Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

GENOMES IN SPACE AND TIME:

INSIGHTS INTO THE FUNCTIONAL THREE-DIMENSIONAL ORGANIZATION OF PROKARYOTIC AND EUKARYOTIC GENOMES IN RESPONSE TO ENVIRONMENTAL STIMULI AND CELL CYCLE PROGRESSION

A thesis presented in partial fulfilment of the requirements for the degree of

Doctorate in Philosophy In Genetics

At Massey University, Albany, New Zealand

Ralph Stefan Grand

BSc (Hons)

2014

ABSTRACT

The specific three-dimensional organization of prokaryotic and eukaryotic genomes and its contribution to cellular functions is increasingly being recognized as critical.

Bacterial chromosomes are highly condensed into a structure called the nucleoid. Despite the high degree of compaction in the nucleoid, the genome remains accessible to essential biological processes such as replication and transcription. Here I present the first high-resolution Chromosome Conformation Capture based molecular analysis of the spatial organization of the Escherichia coli nucleoid during rapid growth in rich medium and following an induced amino-acid starvation that promotes the stringent response. My analyses identified the presence of origin and terminus domains in exponentially growing cells. Moreover, I observe an increased number of interactions within the origin domain and significant clustering of SegA binding sequences, suggesting a role for SegA in clustering of newly replicated chromosomes. By contrast, "Histone-like" protein (i.e. Fis, IHF, H-NS) binding sites did not cluster suggesting that their role in global nucleoid organization does not manifest through the mediation of chromosomal contacts. Finally, genes that were down-regulated after induction of the stringent response were spatially clustered indicating that transcription in E. coli occurs at transcription foci.

The successful progression of a cell through the cell cycle requires the temporal regulation of gene expression, the number and condensation levels of chromosomes and numerous other processes. Despite this, detailed investigations into how the genome structure changes through the cell cycle and how these changes correlate with functional changes have yet to be performed. Here I present the results of a high resolution study in which we used synchronized Fission yeast (*Schizosaccharomyces pombe*) cells to investigate changes in genome organization and transcription patterns during the cell cycle. The small size of the Fission yeast genome makes this organism particularly amenable to studies of the spatial organization of its chromosomes. I detected cell cycle dependent changes in connections within and between chromosomes. My results show that chromosomes are effectively circular throughout the cell cycle and that they remain connected even during the M phase, in part by the co-localization of

repeat elements. Furthermore, I identified the formation and disruption of chromosomal interactions with specific groups of genes in a cell cycle dependent manner, linking genome organization and cell cycle stage specific transcription patterns. Determining the structure and transcript levels for matched synchronized cells revealed: 1) that telomeres of the same chromosome co-localization throughout the cell cycle, effectively circularizing the chromosomes; 2) that genes with high transcript levels are highly connected with other genomic loci and highly expressed genes at specific stages of the cell cycle; 3) that interactions have positive and negative effects on transcript levels depending on the gene in question; and 4) that metaphase chromosomes assume a 'polymer melt' like structure and remain interconnected with each other. I hypothesize that the observed correlations between transcript levels and the formation and disruption of cell cycle specific chromosomal interactions, implicate genome organization in epigenetic inheritance and bookmarking.

Over the course of mitochondrial evolution, the majority of genes required for its function have been transferred and integrated into nuclear chromosomes of eukaryotic cells. The ongoing transfer of mitochondrial DNA to the nucleus has been detected, but its functional significance has not been fully elucidated. To determine whether the recently detected interactions between the mitochondrial and nuclear genomes (mt-nDNA interactions) in S. cerevisiae are part of a DNAbased communication system I investigated how the reduction in interaction frequency of two mt-nDNA interactions (COX1-MSY1 and Q0182-RSM7) affected the transcript level of the nuclear genes (MSY1 and RSM7). I found that the reduction in interaction frequency correlated with increases in MSY1 and RSM7 transcript levels. To further investigate whether mt-nDNA interaction could be detected in other organisms and characterize their possible functional roles, I performed Genome Conformation Capture (GCC) on Fission yeast cell cycle synchronized in the G1, G2 and M phases of the cell cycle. I detected mt-nDNA interactions that vary in strength and number between the G1, G2 and M phases of the Fission yeast cell cycle. Mt-nDNA interactions formed during metaphase were associated with nuclear genes required for the regulation of cell growth and energy availability. Furthermore, mt-nDNA interactions formed during the G1 phase involved high efficiency, early firing replicating origins of DNA replication. Collectively, these results implicate the ongoing transfer of regions of the mitochondrial genome to the nucleus in the regulation of nuclear gene transcription and cell cycle progression following exit from metaphase. I propose that these

interactions represent an inter-organelle DNA-mediated communication mechanism.

