which accumulated over fan-shaped segments of 

the apron and the sedimentary setting corresponds to relatively low-gradient alluvial plains. 

Davidson & de Silva (2000) later defined volcanic ring plain as the circular area 

surrounding a centrally constructed volcanic edifice. However, a truly circular apron only 

develops around volcanic edifices that are more or less isolated from neighbouring volcanoes or 

mountainous terrain (Smith 1991). More commonly, volcanic settings are characterised by 

merging of deposits from individual edifices with those of their neighbours, or ancestral degraded 

volcanoes and thus a more irregular surrounding topography. This leads to the concentration of 

primary and reworked deposits in channels and drainage systems with wedge-shaped cross-

sections that usually extend 10-30 km from the bases of the volcanoes (Neall 1979; Hackett & 

Houghton 1989). In the case of oceanic composite volcanoes of island arcs, for example, 

Augustine Volcano (Beget & Kienle 1992; Siebert et al. 1995) the immediate edifice is surrounded 

by the sea and a major part of the volcanic record accumulates below sea level without the 

development of an extensive onshore ring plain. 
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Volcanic ring-plain successions are progressively built up by deposition of syn- and 

post-eruptive volcaniclastics and minor primary products, as well as reworked deposits (Palmer & 

Neall 1991; Cronin et al. 1996; Cronin & Neall 1997; Lecointre et al. 1998; Donoghue & Neall 

2001). Hence, the succession is dominated by various types of lahar deposits, and in some cases, 

debris-avalanche deposits and interbedded tephra layers. The most extensive pyroclastic flows 

and lava flows might also reach proximal parts of the ring plain but are otherwise confined to the 

edifice (Davidson & de Silva 2000). Major phases of ring-plain accumulation alternate with 

periods of dissection and landscape adjustment. The resulting fluvial and aeolian reworked 

deposits represent another major component of the sequence. The ring-plain depositional system 

contains the most complete chronostratigraphic record of volcanic activity and other sedimentary 

events (Palmer & Neall 1991; Smith 1991; Cronin et al. 1996; Cronin & Neall 1997; Lecointre et 

al. 1998; Donoghue & Neall 2001; Németh & Martin 2007). It is therefore essential to understand 

the depositional processes that contributed to the construction of the volcanic ring plain, in order 

to reconstruct the eruptive history of a stratovolcano in more detail.  

The volcaniclastic sequences examined in this thesis represent “medial” portions of the 

Mt. Taranaki ring plain, 25-45 km from source. Proximal sites are typically <15 km and here 

distal is classified as >50 km (Smith 1987a; Beget & Kienle 1992; Scott et al. 1995; Belousov et al. 

1999; Waythomas et al. 2000; Major et al. 2005). However, the nature of the studied volcanic 

mass-flow deposits depend not only on distance from source, but also on the type (debris 

avalanche vs. debris flow vs. hyperconcentrated flow) and volume of the depositing flow, the 

height of the edifice (e.g. early stage of regrowth phase vs. mature, high edifice) and the character 

of the surrounding landscape (unconfined vs. channelised). Most deposits of the south-western 

Mt. Taranaki ring-plain succession show medial facies characteristics (at c. 25-30 km from 

source), but coastal exposures may also show distal facies of some volcanic mass-flow deposits. 

This is particularly notable for hyperconcentrated-flow units, which show transitions to stream-

flow deposits (distal run-out facies) in the south-eastern ring plain c. 40-45 km from source. 

3.4.2. Debris-avalanche deposits 

The younger parts of the Taranaki ring plain display a distinctive surface 

geomorphology of numerous hills and small mounds that have attracted the attention of 

geologists for more than a hundred years. The first geological surveyors in Taranaki interpreted 

these “conical hills” as individual volcanic vents formed by separate volcanic explosions (de 

Clarke 1912; Morgan & Gibson 1927), while Bossard (1928) considered them blisters on lava 

flows. Grange (1931) first postulated a laharic origin, based on their similarity to historic volcanic 
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mudflow deposits in Java and Japan. Neuman van Padang (1939) and van Bemmelen (1949) 

attributed similar hills at the base of several Indonesian volcanoes to “landsliding or avalanching” 

of a sector of the volcanic cone, but described the resultant deposits as laharic breccias.  

Prior to the 1980 eruption of Mount St. Helens, Murai (1961) recognised “dry 

mudflows” in Japan that differed from lahars and suggested their emplacement by gravitational 

forces without the agency of water. Subsequently Mizuno (1964) distinguished fragmental 

avalanche-type deposits from those of flow-type. Ando & Yamagishi (1975) later related the 

formation of mudflow hills at the base of many Japanese volcanoes to either cold or hot 

avalanches. The term “volcanic dry avalanche” was introduced by Nakamura (1978) to describe 

the 1888 Bandai deposit. 

The 1980 Mount St. Helens eruption presented the first opportunity to observe and 

document the generation and emplacement of a large volcanic debris avalanche (Voight et al. 

1981, 1983; Glicken 1991, 1996). Observations of the eruption were integrated with studies of 

the deposits produced (Lipman & Mullineaux, 1981). This has provided a model for the 

interpretation of similar deposits elsewhere (Mimura et al. 1982; Crandell et al. 1984). As a direct 

consequence of the Mount St Helens event, debris-avalanche deposits were recognised at many 

volcanoes worldwide and their textural and morphological features described in more detail (e.g. 

Siebert 1984; Ui et al. 1986a; Crandell 1989; Beget & Kienle 1992; Vallance & Scott 1997; 

Belousov et al. 1999; Capra & Macias 2000). 

The source area of debris avalanches is characterised by large, horseshoe-shaped 

amphitheatres that show a wide breach to one side and often extend into the core of the volcano 

(Voight et al. 1981; Ui 1983; Siebert 1984). The landscape at the base of the volcano below the 

avalanche scar typically shows a hummocky topography comprising numerous hills and mounds 

that are often surrounded by a flat surface (Ui 1983; Siebert 1984). The development of the 

secondary planar surface is attributed to immediate reworking of the debris-avalanche deposit 

after its emplacement by dewatering or by subsequent lahars (Janda et al. 1981; Ui 1983). With 

time the distinct surface expression of mounds is smoothed out due to long-term reworking and 

accumulation of debris from younger lahars that flow around the older debris-avalanche deposit 

as well as accretion of distal tephra (Alloway 1989; Alloway et al. 2005; Procter et al. 2009).  

The internal structure of debris avalanches is characterised by three major components: 

megaclasts (>1 m in diameter), elsewhere described as megablocks or fragmental rock clasts, 

clasts (<1 m in diameter), and fine-grained material, referred to as matrix (Ui 1983; Crandell et al. 

1984; Palmer et al. 1991; Glicken 1996; Alloway et al. 2005). Megaclasts represent relatively intact 
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former portions of the volcanic edifice that can be deformed and fractured into numerous clasts. 

The irregular cracks within megaclasts form a pattern that resembles a jigsaw puzzle and have 

been referred to as jigsaw cracks by Shreve (1968), Ui (1983) and Ui et al. (2000). The frequency 

of jigsaw cracks depends on rock type and travel distance (Ui et al. 1986a, 2000). Different types 

of megaclasts include lithologically homogeneous, shattered fragments of lava flows/domes and 

stratified material with preserved primary textures and original lithological contacts between 

layers (Ui 1983; Palmer et al. 1991; Alloway et al. 2005). The size and number of megaclasts 

decrease with distance from source and towards the lateral margins of the deposit, while the 

amount of matrix increases (Ui 1983). The lithology of megaclasts, clasts and matrix varies 

between debris-avalanche deposits and throughout each unit, even on a large exposure scale (Ui 

et al. 2000). The variations are influenced by the composition and structure of the original 

volcanic edifice as well as the topography underlying the deposit (Alloway et al. 2005). 

The matrix consists of a mixture of smaller volcanic fragments ranging in size from clay 

to very coarse sand and includes all unsorted and unstratified parts of the deposit (Alloway et al. 

2005; Ui et al. 2000). The matrix contains clasts of primary and secondary origin. Primary clasts 

are typically 2 mm - 1 m in diameter and show a wide range of lithologies, including fragments of 

lava, scoria, pumice, crystals or any other rock-type that were part of the volcanic edifice prior to 

avalanche initiation. Secondary or rip-up clasts are incorporated in the flow during transport and 

comprise variably rounded fluvial and other clasts, wood and fragments of the underlying strata, 

such as volcaniclastic and fluvial deposits, tephra, peat and soil beds (Palmer et al. 1991; Alloway 

et al 2005). The abundance of rip-up clasts increases with distance from source (Ui et al. 2000). 

Since the relative proportion of matrix to megaclasts varies with distance from source 

and main axis of distribution, former workers used this ratio to subdivide a debris-avalanche 

deposit into mappable areas. The areas dominated by megaclasts and a characteristic hummocky 

surface was mapped as megablock facies by Mimura (1971), as axial facies by Neall (1979), and as 

block facies by Crandell et al. (1984). The topographically flat area that is characterised by the 

predominance of matrix was termed main facies by Mimura (1971) and Mimura & Kawachi 

(1981), marginal facies by Neall (1979), matrix mixture by Ui (1983), matrix facies by Crandell et 

al. (1984), and mixed facies by Glicken (1991). The terms “blocks” and “matrix” are ambiguous 

because they are applied to both individual components of debris-avalanche deposits as well as to 

describe different facies (Crandell et al. 1984). This thesis therefore adopts the nomenclature of 

Neall (1979) because it distinguishes descriptive mapping units from genetic sedimentological 

units. Based on Neall’s (1979) concept, Alloway (1989) and Palmer et al. (1991) recognised three 

distinct lithofacies distributions that define distinct mapping units within the relatively 
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unconfined Taranaki debris-avalanche deposits that differ considerably from valley-confined 

debris avalanches described elsewhere (Siebe et al. 1992; Richards & Villeneuve 2001; Clavero et 

al. 2002; Pollet & Schneider 2004; Dunning et al. 2006).  

These lithofacies developed in response to changes in the nature of flow as the debris 

avalanche travelled away from source (Fig. 3.4A). Axial-A and axial-B lithofacies correspond to 

the debris-avalanche phase of the landslide while the marginal lithofacies is attributed to the 

debris-flow phase. Axial-A facies forms lobes near source and is dominated by brecciated, self-

supporting megaclasts with <30% sandy interclast matrix and a hummocky surface expression 

with closely spaced, large mounds up to 50 m high and basal diameters as much as 500 m (Fig. 

3.4B, Fig. 3.5A-B). Axial-B facies is interclast matrix-rich (30-90%) and characterised by smaller, 

more widely spaced mounds ≤10 m high with basal diameters <25 m (Fig. 3.4C, Fig. 3.5C-D). 

Size and abundance of megaclasts decreases with increasing distance laterally from axial-A 

lithofacies, while the amount of rip-up clasts increases. The lateral transition from axial-B to 

marginal lithofacies is gradational and characterised by a decrease in overall unit thickness, clast 

size and abundance of larger megaclasts, an increase in matrix to clast ratio and in rip-up clasts. 

The marginal facies contains >90% of clay-rich matrix and is characterised by a predominantly 

planar surface with scattered small mounds <2 m high (Fig. 3.4D, Fig. 3.5E-F). The marginal 

facies is generally interpreted as being emplaced by debris flows that have transformed directly 

from debris avalanches (Palmer et al. 1991) although some may have been generated by 

contemporaneous smaller failures from the area of initial collapse (Palmer & Neall 1989). The 

flows have often been referred to as cohesive lahars. In this study they are described together 

with debris avalanches because their initiation mechanism, flow behaviour and the resulting clay-

rich deposits relates them more closely to debris-avalanche processes and they differ significantly 

from the sand-rich non-cohesive types of lahars described in the next section.  

The matrix of Mt. Taranaki debris-avalanche deposits contains amorphous and 

crystalline clay particles and minerals (Neall 1976c;  Parfitt et al. 1981;  Alloway et al. 2005; 

Procter pers. comm. 2009). The dominance of allophane indicates that this component was 

derived from soils eroded along the flow path, rather than representing hydrothermally altered 

material at source or products of diagenesis (Neall 1976; Alloway et al. 2005). Thick allophane-

rich andic coverbeds on the ring plain represent the source for this clay.  This mineral forms by 

rapid weathering of andesitic ash under the humid-temperate climate conditions of Taranaki 

(Neall 1976; Alloway et al. 2005). Granulometric data is only available for some Taranaki soils 

(Parfitt  et  al.  1981)  and is very challenging to analyse due to the high amounts of very fine 

short-range-order and amorphous clays (Alloway et al. 1992c). The known thixotropic properties 
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of allophane and its high capacity for water storage probably engenders extremely high mobility 

for Taranaki debris avalanches that incorporate andic soils. 

3.4.3. Lahar (debris-flow and hyperconcentrated-flow) deposits 

The wide variety of lahar initiation mechanisms results in a broad range of deposits with 

diverse textures and fabrics (Fig. 3.6). Their composition, grain size and thickness depend on the 

type, size and origin of the flow as well as on the depositional environment (Fisher & Schmincke 

1984; Scott 1988a, 1988b; Smith & Lowe 1991; Scott et al. 1995; Cronin et al. 1997; Vallance 

2000; Major et al. 2005). The deposits from debris flows are recognised by their massive, poorly 

sorted texture, coarse grain-size, matrix-support of clasts and often inverse grading, which reflect 

the high sediment concentration, particle interaction, high yield strength, buoyancy and laminar 

flow of the transport medium. Hyperconcentrated-flow deposits are better sorted and finer-

grained, show faint stratification, clast-support, normal, inverse or no grading indicating less yield 

strength and buoyancy and evidence of more turbulent flow behaviour. Normal streamflow 

deposits are produced by fully turbulent flow resulting in better sorting and distinct horizontal 

bedding to cross-stratification. 

Lahar deposits can show several facies that reflect the lateral and longitudinal changes in 

flow dynamics. The progressive downstream transformation from debris flow to 

hyperconcentrated flow produces deposits that show a gradational vertical transition from a basal 

hyperconcentrated-flow deposit upward to a debris-flow unit (Pierson & Scott 1985; Cronin et al. 

1999). With increasing dilution the basal horizontally bedded, poorly sorted, clast-supported 

hyperconcentrated-flow layer thickens, while the overlying massive, unbedded, coarse, very 

poorly sorted, matrix-supported debris-flow portion thins (Scott 1988a; Scott et al. 1995; Cronin 

et al. 1999). With increasing distance from source the horizontal stratification becomes more 

distinct and is eventually replaced by wavy cross-stratification as the flow transforms to normal 

streamflow. Some lahars are vertically stratified into a coarse, sediment-rich channel flow and an 

overlying dilute, finer grained surface layer, which results in accumulation of near-channel, 

wedge-shaped debris-flow deposits that are laterally equivalent to overbank hyperconcentrated-

flow deposits (Cronin et al 2000). 

Clasts within lahar deposits can be primary, mostly comprising angular to subangular 

volcanic rocks from the source region, or secondary angular to rounded clasts that were picked 

up along the lahar path (Major & Scott 1988; Scott 1988a, 1988b; Major et al 2005). The clast 

assemblage can be monolithologic but is more commonly polylithologic, with bimodal grain-size 
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distributions (Vallance 2000). Vesicles commonly found in the matrix result from entrapment of 

air bubbles. Other components include wood fragments, casts of tree fragments, and charcoal.  

Lahar deposits were recognised at an early stage as being a major component of the 

Taranaki ring-plain succession (Grant-Taylor 1964; Neall 1979; Neall et al. 1986; Palmer & Neall 

1991). The distribution of the youngest (<20 ka) debris-flow and hyperconcentrated-flow 

deposits, which are exposed on the surface of the ring-plain succession, was mapped by Neall 

(1979) and Alloway (1989). Older lahar units >20 ka are buried by more-recent volcaniclastic 

deposits closer to source and are only exposed in cross-section along the Taranaki coast. Based 

on their lithofacies characteristics and lateral facies changes they were classified as diamicton 

sheets (DS), sandy bedforms (SB), channels (CH), gravely bedforms (GB) and overbank fines 

(OF) (Palmer & Neall 1991). DS includes sandy debris-flow units as well as clay-rich units related 

to debris avalanches, and corresponds to both cohesive and non-cohesive debris-flow deposits. 

Clast-supported debris-flow deposits (CH) grade laterally into a debris-flow plain dominated by 

DS and marginal sandy fluvial deposits (SB). The base of many channels is typically made up of 

fluvial gravel and sand (GB and SB), reflecting their fluvial origin. Intercalated with volcanic 

mass-flow and fluvial deposits are paleosols, peat and reworked tephra beds (OF).  

(i) Debris-flow deposits 

Debris-flow deposits are very poorly to extremely poorly sorted, massive, non-stratified, 

and the largest clasts are typically supported in a finer grained matrix (Smith 1986; Vallance 2000; 

Scott et al. 2001). Both matrix-supported and clast-supported frameworks occur but the latter is 

less common (Smith 1986). Debris-flow deposits may be graded or lack vertical grain size 

variation; grading can be reverse to normal, reverse throughout the deposit, or rarely coarse-tail 

normal (Smith 1986; Scott 1988a; Major 1997; Thouret et al. 1998; Major et al. 2005). Reverse 

grading of clay-poor debris-flow deposits is attributed to dispersive pressure and limited to the 

Figure 3.6.  Facies types of lahar and lahar-related streamflow deposits (from Scott 1988a). 
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basal portion; it can occur throughout deposits generated by cohesive debris flows as a result of 

upward-increasing yield strength (Smith 1986). Coarse-tail normal grading due to settling of clasts 

within the flow during transport is common especially in the upper half of the unit. 

Concentrations of coarse particles, in particular low-density pumice clasts, are common at the 

deposit top (Vallance 2000). Most deposits show a decrease in mean and maximum grain size as 

well as the development of better sorting with distance from source. Debris-flow deposits 

typically show a distinct basal subunit, which is attributed to boundary effects during the waxing-

flow stages of the lahar (Alloway 1989; Scott 1988a, 1988b; Vallance 2000, Major et al. 2005). 

Sole layers of the channel facies consist of inversely graded, finer grained, texturally more 

uniform and more compacted sediment than the overlying debris, with locally primary foliation, 

while the floodplain facies typically shows sandy basal layers (Scott 1988a; Vallance 2000). The 

“ball-bearing bed” at Mt. St. Helens is an unusual clast-supported, fines deficient, concentrated 

basal unit of rounded pebbles and was interpreted as a sole layer of an exceptionally large lahar 

(Scott 1988a, 1988b). 

The thickness of debris-flow deposits ranges from tens of centimetres to tens of metres, 

with thick deposits accumulating in valleys and on lowlands and thinner deposits on higher 

terraces and valley slopes, as well as thin veneers on steep slopes (Janda et al. 1981; Pierson 1985; 

Pringle & Cameron 1999; Cronin et al. 2000; Lavigne et al. 2000; Vallance 2000, Major et al. 

2005). Lobate snouts, blunt margins, marginal levees, arcuate surface ridges and steep terminal 

flow fronts are common geomorphic features of deposits produced by unsaturated debris flows, 

but become less distinct with higher water contents of the flow (Major 1997; Vallance 2000). 

Some lahars accumulate clast-supported streamlined lags of poorly stratified gravel, so-called 

whaleback bars, in either expanding or constricting reaches of the channel due to changes in flow 

competence (Janda et al. 1981; Scott 1988) 

(ii) Hyperconcentrated-flow deposits 

Hyperconcentrated flows have properties that lie between debris flow and normal 

streamflow and thus produce deposits with intermediate characteristics (Pierson & Scott 1985; 

Smith & Lowe 1991; Pierson 2005). The deposits are typically finer-grained and better sorted 

than debris-flow deposits and often show a normally graded upper part. They can be non-

stratified, relatively massive and well-sorted, faintly bedded or display strong horizontal bedding 

(cf. Cronin et al. 2000). Coarse deposits with more pronounced horizontal stratification as well as 

laminations without high-angle cross-bedding are the result of traction-carpet deposition (Cronin 

et al. 2000). Lenses or single outsized clasts of cobbles or boulders are common and represent 
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coarse bedload enveloped by accretionary strata or left stranded on surfaces of berms or terraces 

(Pierson 2005). In distal areas where sediment concentrations are decreasing, more sediment is 

transported as bedload, the deposits are more distinctly stratified; and high-angle cross-bedding 

can form as a result of transition to normal streamflow (Cronin et al. 2000). 

When confined to channels, hyperconcentrated-flow deposits can show lateral facies 

variations from gravel-dominated valley-fill to sand-dominated floodplain or overbank deposits 

(Smith 1986; Scott 1988a; Palmer & Neall 1991; Cronin et al. 2000; Major et al. 2005). Channel-

fill deposits are massive, very poorly sorted, usually clast-supported, only moderately compacted, 

and show a bimodal grain size distribution of sand and gravel (Cronin et al 2000; Vallance 2000). 

These gravel-dominated deposits commonly develop normal grading and lack reverse grading at 

the base. The poorly imbricated cobbles and boulders form a framework with poorly sorted, very 

coarse-grained sand and pebbles occupying the open spaces in between (Smith 1986). Vesicles 

might be present if the matrix is fine-grained (Vallance 2000). The grain size within floodplain 

deposits ranges from coarse- and medium-sand to silt with the occasional floating pebble, cobble, 

or boulder (Scott 1988a). These are better sorted and usually show a faint internal stratification, 

with thin horizontal or very low angle cross-beds of alternating well- to poorly sorted, relatively 

coarse- and fine-grained sands. Pumice clasts, if present, are usually concentrated at the top of 

the overbank portion (Vallance 2000). The deposits are often overlain by 1-2 cm of ripple cross-

laminated sand, which is deposited by the low-energy, dilute waning stage of the flow (Smith 

1986; Blair 2000; Cronin et al. 2000). 

The thickness of hyperconcentrated-flow deposits varies from a few centimetres to 

several metres, with thicker deposits in channels or low areas grading into thinner deposits on 

higher ground. Scattered pebbles and larger clasts, especially pumice, are common towards the 

top of the deposit and are accompanied by thin layers of fine sand and silt that form due to 

compaction and dewatering (Cronin et al. 2000). Sedimentary features such as strong alignment 

or imbrication of elongate clasts, vertical variations in particle lithologies, similar clast 

compositions near margins and base of valley-fill deposits, tide lines indicating 5-10 times greater 

flow-depth than deposit thickness, and stratification indicate deposition within these currents 

through incremental accretion (Fisher & Schmincke 1984; Smith 1986; Smith & Lowe 1991; 

Vallance 2000).  
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3.5. FIELD CHARACTERISTICS OF VOLCANICLASTIC AND REWORKED 

EPICLASTIC DEPOSITS IN TARANAKI 

Volcaniclastic deposition at Mt. Taranaki has formed a surrounding ring plain, which 

extends 25-40 km onshore from the current summit and at least a further 6 km offshore. 

Sequences along the northern and southern Taranaki coast represent a cross-section through 

medial ring-plain settings. The exposed units show a wide range of lithologies, which reflect the 

whole spectrum of sediment-water flow from highly concentrated debris flow to dilute 

streamflow. Based on their different sedimentological characteristics, the deposits were classified 

into volcaniclastic, fluvial and aeolian facies. Distinction criteria and main deposit features are 

summarised at the end of this section in Table 3.1. 

3.5.1. Debris-avalanche and associated debris-flow deposits 

Debris-avalanche and related deposits of at least 14 edifice failures have been recognised 

at Mt. Taranaki (Neall 1979, 1986; Alloway 1989; Alloway et al. 2005; this study). Eleven of these 

events are represented in the study area along the south-western Taranaki coast, including six 

newly identified units. Two distinctive types of debris-avalanche deposits occur: a dominant 

“granular-type” is distinguished from one “cohesive-type” unit, i.e. the Otakeho debris-avalanche 

deposit which contains significantly higher matrix clay contents. 

In medial areas >25 km from source, only large-volume debris avalanches generated by 

major failures show axial-B facies, attributed to the landslide phase of the avalanche. Those 

produced by smaller collapse events had already transformed into run-out debris flows and 

deposited matrix-supported marginal facies. The physiographic expression of axial-B facies is 

only obvious for the youngest debris-avalanche deposits, which are exposed at the top of the 

ring-plain sequence. The medial facies of the Opua and Pungarehu events produced small, more 

widely spaced hummocks than the proximal axial-A facies, with variable basal diameters generally 

<25 m and extensive inter-mound areas (Palmer et al. 1991). In the case of the older debris-

avalanche units, a few scattered hummocks can be found in cross-section in the coastal cliffs but 

the characteristic morphology is otherwise buried and the surface smoothed out by overlying 

younger parts of the sequence. Axial-B debris-avalanche units are typically up to 8 m thick in 

coastal outcrops with the exception of the Pungarehu Formation, which exceeds 15 m at medial 

coastal locations near its main axis of distribution (Palmer et al. 1991). 

In general, Taranaki debris-avalanche deposits form a thick, laterally extensive cover of 

volcaniclastic debris and drape broad areas of the landscape. In medial areas, they display a 
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Figure 3.7. Sedimentary features of Mt. Taranaki and 
Pouakai debris-avalanche deposits. 
A. Te Namu debris-avalanche deposit thickening in a 
channel at Te Namu Pa. 
B-C. Basal shearing and deformation of the Maitahi 
debris-avalanche deposit at Oakura Beach. Camera cases 
for scale each c. 10 cm long. 
D. Basal bouldery layer of the Mangati debris-avalanche 
deposit near Bell Block. 
E. Close up of D showing the pumice-rich top of the 
Mangati debris-avalanche deposit. 
F. The Otakeho debris-avalanche deposit has a greenish 
base and brownish top half near Kaupokonui Stream. 
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typically sharp, but non-erosive contact and fill former depressions or channels, resulting in up to 

10 m-thick deposits in the central part of the channel (Fig. 3.7A). Evidence of shearing and in situ 

deformation of the underlying strata is rare and was only observed in the Mangati debris-

avalanche deposit in north Taranaki (Fig. 3.7B-C).  

A distinct basal layer of subangular to mostly rounded cobbles and boulders occurs 

locally in some deposits (Fig. 3.7D), which may indicate where the debris avalanche incorporated 

particles from river/stream beds or coastal areas. Many deposits have a basal part that appears 

greenish-brown in colour, which might reflect a higher content of dark, heavy minerals 

(ferromagnesian minerals or titanomagnetite) and small mafic clasts in the matrix (Fig. 3.7F) or 

more likely represents an oxidation/reduction effect. The top half of these deposits is yellow-

brownish which contains correspondingly less dense clasts and a higher percentage of lighter 

clasts and matrix components (Fig. 3.7E).  

(i) Granular type debris-avalanche deposits 

The granular type is very coarse, polylithologic, very poorly sorted, and non-stratified 

(Fig. 3.8A). The deposits contain primary and secondary clasts as well as megaclasts in a matrix, 

which makes up >80% of the deposit and consists of small volcanic fragments and individual 

crystals from clay-size to very coarse sand (cf. Neall 1979; Palmer & Neall 1991; Alloway et al. 

2005). A major primary component are disaggregated clasts, which can be up to 2 m in diameter 

and range in lithology from fragments of lava flows/domes, scoria and pumice to various types 

of xenoliths. Larger lava blocks are often fractured and show jigsaw cracks (Fig. 3.8B-C) of 

different dimensions, some containing matrix (cf. Ui et al. 1986a). Matrix is found to have 

infiltrated the cracks, indicating that they widened during transport, which allowed matrix to 

intrude into the developing gaps. This fracturing process gradually split the block into several 

smaller blocks and isolated clasts (Ui et al. 1986a). The fractured lava blocks are typically 

clustered and surrounded by smaller monolithologic clasts in the matrix.  

Megaclasts were defined by Palmer et al. (1991) as “all components of the deposit >1 m 

maximum size that are bounded by an outer surface and show an internal lithological 

homogeneity”. Here the term megaclast is size-independent and refers to relatively intact 

fragments of original edifice strata, which can be strongly brecciated or stratified and are 

bounded by an outer surface. In the coastal area they range in size from c. 0.2 m to 10 m and 

rarely up to 50 m (Fig. 3.8D) and include “brecciated clasts” (Fig. 3.8E), i.e. intensely brecciated 

single rock types <1 m in diameter (Palmer et al. 1991). Most megaclasts, in particular the smaller 

ones, are rounded and coated by rims that are several cm-thick and consist of finer-
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Figure 3.8. Characteristic components of Mt. Taranaki and Pouakai debris-avalanche deposits. 
A. Matrix-rich fabric of the Opua Formation with coarse clasts as example of the granular type debris-avalanche deposit 
(2581607/6195365). Hammer for scale, handle c. 30 cm long. 
B. Fractured clast with jigsaw cracks surrounded by clustered clasts of the same lithology within the Maitahi Formation 
north of Oakura Beach. Camera lens cap for scale c. 5 cm across. 
C. Close-up of a fractured block with jigsaw cracks within the Pungarehu Formation. Lens cap for scale. 
D. Large brecciated megaclast observed in the Opua Formation close to its main axis of dispersal (2582263/6195130).  
E. Small “brecciated clast” within the Maitahi Formation, north of Oakura Beach. 
F. Stratified megaclast in the Maitahi Formation, which preserved the original stratigraphy of the edifice (north of Oakura 
Beach). Circled hammer for scale. 
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grained inter-clast matrix. Lithologically homogeneous megaclasts composed of brecciated grey 

to dark grey basaltic andesite or andesite lava are the most common type. The lava is intensely 

shattered and is fractured into numerous irregular clasts, which range in size from a few mm to 

tens of cm, forming a characteristic jigsaw pattern (Shreve 1968, Ui 1983, Ui et al. 1986a; Ui et al. 

2000). Clusters of smaller brecciated megaclasts of different sizes are often found in proximity to 

larger ones of identical lithology, indicating that these split up into smaller aggregates during 

transport. They continue to disaggregate until their fractured components are dispersed as 

discrete clasts in the matrix (Alloway et al. 2005). Stratified megaclasts that preserve the original 

stratigraphy and primary layering are rare in the studied medial debris-avalanche deposits. They 

are more common closer to source and are a significant component of the Axial-A facies (Palmer 

et al. 1991). They were also observed in coastal outcrops of the Maitahi debris-avalanche deposit 

(Fig. 3.8F). 

With distance from source, the flows incorporated an increasing volume of secondary 

components during transport (Palmer et al. 1991; Alloway et al. 2005). The most common rip-up 

clasts are fragments of the underlying strata, including older debris-avalanche, debris-flow and 

hyperconcentrated-flow deposits, soil and peat beds, tephra layers, fluvial and aeolian sediments, 

as well as individual subrounded to rounded fluvial clasts (Fig. 3.9A-D). Some debris-avalanche 

units contain large quantities of entrained branches and tree stumps of a variety of lowland 

species, reflecting a warm climate and dense vegetation at the time of their deposition. The 

occurrence of rounded and often strongly deformed ripped-up pieces of mud- and sandstone, 

typically <1.5 m in diameter, within the oldest units (Motunui and Okawa Formation exposed 

along the northern coast (Alloway et al. 2005) as well as Waingongoro and Waihi debris-

avalanche deposits in the south) indicate that the earliest debris avalanches at least partly travelled 

across exposed Tertiary substrate (Fig. 3.9E). Fragments of Tertiary rock are absent in the 

younger units, suggesting that they moved across a progressively thickening volcaniclastic 

substrate. The granular-type debris-avalanche deposits show interclast matrix-rich axial-B facies 

close to the axis of distribution and a maximum thickness of c. 8 m, with the exception of the 

Pungarehu Formation, which exceeds 15 m at medial coastal locations (Palmer et al. 1991).  

The lateral transition from axial-B into matrix-supported marginal facies is gradational 

and marked by a decrease in overall thickness and clast size, an increase of matrix relative to 

clasts, decreasing abundance and size of primary megaclasts, and an increase in secondary clasts. 

These run-out debris-flow deposits are up to 4 m thick, have a non-erosive lower contact and a 

predominantly planar surface with scattered small mounds <2 m high (Palmer et al. 1991), which 

can be observed in coastal cross sections. They are characterised by >80-90% of allophane-rich 
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Figure 3.9. Photographs showing examples of rip-up clasts found within Mt. Taranaki and Pouakai debris-avalanche 
deposits. The most common types consist of soil fragments or peat with intercalated tephra beds (A; Waihi Formation), 
debris-flow deposits (B; Te Namu Formation), hyperconcentrated-flow deposits (C; Te Namu Formation) and less common 
fragments of underlying sandstone (D; Rama Formation). Ripped up and deformed pieces of Tertiary mudstone are limited to 
the older debris-avalanche deposits (E; Maitahi Formation). Pencil in A is c. 15 cm long; sledge hammer handle in E is c. 
o.8 m long. 
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matrix that contains disaggregated clasts, rare and smaller megaclasts <2 m and secondary clasts. 

The most distinctive feature of the marginal lithofacies is the increasing abundance of rip-up 

clasts compared to primary components. Small fragments, typically <1 m in diameter, of 

volcaniclastic material, soil/peat (often with interbedded layers of primary or reworked tephra), as 

well as fluvially subrounded to rounded clasts and wood (when available) are the most common 

type. Large stratified rip-up clasts made of debris-flow, hyperconcentrated-flow and cross-bedded 

fluvial deposits can be as much as 100 m across and generally occur at or near the base of the 

deposit (Palmer et al. 1991). The largest observed rip-up clast in the study area is c. 20 m in 

length (Fig. 3.9C). Number and size of clasts and rip-up clasts continuously decrease towards the 

marginal and distal limits of the deposits, until they become a relatively homogeneous mixture of 

clay-rich matrix and sparser gravel- to sand-sized volcanic particles. The deposits wedge out 

abruptly at their margins from <0.5 to 0 m within 10 m. 

(ii) Cohesive type debris-avalanche deposits 

The cohesive type is poorly sorted, polylithologic, and, in contrast to the granular-type, 

contains small (<5-10 cm in diameter) and completely disaggregated clasts in >95% allophane-

rich matrix (Fig. 3.10A). Further components are abundant large logs and wood fragments (Fig. 

3.10B) as well as small ripped-up pieces of underlying soil and tephra beds (Fig. 3.10B). Few 

brecciated clasts and rare, small rounded megaclasts occur (Fig. 3.10C). The deposits are more 

widespread than the granular type but of relatively constant thickness (typically 2-3 m) with a 

maximum observed medial thickness of 4 m. In coastal areas, only the marginal facies is exposed, 

which shows a slight increase in clast abundance and size (15-20 cm in diameter) closer to the 

main dispersal axis. 

3.5.2. Channelised debris-flow and related overbank deposits 

Where lahars were confined to pre-existing river channels they formed very coarse, very 

poorly to extremely poorly sorted, clast-supported, massive deposits with little sandy matrix. 

These are non-graded, lack internal stratification and often developed a thin matrix-supported 

base (cf. Scott 1988a; Vallance 2000). Boulders are rounded to angular and can be more than 2 m 

in diameter (Fig. 3.11A). Large angular-subangular boulders could be derived from older debris-

avalanche deposits while the well-rounded clasts were probably picked up from the underlying 

river bed. Some units grade upward into moderately to poorly sorted, bedded, sandy 

hyperconcentrated-flow deposits. This has been described elsewhere and interpreted by several 

authors (cf., Pierson & Scott 1985; Smith 1986; Cronin et al. 2000) as reflecting deposition from 

the dilute waning stage of the flow. Intercalated lenses of bedded and cross-bedded sands fill 
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Figure 3.10. Cohesive-type debris-avalanche deposits are characterised by a matrix-rich fabric with only few and relatively
small clasts (A; 2588351/6186992). The Otakeho Formation also contains abundant pieces of ripped-up wood up to log-
size (B; 2602116/6180599). Megaclasts are rare, considerably rounded and small in size, like this example from the 
Otakeho debris-avalanche deposit (C; 2587165/6189163). Rip-up clasts are typically small and rounded and are often 
fragments of peat beds with interbedded tephras (D; 2603489/6180456). 
 

A B 

1 m 

D C 

1 m 

0.5 m 

A B 

2 m 

1 m 

Figure 3.11. Channelised debris-flow deposits are characterised by a clast-supported fabric and large boulders (A; 
2582945/6193712). Towards the channel margins they grade into thinner and finer-grained overbank deposits, marked 
by the white arrow (B; 2588351/6186992).  
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small surface channels that represent rapid post-depositional reworking of the deposit by fluvial 

processes. Typically, these channelised debris-flow deposits are lenticular with erosive basal and 

marginal contacts cut deeply into the underlying and abutting deposits.  

Individual units are up to 5 m thick but extend only several tens of metres laterally 

before grading into thinner, more wide-spread overbank deposits (Fig. 3.11B). These tabular, 

overbank units drape the substrate with no erosional contacts and extend up to 250 m from the 

channel margin. They are better sorted than the channel facies and consist primarily of fine 

pebbly sands. The deposits become progressively finer-grained and better sorted with distance 

laterally from the channel margins, showing in outer reaches faint internal stratification with thin 

horizontal or very low-angle cross beds. The polylithologic character of most debris flows 

suggests that they were not directly produced during eruptive episodes but were probably 

generated by small collapse events.  

3.5.3. Sheet-like hyperconcentrated-flow deposits 

Distinct from the lahar overbank facies deposits are more widespread, pebbly sand-

dominated tabular units that are interpreted to have been emplaced by hyperconcentrated flows 

with a wide range of sediment/water ratios and thus diverse flow behaviour. These deposits 

encompass features such as poor to moderate sorting, reverse-to-normal, normal or no grading, 

massive appearance to distinct bedding and can be tabular or lenticular with erosive basal 

contacts. They contain mostly subangular, predominantly monolithologic clasts. Monolithologic 

pumice and scoria-rich flows (Fig. 3.12A-B) are similar to those generated from remobilised 

tephra fall following explosive subplinian eruptions (cf., Pierson & Scott 1985; Scott 1988a; 

1988b; Dorava & Meyer 1994; Meyer & Trabant 1995; Cronin et al. 1997; Waythomas 1999; 

Zanchetta et al. 2004; Major et al. 2005). Flows dominated by dense andesite clasts (Fig. 3.12C) 

appear to represent the reworking of dome-collapse block-and-ash-flow deposits, which are 

common in the volcanic history of Mt. Taranaki (Platz et al. 2007a). Juvenile breadcrust bombs 

were observed in only a few hyperconcentrated-flow deposits (Fig. 3.12D). Polylithologic flows 

(Fig. 3.12E) were probably not directly related to an eruption but represent the run-out of lahars 

and floods during periods of volcanic quiescence (cf., Zanchetta et al. 2004). The deposits can be 

traced up to 2.5 km in lateral exposure and thicken in small channels but do not show distinct 

transitions from confined coarse debris-flow to overbank facies.  

Coarser units, produced by sediment-rich, high-competence flows transitional between 

debris and hyperconcentrated flow often show reverse-to-normal grading. The deposits are 

typically 0.4-0.6 m and rarely up to 1.5 m thick, consisting of an inversely graded, fine-grained 
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base and a coarse main body, which grades into a finer-grained top (Fig. 3.13A). The basal unit 

comprises fine angular to subangular pebbles and sand, can be faintly bedded and is sometimes 

underlain by a thin (c. 1 cm), well-sorted sole layer of fine to coarse sand. The overlying main 

part of the deposit is coarse, massive, poorly sorted with angular to subrounded, large pebble to 

small cobble-sized clasts in a sandy matrix and often shows normal grading into a finer-grained, 

bedded pebbly sandy top. These characteristics reflect the gradational vertical transition from a 

basal hyperconcentrated-flow deposit upward to a debris-flow unit (Pierson & Scott 1985; Cronin 

et al. 1999). The basal layer indicates passage of a watery front-wave with competence increasing 

over time. The following main body of the flow produces the overlying debris-flow unit. With 

increasing dilution downstream the basal layer thickens, while the overlying debris-flow portion 

thins (cf., Scott 1988; Scott et al. 1995). The top part of the deposit can be fine-grained and 

bedded, representing the transition to more dilute flow and decreasing energy. Typically, a thin 

silty layer develops on top after deposition due to settling and dewatering of the sediment (cf., 

Cronin et al. 2000). 

Non-graded, poorly sorted, coarse deposits with pebble- to boulder-sized clasts in a 

sandy matrix also occur and likely represent the most concentrated of these non-cohesive debris-

flow/hyperconcentrated-flow deposits (Fig. 3.13B). They lack internal stratification, are tabular 

and non-erosive, or lenticular with scoured basal contacts. Individual units can be up to 1.7 m 

thick.  

