Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. UNSUPERVISED CLUSTERING OF Spectral Signatures in LANDSAT Imagery

by Brian C. Clement B.E. (Hons)

December 1977

A Thesis presented in partial fulfilment of the requirements for the degree of Master of Arts in Computer Science at Massey University

ABSTRACT

This thesis describes an investigation into automatic recognition of satellite imagery from the LANDSAT Project. Clustering techniques are shown to be the most suitable; of the three clustering algorithms investigated the k-means is shown to be the most effective. The need to perform edge detection on the images prior to clustering is also demonstrated. A suitable algorithm for edge detection is described.

Indexing terms: clustering, LANDSAT Satellite project, pattern recognition, Satellite data

ACKNOWLEDGEMENTS

I wish to express my thanks to my project supervisor, Mr K.J. Hopper, for his encouraging assistance during the preparation of this thesis, and to Dr. B.E. Carpenter for introducing me to this area of Artificial Intelligence.

TABLE OF CONTENTS

					1		
1	Introd	uction .			1 ** *		1
	1.1	Data Requirements				•	1
	1.2	Remote Sensing	٠	•		•	2
	1.3	LANDSAT .	•			•	4
	1.4	The Research Objective	е.			•	5
	22						
2	Patter	n Recognition	•			*	6
	2.1	General .				•	6
	2.1	Choice of a Technique	for LANDSAT	Data		٠	8
	2.3	Supervised and Unsuper	rvised Recogn	nition	۱.	•	8
	2.4	Clustering Principles	•	•		•	9
3	Curren	t Satellite Imagery Re	search	•		٠	12
	3.1	Traditional Approaches	S	•		•	12
	3.2	Important Aspects		•			14
4	Proble	m Approach .	٠	٠	<i>P</i>	٠	15
	4.1	General Data Manipula	tion				15
	4.2	Edge Detection		1.00		•	15
	4.3	Classification		٠		•	16
		4.3.1 Shared Near Ne				16	
		4.3.2 The Divisive A	pproach	•			16
		4.3.3 The K-means Al				17	
5	Genera	1 Data Manipulation					20
	5.1	File Handling				•	20
	5.2	Display Routines				•	21
	5.3	Analysis Routines					22
6	Edge D	etection .	٠	•			28
	6.1	Fuzziness .					28
	6.2	Differentiating					28
	6.3	Finding Boundaries				•	29
	6.4	Correlating Boundary	Information	•			31

7 The Algorithms Used				•	•	41
7.1	Shared Near Nei	ghbour				41
7.2	MAXFINDER - the	Divisive	Approach			42
7.3	CENTREFINDER -	the K-mear	ns Approach			44
10 10						
8 Projec	t Assessment		•	•	•	48
8.1	Practical Probl	ems		•	•	48
8.2	Boundary Points					48
8.3	Classification	•	•	•		49
8.4	Overall Success				•	49
8.5	Suggestions for	Further W	Vork		•	49
Reference	S	•	•			50
Bibliogra	phy		•	•	•	52
Annex A		•	•		•	53
Annex B		•				55
Annex C						57
Annex D						59
Annex E						61
					2	
Annex F						63
	282					
Annex G						65
	-			•	•	05
Annex H						67
innen n				•	•	07
Annov T					-	71
Annex 1		•	•			/1
Anney T						77
Annex J		10	•	•	•	,,
Annov V						81
Annex K	•		•	•	•	01
Annor I						Q /.
Annex L		•	•	•		04

-

LIST OF ILLUSTRATIONS

Figure			Page							
1	The LANDSAT Multispectral Scanner .	•	5							
2	The K-means Algorithm		18							
3a.	The output produced by ALLLEVELS for Band 7									
	showing the intensity levels recorded									
ř.	for the entire test area .	•	23							
3Ъ	Comparison of Image registration .		24							
4	The output produced by SHADES for Band 7.									
	A shaded version of fig 3a.	•	25							
5	The output produced by HISTOGRAMMER for Band 7	•	27							
6	The output produced by DISTRIBUTION/ANALYSER									
	for Bands 4 and 6 showing the correlation									
	between the two	•	27							
7	The output produced by DIFFERENTIATOR for									
	Band 7 showing the edges detected		30							
8a	Boundary points detected in Band 4 for $T = 10\%$.		32							
8Ъ	Boundary points detected in Band 5 for $T = 10\%$.		32							
8c.	Boundary points detected in Band 6 for $T = 10\%$.		33							
8d	Boundary points detected in Band 7 for $T = 10\%$.		33							
9a	Boundary points detected in Band 4 for $T = 15\%$.		34							
9Ъ	Boundary points detected in Band 5 for $T = 15\%$.		34							
9c	Boundary points detected in Band 6 for $T = 15\%$.	•	35							
9d	Boundary points detected in Band 7 for $T = 15\%$.		35							
10a	Merged boundaries for $T = 10\%$. Boundary points									
	appearing in at least two of the four files									
	(fig 8) are included.		37							
10ь	Merged boundaries for $T = 10\%$. Boundary points									
	appearing in at least three of the four file	es								
	(fig 8) are included.		37							
10c	Merged boundaries for $T = 10\%$. Only boundary									
PDI -	points appearing in all four files		14							
	(fig 8) are included.		38							

lla	Merged boundaries for $T = 15\%$. Boundary points	
	appearing in at least two of the four files	
	(fig 9) are included	39
11b	Merged boundaries for $T = 15\%$. Boundary points	
	appearing in at least three of the four files	
	(fig 9) are included	39
11c	Merged boundaries for $T = 15\%$. Only boundary points	
	appearing in all four files (fig 9) are	
	included	40
12a	Clustered output from SHAREDNN for $k = 20$, $k_{\perp} = 12$	43
12Ъ	Clustered output from SHAREDNN for $k = 20$, $k_{\perp} = 13$	43
13a	Clustered output from CENTREEINDER	46
13b	Clustered output from CENTREFINDER with boundary	40
200	points classified	46
13c	Ground truth for the test area	47
A 1	Structure diagram of ETLENAVED	E /
A.1	Structure diagram of FILEMAKER	54
B.1	Structure diagram of FLIPPER	56
C.1	Structure diagram of ALLLEVELS	58
D.1	Structure diagram of SHADES	60
E.1	Structure diagram of HISTOGRAMMER	62
F.1	Structure diagram of DISTRIBUTION/ANALYSER .	64
G.1	Structure diagram of DIFFERENTIATOR	66
H.1	Structure diagram of BOUNDARYFINDER (i) .	68
Н.2	Structure diagram of BOUNDARYFINDER (ii) .	69
Н.3	Structure diagram of BOUNDARYFINDER (iii) .	70
I.1	Structure diagram of BOUNDARYMERGER (i) .	73
I.2	Structure diagram of BOUNDARYMERGER (ii) .	74
I.3	Structure diagram of BOUNDARYMERGER (iii) .	75
I.4	Structure diagram of BOUNDARYMERGER (iv) .	76
J.1	Structure diagram of SHAREDNN (i) .	78
J.2	Structure diagram of SHAREDNN (ii) .	79
J.3	Structure diagram of SHAREDNN (iii) .	80

K.1	Structure	diagram	of	MAXFINDER (i)			82	
K.2	Structure	diagram	of	MAXFINDER (ii)	•	•	83	
L.1	Structure	diagram	of	CENTREFINDER (i)			86	
L.2	Structure	diagram	of	CENTREFINDER (ii)			87	