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr Justin O'Sullivan for taking me on to do my PhD and for his guidance throughout. Having someone to discuss ideas with has been extremely beneficial to my development, thank you Justin. I am also grateful for the opportunities you gave me, your wisdom, continued support and constructive criticism.

Thank you to my co-supervisors Professor Rob Martienssen, Professor Paul Rainey, and Dr Austen Ganley for being there to answer my questions, discuss ideas, and for your support. Thank you also to Dr Beatrix Jones for helping me with my statistical questions and Professor Philippe Collas for accommodating me in his lab.

Thank you to all the staff and students in building 11, 12 and 14 that have come and gone over the years that I have been at Massey, in particular past and present members of the O'Sullivan group, as well as members of Austen Ganley's and Evelyn Sattlegger's group, for all your help, time, use of equipment, consultation and friendship. I could not have asked for a better bunch of encouraging and understanding people to work with.

During my PhD (and entire time at Massey University) I have had the privilege of meeting some amazing people. My laboratory buddy and partner in crime Robbie Wilson, the best lab demonstrator ever Jarod Young, Chris Rodley, Martina Dautel, Jyothsna Visweswaraiah, Saumya Agrawal, Mack Saraswat, Lutz Gehlen, Matthew Woods, and Andrew Cridge to name a few, thank you all very much for your time, knowledge and friendship. A special thanks to Lutz for teaching me how to program, it was great fun to learn and helped me extensively during my PhD. To all of those whose name is not mentioned that have helped me in some way, my apologies; thank you for your friendship and I am very appreciative of the time you took to help me out.

I would like to thank my parents and brother for their ongoing support and belief in me through the good and the bad times. Without them none of this would have been possible. Thank you.

To all my friends, thank you for being understanding on all the occasions when I could not do things because of work and being there when I had the time. Whether it was a fishing trip away for a few days, a gaze at the night sky, a beer or glass of wine, thanks you all for being my friends and supporting me throughout.

TABLE OF CONTENT

ABSTRACT	Ι
ACKNOWLEDGMENTS	V
TABLE OF CONTENT	VII
FIGURES	XIII
TABLES	XVI
ABBREVIATIONS	٢٧١
1 INTRODUCTION	2
1.1 THE THREE-DIMENSIONAL ORGANIZATION OF GENOMES1.2 THE THREE HIERARCHICAL LEVELS OF GENOME ORGANIZATION	3 4
1.2.1 THE PRIMARY LEVEL OF GENOME ORGANIZATION: THE LINEAR ARRANGEMENT OF CHROMOSOMES	4
1.2.1.1 DNA replication of circular and linear chromosomes 1.2.2 THE SECOND LEVEL OF GENOME ORGANIZATION: SUPERCOILING AND PROTEIN	7
BINDING ARE REQUIRED FOR THE COMPACTION OF CHROMOSOMES	9
1.2.2.1 Supercoiling is the primary mechanism for the secondary level organization	۱ of
bacterial genomes	9
histone proteins	11
1.2.1 THE TERTIARY LEVEL OF GENOME ORGANIZATION: GENOMES IN SPACE	12
1.2.1.2 The spatial organization of the bacterial nucleoid	14
1.2.1.3 The spatial organization of eukaryotic genomes	18
1.2.1.3.1 Metaphase chromosomes	23
1.3 GENOMES IN TIME	24
1.3.1 THE RESPONSE TO ENVIRONMENTAL STIMULI	24
1.3.2 THE RESPONSE TO CELL CYCLE PROGRESSION	24
1.4 DNA TRANSFER BETWEEN ORGANELLES	26
1.5 CENTRAL QUESTIONS	29
1.6 METHODS FOR THE STUDY OF SPATIAL ORGANIZATION	30
1.6.1 MOLECULAR BIOLOGY TECHNIQUES FOR THE IDENTIFICATION OF CHROMOSOME	
ORGANIZATION	32
1.6.1.1 Cross-Linking	32
1.6.1.2 Chromosome Conformation Capture (3C)	35
1.6.1.3 Circular Chromosome Conformation Capture (4C)	36
1.6.1.4 Chromosome Conformation Capture Carbon-Copy (5C)	37
1.0.2 GLOBAL IDENTIFICATION OF DINA INTERACTIONS	3/
1.0.2.1 Genome Conformation Capture (GCC)	38