Thinner and finer-grained sediments consisting of pebbly sands are also interbedded. 

These units are moderately to poorly sorted, show weak grain-size defined bedding on a cm to 20 

cm scale (Fig. 3.13C), and commonly contain scattered clasts of cobble and boulder size. The 

basal contact of these deposits can be erosive or non-scoured. Upward-decreasing grain-size, 

better sorting and more distinct bedding indicate transition to higher water contents and a lower 

sediment concentration of the transport medium. The resulting deposits are moderately sorted 

and show horizontal lamination of fine and coarse sands with the occasional occurrence of 

isolated pebble- and rare cobble-sized clasts. The deposits are often lenticular with a wavy, 

erosive base.  

Fine-grained, pumice-rich hyperconcentrated deposits can show pumice ‘trains” and 

discontinuous beds of coarser particles aligned parallel to the depositional surface and bedding 

(Fig. 3.13D). Pebbles transported as bedload, cluster in front of larger clasts that represented a 

barrier during flow (Fig. 3.13E). The deposits are typically 0.2-0.5 m thick but can be as thick as 

c. 2 m (faintly bedded coarser units) or 1.2 m thickness (well-bedded fine-grained units). 
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Figure 3.12. Photographs of the different types of 
hyperconcentrated-flow deposits observed in Taranaki. 
Hammer c. 30 cm long; pencil in B c. 15 cm long. 
A-B. Coarse- and fine-grained pumice-/scoria-rich 
hyperconcentrated-flow deposits were generated during or 
shortly after Plinian/subplinian eruptions. 
C. Hyperconcentrated-flow deposits that contain dense 
andesite clasts represent the runout of block-and-ash-
flow reworking lahars. 
D. Juvenile breadcrust bombs in monolithologic 
hyperconcentrated-flow deposits indicate syneruptive 
origin or generation shortly after eruptive activity. 
E. Polylithologic hyperconcentrated-low deposits do not 
seem to be directly related to eruptive periods. 

A B 

D C 

E 

Figure 3.13. (next page)  Sediment-rich hyperconcentrated flows at Mt. Taranaki emplaced coarse and reverse to normally 
graded (A) or massive and ungraded units (B), the latter showing transitions to debris-flow deposits. More dilute flows 
produced bedded, fine-grained hyperconcentrated-flow deposits (C). Pumice trains are common in finer-grained, faintly 
bedded, pumiceous hyperconcentrated-flow deposits (D). Pebble-sized clasts that were transported as bedload, cluster in front 
of larger clasts, which represented a barrier during flow (E). Dish and pillar structures (F) and load-induced flame 
structures (G-H) are common in Mt. Taranaki hyperconcentrated-flow deposits and are produced by post-depositional 
deformation and dewatering processes. Hammer c. 30 cm long; shovel handle in C c. 1 m long; lens cap in G c. 5 cm across.
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Post-depositional deformation and dewatering structures are common, such as dish and 

pillar structures (Fig. 3.13F) and load-induced flame structures (Fig. 3.13G-H). These features 

indicate that stacks of several units were probably emplaced in rapid succession. Dish and pillar 

structures form as a result of compaction and subsequent horizontal and vertical dewatering of 

commonly coarser sandy sediment after emplacement. Dish structures are thin, subhorizontal, 

flat to concave-upwards silty beds, typically a few mm thick and up to several tens of cm across, 

while pillars represent vertical fluid-escape paths (Wentworth 1967; Lowe & LoPiccolo 1974; 

Scott et al. 1995). Flame structures develop due to compression of underlying finer-grained, 

water-saturated material during and after accumulation of a coarser, sandy layer on top. The 

overload pushes out water and fine particles that form fingers or wedges (“flames”) of sediment. 

Syn-depositional generated flames are oriented in flow direction while those developed post-

depositional typically point upwards. 

3.5.4. Transitional hyperconcentrated-flow/ normal streamflow deposits 

Deposits representing runout and margins of hyperconcentrated flows are moderate to 

well-sorted, fine- to coarse-grained sands, typically with low-angle cross-bedding or strongly 

developed horizontal to wavy bedding (Fig. 3.14A). Lenses of cross-bedded fine sands and 

rounded pumice lapilli are common. The deposits are lenticular with very erosive basal contacts 

and often form steep, overlapping channels (Fig. 3.14B). Their thickness ranges from a few cm to 

0.5 m. 

 

A B 

1 m 

Figure 3.14 Flows transitional between hyperconcentrated flow and normal streamflow produce deposits with laminar 
bedding (A) or lenticular, cross-bedded units that can often steep channels. 
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3.5.5. Fluvial deposits 

Different types of fluvial reworked equivalents of the volcaniclastic units above also 

occur in the medial sequences. The most common deposits consist of alternating lenses of well-

sorted fine to coarse sands and moderately to poorly sorted, rounded to subrounded pebbles and 

sands separated by low-angle erosion surfaces (Fig. 3.15A-B). Individual sand beds are typically a 

few mm to 1 cm thick, while pebble layers are 1 to 10 cm thick. The deposits show horizontal 

lamination (sands), low-angle cross-stratification and prominent scour-fill cross-bedding. 

Contacts to the underlying deposits are erosive. The sequences are up to 4 m thick and highly 

localised in distribution, but can laterally extent up to 150 m. Complex sequences of overlapping 

channels that cover wider stretches of coastline reflect the locations of larger, long-lived river 

systems. These accumulated massive, sometimes >10 m thick, aggradational series of more 

poorly sorted sediments, made up of rounded volcanic clasts ranging from pebble- to boulder-

size with intercalated cross-bedded lenses of small pebbles and sand (Fig. 3.15C-D).  

 

A B 

3 m 

D C 

3 m 

Figure 3.15. Fluvial deposits are common in the Taranaki ring-plain succession and typically consist of cross-bedded lensess
of sand and beds of rounded pebbles (A-B). Aggradational river sequences are more poorly sorted and coarser, consisting off 
pebble- to boulder-sized rounded to subrounded volcanic clasts with intercalated cross-bedded lenses of small pebbles andd
sand (C-D). Pencil for scale in D is c. 15 cm long. 
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3.5.6. Aeolian deposits 

In some areas, dune sands formed as a result of aeolian redeposition. These consist of 

alternating thin (0.5-1 cm) beds of dark grey, very well-sorted fine sands that are rich in dark, 

mafic, heavy minerals (i.e. ferromagnesian and titanomagnetite minerals) and thicker (up to 2 cm) 

beds of coarser, light yellow to brownish, well-sorted sands (Fig. 3.16A). Individual sets of dune 

sands are tens of cm to c. 1.5 m thick and show planar or high-angle cross-stratification (Fig. 

3.16B). They form sequences that can be more than 12 m thick and are typically interbedded with 

thin (5-10 cm thick) organic-rich peat layers or iron-stained, weakly developed tephric soils as 

well as a number of sandy, often pumiceous hyperconcentrated sheet-flow deposits. Intercalated 

coarser beds of rounded, reworked pumice lapilli indicate rapid saltation and redeposition of 

these pumice-rich deposits within this area of aeolian reworking. Aerially exposed volcaniclastic 

and fluvial deposits provided further source material for dune sand formation.  

 

 

 

 

 

 

A B 

0.5 m 0.2 m 

Figure 3.16. Paleo-sand dunes within the ring-plain succession consist of alternating thin beds of dark grey, very well-sorted 
fine sands and thicker beds of coarser, light yellow to brownish, well-sorted sands (A). They form sequences of >12 m 
thickness with individual sets of dune sands typically being tens of cm to c. 1.5 m thick and showing planar or high-angle 
cross-stratification (B). 
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3.6. LITHOFACIES ASSOCIATIONS OF VOLCANICLASTIC DEPOSITS 

Medial ring-plain sequences are built of at least six different lithofacies elements that 

correspond to a range of transport and emplacement modes as well as various depositional 

environments.  

3.6.1. Debris avalanche-dominated sequences 

The gently dissected, flat nature of the ring plain around Mt. Taranaki resulted in 

relatively unconfined, very thick, laterally extensive debris-avalanche and related debris-flow 

deposits that buried large areas. Emplacement of these changed the focus of sedimentation 

dramatically, with subsequent deposition focussed to the lateral margins of these landscape-

forming deposits. Hence sequences of stacked debris-avalanche and debris-flow units are formed 

with little accumulation of other deposits between them, apart from tephric soils and peat beds 

(Figs. 3.17 and 3.23A). The collapse events also significantly modified the pre-existing drainage 

system, with debris-avalanche units burying older river systems represented by underlying fluvial 

and channelised lahar deposits. Re-establishment of the drainage system is indicated by deep 

channels that were cut into and beside the avalanche deposits (Fig. 3.18) (cf. Procter et al. 2009). 

These accumulated coarse reworked material from the debris-avalanche units as well as being 

partially filled by later debris-flow deposits. Smaller stream systems reworked the surface of the 

avalanche to produce minor localised cross-bedded fluvial gravels and sands 

3.6.2. Paleochannel-systems 

Ring-plain locations record a network of separate and overlapping, laterally migrating 

paleo-channels that were repeatedly infilled. The channels were cut by rivers and streams as 

sometimes indicated by cross-bedded fluvial deposits at their base. They provided major flow 

paths for coarse, voluminous debris flows, which in most cases eroded the fluvial and underlying 

deposits and filled the central channel area. The sequence typically consists of several coarse, 

massive, poorly sorted debris-flow units that are separated from each other by unconformities. 

These are filled with thin cross-bedded lenses of sand and represent reworking by fluvial 

processes between lahar events. The central channel area can be as thick as 10 m but typically 

extends only 15-60 m laterally (Fig. 3.19). The lateral transition from channel area to floodplain is 

marked by a change into thinner, more-fine-grained, tabular hyperconcentrated-flow deposits. 

Vertically, the sequences fine upwards to a series of thin hyperconcentrated-flow deposits 

emplaced in shallow, broad channels (Fig. 3.23B). Interbedded fluvial sediments represent local 

re-establishment of paleo-streams and fluvial reworking.  
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Rama 

Figure 3.17. Sequence of stacked debris-avalanche (Rama and Otakeho) and debris-flow (DFD, unnamed) units at 
Kaupokonui 1 with little fluvial accumulation (Flu) between events. 

Figure 3.18. Cliff section at Middleton Bay 3, which contains the Opua Formation near the top and the Ihaia debris-flow 
deposit at the bottom of the cliff. Channels were cut into the Pungarehu (Pu) and Te Namu (TN) debris-avalanche deposits 
and subsequently filled by debris-flow, hyperconcentrated-flow and fluvial deposits. 

3 m 

Otakeho 

Flu 
DFD 

Opua 

Pu 

TN 

3 m Ihaia 

Channel fill 

Hihiwera Peat 



Chapter 3. Sedimentology 145

3.6.3. Sequences dominated by sheet-flow deposits  

Hyperconcentrated-flow and transitional hyperconcentrated-/debris-flow facies 

associations are an important architectural element in broad flat interfluve areas of medial ring-

plain locations. They occur as single depositional units of varying thickness or as a massive series, 

forming sequences up to 15 m thick (Fig. 3.20). Their wide range of sedimentary characteristics is 

a result of relatively minor variations in sediment concentration, volume and lithology of the 

depositing flow. Short breaks in volcaniclastic sedimentation are characterised by tephric soil 

and/or peat formation and localised fluvial deposition in paleo-stream locations (Fig. 3.23C). 

These tabular hyperconcentrated-flow deposits can be traced over lateral distances of up to 2.5 

km. In other cases erosional surfaces and deep channels give them a seemingly lenticular 

appearance. Their unconfined, sheet-like distribution is related to the relief of the ring-plain, i.e. 

mostly infilled, shallow stream beds and wide coastal plains with broad terraces. 

3.6.4. Fluvial facies associations 

Fluvial deposits occur throughout all successions, representing periods of stream and 

river reworking and re-establishment (Figs. 3.21 and 3.23C.). They are typically highly localised 

and show bedding features that represent at least two different settings. The first is more 

common and characterised by relatively thin bedding, low relief of scours and low amplitude of 

cross-stratification, which suggests deposition by shallow, rapid streamflow in broad, braided 

channels (Smith 1987b). The stream channels in Taranaki are typically shallow but of relatively 

small lateral extent. Thicker aggradational series of mostly horizontally bedded fluvial gravel and 

sand are rare and steadily accumulated in deeper, wider river channels.  

3.6.5. Sequences dominated by dune sands 

Cross-bedded aeolian sands occur as sequences >12 m thick (Fig. 3.23D) and are 

exposed over a wide stretch of coastline (>15 km). In some areas they are interbedded with thin 

(<0.5 m thick) single or multiple volcaniclastic mass-flow deposits or localised fluvial sediments 

(Fig. 3.22). The dune sands accumulated during cool as well as mild climates indicated by 

different types of intercalated paleosols, i.e. tephric soils as well as peat beds between c. 50 ka to 

>80 ka. It is, thus, unlikely that they correspond to an earlier period of cold-climate aeolian 

redeposition such as the Katikara Formation that accumulated on the Pouakai ring plain in north 

Taranaki at the end of the Last Glaciation (Neall 1975; Alloway 1989). 

Instead, the sand dunes are thought to have formed in a relatively undisturbed near-

coastal environment as they are similar in extent and characteristics to present-day near-shore 
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3 m 

Figure 3.19. Deposit sequence of a central channel area filled by coarse debris-flow and finer-grained hyperconcentrated-flow 
deposits towards the top (2583809/6193200). The coarser channel fill grades into finer-grained overbank deposits near 
the channel margins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.20. Cliff section (2584600/6192713) dominated by stacks of coarse- and fine-grained hyperconcentrated-flow 
deposit. Persons for scale. 
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Figure 3.21. Fluvial deposit sequence characterised by aggradational, coarse sediments in the bottom half that are separated 
from overlying cross-bedded fluvial gravels and sands by several thin hyperconcentrated-flow deposits (HF). The cliff section 
(2583002/6193993) is capped by the Opua debris-avalanche deposit. 

Figure 3.22. Deposit sequence dominated by several sets of cross- and planar bedded grey dune sands 
(2587165/6189163). Here, no paleosols formed within the sequence but some layers are characterised by weathered iron-
stained to

Opua 

HF 

2 m 

1 m 

ps. 



Chapter 3. Sedimentology 148 

Figure 3.23. Stratigraphic columns of the different types of lithofacies associations occurring in the Taranaki ring-plain 
succession: debris-avalanche dominated sequence (A), channel system capped by hyperconcentrated-flow deposits (B), series of 
sheet-like hyperconcentrated-flow deposits with interbedded fluvial sediments (C) and sequence of dune sands with 
interbedded peat layers or sandy paleosols (D). Lithofacies elements B-D are typically found between debris-avalanche 
deposits, indicating different types of deposition between collapse events (as indicated by the dotted lines between A and B). 
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dune fields, indicating the presence of the paleo-strandline nearby. The assumed maximum age of 

the dune sands of just over 80 000 years correlates well with the high sea level that cut the Hauriri 

Marine Terrace in south Taranaki (Pillans 1983). At its type section south of Waverley, the 

coverbeds of the Hauriri wave-cut platform are c. 7.5 m thick and comprise a shelly 

conglomerate, overlain by laminated sand and silt, andesitic sandy conglomerate, c. 2 m massive 

grey tephric loess and c. 2.5 m andesitic sand with cross-beds (Pillans 1990). The observed dune 

sands in south-west Taranaki are most likely equivalent to the upper, terrestrial part of the 

described coverbeds, while the laminated sands and shellbed were deposited in a marine 

environment most likely a few hundred metres to several kilometres offshore of the present 

coastline. 

3.6.6. Paleosol- and peat-dominated sequences 

Paleosol-dominated stratigraphic intervals represent areas with relatively low 

sedimentation rates and periods of landscape stability. Soil development is faster than the rates of 

erosion, indicated by sequences made of alternating volcaniclastic deposits and preserved 

paleosols (cf. Zanchetta et al. 2004). These sequences are characterised by accumulation of thick 

layers of medial ash or peat and the preservation of (typically <2 cm) thick tephra beds (cf. 

Section 3.7, Fig. 3.25). Paleosols formed under cold climate conditions are developed within 

volcanic loess with intercalated thin, discrete tephra beds reaching up to 2.5 m thickness. Peat-

dominated sequences up to 1.5 m thick formed in areas of poor drainage and are intercalated 

with medial ash and tephras. In some areas, the soil formation process is interrupted by 

infrequent emplacement events of single debris-flow or hyperconcentrated-flow units. 

3.7. INFLUENCE OF PREVAILING CLIMATE CONDITIONS ON DEPOSIT 

CHARACTERISTICS 

The extreme climate changes of the last 130 ka had a major impact on landscape 

development in New Zealand (Newnham et al. 1999). Periods of cold climate were characterised 

by seasonal frozen ground and the formation of glaciers in the Southern Alps (Porter 1975; 

Hellstrom et al. 1998) while periglacial conditions were dominant in the North Island. Here, only 

small areas were enveloped by glaciers. Instead, fluvial and wind erosion led to accumulation of 

thick alluvial sequences, aggradation of river terraces and deposition of loess (Suggate et al. 1978; 

Nelson et al 1988; Eden 1989; McArthur & Shepherd 1990; Alloway et al. 1992; Pillans et al. 

1993; Palmer & Pillans 1996). Warm periods were marked by landscape stabilisation, river down-
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cutting, soil development and the formation of marine terraces along the New Zealand coast due 

to glacioeustatic sea-level changes (Pillans 1983, 1988, 1990a, 1990b; Palmer 1987). These 

tectonically uplifted marine terraces are best developed in the south Taranaki-Wanganui coastal 

plain, where they run roughly parallel to the present coastline, rising to more than 300 m above 

present sea level and extending 20 km inland (Pillans 1983). Two terraces, NT1 and NT2, in the 

coastal sections of North Taranaki are correlated to the 100 ka Inaha (Neall & Alloway 2004) and 

the 127 ka Rapanui (Chappell 1975) Marine Terraces of south Taranaki, respectively (Dickson 

1974; Pillans 1983, 1990). These represent important surfaces that allowed the approximate 

dating of the Motunui and Okawa debris-avalanche deposits (Alloway 1989; Alloway et al. 2005).  

The present day climate in Taranaki changes from mild to warm-temperate conditions 

in coastal areas to a cooler inland region with higher rainfall, common frosts and fogs. Winds 

become stronger with elevation and are predominantly westerly. Annual rainfall ranges from 900-

1600 mm but increases with altitude to about 8 000 mm above 2 000 m (Coulter 1976; Newnham 

& Alloway 2004). The climate pattern results in a distinct zonation of the vegetation from coast 

to summit with coastal forest up to 1 km inland, semicoastal forest up to 10 km inland and 150 m 

altitude, lowland forest up to 760 m, montane forest up to the treeline at 1050 m grading into 

subalpine shrubland up to 1280 m, a transitional shrubland-tussockland zone, and alpine 

tussockland from 1400 m (Druce 1970; Bayfield & Benson 1986; Newnham & Alloway 2004).  

Pollen records suggest similar warm and moist conditions occurring during the last 

Interglacial around c. 127 ka (MISS 5e) with dense and extensive podocarp-angiosperm forest 

and beech forest farther inland (cf. Fig. 3.24) (Newnham & Alloway 2004). Oxygen isotope 

records of MISS 5d-5a show strong climate oscillations as the global climate deteriorated. MISS 

5d and 5b were characterised by a cool climate, which caused the decline of podocarp-

angiosperm forest and the expansion of low-growing shrubland-grassland with sparse woody 

vegetation (McGlone et al. 1984). MISS 5d represented cool and moist conditions while MISS 5b 

was considerably drier with incomplete vegetation cover and widespread erosion (McGlone et al. 

1984; Newnham & Alloway 2004). MISS 5c and 5a conditions were warmer and moister, 

resulting in a decline of shrubland and the propagation of lowland podocarp forest. The high sea 

level stand during MISS 5c resulted in the formation of the Inaha Marine Terrace (McGlone et al. 

1984) while the Hauriri Marine Terrace was cut at c. 80 ka during MISS 5a (Pillans 1983, 1990; 

Alloway 1989). Fully forested conditions are recorded in the Manaia Lignite and reflect significant 

warming during MISS 5a (McGlone et al. 1984). The assemblage of several tephra beds and 

overlying zones rich in pollen of seral shrubs and trees that are known to rapidly colonise fresh 

volcanic surfaces indicate a strong volcanic impact on the vegetation during that period 
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(Newnham & Alloway 2004). The occurrence of pieces of charcoal, two distinct charcoal layers 

and several tephra beds in the record of late MISS 5a indicate a period of environment instability 

with fire-ravaged vegetation possibly as a consequence of volcanic activity, lightning and frequent 

drought (McGlone et al. 1984; Newnham & Alloway 2004). The transition to MIS 4 began with a 

short dry period followed by harsh cool and moist stadial conditions with episodes of severe 

erosion. Conditions during interstadial MIS 3 were mild, leading to a partly forested landscape. 

The period around 40-30 ka was one of the wettest and warmest during the Last Glacial as 

recorded in pollen assemblages (McGlone et al. 1984) of the Hihiwera Peat. Conditions become 

colder and drier towards MIS 2. The Last Glacial Maximum (25-14 ka) was characterised by a 

cold and dry climate with widespread erosion along all stream channels draining the Pouakai 

Range (McGlone 1996) as well as widespread aeolian redeposition of tephras (Katikara 

Formation) (Neall 1975). Conditions during the late glacial (14-10 ka) become increasingly 

warmer and wetter with progressive afforestation and landscape stabilisation (McGlone et al. 

1996). At c. 13.1 ka, grassland-shrubland and Prumnopitys taxifolia-dominated forest indicates cold 

and dry late-glacial climate with a shift to warm and moist climate from 12.9 to 11 ka (Alloway et 

al. 1992; McGlone & Neall 1994). In most sectors of the ring plain, the Okato Tephra (Neall 

1979) is conformable with the present-day surface, indicating subsequent widespread stability on 

the flanks of the Taranaki volcanoes since c. 12.5 ka (McGlone 1996), with the exception of the 

Opua and Kahui events.  

Climate and local weather strongly influence the nature of accumulation on 

volcaniclastic fans (e.g. Palmer et al. 1993; Davidson & De Silva 2000; Zanchetta 2004) because 

precipitation regimes control the rates of erosion, soil development, sediment yield in catchments 

and redistribution of volcanogenic material (e.g. Dorn et al. 1987; Frostick & Reid 1989; Ritter et 

al. 1995; Lavigne & Thouret 2002; Lavigne 2004; Zanchetta 2004; Scott et al. 2005; van Westen & 

Daag 2005). Vegetation type and growth as well as soil development play an important role for 

the stability of the landscape and depend on style (duration and intensity of rainfalls or amounts 

of snow accumulation) and amount of meteoric precipitation (Zanchetta 2004). Moist and mild 

or warm climate during interstadial and interglacial periods favour soil formation and forest 

vegetation, which leads to partial stabilisation of loose volcanic and volcaniclastic material. The 

sediment is stored on the edifice and the surrounding ring plain until periodically removed by 

mass-wasting processes (Zanchetta 2004). Cold, arid glacial and semiarid, cool stadial conditions 

are marked by a poorly vegetated and thus unstable landscape, resulting in rapid and vast 

remobilisation of loose material during infrequent intense rainfalls (e.g. Hubert & Filipov 1989; 
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Figure 3.24. Correlation of debris-avalanche (DA) events with prevailing climate in Taranaki. Climate conditions from 
Newnham & Alloway (2004) and planctonic δ18O isotope record at DSDP site 594 from Nelson et al. (1993). 
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Frostick & Reid 1989; Blair & McPherson 1994; Blair 2000). Large amounts of water rapidly 

infiltrate into unconsolidated, permeable volcanic debris due to the lack of a dense vegetation 

cover and the absence of, or only weakly developed, soils. This can lead to erosion by 

undercutting and entrainment, especially on the steep slopes of edifices, and remobilisation of the 

sediment as flash floods or lahars (e.g. Blair & McPherson 1994; Blair 1999, 2000; Zanchetta 

2004). Similar conditions are observed after major explosive eruptions, which cover the 

surroundings with thick mantles of pyroclastic material and destroy the vegetation. This increases 

runoff and sediment availability and results in a phase of landscape instability marked by intense 

reworking of the bare and unprotected sediment for decades (e.g. Newhall & Punongbayan 1996; 

Major et al. 2000; Hayes 2002). 

The sedimentary characteristics of the Taranaki ring-plain deposits not only vary 

according to lithofacies and type of volcanic mass-flow deposits but also show some differences 

in response to the above described climate fluctuations. 

Debris-avalanche deposits that were emplaced during warm or mild climate typically 

contain abundant plant and tree fragments, indicating that they travelled across a densely 

vegetated landscape (cf. Fig. 3.24). Wood fragments range from small chips and a few centimetre-

long twigs to several metre-long logs with diameters of up to 0.6 m (cf. Fig. 3.10B). Units 

produced during cool climate contain only sparse wood fragments, while those emplaced during 

cold glacial conditions appear completely free of significant organic components. 

During warm climates, the episodic accretion and subsequent intense surficial 

weathering of aeolian redeposited fine-grained volcaniclastic sediment produced reddish, 

allophane-rich cover-beds and organic soils (Fig. 3.25A) (Alloway et al. 2005). These Andisols 

comprise friable to firmly friable material with moderately to well-developed soil structures, i.e. 

fine to medium block- or nut-structures (Alloway et al 1992). Cold climate soils (Fig. 3.25B) 

comprise firm to very firm, weakly developed, very coarse block- or massive-structured yellowish 

material (Alloway et al. 1992). The poorly developed soil structures are the result of only minor 

weathering processes and coincide with variations in soil mineralogy. A high influx of aeolian 

quartz grains in the non-quartzose volcanic soils of Taranaki is attributed to cold (full glacial) 

climate conditions, which exposed continental shelf quartzose-source areas (Stewart et al. 1977, 

1986; Alloway 1989; Alloway et al. 1992). Rising sea levels during episodes of cool or warm 

climate resulted in low levels of aerially transported quartz grains (Alloway et al. 1992). During 

moist climate, thick peat beds, accumulated locally and were subsequently buried and preserved 

beneath volcaniclastic deposits (Alloway et al. 1992). Peat formed in wet, poorly drained areas, 

like enclosed depressions upon the initial depositional surface or at the margins of coalesced lahar 
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and debris-avalanche deposit fans that were not affected by large quantities of tephra accretion 

(Alloway et al. 1992). Numerous peat lenses and some more continuous peat layers were 

preserved in the study area along the south-western coast of Taranaki. They occur throughout the 

sequence from thin individual beds only a few cm thick to sequences of up to 1.5 m with 

interbedded organic and tephric soils, as well as thin andesitic tephras (Fig. 3.25C-D). The older 

peat beds identified in north and south Taranaki have become compacted to form lignite (e.g. 

McGlone et al. 1984; Alloway et al 2005). 

 

 

Figure 3.25. In Taranaki, warm climates are characterised by reddish-brown organic-rich paleosols with strongly developed 
soil structures (A; 2581551/6195488). In contrast, yellowish loess-rich tephric paleosols reflect cold climates (B; 
2582247/6194848); the 22.5 ka Kawakawa Tephra is marked by a white arrow. Thick laminated peat deposits are 
common in the ring-plain succession and often preserve interbedded tephra beds (C; 2590428/6186143). The Hihiwera 
Peat is the most prominent peat accumulation of the south-western ring plain and at several locations it is interbedded with 
organic-rich and tephric soils (D; 2583809/6193200). Hammer for scale is c. 30 cm long.  

B A 
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3.8. PALEOGEOMORPHOLOGY OF THE TARANAKI RING PLAIN 

3.8.1. Ring-plain paleogeomorphology  

The present geomorphology of the Taranaki peninsula (Fig. 3.26.) was predominantly 

shaped by Quaternary volcanism, which produced an extensive ring plain of volcaniclastic debris 

around the volcanoes that unconformably overlies the Tertiary basement. The ring plain is only 

weakly dissected and gently dips from the prominent edifice of Mt. Taranaki to the sea. Its 

circular outline is only broken in the NNW where the eroded remnants of Pouakai and Kaitake 

Volcanoes form physiographic barriers. To the east the ring plain borders onto the Taranaki hill 

country consisting of upper Tertiary marine mudstone and sandstone sequences (Kamp et al. 

2004), which restricted the extent of volcanic mass-flows due to an abrupt 100 m rise in 

elevation. Some of the streams that derive from the eastern flanks of Mt. Taranaki continue 

flowing eastwards into the hill country while others are redirected to the northern or southern 

coast. The Waingongoro River is deflected south once it meets the hilly terrain and flows through 

a deep but wide valley with steep side walls, which represents one of the longest living, most 

prominent river valleys of the Taranaki peninsula. Its relatively linear course and constant 

location suggests a fault-related origin. An older, elevated surface, previously referred to as 

Eltham Surface or Planeze (Grant-Taylor 1964; Hay 1967; Neall 1979, 1982; Alloway 1989) and 

renamed Old Surface (Neall & Alloway 2004), is preserved to the NE of Mt. Taranaki. It is 

strongly dissected near Inglewood but becomes less incised towards the coast with wide planar 

interfluves and the deeply entrenched north-south trending valleys of the Manganui River, 

Waitara River, Waiongana Stream, Mangaoreka Stream and Waiwhaikaiho River. Several uplifted 

marine terraces were cut into the northern and southern Taranaki coast during high sea-level 

stands and descend step-like from over 100 m to the present-day coast (Chappell 1975; Pillans 

1983, 1990a, 1990b; Alloway 1989). Later debris-avalanche deposits draped the wave-cut surfaces 

in north and south Taranaki and smoothed out the otherwise prominent appearance of 

associated fossil cliffs. Though less distinct, the marine benches and terrace risers represent 

recognisable geomorphic surfaces, especially in coastal areas of south Taranaki. 

The distribution and geometry of deposits within the ring-plain successions suggests a 

similar geomorphology of the ring plain with only minor modifications throughout the volcanic 

history of Mt. Taranaki. The oldest debris avalanches generated by collapse of the north-eastern 

sector of the volcano where channelised down confined paleo-valleys of the Manganui/Waitara 

River and Waiongana Stream until they spread out onto the broader coastal plains and marine 

terraces (Alloway et al 1989; Alloway et al. 2005). The sedimentary record along the western and 
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south-western coast suggests an unconfined distribution of debris avalanches with similar 

characteristics throughout the succession. The preservation of the Waihi debris-avalanche deposit 

at the base of the sequence within the Waingongoro River valley confirms the long-lasting 

existence (at least >70 ka) of this deep river channel.  

The nature of the drainage pattern around Mt. Taranaki seems to have been similar 

throughout its history. The gently dipping ring plain was only weakly incised by a network of 

small, shallow streams that originated from the edifice. This is reflected in the frequent 

occurrence of relatively localised, cross-bedded fluvial deposits throughout the succession. Even 

though the character of stream channels continuously changed in response to varying sediment 

influx from syn- and inter-eruptive volcanic mass flows, their position shifted only slightly (cf. 

Major et al. 1996; Pierson et al. 1996; Rodolfo 1996 et al.; Major et al. 2005; Pierson 2005). 

Following periods of ring-plain aggradation, incision of new channels occurred along or near the 

margins of previous, infilled ones. The typically tabular, laterally widespread geometry of 

hyperconcentrated-flow deposits throughout the sequence confirms the existence of broad 

coastal or near-coastal plains. 

3.8.2. Characterisation of paleo-river systems and lahar channels 

Eruptive activity has a major influence on the depositional system surrounding the 

volcano and the nature of river and stream channels. Geomorphic alterations of the edifice such 

as deposition of lava flows, lava domes and pyroclastic deposits can result in modifications of 

stream/river origin and course due to a changed setting of the source area. High sediment input 

during and shortly after eruptions leads to considerable channel adjustment and instability as well 

as rapid aggradation due to frequent debris and hyperconcentrated flows (cf. Janda et al. 1981; 

Palmer et al. 1993; Major et al. 1996; Pierson et al. 1996; Rodolfo et al. 1996; Scott et al. 1996; 

Major 2003; Zanchetta et al. 2004; Major et al. 2005). However, the most significant influence on 

the drainage network are major edifice failures as they generate catastrophic debris avalanches 

and create large scarps, which redirect the majority of subsequent volcanic mass-flows. In 

Taranaki, the emplacement of voluminous debris-avalanche deposits buried large sectors of the 

ring plain and destroyed the pre-existing drainage system, as indicated by debris-avalanche units 

overlying fluvial deposits. Channel-development on debris-avalanche deposits has been observed 

to begin during the initial phase of liquefaction and dewatering, which triggers fill and spill of 

small ponds and erosion by associated cohesive debris flows (Major et al. 2005). The 

phenomenon of secondary debris flows is not recorded in medial sections of the Taranaki ring 



Chapter 3. Sedimentology 158 

plain. Some marginal debris-avalanche deposits show several units but similar characteristics 

suggest several pulses rather than secondary flow origin.  

According to the type of disturbance (eruption versus collapse), the style of channel 

adjustment varied, but generally followed complex cycles of incision, aggradation and widening 

(cf. Major et al. 2005). After major edifice failures, re-establishment of initially shallow stream 

channels on the Taranaki debris-avalanche surfaces produced localised erosion contacts, filled by 

bedded fluvial deposits. In some locations, the continuous erosion and incision of the easily 

erodible volcaniclastic debris resulted in the development of larger stream and river channels. 

Larger river systems with deeper channels are common throughout the volcanic history of Mt. 

Taranaki and are not only restricted to debris-avalanche surfaces but were also cut into sequences 

dominated by hyperconcentrated-flow deposits, fluvial sediments or dune sands. They typically 

consisted of a central channel area that provided flow paths for the most voluminous and 

sediment-rich volcanic mass flows. Confinement of concentrated debris flows to these channels 

rapidly infilled them with massive, coarse, bouldery deposits, which raised the channel bed 

elevation and lowered the flow capacity. Once these were infilled, only more dilute and less 

confined hyperconcentrated flows inundated the increasingly shallower channel and the adjacent 

floodplain as indicated by accumulation of more widespread, finer-grained hyperconcentrated-

flow deposits towards the top of the channel sequences (Fig. 3.27). As well as modifications of 

the channel morphology, the occurrence of different types of volcanic mass-flows in the same 

sites could also be a function of changing generation mechanisms (cf. Procter et al. 2009). 

The basal debris-flow deposits show an unconformable, often wavy contact to the 

underlying strata indicating various degrees of vertical erosion (Fig. 3.27). Lahars can incise steep, 

narrow channels for tens of meters (cf. Pierson 2005); the higher the sediment concentration of 

the depositing flow, the deeper the channel relative to its width (Xu 1999). More dilute flows 

tend to laterally widen the channels rather than cutting into the underlying deposits (Pierson 

2005). Individual channels of the Taranaki ring-plain succession typically extend 15-30 m laterally, 

can be as deep as 10 m and are often characterised by relatively steep slopes. This might reflect 

the high sediment concentration of the confined debris flows and their erosive ability compared 

to more dilute flows, which tend to horizontally erode the channel. Alternatively, these box-like 

structures could reflect an immature stage of the channels, which were preserved due to rapid 

filling by debris-flow deposits. Facies transitions from coarse channel fill to fine-grained 

overbank facies occur abruptly at the steep channel margins (Fig. 3.28A). Activity along these 

channels typically ceased after their filling or burial by later debris-avalanche deposits. Subsequent 
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channels often formed in similar locations, i.e. adjacent to previous settings or cut into the 

deposit sequence that filled the previous channel (Fig. 3.29).  

Two large paleo-river systems near Opunake township and Puketapu Road (“Lizzie 

Bell”) are an exception. These long-lived river systems are characterised by a laterally extensive 

network of overlapping channels that provided primary lahar paths over a long time-span and 

thus contain a more complete record of events than minor or shorter-lived channels (cf. Palmer 

et al. 1993). Wide channels typically cause rapid deposition and river-bed aggradation during 

syneruptive periods (cf. Major et al. 1996; Rodolfo 1996 et al.; Pierson 2005), which is indicated 

by stacked, massive, poorly sorted volcanic mass-flow deposits with no or small-scale erosional 

surfaces between events. Occasional interbedded, cross-stratified lenses of sands, or sands with 

rounded pebbles, suggest fluvial reworking and short-term re-establishment of normal river 

conditions. Major channels within these larger river systems are typically wider than the individual 

river channel described above and extend c. 30-60 m laterally. Most are characterised by gentle 

slopes and gradual facies changes towards the margins (Fig. 3.28B). The basal part of the 

individual channels typically contains the coarsest debris-flow deposits, which show erosional 

contacts to the underlying units. Steep, wavy erosion surfaces developed where the depositing 

flows cut into debris-avalanche deposits or dune sands. Vertical erosion was apparently less 

effective where the underlying strata was made of more resistant hyperconcentrated-flow and 

earlier bouldery debris-flow deposits. Repeated debris-flow events led to incremental infilling and 

lateral shifting of active channels, i.e. the formation of new channels at the margins of previous, 

completely infilled ones (cf. Pierson 2005). These are typically cut by more dilute and erosive 

flows as indicated by hyperconcentrated-flow deposits underlying younger coarser debris-flow 

units. Evidence of channel migration, i.e. lateral channel widening through bank erosion and 

burial of low-lying areas, was also observed and is a common process in low-gradient channels 

during aggradational phases (Major et al. 1996; Rodolfo et al. 1996; Pierson 2005). These laterally 

eroded channels are typically rectangular in cross-section due to undercutting and the formation 

of near-vertical banks in unconsolidated volcaniclastic deposits (Figs. 3.27, 3.29B) (cf. Pierson 

2005). 

Continuous aggradation, channel shifting and lateral migration resulted in a complicated 

network of overlapping channels, which cut into and eroded the underlying strata, often just 

preserving lenses of older lahar and fluvial deposits that formed in previous channels. Hence, it is 

often impossible to laterally trace and correlate individual flow units further than a few metres 

from the channel margins. Due to a lack of preserved paleosols or other marker beds no accurate 

age control, other than chronostratigraphic estimates, could be established on the formation of 
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Figure 3.27. A large channel with wavy basal and erosive lateral contacts is shown in photograph A 
(2588351/6186992). It is filled by a series of coarse channelised debris-flow deposits (Ch), which are overlain by several 
hyperconcentrated-flow units (HFD). A close-up of the channel shows the rectangular lateral contact (marked by black 
arrow) to the Otakeho debris-avalanche deposit (B). Vertical erosion stopped, when the channel encountered slightly 
cemented, iron-stained sands, resulting in a relatively straight basal contact (pointed out by white arrows). 
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Figure 3.29. Cliff section showing a series of subsequent channels that were established in adjacent locations after previous 
ones had been filled as pointed out by arrows (A; 2584600/6192713). Other small channels were cut in the same 
location as previous ones (B; 2583057/6194247) and were subsequently filled with coarse hyperconcentrated-flow deposits, 
separated by fluvial sediments (Flu). 
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individual channels. An approximate age range of c. 33-13 ka for the Opunake river system is 

given by the stratigraphic position of channels and associated deposits. The lowermost channel 

fill units cut into and in some areas erode the top of the underlying 33-35 ka Hihiwera Peat but 

were not found below it. Only lenses of the Te Namu and Pungarehu debris-avalanche deposits 

were found within the network of channels, indicating that they were almost completely 

reworked within the river system. The channel sequences are capped by a set of 

hyperconcentrated-flow deposits of the Warea Formation, which thicken in remaining shallow 

channels. The river system ceased to exist after these last flows were deposited and is 

conformably overlain by the Oakura Tephra and the Opua Formation. The lateral extent of the 

Opunake river system in coastal cross-section is c. 1.8 km, while the Lizzie Bell system extends 

over c. 1.2 km laterally and is thought to have been active from >50 to at least 30 ka. A minimum 

age of the latter system is marked by a preserved lens of the Otakeho debris-avalanche deposit, 

which was strongly eroded by subsequent channelised debris flows confined to this paleo-valley. 

The debris-avalanche deposit overlies several older channelised debris flow deposits and its 

geometry reflects confinement to a small, shallow channel, indicating the existence of a channel 

system prior to deposition of the Otakeho debris-avalanche deposit. The post-Otakeho channel 

sequence is capped by a series of finer-grained hyperconcentrated-flow deposits intercalated with 

at least three distinct paleosols, which are possibly similar in age to the c. 33-35 ka Hihiwera Peat. 

At the north-western extent of the river system, these units are overlain and partly eroded by 

further channelised debris-flow and coarse hyperconcentrated-flow deposits. Hence, it is not 

clear when the activity of the Lizzie Bell river system ceased. 

