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ABSTRACT 

The specific three-dimensional organization of prokaryotic and eukaryotic 

genomes and its contribution to cellular functions is increasingly being recognized 

as critical.  

 

Bacterial chromosomes are highly condensed into a structure called the 

nucleoid. Despite the high degree of compaction in the nucleoid, the genome 

remains accessible to essential biological processes such as replication and 

transcription. Here I present the first high-resolution Chromosome Conformation 

Capture based molecular analysis of the spatial organization of the Escherichia coli 

nucleoid during rapid growth in rich medium and following an induced amino-acid 

starvation that promotes the stringent response. My analyses identified the 

presence of origin and terminus domains in exponentially growing cells. Moreover, 

I observe an increased number of interactions within the origin domain and 

significant clustering of SeqA binding sequences, suggesting a role for SeqA in 

clustering of newly replicated chromosomes. By contrast, “Histone-like” protein (i.e. 

Fis, IHF, H-NS) binding sites did not cluster suggesting that their role in global 

nucleoid organization does not manifest through the mediation of chromosomal 

contacts. Finally, genes that were down-regulated after induction of the stringent 

response were spatially clustered indicating that transcription in E. coli occurs at 

transcription foci. 

 

The successful progression of a cell through the cell cycle requires the temporal 

regulation of gene expression, the number and condensation levels of 

chromosomes and numerous other processes. Despite this, detailed investigations 

into how the genome structure changes through the cell cycle and how these 

changes correlate with functional changes have yet to be performed. Here I 

present the results of a high resolution study in which we used synchronized 

Fission yeast (Schizosaccharomyces pombe) cells to investigate changes in 

genome organization and transcription patterns during the cell cycle. The small 

size of the Fission yeast genome makes this organism particularly amenable to 

studies of the spatial organization of its chromosomes. I detected cell cycle 

dependent changes in connections within and between chromosomes. My results 

show that chromosomes are effectively circular throughout the cell cycle and that 

they remain connected even during the M phase, in part by the co-localization of 
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repeat elements. Furthermore, I identified the formation and disruption of 

chromosomal interactions with specific groups of genes in a cell cycle dependent 

manner, linking genome organization and cell cycle stage specific transcription 

patterns. Determining the structure and transcript levels for matched synchronized 

cells revealed: 1) that telomeres of the same chromosome co-localization 

throughout the cell cycle, effectively circularizing the chromosomes; 2) that genes 

with high transcript levels are highly connected with other genomic loci and highly 

expressed genes at specific stages of the cell cycle; 3) that interactions have 

positive and negative effects on transcript levels depending on the gene in 

question; and 4) that metaphase chromosomes assume a ‘polymer melt’ like 

structure and remain interconnected with each other. I hypothesize that the 

observed correlations between transcript levels and the formation and disruption of 

cell cycle specific chromosomal interactions, implicate genome organization in 

epigenetic inheritance and bookmarking. 

 

Over the course of mitochondrial evolution, the majority of genes required for its 

function have been transferred and integrated into nuclear chromosomes of 

eukaryotic cells. The ongoing transfer of mitochondrial DNA to the nucleus has 

been detected, but its functional significance has not been fully elucidated. To 

determine whether the recently detected interactions between the mitochondrial 

and nuclear genomes (mt-nDNA interactions) in S. cerevisiae are part of a DNA-

based communication system I investigated how the reduction in interaction 

frequency of two mt-nDNA interactions (COX1-MSY1 and Q0182-RSM7) affected 

the transcript level of the nuclear genes (MSY1 and RSM7). I found that the 

reduction in interaction frequency correlated with increases in MSY1 and RSM7 

transcript levels. To further investigate whether mt-nDNA interaction could be 

detected in other organisms and characterize their possible functional roles, I 

performed Genome Conformation Capture (GCC) on Fission yeast cell cycle 

synchronized in the G1, G2 and M phases of the cell cycle. I detected mt-nDNA 

interactions that vary in strength and number between the G1, G2 and M phases of 

the Fission yeast cell cycle. Mt-nDNA interactions formed during metaphase were 

associated with nuclear genes required for the regulation of cell growth and energy 

availability. Furthermore, mt-nDNA interactions formed during the G1 phase 

involved high efficiency, early firing replicating origins of DNA replication. 

Collectively, these results implicate the ongoing transfer of regions of the 

mitochondrial genome to the nucleus in the regulation of nuclear gene transcription 

and cell cycle progression following exit from metaphase. I propose that these 
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interactions represent an inter-organelle DNA-mediated communication 

mechanism. 
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ABBREVIATIONS 

h hour 

min minute  

s second 

mmol millimole 

temp temperature  

Rm room 

O/N overnight 

OD optical density 

nm nano-meter 

MQ milliQ 

H2O water 

µl microliters  

rpm revolutions per minute 

ºC degrees celsius 

µg micrograms 

U units 

v/v volume per volume 

w/v weight per volume 

ml milliliters 

g g-force  

Amp ampicillin 

PCR polymerase chain reaction  

V volts 

bp base pair 

Kb kilo-base pair 

Mb mega-base pair 

NTC no template control 

EM electron microscopy 

µm micro-meter 

GCC genome conformation capture  

LTR long terminal repeat 

DNA 

mtDNA 

Deoxyribonucleic Acid 

mitochondrial DNA 

nDNA nuclear DNA 

mt-nDNA mitochondrial – nuclear DNA interactions 
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3C chromosome conformation capture 

4C circular chromosome conformation capture 

5C chromosome conformation capture carbon copy 

6C combined 3C-ChIP-cloning 

ChIA-PET chromatin interaction analysis with paired-end tag 

sequencing 

G1 phase growth one phase of the cell cycle 

S phase DNA synthesis phase of the cell cycle 

G2 phase growth two phase of the cell cycle 

M phase metaphase of the cell cycle 

PE paired-end 

 