VII

6.2.2 Hi-C 39 6.3 METHODS TO LOCALIZE PROTEINS AT CHROMOSOME INTERACTION SITES 40 6.3.1 Combined 3C-ChIP-Cloning (6C) 40 6.3.2 Chromatin Interaction Analysis Using Paired-End Tag Sequencing (Chia-PET) 42 6.4 What DO THE INTERACTIONS CAPTURED REPRESENT 42 7 GOALS OF THE THESIS 43 * GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA COL/ CHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 * INTRODUCTION 47 * CRESULTS 49 * 2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 52 * 2.2 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 * 2.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 * 2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 * 2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 61 * 2.1 INTERACTION CONTRIBUTES TO NUCLEOID ORGANIZATION OF THE 67 * 3.3 WHAT ROLE DOES THE MATSS-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 * 3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID ORGANIZATION? 71 * 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 * 4.6 ONCLUSION
6.3 METHODS TO LOCALIZE PROTEINS AT CHROMOSOME INTERACTION SITES 40 6.3.1 Combined 3C-ChIP-Cloning (6C) 40 6.3.2 Chromatin Interaction Analysis Using Paired-End Tag Sequencing (Chia-PET) 42 6.4 What DO THE INTERACTIONS CAPTURED REPRESENT 42 7 GOALS OF THE THESIS 43 * GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA CUI CHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 * INTRODUCTION 47 * RESULTS 49 * 2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 52 * 2.1 INTRACTION WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 * 2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 * 2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 61 * MATP AND SEQA BINDING SHX TREATMENT EXIST IN DIFFERENT 62 * 3.0 SECUSSION 62 * 3.1 IST HE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 * 3.2 REPLICATION CONTRIBUTES TO NUCLEOID
6.3.1 Combined 3C-ChIP-Cloning (6C) 40 6.3.2 Chromatin Interaction Analysis Using Paired-End Tag Sequencing (Chia-PET) 42 6.4 What Do THE INTERACTIONS CAPTURED REPRESENT 42 7. GOALS OF THE THESIS 43 * GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA COL/ CHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 *1 INTRODUCTION 47 *2 RESULTS 49 *2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 51 *2.2.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND *2.1 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE *4.1 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE *4.1 STRAINANT CONFIRMING FUNCTIONAL COMPARTMENTALIZATION OF THE *4.1 STRAINS AND GROWTH REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT *4.1 STRAINS
6.3.2 Chromatin Interaction Analysis Using Paired-End Tag Sequencing (Chia-PET) 42 6.4 What Do THE INTERACTIONS CAPTURED REPRESENT 42 7 GOALS OF THE THESIS 43 * GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA 42 COL/ CHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 * Introduction 47 * RESULTS 49 * 2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 51 * 2.2 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 * 2.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 * 2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 * 2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 57 * AINTER-OR INTER-NAP BINDING FUNCTIONAL COMPARTMENTALIZATION OF THE 60 * AINTER-OR INTER-NAP BINDING FUNCTIONAL COMPARTMENTALIZATION OF THE 60 * AINTER-OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 * AINTER-OR INTER-NAP BINDING FUNCTIONAL COMPARTMENTA
42 6.4 WHAT DO THE INTERACTIONS CAPTURED REPRESENT 42 7 GOALS OF THE THESIS 43 2. GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA 43 2. GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA 43 2. GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA 43 2. GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA 43 2. I THE CONFORMATION 46 2. I INTRODUCTION 47 2. RESULTS 49 2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE E. COL/ NUCLEOID 51 2.2.1 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 2.3 CLUSTERING OF MATP AND SEQA BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 2.2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 60 2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 61 3.1 IS THE E. COL/ NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 3.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 DO "HISTONE-LIKE" NAPS PLAY A RO
6.4 WHAT DO THE INTERACTIONS CAPTURED REPRESENT 42 7 GOALS OF THE THESIS 43 2. GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA 41 COLI CHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 46 4.1 INTRODUCTION 47 2.2 RESULTS 49 2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 51 2.2.1 NTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 2.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 2.4.1 NTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 61 2.3 DISCUSSION 62 3.3 DISCUSSION 66 3.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID ORGANIZATION? 71 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID? 72 3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 3.8 CONCLUSION 73 3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN NUCLEOI
.7 GOALS OF THE THESIS 43 2 GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA COL/ CHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 2.1 INTRODUCTION 2 RESULTS 2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 51 2.2.1 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 2.3.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 2.2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 50 SIGOBAL ORGANIZATION OF THE <i>E. COLI</i> NUCLEOID. 60 2.3.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT PATIAL ENVIRONMENTS CONFIRMING FUNCTIONAL COMPARTMENTALIZATION OF THE 62 3.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 3.3 WHAT ROLE DOES THE MATSS-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 DO "HISTONE-LIKE "NAPS PLAY A ROLE IN GLOBAL NUCLEOID ORGANIZATION? 71 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 3.6
GENOME CONFORMATION CAPTURE REVEALS THAT THE ESCHERICHIA COL/ CHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 1 INTRODUCTION 47 2 Results 49 2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 51 2.2 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 2.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 60 2.3 DISCUSSION 66 3.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 3.3 WHAT ROLE DOES THE MATSS-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE? 70 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID? 72 3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 3.8 CONCLUSION 73 4 MATERIALS AND METHODS 74 4.1 STRAINS AND GROWT
COLICHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 COLICHROMOSOME IS ORGANIZED BY REPLICATION AND TRANSCRIPTION 46 C.1 INTRODUCTION 47 C.2 RESULTS 49 C.2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 51 C.2.2 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 C.2.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 C.2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 C.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 60 C.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 62 C.3 DISCUSSION 62 C.3.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 C.3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 C.3.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 C.3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID ORGANIZATION? 71 C.3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 C.3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID? 72 C.3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 C.3.8 C
1. INTRODUCTION 47 2. RESULTS 49 2.1. ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 51 2.2.2 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 2.3. CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 2.4. INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 50 Science of the contract of the content of the contract of the contract of the contract of the contra
INTRODUCTION472 RESULTS492.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID512.2.1 NTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION522.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND572.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE602.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT602.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT623 DISCUSSION663.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE?673.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.683.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?703.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?703.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION?713.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID?723.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK733.8 CONCLUSION734 MATERIALS AND METHODS744.1 STRAINS AND GROWTH CONDITIONS74
22 RESULTS492.2.1ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID512.2.2INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION522.3CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND572.4INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE602.5GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT602.4INTRA- OR INTER-NAP BINDING FUNCTIONAL COMPARTMENTALIZATION OF THE623.5GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT623.1IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE?673.2REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.683.3WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?703.4DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?703.5DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION?713.6DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID?723.7EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK733.8CONCLUSION734MATERIALS AND METHODS744.1STRAINS AND GROWTH CONDITIONS74
2.1 ORIGIN AND TERMINUS DOMAINS EXIST WITHIN THE <i>E. COLI</i> NUCLEOID 51 2.2.2 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 2.3.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 2.2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 2.2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 60 2.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 60 2.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 62 3.3 DISCUSSION 62 3.3 DISCUSSION 62 3.3 WHAT ROLE DOES THE MATSS-10 LOOP PLAY IN NUCLEOID ORGANIZATION OF THE 67 3.3.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 3.3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 3.3.3 WHAT ROLE DOES THE MATSS-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID ORGANIZATION? 71 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 3.6 DOES A NUCLEOLUS-LIKE
2.2.2 INTERACTIONS WITHIN THE ORI AND TER REGIONS ARE LINKED TO REPLICATION 52 2.3.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND 57 2.2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE 50 3.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 60 2.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT 62 3.3 DISCUSSION 62 3.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 3.3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 3.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE? 70 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID? 72 3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 3.8 CONCLUSION 73 4 MATERIALS AND METHODS 74 4.1 STRAINS AND GROWTH CONDITIONS 74
2.3 CLUSTERING OF MATP AND SEQA BINDING SITES LINK NUCLEOID STRUCTURE AND REPLICATION 57 2.2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE SLOBAL ORGANIZATION OF THE <i>E. COLI</i> NUCLEOID. 60 2.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT PATIAL ENVIRONMENTS CONFIRMING FUNCTIONAL COMPARTMENTALIZATION OF THE 62 3.3 DISCUSSION 62 3.3 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 3.3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 3.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE? 70 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID? 72 3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 3.8 CONCLUSION 73 4 MATERIALS AND METHODS 74 4.1 STRAINS AND GROWTH CONDITIONS 74
REPLICATION572.2.4INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE BLOBAL ORGANIZATION OF THE E. COLI NUCLEOID.602.2.5GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT IPATIAL ENVIRONMENTS CONFIRMING FUNCTIONAL COMPARTMENTALIZATION OF THE IUCLEOID.623.3DISCUSSION663.1IS THE E. COLI NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE?673.2REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.683.3WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?703.4DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?703.5DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION?713.6DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE E. COLI NUCLEOID?723.7EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK73.4MATERIALS AND METHODS74.4.1STRAINS AND GROWTH CONDITIONS74