In Taranaki, the location of large river systems can often be identified based on the 

shape of the present-day coastline. Areas of major paleo-channels typically form small 

promontories according to the extent of the channelised bouldery debris-flow deposits. These 

seem to be more resistant to erosion than cliff sections dominated by finer-grained 

hyperconcentrated-flow and clay-rich debris-avalanche deposits, which produced relatively 

straight coastal stretches or small bays between points. The coastline in the area of the Opunake 

and Lizzie Bell paleo-river systems is characterised by numerous overlapping promontories. 

The varying resistance of channel-fill debris-flow and hyperconcentrated-flow deposits 

compared to more easily erodible deposits finer-grained volcaniclastic material is also reflected in 

the pattern of the present-day drainage network. Re-establishment of the drainage system after 

filling of the river systems led to cutting of new river and stream channels adjacent to the 

previous channel systems. In the Opunake system, these new channels are represented by the 

present-day Otahi Stream to the northwest and the Waiaua River to the southeast. Only the 
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course of the small Hihiwera Stream lies within the older river system but it has not cut deeply 

into the channel deposits. The northwestern edge of the Lizzie Bell system is marked by the 

Punehu Stream and the Ouri Stream occurs at its southeastern margin. As is the case for the 

Opunake system, only a small, short stream occurs within the boundaries of the Lizzie Bell 

system and is deflected to its southeastern margin before entering the sea. 

The location of these two large paleo-river systems is possibly related to nearby fault 

lines with tectonic activity leading to continuous re-establishment of river channels in the same 

area even after rapid filling or burial by large debris-avalanche deposits (Fig. 3.30). Two faults that 

were not mapped out to the coast but are leading roughly towards the northern and southern 

margins of the Opunake river system are marked on the recent 1:250000 scale Qmap (Rattenbury 

et al. 2007). The map also shows a recently identified fault just 0.4 km north of the Lizzie Bell 

system. The fault cuts the whole coastal cliff section and offsets the sequence by c. 2 m. Dating 

of paleosols and peat layers is currently being carried out by the Institute of Geological and 

Nuclear Sciences, Wellington (V. Mouslopoulou, GNS Science, pers. comm.). These radiocarbon 

dates will also provide time constraints for the activity of the nearby Lizzie Bell system. 

 

Op 

LB 

Wai 

Figure 3.30. Location map of the Opunake (Op) and Lizzie Bell (LB) river systems and identified fault lines in their 
vicinity (from Rattenbury et al. 2007) as well as the course of the current Waingongoro River channel (Wai). 
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3.8.3. Frequency of volcanic mass-flows 

The frequency of different types of volcanic mass-flow events in the Taranaki region is 

difficult to calculate due to low-resolution provided by available datable material. The occurrence 

of lahar deposits within the Taranaki ring-plain succession, however, appears not evenly 

distributed through time and space. The majority of volcanic mass-flows in Taranaki are related 

to eruptive activity, as indicated by monolithologic clast assemblages within the deposits. The 

lack of significant soil development or sediment redistribution between stacks of debris- and 

hyperconcentrated-flow deposits suggests that they were rapidly emplaced over relative short 

periods of time. The clusters of flow units correspond to individual eruptive episodes, which are 

separated from each other by longer intervals of quiescence, represented by occasional 

polylithologic lahar deposits, fluvial and aeolian redeposition as well as paleosols or peat layers. 

Furthermore, the distribution of lahar deposits varies according to the geomorphology of the ring 

plain and the edifice as well as the nature of the drainage network. Debris-flow deposits are 

restricted to the sites of deeper river channels, while hyperconcentrated-flow units are more 

wide-spread and occur at any of the coastal locations. They were emplaced on the shallower, 

broad floodplains, which represent the most active areas of the ring-plain depositional system. 

Furthermore, it was not possible to correlate individual flow units or time-equivalents over the 

entire cross-sectional exposure due to their large number and relatively limited lateral extent, a 

lack of individual diagnostic properties and significant marker horizons, as well as disturbance of 

the succession by complex, erosive channel systems. The studied medial ring-plain sequences also 

only represent part of the volcanic history of Mt. Taranaki and thus, cannot include a complete 

record of lahar events.  

Hence, the simplified frequency presented here can only be considered a minimum 

estimate of recurrence. Calculations were carried out for a limited number of locations, where 

dated marker beds provided an age range for the recurring debris- and hyperconcentrated-flow 

deposits. The approximate frequency is based on the maximum number of flows over this 

specific time interval. The ring-plain record suggests that large channelised debris flows occur at 

least once every c. 2 ka, while sheet-like hyperconcentrated flows are more frequent events with a 

minimum recurrence of one event in 500 years. Large edifice failures and the generation of major 

debris avalanches are of lower frequency and occur on-average every 13 ka at Mt. Taranaki. 

Reconstruction of the number of debris-avalanche events was less problematic and provided a 

more complete record due to their distinct deposit characteristics, large volume, widespread 

distribution and thus easy recognition in the field. Even though the recurrence estimate for debris 

avalanches is more accurate, it only represents an approximation since collapse events are not 
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evenly spaced through time and more units could be buried within the older ring-plain 

succession.  

Scott (1989) recognised the non-random occurrence and higher frequency of volcanic 

mass-flows during periods of eruption and suggested that a more useful way of calculating the 

average recurrence intervals of debris flows at Mount St. Helens is to consider only periods when 

the volcano was active. Unfortunately, a more accurate frequency estimate of lahar events cannot 

be established at Mt. Taranaki solely based on the record found within medial ring-plain 

sequences. However, Turner et al. (2008) developed more precise frequency-magnitude models 

for eruption events over the last 10 ka based on the number and volume of tephra beds 

preserved in lake core records. Their results provide a reconstruction of eruption recurrences in 

the younger volcanic history of Mt. Taranaki. Future correlation of these phases of eruptive 

activity with periods of lahar generation found in the more complete younger record would allow 

a better understanding of the relationship between these events. Eventually this might also 

provide a better insight into the time ranges of the older volcanic mass-flow records within the 

medial ring-plain succession. 

3.9. DISCUSSION 

3.9.1. Internal and external controls on ring-plain accumulation 

(i) Influence of volcanic activity  

Alluvial fan growth in volcanic and non-volcanic areas is controlled by a combination of 

processes that vary according to tectonic setting, slope, aspect and size of the drainage system, 

local climate, lithology and erodibility of the sediment cover, all of which affect the rate of 

sediment supply (Smith et al. 1987a; Frostick & Reid 1989; Smith 1991; Palmer et al. 1993; Ritter 

et al. 1995; Blair 1999, 2000; Zanchetta et al. 2004). High sediment input leads to fan aggradation, 

while low quantities of sediment result in erosion and dissection (Palmer et al. 1993). Sediment 

influx in volcanic areas is strongly influenced by the type, frequency and magnitude of volcanic 

activity (Smith 1991; Palmer & Neall 1991; Palmer et al. 1993; Zanchetta 2004). Major explosive 

eruptions and long-lasting eruptive periods produce large volumes of easily erodible, often 

predominantly sand-sized pyroclastic material that is rapidly reworked. The sedimentary and 

geomorphic response to such events has been studied in detail following the Plinian eruptions of 

Mount St. Helens (Lipman & Mullineaux 1981) and Mount Pinatubo (Newhall & Punongbayan 

1996). Similar processes of resedimentation are interpreted from volcaniclastic sequences that 
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accumulated after large-volume ignimbrite eruptions, although these were not directly observed 

(RCM Smith 1991; Segschneider 2002a, 2002b; Kataoka & Nakajo 2002; Manville & Wilson 

2004; Manville et al. 2005).  

A high volume and high rate of sediment influx after large explosive eruptions is a 

consequence of a sudden supply of loose volcanic material, which mantles large areas of the 

surrounding landscape, destroys stabilising vegetation, reduces water infiltration capacity and 

hence results in increased run-off and erosion (Swanson et al. 1983; Collins & Dunne 1986; 

Leavesley et al. 1989; Pierson et al. 1992, 1996; Major et al. 1996; Hayes et al. 2002; Major 2003). 

The resulting accelerated sediment yields induce significant changes in the drainage networks and 

the alluvial plain/ring-plain depositional system (Smith 1986, 1987, 1991; Smith & Lowe 1991; 

Smith & Swanson 1987; Waresback & Turbeville 1990; Buesch 1991; Palmer & Neall 1991; 

Palmer et al. 1993; Major et al. 1996; Sulpizio et al. 2000; Zanchetta 2004). Continuous 

aggradation of volcanic mass-flow deposits rapidly fill channels, resulting in an abrupt 

transformation of river systems from meandering to wider, gravel- and sand-dominated, braided, 

aggrading systems with “flashy discharge” (Smith 1991) and unconfined spreading of subsequent 

flows as well as channel migration (Palmer et al. 1993; Hayes et al. 2002; Zanchetta 2004; Major 

2005; Pierson 2005). The geomorphic response seen in historic examples is also reflected in the 

depositional record of the Taranaki ring-plain system. High sediment inputs following eruptive 

activity resulted in rapid aggradation of debris-flow and hyperconcentrated-flow deposits that 

filled pre-existing channels. A resulting channel shifting and migration occurred along larger river 

channels and in the Opunake and Lizzie Bell river systems. It also led to unconfined spreading of 

subsequent flows to generate widespread, sheet-like deposits that typically cap confined channel 

sequences. 

The rapid post-eruptive remobilisation of eruptive material influences the nature of the 

resulting volcaniclastic deposits. The sequences are characterised by stacked, homogeneous 

debris-flow and hyperconcentrated-flow deposits, which typically lack important erosive surfaces 

between units due to their rapid accretion (Smith 1987a, 1987b; Smith & Lowe 1991; Palmer & 

Walton 1990; Waresback & Turbeville 1990; Palmer 1991; Palmer et al. 1993; Zanchetta 2004). 

Syneruptive volcaniclastic sediments may also be intercalated with primary pyroclastic fall or flow 

deposits, depending on the site of deposition in relation to prevailing wind direction, course of 

pyroclastic flows and distance from source (Smith 1991; Cronin 1996). Interbedded layers of 

medial ash reflect slow accumulation of fine ash from small-scale eruptions as well as wind-

blown, reworked ash (Cronin 1996). Series of monolithologic hyperconcentrated-flow and 

transitional non-cohesive debris-flow deposits with little intermediary deposits between individual 
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units are a common feature of the Taranaki ring-plain succession. Their lithology indicates 

generation during or shortly after phases of volcanic activity. The laterally widespread, sheet-like 

distribution of these units is a result of rapid aggradation, infilling and overwhelming of channels, 

resulting in a smoothed, flat physiography and subsequent unconfined spreading of dominantly 

hyperconcentrated flows. Primary eruptive products such as pyroclastic flow or thick fall deposits 

were not observed within the syneruptive volcaniclastic sequences at coastal regions 25-40 km 

away from source. Pyroclastic fallout was mainly distributed eastwards in downwind direction 

and pyroclastic flows apparently did not reach the studied area. The occurrence of thin tephra 

layers interbedded with paleosols and peats indicate either a change of wind direction during 

certain periods or, more likely, existence of ideal environments for their preservation. During 

aggradational phases, the preservation potential of thin tephras was probably very low due to 

rapid erosion by volcanic mass-flows and low vegetative cover. 

High aggradation rates with frequent generation of debris flows, hyperconcentrated 

flows and floods can continue for decades or centuries following eruptions depending on the 

frequency and magnitude of the volcanic activity as well as precipitation rates (Scott 1989; 

Rodolfo & Arguden 1991; Smith 1991; Scott et al. 1995; Newhall & Punongbayan 1996; Major et 

al. 2000; Manville et al. 2000; Pareschi et al. 2000a). Moderate annual rainfall and engineering 

measures at Mount St. Helens and other Cascade volcanoes resulted in predominantly fluvial 

erosion and transport of primary deposits and the accumulation of thick alluvial fills in the 

drainage systems (Major 2004; Major et al. 2005). This contrasts with observations of 

predominantly debris flow transport at other volcanoes, in particular those located in tropical 

climates (Major et al. 1996, 2000; Pierson et al 1996; Rodolfo et al. 1996; Lavigne et al. 2000; 

Lavigne & Thouret 2002; Thouret et al. 2007). Present annual precipitation rates on the Taranaki 

peninsula are high, especially on the edifice and increasing with altitude (Coulter 1976). The 

climate throughout most of Mt. Taranaki’s volcanic history, even during the colder stadial 

periods, has been characterised by moist conditions except for relatively short, dry phases during 

MISS 5b, the beginning of MIS 4 and the Last Glacial Maximum (MIS 2). The abundant water 

supply for generating volcanic mass-flows is reflected in the dominance of debris-flow and 

hyperconcentrated-flow deposits within the volcaniclastic succession. This indicates that post- 

and syneruptive reworking in Taranaki is controlled by volcanic mass-flows rather than fluvial 

processes. Fluvial resedimentation dominates only once sediment yields have returned to normal 

in relation to stabilisation of the vegetation cover. Pre-eruption conditions are restored when the 

reservoir of loose debris on the volcanic flanks is exhausted or stabilised (Smith 1991; Palmer et 

al. 1993; Zanchetta 2004).  
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(ii) Influence of non-volcanic processes 

Syneruptive sedimentary episodes have a high impact on the ring-plain depositional 

system but are typically relatively brief compared to periods of quiescence when volcanism has 

little influence on fan aggradation (Smith & Vincent 1987; Smith 1991). Sedimentation during 

inter-eruptive periods is influenced by processes such as regional climate and vegetational 

changes, geomorphology, as well as short- and long-term modifications in edifice or ring-plain 

sediment budget (Palmer et al. 1993; Cronin et al. 1996; Donoghue & Neall 2001; Zanchetta et al. 

2004).  

Re-establishment of a full vegetation cover after large eruptions stabilises volcanic 

deposits over long periods because plant roots cause cohesion and rain is intercepted and 

absorbed, reducing erosion (Zanchetta 2004). Types of vegetation and regrowth rates strongly 

depend on the local climate and are influenced by long-term climate changes. Stabilisation of the 

sediment cover results in longer storage of volcaniclastic material on the edifice and the 

surrounding ring plain. Flows are less frequent and are limited to periods of overall landscape 

instability (Cronin et al. 1995). These can originate from short-term changes in climate, or 

extreme weather conditions such as periods of heavy and/or prolonged rainfall, which enhance 

erosion and resedimentation (Palmer et al. 1993). Precipitation regimes not only influence the rate 

of erosion and sediment yield in watersheds but also control weathering processes and 

subsequent soil development (Dorn et al. 1987; Frostick & Reid 1989; Ritter et al. 1995). Soils 

typically form in sectors characterised by sediment starvation (Wright & Alonzo Zarza 1990; 

Smith 1992; Palmer et al. 1993; Zanchetta 2004), while peats accumulate in wet locations during 

warm or mild, moist climates (Alloway et al. 1992).  

The influence of precipitation rates on alluvial processes has been described in 

Huntington’s Principle (Huntington 1907; Fairbridge 1968). Increased aridity has similar effects 

as eruptive activity, because it results in the loss of the vegetation cover and increased mass 

wasting. Arid areas are characterised by aggradation, excessive load, reduced discharge and 

braided rivers. Higher precipitation maintains a stabilising vegetation cover that inhibits mass-

wasting, promotes infiltration and leads to a more sustained flow of rivers. Rivers are typically 

meandering and erode valley-deepening channels with more gentle gradients. For some regions, 

Huntington’s Principle can also be applied to changes in the nature of sedimentation during 

Quaternary climate fluctuations. The unstable conditions of arid areas are comparable to 

processes during colder climates, while warmer climates result in greater landscape stability 

(Bloom 1998). 
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The fluctuating climate conditions of the last >130 ka are also recorded in the Taranaki 

ring-plain succession. Weathering processes and soil formation were more intense during warm 

and mild climates as indicated by allophane-rich, reddish Andisols with strongly developed soil 

structures (cf. Alloway et al. 2005). Colder conditions resulted in weakly developed loess-rich, 

yellowish paleosols (cf. Alloway et al. 1992). Overall, the climate impacts can be seen as a 

secondary over-printing onto volcanically-driven processes, in particular the exacerbating 

sediment supply and slowing rates of revegetation. 

Accumulation rates and sedimentation loci on the ring plain are also controlled by the 

degree of dissection (Palmer et al. 1993). During eruptive periods, channels are rapidly infilled 

and the flatter surfaces result in relatively unconfined flows and sheet-like sediment deposition. 

In contrast, the initial stages of inter-eruptive periods are characterised by dissection, including 

lateral channel shifts and entrenchment of new channels in the freshly deposited volcaniclastic 

debris (Smith 1991; Palmer et al. 1993). This results in a significant change in the nature and 

dispersal pattern of deposits on the ring plain. A strongly incised fan leads to confinement of 

volcanic mass-flows or floods and sediment transport to more distal depositional sites (Smith 

1991; Palmer et al. 1993). Subsequently, the interchannel areas are marked by little sediment 

influx and the formation of soils as well as stabilisation by vegetation (Smith 1992; Palmer et al. 

1993, Zanchetta 2004). Streams and rivers are confined to channels that can be steep and incised 

or wide and shallow depending on subsidence/uplift rates of the region and/or eruption 

frequencies and magnitudes (Smith 1991). Meandering rivers typically dominate in contrast to the 

shallower, braided systems during syneruption phases. Fluvial facies are dominated by gravel-

bedload and polylithologic debris (Smith 1991). The landscape surrounding Mt. Taranaki is and 

has been characterised by a weakly dissected physiography, resulting in a similar dispersal pattern 

of fluvial and volcaniclastic deposits in most sectors of the ring plain. The gentle slopes and low 

gradient of the ring plain resulted in high rates of aggradation in proximal and medial areas. 

Small, shallow and mostly straight streams deposited cross-bedded fluvial sands and 

polylithologic pebbles. Larger rivers cut deeper channels and incrementally accumulated coarser 

sequences built up of rounded, polylithologic gravels. These deeper channels provided paths for 

coarse, confined, eruption- or collapse-related debris flows. The location and nature of stream 

and river channels was strongly influenced by volcanic activity and changed during eruptive 

episodes. Channel shifting and lateral migration were common, as well as rapid filling and 

subsequent incision of new channels. In contrast, hyperconcentrated flows were mostly 

unconfined and spread out sheet-like onto the broad coastal or near-coastal plains due to either 
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being large enough to overwhelm channels or because they were deposited during later stages of 

post-eruption response once channels were already filled.  

In addition to eruptions, the ring-plain sediment budget can also be strongly modified 

by collapse events (Smith 1991). These range from small slips to large-scale sector or edifice 

failures. Small slips typically generate confined, coarse, polylithologic non-cohesive or cohesive 

debris flows, depending on the nature of the source material. Non-cohesive debris flows often 

transform into hyperconcentrated flows further downstream. A catastrophic collapse event partly 

destroys the volcanic edifice and leads to the formation of an amphitheatre and the generation of 

a volcanic debris avalanche. The avalanche scarp is characterised by steep, often vertical walls and 

represents a site of ongoing instability (Voight et al. 1981; Siebert 1984; Siebert et al. 1987). 

Emplacement of the debris-avalanche deposit devastates large portions of the surrounding 

landscape, burying the pre-existing drainage system and vegetation under several tens of metres 

of debris. The contribution of such large volumes of volcaniclastic debris to the lower ring plain 

leads to long-term landscape instability and conditions that may be even more severe than during 

syneruptive periods. Subsequently, redistribution of this massive sediment input produces 

frequent volcanic mass flows. Debris avalanches are common in the volcanic history of Mt. 

Taranaki (cf. Chapter 2). Due to their unconfined distribution, they reshape large areas of the 

ring-plain, resulting in major modification of the nature and focus of sedimentation (cf. Procter et 

al. 2000). Hence, landscape adjustment following these large collapse events shows similar cycles 

of channel incision, volcaniclastic aggradation accompanied by channel widening, braiding of 

streams and cutting and meandering of rivers as has been observed after large explosive eruptions 

(Lipman & Mullineaux 1981; Newnham & Punongbayan 1996; Major et al. 2005; Manville et al. 

2005).  

Some studies suggest that climate conditions, in particular heavy rainfalls, may influence 

the potential of the volcano to fail, or even trigger a collapse (McGuire 1996; Sheridan et al. 1999; 

Kerle et al. 2003; Scott et al. 2005). Capra (2006) attributed several edifice collapses worldwide, 

including the Pungarehu and Opua debris-avalanche events and the Warea lahars, to an abrupt 

change of climate following the Last Glacial Maximum. This theory contrasts with the findings of 

this study, which demonstrate that edifice failures at Mt. Taranaki are not directly related to 

abrupt climate changes, but have occurred repeatedly during its history. Irrespective of prevailing 

climate conditions, the occurrence of collapse events instead seems to be influenced by other 

factors such as the nature and magnitude of volcanic activity, rate of eruptions, reaching critical 

edifice heights and flank oversteepening.  
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However, it appears that some of the exceptionally large debris avalanches such as the 

Pungarehu, Ngaere, and possibly the Waihi were generated during cool or cold periods, 

compared to more frequent smaller and only a few larger events during warm or mild periods, 

such as the Rama and possibly the Oeo (cf. Fig. 3.23). This trend might be deceiving due to the 

imperfect age control for the older events (cf. Chapter 2). Yet, larger debris avalanches during 

cold periods could be the result of several factors. The type and elevation of vegetation lines may 

have played an important role in edifice stability with grass- and shrubland dominating during 

cooler periods and vegetation cover being restricted to lower altitudes than during warm climates. 

Hence, a larger area of the edifice was bare and unprotected by vegetation, resulting in greater 

instability of the volcano flanks and possibly greater saturation and deeper water infiltration. 

Snow and ice cover may have been also higher during colder periods with freeze and thaw 

processes increasing physical weathering of the volcanic products (cf. Cronin & Neall 1997). 

These climatic impacts could have increased the instability of the edifice and may have lead to a 

lowered stable height and slope angle than during warmer periods. Also, edifice failures may have 

been more deep-seated, and involved larger volumes of the cone. Further studies are needed to 

investigate the implications of variable climate conditions on the size of edifice failures and the 

volume of the resulting debris-avalanche deposits. 

3.9.2. Comparison to other volcaniclastic successions 

Volcaniclastic sediments have been described in detail at volcanoes worldwide. Previous 

work often concentrated on the sedimentary characteristics of the exposed deposits in order to 

infer their origin, possible trigger mechanisms, mode of transport and depositional conditions. 

This aimed towards developing a better general understanding of the flow dynamics and 

behaviour of volcanic mass flows. Reconstruction of short periods of the volcanic history, 

typically within the younger, more easily accessible record, and the characterisation of individual 

events are typically used as the basis for future hazard assessments (e.g. Siebert et al. 1995; 

Thouret et al. 1995; Scott et al. 1997; Belousov et al. 1999; Waythomas 1999; Waythomas & 

Miller 1999; Reid et al. 2001). In addition to these works, only a few studies have described in a 

holistic sense the setting, detailed accumulation history and overall evolution of volcaniclastic 

aprons in the surroundings of long-lived stratovolcanoes (Palmer & Neall 1991; Smith 1991; 

Cronin et al. 1996; Davidson & de Silva 2000; Donoghue & Neall 2001; Borgia & van Wyk de 

Vries 2003). The volcaniclastic apron surrounding Mt. Taranaki represents a volcanic ring plain 

sensu stricto according to the definition of Davidson & de Silva (2000). Similar settings are rare, 

since most long-lived stratovolcanoes form parts of volcanic mountain ranges or are enclosed by 

neighbouring volcanoes. Their surroundings are typically characterised by a deeply incised 
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physiography with steep valleys, in contrast to the gently incised landscape of the Taranaki 

peninsula. This leads to confinement of volcanic mass-flows and limited preservation or exposure 

of the volcanic and volcaniclastic record. Due to the varying physiographic setting and often 

different climatic background, origin and emplacement mechanisms of the deposits and in 

particular depositional conditions can differ significantly from the Taranaki succession. Also, the 

reconstruction of the accumulation history is often based on the interpretation of the youngest, 

surficially exposed succession, while the Taranaki depositional system provides a more complete 

record that spans almost the entire history of this volcano. The following section discusses 

aspects of the Taranaki ring-plain succession in comparison to relevant other modern and ancient 

analogues.  

(i) Active and Quaternary volcanoes 

Volcanoes of the Cascade Range and their products have been studied in detail (e.g. 

Crandell 1989; Scott et al. 1995; WE Scott et al. 1995; Hildreth & Fierstein 1997; Vallance & 

Scott 1997; Hoblitt et al. 1998; Thouret 2005). The 1980 eruption of Mount St. Helens provided 

important and revolutionary insights into origin, transport and emplacement mechanisms of 

volcanic mass-flows (Lipman & Mullineaux 1981). Even though the physiographic setting of 

Mount St. Helens differs significantly from Mt. Taranaki with mass-flows being confined to large 

valleys, similar deposits were generated. Hence, the St. Helens depositional and physical models 

(cf. Section 3.2.) were helpful tools in interpreting the observed types of volcanic mass-flow 

deposits in Taranaki and the range of sedimentary characteristics. The geomorphic response 

following the Mount St. Helens eruption also provided a better understanding of syneruptive 

volcaniclastic sedimentation and subsequent channel behaviour and alterations that could be 

related to observations within the Taranaki ring-plain record (cf. Section 3.8.2.). In contrast to 

Taranaki, restricted exposure of the older geologic record at most Cascade volcanoes only allows 

the study of individual events or eruptive episodes of the younger history with a focus on hazard 

assessments as well as eruption and sedimentary processes rather than the long-term 

reconstruction dynamics of the volcano-sedimentary system.  

Lahar and debris-avalanche deposits are described at many stratovolcanoes worldwide, 

but only a few long-lived examples are known to have experienced similar recurrence rates of 

collapse events as observed at Mt. Taranaki. Mount St. Augustine in Alaska and Shiveluch 

Volcano in Kamchatka show the highest frequencies of debris-avalanche events known, i.e. 11 

events within the last 2 ka and 8-14 collapses during the past 10 ka, respectively (Beget & Kienle 

1992, Siebert et al. 1997; Ponomareva et al. 1998; Belousov et al. 1999). The instability and high 
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frequency of collapse events at both volcanoes is attributed to extremely high magma supply rates 

and very viscous, volatile-rich magmas, which resulted in repeated formation of overlapping lava 

domes and explosive eruptions (Beget & Kienle 1992; Belousov et al. 1999). At the low-profile 

dome complex of Mount St. Augustine, debris avalanches were emplaced on unconfined, low-

angle slopes and formed a thick volcaniclastic apron around the island volcano that extends c. 4-

10 km from the crater area. Due to the restricted onshore extent of the ring-plain only 

hummocky facies-A is observed at Augustine Volcano (Beget & Kienle 1992) without lateral or 

longitudinal facies changes typical of Mt. Taranaki debris-avalanche deposits. Collapse events at 

Shiveluch Volcano mostly occurred at Young Shiveluch, a Holocene cone that formed within a 

horse-shoe shaped caldera of the old Pleistocene stratovolcano Old Shiveluch (Belousov et al. 

1999). Debris avalanches and pyroclastic flows were thus directed and built up a semi-circular 

volcaniclastic apron in the open southern sector. The scale of collapse events at both volcanoes 

(except for the Old Shiveluch debris-avalanche deposit) is significantly smaller than at Mt. 

Taranaki. Volume and run-out distance of debris-avalanche deposits at Augustine Volcano are 

0.1-0.5 km3 and >4-10 km respectively (Beget & Kienle 1992; Siebert et al. 1997), 1-2.5 km3 and 

11-20 km at Young Shiveluch, 28-35 km3 and c. 35 km for the Old Shiveluch event (Belousov et 

al. 1999), compared to 0.1-7.5 km3 and 25-39 km for those at Mt. Taranaki (Ui et al. 1986a; 

Palmer et al. 1991; Alloway et al. 2005). Lithofacies associations are characterised by debris 

avalanche, pyroclastic flow, block-and-ash-flow and pumiceous airfall deposits, while lahar units 

are absent from the Augustine ring-plain and seem to be rare within the Shiveluch record. This 

contrasts strongly with the hyperconcentrated flow and debris flow-dominated medial Taranaki 

ring-plain succession and most likely reflects the more proximal location of the studied 

sequences, the predominant eruptive style, as well as the scale of volcaniclastic events at 

Augustine and Shiveluch Volcanoes. 

Zanchetta et al. (2004) studied the development of late Pleistocene-Holocene alluvial 

fans in the Campanian plain, Italy, in order to evaluate the relative roles of volcanic activity and 

climate. Even though not a classic ring-plain, the hillslope drainage system in this volcanic 

hinterland setting was influenced by similar processes due to its location 20-30 km downwind 

from Somma-Vesuvius and Campi Flegrei volcanoes. Each episode of explosive volcanic activity 

resulted in emplacement of pyroclastic material and subsequently a phase of volcaniclastic 

sedimentation in the downwind hillcountry. Syneruptive periods were dominated by rapid 

accumulation of lithologically homogeneous hyperconcentrated-flow deposits during the late 

Pleistocene and occasional debris-flow deposits with mixed lithologies during the Holocene. 

These sedimentological and lithological differences are attributed to varying climate conditions at 
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a relatively constant rate of sediment influx. Semi-arid, poorly vegetated conditions resulted in the 

rapid and almost complete remobilisation of loose pyroclastic material during infrequent but 

intense rainfalls, while retarding soil stabilisation. More humid conditions during Holocene times 

favoured soil formation and thus partial stabilisation and longer storage of loose debris, which 

was periodically removed by slips.  

These findings contrast with an earlier study by de Rita et al. (2002) that described the 

interplay of explosive volcanism and glacio-eustatic sea-level changes on volcaniclastic 

sedimentation in coastal lowlands near the volcanic districts of Vulsini and Vico, Central Italy. 

Eruptive activity during high sea level (warm climate) produced thick sequences dominated by 

debris-flow deposits, hyperconcentrated-flow deposits and monolithologic fluvial sediments in a 

medial basin, while the distal coastal areas accreted volcanic-rich sands with interbedded volcanic 

units. In inter-eruptive periods diatomitic lacustrine and polylithologic fluvial deposits 

accumulated with coastal sands being depleted in volcanic particles. Syneruptive sedimentation 

during low sea-level (cold climate) filled deeply eroded valleys with thick volcaniclastic deposits in 

medial as well as distal areas. Erosion prevailed during phases of quiescence resulting in partial 

excavation of the volcanic and volcaniclastic succession and terrace formation. This study 

explained how the interplay of changing sea-levels, uplift and cutting of marine terraces affected 

the setting of the near-coastal areas. The sedimentary signatures of the generated volcaniclastic 

deposits did not directly reflect climate conditions, but their varying geometry and distribution 

was rather a result of climatically induced changes in geomorphology. 

This example of volcaniclastic sedimentation appears to be more relevant to Taranaki 

than the downwind hillcountry, due to a comparable near-coast depositional environment with 

changing sea-levels and hence changing stream gradients and similar volcanic products, i.e. 

pyroclastic-flow and minor fallout deposits compared to the tephra-dominated Campanian 

setting. Syneruptive volcaniclastic remobilisation at Mt. Taranaki resulted in rapid accumulation 

of monolithologic hyperconcentrated-flow and debris-flow deposits. Coarse, polylithologic 

debris-flow deposits confined to channels were most likely triggered by small collapse events 

during inter-eruptive periods. Due to the limited age control of the Taranaki ring-plain 

succession, the role of climate conditions could not be evaluated unambiguously. However, 

similar sedimentation patterns throughout the sequence suggest that volcanic activity was the 

dominant control on the accumulation style of the ring-plain depositional system. Climate 

variations and resulting fluctuations in sea level might have affected the paleogeomorphic setting 

but seem to have had only minor influence on deposit characteristics and type of sedimentation.  
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Ruapehu Volcano and its surrounding volcaniclastic apron represent the geographically 

closest comparator to the Taranaki ring-plain system, with similar characteristics of the exposed 

deposits and overall setting. The Ruapehu ring plain is dominated by lahar deposits interbedded 

with local andesitic tephras derived from Ruapehu, Tongariro and Ngauruhoe Volcanoes, fluvial 

sediments, paleosols / peat layers and distal rhyolitic tephras from the Taupo Volcanic Zone 

(Palmer & Neall 1989; Palmer 1991; Palmer et al. 1993; Donoghue et al 1995; Cronin et al. 1996; 

Cronin & Neall 1997; Lecointre et al. 1998; Donoghue & Neall 2001). In addition, four debris-

avalanche deposits were recognised, the >120 ka Hautapu and Whangaehu Formations to the 

south (Te Punga 1952; Hodgson 1993, Thouret et al. 2006), the c. 9.5-12.5 ka Murimotu 

Formation to the west (Palmer & Neall 1989), and the c. 4.6 ka Mangaio Formation (Donoghue 

& Neall 2001). The ring plain was constructed during syn- as well as inter-eruptive periods with 

variations of sedimentation style according to frequency and magnitude of eruptions, climate, 

sediment reservoir and degree of fan dissection (Palmer et al. 1993; Cronin et al. 1996; Donoghue 

& Neall 2001). During major eruptive episodes, volcanism was the primary control on 

sedimentation, with little influence of climate variations (Palmer et al 1993). The continuous, high 

sediment supply during and shortly after major eruptions resulted in rapid, sector-wide 

aggradation of lahar (debris- and hyperconcentrated-flow) deposits with little time breaks 

between events (Palmer 1991; Palmer et al. 1993; Cronin et al. 1996; Cronin & Neall 1997; 

Donoghue & Neall 2001). Ring-plain aggradation continued during minor eruptive activity and 

inter-eruptive episodes but sedimentation was more localised and strongly affected by non-

volcanic processes, in particular regional climate and vegetational changes. The two coolest 

periods of the last Glacial, i.e. MIS 2 (23-14 ka) and 4 (75-65 ka), were characterised by large-scale 

aggradation and the most widespread and voluminous accumulation of debris-flow and 

hyperconcentrated-flow deposits (Cronin et al. 1996; Cronin & Neall 1997). The high frequency 

of lahar events was attributed to the interplay of a large supply of loose debris through increased 

physical weathering on higher slopes, as well as large volumes of snow and ice that provided the 

required water for lahar formation. Likely triggering mechanisms were eruptive activity, frequent 

storm events, slope failures, avalanches and glacier collapses (Cronin & Neall 1997). In milder 

periods, the ring-plain sequences were dominated by tephra (lapilli and medial ash) deposits and 

one eruption-triggered, pumiceous lahar unit, indicating greater landscape stability and less 

control of non-volcanic factors on the accumulation style. Volcaniclastic resedimentation 

continued after eruptive activity until the supply of loose debris on the volcanic flanks was 

exhausted (Palmer et al. 1993). Subsequent ring-plain dissection led to sediment starvation and 

soil formation and/or aeolian reworking in interfluve and minor channel areas. Fluvial 
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sedimentation and infrequent, collapse-related debris flows were restricted to major channels 

(Palmer et al. 1993).  

The ring-plain depositional systems of both Mt. Ruapehu and Mt. Taranaki are 

dominated by lahar deposits and influenced by similar factors. At Taranaki, climate changes are 

reflected in deposit characteristics but do not drive aggradation, nor dominate the style of 

volcaniclastic sedimentation as observed at Ruapehu during cold periods. Instead, eruptive 

activity appears to be the primary control of ring-plain accumulation at Mt. Taranaki during mild 

as well as colder climates. This is indicated by the consistent pattern of volcaniclastic deposits 

within the relatively monotonous ring-plain succession. Variations are mainly the result of 

sedimentation loci due to modifications in paleogeomorphology and changes in sea level. As 

mentioned above, the nature of major river channels most likely varied during low sea-level with 

a higher degree of incision at the studied sites.  

(ii) Ancient successions 

Similar lithofacies associations are identified in several older volcaniclastic apron 

successions, which help interpreting the Taranaki ring-plain sequences. Middle Miocene 

volcanism at the Börzsöny Mountains in Hungary began with submarine eruptions that 

accumulated voluminous pumiceous volcaniclastic mass-flow deposits in a shallow marine basin 

(Karatson & Nemeth 2001). The subsequent emergent stage was characterised by subaerial 

eruptive activity from several silicic centres. Pyroclastic flows, dome-collapse block-and-ash-flows 

and small-scale debris avalanches transformed into various types of debris flows and 

hyperconcentrated flows, which rapidly built up an emerging ring-plain system. Due to 

subtropical climate conditions, debris flows were generated frequently during syn- as well as 

inter-eruptive periods. The ring-plain succession consists of tabular and channelised debris-flow 

deposits, hyperconcentrated-flow units, fluvial channel fills and cross-bedded fluvial sands, 

lithofacies associations typically observed in subaerial volcaniclastic aprons and common in the 

Taranaki ring-plain succession. 

The Miocene Ellensburg (Washington) and Deschutes Formations (Oregon) represent 

ancient volcaniclastic aprons that formed adjacent to the volcanic Cascade Range in basins and 

lowlands, respectively. They are important because the well-exposed lateral and vertical lithofacies 

relationships were used to develop a conceptual model for facies geometry and sequence in 

volcaniclastic aprons (Smith 1987b, 1991) that can be applied to the Taranaki ring-plain 

succession.  The Ellensburg Formation is the result of episodic accumulation of syneruptive 

sheets of monolithologic, pumice-rich hyperconcentrated-flow deposits in broad shallow braided 
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streams with intercalated ash fall tuffs (Smith 1988). Inter-eruptive periods were marked by 

paleosol formation on floodplains and channel-fill conglomerates deposited by a gravel-bedload 

river that flowed through the basin (Smith 1991). Distal facies assemblages are dominated by 

cross-bedded, monolithologic fluvial sandstones, less common polylithologic gravel bedload 

facies, and rare debris-flow and flood deposits. The Deschutes Formation is probably a more 

comparable example of volcaniclastic sedimentation to Taranaki since large volumes of 

volcaniclastic material were deposited over broad areas and long distances from source over 

extended periods of time. The main depositional setting was an eastward-wedging apron, which 

accumulated lava flows, airfall tuffs, ignimbrites, and volcaniclastic deposits, derived from the 

Cascades from 7.4 to 4.0 Ma (Smith 1986b). Continuous high-sediment load aggradation of 

hyperconcentrated-flow, debris-flow, and sheetflood deposits produced a broad, low-relief plain. 

Sedimentation between volcanism-induced depositional episodes was focused in gravel-bedload 

braided streams, which incised only shallow channels due to frequent volcanic activity and high 

subsidence rates (Smith et al 1987; Smith 1988, 1991). The upper part of the succession is 

dominated by cycles of episodic aggradation of hyperconcentrated-flow, debris-flow, and 

sheetflood deposits and degradation, characterised by deep incision and subsequent infilling of 

channels with fluvial conglomerates, lava flows, ignimbrites and lahar deposits. When the narrow, 

steep-sided channels were filled, continued sedimentation generated broad sheets of sand and 

gravel on the floodplain (Smith 1987b). The occurring lithofacies association of 

hyperconcentrated-flow, debris-flow, fluvial channel, floodplain and sheetflood deposits as well 

as paleosols with interbedded tephras are very similar to the Taranaki ring-plain sequences. 

Although no ignimbrites were produced at Mt. Taranaki, the frequent debris avalanches had a 

similar effect on the depositional system by supplying large volumes of unconsolidated volcanic 

debris. The nature of depositional episodes and environments at different stages of the 

Deschutes apron can be related to variations in lithofacies associations and settings observed 

within the Taranaki succession. The morphology of the low-relief, gently sloping Taranaki ring-

plain is similar to the first stage broadplain setting of the Deschutes Formation, resulting in 

episodic accumulation of tabular, widespread hyperconcentrated-flow deposits during volcanic 

activity. Degradation during periods of volcanic quiescence was characterised by incision of 

shallow streams as well as deeper river channels, which were subsequently filled by fluvial as well 

as later debris flow and hyperconcentrated-flow deposits.  