2.2.4 INTRA- OR INTER-NAP BINDING SITE CLUSTERING DOES NOT CONTRIBUTE TO THE SLOBAL ORGANIZATION OF THE <i>E. COLI</i> NUCLEOID. 60 2.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT PATIAL ENVIRONMENTS CONFIRMING FUNCTIONAL COMPARTMENTALIZATION OF THE 62 3.3 DISCUSSION 62 3.3 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 3.3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 3.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 D0 "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE? 70 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID? 72 3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 3.8 CONCLUSION 73 .4 MATERIALS AND METHODS 74 .4.1 STRAINS AND GROWTH CONDITIONS 74
GLOBAL ORGANIZATION OF THE <i>E. COLI</i> NUCLEOID.602.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT61SPATIAL ENVIRONMENTS CONFIRMING FUNCTIONAL COMPARTMENTALIZATION OF THE623.3 DISCUSSION663.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE?673.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.683.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?703.4 Do "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?703.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION?713.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID?723.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK733.8 CONCLUSION744 MATERIALS AND METHODS74
2.2.5 GENES UP OR DOWN REGULATED FOLLOWING SHX TREATMENT EXIST IN DIFFERENT SPATIAL ENVIRONMENTS CONFIRMING FUNCTIONAL COMPARTMENTALIZATION OF THE IUCLEOID. 62 3.3 DISCUSSION 66 3.3.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE? 67 3.3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA. 68 3.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION? 70 3.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE? 70 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID? 72 3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 3.8 CONCLUSION 73 .4 MATERIALS AND METHODS 74 .4.1 STRAINS AND GROWTH CONDITIONS 74
PATIAL ENVIRONMENTS CONFIRMING FUNCTIONAL COMPARTMENTALIZATION OF THEIUCLEOID.623 DISCUSSION663.1 IS THE E. COLI NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE?673.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.683.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?703.4 DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?703.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION?713.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE E. COLI NUCLEOID?723.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK733.8 CONCLUSION734 MATERIALS AND METHODS74
IUCLEOID.62 2.3 DISCUSSION 66 3.1 IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE?67 3.2 REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.68 3.3 WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?70 3.4 Do "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?70 3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN GLOBAL NUCLEOID ORGANIZATION?71 3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID?72 3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK73 3.8 CONCLUSION73 4 MATERIALS AND METHODS74
662.3.1IS THE <i>E. COLI</i> NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE?672.3.2REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.682.3.3WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?702.3.4DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?702.3.5DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION?712.3.6DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID?722.3.7EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK733.8CONCLUSION73.4MATERIALS AND METHODS74.4.1STRAINS AND GROWTH CONDITIONS74
2.3.1IS THE E. COLI NUCLEOID SHAPED AS A SAUSAGE OR ROSETTE?672.3.2REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.682.3.3WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?702.3.4DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?702.3.5DO TRANSCRIPTION FOCI HAVE A ROLE IN GLOBAL NUCLEOID ORGANIZATION?712.3.6DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE E. COLI NUCLEOID?722.3.7EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK733.8CONCLUSION73.4MATERIALS AND METHODS74.4.1STRAINS AND GROWTH CONDITIONS74
2.3.2REPLICATION CONTRIBUTES TO NUCLEOID ORGANIZATION THROUGH SEQA.682.3.3WHAT ROLE DOES THE MATS5-10 LOOP PLAY IN NUCLEOID ORGANIZATION?702.3.4Do "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?702.3.5DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION?712.3.6DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID?722.3.7EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK733.8CONCLUSION734MATERIALS AND METHODS744.1STRAINS AND GROWTH CONDITIONS74
3.3WHAT ROLE DOES THE MATSS-TO LOOP PLAY IN NUCLEOID ORGANIZATION?703.4DO "HISTONE-LIKE" NAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE?703.5DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION?713.6DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID?723.7EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK733.8CONCLUSION734MATERIALS AND METHODS744.1STRAINS AND GROWTH CONDITIONS74
2.3.4 DO HISTONE-LIKE INAPS PLAY A ROLE IN GLOBAL NUCLEOID STRUCTURE? 70 2.3.5 DO TRANSCRIPTION FOCI HAVE A ROLE IN NUCLEOID ORGANIZATION? 71 2.3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE <i>E. COLI</i> NUCLEOID? 72 2.3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 2.3.8 CONCLUSION 73 4 MATERIALS AND METHODS 74 .4.1 STRAINS AND GROWTH CONDITIONS 74
2.3.6 DOES A NUCLEOLUS-LIKE STRUCTURE FORM WITHIN THE E. COLINUCLEOID? 72 2.3.7 EPISTATIC INTERACTIONS AND THE CHROMOSOME INTERACTION NETWORK 73 2.3.8 CONCLUSION 73 3.4 MATERIALS AND METHODS 74 .4.1 STRAINS AND GROWTH CONDITIONS 74
A.3.8 CONCLUSION732.4 MATERIALS AND METHODS742.4.1 Strains and growth conditions74
.4 MATERIALS AND METHODS 74 .4.1 STRAINS AND GROWTH CONDITIONS 74
.4.1 STRAINS AND GROWTH CONDITIONS 74
$\frac{14.2}{2}$
4.5 FRODUCTION OF EXTERNAL LIGATION CONTROLS FOR GCC LIBRARY PREPARATION / 5
4.5 GENOME CONFORMATION CAPTURE NETWORK ASSEMBLT, EFFECTS OF SAMPLE
24.6 Olymptication of the effects of RAP-coding sequencing and Riological
277
2 4 7 FILTERING BASED ON LIGATION CONTROLS 78
4.8 COLLECTOR'S CURVE 79
4.9 ANALYSIS OF LOOP SIZE AND INTERACTING FRAGMENT DISTRIBUTIONS 80
4.10 INTERACTION FREQUENCY VERSUS DISTANCE FROM THE ORIGIN OF REPLICATION 81