A larger magnitude of volcaniclastic resedimentation was studied in Japan, following an 

extremely large explosive ignimbrite-producing eruption that occurred at the Plio-Pleistocene 

boundary (Nakayama & Yoshikawa 1997; Kataoka & Nakajo 2002). The effects of the sediment 
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influx, i.e. the style of volcaniclastic reworking, were similar to eruptions of smaller magnitude 

but affected larger areas. Remobilisation of the volcanic material produced a variety of different 

lithofacies, ranging from debris-flow, hyperconcentrated-flow, channel-fill and floodplain 

deposits to distal fluvially dominated sequences (Nakayama & Yoshikawa 1997; Kataoka & 

Nakajo 2002). Sedimentary variations between volcaniclastic sequences of different basins were 

the result of differing rates of sediment input, distance from source, distribution pattern of 

pyroclastic-flow deposits and the drainage pattern. The depositional processes observed in medial 

areas support the conceptual model of Smith (1991). Following the eruption, pre-existing small-

scale meandering rivers were replaced by low-sinuosity braided river systems in wide channels, 

which were inundated by debris and hyperconcentrated flows. Once sediment input returned to 

normal, rivers started cutting into the volcaniclastic sequence and returned to meandering 

streams. The changes in sedimentation in response to volcanic activity are also obvious in the 

Taranaki succession. Syneruptive deposition of sheet-like hyperconcentrated-flow deposits 

occurred on broad plains and infilled, shallow channels, followed by inter-eruptive re-

establishment of drainage networks and incision of deeper channels. The observed confined non-

cohesive debris-flow deposits in medial ring-plain settings accumulated in channels that were 

typically cut into massive, predominantly syneruptive sequences of hyperconcentrated-flow 

deposits. Most debris-flow deposits consist of polylithologic rounded to angular clasts and are 

hence interpreted to be derived from small-scale collapse events. Demonstrably, eruption-related 

debris-flow deposits are rare, typically of smaller volume, and contain subangular-angular clasts. 

The areas of the Opunake and Lizzie Bell system are dominated by accumulation of debris-flow 

units and coarser hyperconcentrated-flow deposits, in a wider, long-lived channel system, where 

syn- and inter-eruptive depositional signatures cannot be clearly distinguished. 

3.10. CONCLUSIONS 

Volcaniclastic sedimentation at Mt. Taranaki has formed a surrounding ring-plain of 

volcaniclastic deposits that extends 25-40 km onshore from the current summit. This apron holds 

a detailed chronostratigraphic record of volcanic activity, other sedimentary, and geomorphic 

events. Medial ring-plain sequences contain a spectrum of deposit types, reflecting transport 

modes that range from dry debris avalanche, highly concentrated debris flow, hyperconcentrated 

flow to dilute streamflow as well as transitions between these processes. Differences in 

sedimentary characteristics are the result of different flow source regions, flow dynamics and 

emplacement conditions as well as diversity in paleo-depositional environments. Vertical facies 
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transitions of individual units reflect variations in flow regime and sediment load with time, while 

lateral facies variations are attributed to distance from source, dispersal axes or channel geometry 

and capacity.  

Debris avalanches produced wide-spread, massive, polylithologic, very coarse, and very 

poorly sorted deposits that contain disaggregated, shattered clasts, megaclasts and secondary 

components in a clay-rich matrix. Margins and medial locations show a gradational transition into 

thinner cohesive debris-flow deposits with increasing matrix contents and decreasing clast size. 

Channelised, non-cohesive debris-flow deposits are very coarse, poorly sorted, clast-supported 

with little sandy matrix and typically unstratified. They grade laterally into thinner, better sorted, 

faintly bedded overbank deposits that consist of fine pebbly sands. Distinct from the lahar 

overbank deposits are tabular hyperconcentrated-flow deposits that can be traced up to 2.5 km in 

lateral exposure. They typically contain pebbly clasts in a sandy matrix and show a variety of 

different characteristics ranging from poorly to moderately sorted, massive to bedded, and graded 

to non-graded.  

The style of ring-plain accumulation, and hence lithofacies associations and deposit 

characteristics, were strongly influenced by the nature of volcanic activity of Mt. Taranaki. Syn-

eruptive periods were characterised by rapid, continuous aggradation of thick packages of 

predominantly monolithologic, hyperconcentrated-flow and cohesive debris-flow deposits. Their 

clast assemblages vary in response to the predominant eruptive style: pumice-dominated lahar 

deposits and tephra layers indicate vigorous subplinian and/or Plinian eruptions, while those rich 

in dense, glassy, monolithologic andesite clasts correspond to dome-building and associated 

block-and-ash-flow activity. Polylithologic debris- and hyperconcentrated-flow deposits were 

probably not directly related to an eruption, but may represent conditions where dilute mass 

flows gained momentum via erosion and incorporation of sediment along their paths. The high 

sediment supply during or shortly after episodes of eruptive activity had a major impact on the 

ring-plain depositional system and the drainage network. Repeated volcanic mass-flow events led 

to incremental infilling, widening and/or shifting of active stream and river channels. Subsequent 

intervals of quiescence were marked by landscape re-adjustment and dissection along with steady 

accretion of medial ash, soil formation and/or peat accumulation. Fluvial erosion and reworking 

of primary deposits produced sediments ranging from localised cross-bedded, well-sorted sand 

and pebble beds, to aggradational series of river gravels interbedded with lenses of fluvial sand. 

Some coastal areas accumulated massive sequences of well-sorted dune sands during periods of 

extensive aeolian redeposition. Channelised, polylithologic debris flows were generated by small 
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collapse events during periods of quiescence or at the beginning of eruptive activity, when river 

channels were not yet filled by syneruptive mass-flow deposits.  

Sedimentation during these inter-eruptive periods was influenced by non-volcanic 

processes such as sea-level variations, regional climate, and vegetational changes as well as short- 

and long-term modifications in the edifice/ring-plain sedimentary budget and geomorphic 

setting. The relief around Mt. Taranaki was the primary control on the distribution of lahar and 

fluvial deposits. The distribution and geometries of volcaniclastic deposits within the ring-plain 

succession indicate a similar ring-plain geomorphology, with only minor modifications 

throughout the known volcanic history of Mt. Taranaki. The ring-plain setting was characterised 

by small, shallow stream channels and wide coastal plains with broad terraces resulting in the 

predominance of largely unconfined and extensive sheet-like volcanic mass-flows. Some larger, 

long-lived river systems provided consistent flow paths for channelised lahars. Climate 

fluctuations are to some degree reflected as a secondary influence in the Taranaki ring-plain 

succession. Cold climates with lower vegetation levels resulted in larger areas of bare, 

unprotected volcanic debris inducing greater landscape instability and remobilisation processes, 

producing elevated sediment supplies as indicated by stacks of polylithologic hyperconcentrated- 

and debris-flow deposits. Andisols with strongly developed soil structures reflect periods of 

warm and mild climate while weakly developed, loess-rich paleosols represent colder climate 

conditions. Repeated edifice failures at Mt. Taranaki generated an unusually high frequency of 

debris-avalanche deposits. The rapid and intense input of loose volcanic debris strongly affected 

the sediment budget of large sectors of the ring-plain system and each resulted in a subsequent 

phase of mass wasting and redeposition. 

Despite distinct climate changes during the last 100 ka, the sedimentation pattern of 

volcaniclastic deposits within the Taranaki succession is consistent, which suggests that volcanic 

activity and debris-avalanche events were the primary control on the accumulation style of the 

ring-plain depositional system. Climate variations and resulting sea level changes influenced the 

paleogeomorphic setting and hence geometry and distribution of deposits, but had only 

secondary and minor overprinting effects on deposit characteristics and type of sedimentation.  
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CHAPTER 4.  

GEOCHEMISTRY OF DEBRIS-AVALANCHE CLASTS 

4.1. INTRODUCTION 

Geochemical work at Mt. Taranaki has mainly been based on the well-known succession 

of the last 20 ka and comparisons with products from the andesitic centres of the TVZ (Price et 

al. 1992, 1999, 2005; Stewart et al. 1996). Most geochemical studies focused on the <10 ka 

present-day edifice (Price et al. 1992; Stewart et al. 1996; Platz et al. 2007a, 2007b), which is 

primarily made up of steeply dipping, interstratified pyroclastic breccia and lava flow deposits. 

Only a few samples from the surrounding ring plain were included (Price et al. 1999) even though 

clast assemblages within these volcaniclastic sediments record variations in magma compositions 

over a much wider time span.  

The stratigraphy developed in this and previous studies (Neall 1979; Alloway 1989; 

Neall et al. 1986; Alloway et al. 2005) for the older ring-plain succession and the identified debris-

avalanche record (cf. Chapter 2) provided the context for extending geochemical studies into the 

early magmatic history of the volcano. Major, trace, and rare earth element analyses as well as 

stable isotope characteristics of debris-avalanche clasts allow an insight into the composition of 

pre-20 ka edifices. This chapter presents new geochemical data from the collected debris-

avalanche sample suites in order to characterise the early magmatic system of Mt. Taranaki and to 

establish a better understanding of the overall magmatic evolution since inception of volcanism 

as well as the origin of Mt. Taranaki magmas. Compositional changes with time from the early to 

recent Mt. Taranaki magma systems are discussed and related to the constructional and 

destructional history of the volcano. The geochemical composition of clast assemblages is also 

evaluated as a tool for distinguishing and identifying stratigraphic units. 
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4.2. PREVIOUS WORK 

Previous studies have used the classification scheme of Gill (1981) to conclude that the 

Mt. Taranaki lavas range in composition from medium- to high-K basalts and basaltic andesites 

through to high-K, high-Si andesites (Neall et al. 1986; Price et al. 1992, 1999; Stewart et al. 

1996). Overall, the volcanics become progressively more potassic and show higher mean silica 

contents with decreasing age (Price et al. 1992; Stewart et al. 1996). In general, Mt. Taranaki lavas 

show distinctly higher K2O abundances than equivalent andesites at Mt. Ruapehu (Neall et al. 

1986; Price et al. 1992, 1999). Their relatively low Mg# (in this thesis calculated as 

MgO*100/(MgO+FeOtotal; based on FeOtotal=Fe2O3*0.8998165) and low Ni and Cr contents 

indicate that Taranaki rocks are highly evolved and lack the characteristics of primitive arc 

magmas (Price et al. 1992). The few rocks that were found to have elevated MgO, Ni, and Cr 

concentrations might be contaminated with xenocrystic olivine rather than representing primary 

melts (Stewart et al. 1996). 

Trace element distributions are characterised by relatively high proportions of large ion 

lithophile elements (LILE) such as Cs, Rb, Ba, Th and K and light rare earth elements (LREE) 

with deficiencies in high field strength elements (HFSE) such as Ta, Nb and Zr (Price et al. 1992, 

1999, 2005). The strong depletion in Nb relative to La, K, Th and Pb, enrichment in Pb and Sr 

over Ce, enrichment of LREE over heavy rare earth elements (HREE) and Y, is a distinct arc-

signature (Price et al. 1992, 1999), characteristic of subduction-related magmas (e.g. Pearce 1982; 

Sun & McDonough 1989; McCulloch & Gamble 1991). 

Isotope data from the Mt. Taranaki suite is relatively uniform with 87Sr/86Sr, 143Nd/144Nd 

and Pb isotope ratios displaying only a very narrow compositional range (Price et al. 1992, 1999, 

2005). No apparent systematic change in 143Nd/144Nd isotopic ratio with stratigraphic position or 

major and trace element chemistry was observed but 87Sr/86Sr ratios of edifice-building lavas 

increase slightly as the lavas become younger (Price et al. 1992, 1999). Oxygen isotope studies are 

consistent with the Sr, Nd and Pb data and indicate that genesis of Taranaki magmas involved 

partial melting of lower crustal material due to interaction with mantle-derived magmas (Price et 

al. 1992; 1999). The isotopic composition of Taranaki lavas overlaps with basalts from the TVZ 

but they are generally less radiogenic than Ruapehu andesites (Price et al. 1992; 1999, 2005). 

The geochemical characteristics of Taranaki magmas are attributed to an origin in a 

complex “subduction factory” system initially as low-degree partial melts from a depleted mantle 

wedge fluxed by slab-derived fluids (Price et al. 1999). These parental magmas ponded at the 
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crust-mantle boundary, where they evolved from relatively undersaturated, hydrous, oxidised 

high-Mg basalts to high-Al basalts and basaltic andesite melts through a combination of crystal 

fractionation and interaction with underplated material (Foden & Green 1992; Stewart et al. 1996; 

Price et al. 1999). A small fraction of high-Al basalt melt rose to the surface and evolved to 

fractionated basaltic andesites and low-Si andesites. The basaltic andesite magmas are believed to 

have fed small, high-level magma chambers, where the complex interplay of fractional 

crystallisation, crystal accumulation, magma mingling and mixing (Smith et al. 1996) resulted in 

the formation of relatively hydrous, evolved magmas (Price et al. 1999). 

Based on the comparison of Taranaki volcanism with andesite and rhyolite magmatism 

in the TVZ, Price et al. (2005) proposed that Taranaki and Ruapehu andesite magmas are 

generated through the interaction of mantle-derived arc magmas with the lower crust. Further 

modification of these melts occurred at varying times and various levels through assimilation and 

fractional crystallisation (AFC; de Paolo 1981) processes during migration within a complex, 

dispersed plumbing system. This evolution is reflected in the observed geochemical and mineral 

textural variations within andesitic rocks through time (Price et al. 2005). While andesitic systems 

develop at modest heat flow and magma supply, a shift to much higher heat flow and hence 

more extensive crustal melting likely results in transition to rhyolite volcanism and the production 

of large volumes of rhyolite magmas as found in the TVZ (Price et al. 2005). 

4.3. METHODS OF SAMPLE COLLECTION 

The new stratigraphy that has been developed (cf. Chapter 2) provides the basis for 

sampling the volcanic products of Mt. Taranaki for petrographic and geochemical analysis. As 

part of this study, twelve debris-avalanche deposits generated by large collapse events have been 

sampled from coastal ring-plain successions around the volcano, including the Maitahi Formation 

from Pouakai Volcano. Between 10 and 31 rock samples were analysed from selected debris-

avalanche deposits, depending on accessibility of the sample location, availability of suitable clasts 

and variety of lithologies. Due to restricted outcrops and strong weathering, only four samples 

were collected from the Oeo debris-avalanche deposit. Grid references of sampling locations and 

sample numbers are listed in Appendix I.  

The debris-avalanche deposits are used as a window into the composition of past 

edifices, since the contained clast assemblages represent the diversity of lithologies that built up 

the then existing volcanic edifice. Furthermore, they span the complete known age range of the 
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volcano as they occurred from earliest stages of volcanism onward. Mt. Taranaki debris-

avalanche deposits are distinct, widespread and form a more complete stratigraphic record than 

the observed lahar units, which represent only short, spatially restricted time packages that are 

difficult to correlate and date.  

For each individual debris-avalanche sample suite, a range of as many different 

lithologies as available was collected in order to cover as much of the spectrum of existing rock 

types and geochemical compositions at the time of deposition as possible. This method has not 

been applied before but appears to be a good approach to determine long-term magmatic trends 

even though there could be an overlap in samples and age ranges, since younger debris 

avalanches are likely to have picked up material from older units. 

Geochemical data of all collected rock samples was acquired by X-ray fluorescence 

analysis (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). In addition Sr, Nd 

and Pb isotope analyses were carried out for selected samples. Thin-sections were prepared for 

petrographic classification and electron microprobe (EMP) analysis of mineral compositions of 

clasts from the oldest debris-avalanche samples (cf. Chapter 5). A detailed description of 

analytical methods applied during this study can be found in Appendix II. 

4.4. BULK ROCK COMPOSITION  

The wide variety of volcanic lithologies represented by the debris-avalanche samples 

display a range in vesicularity reflecting both explosive and effusive origins. The analysed clasts 

have compositions ranging from basalt to andesite with the majority being basaltic andesite (Fig. 

4.1; Table 4.1). SiO2 content varies from 48.65 wt.% for the most primitive to 60.54 wt.% for the 

most evolved rocks. The oldest suites from Mt. Taranaki (Mangati, Motunui and Okawa debris-

avalanche deposits) display the broadest range of compositions (48.6-58.8 wt.% SiO2) that 

overlap with samples from the Maitahi Formation from Pouakai Volcano (Fig. 4.2A). They also 

include more primitive rocks that are generally absent from the younger suites, except for a basalt 

clast found within the Ngaere debris-avalanche deposit and basaltic lava flows from the 

Fanthams Peak satellite vent (cf. Price et al. 1992, 1999; Rosenthal 2005). In contrast, the younger 

units comprise a markedly higher proportion of andesite (Fig. 4.2B). Table 4.1 includes lithology 

data, SiO2- and K2O-ranges of the youngest, <10 ka edifice-building lavas and pyroclastic 

deposits for comparison as well as lava flow data of the satellite vent Fanthams Peak.  
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TABLE 4.1.  Lithologies, SiO2 and K2O ranges of debris-avalanche and edifice sample suites. 
DA sample 
suite 

Age 
(ka) 

No. of 
samples 

Basalt 
 

Basaltic 
andesite 

Andesite 
 

SiO2 range 
(wt.%) 

K2O range 
(wt.%) 

Opua  7  13  0  9  4 52.1-59.5 1.79-2.43
Pungarehu  20  22  0  20  2 52.5-57.6 1.71-2.15
Ngaere  23  11  1  3  7 50.8-57.2 1.77-2.27
Te Namu  29  25  0  22  3 52.6-59.1 1.57-2.44
Rama  35  15  0  9  6 53.1-60.5 1.77-2.50
Otakeho  55  12  0  8  4 53.2-59.7 1.72-2.04
Waihi  70  8  0  8  0 51.9-55.9 1.78-2.00
Oeo  85  4  0  4  0 52.4-54.5 1.70-1.97
Okawa  105  16  6  8  2 48.7-58.6 1.26-2.07
Motunui  130  31  3  23  5 49.8-58.8 1.17-1.94
Mangati  200  15  1  13  1 48.9-57.1 1.16-2.09
Maitahi  270  12  2  7  3 49.4-58.5 1.27-1.66

Edifice*  <10  181  0  111  70 52.3-60.2 1.79-3.25
Fanthams** <3.3  32  11  21  0 49.8-54.6 1.54-2.11

* Data of lava flow, BAF deposit and tephra samples from Price et al. (1999), Platz (2007) and Turner (2008). 
** Data of Fanthams Peak lava flows from Price et al. (1999) and Rosenthal (2005). 

Figure 4.1. TAS discrimination diagram (after Le Maitre et al. 1989) of analysed debris-avalanche clasts 
showing their range in composition from basalt through to andesite. 
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The evolution to more evolved compositions is characterised by increasing K2O with 

decreasing age. Potassium contents vary from 1.16 wt.% in older up to 2.5 wt.% in younger rocks 

(cf. Table 4.1). On a Gill (1981) classification diagram, debris-avalanche clasts range in 

composition from medium-K, low-Si basalts to high-K, high-Si andesites with the majority of 

samples plotting in the field of high-K, low-Si basaltic andesites (Fig. 4.3). The overall sequence 

shows a positive correlation between K2O and SiO2. 
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Figure 4.2. Variations in SiO2 and lithological proportions for debris-avalanche clasts. The oldest debris-
avalanche sample suites show the widest range in SiO2 content (A). They also contain more primitive, basaltic 
rocks, which are rare in the younger deposits (B). By contrast, the latter comprise a higher proportion of andesite. 
The total number of analysed samples for each suite is given in Table 4.1. 
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Figure 4.3. K2O vs. SiO2 variation diagrams for Mt. Taranaki (filled diamond) and Pouakai (open circle) debris-
avalanche clasts. According to the classification of Gill (1981) the volcanics range from medium-K, low-Si to high-
K, high-Si rocks, with Pouakai clasts showing predominantly lower-K contents than Mt. Taranaki.   

 

4.4.1. Major elements 

Major element abundances of Mt. Taranaki and Pouakai sample suites were obtained by 

XRF analyses and are illustrated in Fig. 4.4, using silica variation diagrams. TiO2, FeOtotal, CaO 

and MgO behave compatibly and show systematic decreases with increasing SiO2 content, while 

Na2O and K2O (cf. Fig. 4.3) are incompatible and characterised by a positive correlation with 

SiO2. The Pouakai data seem to indicate no change in K2O with increasing SiO2, which contrasts 

with Mt. Taranaki samples. Al2O3 appears to increase with increasing SiO2 in samples <52 wt.% 

while Al2O3 in samples with >52 wt.% SiO2 is constant. The highest-silica samples show the 

narrowest range of Al2O3. MnO contents and P2O5 abundances are relatively constant at varying 

SiO2 contents. Generally, there appears to be a wider scatter of major element distributions at 

lower SiO2 abundances, except for FeOtotal with a very narrow range and K2O with an overall 

wider array (Fig. 4.3). 
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Figure 4.4. Major element variation as a function of SiO2 content for Mt. Taranaki (filled diamond) and 
Pouakai (open circle) debris-avalanche samples. 
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The negative correlation of TiO2 content with SiO2 abundance is attributed to 

fractionation of titanomagnetite and possibly amphibole to a minor extent. A more rapid 

decrease at lower SiO2 contents might indicate a higher rate of titanomagnetite crystallisation. 

Fractionation of olivine (at lower SiO2 abundances), clinopyroxene, titanomagnetite as well as 

amphibole resulted in the systematic decrease of FeOtotal in relation to SiO2. CaO is 

predominantly bound in plagioclase and clinopyroxene and, to a minor extent, in amphibole, 

resulting in a negative correlation with SiO2. The negative relationship between MgO and SiO2 is 

mainly the result of olivine, clinopyroxene and amphibole fractionation with the more rapid 

decrease of MgO abundance at lower SiO2 contents reflecting a greater influence of olivine. The 

content of MnO is relatively constant with a slight negative correlation to SiO2 possibly due to its 

compatibility in clinopyroxene.  

The increase of Na2O and K2O with increasing SiO2 is a result of their incompatible 

behaviour and enrichment in the residual melt. P2O5 displays a relatively wide scatter when 

plotted against SiO2 with Pouakai clasts having distinctly lower P2O5 contents than the Mt. 

Taranaki suites, which show a slightly negative relationship with SiO2. 

4.4.2. Trace elements 

The variation of trace elements in Taranaki debris-avalanche samples is displayed in 

SiO2 variation diagrams (Fig. 4.5). The geochemical abundances of all trace elements except Ni 

were acquired by more precise ICP-MS analyses. Due to a technical error the wrong Ni isotope 

was analysed; as a result, XRF-determined Ni values are reported here instead. 

Rubidium, Ba and Zr behave incompatibly and hence their abundances increase 

systematically with increasing SiO2 contents. Rubidium and Ba variation is similar to the 

distribution of K2O (cf. Price et al. 1999). These elements show a strong positive correlation, 

with Pouakai samples generally displaying lower concentrations. Zirconium abundances in 

Pouakai rocks appear relatively constant with increasing SiO2 and lack the distinct positive 

correlation displayed by Mt. Taranaki sample suites. Strontium contents show a wide scatter and 

overall no correlation with SiO2 abundance in both the Mt. Taranaki and Pouakai debris-

avalanche data, but Pouakai samples plot at distinctively lower Sr concentrations. 

The systematic decrease of Sc and V with increasing SiO2 is similar to MgO, FeO, CaO 

and TiO2 but with a narrower range at low-Silica abundances. Nickel and Cr show a wide scatter 

and rapid decrease at low-silica contents, indicating olivine and clinopyroxene fractionation, and a 

weak negative correlation with SiO2 at medium- to high-silica abundances. Nickel and Cr 
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Figure 4.5. Trace element variation versus SiO2abundance for Mt. Taranaki (filled diamond) and Pouakai 
(open circle) debris-avalanche samples. 
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contents are generally low, reflecting the evolved nature of Taranaki magmas (cf. Price et al. 

1999). Nickel abundance is <16 ppm for most samples, ranging up to 68 ppm with one sample 

showing an exceptionally high content of 188 ppm. Most samples contain <50 ppm Cr, a few up 

to 203 ppm and two rocks show high Cr contents of 317 and 326 ppm, respectively. Copper 

variation displays a systematic decrease with increasing SiO2 with three samples having higher 

concentrations. Mt. Taranaki sample suites show relatively constant Zn contents with a change to 

decreasing abundances for high-silica rocks. Pouakai samples are distinct with significantly lower 

Zn contents that decrease systematically with increasing SiO2. 
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Figure 4.5. (continued)  Trace element variation versus SiO2abundance for Mt. Taranaki (filled diamond) and 
Pouakai (open circle) debris-avalanche samples. 
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Niobium variation is complex and abundances are generally low (<6 ppm). Pouakai 

samples have lower Nb contents (<4.5 ppm) than Mt. Taranaki debris-avalanche clasts and show 

a weak positive relationship with SiO2. Some samples scatter at higher Nb contents with a few 

low-Si rocks containing up to 20 ppm Nb 

Uranium, Pb and Th behave incompatibly and hence their abundances increase with 

increasing SiO2. They are also strongly correlated with K2O. The variation of Pb is most similar 

to K2O with a wide scatter and the oldest units showing the lowest Pb abundances. Pouakai rocks 

have distinctly lower Pb contents than Mt. Taranaki sample suites. 

4.4.3. Fractionation trends 

Dominantly linear trends of major and some trace element variation within the whole 

rock analyses of the analysed debris-avalanche sample suites are consistent with a broad control 

by crystal/melt fractional processes (cf., Bowen 1928; Gill 1981; Gamble et al. 1990). Early 

fractionation or accumulation of olivine and clinopyroxene is reflected in the rapid decrease of 

FeO*, MgO, Ni and Cr within the more primitive compositions. Further fractionation of olivine 

and clinopyroxene results in the systematic depletion in FeO*, MgO, Ni and Cr and enrichment 

in SiO2, Na2O and K2O. The high rate of CaO-decrease at lower SiO2 also reflects clinopyroxene 

fractionation with the change to a gentler slope marking the onset of plagioclase crystallisation. 

The increase of Al2O3 at lower SiO2 abundances could indicate initial plagioclase repression due 

to high PH2O, while relatively constant Al2O3 contents together with falling CaO abundance reflect 

clinopyroxene fractionation. Hornblende fractionation systematically reduces TiO2, Sc and V 

abundances, which are also compatible in titanomagnetite. The variability of Sr abundance is 

likely to reflect variable amounts of plagioclase some of which appears to be xenocrystic. LILE, 

HFSE and REE are incompatible in the early crystallising phases and hence increase with 

increasing SiO2.  

The interpretation of geochemical trends within these samples might allow some 

indication of crystal/melt fractional processes and the above described fractionation trends are 

consistent with the major mineral phases (plagioclase, hornblende, clinopyroxene, olivine and 

titanomagnetite) observed in Taranaki debris-avalanche clasts (cf. Chapter 5). However, 

crystal/melt fractional processes are more complex and whole rock compositional trends do not 

correspond directly to simple liquid lines of descent. Instead, there is strong evidence that large 

proportions of the contained crystals may be xenocrysts that formed in the lower crust and are 

not directly related to the surrounding melt during ascent (Stewart et al. 1996). Hence, 
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geochemical variation is not the result of simple crystal fractionation but reflects mixing of melts 

with crystals from various sources. 

Mineral textures are therefore a more useful indicator of crustal processes at Mt. 

Taranaki since they preserve evidence of crystal fractionation, later crystal resorbtion and 

assimilation (AFC; DePaolo 1981) processes as well as magma mixing or mingling (Smith et al. 

1996; Stewart et al. 1996; Price et al. 1999; Turner 2008). Furthermore, a new model by Turner 

(2008) suggests that a two-stage magmatic system operates beneath Mt. Taranaki with much of 

the magma differentiation occurring at lower levels within the crust, from where melt-crystal 

mixtures subsequently rise to recharge a mid-crustal system (at c. 7-10 km depth). Hence, 

geochemical (and petrographic) variations within Mt. Taranaki rocks are mainly generated by 

AFC processes within the deeper part of the plumbing system and during subsequent ascent. 

Further fractional crystallisation and magma mingling at shallow levels may have overprinting 

effects on the magma characteristics (Smith et al. 1996; Stewart et al. 1996). Petrographic and 

mineralogical characteristics of the debris-avalanche sample suites will be further discussed in 

Chapter 5.  

4.4.4. Rare earth elements 

The chondrite-normalised REE patterns of analysed debris-avalanche clasts (Fig. 4.6) 

are characterised by enrichment of light rare earth elements (LREE) relative to heavy rare earth 

elements (HREE) with (La/Yb)n = 3.1-10.0 for Mt. Taranaki samples and (La/Yb)n = 4.1-9.5 for 

Pouakai rocks. Concentrations of HREE form a relatively flat profile with a gentle decrease in 

normalised abundances from Eu to Dy and almost constant proportions of Ho-Lu. Pouakai 

samples typically have lower concentrations of REE than Mt. Taranaki suites (Fig. 4.6B). Three 

andesite clasts (AZ06-57, -60 and -61) are distinct and show similar low concentrations of La-Pr 

but markedly lower abundances of Nd, Sm and HREE than the rest of the Pouakai suite, which 

might be due to their high contents of very large xenocrystic plagioclase. This could also explain 

why these three andesites, and some other samples, lack the weakly developed negative Eu 

anomaly that is present in the normalised REE pattern of most Mt. Taranaki and Pouakai debris-

avalanche samples. 

The composite normalised extended element diagrams for Mt. Taranaki sample suites 

(Fig. 4.7.A) show a strong enrichment of large ion lithophile elements (LILE) such as Cs, Rb, Ba 

and K and, to a lesser extent, Sr relative to normal mid-ocean ridge basalts (MORB). Niobium is 

strongly depleted relative to K, Th, U and Pb. Lead and, to a lesser extent, Sr are enriched over  
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Figure 4.6. Chondrite-normalised rare earth element diagrams (normalising values from Sun & McDonough, 
1989).  
A: Mt. Taranaki sample suites show enrichment of LREE over HREE, a feature characteristic of arc 
magmas.  
B: In comparison, Pouakai samples have lower REE contents than Mt. Taranaki rocks (shaded in grey). Three 
samples are distinct with similar abundances of La-Pr but markedly lower concentrations of Nd, Sm and 
HREE. 
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Ce. Titanium, Y and Yb are depleted relative to N-MORB. Overall, LILE show significantly 

greater abundances than high field strength elements (HFSE) such as Nb, Zr, Ti, Y and REE.  

The normalised trace element pattern of most basaltic clasts is parallel to that of the 

analysed andesites, with the exception of basalts having lower Zr and higher Ti abundances (Fig. 

4.6B). Some of the oldest, more primitive rocks are characterised by a smoother trace and rare 

earth element pattern (Fig. 4.6C), in particular sample AZ06-73 of the Mangati suite, marked in 

red. Three additional basalt clasts, two of the Okawa series and one of the Motunui suite, also 

show a more subdued arc signature.  

Most Pouakai samples display a similar normalised trace and rare earth element 

distribution to Mt. Taranaki basalts (Fig. 4.7). One Pouakai basalt (AZ06-65) has a slightly 

different geochemistry with LILE concentrations similar to AZ06-73 and a distinctly lower Zr 

content and one basaltic andesite (AZ06-59) shows lower Pb abundances. The three andesites 

(AZ06-57, -60 and -61) with low HREE contents are also characterised by lower abundances of 

other HFSE such as Zr, Ti and Y and higher Ba, Th, and U concentrations than the rest of the 

Pouakai suite. 

 

 

 

 

 

 

 

 

Figure 4.7 (next page). Composite normalised extended element diagram of selected trace and rare earth elements
normalised to N-MORB for Mt. Taranaki sample suites (normalising values from Sun & McDonough 1989).
A: Mt. Taranaki rocks show a typical arc signature, characterised by enrichment of LILE relative to normal 
MORB, strong depletion in Nb relative to K, Th, U and Pb and enrichment of Pb and Sr over Ce.  
B: Andesitic and most basaltic samples of the Mt. Taranaki suites show parallel trends of trace and rare earth 
element with the latter generally having lower concentrations of incompatible trace elements. The normalised trace 
element distributions of some basalt clasts are distinct from the overall observed pattern. 

 

C: One basaltic sample of the Mangati suite (AZ06-73) shows a significantly more subdued arc signature than 
the average Mt. Taranaki rocks (shaded in grey). Two basaltic rocks of the Okawa series (AZ04-06 and -07) 
and one clast of the Motunui suite (AZ04-27) show a weak but yet more distinct subduction-related trace and 
rare earth element pattern. 
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Figure 4.8. Composite normalised extended element diagram of selected trace and rare earth elements normalised 
to N-MORB (normalising values from Sun & McDonough 1989) for Pouakai samples in comparison to Mt. 
Taranaki suites (shaded in grey). The three distinct andesite samples AZ06-57, -60 and -61 with markedly 
lower HREE contents are shown in red.  

 

4.5. ISOTOPIC SIGNATURES  

The most primitive basalts and basaltic andesite clasts from the oldest debris-avalanche 

deposits and, because primitive compositions are absent, some basaltic andesite samples from 

several younger units were selected for Sr and Nd isotope analysis. Some of these were also 

analysed for Pb isotope geochemistry. The results are presented in Table 4.3. 

87Sr/86Sr ratios show little variation and range from 0.703605-0.704742 for Mt. Taranaki 

samples. Pouakai clasts lie within the same narrow range (0.704639-0.704839). Three basalts of 

the oldest Mt. Taranaki debris-avalanche deposits have markedly lower isotope ratios compared 

to the rest of the suites. There is no obvious correlation between 87Sr/86Sr isotopic composition 

and SiO2 contents in the analysed suites (Fig. 4.9A), which contrasts with the behaviour observed 

in the lava flow sequences of the young (post-10 ka) Mt. Taranaki edifice (Price et al. 1999). 

Overall, and with the exception of the three distinct basalt samples, the strontium isotopic ratios 

of the debris-avalanche rocks become slightly less radiogenic with decreasing age (Fig. 4.9B). 
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Both, the Mt. Taranaki and Pouakai 143Nd/144Nd isotopic compositions are also 

constrained within a narrow range and vary from 0.512831 (εNd = 3.76) to 0.512987 (εNd = 

6.81) (cf. Table 4.3). Despite the restricted range of observed values, Sr isotopic compositions 

correlate negatively with 143Nd/144Nd (Fig. 4.10). 

The sample suites show only a limited range in Pb isotopic compositions, with 
206Pb/204Pb ratios ranging from 18.740 to 18.792, 207Pb/204Pb ratios from 15.580 to 15.606 and 
208Pb/204Pb ratios from 38.539 to 38.639 (cf. Table 4.3). The youngest samples have the highest 
207Pb/204Pb contents and higher 208Pb/204Pb ratios than most other analysed clasts but their 
206Pb/204Pb ratios overlap with the older suites (Fig. 4.11). As is the case for the Sr and Nd 

isotopic data, other trends or correlations with major and trace elements could not be recognised 

due to the restricted range in variation in isotopic composition and the limited number of 

analysed samples. 

 

 

 

TABLE 4.3.  Isotope data of analysed debris-avalanche samples. 
 

DAD Sample 87/86Sr 143/144Nd εNd 206/204Pb 207/204Pb 208/204Pb 

Pungarehu AZ05-43 0.704488 0.512864 4.41    
Te Namu AZ05-12 0.704718 0.512837 3.88    
Rama AZ06-09 0.704661 0.512856 4.25    
Rama AZ06-16 0.704742 0.512838 3.90 18.760 15.606 38.622 
Otakeho AZ06-41 0.704639 0.512831 3.76 18.758 15.605 38.615 
Okawa AZ04-03 0.704548 0.512884 4.80    
Okawa AZ04-04 0.704574 0.512922 5.54 18.743 15.599 38.585 
Okawa AZ04-06 0.704015 0.512951 6.11 18.792 15.596 38.608 
Motunui AZ04-27 0.703834 0.512930 5.70 18.788 15.591 38.591 
Motunui AZ04-31 0.704602 0.512876 4.64 18.740 15.591 38.593 
Mangati AZ06-68 0.704622 0.512849 4.12 18.751 15.599 38.639 
Mangati AZ06-73 0.703605 0.512987 6.81 18.781 15.580 38.539 
Mangati AZ06-80 0.704584 0.512873 4.58    
Maitahi AZ06-63 0.704839 0.512826 3.67    
Maitahi AZ06-65 0.704639 0.512879 4.70 18.743 15.590 38.588 
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Figure 4.9. Variation of 87Sr/86Sr in relation to SiO2 content (A) and age (B) of selected Taranaki debris-
avalanche samples. Most samples are within a narrow range of 87Sr/86Sr isotopic compositions but three basalts 
from the oldest Mt. Taranaki suites are distinct with lower 87Sr/86Sr ratios. 

45 50 55 60
SiO2 (wt.%)

0.7035

0.704

0.7045

0.705

8
7 S

r/
8

6
S

r

0 50 100 150 200 250 300
Age (ka)

0.7035

0.704

0.7045

0.705
8

7S
r/

8
6S

r

Pungarehu 
Te Namu
Rama
Otakeho
Okawa 
Motunui
Mangati
Maitahi

0.7035 0.704 0.7045 0.705
87Sr/86Sr

3

4

5

6

7

e
N

d

Figure 4.10. Taranaki debris-avalanche clasts show a distinct negative correlation between 87Sr/86Sr and 
143Nd/144Nd isotopic compositions. 

A B 

Pungarehu 
Te Namu
Rama
Otakeho
Okawa 
Motunui
Mangati
Maitahi

narrow
range 



Chapter 4.  Geochemistry 
 

203

18.72 18.74 18.76 18.78 18.8 18.82

206Pb/204Pb

15.58

15.59

15.6

15.61

15.62

2
0

7 P
b

/2
0

4
P

b

 

15.57

Figure 4.11. Lead isotope composition of selected Mt. Taranaki and Pouakai debris-avalanche clasts. 
A: Variation of 207Pb/204Pb in relation to 206Pb/204Pb. 
B: Plot of 208Pb/204Pb versus 206Pb/204Pb. 

Rama
Otakeho

18.72 18.74 18.76 18.78 18.8 18.82
206Pb/204Pb

38.52

38.54

38.56

38.58

38.6

38.62

38.64

38.66Okawa 
Motunui
Mangati

A 

B 
Maitahi

2
0

8P
b

/
2

0
4P

b



Chapter 4.  Geochemistry 
 
204 

4.6. COMPOSITIONAL VARIATION WITH TIME 

Mt. Taranaki is recognised as a high-K arc volcano and was originally used to develop 

the concept of the K-h relationship of increasing K2O with increasing depth to the slab by 

Dickinson & Hatherton (1967). Later studies showed that K2O behaviour in the Taranaki 

volcanics is time rather than slab depth-dependent (Price et al 1992, 1999, 2005; Stewart et al. 

1996). The debris-avalanche sample suites described here allow a more detailed reconstruction of 

systematic changes in the magmatic composition of eruptives over a long period and 

differentiation of individual stratigraphic units as well as Mt. Taranaki and Pouakai suites. 

Variations in K2O-contents continue to show up as the most distinct time-dependent 

geochemical trend observed.  

Figure 4.12 shows a K2O versus SiO2 compilation of debris-avalanche data from this 

study and data from previous studies of younger volcanic eruptives that built up the present-day 

cone of Mt. Taranaki (Price 1999; Platz 2007; Turner 2008). Each stratigraphic suite is distinct, 

although there is some overlap for units of similar age (Fig. 4.3B), which is expected because a 

major debris-avalanche event may sample variably older rocks. The Pungarehu and Ngaere 

Formations were deposited less than 5 ka apart and show considerable similarity in clast 

composition. The compositions of clasts found within the Opua Formation overlap with those of 

<10 ka eruptives that form the present-day edifice. This is to be expected since the Opua debris 

avalanche was generated from the modern edifice by partial collapse at c. 6.6 ka (Neall 1979). The 

linear regression fits of each sample suite not only display a progressive increase of K2O 

abundance with time but also show successively steeper trajectories on the SiO2 versus K2O plot. 

The Maitahi suite from Pouakai Volcano contains the least fractionated samples with relatively 

constant K2O abundances. In contrast, a dramatic jump and steepening of slope occurs from the 

Opua suite to the youngest rocks (<1.7 ka) of the Maero eruptive period, which have the highest 

potassium contents known from Mt. Taranaki (Platz 2007). 

The anomalously steep regression lines of the Mangati and Te Namu sample suites 

might reflect sampling of a wider range of lithologies with distinctly different geochemical 

compositions, while the steep, short fit of the Oeo suite is a result of the small number of 

samples with a limited compositional range.  

In order to illustrate the changes in K2O with time, K55 values, i.e. the K2O value of 

each sample suite at 55 wt.% SiO2, were employed (Fig. 4.13). This has the advantage of 

minimising the effect of wide scatter in slope gradient. K55 increases from 1.51 wt.% K2O for 
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Figure 4.12. K2O vs. SiO2 variation diagrams for Taranaki eruptives. Each sample suite is distinct (A) and the 
linear fits of the stratigraphic units show a progressive increase in K2O with decreasing age (B). 
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Figure 4.13. When plotted versus age, K55 values of the individual sample suites conform closely to an 
exponential curve of increasing K2O with decreasing age. The unusually high K55 value of the Oeo suite (marked 
in red) is a result of the limited number of samples and the resulting steep, short fit on the K2O vs. SiO2 plot 
(Fig. 4.1). Hence, the unrepresentative value was not included in the calculation of the exponential fit. 

samples from Pouakai Volcano, to 1.67 wt.% for the oldest rocks from Mt. Taranaki, and up to 

2.17 wt.% for the mid-Holocene suite, with a dramatic rise to 2.56 wt.% for the latest eruptives 

(<1 ka). When plotted against age, K55 values conform closely to an exponential curve of 

increasing potassium with decreasing age, showing the largest increase in the youngest units (<10 

ka). The Pouakai data is consistent with the overall trend of the Mt. Taranaki rock suites. 

Abundance patterns for most LILE are coupled with those of K2O and display similar 

trends with time; this is particularly so for Rb, Ba and Th. Barium abundance shows a systematic 

increase with decreasing age and the closest similarity to K2O behaviour. Individual stratigraphic 

suites can be distinguished with a slight overlap between 35-100 ka and distinct youngest and 

oldest units with the latter (Mangati, Motunui and Okawa suites) also displaying the widest scatter 

(Fig.4.14A, Fig. 4.16B). Rubidium and Th contents behave similarly and also increase with time, 

although there is a stronger overlap between the abundances observed in individual units from 
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decreasing age, which allow a clear distinction between the oldest and youngest units (B). 
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Figure 4.16.  Debris-avalanche samples from Pouakai show lower concentrations in Pb than the Mt. Taranaki 
suites and a constant trend with increasing SiO2 (A). Barium contents are lower for low-silica compositions but 
overlap with the oldest suites from Mt. Taranaki towards higher SiO2 abundances (B). The Maitahi suite also 
shows a steeper fractionation trend than the other sample suites. 
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35-130 ka. The youngest suites show the most distinct increase and steeper fractionation trends, 

while the oldest units display the widest range of Rb and Th abundances. Other LILE, such as Pb 

as well as Cs and U, show a more subdued correlation with age and an overall greater overlap of 

sample compositions. Only the oldest suites and samples younger than 30 ka show distinct 

clusters based on age (Fig. 4.14B, Fig. 4.16A).  

Other incompatible components and elements such as Na2O, Sr, Be and some HFSE 

such as Zr, Hf, Nb and Ta do not show these distinct age-related trends, instead individual 

stratigraphic suites form strongly overlapping fields. The oldest >100 ka units, in particular the 

Motunui suite, display the widest scatter and contain some samples with higher concentrations of 

Sr, Be, Zr, Nb, and Ta. The younger suites have lower abundances and a tighter range of Zr 

abundances. Light rare earth elements (La-Sm) show similar trends of increasing abundances with 

increasing SiO2-content and typically a wider range within the oldest units with lower SiO2 

contents. The Mangati suite has slightly lower concentrations of La, Ce and Pr compared to the 

rest of the Mt. Taranaki samples. Individual stratigraphic suites display relative constant 

proportions of HREE (Eu-Lu) and Y although some show a slight decrease in the abundances of 

these elements with increasing SiO2. High-silica samples of the youngest eruptives and the Rama 

suite appear to have a weak negative correlation of Sm, Gd, Tb and Lu abundances with SiO2-

content. In contrast to the LREE and Y, the youngest suite shows the widest scatter in Er and 

Lu. 

The variation of Al2O3 is complex and contrasts between individual stratigraphic suites 

seem to reflect different fractionation trends at varying SiO2 contents or, more likely, different 

degrees of plagioclase accumulation rather than age trends (Fig. 4.15). The oldest debris 

avalanche suites (Maitahi, Mangati, Motunui and Okawa) and Fanthams Peak lavas show a 

positive correlation of Al2O3 with increasing SiO2 for low-silica compositions. Abundances of 

Al2O3 at >51 wt.% SiO2 in these units are relatively constant and similar to those observed in the 

Waihi, Otakeho, Rama, Te Namu and Ngaere suites. Edifice samples show a wider scatter of 

Al2O3 abundance at medium-silica contents and the youngest eruptives have lower Al2O3 

abundances, implying a negative correlation.  

Compatible elements behave in a similar way for all age groups and do not distinguish 

individual stratigraphic units. Ranges for FeO*, CaO, TiO2, V and Sc form similarly decreasing 

trends with increasing SiO2, although the oldest units appear to have slightly higher abundances 

of FeO*. MgO, Cr, Ni and Cu abundances show an overall negative correlation with SiO2 

content but a wider scatter and higher values for low-silica samples results in steeper trends for 

the old suites and Fanthams lavas. 
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4.6.1. Distinction of stratigraphic suites 

The results of this study show that the geochemical composition of debris-avalanche 

sample suites can be used to roughly differentiate stratigraphic units at Mt. Taranaki. Although 

trends with age are observed for most LILE, individual suites are best distinguished based on 

their K2O (and Ba) content. In this regard, sampling of an unknown debris-avalanche deposit at 

Waihi Beach allowed its identification as Ngaere Formation. Although the sedimentary 

characteristics and its stratigraphic position could have suggested an older age, equivalent to the 

Tokaora debris-avalanche deposit, geochemical analysis of the sample suite revealed higher K2O 

contents and a perfect overlap with the Pungarehu Formation samples.  

The K2O abundances of Mt. Taranaki sample suites can be helpful for estimating the 

approximate age of any stratigraphic unit; the K55 value can be compared with the K55-age 

curve of Fig. 4.13. For this purpose, the suite needs to consist of at least 10 samples, including a 

large variety of compositions and lithologies that provide a reasonable range in K2O abundances. 

As demonstrated by the Oeo suite, the K55 value becomes more representative as the number of 

samples increases and their compositional range widens. This concept could be applied to newly 

identified debris-avalanche deposits at Mt. Taranaki or possibly to series of lahar deposits of 

unknown age, especially where stratigraphic correlation is not possible.  

The overall evolution of Mt. Taranaki magmas is characterised by a gradual, continuous 

increase of K2O and Ba abundances. Hence, significant differences in K2O and Ba contents for 

individual debris-avalanche suites indicate that large sectors of the volcano were removed by 

collapse, which was subsequently rebuilt with new lava flows and pyroclastic deposits that show a 

slightly different geochemical signature. Overlapping compositions of debris-avalanche sample 

suites suggest that similar material, which was produced during a restricted time range, was 

involved in the collapse. Hence, compositional overlap can be generated by (1) smaller collapses 

of neighbouring parts of the edifice, producing a similar dispersal of relatively small-volume 

debris-avalanche deposits and (2) small or large collapse of different parts of the same edifice, 

resulting in debris avalanches of varying volumes that are directed in different directions. In 

contrast, distinct differences between debris-avalanche sample suites are the result of 

involvement of material that was part of a completely different (removed and rebuilt) Mt. 

Taranaki edifice, suggesting significant time between collapse events. 

Clasts from the Rama and Otakeho debris-avalanche deposits show some overlap in 

composition. The collapses occurred in the same direction but the older event was smaller in size. 

Hence, the subsequent larger Rama collapse involved parts of the ‘old’ edifice as well as new 
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material. In addition, the debris avalanche could have picked up material of the underlying 

Otakeho deposit during transport. A different example is the collapse of the eastern sector of a 

previous Mt. Taranaki edifice during the Ngaere event, followed by collapse of the western sector 

of the same edifice to generate the Pungarehu debris avalanche. The geochemical composition of 

clast assemblages within these two large-volume debris-avalanche deposits is almost identical, 

indicating involvement of edifice material that was produced during the same time range. Also, 

the derivation of the youngest (Opua) debris-avalanche deposit from collapse of the present-day 

edifice is shown by the overlapping geochemistry of debris-avalanche clasts and edifice-forming 

lavas. 

4.7. FINGERPRINTING OF POUAKAI AND MT. TARANAKI SUITES 

The debris-avalanche sample suite displays compositional changes with time and a 

distinct difference between samples derived from Pouakai Volcano and Mt. Taranaki. Potassium 

and most LILE show a gradual, systematic increase with decreasing age and the Maitahi suite 

typically has the lowest contents of these elements. Pouakai samples are distinctly lower in K and 

Pb than Mt. Taranaki rocks (Fig. 4.16A) and for Pouakai these elements also show relatively 

constant abundances with increasing SiO2. Barium, Th and U abundances form significantly 

steeper regression lines on silica variation diagrams than is the case for the Taranaki suites and 

abundances overlap with those observed in the Mangati and Motunui samples (Fig. 4.16B), while 

Cs and Rb abundances cannot be distinguished from those of Taranaki samples. 

Contents of HFSE differ significantly between Pouakai and Mt. Taranaki samples. The 

Maitahi suite shows overall lower abundances in TiO2 but these overlap slightly with those of Mt. 

Taranaki rocks (cf. Fig. 4.4). Pouakai samples are also characterised by markedly lower 

concentrations of Zr and Hf and relatively constant abundances of these elements with increasing 

SiO2. This contrasts with the distinct positive fractionation trends defined by the Taranaki suites 

(Fig. 4.17A, cf. Fig. 4.5). These differences are slightly more subdued for Nb and Ta (Fig. 4.17B, 

cf. Fig. 4.5), but concentrations of these elements are overall lower in Pouakai rocks than for Mt. 

Taranaki samples. The Maitahi suite also forms a tighter range in Nb and Ta contents without a 

clear trend on silica variation diagrams.  

The distribution of Be is similar to those observed for Zr and Hf with distinctly lower 

concentrations for Maitahi samples and a narrow, relatively constant range. Individual Taranaki 

sample suites show a wide scatter in Zr, in particular the Motunui suite, similar to the behaviour 
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noted for Nb and Ta. Strontium abundance is also lower in Pouakai samples and is less scattered 

than for Mt. Taranaki suites (cf. Fig. 4.5).  

Some significant differences between Pouakai and Mt. Taranaki rocks can also be found 

in the distribution of LREE. The Maitahi samples show lower La contents and there is only a 

minor overlap with those observed in Mt. Taranaki samples. There is, however a similar positive 

correlation between La and SiO2 abundances in all suites (Fig. 4.18A). Concentrations of Ce and 

Pr are markedly lower in Maitahi samples and there is only a slight increase in Ce abundance with 

increasing SiO2 content. Praesodymium contents show a weak negative correlation with SiO2 

abundance, which contrasts with the positive fractionation trends observed for the other suites. 

On a plot of Pr versus Ce, the Maitahi samples cluster in a field that is distinct from that defined 

by data for Mt. Taranaki rocks (Fig. 4.18C). The youngest eruptives from Mt. Taranaki also show 

a slightly different trend to older suites. The diverging trends between the two volcanoes become 

even more obvious for Nd and Sm which have distinctly lower abundances in Pouakai rocks 

where they also show a clear negative correlation with increasing SiO2 (Fig. 4.18B). The sample 

suites form two separate fields with different slopes on a plot of Sm versus Nd with only minor 

overlap of some more primitive rocks from the oldest Mt. Taranaki debris-avalanche deposits 

(Fig. 4.18D). Concentrations of Eu and Gd are similarly lower in Pouakai rocks and show a steep 

negative correlation with SiO2. These differences become less distinct for the heavier REE. The 

three Pouakai andesites have significantly lower contents in Tb-Lu and Y while most other 

samples overlap with the Mt. Taranaki field.  

Other elements also show distinctly different trends for the Pouakai and Mt. Taranaki 

suites. Pouakai samples display a strong negative correlation between MnO and SiO2 contents, 

whereas most Mt. Taranaki rocks have relatively constant abundances with only the youngest 

eruptives and high-silica rocks of the Rama suite forming a similar negative trend. Abundances of 

P2O5 are markedly lower in the Maitahi suite (cf. Fig. 4.4) and show a slightly positive relationship 

with SiO2 compared to Mt. Taranaki suites, for which P2O5 concentrations are relatively constant 

or decrease with increasing SiO2. Pouakai samples also have distinctly lower concentrations of Zn 

(cf. Fig. 4.5) and Zn contents decrease rapidly with increasing SiO2 content, in contrast to 

constant abundances for the Pungarehu, Opua and >100 ka Mt. Taranaki debris-avalanche 

samples. 

These geochemical differences between the Maitahi and the other debris-avalanche 

suites allow a clear distinction between Pouakai and Mt. Taranaki-derived rocks. Until now the 

origin of the Mangati debris-avalanche deposit was unknown and it has only been speculated that 

the Motunui Formation originated from Mt. Taranaki (Alloway et al. 2005). The sample suites of 
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both debris-avalanche deposits strongly overlap with the other Mt. Taranaki suites and show 

similar characteristics or progressive trends with time. Based on the geochemical signatures of 

clast assemblages within the Mangati Formation, it is here suggested that it originated from a 

proto-Mt. Taranaki edifice and thus represents the oldest known deposit recognised from this 

volcano. The nature of the deposit, i.e. volume and thickness, implies that this ancestral Mt. 

Taranaki was already a high unstable stratocone at the time. The contained range of lithologies 

indicates that the edifice was of an apparently similar composite structure to the present cone and 

volcanic activity involved a similar wide range of eruptive styles as identified in the Holocene 

record (cf. Neall et al. 1986; Alloway et al. 1995, 2005; Platz 2007; Turner 2008). The 

emplacement of the Mangati debris-avalanche deposit between 190-210 ka hence gives a new 

minimum age for Mt. Taranaki, indicating that the volcano is considerably older than previously 

thought. 

4.7.1. Interpretation of compositional differences 

The trace element distribution within Mt. Taranaki and Pouakai debris-avalanche clasts 

is characterised by the same overall pattern. The two suites are also similar in terms of trace 

element ratios that might indicate different degrees of slab input into the source, e.g. Ce/Yb, 

Nb/Yb, Ba/Nb. Together with their very similar isotopic compositions, this suggests a similar 

mantle source for magmas parental to Mt. Taranaki and Pouakai eruptives. However, Pouakai 

debris-avalanche samples are less enriched in K, Rb and Ba, have lower Zr, lower REE and 

HFSE than is generally the case for equivalent Mt. Taranaki rocks.  

These observations are consistent with: 

a) Derivation of magmas parental to Pouakai debris-avalanche clasts by larger degrees 

of partial melting of a mantle source that was compositionally the same as that from 

which Mt. Taranaki eruptives were derived. 

b) Less interaction between Pouakai parental magmas and young amphibolitic 

underplated material within a lower crustal “hot zone” (cf., Annen& Sparks 2002; 

Annen et al. 2006) than was the case for Mt. Taranaki. 

c) Some combination of these processes. 

Here, a combination of different degrees of partial melting and varying interaction with 

the lower crust are believed to be responsible for the compositional differences between Pouakai 

and Mt. Taranaki debris-avalanche clasts. Higher degrees of partial melting produced parental 
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magmas that differ slightly in abundances of LILE, REE and HFSE. These mantle-derived 

magmas were subsequently modified within the lower crustal hot zone (cf., Annen & Sparks 

2002; Annen et al. 2006) where less interaction with underplated material during the early stages 

resulted in lower concentrations of LILE (cf. Stewart et al. 1996). As a consequence of the raising 

geothermal gradient and continuous intrusions of mantle-derived magmas within the evolving 

hot zone, increasing interaction of parental magmas with lower crustal material occurred, 

generating magmas with gradually increasing abundances of LILE. However, variations in the 

degrees of partial melting appear to be the controlling mechanism for generation of 

compositionally different magmas, because large degrees of melt involvement from the crustal 

underplate would most likely also result in modification of the "arc" indicative trace element 

ratios. 

The Maitahi debris-avalanche clasts provide only a limited insight into the geochemical 

composition of Pouakai eruptives since they do not cover the whole lifetime of this volcano from 

beginning of volcanic activity to its extinction. Instead, they most likely represent a mature stage 

and older eruptives from this volcano could have had different trace element compositions and 

K contents. Three samples from Pouakai analysed by Price et al. (1999) have similar geochemical 

compositions to Mt. Taranaki rocks of this study, while one Kaitake sample overlaps with the 

fields defined by Maitahi debris-avalanche clasts. One explanation could be that their three rocks 

represent magmas from earlier stages of the volcanic system, while the Maitahi clasts were 

produced at a mature stage through higher degrees of partial melting in the mantle. It seems 

unlikely that the similarities of the Kaitake sample and the Maitahi clasts indicate a generation of 

the Maitahi debris avalanche from Kaitake, because the age, dispersal pattern and sedimentary 

characteristics of the deposit are consistent with an origin from Pouakai (cf., Gaylord et al. 1993). 

4.8. ORIGIN OF MT. TARANAKI MAGMAS 

It has been well established that subduction-related magmas have an ultimate origin in 

the mantle wedge above the subducting slab (e.g. Grove & Kinzler 1986; Crawford et al. 1987; 

Hawkesworth et al. 1991; McCulloch & Gamble 1991; Tatsumi & Eggins 1995) where 

transformations of mineral phases and related dehydration reactions in the descending slab result 

in the release of fluids into the asthenospheric mantle. These slab-derived fluids initiate partial 

melting of the overlying mantle wedge to produce primitive basaltic magmas (e.g. Ringwood 

1973, 1974; Hawkesworth et al. 1979; Arculus & Powell 1986; Davies & Stevenson 1992; Tatsumi 
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& Eggins 1995; Schmidt & Poli 1998; Ulmer 2001; Grove et al. 2002; Forneris & Holloway 

2003). The involvement of these metasomatic fluids results in partitioning of trace elements 

between fluids and residual phases (e.g. Perfit et al. 1980; Saunders et al. 1980; McCulloch & 

Perfit 1981; Pearce 1982; Sun & McDonough 1989; McCulloch & Gamble 1991), which 

produces the characteristic trace element patterns of subduction-related magmas.  

Trace element abundances at Mt. Taranaki are marked by relatively high proportions of 

LILE such as K, Rb, Cs, Ba, and Th as well as LREE, accompanied by deficiencies in HFSE 

such as Ta, Nb, Zr and Hf (cf. Price et al. 1992, 1999, 2005). The high LILE/HFSE ratio found 

in arc magmas is attributed to melting of the mantle wedge, which has been metasomatised due 

to dehydration of subducted sediments and oceanic crust (e.g. Tatsumi & Kogiso 2003; Miskovic 

& Francis 2006). It reflects the contrasting behaviour of these elements, i.e. relative mobility of 

LILE and immobility of HFSE in the slab-derived fluids (e.g. Tatsumi et al. 1986; Brenan et al. 

1995; Keppler 1996). These, as well as other trace element characteristics including strong 

depletion of Nb relative to La, K, Th and Pb and enrichment of Pb and, to a lesser extent, Sr 

relative to Ce as well as enrichment of LREE over HREE and Y are typical of subduction-related 

magmas (e.g. Gill 1981; Pearce 1982; Sun & McDonough 1989; Hawkesworth et al. 1991, 1993; 

McCulloch & Gamble 1991; Grove et al. 2002). The depletion in Nb, Ta and other HFSE is 

regarded as an intrinsic feature of subduction related magmas arising from the immobility of 

these elements in fluids and their retention in residual Fe-Ti-oxides during melting or during 

dehydration processes of the slab (e.g. Perfit et al. 1980; Gill 1981; Pearce 1982; Tatsumi et al. 

1986; Vukadinovic & Nicholls 1989; McCulloch & Gamble 1991; Saunders et al. 1991; Brenan et 

al. 1995; Tatsumi & Eggins 1995; Keppler 1996). The enrichment of Pb has been related to the 

involvement of subducted sediment (e.g. Plank & Langmuir 1993; Ewart et al. 1998). Price et al. 

(2007a) pointed out that although these trace element characteristics are commonly interpreted to 

reflect slab-fluid influences, they are also specific to continental crust. Hence, magmas that 

evolved through AFC processes in complex dispersed crustal storage and feeder systems show a 

similar ‘arc’ signature.  

Mt. Taranaki rocks all have similar trace element distributions but the arc pattern is 

developed to varying degrees. Typically, Mt. Taranaki andesites show a stronger ‘arc signature’ 

than basalt samples with greater enrichment of LILE over HFSE and NMORB and a narrower 

range of trace element concentrations. Also, some of the oldest, more primitive rocks display a 

more subdued subduction signature (cf. Fig. 4.7) similar to the basalt sample T90/42A described 

by Price et al. (1999). Variations in slab input or lower crustal interaction can be further illustrated 

using ratios of K/Nb and Ce/Pb (Fig. 4.19A). The oldest sample suites from Mt. Taranaki have 
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Figure 4.19. A: The plot of K/Nb ratios versus Ce/Pb ratios highlights the increasing slab influences or lower 
crustal interactions with time within the Mt. Taranaki sample suites. The oldest Mt. Taranaki debris-avalanche 
samples show the highest Ce/Pb and lowest K/Nb ratios, while Pouakai samples overlap with the 80-10 ka 
sample suites. One Pouakai rock and one Otakeho clast plot at unusually high Ce/Pb ratios. 
B: The generally higher Ba/Nb ratios of Mt. Taranaki and Pouakai eruptives indicate lower degrees of partial 
melting and more interaction with underplated lower crustal material than at Ruapehu although there is some 
overlap with older Taranaki samples. Mt. Taranaki data from Price et al. (1999), Platz (2007) and Turner (2008); 
Mt. Ruapehu data from Gamble et al. (1993 & 1999) and Waight et al. (1999). 
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relatively low ratios of K/Nb that gradually increase with decreasing age with the youngest 

eruptives showing the strongest depletion of Nb. The ratio of Ce/Pb decreases with decreasing 

age, corresponding to the increasing enrichment of Pb over Ce. This indicates that either the 

influence of slab-derived fluids becomes more dominant with time or there is increasing 

interaction with the lower crust, which is augmenting the arc signature. Pouakai rocks overlap 

with the 80-10 ka Mt. Taranaki units (Fig. 4.19A), suggesting similar processes to the more 

mature Mt. Taranaki system, although their normalised trace element pattern is similar to the 

older Mt. Taranaki basalts (cf. Fig. 4.8).  

Compared to Ruapehu, Mt. Taranaki rocks are enriched in REE and strongly enriched 

in LREE relative to HREE with overall similar trace element patterns (Price et al. 1999). Ratios 

of Ba/Nb (Fig. 4.19B) and Ba/La (cf. Price et al. 1999) are generally higher at Mt. Taranaki, 

especially in later Taranaki eruptives, indicating more substantial involvement of a slab-derived 

component at source. Price et al. (1999) also argued that the fluids involved in the sources of the 

two volcanoes are compositionally different due to the declining influence of sediment on slab-

derived fluids with increasing slab depth. Higher contents of K, Ba, LREE, LILE and HFSE in 

Mt. Taranaki rocks were thought to reflect higher abundances in parental magmas, possibly due 

to lower degree of partial melting. In contrast, larger degrees of partial melting at Ruapehu 

possibly diluted the arc signature but resulted in similar patterns (Price et al. 1999).  

Higher Ti/Zr ratios at low Zr abundances and elevated K/Rb and Cs/Rb ratios of Mt. 

Taranaki eruptives compared to Ruapehu have been interpreted to indicate a more depleted 

mantle source for parental magmas and/or more interaction with underplated lower crust (Price 

et al. 1999). Lower 86Sr/87Sr and higher 143Nd/144Nd ratios for Taranaki eruptives also suggest 

derivation of parental magmas from a more depleted mantle than is the case for Ruapehu 

magmas (Fig. 4.20). In the 143Nd/144Nd versus 86Sr/87Sr isotopic ratio diagram, most Mt. Taranaki 

samples lie within the field defined by TVZ basalts and plot between lavas from the Kermadec-

Tonga-Arc segment and Ruapehu. Three basalt samples from the oldest units (AZ04-06, -27 and 

AZ06-73) overlap with the Kermadec-Tonga field and are distinct from the rest of the Taranaki 

debris-avalanche suites as well as previously analysed rocks. The different isotopic composition 

of these basalts appears to indicate variability in the mantle source. Several other samples, 

predominantly basalts as well as some basaltic andesites from the older sample suites, also show a 

range in compositions that differ significantly from the rest of the Taranaki suites.  

These samples, i.e. AZ06-68 and -73 from the Mangati suite, AZ04-25, -26, -27, -28, -

34, -35 and -37 from the Motunui suite and AZ04-06 and -07 from the Okawa suite are 

characterised by different degrees of LREE enrichment and a strong depletion in HREE relative 
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to NMORB (Fig. 4.21A). They also show overall lower abundances of LILE, especially Ba, Pb, 

Th and U, and a range of HFSE concentrations (Fig. 4.21B). In addition, some of these rocks 

have lower Al2O3 and higher TiO2, MgO, Cr and Ni than the rest of the suite (cf. Figs. 4.4 and 

4.5). Together with T90/42A, T95/2A and T90/4D from Price et al. (1999), these samples can 

be best distinguished on a Ce/Yb versus Nb/Yb diagram, where they plot at higher Nb/Yb 

ratios outside the field defined by Mt. Taranaki and Pouakai sample suites (Fig. 4.22). Some 

transitional compositions, represented by andesites from the Maitahi Fm (AZ06-60), Motunui 

Fm (AZ04-22 and -29), Rama debris avalanche-deposit (AZ06-01 and -02) and the Ngaere Fm 

(AZ06-90), overlap with data from Ruapehu.  
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Figure 4.20.  86Sr/87Sr versus 143Nd/144Nd diagram for Mt. Taranaki and Pouakai sample suites in 
comparison with data from Ruapehu as well as fields defined by rhyolites and basalts from the Taupo Volcanic 
Zone (TVZ) and Kermadec/Tonga lavas (K/T). Data sources: Graham & Hackett 1986; Gamble et al 
1993, 1999; Ewart et al. 1998; Price et al. 1999; Waight et al 1999. 
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Andesite sample AZ06-83 from the Ngaere Formation also shows a unique major and 

trace element geochemistry that differs significantly from the rest of the suites, including the 

samples listed above (cf. Figs. 4.21 and 22). The rock has the lowest contents of FeOtot, CaO, 

MnO and MgO observed (cf. Fig. 4.4) and is characterised by a relatively flat REE profile with 

low abundances of LREE and unusually high concentrations of HREE that are similar to 

NMORB (Fig. 4.21A). Despite these differences, it still shows a typical arc signature with strong 

enrichment of LILE relative to NMORB, depletion of Nb over K and U, as well as enrichment 

of Pb relative to Ce (Fig. 4.21B). The characteristics of this highly evolved rock might not only 

reflect a different source for the parental magma but also larger degrees of interaction with lower 

crustal rocks. In addition, the sample is characterised by an almost aphyric texture, hence the 

lower contents of FeOtot, CaO, MnO and MgO could be explained by absence or smaller 

amounts of cumulate clinopyroxene and to some extent plagioclase. 

The range of compositions and the various degrees of arc signature, in particular the 

strong variation in HFSE, indicate variability in the mantle source of Mt. Taranaki magmas. Price 

et al. (2007b) suggested that arc signatures in the mantle are not necessarily related to present-day 

subduction systems but might in some cases reflect the effects of past subduction events on the 

lithospheric mantle. Miocene arc magmatism could have preconditioned the mantle beneath the 

Taranaki volcanoes, resulting in a heterogeneous, more depleted source region for Taranaki 

magmas. This is implicit in the geophysically-based tectonic model developed by Stern et al. 

(2006) who suggested that Taranaki magmatism is not directly related to the present-day 

subduction but is instead associated with lithospheric delamination. 

Differences in crustal structure and heat flow beneath Mt. Taranaki and Ruapehu 

resulted in varying degrees of assimilation and crystal fractionation within the crust (Price et al. 

1999). Mt. Taranaki magmas are more evolved, which has been attributed to ascending magmas 

being more likely to become trapped and fractionated beneath a thicker crust (c. 25 km; Stern et 

al. 1987; Price et al. 1999). Thinner crust (15 km; Stern & Davey 1987) and higher heat flow 

(Hochstein et al. 1993) at Ruapehu resulted in hotter, drier and less evolved magmas, which 

ponded at higher levels where they were contaminated by interaction with the basement (Price et 

al. 1999). Magmas from both volcanoes form a continuous trend of increasing 207Pb/204Pb and 
208Pb/204Pb ratios at slightly increasing 206Pb/204Pb with Taranaki magmas extending to less 

radiogenic compositions (Fig. 4.23), suggesting that the basements beneath the two volcanoes 

have similar Pb isotopic compositions but that crustal contamination was more significant at 

Ruapehu (cf. Price et al. 1999). Differences in the geochemical composition of Mt. Taranaki and 

Ruapehu eruptives were interpreted to reflect the complex interplay between different mantle 
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sources and crustal assimilants as well as magmatic processes such as variations in storage and 

feeder systems (Price et al. 1999). Various degrees of arc signature reflect different degrees of 

crustal involvement, i.e. assimilation and contamination with an inhomogeneous crust. 
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Figure 4.22. The influence of the slab component increases from the Kermadecs/Tonga to the Taranaki volcanoes 
and Ruapehu. Taranaki eruptives show a wide range in Nb/Yb ratios, which reflects variations in the mantle 
source, and some overlap with Ruapehu. Mt. Taranaki data from Price et al. (1999), Platz (2007) and Turner 
(2008). Ruapehu data from Gamble et al. (1993, 1999) and Waight et al. (1999). Kermadec/Tonga data from Ewart 
et al. (1998). 
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4.9. MAGMATIC EVOLUTION OF MT. TARANAKI  

4.9.1. Models of andesite magma generation 

Primitive basaltic magmas in arc systems are generated by partial melting of the mantle 

wedge through some combination of fluxing by slab-derived, H2O-rich fluids (e.g. Tatsumi 1982; 

Davies & Stevenson 1992; Tatsumi & Eggins 1995; Schmidt & Poli 1998; Blatter & Carmichael 

2001; Ulmer 2001; Grove et al. 2002; Carmichael 2002, 2004; Forneris & Holloway 2003; Parman 

& Grove 2004) and decompression melting resulting from subduction-induced corner flow (e.g. 

Sisson & Bronto 1998; Elkins-Tanton et al. 2001; Hasegawa & Nakajima 2004). Models for the 

generation of andesite magmas have focused on two main processes, i.e. magma differentiation 

through fractional crystallisation in shallow crustal magma chambers (e.g. Sisson & Grove 1993; 

Grove et al. 1997; Pichavant et al. 2002b) or in the lower crust at or close to the Moho (Müntener 

et al. 2001; Annen & Sparks 2002; Mortazavi & Sparks 2003; Prouteau & Scaillet 2003; Turner 

2008) and partial melting of older crustal rocks (e.g. Smith & Leeman 1987; Atherton & Petford 

1993; Tepper et al. 1993; Rapp & Watson 1995; Petford & Atherton 1996; Chappell & White 

2001; Izebekov et al. 2004).  

Previously developed models for the generation of intermediate and silicic magmas at 

Mt. Taranaki suggest that mantle-derived, parental magmas were undersaturated, relatively 

hydrous, oxidised high-Mg basalts (Stewart et al. 1996; Price et al 1999). These are not 

represented in the Taranaki sample suites. Instead, ponding of these primary melts at the upper 

mantle/lower crust boundary is hypothesised, which drove the magma composition to high-Al 

basalts through fractionation of olivine, pyroxene and spinel (Stewart et al. 1996). Further 

fractionation and the crystallisation of amphibole buffered the melt composition to basaltic 

andesite, leading to progressive underplating of the crust with amphibole, olivine and pyroxene 

cumulates (Foden & Green 1992; Stewart et al. 1996; Price et al. 1999). Some high-Al basalt melts 

rose to the surface, evolving to fractionated basaltic andesites and low-silica andesites through 

continued fractionation of olivine, clinopyroxene and eventually plagioclase. The melts were 

further modified in small, high-level magma chambers through the complex interplay between 

magma extraction and recharge, crystal fractionation, magma mingling and mixing, and 

plagioclase accumulation (Smith et al. 1996).  

A recent model developed by Annen et al. (2006) combines the above described 

concept of underplating (cf. Huppert & Sparks 1988; Bergantz 1989; Raia & Spera 1997; Petford 

& Gallagher 2001; Jackson et al. 2003) and basalt differentiation at high pressures (Gill 1981; 
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Grove et al. 2002) with the ideas of AFC (DePaolo 1981) and MASH (Hildreth & Moorbath 

1988). It suggests that repeated intrusions of mantle-derived hydrous high-Mg magmas into the 

lower crust gradually raise the geothermal gradient, resulting in the development of a lower 

crustal ‘hot zone’. This hot zone is regarded as a layered mixture of partially crystallised basalt, 

partially molten crustal rocks and volatiles derived from the solidifying basalt intrusions. In this 

environment, silicic and intermediate magmas are generated by incomplete crystallisation of the 

underplated basaltic material (Annen & Sparks 2002; Prouteau & Scalillet 2003), dehydration 

partial melting of earlier, partly crystallised basalt intrusions and/or meta-basalts (amphibolite) by 

the intrusion of new hot mantle-derived magma (Smith & Leeman 1987; Annen & Sparks 2002, 

Price et al. 2005) and crustal assimilation (DePaolo et al. 1981, 1992). The rate of melt production 

and hence the composition of magmas that ascend to upper crustal levels is controlled by the 

intrusion rate and depth of mantle-derived basalts, the prevailing geotherm and volatile content 

in the lower crust (Annen et al. 2006).  

Detailed mineralogical studies of the younger Mt. Taranaki eruptives indicate that a two-

stage magmatic system of storage, crystallisation and fractionation operates beneath the volcano 

(Turner 2008). Mantle-derived magmas are differentiated within a lower crustal hot zone, as 

suggested by Stewart et al. (1996) and Annen et al. (2006), and subsequently rise and assemble at 

mid-crustal levels prior to eruption. Andesitic melts that segregated from the lower crust are 

believed to stall within the Tertiary sandstone and mudstone basement at depth of 6-7 km, while 

more mafic basaltic andesite melts, including basalt melts of Fanthams Peak, stalled at slightly 

lower levels (up to 10 km) within greywacke basement (Turner 2008).  

As shown by geophysical studies of the subvolcanic basement (Sherburn & White 

2005), the suggested ‘hot zone’ of partial melts extends from the lower crust at c. 25 km to the 

brittle-ductile transition zone at approximately 10-7 km depth beneath Mt. Taranaki. A further 

implication of the hot zone model for Taranaki is the significant thickening of the crust as a 

consequence of continuous basalt emplacement. Melt extraction from these basalts results in the 

formation of residual dense mafic cumulates, which can eventually lead to delamination and 

recycling into the less dense underlying mantle (Kay & Kay 1993; Jull & Keleman 2001).  

4.9.2. Compositional trends with time and geochemical variation 

The temporal geochemical changes within Taranaki eruptives, particularly in K2O, have 

been explained by two different concepts (Price et al. 1999). (1) Progressively lower degrees of 

partial melting in the mantle source and changes in the nature of slab-derived fluids. This also 

generates a more significant fluid trace element signature, and a dilution of the depleted mantle 
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wedge signature. (2) Increasing thickness of underplated and intruded amphibole-bearing lower 

crust. Progressive underplating would gradually raise the geothermal gradient, so that 

subsequently intruding basaltic magmas could incongruently melt previously emplaced 

amphibole-bearing assemblages (cf., Foden & Green 1992; Stewart et al. 1996). This would have 

resulted in increasingly more amphibolite assimilation in later mantle-derived basalts, giving rise 

to increasingly more potassic magmas over time (Price et al. 1992, 1999; Stewart et al. 1996; cf. 

Dufek & Bergantz 2005).  

The debris-avalanche suites illustrate a gradual increase in K2O and most LILE with 

time as well as a shift to more evolved magmas and the absence of more primitive compositions 

with increasing maturity of the volcanic system but no significant changes in the nature of the arc 

signature were observed. Hence, the data supports the second concept, which is also in 

agreement with the model by Annen et al. (2006). As the lower crustal hot zone evolves, the 

geothermal gradient gradually rises leading to increased partial melting of previously crystallised 

basalt intrusions and underplated amphibolite. Increasingly higher proportions of remelted 

amphibolite in relation to residual melts from crystallising intrusions generate the progressively 

more potassic and LILE-enriched compositions observed within the Taranaki debris-avalanche 

sample suites.  

It has been hypothesised that Mt. Taranaki has evolved to its present state from a much 

more basic system with a more restricted range in compositions (Price et al. 1999). But despite 

including more primitive eruptives, the variety of rock types (including pumice and scoria 

lithologies) found in the early debris-avalanche deposits show that Mt. Taranaki was producing a 

similar range of eruptive compositions and eruption styles to the modern volcano. Each debris-

avalanche sample suite contains similar lithologies of basaltic andesites and andesites with basalts 

being restricted to the oldest units and the Ngaere Formation. The basalt clasts of the Maitahi 

Formation and the >100 ka Mt. Taranaki debris-avalanche deposits as well as sample T90/42A 

from Price et al. (1999) are not only characterised by low SiO2 abundances (48.65-51.73 wt.%) 

but several also have relatively high MgO (up to 7.71 wt.%), Ni (up to 122 ppm) and Cr (up to 

326 ppm) concentrations. The trace element distributions of these unusual samples display a 

more subdued arc signature with lower La/Nb ratios, higher Ce/Pb ratios and unusually high Nb 

contents. They have lower 87Sr/86Sr and higher 144Nd/143Nd isotopic ratios and a relatively 

unradiogenic Pb isotopic composition compared to other analysed Taranaki samples. This type 

of rock has been interpreted to represent relatively low-degree melts from a depleted mantle 

source that has undergone less fractionation during ascent and eruption (Price et al. 1999).  
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These oldest, most primitive rocks appear to have formed within a more immature 

volcanic system and reflect the early stages of hot zone development, when more primitive melts 

could ascend through the lower crust with little interaction. As the hot zone evolved, the 

likelihood of mantle-derived magmas passing through without some degree of processing was 

reduced, which is also reflected in the scarcity of mantle-derived magmas in mature arc systems 

(Annen et al. 2006). The rising geotherm associated with the development of the hot zone 

beneath Taranaki promoted generation of more silicic and intermediate melts as more primitive 

melts were trapped in the lower crust where they were modified through crystallisation and 

mixing with more silicic melts. In addition, the increasingly complex crustal structure with a more 

dispersed plumbing system resulted in magma assembly and storage at different mid- to shallow 

crustal levels, where the melts were further modified by fractional crystallisation, magma mingling 

and mixing (Smith et al. 1996; Stewart et al. 1996; Turner 2008). The interplay of these processes 

resulted in a gradual shift to more evolved and potassic compositions with increasing maturity of 

Mt. Taranaki.  

The lavas erupted from Fanthams Peak between 3-1.5 ka contain low-silica 

compositions similar to the early basalt magmas but they have higher contents of K2O and LILE. 

The almost identical trace element geochemistry of Fanthams lavas and the youngest Mt. 

Taranaki eruptives indicates derivation from a similar source but Fanthams magmas reflect a 

stronger mantle input with less modification in the crust. This might be the consequence of a 

higher magma supply rate of mantle-derived intrusions into the hot zone, resulting in hotter 

magmas that were buoyant enough to rapidly ascend through the crust with less interaction. The 

basalt sample of the Ngaere suite was most likely generated by similar processes and might have 

been erupted in a similar setting from a proto-Fanthams Peak or a previously existing satellite 

vent. 

The hot zone model suggests that a wide range of melt compositions is produced when 

intrusions occur over a wide range of depths, i.e. the thicker the crust the greater the potential 

diversity of melt compositions (Annen et al. 2006). Further compositional and textural diversity 

of magmas can be generated through entrainment and dissolution of restite or cumulates from 

their source region and/or incorporate wall-rock during ascent (Annen et al. 2006). Turner (2008) 

suggested that geochemical variation in Taranaki magmas is the result of varying degrees of 

amphibole fractionation and/or breakdown of pre-existing amphibolite/gabbro assemblages 

within the lower crustal hot zone. Recent studies of younger Mt. Taranaki eruptives also showed 

that during any given eruption cycle, variations across the whole spectrum of compositions may 

occur (Turner 2008). Broad 1500-2000 year long geochemical cycles at Mt. Taranaki represent 
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individual magma batches, characterised by initial eruption of a relatively mafic end member 

followed by progressively more evolved compositions. Further variation within each batch or 

during eruption is the result of late-stage magma mixing, assimilation and fractional crystallisation 

processes (Price et al. 2005; Annen et al. 2006). A similar compositional evolution has been 

observed in the mafic magmas from Fanthams Peak, which become progressively less magnesian 

with time (Turner 2008).  