2.4.13 GENE ONTOLOGY (GO) TERM ENRICHMENT ANALYSIS OF THE SIGNIFICANTLY U	2
AND DOWN REGULATED GENES	82
2.4.14 CORRELATING TRANSCRIPTION LEVEL WITH INTERACTION FREQUENCY	82
2.4.15 TRANSCRIPTION REGULONS	83
2.4.16 GC CONTENT AND TRANSCRIPTION LEVELS	83
2.4.17 MATS, SEQA, SLMA AND NAP CLUSTERING ANALYSES	83
2.4.18 INTERACTIONS AND CLUSTERING OF GENES THAT SIGNIFICANTLY CHANGE THEIF	2
EXPRESSION LEVEL UPON SHX TREATMENT	84
2.5 DATA ACCESS	84
2.6 FUNDING	84

3 GLOBAL ANALYSES OF CELL CYCLE DEPENDENT CHANGES IN FISSION YEAST GENOME ORGANIZATION REVEAL CORRELATIONS WITH ALTERATIONS IN TRANSCRIPT LEVELS 85

3.1 lı	NTRODUCTION	86
3.2 F	RESULTS	88
3.2.1	S. POMBE GENOME ORGANIZATION CHANGES THROUGHOUT THE CELL CYCLE	88
3.2.2	CHANGES IN INTERACTIONS BETWEEN REPEAT CONTAINING GENOMIC REGIONS	
CONTR	RIBUTE TO CELL CYCLE SPECIFIC GENOME ORGANIZATION AND GENE EXPRESSION	96
3.2.3	CELL CYCLE DEPENDENT INTERACTIONS ARE NOT JUST ABOUT GENE REGULATION	1100
3.2.4	GENES WITH HIGH TRANSCRIPT LEVELS THROUGHOUT THE CELL CYCLE ARE	
ASSOC	CIATED WITH A HIGH PROPORTION OF INTER-CHROMOSOMAL CO-LOCALIZATION.	105
3.2.5	Genes differentially regulated during the $G1-G2-M$ cell cycle phases of the G1-G2-M cell cycle phases of the G1-G2-M cycle phases of the G1-G2-M cell cycle phases of the G1-G2-M cell cycle phases of the G1-G2-M cycle phases of the G1-G2-M cell cycle phases of the G1-G2-M cell cycle phases of the G1-G2-M cycle phases of the G1-G2-M cycle phases of the G1-G2-M cell cycle phases of the G1-G2-M cycle phases of the G1-G2-M cell cycle phases of t	ε
TRANS	ITIONS WERE LINEARLY AND SPATIALLY CO-LOCALIZED	110
3.3 C	DISCUSSION	114
3.4 C	Conclusion	117
3.5 N	ATERIALS AND METHODS	118
3.5.1	STRAINS, GROWTH CONDITIONS AND SYNCHRONIZATION	118
3.5.2	SYNCHRONIZATION EFFICIENCY	118
3.5.3	CHROMATIN ISOLATION FOR GENOME CONFORMATION CAPTURE (GCC)	119
3.5.4	PRODUCTION OF EXTERNAL LIGATION CONTROLS FOR GCC LIBRARY PREPARATIO	N
		120
3.5.5	NETWORK ASSEMBLY	121
3.5.6	SIGNIFICANCE CUT-OFF CALCULATIONS	121
3.5.7	COLLECTOR'S CURVE	122
3.5.8	HEAT MAPS	122
3.5.10	RNA EXTRACTION	123
3.5.11	TRANSCRIPTOME ANALYSIS	123
3.5.12	THE CHROMOSOME DISTRIBUTION OF GENES WITH HIGH, LOW, AND DIFFERENTIA	L
TRANS	CRIPT LEVELS	124
3.5.13	LOOP LENGTHS OF INTERACTIONS WITHIN CHROMOSOMES	124
3.5.14	THE DETERMINATION OF GENOME CONNECTIVITY AND CO-LOCALIZATION	
(CLUST	TERING) LEVELS	125
3.5.15	GENE ONTOLOGY (GO) ANALYSIS	125

3.5.16 EXTRACTING GENES ASSOCIATED WITH DNA INTERACTIONS FOR GO AND	
TRANSCRIPTION OVERLAP ANALYSES	125
3.5.17 DETERMINING THE LIKELIHOOD OF ASSOCIATION WITH SPECIFIC INTERACTION	ONS 126
4 MITOCHONDRIAL-NUCLEAR DNA INTERACTIONS CONTRIBUTE REGULATION OF NUCLEAR TRANSCRIPT LEVELS AND THE REGULATION OF REGULATION	ΓΟ THE ΓΙΟΝ OF 127
4.1 INTRODUCTION	129
4.2 RESULTS 4.2.1 MT-NDNA INTEDACTIONS CONTRIBUTE TO THE DECLIFATION OF NUCLEAR	152
TRANSCRIPT LEVELS AS RAPT OF THE INTER-ORGANELLE COMMUNICATION SYSTEM	137
4.2.2 MT-NDNA INTERACTIONS VARY THROUGHOUT THE S. POMBE CELL CYCLE	136
4.2.3 MT-NDNA INTERACTIONS ARE NOT ENRICHED FOR NUCLEAR ENCODED	190
MITOCHONDRIAL GENES.	142
4.2.4 MT-NDNA INTERACTIONS SPECIFICALLY FORMED DURING METAPHASE OCCU	JR WITH
GENES REQUIRED FOR CELL GROWTH AND DNA SYNTHESIS	144
4.2.5 G1 PHASE MT-NDNA INTERACTIONS ARE ASSOCIATED WITH HIGH EFFICIENC	Y, EARLY
REPLICATING ORIGINS OF DNA REPLICATION	, 149
4.3 DISCUSSION	152
4.3.1 MT-NDNA INTERACTIONS REGULATE NUCLEAR ENCODED GENES IN S. CERE	VISIAE152
4.3.2 MT-NDNA INTERACTIONS DETECTED AT SPECIFIC PHASES OF THE S. POMBE	CELL
CYCLE ARE IMPLICATED IN THE ESTABLISHMENT OF TRANSCRIPTION AND INITIATING	DNA
REPLICATION	153
4.4 MATERIALS AND METHODS	156
4.4.1 STRAINS AND GROWTH CONDITIONS	156
4.4.1.1 Saccharomyces cerevisiae	156
4.4.1.3 Schizosaccharomyces pombe	157
4.4.2 HARVESTING CELLS AND CHROMATIN PREPARATION	157
4.4.3 CHROMOSOME CONFORMATION CAPTURE (3C) SAMPLE PREPARATION	157
4.4.4 QUANTITATIVE 3C ANALYSES	158
4.4.5 RNA EXTRACTION	158
4.4.6 QUANTITATIVE REVERSE TRANSCRIPTION-PCR	159
4.4.7 THE GENERATION OF <i>S. POMBE</i> DATA	159
4.4.8 SIGNIFICANCE CUT-OFF CALCULATIONS	159
4.4.9 EXTRACTING NUCLEAR GENES ASSOCIATED WITH MT-NDNA INTERACTIONS	FOR GO
AND TRANSCRIPTION ANALYSES	160
4.4.10 DETERMINING IF NUCLEAR ENCODED GENE SETS ASSOCIATED WITH MT-ND	NA
INTERACTIONS WERE DETECTED IN SPECIFIC TRANSCRIPTION DATA SETS	160
4.4.11 DETERMINING WHETHER NUCLEAR RESTRICTION FRAGMENTS INVOLVED IN	MT-
NDNA INTERACTIONS OVERLAP WITH NUCLEAR ENCODED MITOCHONDRIAL GENES A	
SITES	161
5 DISCUSSION AND FUTURE DIRECTIONS	163
5.1 CONSERVED AND STRUCTURAL VS DYNAMIC AND FUNCTIONAL	165