In the early stages of hot zone development, mantle-derived basaltic melts intruded into 

a colder, less complex crust. Less interaction with the colder crust resulted in less modification of 

the new hot mantle-derived magma through dehydration partial melting of earlier intrusions or 

crustal assimilation. Magmas most likely also intruded at a wider range of depths within the c. 22-

25 km thick crust beneath Taranaki (Stern et al. 1987; Sherburn & White 2005). As a 

consequence, a wider range in compositions with a wider scatter in most major and trace 

elements, in particular HFSE and LREE, was produced during the early stages of Mt. Taranaki 

volcanism. Early volcanic products included more primitive basaltic material with a less diluted 

mantle component. As the volcanic system evolved, continuous basaltic intrusions gradually 

heated up the hot zone, resulting in more interaction and partial melting of the amphibolised 

crust and later magmas becoming trapped at similar depths within the lower crust. This resulted 

in the gradual increase in K2O and LILE with time and a narrower, more homogenised range of 

compositions and trace element variations, as observed in the <100 ka Mt. Taranaki eruptives. 

Only these more evolved melts were buoyant enough to rise through a crust which had become 

progressively more modified. 

4.9.3. Correlation of geochemical and sedimentary cycles 

Throughout the volcanic history of Mt. Taranaki a consistent depositional pattern has 

generated similar types of deposits that contain similar lithologies (cf. Chapter 3). The progressive 

change to more evolved compositions and the absence of more primitive basalts with increasing 

maturity of the volcanic system is displayed in the clast assemblages of debris-avalanche deposits. 

Despite the gradual change in magma composition, the eruptive style and erupted volcanic 

products reflected in the oldest and youngest debris-avalanche deposits are similar. The 

occurrence of pumice and scoria lithologies in early deposits indicates Plinian/subplinian style 

eruptions similar to the ones observed in the Holocene record (cf. Neall 1972; Alloway et al. 

1995; Turner 2008). The frequency of lahars and the resulting deposit characteristics (i.e. 

pumiceous vs. dense vs. polylithologic) depends on the eruptive style with rapid emplacement of 

stacks of lahar deposits occurring during and after major eruptive activity.  
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Since changes reflected in the geochemical trends were gradational, they did not result in 

any abrupt changes in volcanic behaviour and sedimentary pattern. Also, the frequency and 

timing of edifice failures shows no relation to the geochemical evolution of Mt. Taranaki but 

rather to its regrowth rate and structure. Eruption frequency and magnitude as well as eruptive 

style do not appear to be linked to the overall magmatic evolution of Mt. Taranaki over long 

periods of tens of thousands of years. However, it is known that they are controlled by processes 

in the upper-crustal plumbing system and shorter geochemical cycles (Platz 2007; Turner 2008). 

Overall, the gradual shift to more siliceous magmas may have resulted in more dome-

forming eruptions and associated generation of block-and-ash flows in the younger past, 

compared to earlier longer lava flow extrusion. This may have led to an increasingly unstable 

summit region of Mt. Taranaki, which may lead to the generation of more frequent but lower 

volume debris avalanches, as observed for example at St. Augustine (Beget & Kienle 1992) or 

Shiveluch (Belousov et al. 1999). 

4.10. CONCLUSIONS 

Debris-avalanche clasts provide useful indicators of past edifice compositions and this 

method is a novel way to examine what proto-Mt. Taranaki edifices were like.  

Mt. Taranaki has evolved to a high-K andesite magmatic system over the last >190 ka. 

In addition to the progressive enrichment in K2O and LILE, temporal trends observed within the 

debris-avalanche sample suite include a gradual shift to more evolved magmas. Throughout the 

volcanic history, eruptives show a relatively constant arc signature. This new data supports the 

model of mantle-derived basaltic magmas ponding at the base of the crust where they evolve 

through a combination of fractionation and interaction with underplated material (cf. Stewart et 

al. 1996). Repeated intrusions of primitive melts into the lower crust gradually raised the 

geothermal gradient, resulting in the development of a lower crustal ‘hot zone’ (cf. Annen et al. 

2006). As the hot zone evolved, larger proportions of the underplated basaltic material were 

partially remelted and generated the progressively more potassic and LILE-enriched 

compositions observed within the Taranaki debris-avalanche sample suites. Older sample suites 

include relatively unfractionated basalts with higher MgO, Cr and Ni contents. The trace element 

distributions of these samples show the most subdued arc signature observed at Mt. Taranaki and 

they represent more primitive magmas that were able to rise through the crust without intense 

modification during the early stages of hot zone development. The compositional variations of 
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these more primitive compositions also reflect a heterogeneous mantle source for parental Mt. 

Taranaki magmas. 

Trace element and some major characteristics allow a distinction to be made between 

Pouakai- and Mt. Taranaki-derived units. Pouakai samples have distinctly lower contents of K2O, 

Rb and Ba, lower Zr, REE and HFSE but similar arc signatures and isotopic compositions to Mt. 

Taranaki reflect derivation of parental magmas from the same mantle source. Compositional 

differences between Mt. Taranaki and Pouakai debris-avalanche clasts are the result of higher 

degrees of partial melting and less interaction with the lower crust for the latter. 

Until now, the origin of the Mangati debris-avalanche deposit was unknown and it was 

assumed that the Motunui event originated from Mt. Taranaki (Alloway et al. 2005). This study 

has demonstrated that, in contrast to the Maitahi series, both suites overlap in composition with 

the Mt. Taranaki sample suite and show similar or progressive trends with time. Based on these 

geochemical characteristics, the Mangati Formation now represents the oldest known deposit 

derived from Mt. Taranaki. Hence, its emplacement between 190-210 ka gives a new minimum 

age for the commencement of eruptive activity at Mt. Taranaki, considerably older than 

previously thought. The nature of the deposit and the range of lithologies present also imply that 

ancestral Mt. Taranaki was already a high, unstable composite stratocone at this time. The similar 

range of lithologies represented in debris-avalanche clast assemblages reflects similar eruptive 

styles throughout the volcanic history, illustrating a long-term sustainability of the volcanic 

system. 

Individual debris-avalanche sample suites can be distinguished based on their 

geochemical characteristics, in particular differences in K2O and Ba contents. This indicates that 

after large sectors of the volcano had been removed by collapse, the edifice was rebuilt by new 

material with a slightly different geochemical signature before collapsing again. This observation 

is also important for evaluating the size of collapse and the volume of the subsequent debris-

avalanche deposit, in particular for units with limited data of distribution. Major differences in the 

geochemical character of clast assemblages in comparison to previous debris-avalanche deposits 

suggest a significant failure and removal of large sectors of the edifice. 

This study shows that debris-avalanche clast assemblages can be used as windows into 

the volcanic past, in some cases back to the earliest stages in the development of the volcanic 

system. Their geochemical characteristics are a useful tool to distinguish individual stratigraphic 

units and characterise the overall magmatic evolution. This is an important line of research, 
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especially at long-lived stratovolcanoes where the older records are incomplete and the full range 

of products is not exposed. 

 



CHAPTER 5.  

PETROGRAPHY AND MINERAL CHEMISTRY OF 

DEBRIS-AVALANCHE CLASTS  

5.1. INTRODUCTION 

Previous petrographic and mineralogical studies at Mt. Taranaki concentrated on the 

<10 ka edifice-forming lavas, but also included a number of samples from younger ring-plain 

deposits (Warea and Pungarehu Formations). Due to the lack of stratigraphic control, the older 

parts of the succession have been mostly neglected. Clasts were collected from deposits overlying 

the Inaha marine bench (c. 105-50 ka), but were studied from a geochemical rather than 

mineralogical perspective (Price et al. 1999, 2006). The new stratigraphic framework established 

in this study (cf. Chapter 2) allows a more systematic sampling of the ring-plain succession with 

tighter age control. This chapter describes clast lithologies and their petrographic characteristics 

from samples throughout the debris-avalanche deposit record to compare and contrast to the 

known younger units of the volcanic succession. Clasts from the oldest debris-avalanche deposits 

at Mt. Taranaki (Motunui and Okawa Formations), were examined in greater detail, to expose the 

maximum expected differences to the youngest known eruptives. 
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5.2. PREVIOUS WORK  

Mt. Taranaki eruptives range from vesicular red and black scorias and black glassy 

porphyritic rocks to dense, hard, grey porphyric lavas (Neall et al. 1986; Stewart et al. 1996). 

Xenoliths are common (Price et al. 1999) and include a diverse set of rocks representing the 

subvolcanic crust, mostly showing textural evidence of metamorphism. The suite can be grouped 

into four components that represent different crustal levels beneath the volcano; supra-crustal 

rocks, upper to mid-crustal basement (Median Tectonic Zone), mid to lower crustal cumulates 

and granulites, along with gabbros and ultramafic xenoliths (Gründer 2006).  

In thin-section, Mt. Taranaki rocks are holocrystalline to hypocrystalline, some show 

seriate textures but most are porphyritic (Neall et al. 1986; Stewart et al. 1996; Price et al. 1999; 

Platz 2007). The first petrological classification of Mt. Taranaki volcanics by Gow (1968) was 

based on ferromagnesian mineral assemblages. He recognised five gradational types of andesite: 

augite-andesite, augite-hornblende andesite (augite>hornblende), augite-hornblende andesite 

(augite~hornblende), augite-hornblende andesite (augite<hornblende), and augite-olivine 

andesite (olivine ≤7%) with augite-hornblende andesite being the most common type.  

Phenocryst contents range from 25 to 55% and include (in order of abundance) 

plagioclase, clinopyroxene, titanomagnetite, and hornblende (Neall et al. 1986; Stewart et al. 1996; 

Price et al. 1999; Platz 2007). Hornblende can occasionally form large (>100 mm) crystals 

(Stewart et al. 1996). Olivine occurs in small amounts in most lavas whereas biotite and 

orthopyroxene are rare. Glomerocrysts typically comprise clinopyroxene ± titanomagnetite ± 

plagioclase ± olivine with rare amphibole and orthopyroxene. Groundmass constituents are glass, 

plagioclase, clinopyroxene, Fe-Ti-oxides, rare orthopyroxene and traces of olivine (Stewart et al. 

1996; Price et al. 1999; Platz 2007). Accessory apatite and zircon are common.  

5.3. SAMPLE LITHOLOGIES 

Rock types collected from 12 Mt. Taranaki and 1 Pouakai debris-avalanche deposit, 

comprise compositions from basalt to evolved andesite with most samples being basaltic 

andesites (cf. Chapter 4). Andesite clasts range from light grey to dark grey, are mostly dense and 

hard and rarely vesicular. Rock textures vary from glassy and aphyric to crystal-rich with fine- to 

coarse-grained crystals. Hornblende can be fresh or resorbed and commonly occurs as large 
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phenocrysts (up to 20 mm). Some samples contain large, up to 10 mm long, macroscopically 

zoned plagioclase crystals; large clinopyroxene phenocrysts are rare. Hornblende-feldspar-

andesites with no macroscopically visible clinopyroxene are common.  

Basaltic andesite samples occur in a variety of lithologies, reflecting their wide range of 

SiO2-contents (from 52.1-56.8 wt.%) and geochemical compositions. Lithologies include 

pumice/scoria and lavas with grey to black clasts, some are reddish and oxidised. The clasts are 

mostly glassy and range from dense and hard to very vesicular, and aphyric to crystalline. Basaltic 

andesite rocks contain a variety of different mineral assemblages including hornblende- to 

clinopyroxene assemblages and olivine-clinopyroxene-bearing rocks. Texturally they are coarse- 

to fine-grained (according to IUGS sizes: coarse >3 mm, medium 1-3 mm and fine <1 mm), 

some with large clinopyroxenes (up to 12 mm) and/or large olivines of similar size, some with 

large hornblende crystals; all have generally smaller plagioclase (up to 4 mm). Hornblende and 

olivine phenocrysts can be unaltered or show reaction textures. 

Lithologies of basalt samples range from dark grey to black, aphyric to crystalline and 

dense to vesicular. A large proportion of rocks are hard and glassy. Most basaltic clasts are 

coarsely crystalline and contain olivine phenocrysts, which are fresh to strongly weathered or 

resorbed. Clinopyroxene phenocrysts can be up to 20 mm in length, while larger plagioclase is 

less common and macroscopic hornblende is very rare and strongly resorbed. 

5.4. PETROGRAPHIC OBSERVATIONS  

5.4.1. Mineral assemblages and characteristic textures 

Mineral phases that occur within the studied debris-avalanche clasts include plagioclase 

(Plg), hornblende (Hbl), clinopyroxene (Cpx), Olivine (Ol), titanomagnetite (Tm) and rare 

phlogopite (Phl), biotite (Bt), and orthopyroxene (Opx).  The most abundant mineral assemblage 

comprises: 

1) Plg-Cpx-Hbl-Tm with mineral proportions varying from Cpx>Hbl to Hbl>Cpx 

 Other commonly observed assemblages are:  

2) Plg-Cpx-Hbl-Ol-Tm 

 (with varying proportions of Cpx, Hbl, Ol and varying degrees of Hbl resorption) 

3) Plg-Cpx-Ol-Tm  
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The rarest assemblages are:  

4) Plg-Cpx-Tm 

5) Plg-Cpx-Ol-Phl-Tm 

6) Plg-Hbl-Cpx-Bt-Tm 

In thin-section, the rocks range from holocrystalline to more common hypocrystalline 

textures and are typically microcrystalline with a cryptocrystalline or mostly hyaline groundmass. 

The major mineral phases (Plg, Cpx, Hbl, Ol, and Tm) occur as euhedral to subhedral 

phenocrysts to microphenocrysts in seriate to porphyritic textures. Fluidal and intersertal textures 

are also present. Glomerocrysts are common and consist of Cpx-Tm (± Plg, Ol, Hbl), Cpx-Plg 

(± Ol), Hbl-Cpx, Plg, Hbl, Hbl-Plg, Ol-Tm, Hbl-Tm, Hbl-Ol-Plg, and less common Hbl-Plg-Bt. 

The studied samples range from dense lavas to very vesicular pumice-clasts. 

5.4.2. Mineral characteristics  

Plagioclase is the most abundant mineral phase and forms euhedral to subhedral 

phenocrysts, groundmass microphenocrysts, and inclusions in hornblende and clinopyroxene. It 

also occurs within glomerocrysts associated with clinopyroxene and titanomagnetite (± Ol, Hbl), 

or with hornblende (± Ol, Bt). Plagioclase phenocrysts are typically strongly zoned and large 

crystals often show multiple rims or thick coronas. Oscillatory, convolute and continuous zoning 

occurs that include bands rich in melt inclusions and multiple zoning patterns. Inclusions of melt, 

clinopyroxene, and hornblende, and sieve textures are common and typically occur along zone 

boundaries in rims or in crystal cores. The sieve texture is either void space or filled with a more 

sodic plagioclase (Neall et al. 1986), glass, secondary minerals, or in rare cases clinopyroxene or 

phlogopite. Larger plagioclase crystals commonly show fractures, strongly developed sieve 

texture and/or embayed or rounded rims and can appear skeletal. Carlsbad, albite, or carlsbad-

albite twinning is common. Occasionally, intergrowth and cross hatched patterns were observed, 

the latter reflecting a combination of albite- and pericline-twins. 

Clinopyroxene occurs as euhedral to subhedral crystals that are green to brown in 

colour. It is present as phenocrysts, groundmass microphenocrysts, inclusions in hornblende, and 

as clinopyroxene aggregates. Occasionally, clinopyroxene mantles orthopyroxene cores. 

Clinopyroxene also forms abundant glomerocryst clusters with titanomagnetite, plagioclase and 

sometimes hornblende. Some larger crystals and aggregates may represent xenocrysts and/or 

small xenolithic fragments. Oscillatory, continuous and discontinuous zoning with distinct (in 

some cases greenish) cores and single or multiple rims were frequently observed with sector and 



Chapter 5.  Mineralogy 237

melt inclusion zoning being less common. Twinning and exsolution lamellae are also 

characteristic features. Titanomagnetite is the most abundant inclusion mineral found in 

clinopyroxene, commonly found along zone boundaries or fractures. Inclusions of hornblende, 

apatite, plagioclase and rare olivine also occur. Large clinopyroxene crystals sometimes exhibit 

resorbed or embayed rims, coronas and cracks. Resorbed cores and skeletal clinopyroxene 

crystals are less common. Cores were occasionally observed to be replaced by opaque oxides, 

plagioclase and titanomagnetite grains or recrystallised clinopyroxene and plagioclase. 

Hornblende is present in most samples and forms euhedral to subhedral crystals. These 

commonly exhibit the characteristic 60o/120o cleavage of amphiboles and are dark brown to 

reddish brown and rarely greenish in colour. The reddish brown colour is produced by rapid 

oxidation during the slow cooling of the lavas, while fresh greenish hornblende typically occurs in 

rapidly chilled pumice clasts (Stewart et al. 1996; Platz 2007). Hornblende occurs as phenocrysts, 

microphenocrysts in the groundmass, inclusions in other larger hornblende crystals and 

plagioclase, and in glomerocrysts associated with clinopyroxene, titanomagnetite, plagioclase, 

rarely biotite and sometimes plagioclase (± Ol). In low-silica rock types of the studied sample 

suites, hornblende is an accessory mineral and strongly corroded. Some crystals show 

discontinuous zoning with distinct cores, thin middle rim and thick outer rims or multiple rims. 

Hornblende phenocrysts commonly contain small plagioclase, infrequent melt inclusions and rare 

clinopyroxene. Hornblende shows varying degrees of resorption and opacitisation (cf. Platz 

2007). Fresh crystals with sharp boundaries and no reaction rim are rare. More commonly they 

are mantled by black opacite alteration rims of variable thickness or appear skeletal due to 

strongly resorbed and/or substituted rims and cores, some containing patches of plagioclase, 

clinopyroxene, or titanomagnetite. Strongly altered hornblende crystals are partially or fully 

replaced by opaque oxides and are only preserved as pseudomorphs. Occasionally, strongly 

resorbed crystals were found to be mantled by grains of plagioclase, clinopyroxene, and 

titanomagnetite (± Ol) or even completely replaced by fine-grained aggregates of clinopyroxene, 

plagioclase and titanomagnetite (± Ol) that formed due to amphibole breakdown in response to 

decompression during magma ascent (cf. Stewart 1975; Devine et al. 1998). 

Olivine is common in the lower silica rock types of the studied sample suites. It is 

present as euhedral to subhedral, and less common anhedral, phenocrysts, groundmass 

microphenocrysts and in glomerocrysts associated with titanomagnetite, clinopyroxene-

titanomagnetite (± Plg, Hbl) or plagioclase-hornblende. Small phenocrysts are typically euhedral. 

Some larger olivine crystals might represent xenocrysts (cf. Stewart et al. 1996). Olivine also 

occurs as small inclusions in clinopyroxene. Crystals were observed to be mantled by 



Chapter 5.  Mineralogy 

 
238 

clinopyroxene and titanomagnetite grains and rarely by opaque oxides. Larger crystals commonly 

show resorbed rims and distinct fractures. The latter can be unfilled or filled with small 

plagioclase grains and titanomagnetite or secondary (in some cases carbonate) minerals. 

Inclusions of clinopyroxene were observed in fractured olivine. Occasionally, olivine crystals are 

strongly resorbed and mostly replaced by small grains of hornblende, clinopyroxene, plagioclase 

and olivine. 

The most abundant Fe-Ti oxide in Mt. Taranaki rocks is titanomagnetite. In debris-

avalanche samples it forms fresh, homogeneous, euhedral microphenocrysts in the groundmass 

and also occurs as larger grains 1-1.5 mm in size that are clustered near or occur as inclusions in 

clinopyroxene phenocrysts and Cpx-aggregates. Titanomagnetite is also commonly associated 

with clinopyroxene (± Plg, Ol, Hbl) in glomerocrysts or, in more primitive samples, with olivine.  

Orthopyroxene is rare in the studied debris-avalanche clasts. It was found in one sample 

mantling xenocrystic clinopyroxene and olivine as well as in a resorbed hornblende crystal. The 

thin-section of another sample contains honey-coloured orthopyroxene cores that were mantled 

by clinopyroxene, a texture that has been described previously from Taranaki (cf. Neall et al. 

1986). 

Biotite has been described as a minor phenocryst and as a phase in microphenocryst 

assemblages in the lavas that form the current summit dome (Platz 2007). In the studied sample 

suites, biotite is rare and was only observed within a resorbed hornblende crystal in one higher-

silica andesite. Phlogopite is also rare and was microscopically identified in a rock of basaltic 

composition where it occurs as anhedral, interstitial phenocrysts and as inclusions in large 

plagioclase crystals. The observed phlogopite is pleochroic from light yellow to orange-brown 

and has a distinct mica cleavage. 

A common accessory is apatite which occurs mainly as small inclusions in 

clinopyroxene, but chalcopyrite and Fe-Mn-rich carbonate were also found in a few samples. 

Zircon has been described as a common accessory phase in younger Taranaki rocks (Neall et al. 

1986) but was not observed in the older, more primitive sample suites. 

In most samples examined as part of this study, the groundmass is largely 

hypocrystalline and consists of microphenocrysts and small proportions of interstitial colourless 

or pale to dark brownish glass. Some samples exhibit a hyaline groundmass with only few 

microphenocrysts. Most of the minerals described above also occur as microphenocrysts in the 

groundmass, with plagioclase being the most dominant phase. Clinopyroxene and 
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titanomagnetite are also common, as is olivine in rocks with lower silica contents. Hornblende is 

rare and orthopyroxene, biotite and phlogopite have not been identified as groundmass phases. 

5.5. VARIATIONS IN MINERAL COMPOSITIONS 

The mineral chemistry of selected samples from within the two oldest Mt. Taranaki 

debris-avalanche deposits, the Motunui and Okawa Formations, were studied in more detail. 

Thin sections were prepared for the complete range of lithologies and whole-rock compositions 

represented in these formations and used for electron-microprobe analysis of the constituent 

mineral phases. Variations in mineral compositions of these oldest known rocks are described in 

the following sections and the results compared with previously obtained mineral data from the 

youngest (<10 ka), edifice-forming deposits (Stewart et al. 1996; Platz 2007; Turner 2008) to 

highlight differences between early and late stages of the Mt. Taranaki magma system. 

5.5.1. Plagioclase 

The variety of observed textures of plagioclase crystals is reflected in the broad range of 

compositions from An92-33 (Fig. 5.1A, Table 5.1). Phenocrysts are strongly zoned, particularly the 

larger crystals, which typically consist of substantial cores and multiple rims. The composition of 

large crystals ranges from An92-71 in cores to An73-33 in rims while smaller crystals show cores with 

An86-48 and rims with An74-38 (Fig. 5.1B). Reverse and reverse-to-normal zoning is common and 

reflects disequilibrium of the crystal and the residual melt. The most calcic plagioclase 

compositions (An92-88) are found in cores of large strongly zoned crystals and these may be of 

xenocrystic origin. The lowest An contents (An39-33) were observed in plagioclase rims and smaller 

crystals within the groundmass of andesite rock compositions.  

Fanthams Peak lavas and the youngest Mt. Taranaki eruptives (Burrell Lapilli and 

summit dome lavas) show a similar range of plagioclase compositions to the >100 ka debris-

avalanche samples (Fig. 5.1C) with An37-83 and An36-87, respectively (Turner 2008; Platz 2007). In 

contrast, a wider compositional range of An93-9 has been described for <5 ka volcanics with the 

most sodic, also having up to Or43 (Turner 2008). Similar plagioclase compositions (An91-6) were 

observed in Mt. Taranaki lavas (<10 ka) with the most sodic crystals being rich in Or and the 

most calcic plagioclase occurring as inclusions in amphibole (Stewart et al. 1996). Plagioclases in 

clinopyroxene phenocrysts and associated with clinopyroxene in glomerocrysts contained high 

proportions of An (An84-80 and An89-74, respectively).  Resorbed cores showed two populations 
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Figure 5.1.  Composition of feldspars in Mt. Taranaki rocks. A: Compositional range of plagioclase in 100-130 
ka debris-avalanche clasts. B: Rim and core analyses of plagioclase in debris-avalanche samples. C: Comparison 
of plagioclase composition in >100 ka and <10 ka rocks (data from Platz 2007, Turner 2008). 
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ranging from An89-70 and An65-55. More Ab-rich outer rims with up to Or27 and K-rich feldspar 

(Or45An6) as an interstitial phase in some glomerocrysts were also observed. 

5.5.2. Pyroxene 

Clinopyroxenes are predominantly augites with some, mostly crystal cores, being 

diopsidic in composition. Clinopyroxene crystals in the Motunui and Okawa sample suites are 

relatively homogeneous and range in composition from Wo39-47:En33-51:Fs4-18 (Fig. 5.2A, Table 

5.2). They are either unzoned or slightly zoned from Mg-rich cores to Fe-enriched rims (Fig. 

5.2B). Reverse zoning is common. The most ferrous compositions (Fs14-18) occur in a basaltic 

andesite that contains only microphenocrystic clinopyroxene and in the two highest-silica 

andesite rocks of the analysed sample suite. More magnesian clinopyroxene (En49-51) is limited to 

lower-silica basaltic andesite or basalt. 

Clinopyroxenes in young eruptives do not span the same compositional range as is 

observed in the studied >100 ka debris-avalanche clasts (Fig. 5.2C). The young volcanics cover a 

similar spectrum of En proportions with fewer analyses plotting at the highest and the lowest En 

contents. They also lack the most ferrous compositions observed in the older rocks (up to Fs18). 

Samples <1.7 ka (from the summit dome lavas, Burrell Lapilli, Minirapa and Lizard lavas) and 

eruptives <5 ka have Wo36-47:En40-52:Fs5-16 contents (Platz 2007; Turner 2008), while Fanthams 

lavas contain clinopyroxene of a smaller compositional range with Wo46-48:En41-45:Fs9-11 (Turner 

2008). Similar zoning patterns from Mg-rich cores to Fe-enriched rims with a change of only 1-2 

mol% En and sometimes reversed zoning were described by Stewart et al. (1996).  

Orthopyroxene is a rare component of Mt. Taranaki volcanics (cf. Neall et al. 1986; 

Stewart et al. 1996) and was only found in two rocks of the studied sample suites. In a basaltic 

andesite it occurs in the core of a resorbed hornblende as well as mantling clinopyroxene and 

olivine crystals and has a tight range in composition from En75-76 (Fig. 5.2A, Table 5.2). 

Orthopyroxene associated with olivine in a basalt sample is slightly less magnesian (En72). 

More orthopyroxene analyses have been obtained from the younger Mt. Taranaki 

volcanics (Fig. 5.2D). Orthopyroxene in volcanics <5 ka have compositions of En75-77 (Turner 

2008) similar to the older samples. In contrast, eruptives <1.7 ka show a variety of En contents 

ranging from En58-79 (Platz 2007). Stewart et al. (1996) pointed out that orthopyroxene cores 

(En74-79) mantled by clinopyroxene differ in composition from groundmass microlites, 

microphenocrysts and rare phenocrysts (En 60-66). 
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Figure 5.2. Composition of pyroxenes in Mt. Taranaki rocks. A: Clinopyroxene and orthopyroxene compositions 
in 100-130 ka debris-avalanche clasts. B: Rim and core analyses of clinopyroxenes in debris-avalanche samples. 
Comparison of clinopyroxene and orthopyroxene compositions in >100 ka and 10 ka rocks is shown in C and 
D, respectively (data from Stewart et al. 1996, Platz 2007, Turner 2008). 
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TABLE 5.2. Composition of selected pyroxenes of the Motunui and Okawa sample suites. 
 Large cpx Large cpx Small cpx Cpx rim Opx Opx rim

 Core Rim Core Rim Green around Ol Core around Ol

 Sample no. AZ04-33 AZ04-06 AZ04-09 AZ04-41 AZ04-28

Analysis no. 8011 8010 7454 7455 7360 7650 7665 7466 

SiO2    51.57 47.99 49.3 47.63 52.61 50.67 54.5 54.64 

TiO2    0.46 1.11 0.79 1.44 0.34 0.78 0.28 0.15 

Al2O3   2.13 5.36 4.19 6.25 1.38 2.76 1.21 1.23 

FeO     7.60 9.65 6.22 7.23 7.16 8.58 16.52 14.77 

MnO     0.55 0.45 0.14 0.22 0.65 0.30 0.77 0.77 

MgO     14.6 11.87 14.76 13.63 15.2 15.28 25.69 27.26 

CaO     21.47 21.85 22.53 22.18 21.46 20.41 1.96 1.11 

Na2O    0.37 0.42 0.14 0.19 0.53 0.31 0.06 0.14 

K2O     0.02 0.07 0.03 0.08 0.14 0.07 0.15 0.08 

P2O5    0.00 0.04 0.17 0.12 0.05 0.00 0.00 0.00 

SO3     0.00 0.10 0.01 0.01 0.00 0.01 0.10 0.00 

Cl      0.00 0.05 0.00 0.00 0.01 0.04 0.05 0.05 

V2O3    0.03 0.07 0.18 0.13 0.15 0.00 0.00 0.02 

Cr2O3   0.08 0.16 0.15 0.04 0.24 0.19 0.07 0.03 

NiO     0.00 0.08  0.00 0.12 0.00 

Total 98.88 99.27 98.6 99.11 99.92 99.4 101.48 100.25 
     

En 45 42 48 47 47 48 72 76 

Fs 11 13 07 08 09 11 26 23 

Wo 44 45 45 44 45 41 03 01 

 

5.5.3. Hornblende 

Hornblende is present in most samples and shows various degrees of 

resorption/reaction and recrystallisation. It ranges in composition from Mg# 59-78 with most 

analysed hornblende being pargasitic (Fig. 5.3A, Table 5.3); only some classify as 

magnesiohastingsites (after Leake et al. 1997a, 1997b, 2003). Some crystals plot in the field of 

edenite. Hornblende phenocrysts are zoned optically but only show weak Mg-Fe-zoning with 

cores ranging from Mg# 62-76 and rims from Mg# 59-77 (Fig. 5.3B). Core and rim 

compositions differ more distinctly in Al2O3 (cores: 11.23-13.1 wt.% and rims: 9.2-14.4 wt.%) and 

TiO2 (cores: 1.3-3.78 wt.% and rims: 2.12-3.64 wt.%). Similar characteristics have been observed 
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previously with crystals only showing weak Mg-Fe-zoning and most change occurring in Ti and 

Al (Stewart et al. 1996).  

Hornblende shows a similar range of Mg# and Si in younger eruptives (Fig. 5.3C) with 

Mg# 62-75 and Si 6-6.5 for eruptives <1.7 ka (Platz 2007), Mg# 63-69 and Si 5.9-6.5 for 

Fanthams Peak lavas and Mg# 55-74 and Si 5.8-6.6 for volcanics <5 ka (Turner 2008), compared 

to Mg# 59-78 and Si 5.8-6.6 for >100 ka rocks. Hornblende compositions of the sample suites 

show more distinct differences in TiO2 and Al2O3 contents (Fig. 5.4A). The oldest rocks have the 

broadest range in TiO2 and Al2O3 contents with 1.3-3.8 wt.% and 9.2-15 wt.%, respectively, 

compared to 1.9-3.4 wt.% TiO2 and 8.8-13.7 wt.% Al2O3 for <1.7 ka rocks (Platz 2007), 2.5-5.8 

wt.% TiO2 and Al2O3 9.2-13.5 wt.% in Fanthams Peak lavas and 2.1-4.1 wt.% TiO2 9.4-14.8 wt.% 

Al2O3 for tephras <5 ka (Turner 2008). Plots of Ti (cpf = calculated per formula unit) versus 

tetrahedral and octahedral Al again show that the oldest rocks exhibit the widest range in 

hornblende compositions but also reveal two distinct populations (Fig. 5.4B-C).  

Figure 5.4C displays a large group of analyses from all sample suites plotting at higher Ti 

and corresponding lower AlVI contents. The youngest rocks (<1.7 ka) do not contain hornblende 

with compositions near the upper Ti/lower AlVI spectrum (Ti≤0.38, AlVI≥0.18). Instead, a large 

number of hornblende analyses from the youngest (and oldest) studied rocks cluster at low Ti 

and corresponding high AlVI contents, while only few hornblende compositions from <5 ka 

eruptives plot in this field.  

Hornblende crystals in edifice-building lavas <10 ka show a similar mineral chemistry to the 

oldest and youngest eruptives. They were found to be of magnesiohastingsitic composition with 

Mg# ranging from 72-92, low SiO2 and high Al2O3 contents, Si near 6 and AlIV 1.7-2 (Stewart et 

al. 1996).  

5.5.4. Biotite 

Biotite is a minor mineral phase in Mt. Taranaki rocks (Platz 2007). Based on AlIV and 

Mg#, the biotite found in one thin-section of the debris-avalanche sample suite is classified 

within the annite-phlogopite series (cf. Rieder et al 1998). It contains 71.7-72.2% phlogopite 

component (Table 5.3). These values lie in the compositional range of biotite phenocrysts and 

microphenocrysts observed in samples from the summit dome (Platz 2007), which show 62-81% 

phlogopite component. 
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A 

B C 

Figure 5.4.  Comparison of Ti and Al proportions in hornblende within 100-130 ka debris-avalanche clasts and 
rocks <10 ka. A: TiO2 (wt.%) versus Al2O3 (wt.%) of hornblende crystals. B: Ti versus tetrahedral AlIV and C: 
Ti versus octahedral AlVI. 
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TABLE 5.3. Composition of selected hornblendes and biotite of the old sample suites. 

 Unaltered Hbl Rel. unaltered Hbl Hbl Hbl Bt 

 Core Rim Core Rim Resorbed Resorbed  

Sample no. AZ04-13 AZ04-01 AZ04-20 AZ04-31 AZ04-09 

Analysis no. 7687 7686 7176 7177 8261 7441 7339 

SiO2    42.38 42.75 40.96 41.65 41.81 40.92 37.45 

TiO2    3.71 3.31 2.20 2.22 3.02 2.02 5.10 

Al2O3   11.05 11.16 13.73 12.76 13.01 13.91 14.48 

FeO     10.52 11.25 13.73 14.20 12.29 10.86 11.62 

MnO     0.21 0.22 0.28 0.36 0.34 0.34 0.11 

MgO     14.60 14.35 12.10 12.12 13.73 14.44 16.91 

CaO     11.06 11.26 11.85 11.66 11.02 12.16 0.00 

Na2O    2.61 2.46 2.04 2.27 2.68 2.38 1.16 

K2O     0.86 0.84 0.87 0.77 0.76 0.78 8.41 

P2O5    0.05 0.27 0.00 0.01 0.00 0.00 0.19 

SO3     0.00 0.05 0.00 0.00 0.00 0.12 0.01 

Cl      0.12 0.15 0.05 0.02 0.02 0.02  

V2O3    0.09 0.08 0.12 0.13 0.03 0.05 0.00 

Cr2O3   0.01 0.07 0.00 0.00 0.00 0.01 0.00 

NiO        0.05 0.00 0.01 

Total 97.27 98.22 97.93 98.17 98.76 98.01 95.45 
    

Si 6.26 6.29 6.07 6.18 6.12 5.97 6.18 

AlIV 1.74 1.71 1.93 1.82 1.88 2.03 1.41 

AlVI 0.19 0.22 0.47 0.42 0.36 0.36 0.00 

Fe3+ 0.00 0.00 0.23 0.11 0.00 0.40  

Fe2+ 1.30 1.38 1.48 1.65 1.50 0.93 1.60 

Mg# 71 69 64 62 67 77 72 

Annite    28 

Phlog    72 

OH,F    1.84 

Cl    0.05 
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5.5.5. Olivine 

Olivine occurs in basalts and basaltic andesites of the analysed debris-avalanche sample 

suites and shows compositions of Fo61-86 (Fig. 5.5A, Table 5.4). Distinct (c. 4-8 mol%, e.g. 

core/rim Fo86/79 or Fo72/64) to weak zoning (c. 1-3 mol%, e.g. core/rim Fo79/77 or Fo69/68) is 

common with rare inversely zoned or unzoned crystals (Fig. 5.5B). CaO content of the olivines is 

low, ranging from 0.04-0.39 wt.%. 

The <1.7 ka eruptives contain only sparse olivine which is less compositionally varied, 

ranging from Fo61-74 (Platz 2007). Forsterite-rich compositions that are observed in the oldest 

samples are missing. Olivines in <10 ka lava flows were found to be predominantly Mg-rich 

Stewart et al. (1996). Most magnesian olivines are believed to be xenocrysts, which occasionally 

contain chromite and are zoned from Fo82-87 cores to Fo71-77 rims. Some olivine crystals are 

mantled by clinopyroxene, which was also observed in the older sample suites. Smaller, more Fe-

rich olivines (Fo62-74) occur throughout the basaltic andesites and overlap with the compositional 

range of xenocryst rims. CaO contents of the high-magnesian olivines in edifice-building lava 

flows were described as being very low, in particular in chromite-bearing olivines. Less forsteritic 

olivines and rims, on the other hand, contain up to 0.3 wt.% CaO, similar to debris-avalanche 

clasts. Despite a smaller range in forsterite contents, olivines of the youngest eruptives show a 

wider range of CaO contents up to 0.61 wt.% (Fig. 5.5C).  

5.5.6. Fe-Ti-Oxides 

The most abundant Fe-Ti oxide in the studied debris-avalanche samples and in Mt. 

Taranaki rocks in general, is titanomagnetite. Titanomagnetites contain 6-43 mol% ulvöspinel 

(Fig. 5.6A, Table 5.4) and show a wide range in Fe3+# from 82.8-97.5 with corresponding Ti/Al 

ratios from 2.9-4.5 (Fig. 5.7D). 

In the young Mt. Taranaki volcanics, titanomagnetites show similar ulvöspinel and 

magnetite proportions (Fig. 5.6B-C) with uvsp 6-45 in <1.7 ka eruptives (Platz 2007) and uvsp 5-

49 in <5 ka samples (Turner 2008). Rare ilmenite has also been found in young rocks and 

contains 84-88 mol% ulvöspinel. The data set of Turner (2008) contains more than 3000 

analyses, which most likely cover the whole spectrum of titanomagnetite compositions produced 

at Mt. Taranaki. This provides a good basis for comparison and allows the identification of more 

distinct compositional differences in titanomagnetites of the studied sample suites (Fig. 5.7).  

Titanomagnetite analyses of the >100 ka rocks scatter across most of the composition 

spectrum and show the widest range of Fe2+ (calculated) at low Al contents (Fig. 5.7A-B); high-Al 
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Figure 5.5.  Composition of 
olivine in Mt. Taranaki 
rocks. A: Compositional 
range of olivine in >100 ka 
debris-avalanche clasts. B: 
Rim and core analyses of 
olivine in debris-avalanche 
samples. C-D: Comparison 
of olivine composition in 
100-130 ka and <10 ka 
rocks in a plot of forsterite 
versus CaO(C). 
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compositions are lacking (Fetot 17.4-21.2, Fe2+ 5.1-10.4, Al 0.34-2.05 cpf). The sample set of 

Turner (2008) shows a wide range of Al (0.23-2.74 cpf) and the highest Fetot and Fe2+ contents 

(Fetot 15.8-22.7, Fe2+ 7.23-9.08). Titanomagnetites in rocks <1.7 ka show a scatter across a similar 

range, including some with the lowest Fetot and Fe2+ and the highest Al compositions (Fetot 15.5-

21.1, Fe2+ 3.7-10.2, Al 0.4-3.1 cpf). Several groups are recognised with the most distinct cluster at 

low Al and high Fe and Fe2+contents. On an Al versus Mg plot (Fig. 5.7C), titanomagnetites of 

the debris-avalanche samples show a similar range of compositions with some higher Mg 

contents at low Al than the other groups. The youngest rocks show a wide scatter in both 

elements with only a few titanomagnetite analyses having high Al and high Mg contents, while 

the bulk of the data shows lower Mg for high Al contents. Most titanomagnetites cluster near the 

low Al and Mg end of the spectrum.  

Titanomagnetites show exponentially increasing Ti/Al ratios with increasing Fe3+# (Fig. 

5.7D). The data set from Turner (2008) displays the widest scatter with a few points plotting at 

higher Ti/Al (Fe3+#78-98, Ti/Al 0.2-11.5), while three distinct groups of titanomagnetite 

compositions were recognised within the youngest samples (Platz 2007). Titanomagnetite in 

hornblende showed a large variety in Fe3+# (76.1-90) with Ti/Al ratios of up to 1.7, compared to 

a narrow range in Fe3+# (91.1-94.4) and Ti/Al (1.3-1.9) for inclusions in clinopyroxene. In 

contrast, phenocrysts displayed the broadest array of Ti/Al ratios (1.2-5.4) over a narrow range of 

Fe3+# (90.1-96.6). The oldest sample suite show similar, though less distinct clusters of data 

points corresponding to the different types of titanomagnetite and an overall wide scatter of 

Ti/Al ratios and lack examples with  the lowest Fe3+# of the other groups. 
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TABLE 5.4. Composition of selected olivines and titanomagnetites of the >100 ka sample suites. 

 Large Ol Large Ol Small Ol Tm Tm Tm 

 Core Rim Core Rim Euhedral in Cpx Small Large 

Sample no. AZ04-31 AZ04-25 AZ04-25 AZ04-28 AZ04-33 AZ04-06

Analysis no. 7452 7453 7512 7513 7522 7505 8009 7461 

SiO2    40.82 40.16 38.58 38.05 37.01 0.01 0.18 0.25 

TiO2    0.00 0.07 0.00 0.00 0.04 4.67 7.27 11.73 

Al2O3   0.00 0.01 0.06 0.10 0.00 1.00 3.61 5.33 

FeO     12.10 16.49 24.39 26.40 30.23 79.63 76.78 69.25 

MnO     0.25 0.32 0.32 0.82 0.73 0.91 0.69 0.49 

MgO     47.07 43.43 36.76 34.75 30.98 4.31 2.92 4.71 

CaO     0.17 0.13 0.17 0.27 0.32 0.11 0.18 0.04 

Na2O    0.26 0.18 0.13 0.00 0.00 0.06 0.16 0.00 

K2O     0.01 0.01 0.00 0.00 0.07 0.04 0.00 0.00 

P2O5    0.01 0.00 0.02 0.00 0.00 0.05 0.00 0.04 

SO3     0.02 0.05 0.01 0.03 0.01 0.00 0.00 0.00 

Cl      0.02 0.03 0.07 0.00 0.00 0.00 0.00 0.00 

V2O3    0.04 0.01 0.00 0.00 0.00 0.49 0.42 0.14 

Cr2O3   0.20 0.00 0.00 0.02 0.00 0.01 0.01 0.06 

NiO     0.00 0.08 0.17 0.02 0.00 0.02 0.01  

Total 100.97 100.97 100.68 100.46 99.39 91.31 92.23 92.04 
    

Fo 0.86 0.81 0.72 0.69 0.63   

Fa 0.12 0.17 0.27 0.29 0.35   

Ln 0.0022 0.0017 0.0024 0.0038 0.0047   

Mg# 0.87 0.82 0.73 0.70 0.65 8.55 6.16 10.51 

Uvsp   0.12 0.19 0.33 

Magn     0.84 0.71 0.55 

Al     0.35 1.25 1.82 

Ti   1.04 1.60 2.56 

Mg 1.72 1.62 1.43 1.37 1.26 1.90 1.27 2.04 

Fetot 0.25 0.35 0.53 0.59 0.69 20.28 19.41 17.36 

Fe2+ 0.24 0.35 0.53 0.59 0.69 6.78 7.97 8.52 

Fe3+#   97.47 90.16 82.78 
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5.5.7. Glass 

Groundmass glass of samples with a hyaline matrix has silica contents ranging from 

51.5-75 wt.% compared to slightly higher SiO2 (57.7-76.5 wt.%) for glass inclusions in 

hornblende and clinopyroxene phenocrysts (Table 5.5). Glass inclusions show a narrower range 

of Al2O3 contents (12.2-17.5 wt.%) than analysed groundmass glass (12.6-29.4 wt.%). Similar 

compositions for glass inclusions (SiO2 54.9-73.4 wt.%, Al2O3 12.7-19.6 wt.%) and groundmass 

glass (SiO2 65.28-69.17 wt.%, Al2O3 15.9-18.1 wt.%) were observed in eruptives <10 ka (Price et 

al. 2005; Platz 2007). Platz (2006) also showed compositional differences between clinopyroxene 

and hornblende melt inclusions (SiO2 64.5-71.6 and 59.7-66.3 wt.%, respectively) in summit 

dome lavas.  

 

TABLE 5.5. Selected glass analyses of the Motunui and Okawa sample suites. 

 Glass Glass Glass Glass 

 Inclusion in Hbl Inclusion in Cpx Groundmass Groundmass 

Sample no. AZ04-20 AZ04-10 AZ04-05 AZ04-13

Analysis no. 8321 7700 7604 7679

SiO2    59.19 66.98 70.87 63.35

TiO2    1.00 0.36 0.71 0.62

Al2O3   17.08 14.49 12.88 18.22

FeO     2.59 1.48 1.64 2.58

MnO     0.15 0.06 0.17 0.18

MgO     3.79 0.00 0.04 0.59

CaO     4.06 0.26 0.66 3.71

Na2O    6.01 4.03 4.34 5.87

K2O     2.91 4.59 5.45 3.15

P2O5    0.28 0.10 0.25 0.40

SO3     0.11 0.06 0.00 0.04

Cl      0.17 0.34 0.21 0.27

V2O3    0.00 0.01 0.02 0.04

Cr2O3   0.14 0.00 0.00 0.23

NiO     0.10  

Total 97.58 92.75 97.24 99.25
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5.5.8. Accessories 

Apatite has been described as a common accessory in Mt. Taranaki rocks (Neall et al. 

1986; Stewart et al. 1996; Price et al. 1999; Platz 2007). Contents of Cl and SO3 in apatite found 

in debris-avalanche samples range from 0.8-2.4 wt.% and 0.0-0.4 wt.%, respectively (Table 5.6). 

In summit dome lavas, apatite occurs as inclusions in clinopyroxene, hornblende and Fe-Ti 

oxides as well as in the groundmass and shows similar compositions to the older samples with Cl 

ranging from 0.8-3 wt.% and SO3 from 0.3-1.7 wt.% (Platz 2007).  

Selected compositions of accessory pyrite and Fe-Mn-rich carbonates are also shown in 

Table 5.6. The observed carbonates are solid solutions between siderite and rhodochrosite end-

members. 

 

TABLE 5.6. Composition of selected accessories of the Motunui and Okawa sample suites. 

 Apatite Apatite Pyrite Pyrite Carbonate Carbonate 

 in Cpx in Cpx in Cpx in Carb. in Hbl in Hbl 

Sample no. AZ04-33 AZ04-28 AZ04-28 AZ04-20 AZ04-20 AZ04-20 

Analysis no. 8418 7502 7490 8256 8254 8276 

SiO2    0.00 0.00 0.00 0.00 0.29 0.10 

TiO2    0.00 0.03 1.68 2.73 0.00 0.25 

Al2O3   0.00 0.04 0.00 0.00 0.01 0.08 

FeO     0.22 0.32 46.03 59.81 26.20 46.66 

MnO     0.17 0.03 0.00 0.48 22.02 5.23 

MgO     0.11 0.54 0.00 0.00 0.12 0.30 

CaO     53.55 52.91 0.07 0.16 7.79 3.76 

Na2O    0.00 0.05 0.00 0.24 0.18 0.19 

K2O     0.11 0.07 0.02 0.15 0.02 0.03 

P2O5    42.64 41.74 0.12 0.00 0.46 0.33 

SO3     0.27 0.41 85.18 137.23 0.24 0.00 

Cl      1.00 1.30 0.00 0.00 0.00 0.02 

V2O3    0.05 0.00 0.00 0.00 0.02 0.12 

Cr2O3   0.00 0.01 0.05 0.00 0.02 0.00 

NiO     0.00 0.12 0.85 0.00 0.00 0.12 

Total 98.12 97.57 134.00 200.80 57.08 57.09 

Ca 9.15 9.10  

P 5.76 5.67  
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5.6. DISCUSSION 

Compositions and types of mineral phases are sensitive to pre- and syn-ascent 

conditions and record responses to variations in pressure, oxygen fugacity, melt composition, 

temperature and rise rate. These changes are reflected in crystal textures, i.e. resorption features, 

oxidisation, mineral breakdown and recrystallisation, compositional zoning of individual crystals, 

inclusions as well as the compositional range of the individual mineral phases. Aspects of magma 

generation and crystallisation conditions in Taranaki magmas were discussed in more detail by 

Stewart et al (1996), who used the mineral chemistry of <10 ka lavas to determine melt processes 

occurring during early stages of magma evolution, and Turner (2008), who studied processes of 

magma storage and modification at shallower depth during magma recharge events. Their results 

and interpretations of the petrology and textures of young eruptives are compared to the 

mineralogical findings for the older debris-avalanche sample suites. 

5.6.1. Plagioclase  

The compositional and textural zoning of plagioclase phenocrysts within Mt. Taranaki 

debris-avalanche clasts and younger eruptives are similar to those described from andesite 

volcanoes elsewhere (e.g. Stewart & Fowler 2001; Landi et al. 2004). Large plagioclase crystals 

within the studied debris-avalanche lithologies consist of larger cores and thinner, mostly multiple 

oscillatory rims. The boundary between core and rim is typically sharp and characterised by major 

and minor discordances, indicating resorption of the core-forming plagioclase before growth of 

the rims. The sharp contact and subsequent oscillatory growth reflects near equilibrium diffusion-

controlled crystallisation (Pearce & Kolisnik 1990; Pearce 1993; Stewart et al. 1996). Oscillatory 

zoning has been attributed to small-scale thermal and compositional changes due to 

replenishment of new melt to the surface of the growing crystal (Ginibre et al. 2002) as well as to 

the complex interplay between decompression and heating during plagioclase growth (Blundy et 

al. 2006). Major resorption surfaces, with abrupt compositional and textural changes, reflect 

dramatic changes of crystallisation conditions due to variation in temperature, pressure, volatile 

content or melt composition or a combination of these (Pearce & Kolisnik 1990; Singer et al. 

1995). Sieve textures and skeletal textures form when small melt inclusions become trapped 

between the overgrowth and typically larger-scale resorption surfaces (Stewart & Fowler 2001), 

which can be due to decompression over relatively short time periods (Nelson & Montana 1992), 

reheating effects or increased PH2O during crystallisation (cf. Morrice & Gill 1986; Stewart et al. 
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1996), attributed to mixing with hotter magmas (Stewart & Fowler 2001; Couch et al. 2003; 

Zellmer et al. 2003; Landi et al 2004; Turner 2008).  

The majority of plagioclase phenocrysts within the oldest Mt. Taranaki debris-avalanche 

clasts as well as in younger eruptives are characterised by large, resorbed calcic cores, suggesting 

that they crystallised at depth and were partially resorbed during ascent (cf. Stewart et al. 1996; 

Turner 2008). More sodic rims and plagioclase microphenocrysts reflect lower volatile contents 

and temperatures and indicate crystallisation at shallower levels (Smith et al. 1997; Stewart et al. 

1996; Turner 2008).  

Plagioclase phenocrysts in the older debris-avalanche clasts and <10 ka eruptives show 

consistent mineral characteristics and a similar compositional range, indicating that crystallisation 

conditions for plagioclase have not changed significantly at Mt. Taranaki over the last 130 ka. A 

noticeable difference is, however the occurrence of Or-rich rims and interstitial Or-rich 

plagioclase in the younger lavas, which are thought to reflect high K2O-contents of the residual 

melt at advanced stages of crystallisation. No Or-rich plagioclase has been found in the old 

sample suites with Or6 being the most potassic composition. This is consistent with less potassic 

whole-rock and glass compositions of the older sample suites and increasing K2O-contents of the 

Mt. Taranaki magmas with time (cf. Chapter 4). 

5.6.2.  Pyroxene 

(i)  Clinopyroxene 

Larger clinopyroxene crystals within Mt. Taranaki debris-avalanche clasts have 

diffusively zoned cores, surrounded by rims with fine oscillatory zoning. Compositional changes 

within individual crystals are subtle and involve variations in Al2O3 and Mg#. Their relatively 

narrow compositional range with only weakly developed zoning and commonly observed sector 

zoning indicates rapid crystal growth (cf. Stewart et al. 1996). Ratios of Al/Ti (cpf) are consistent 

with polybaric clinopyroxene crystallisation under pressures ranging from crustal to upper mantle 

(cf. Stewart et al. 1996). En-rich clinopyroxene also show various degrees of resorption and some 

show melt inclusions that separate the core from the rims, reflecting disequilibrium conditions. 

Normal zoning from Mg-rich cores to Fe-rich rims indicates decreasing temperature and oxygen 

fugacity, while the occasionally observed reverse zoning, i.e. increasing Mg# and decreasing 

Al2O3 in rims, was interpreted as an increase in magmatic temperature and fO2 (Nakagawa et al. 

2002) and reduction of Al2O3 availability in the melt due to plagioclase crystallisation (Cortes et 

al. 2005; Humphreys et al. 2006). The reversely zoned rims of clinopyroxene phenocrysts were 
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interpreted to reflect recharge events with hotter magmas in shallow crustal storage systems 

(Turner 2008). 

Mg-rich cores of the young lavas were also described to contain higher proportions of 

stoichiometric Fe3+ consistent with high fO2 at the time of crystallisation, while rims and less 

magnesian clinopyroxenes have little or no Fe3+. This contrasts with clinopyroxene crystals in the 

older samples since they do not contain significant stoichiometric Fe3+ and no correlation 

between En and Fe3+ contents were observed. Also no evidence was found that clinopyroxene 

and olivine/chromite crystallised from similar host magma compositions and during similar 

conditions as was assumed by Stewart et al. (1996). Olivine and chromite fractionation is likely to 

have occurred prior to clinopyroxene crystallisation as is also suggested by the absence of 

chromite in clinopyroxene and the presence of low Cr-titanomagnetite in young (and old) 

samples.  

A major difference between the data collected in this study and previously described 

clinopyroxene characteristics is the much wider range of clinopyroxene compositions in the older 

rocks. This might reflect the broader compositional range of host magmas and crystallisation 

over a wider spectrum of pressures and temperatures as also implied by the whole-rock 

geochemistry of the older sample suites.  

 (ii)  Orthopyroxene 

Orthopyroxene is a rare component of Mt. Taranaki rocks (Stewart et al. 1996; Turner 

2008) and was only observed in two samples of the debris-avalanche suite. Orthopyroxene cores 

mantled by clinopyroxene show En-contents equivalent to the large crystals observed in the 

young lavas (Stewart et al. 1996). These cores most likely represent remnant orthopyroxene that 

originated at lower PH2O in the mantle and the overgrowths is the result of its subsequent 

metasomatic reaction with hydrous high-silica melts derived from partial melting in the lower 

crustal hot zone, or during further differentiation within the upper crustal storage system (cf., 

Stewart et al. 1996).  In contrast, less magnesian orthopyroxene in a basalt sample was found to 

be associated with olivine and might reflect mantling of mantle/upper crust-derived olivine 

during late-stage crystallisation at lower levels.  

In the young Mt. Taranaki lavas, orthopyroxene has also been observed as rare 

individual phenocrysts, microphenocrysts, in the groundmass or in glomerocrysts associated with 

clinopyroxene and plagioclase (Stewart et al. 1996). The presence of microphenocrysts and more 

Fe-rich acicular orthopyroxene were interpreted to indicate that silica contents were high enough 
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for orthopyroxene to form (Stewart et al. 1996). Its absence in the older samples might reflect the 

less evolved compositions and a lower silica activity of the early magmas.  

5.6.3. Hornblende  

Hornblende phenocrysts of varying size and degrees of resorption occur in both the old 

debris-avalanche samples and young eruptives (cf., Stewart et al. 1996; Turner 2008), ranging 

from thin to thick opaque rims or complete replacement of the crystals by magnetite, pyroxene 

and plagioclase. These rims form when pressure changes shift the crystallisation conditions out of 

the hornblende stability field (Rutherford & Devine 1988; Rutherford & Hill 1993; Browne & 

Gardener 2006). Rim thickness and size of replacement crystals depend on the storage depth and 

time the magmas resides at this depth before ascending/erupting (Browne & Gardener 2006). 

Hornblende was found to mantle clinopyroxene in young Mt. Taranaki lavas, 

particularly in aggregates, sometimes replacing large parts of the clinopyroxene crystal to form 

thick rims, and more rarely it mantled olivine, probably due to interaction with partial melts in the 

lower crust (Stewart et al. 1996). In the older rocks, hornblende was not observed to mantle 

clinopyroxene or olivine suggesting no significant late-stage hornblende crystallisation at 

shallower depth. Instead, resorbed clinopyroxene cores commonly contain patches of 

recrystallised hornblende and strongly resorbed olivine is occasionally replaced by small grains of 

recrystallised hornblende, clinopyroxene, plagioclase and olivine. Plagioclase inclusions are 

common in the old suites but only few hornblende crystals of the young eruptives were observed 

to contain inclusions of Mg-rich titanomagnetite and Ca-rich plagioclase (Stewart et al. 1996). 

Similarly to clinopyroxene, a broader range of hornblende compositions was observed 

in the >100 ka rocks than was described for young Mt. Taranaki eruptives (cf., Stewart et al. 

1996; Turner 2008). In particular Al2O3 and TiO2 contents show a wider variation, corresponding 

to the wide range of melt compositions (cf. Chapter 4). The high abundance of compositions 

with higher Al2O3 and lower TiO2 in the older sample suites indicates that large proportions of 

hornblende crystallised at high PH2O, reflecting an origin at greater depth (cf. Foden & Green 

1992) and the existence of more primitive melt compositions. In contrast, the mostly high TiO2 

and low Al2O3 hornblende compositions of the younger eruptives indicate significant high-level 

crystallisation under lower pressure, which does not appear to be a major process in the older 

rocks. Fanthams Peak lavas have higher Ti/Al ratios than the summit lavas, consistent with 

higher pressure during hornblende fractionation. In contrast, crystallisation at shallow depth 

produced green hornblende in the Shark’s Tooth lava, which is the most Ti-rich and Al-poor 

hornblende observed at Mt. Taranaki (Platz 2007). 
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5.6.4. Olivine  

Olivine in the debris-avalanche sample suites shows a similar range of compositions and 

characteristics as was observed in the young lavas (cf., Stewart et al. 1996). The most forsteritic 

olivines in the old suites are interpreted to represent xenocrysts that most likely crystallised at 

mantle pressures. Similar magnesian olivines within the young lavas occasionally contained 

chromite and were mantled by clinopyroxene (Stewart et al. 1996). Very low CaO contents in 

these Mg-rich olivine cores, especially in chromite-bearing ones, suggested that they may have 

formed at high (P >15 kbar) mantle pressures (cf. Stormer 1973; Finnerty & Boyd 1978; Jurewicz 

& Watson 1988). These xenocrysts have been in equilibrium with neither the host whole-rock 

compositions nor the mantle assemblages as indicated by their low-Ni contents, suggesting that 

their source magmas have already undergone substantial fractionation (Stewart et al. 1996). In 

contrast, more Fe-rich olivines in debris-avalanche clasts are typically smaller and their higher 

CaO contents suggest that they formed under crustal conditions (cf. Jurewicz & Watson 1988; 

Stewart et al. 1996).  

5.6.5. Fe-Ti-oxides 

Titanomagnetite in the >100 ka debris-avalanche clasts was observed as inclusions in or 

clustered near magnesian olivine and clinopyroxene, indicating coeval and hence early 

crystallisation (cf., Stewart et al. 1996). A second, smaller grain size population of titanomagnetite 

is represented in the groundmass, where it forms small euhedral microphenocrysts. The two grain 

size populations also show compositional differences. In young Mt. Taranaki eruptives, early 

titanomagnetite showed higher MgO and Al2O3 contents and lower ulvospinel proportions than 

groundmass microphenocrysts, the latter reflecting lowering fO2 during crystallisation (cf. 

Morrice & Gill 1986). The differences in grain size and composition were interpreted to reflect a 

hiatus in crystallisation of titanomagnetite between the two populations. Estimates of fO2 showed 

a drop from early titanomagnetite to groundmass oxides, indicating decreasing fO2 during 

crystallisation, a process typical for differentiating magmas (cf., Frost & Lindsley 1992). A similar 

compositional range and grain size characteristics of titanomagnetites in the older sample suites 

reflect similar processes, i.e. an early crystal population that formed at greater depth under higher 

fO2 and a second population that crystallised at lower crustal levels with lower fO2. 

Titanomagnetite crystals of young Mt. Taranaki tephras were also found to show 

different textures and oxidation-induced exsolution features depending on the prevailing 

crystallisation conditions prior to and during eruptions. These were used by Turner et al. (2008) 
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to identify eruption styles of tephras and distinguish fast- from slow-ascent eruptions. Slow-

ascent eruptions, characterised by near-stagnant magma bodies and slow effusion of lava domes 

with associated block-and-ash-flows, were found to show solid-state exsolution of titano-

hematite/ilmenite lamellae within titanomagnetite hosts. Fast-ascent eruptions, marked by rapid 

chilling of magma in subplinian eruptions, contain titanomagnetite without such features. This 

differentiation is only likely to develop in pyroclastics rocks and is not observed in the >100 ka 

debris-avalanche clasts. 

5.6.6. Magmatic processes and fractionation trends 

The mineral data obtained from Motunui and Okawa debris-avalanche clasts support 

the model developed by Stewart et al. (1996) and indicate that a lower crustal hot zone (c.f. 

Annen et al. 2006) had developed at Mt. Taranaki already at the known onset of volcanism. 

Together with the previously described mineral compositions and textures of young Mt. Taranaki 

eruptives, they also complement the model of magma evolution at Mt. Taranaki developed in 

Chapter 4. 

A large proportion of crystals in Mt. Taranaki rocks represent ‘xenocrysts’ that were 

entrained from the upper mantle/lower crust, including the most magnesian olivines, especially 

the chromite-bearing ones, clinopyroxene and titanomagnetite cumulates as well as calcic 

plagioclase cores. Mg-rich olivines and chromite crystallised early from highly oxidised primitive 

magmas and were therefore largely segregated. The hydrous parent magmas are thought to have 

been derived from melting of a metasomatised and depleted (lherzolite) mantle source (Stewart et 

al. 1996). These mantle-derived magmas ponded at the base of the lower crust, where they 

evolved from a high-Mg basalt composition to high-Al basalt through a combination of olivine, 

clinopyroxene, titanomagnetite and amphibole fractionation and interaction with underplated 

material (cf., Stewart et al. 1996). Plagioclase also formed relatively early, after olivine and 

clinopyroxene, with most plagioclase crystallisation occurring from the more evolved high-Al 

basalt melts. Drier melts crystallised plagioclase and orthopyroxene, although typically 

crystallisation of the fractionating magmas at the base of the crust and partial melting of 

previously intruded basalts increased the water content of the melt, resulting in more hydrous 

magmas (Stewart et al. 1996). Ascending magmas entrained wall rock xenoliths and xenocrysts 

that were gradually melted and resorbed into the melt. These mixtures of melt and crystals rose to 

lower levels in the upper crust, where further fractionation of plagioclase and late-stage 

amphibole occurred at lower pressures, eventually joined by crystallisation of biotite and possibly 

orthopyroxene (Stewart et al. 1996). 
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During early stages of volcanism, a less-well developed hot zone allowed more primitive 

magma compositions to rise to the surface with considerably less crustal interaction/overprinting 

during ascent. This is reflected in the older suite containing a broad range of clinopyroxene and 

hornblende compositions that crystallised over a wide spectrum of pressures and temperatures, 

including high-pressure compositions of hornblende that have not been described from the 

young lavas. As the hot zone evolved, a more complex crustal structure developed with a more 

dispersed plumbing system, resulting in magma assembly and storage at different mid- to 

shallow-crustal levels. The young Mt. Taranaki eruptives show evidence of a two-stage magma 

differentiation system that involved crystallisation in the lower crust and a subsequent second 

stage at upper-crustal levels, where magmas were further modified by fractional crystallisation, 

magma mingling and mixing during recharge events (Turner 2008).   

Continuous intrusion and crystallisation of mantle-derived magmas in the lower crust 

resulted in a thickening zone of underplated, amphibole-bearing material and a gradually rising 

geothermal gradient. Increasing amounts of incongruent partial melting of the previously 

intruded, underplated material formed clinopyroxene and produced progressively K2O-rich melts 

(Stewart et al. 1996), that are reflected in the occurrence of Or-rich plagioclase in younger 

eruptives. 

5.7. CONCLUSIONS 

The emplacement of the Motunui and Okawa debris-avalanche deposits imply that 

ancestral Mt. Taranaki was already a high and unstable stratocone at these times. The observed 

variety of rock types found in the deposits shows that a broad range of lithologies was present, 

including more primitive eruptives. Along with these, however, were more evolved andesites and 

rock textures including pumice lithologies that reflect a similar range of eruption styles from 

magmatic explosive to effusive like those represented on the modern volcano.  

The distinct differences in whole-rock geochemistry between the oldest and youngest 

volcanic products (cf. Chapter 4) are also reflected in the mineral chemistry of these units, 

although the differences are very subtle. The overall composition of mineral phases in Mt. 

Taranaki volcanics has not changed significantly over the last 130 ka, with phenocrysts of the 

Motunui and Okawa debris-avalanche suites and the youngest eruptives mostly plotting in similar 

compositional fields to the young samples.  
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The most distinct differences in mineralogy are related to the broader range of erupted 

magma compositions observed in the older rock suites, including more primitive, basaltic 

compositions. Clinopyroxene shows a wider range of compositions with greater variety in En-

contents as well as more ferrous minerals, which could imply crystallisation at greater depth than 

during later stages of volcanism. The compositional range of hornblende is also broader in the 

debris-avalanche clasts and includes a higher abundance of early phases with higher Al2O3 and 

lower TiO2. Fresh, euhedral olivine is more abundant than in the young eruptives and phlogopite 

also occurs occasionally. The occurrence of these mineral phases reflects the immature state of 

the early magmatic system and eruption of more primitive melts with a more distinct mantle 

signature. As indicated by the whole-rock geochemistry, the lower crustal ‘hot zone’ was 

significantly thinner and colder >130 000 years ago, allowing less interaction of melt with 

amphibolised, underplated material. Early stages of hot zone development were most likely 

characterised by “normal” upper mantle/lower crustal conditions, resulting in more extensive 

fractionation of high-pressure mineral phases at greater depth. 

In contrast to the younger eruptives, evolved high-silica compositions are less abundant 

in the oldest sample suites. This is also reflected in the composition and occurrence of some late-

stage mineral phases that typically form at shallower depth under lower pressures. Very few 

hornblende compositions in the old debris-avalanche clasts have the higher TiO2 and lower Al2O3 

contents characteristic of late-crystallisation at upper crustal levels. Biotite is rare in the old 

samples and only occurs in more evolved rocks, while Fe-rich groundmass orthopyroxene is 

either completely absent or very rare since it has not been observed. This suggests that late-stage 

crystallisation in zoned upper-crustal storage levels was not a significant process during the early 

stages of Mt. Taranaki volcanism. Their rare occurrence or absence in the older sample suites 

together with the lower abundance of more evolved magma compositions indicate that early 

magmas typically rose rapidly through the crust and only rarely stalled at shallow levels to further 

differentiate. 

The occurrence of Or-rich plagioclase in young Mt. Taranaki lavas was attributed to the 

high K2O-content of residual melts during late-stage crystallisation (Stewart et al. 1996). Its 

absence from the Motunui and Okawa sample suites and plagioclase compositions with a 

maximum of Or6 indicate significantly lower proportions of K2O in the melts, which is also 

shown by whole-rock and glass data. These less potassic compositions of early melts confirm the 

overall magma evolution established in Chapter 4 and the recognised trend of increasing K2O-

contents with time.  
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This mineralogical study of the oldest known rocks from Mt. Taranaki focused on 

differences between the youngest eruptives rather than detailed aspects of magma generation and 

differentiation processes. More detailed mineralogical work is needed to better understand 

variations and systematic changes in melt generation processes and crystallisation conditions at 

Mt. Taranaki over the last 200 ka.  
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CHAPTER 6.  

CYCLIC GROWTH AND DESTRUCTION OF 

STRATOVOLCANOES 

6.1. INTRODUCTION 

The formation of debris avalanches resulting from the failure of an unstable volcanic 

edifice has been described at many volcanoes worldwide (e.g. Voight et al. 1981; Siebert 1984; Ui 

et al. 1986; Crandell et al. 1984; Glicken 1996; Vallance et al. 1995; van Wyk de Vries et al. 2000; 

Capra et al. 2002; Waythomas & Wallace 2002; Concha-Dimas et al. 2005). Yet from most 

stratovolcanoes only one major lateral collapse is known with possible older events being hidden 

or eroded. Repeated debris-avalanche events have been inferred from just a few long-lived 

examples, e.g. St. Augustine (Beget & Kienle 1992), Colima (Stoopes & Sheridan 1992), Mt. 

Rainier (Vallance & Scott 1997), Shiveluch (Belousov et al. 1999), as well as from a number of 

ocean island volcanoes, e.g. Stromboli (Kokelaar & Romagnoli 1995, Tibaldi et al. 2001), Reunion 

(Lenat et al. 1989, Labazuy, 1996), Canary Islands (Holcomb & Searle 1991, Carracedon 1994, 

1996; Walter & Schmincke 2002), and Hawaii (Fornari & Campbell 1987; Moore et al. 1994), 

which have been studied by oceanographic methods. However, in many of these locations the 

oldest units are deeply buried by more recent volcaniclastic deposits or are only preserved below 

sea-level and therefore inaccessible. Consequently, reconstruction of the volcanic history for 

hazard analysis is usually based on interpretations of the Holocene record. This brief interval may 

fail to identify longer-term influences on the activity, stability and evolution of stratovolcanoes. 

Detailed, continuous records from these volcanoes are needed to understand the processes 

behind their evolution in order to truly characterise the potential volcanic hazard.  

The most complete chronostratigraphic record of volcanic activity and other 

sedimentary events is recorded in volcanic ring-plain successions/alluvial plains, which are 

progressively built up by deposition of syn- and post-eruptive volcaniclastics and minor primary 

products, as well as reworked deposits (Smith 1987; Palmer & Neall 1991; Smith 1991; Cronin et 
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al. 1996; Donoghue & Neall 2001; Borgia & van Wyk de Vries 2003). Hence, in order to 

reconstruct the eruptive history of a stratovolcano in more detail and to recognise its true hazard 

potential, it is important to understand the depositional processes that contributed to the 

construction of the volcanic ring plain. 

Unusually, at Mt. Taranaki/Egmont, New Zealand, a stratigraphic record is exposed in 

medial ring-plain successions for most of the life of the volcano (Neall 1979), which is due to 

continuous coastal erosion of the tectonically uplifted Taranaki peninsula (Pillans 1994). These 

circumstances allowed the reconstruction of volcanic and other landscape-forming events 

operating over the life-span of this stratovolcano, based on the correlation of the exposed ring-

plain deposits and their sedimentological classification. The unique long-term record of this 

repeatedly collapsing volcano provides a better understanding of the nature and processes behind 

the volcano’s behaviour and was here used to develop a model of cyclic behaviour and 

sedimentation that can be applied to stratovolcanoes in general. 

6.2. VOLCANIC CYCLES AT MT. TARANAKI 

More than 200 ka of volcaniclastic deposition at Mt. Taranaki have produced a 

surrounding ring-plain that extends 25-45 km onshore from the current summit. Cliff sequences 

along the northern, western and in particular the southern Taranaki coast represent a cross-

section through medial ring-plain settings. Exposed are a wide range of lithologies, which reflect 

the whole spectrum of sediment-water flow from “dry” debris avalanche, highly concentrated 

debris flow, hyperconcentrated flow to dilute streamflow as well as transitions between these 

processes. Based on their different sedimentological characteristics, the deposits were classified 

into volcaniclastic, fluvial and aeolian facies.  

The medial ring-plain succession contains at least six different lithofacies elements: 

debris-avalanche dominated sequences, paleo-channel systems, series of sheet-flow deposits, 

fluvial facies associations, dune sands and paleosol-/peat-dominated sequences. These lithotype 

associations correspond to a range of transport and emplacement modes as well as various 

depositional environments and can be linked to specific periods within a repeating pattern of 

deposition in the areas surrounding unstable stratovolcanoes.  

A generalised volcanic cycle at Mt. Taranaki arbitrarily starts after the destruction of 

large portions of the edifice by collapse (Fig. 6.1). This event is followed by long-term 

regeneration of the deeply scarred edifice. The early stages of (re-) growth are characterised by 
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small-scale pyroclastic eruptions, dome-building and localised lava flows, background activity 

typical of this centre (Platz et al. 2007; Turner 2008). Medial areas accumulate thick tephric soils 

or peat with interbedded tephra layers that reflect the proximal activity. Mass-flows produced 

during this period are mostly restricted to proximal areas due to the lower elevation of the source 

area. With increasing height of the growing edifice, eruption-generated mass-flows start to reach 

greater distances of >25 km. Subsequently, medial accumulation is characterised by massive 

sequences of mainly monolithologic debris-flow and hyperconcentrated-flow deposits with 

intercalated tephra beds. These are sheet-like on broad terraces and coastal plains or confined to 

channels where the landscape has been incised by rivers and streams. Volcanic activity is not 

Edifice destruction
Sector or cone collapse

Generation of  unconfined debris avalanches 
and associated cohesive debris flows
Drastic change of  drainage patterns and 
sedimentation loci on the ring plain

Explosive eruptions generating tephra fall and 
pyroclastic flows
Effusive dome- and BAF-forming events, lava 
flows
Long-runout mass-flows, confined to river 
channels or sheet-like on coastal plains

Erosion and incision of  the edifice and the 
surrounding ring plain
Fluvial and aeolian redeposition
Soil formation or peat accumulation
Revegetation

Small-scale pyroclastic eruptions, dome-
building and localised lava flows
Minor reworking through floods and lahars
In medial areas soil formation or accumulation 
of  peat, typically with interbedded tephras 

Start of  cone regrowth
Small-scale proximal activity

Eruptive episodes
Large-scale activity

Periods of  quiescence
Landscape adjustment

collapse initiates explosive eruption

eruption-triggered collapse

Figure 6.1. Simplified model of cyclic behaviour of stratovolcanoes in general and associated volcanic and 
volcaniclastic sedimentation as observed at Mt. Taranaki. 
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constant and deposition loci change resulting in frequent periods of apparent quiescence for 

variable sectors of the ring plain. These are recorded by soil, medial ash, or peat accumulation, 

along with landscape adjustment through fluvial and aeolian processes. Small collapse events can 

be triggered during eruptive episodes or occur during periods of volcanic quiescence. In medial 

areas, they are represented as channelised cohesive debris-flow deposits of limited extent and 

thickness. 

The similar extent and run-out distance of major Taranaki debris avalanches suggest that 

the edifice is regenerated to a similar size before it collapses again. Edifice growth is ultimately 

limited to a critical point at which its structure becomes sufficiently unstable that even a weak 

disturbance may cause it to fail. The average size of composite volcanoes is typically between 

2000-2500 m (Davidson & de Silva 2000), indicating that this height might represent a natural 

limit. Although, a strong seismic or magmatic event can trigger the collapse of a more stable 

edifice before this critical height and / or slope is attained (Siebert 1984; Belousov et al. 1999). 

The volcanic cycle is closed with a major sector or cone collapse, represented by debris-avalanche 

and long run-out debris-flow deposits in medial areas. These major debris avalanches bury 

extensive areas of the ring-plain and reshape the landscape. They significantly modify the 

drainage system and change the focus of sedimentation before and after the collapse (cf. Procter 

et. al 2009).  

6.3. CONTROLS ON THE CHARACTERISTICS OF VOLCANIC CYCLES  

The characteristics and sedimentary signatures of a volcanic cycle at repetitively 

collapsing volcanoes are controlled by the interplay of several internal and external factors.  

6.3.1. Factors leading to instability 

The tendency of stratovolcanoes to collapse depends on the rate and extent of 

destabilisation. Various structural, magmatic and external processes can lead to the increasing 

instability of a volcanic edifice (e.g. McGuire et al. 1996; Elsworth 2000; see Table 6.1 for more 

references). A combination of processes has contributed to an inherently unstable structure of 

present and proto Mt. Taranaki edifices. This is mostly a result of a high content of 

unconsolidated pyroclastic and volcaniclastic deposits (cf. Siebert 1984; Vallance et al. 1995), 

interbedded with lava flows. Megaclasts of intact, layered fragments of edifice strata within the 

debris avalanches suggest a similar structure for proto-edifices (Neall et al. 1986). Another 
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important structural factor at Mt. Taranaki is the development of steep upper slopes (cf. Siebert 

1984; Beget & Kienle 1992). The absence of hydrothermally altered components within the 

Taranaki debris avalanche deposits indicates that hydrothermal processes did not affect large 

parts of the edifice as has been observed at other volcanoes (cf. Siebert et al. 1987; Lopez & 

Williams 1993; Vallance & Scott 1997; Voight & Elsworth 1997). Instead, hydrothermal 

alteration was probably restricted to the area around the central conduit, leading to a 

progressively weaker core.  

Further factors that are recognised to contribute to the instability of volcanoes are their 

growth on a sloping or weak substrate (Wooller et al. 2004; Carrasco-Nunez et al. 2006), 

subsidence or uplift of the sub-volcanic basement (Firth et al. 1996; McGuire 2003) as well as 

frequent tectonic activity (Francis & Self 1987). These processes also play an important role in 

Taranaki where the sub-volcanic basement consists of a Tertiary marine-basin sequence of 

dominantly poorly consolidated mudstone with interbedded sandstone (Kamp et al. 2004). The 

substrate is cut by several Quaternary and active faults, some of which extend through the 

modern edifice (Neall 1979; Alloway 1989; Sherburn & White 2006). Structural alignments, i.e. 

the SSE migration of the Taranaki volcanoes and the younger N-S alignment of Mt. Taranaki 

summit, Fanthams Peak and several lava domes (<3 ka) (Neall 1971; Neall et al. 1986) reflect the 

more recent tectonic stress field (Sherburn & White 2006) and might have also contributed to the 

instability of the volcano (cf. Vallance et al. 1995). The high annual precipitation in Taranaki (>8 

m rainfall per year on the north flank of the volcano) is likely to cause saturation of the porous 

deposits that build up the edifice, enhance alteration and eventually weaken the rocks (cf. Scott et 

al. 2005; Carrasco-Nunez et al. 2006). It is not known in which way the global climatic changes of 

the last 200 kyrs affected Mt. Taranaki because no correlation between edifice failures and abrupt 

climate changes could be found as was postulated by Capra (2006). Volcano-tectonic gravity-

driven processes such as gravitational spreading can deform and destabilise a volcanic edifice, 

resulting in the generation of a slump that can develop into a large flank collapse (Van Bemmelen 

1949, Borgia et al. 1992, van Wyk de Vries et al. 1996b, 1997, 2000, 2003, Reid et al. 2001, Cecchi 

et al. 2004). Evidence of buttressing, spreading or slumping (cf. Borgia 1994; van Wyk de Vries & 

Francis 1997; Borgia & van Wyk de Vries 2003) is absent at Mt. Taranaki.  

In addition to the above described slow processes that lead to progressive instability of 

the edifice, magmatic processes can have similar effects on a much shorter time-scale. The 

intrusion of fresh magma can result in oversteepening and lateral displacement of the flank, as 

occurred during the 1980 eruption of Mount St. Helens (Voight et al. 1981), as well as fracturing  
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TABLE 6.1.  Factors leading to instability of volcanic edifices. 

Structural factors 

Steepening of slopes Siebert 1984; Beget & Kienle 1992; Murray & 
Voight 1996 

High proportion of weak unconsolidated pyroclastics Siebert 1984; Vallance et al. 1995; McGuire 
2003 

Hydrothermal activity within the edifice leading to alteration 
and a general increase in pore pressure 

Frank 1983; Siebert et al 1987; Carrasco-
Nunez et al. 1993; Lopez & Williams 1993; 
Day 1996; Elsworth & Voight 1996; Iverson 
et al. 1997; Vallance & Scott 1997; Voight & 
Elsworth 1997  

Gravitational spreading and slumping Borgia et al. 1992; Borgia 1994; van Wyk de 
Vries et al. 1996b, 1997, 2000, 2003; van Wyk 
de Vries & Francis 1997; Borgia et al. 2000; 
Reid et al. 2001; Borgia & van Wyk de Vries 
2003; Cecchi et al. 2004 

Structural alignments and buttressing Siebert 1987; Vallance et al. 1995 

Buried faults of past structural failures or scars Normark et al. 1993; Lipman 1995 

Magmatic processes 

Oversteepening, mechanical push and lateral flank 
displacement  

Voight et al. 1981; Labazuy 1996 Donnadieu 
& Merle 1998; Donnadieu et al. 2001 

Fracturing and pore-fluid pressure enhancement  Elsworth & Voight 1996 

Persistent dike emplacement Elsworth & Voight 1992, 1995; Lipman 1995; 
Tibaldi 1996 

Change in magma composition and eruptive style Belousov et al. 1999 

Flank overloading from accumulation of eruptive products Voight et al 1983; Murray 1988; Elsworth & 
Voight 1995; McGuire 2003 

Tectonic factors 

Regional tectonic stress field Siebert 1984; Ui et al. 1986; Vallance et al. 
1995; Capra et al. 2002: Tibaldi & Lagmay 
2006 

Growth on a sloping or weak substrate Wooller et al. 2004; Carrasco-Nunez et al. 
2006 

Subsidence or uplift of the sub-volcanic basement Firth et al. 1996, McGuire 2003 

Rifting Carracedo 1994, 1996 

Frequent tectonic activity Francis & Self 1987 

Climate / weather influences 

Increase in pore water pressure from high-intensity 
rainstorms  

Sheridan et al. 1999; Iverson 2000; van Wyk 
de Vries et al. 2000; Scott et al. 2005; 
Carrasco-Nunez et al. 2006 

Peripheral erosion of island volcanoes due to sea-level 
changes 

Moore et al. 1994; Nunn 1994; Ablay & 
Hurliman 2000 

Glacial activity / ice cap Capra et al. 2002 
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and pore-fluid pressure enhancement within the edifice (Elsworth & Voight 1996). A change in 

the magma composition can also influence edifice stability, like at Shiveluch volcano where an  

abrupt shift to a higher SiO2-content of the erupting magma changed the predominant eruptive 

style to the production of lava domes (Belousov et al. 1999).  

6.3.2. Trigger mechanisms of edifice collapse 

The sedimentary signatures of individual volcanic cycles at repetitively collapsing 

volcanoes are also controlled by the process causing edifice destruction. Bezymianny-type failures 

were defined by Gorshkov (1959) as being associated with the intrusion of fresh magma (e.g. 

Glicken et al. 1981; Voight et al. 1981, 1983; Siebert et al. 1987; McGuire et al 1990; Elsworth & 

Voight 1995; Belousov 1996; Donnadieu & Merle 1998; Elsworth & Day 1999; Donnadieu et al. 

2001). They can be triggered by magmatically-induced seismicity, mechanical push, temperature-

related changes in pore pressure or gravity loading of erupted material (Voight et al 1983; 

Elsworth & Voight 1995). The collapse can be accompanied by magmatic activity or trigger 

explosive eruptions. Thus, regeneration of the edifice starts immediately after its destruction with 

growth of a new lava dome in the amphitheatre, e.g. St. Augustine (Beget & Kienle 1992), or with 

a Plinian eruption followed by lava dome formation, e.g. Mount St. Helens and Shiveluch 

(Lipman & Mullineaux 1981, Bogoyavlenskaya et al. 1985, Belousov et al. 1999). In contrast, 

Bandai-type collapse events (Siebert et al. 1987) are associated with solely phreatic eruptions, 

which cease after debris-avalanche generation. Unzen-type slope failures occur without any 

volcanic activity and are triggered by tectonic earthquakes like nonvolcanic landslides (Voight et 

al 1983; Siebert et al. 1987; Voight & Sousa 1994). These can be caused by movement of 

basement faults (Vidal & Merle 2000), active rift zones surrounding or underlying the volcano 

(van Wyk de Vries & Merle 1996; Day et al. 1999), strike-slip faulting (Lagmay et al. 2000) or 

caldera collapse (Hurlimann et al. 1999).  

The trigger mechanism of failures at Mt. Taranaki is not known except for the Ngaere 

event, which Alloway et al. (2005) postulated as being of Bezymianny-type because it is 

immediately preceded by a magmatic fall unit and is directly overlain by several tephra layers. In 

contrast, there is no evidence to indicate that magmatic activity initiated or immediately followed 

the other identified edifice failures. However, the large volume of the 80-35 ka southern debris 

avalanches and a high content of pumice clasts suggest that they were generated during periods 

of intensified explosive magmatic activity (cf. McPhie et al. 1993). The derivation of these large 

amounts of pumice from incorporation of substrate or cutting of voluminous pumice deposits by 

the failure (van Wyk de Vries et al. 2001; Shea et al. 2008) is unlikely at Taranaki due to the 
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absence of ignimbrites and the typically small size (<<1 km3) of eruptions (Alloway et al. 1995). 

Direct evidence such as blast deposits and tephra layers associated with debris avalanches is 

otherwise absent, due to distance from source, prevailing (north-east) wind direction as well as 

erosion. Tectonic triggers such as large-scale fault movements or gravitational settling-related 

faulting may represent significant triggering mechanisms once the volcano reaches a metastable 

height (cf. Lagmay et al 2000; Vidal & Merle 2000). In addition, environmental factors such as 

high-intensity rainstorms, which can cause a reduction in strength of the edifice due to saturation 

(McGuire 2003; Scott et al. 2005; Carrasco-Nunez et al. 2006), could have initiated smaller 

collapse events.  

6.3.3. Frequency of growth and collapse cycles 

The frequency of growth and collapse at a stratovolcano is strongly influenced by the 

magma supply and the magma ascent rate, which determine the repose times between eruptions 

and the time it takes to (re)build an edifice. Very high lava effusion rates at Mount St. Augustine, 

for example, are responsible for rapid regeneration of the edifice after a collapse and recurrence 

of large debris avalanches approximately every 150-200 years (Beget & Kienle 1992). A similar 

conclusion is reached for Shiveluch Volcano, which produced at least 8 debris avalanches in the 

last 10 ka (Belousov et al. 1999). The averaged 13 ka between major collapses at Mt Taranaki 

suggest slower growth phases, and overall lower magma recharge rates.  

The apparent increase in debris-avalanche abundance in the recent record, if real, may 

have a number of causes, including: a change in magma composition or eruptive style (Belousov 

et al. 1999), an increase of the magma supply rate (Beget & Kienle 1992: Belousov et al. 1999), 

progressive weakening of the core due to hydrothermal alteration around the conduit (Vallance & 

Scott 1997; van Wyk de Vries et al. 2000) or persistent dike intrusion (Siebert 1984). Structural 

aspects such as regrowth of the edifice on former scars seem to have strongly added to the 

increasing instability and, together with major climate changes, could be responsible for a higher 

frequency of collapses. Furthermore, a gradual shift to more evolved high-K magma composition 

(Price et al. 1999) may have resulted in the extrusion of more viscous andesite and basaltic-

andesite lavas, which presumably produced steeper upper slopes and a higher percentage of lava 

domes than in the early history of the volcano. This happened on a larger scale at Shiveluch 

volcano where an abrupt shift to a higher SiO2-content of the erupting magma changed the 

predominant eruptive style to the production of lava domes (Belousov et al. 1999). 
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6.3.4. Eruptive style and type of products 

Phases of edifice construction consist of major eruptive periods separated by intervals 

of quiescence and landscape adjustment. The predominant eruptive style during edifice-building 

periods varies between volcanoes or even between cycles on a single volcano. It is controlled by 

magmatic differentiation processes, which determine physical properties of the magma such as 

composition, density and viscosity as well as volatile contents and hence explosive vs. effusive 

behaviour (Davidson & de Silva 2000). The nature of eruptive activity is recorded in the clast 

assemblages of long run-out debris-flow and hyperconcentrated-flow deposits, which are typically 

generated in response to a high sediment supply during or after eruptive activity. The clasts vary 

according to the type of erupted products and hence reflect the predominant eruption 

mechanism at the time of lahar generation. At Mt. Taranaki some growth phases are 

characterised by pumice-dominated lahars and tephra layers indicating vigorous subplinian and / 

or Plinian eruptions. Other mass-flow depositional series are rich in dense, glassy, monolithologic 

andesite clasts, corresponding to dome-building and associated block-and-ash-flow activity. 

Polylithologic flows are probably not directly related to an eruption, but may represent conditions 

where mass-flows gained momentum via erosion and incorporation of sediment along their 

paths.  

The frequency, nature and volume of flows may also depend on the prevailing local and 

global climate, i.e. rainfall intensity and duration in the source region, vegetation patterns and 

related slope-stability or sediment supply (e.g. Lavigne et al. 2000; Waitt et al. 1983; Mothes et al. 

1998; Hodgson & Manville 1999; Vallance 2000). Syn- and post-eruptive lahars and floods 

initiated by rain are common at stratovolcanoes with high precipitation rates, e.g. Pinatubo 

(Pierson et al. 1997; van Westen & Daag 2005) or Indonesian volcanoes such as Merapi (Lavigne 

et al. 2000; Lavigne & Thouret 2002), Semeru (Lavigne & Suwa 2004; Thouret et al. 2007) and 

Kelud (Thouret et al. 1998). The average annual rainfall in Taranaki is high, especially on and 

around the mountain (up to 8 m/yr) but rainfall amount and intensity varied according to climate 

changes over the last 200 ka.  

6.3.5. Distribution of deposits 

The distribution of tephra is mainly controlled by the prevailing wind direction while 

that of volcanic mass-flows (debris avalanches and lahars) depends strongly on the location of the 

source area (i.e. direction of collapse, site of lahar initiation or position of vent or lava dome), the 

morphology of the edifice (crater breaches, amphitheatres or deep gullies) and the nature of the 

landscape surrounding the volcano. A deeply incised topography leads to confinement of debris 
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avalanches and lahars, as is the case at most volcanoes in the Cascades, e.g. the Osceola Mudflow 

at Mt. Rainier (Vallance & Scott 1997) and the 1980 debris avalanche at Mount St. Helens as well 

as subsequent lahars (Voight et al. 1981; Janda et al. 1981). In contrast, Mt. Taranaki debris 

avalanches form broad fans on the weakly dissected ring-plain. Through most of Taranaki’s 

history the ring-plain setting resembled the present landscape, which is characterised by mostly 

shallow stream beds and wide coastal plains with broad terraces resulting in the predominance of 

relatively unconfined and extended sheet-like volcanic mass-flows. Some larger, long-lived river 

systems provided flow paths for channelised lahars but were commonly infilled and covered by 

sheet-like flows. Subsequent fluvial erosion again incised some valleys that formed new paths to 

guide younger flows (cf. Procter et al. 2009). The thickness of mass-flows at any one location in 

Taranaki increased with growing height and volume of the edifice. In general, the travel-distance 

of lahars is expected to depend on the elevation and nature of the source region, origin of the 

flow, slope angle, type and grain-size of the transported material, sediment/water ratio as well as 

the volume of the flow (Fisher & Schmincke 1984; Scott 1988; Pierson et al. 1990; Mothes 1992; 

Scott et al. 1995; Vallance 2000).  

Mt. Taranaki debris-avalanche deposits form broad fans on the weakly dissected ring-

plain (Neall et al. 1986; Palmer et al. 1991; Alloway et al. 2005) and their distribution is mainly 

controlled by the direction of collapse. Several models have tried to relate volcano morphology 

and the direction of edifice failures to the regional tectonic stress field. Nakamura (1977), Moriya 

(1980) and Siebert (1984) suggested that where volcanoes respond to an existing stress regime, 

the preferred orientation of the axis of the avalanche scarp is perpendicular to the regional σHmax 

or to the strike of normal faults (Francis & Self 1987). Second generation collapse events may be 

parallel to the previous axes, or at a high angle, i.e. c.135° (Siebert 1984). Later studies showed 

that volcanoes respond in different ways to the tectonic stress and have varying orientations of 

amphitheatres in relation to σHmax depending on their geodynamic setting (Lagmay & Valdivia 

2006). Failure directions were found to occur at an angle to σHmax with the highest frequency at 

20°-30° and 40°-50° (Lagmay & Valdivia 2006) and are mainly influenced by temporal and local 

stress-fields within the edifice (Ui et al. 1986b), the geometry and nature of faults (Tibaldi 1995; 

Lagmay et al. 2000; Vidal & Merle 2000) and the subvolcanic basement (van Wyk de Vries & 

Borgia 1996; Wooller et al. 2004; Tibaldi et al. 2005). The NE-SW orientation of the numerous 

active and inactive Quaternary faults that cut the Taranaki peninsula (Fig. 1B) dates from the 

initial formation of the Tasman Sea c. 80 Ma ago (Hull & Dellow 1993) and does no longer 

reflect the current stress field (Sherburn & White 2006). The NNW-SSE alignment of the 

Taranaki volcanoes and the younger N-S trend of Mt. Taranaki and flank vents (Neall 1971) 



277Chapter 6.  Volcanic cycles 

alignment 

NNW-SSE  
alignment 
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Figure 6.2. DEM of the Taranaki peninsula showing the direction of collapse that produced the identified 
debris-avalanche deposits in the Mt. Taranaki ring-plain succession. Failures have occurred on similar sectors 
of the edifice during certain time periods, indicating that different parts of the edifice were more unstable and 
thus vulnerable to collapse at different times throughout the volcanic history. Dashed axes are based on 
assumed dispersal of the south-eastern and the oldest northern debris-avalanche deposits. Shaded areas 
illustrate the direction of the two main volcanic alignments. Grid references are NZ map grid. 
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differ significantly from the NE-SW orientation of the observed faults, indicating that magmatic 

intrusions are responsible for the long-term change of the stress direction (Sherburn & White 

2006). The distribution axes of debris avalanches at Mt. Taranaki are oriented at various angles to 

the main structural lineament, and the regional σHmax without obvious pattern. Most probably the 

direction of collapse at Mt. Taranaki was influenced by the trigger mechanisms, i.e. magmatic 

intrusions / large-scale explosive eruptions and large fault movements in combination with the 

apparent structural alignments and the morphology of the edifice at the time of failure. 

6.3.6. Ring-plain sedimentation between eruptive episodes 

The sedimentation as well as erosion and redeposition between eruptive episodes vary 

according to climate and setting as well as sediment supply. In south-west Taranaki, organic-rich 

soil and peat beds accumulated during warm periods, while loess-rich tephric soils formed in 

cooler climate. Fluvial erosion and reworking of primary deposits produced sediments ranging 

from localised cross-bedded, well-sorted sand and pebble beds to aggradational series of river 

gravel interbedded with lenses of fluvial sand. Some near-coastal areas accumulated massive 

sequences of well-sorted dune sands due to near-shore aeolian redeposition during periods of sea 

level high-stands. Interbedded coarser beds entirely made up of rounded pumice lapilli were most 

likely formed shortly after explosive eruptive activity. 

6.4. HAZARD IMPLICATIONS  

Overall, the hazard potential varies strongly at different parts of the cycle, because each 

phase generates distinctive types of mass-flows. Although large edifice failures and the generation 

of debris avalanches individually represent the greatest hazard at repetitively collapsing volcanoes, 

they are usually of low frequency, i.e. on-average every 13 ka at Mt. Taranaki. During 

construction phases, mass-flows are by far more frequent and are not only confined to stream 

valleys but can inundate wide areas and travel long distances. The majority of past volcanic mass-

flows in Taranaki are related to eruptive activity with individual units being rapidly emplaced over 

relative short periods of time. Intervals of quiescence separating these eruptive episodes produce 

occasional polylithologic lahar and flood deposits. Large debris flows are restricted to the sites of 

deeper river channel and occur at least once in c. 2 ka. In contrast, sheet-like hyperconcentrated 

flows are more widespread and inundate the shallower, broad floodplains and coastal terraces. 

They represent the most frequent event recorded in medial ring-plain locations, with a minimum 

recurrence of one event in 500 years. Due to the large number and narrow distribution range of 
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single flow units and the lack of individual diagnostic properties, hyperconcentrated-flow and 

debris-flow deposits were grouped into composite stratigraphic units and correlated as packages 

rather than separate flow events. The given frequency is thus only an approximate minimum 

estimate. 

Understanding the cyclic nature of stratovolcanoes and the frequency of their cyclicity 

will be critical for developing realistic probabilistic hazard models. Potential lahar inundation 

areas can be determined from previous events at a volcano and evaluation of the modern 

topography. The nature of eruptive activity and deposits produced in the younger past can help 

to evaluate which part of the cycle the volcano is currently in and if a collapse is likely to occur in 

the near future. Forecasting models have to not only consider return periods of debris avalanches 

but also the preconditioning of the edifice to failure. The historic record can provide information 

on the nature, extent and recurrence of past collapse events. Regional tectonic stress fields 

sometimes produce a preferred direction of slope failure (Siebert 1984; Vallance et al. 1995) but 

often it is influenced by local stress regimes within the volcano. Hence, in order to assess timing 

and location of a possible next collapse future surveillance is needed to identify weak parts of the 

edifice that are susceptible to failure.  

6.5. DRIVING FORCES BEHIND THE CYCLIC BEHAVIOUR OF 

STRATOVOLCANOES  

6.5.1. External forces: Correlation with the climatic background 

Climate conditions have been recognised as an important influence on the nature of 

volcaniclastic sedimentation around volcanoes (e.g. Palmer et al. 1993; Davidson & de Silva 2000; 

de Rita et al. 2002; Zanchetta 2004). Local precipitation regimes control soil development, 

vegetation patterns, rates of erosion, the degree of landscape dissection and hence the sediment 

supply during inter-eruptive periods as well as the frequency of syn- and post-eruptive lahar 

generation (e.g. Dorn et al. 1987; Frostick & Reid 1989; Palmer et al. 1993; Ritter et al. 1995; 

Davidson & de Silva 2000; Lavigne & Thouret 2002; Lavigne 2004; Zanchetta 2004; Scott et al. 

2005; van Westen & Daag 2005). Some studies furthermore suggest that extreme weather 

conditions such as intense or prolonged rainfalls as well as abrupt climate changes and glaciations 

may influence the potential of the volcano to fail, or even trigger a collapse (McGuire 1996; 

Sheridan et al. 1999; Kerle et al. 2003; Scott et al. 2005; Capra 2006). 
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To evaluate the possible role of major climate changes behind cyclic volcanic behaviour, 

the occurrence of debris-avalanche events at Mt. Taranaki was compared to the global climate 

fluctuations of the last 150 ka (cf. Chapter 3). Since edifice failures have occurred repeatedly 

during the volcanic history during both warm interglacial as well as cold glacial periods, the 

timing of major collapse events does not seem to be directly related to global climate changes. 

Irrespective of prevailing climate conditions, the occurrence of edifice failures was influenced by 

other factors such as the nature and magnitude of volcanic activity, rate of eruptions, edifice 

height and flank oversteepening (c.f. Section 6.3.2). However, it appears that the size of failures 

and the volume of the resulting debris-avalanche deposits might have been larger during cool or 

cold periods, possibly due to greater instability of the barely vegetated, less protected volcano 

flanks and greater saturation and deeper water infiltration into the edifice.  

Even though major climate fluctuations do not seem to have triggered the frequent 

edifice collapses of Mt. Taranaki, they are reflected in deposit characteristics of the medial ring-

plain succession. Debris avalanches that were generated during warm climate travelled across a 

densely vegetated landscape and the resulting deposits typically contain abundant tree fragments 

ranging from small chips to large tree logs. Units emplaced during cool climate contain only 

sparse wood fragments, while those produced during cold glacial conditions are free of significant 

organic components. More intense weathering processes during warm and mild climates 

produced allophane-rich, reddish Andisols in contrast to weakly developed, loess-rich soils that 

formed during cold climate (cf. Alloway et al. 1992, 1995). During moist conditions peat beds of 

variable thickness accumulated locally in wet, poorly drained areas and occur frequently 

throughout the sequence (cf. McGlone et al. 1984; Alloway et al. 1992, 2005). Less vegetation 

cover during cold glacial and cool stadial conditions resulted in larger areas of bare, unprotected 

volcanic debris, susceptible to erosion and intense reworking (c.f. Zanchetta 2004). Within the 

Mt. Taranaki ring-plain succession, the rapid remobilisation of a high supply of unconsolidated 

sediment is reflected in stacks of polylithologic hyperconcentrated-flow and debris-flow deposits. 

In contrast, mild or warm climate during interstadial and interglacial periods are typically 

characterised by stabilisation of loose volcanic and volcaniclastic material and sediment storage 

on the edifice and the surrounding ring plain (c.f. Hubert & Filipov 1989; Frostick & Reid 1989; 

Blair & McPherson 1992; Blair 1999, 2000; Zanchetta 2004).  

Global climate changes of the last >150 ka not only affected vegetation patterns and 

landscape stability but associated sea-level fluctuations had severe impacts on near-coastal 

environments (c.f. de Rita et al. 2002), in particular island volcanoes (e.g. Moore et al. 1994; 

Nunn 1994; Ablay & Hurliman 2000). Falling sea level during cold periods is inferred to have 
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increased the rate of marine abrasion and steep cliff development onshore, hence reducing the 

support for the base of the subaerial flank and favouring edifice failure of island volcanoes (Ablay 

& Hurliman 2000). Dropping sea levels also significantly change the geomorphology of near-

coastal areas (de Rita et al. 2002). In Taranaki, present day coastal areas were characterised by 

more deeply incised stream valleys at low sea-level stands, compared to a weakly dissected 

landscape with shallow channels during warm climates such as today. The change in 

geomorphology resulted in different deposit geometries and facies characteristics, in Taranaki 

represented by thick, bouldery channelised debris flow deposits compared to more widespread 

sheet-like hyperconcentrated flow deposits during high sea-level stands. 

Despite major climate fluctuations during the last >150 ka, the overall sedimentation 

pattern of volcaniclastic deposits within the Mt. Taranaki ring-plain succession is consistent, 

suggesting that climate variations were not the driving force behind Mt. Taranaki’s cyclic 

behaviour. This is supported by the occurrence of repeated collapse and regrowth described at 

volcanoes in different climate zones and various tectonic settings, such as St. Augustine, Alaska 

(Beget & Kienle 1992), Shiveluch, Kamtchatka (Ponomareva et al. 1998; Belousov et al. 1999); 

Colima (Stoopes & Sheridan 1992) and several other Mexican volcanoes (Vallance et al. 1995; 

Capra et al. 2002), Mt. Rainier, Cascades (Vallance & Scott 1997) as well as ocean island 

volcanoes like Stromboli (Kokelaar & Romagnoli 1995, Tibaldi et al. 2001), Reunion (Lenat et al. 

1989, Labazuy, 1996), Canary Islands (e.g. Holcomb & Searle 1991, Carracedon 1994, 1996; 

Ablay & Hurliman 2000; Walter & Schmincke 2002), and Hawaii (Fornari & Campbell 1987; 

Moore et al. 1994). Instead, volcanically-driven processes such as volcanic activity and collapse 

events were the primary control on the accumulation style of the ring-plain depositional system. 

Climate fluctuations on the other hand influenced the sediment supply during inter-eruptive 

periods and the rates of revegetation while associated sea-level changes controlled the 

paleogeomorphic near-coastal setting and hence geometry and distribution of deposits, but had 

only secondary, overprinting effects on deposit characteristics and type of sedimentation. Varying 

climate conditions are also responsible for some of the differences in the sedimentary signatures 

of cyclic growth and destruction of volcanoes in different settings.  

6.5.2. Internal forces: Relationship between sedimentary and geochemical cycles  

To elucidate the role of the magmatic system behind the frequent recurrence of edifice 

failures at Mt. Taranaki, clasts within debris-avalanche deposits were used as a series of windows 

into the composition of previous successive edifices.  
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The diversity of lithologies and their geochemical composition is similar throughout the 

volcanic history, with the oldest sample suites displaying a slightly broader range of compositions 

including more primitive rock types. The evolution to less primitive compositions is accompanied 

by an increase in K2O with decreasing age, indicating progressive interaction with an increasingly 

hotter amphibolitic underplated crust. The gradual changes in the geochemical composition of 

Mt. Taranaki eruptives are a result of the long-term stability of the magmatic system. The 

preservation of similar internal conditions during the volcano’s evolution suggests that volcanic 

processes are the main driving force behind its cyclic behaviour and sedimentation. 

Although the geochemical data shows that the evolution of the magmatic system was 

not controlling the repeated failures of Mt. Taranaki, it revealed certain aspects that strongly 

support the model of cyclic growth/collapse/(re-)growth. The magmatic evolution of Mt. 

Taranaki magmas is characterised by gradual compositional changes, yet individual debris-

avalanche sample suites show geochemical differences that allow their distinction. This indicates 

that after very large sectors of the volcano had been removed by collapse, lava flows and 

pyroclastic material of a different geochemical composition rebuilt the edifice during the 

following growth phase. A subsequent failure would involve the compositionally distinct, ‘new’ 

material that was part of a completely different edifice, generating a different geochemical 

signature of the resulting debris-avalanche deposit. In contrast, overlapping compositions of 

debris-avalanche sample suites show that similar material was involved in the collapses. This 

could be the result of failures of different sectors of the volcano that removed part of the same 

edifice. Smaller collapses of similar sectors that occur within a shorter period of time most likely 

also contain clast assemblages with similar compositions. 

6.6. CONCLUSIONS 

Cyclic growth and collapse represent a natural frequency in the life of stratovolcanoes. 

This behaviour is often difficult to identify because of long time-scales of cycles or incomplete 

stratigraphic records. The cyclic evolution of Mt. Taranaki produced a repeating pattern of 

deposition in the volcaniclastic sequences of the surrounding ring-plain. The reconstruction of 

volcanic events at this example allowed the study of processes operating over the life-span of 

collapsing stratovolcanoes.  

Individual volcanic cycles may vary in detail between different volcanoes as well as 

during the life-time of a single volcano. Their characteristics are influenced by various internal 
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and external factors, including frequency and nature of collapse events, magmatic composition 

and hence style and magnitude of eruptive activity, recurrence and duration of eruptive periods, 

as well as the surrounding topography and climate conditions. 

Volcanic hazards vary strongly at different parts of the cycle since each phase generates 

distinctive types of mass-flows ranging from catastrophic debris avalanches to channelised and 

unconfined lahars. Large edifice failures and the generation of debris avalanches individually 

represent the greatest hazard at repetitively collapsing volcanoes but are usually of low frequency 

compared to more frequent eruption-related lahars during construction phases. Smaller events 

are typically confined to stream valleys while large lahars can be relatively unconfined and travel 

long distances, hence affecting wide areas.  

Edifice failures at Mt. Taranaki occurred during both warm interglacial as well as cold 

glacial periods, indicating that the timing of major collapse events was not directly related to 

global climate changes. Although major climate fluctuations did not control the frequent edifice 

collapses of Mt. Taranaki, resulting variations in the vegetation pattern, precipitation regimes and 

geomorphic setting had overprinting effects on deposit characteristics, type of volcaniclastic ring-

plain sedimentation as well as the distribution of deposits.  

The long-term stability of the magmatic system and preservation of similar internal 

conditions during the evolution of Mt. Taranaki also suggest that volcanically-driven processes, 

such as nature and magnitude of volcanic activity, rate of eruptions, edifice height and flank 

oversteepening, are the main driving force behind its cyclic behaviour and sedimentation. 
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CHAPTER 7.  

CONCLUSIONS 

7.1. CONCLUSIONS 

Volcanic activity at Mt. Taranaki has produced a surrounding volcaniclastic ring-plain 

that contains the most complete chronostratigraphic record of volcanic activity and other 

sedimentary events at this volcano. Cliff sections along the northern, western, and southern 

Taranaki coast show a cross-section through medial to distal ring-plain settings and expose 

sedimentary records of volcanic mass-flow deposits and epiclastic sediments that extend back to 

c. 200 ka. This study focused on mapping the ring-plain succession through identification and 

correlation of key units, such as widespread debris-avalanche deposits, as well as continuous soil 

and peat layers, and intercalated composite stratigraphic packages of hyperconcentrated-flow and 

debris-flow deposits. Altogether 14 debris-avalanche deposits were identified as being sourced 

from Mt. Taranaki, including five new units and four previously described deposits that were 

redefined in this study. This implies a minimum of one major slope failure on average every 13 

000 years. Several clay-rich debris flow-deposits were also recognised, which are interpreted to 

represent the distal runout of smaller, confined debris avalanches. Deposits range in volume from 

<0.1 km3 to rare exceptionally large units of >7.5 km3 and exhibit a minimum run-out distance of 

c. 26-45 km onshore and at least another 6-8 km offshore. Their lateral width in coastal cross-

sections ranges from c. 9 to 35 km with deposit thickness in medial areas (>20 km from source) 

of 2.5 to >16 m. Hyperconcentrated-flow and non-cohesive debris-flow deposits are another 

common element of the studied volcaniclastic sequences, indicating that lahars occurred 

frequently at Mt. Taranaki between collapse events. 

The exposed deposits were emplaced by a very broad spectrum of sediment-water 

flows, ranging from dry debris avalanche, highly concentrated debris flow, hyperconcentrated 

flow to dilute streamflow as well as intermediaries between these categories. These deposit types 

and lithologies contained within, were not randomly emplaced. By reconstructing the chronology 

volcanic events and other landscape-forming processes a repeating pattern of deposition was 
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recognised continuously since the known inception of Mt. Taranaki volcanism. These repeated 

sedimentary signatures were used to develop a model of cyclic volcaniclastic sedimentation for 

medial to distal areas surrounding stratovolcanoes. A generalised volcanic cycle at Mt. Taranaki 

begins after the destruction of large portions of the edifice by collapse, followed by long-term 

regeneration of the deeply scarred edifice. The early stages of re-growth are characterised by 

small-scale pyroclastic eruptions, dome-building and localised lava flows. These produce few if 

any long-runout mass-flows and hence medial areas accumulate thick paleosols of medial ash 

and/or peat, with interbedded tephra layers. With growing height of the edifice, larger mass-flows 

reach greater distances and the medial accumulation is characterised by massive sequences of 

mainly monolithologic (both pumice- or dense-andesite clast rich) debris-flow and 

hyperconcentrated-flow deposits that intercalate with tephra beds. These represent redistribution 

of voluminous near-vent explosive pyroclastic deposits or those derived from collapses of lava 

domes. Periods of quiescence separating these eruptive episodes are recorded by soil, medial ash, 

or peat accumulation, along with landscape adjustment through fluvial and aeolian processes. 

Edifice growth was ultimately limited to a possibly similar critical point at which it failed. The 

cycle is thus closed with a major sector collapse, which in medial areas is represented by clay-rich 

debris-flow and most characteristically debris-avalanche deposits. 

The new stratigraphy developed during this study identified the major debris-avalanche 

record for the older ring-plain succession. This provided a framework for sampling the older 

volcanic products of Mt. Taranaki. Up to this point, only easily accessible lavas from the present 

edifice had been sampled, limiting most studies to the rocks of only the lattermost 5% of the 

known lifespan of Mt. Taranaki volcanism. To extend geochemical studies into the early 

magmatic history of the volcano samples taken from identified debris-avalanche deposits were 

used as a series of “snap shots” into the composition of proto-edifices at the time immediately 

preceding the debris-avalanche collapse. Individual sample suites from the debris-avalanche 

deposits demonstrate a consistent pattern of evolution with time, indicating that the volcanic 

edifice was substantially destroyed and rebuilt between the major debris-avalanche events. The 

data shows that Mt. Taranaki has evolved to a high-K andesite magmatic system over the last c. 

190 ka. A progressive enrichment in whole-rock K2O concentrations and those of Large Ion 

Lithophile Elements (LILE) was observed along with a gradual shift to more evolved magmas. 

Throughout this sequence there was a constant arc-fluid component signature. The evolving 

magma characteristics imply the existence of an evolving “hot zone” (cf. Annen et al. 2006) in the 

lower crust. This was derived through repeated intrusions and underplating of mantle-derived 

melts (generated with a slab-fluid component) into and below the lower crust, gradually raising 
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the geothermal gradient. As the “hot zone” evolved, larger proportions of the underplated and 

intruded basaltic magmas were partially re-melted to generate progressively more potassic and 

LILE-enriched magmas over time. Relatively weakly fractionated basalt clasts with subdued arc 

signatures occurred only within the older sample suites and show evidence for the ability of more 

primitive magmas to rise through the crust without intense modification during the early stages 

of hot zone development beneath Mt. Taranaki. Other compositional variations of these more 

primitive compositions also indicate that there is a heterogeneous mantle source for parental Mt. 

Taranaki magmas. 

Individual debris-avalanche sample suites can be distinguished based on their 

geochemical characteristics, in particular differences in K2O and Ba contents. This suggests that 

after large sectors of the volcano had been removed by collapse, the edifice was rebuilt by new 

material with a slightly different geochemical signature before collapsing again. Major differences 

in the geochemical character of clast assemblages in comparison to previous debris-avalanche 

deposits suggest: (1) major failure resulting in removal of large sectors of the edifice and (2) 

significant time between collapses. Trace element characteristics also show a strong distinction 

between clasts within Pouakai- and Mt. Taranaki-derived debris-avalanche deposits. Lower 

contents of K2O, Rb and Ba, Zr, Rare Earth Elements (REE) and High Field Strength Elements 

(HFSE) in Pouakai samples imply there was higher degrees of partial melting and even less 

modification in the lower crustal hot zone than for early Mt. Taranaki magmas. Based on these 

distinct differences, it was demonstrated that the Mangati and Motunui Formations are the oldest 

known deposits derived from Mt. Taranaki. The emplacement of the Mangati debris-avalanche 

deposit between 190-210 ka gives a new minimum age for the commencement of eruptive 

activity at Mt. Taranaki, which is around 70 ka older than previously thought. 

Some of the magmatic trends shown in the whole-rock geochemistry are reflected in 

mineralogical differences between the oldest debris-avalanche units and the youngest eruptives at 

Mt. Taranaki. The overall composition of mineral phases in Mt. Taranaki volcanics has not 

changed significantly over the last 130 ka with the most distinct differences being related to the 

broader range of erupted magma compositions observed in the older rock suites, including more 

primitive, basaltic compositions. Clinopyroxene and hornblende compositions are consistent with 

crystallisation over a wider range of pressures and at greater depth than during later stages of 

volcanism. This reflects the immature state of the early magmatic system and eruption of more 

primitive melts with a more distinct mantle signature. As indicated by the whole-rock 

geochemistry, the lower crustal “hot zone” was significantly thinner and colder >200 000 years 

ago, allowing less interaction of melt with amphibolised, underplated material. During early stages 
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of hot zone development more extensive fractionation of high-pressure mineral phases at greater 

depth occurred. In contrast, mineral phases, such as biotite, and compositions that are produced 

during differentiation at shallower levels are rare, suggesting that late-stage crystallisation in 

zoned upper-crustal storage levels was not a significant process during the early stages of Mt. 

Taranaki volcanism. Instead, early magmas typically rose rapidly through the crust and only rarely 

stalled at shallow levels to further differentiate. The occurrence of Or-rich plagioclase in young 

Mt. Taranaki lavas and higher K2O-content in residual melts are consistent with the magmatic 

evolution reflected in whole-rock compositions and the recognised trend of increasing K2O-

contents with time. 

The geochemical data and field records combined were used to elucidate the relative 

roles of internal and external driving forces behind the volcano’s behaviour. Edifice failures at 

Mt. Taranaki occurred frequently and during both warm as well as cold periods, indicating that 

climate variations did not control the timing of major collapse events. Instead, major climate 

fluctuations had overprinting effects on deposit characteristics, type of volcaniclastic ring-plain 

sedimentation as well as the distribution of deposits. Together with the long-term stability of the 

magmatic system and preservation of similar internal conditions during the evolution of Mt. 

Taranaki, this suggests that volcanically-driven processes, such as nature and magnitude of 

volcanic activity, rate of eruptions, edifice height and flank oversteepening, were the main driving 

force behind its cyclic behaviour and sedimentation. 

It has also been recognised that cyclic growth and collapse represents a natural 

frequency in the life of stratovolcanoes worldwide. Individual cycles may vary in detail between 

different volcanoes as well as during the life-time of a single volcano. Their characteristics are 

influenced by various internal and external factors, including frequency and nature of collapse 

events, magmatic composition and hence style and magnitude of eruptive activity, recurrence and 

duration of eruptive periods, as well as the surrounding topography and climate conditions. 

Understanding the long-term cyclic nature of the stability and behaviour of stratovolcanoes 

worldwide is important in order to develop more holistic and accurate forecast of hazards, since 

the probabilities of various hazardous processes will vary greatly at different periods within the 

cycle. 
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7.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

The outcomes of this study provided important new insights into the cyclic behaviour 

of andesite stratovolcanoes such as Mt. Taranaki, most notably pointing out the sedimentary 

signatures of repeated growth and collapse and their implications for volcanic hazards. It is 

recognised that this work represents only a small step towards a more comprehensive 

understanding of volcanic behaviour, sedimentation and magmatic evolution. Upon completion 

of this study, there remain several lines of inquiry that would benefit from further, focused study. 

The following avenues of future research could help significantly improve our knowledge of 

volcanic behaviour and future risk from Mt. Taranaki and other repeatedly collapsing volcanoes: 

a) The volcaniclastic succession from west to south Taranaki has been studied in detail 

and recorded volcanic and sedimentary events were mapped and correlated. But this 

covered only one sector of the extensive ring plain surrounding the volcano. In order 

to develop a comprehensive overview of the entire volcanic history and to establish a 

more complete stratigraphic framework, ring-plain sequences in southeast and east 

Taranaki need further research. Lahar and debris-avalanche deposits that are exposed 

surficially have been identified and mapped but as was shown by the study of coastal 

cliffs in west-south Taranaki, these only represent the ‘tip of the iceberg’ and more 

units are buried. Borehole data from oil and gas companies as well as the collection 

of carefully located new cores would enable a better reconstruction of event 

magnitude and volume. These may also help to constrain the age of the known 14 

debris-avalanche events, using the radiocarbon method for younger units and also K-

Ar and Ar-Ar dates of clasts within the older units.  

b) Several studies at volcanoes worldwide focus on the factors that lead to volcanic 

instability and processes that trigger edifice failures. A better understanding of the 

processes involved in repeated collapse allows specific monitoring of these volcanoes 

and the possible identification of warning signs before a collapse happens. More 

work needs to be done on factors that lead to the instability of Mt. Taranaki and 

trigger mechanisms of past edifice failures. Also, geophysical studies and monitoring 

of the edifice using permanent tiltmeters or GPS systems may allow the recognition 

of weak zones and possible slow movements and deformations preceding collapse, 

which could prevent a major disaster in the future. 
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c) Turner (2008) identified a 1 500-2 000 year cyclic eruption frequency in the Holocene 

record of Mt. Taranaki that involved geochemically defined magma batches. Series of 

monolithologic lahar deposits in the ring plain are believed to be linked to individual 

eruption episodes and hence represent time series of individual eruption cycles. Now 

that it is recognised that the debris-avalanche clasts successfully provide an insight 

into proto Taranaki edifices, systematic sampling of the intervening deposits for 

geochemical analysis could provide important information on eruption cycles that 

represent edifice growth to complement what is known about the latest Mt. Taranaki 

edifice. Exploring geochemical trends within these series of lahar deposits would also 

allow a reconstruction of the magmatic evolution during growth phases to 

complement what is known from the debris-avalanche sample suites. 

d) The new geochemical and mineralogical data obtained during this study could 

provide the basis for further and more detailed research on long-term magma 

generation processes and subsequent crystallisation conditions within the framework 

of previous concepts, i.e. models of andesite petrogenesis by Stewart et al. (1996) and 

Price et al. (1999, 2005) and the concept of a lower crustal “hot zone” by Annen et 

al. (2006). Detailed petrography and mineral chemistry of all debris-avalanche sample 

suites samples could represent a valuable time-series to identify systematic changes in 

crystallisation conditions and origin of the volcanic rocks. Phenocryst textures 

furthermore allow the reconstruction of magmatic processes over the last 190 ka at 

Mt. Taranaki and their implications for the complex storage system in mid- to upper 

crustal levels (cf. Annen et al. 2006; Turner 2008). 

e) The method of sampling clast assemblages from debris-avalanche deposits clearly 

provided a snap-shot view of proto-edifices in this study. Hence, this could be easily 

applied to units from collapsing stratovolcanoes worldwide to provide longer views 

into the volcanic and magmatic system that are typically overlooked when 

concentrating on the youngest volcanic edifice. The insights gained into the long-

term magmatic evolution provided in this way allow important new information of 

possible subsequent magmatic processes (and implicit hazards). 
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