170
171
175
176
178
IDRIAL
178
179
IONS 180
181
183
212
239
253
264

FIGURES

Figure 1.1. Nuclear architecture is functionally linked to the organization and sorting of
regulatory information5
Figure 1.2. DNA in eukaryotic cells is wound around nucleosomes that interact to form
a chromatin fibre
Figure 1.3. Molecular methods for the detection of chromosomal interactions. Refer to
footnote for the figure legend
Figure 2.1. Ori and Ter domains are present within the <i>E. coli</i> nucleoid
Figure 2.2. There is a reduction in the number of long distance interactions in the SHX
treated nucleoids
Figure 2.3 Origin proximal interactions are more frequently detected 54
Figure 2.4 There is an origin preferential reduction in the number of partners each
restriction fragment interacts with in the SHX treated cells
Figure 2.5. Binding sites for nucleoid associated proteins MatP and SegA exhibit
differing degrees of spatial clustering within the exponential and SHX treated E. coli
Figure 2.6 Apportated gapes with transcripts that were up (644 gapes) or down (687
appes) regulated following SHX treatment existed in different spatial environments
Defer to feetnete, for figure logend
Figure 2.7. Conce whose transcript level changes upon SHX treatment did not
entrolete with generating CC content and the rew transcript levels did not correlate with
interaction fraguency
Figure 2.0. Creatial model of exponential phase publication are primation in F and i
Figure 2.8. Spatial model of exponential phase nucleoid organization in <i>E. coll.</i>
Figure 2.9. Interactions attributed to H-NS clustering identified by Wang et al. 2011
were confirmed as occurring between A) gadA:gadB and B) aceA:yddB (indicated by
the grey bars linking the ORFs (black boxes))
Figure 2.10. Biological replicates of the E. coli interaction networks were highly
correlated at the Hhal restriction fragment level
Figure 2.11. A collectors curve was generated to determine the level of saturation of
Interaction detection
Figure 3.1. The spatial organization of the <i>S. pombe</i> genome changes throughout the
cell cycle. Refer to footnote for figure legend
Figure 3.2. Correlation plots of <i>S. pombe</i> interaction networks for individual biological
replicates and for each cell cycle phase
Figure 3.3. The number of unique interactions detected was not fully saturated
Figure 3.4. There is a marked increase in the number of within chromosome
interactions with a loop length of up to ~5Kb in M phase chromosomes
Figure 3.5. Interactions within chromosomes were predominantly shared by the three
cell cycle phases, while interactions between chromosomes were largely cell cycle
specific
Figure 3.6. All three chromosomes were circularized throughout the cell cycle
Figure 3.7. Centromere clustering was observed in heat maps of interactions involving
repetitive loci. Moreover, repeat regions appear to demarcate the genome
Figure 3.8. Repeat elements contribute to the formation of cell cycle specific genome
organization

Figure 3.9. Co-localisation between LTR elements occurred predomenantly between
chromosomes or LTR elements that were > 50 Kb apart on the same chromosome99
Figure 3.10. Genes that are differentially regulated during the G2 – M – G1 cell cycle
transitions are overrepresented within interactions that form during this period of the
cell cvcle. Refer to footnote for figure legend
Figure 3.11. Description of gene sets used for GO and overlap analysis
Figure 3.12. Genes with high transcript levels are highly conserved throughtout the cell
cvcle while low transcript level genes are not
Figure 3.13. Genes with high transcript levels are more highly connected to the
genome and co-localize more frequently than low transcript level genes
Figure 3.14. The percentage of inter- compared to intra-chromosomal co-localization
for genes with high, low and differential transcript levels
Figure 3.15. Genes with high transcript levels were non-randomly distributed across
one or more chromosomes at each stage of the cell cycle
Figure 3.16. Genes that undergo differential expression during cell cycle phase
transitions are found in specific interaction environments and co-localize in a cell cycle
specific way
Figure 3.17. Cell cycle specific differentially regulated genes are non-randomly
distributed across the linear chromosomal sequences
Figure 3.18. The level of cell cycle phase synchronization was calculated using the
septation index of <i>S. pombe</i> cells before and after synchronization119
Figure 4.1. Mt-nDNA interactions require active mitochondrial reverse transcriptase
machinery134
Figure 4.2. Knocking out mitochondrial encoded reverse transcriptase activity results in
increased transcript levels of nuclear genes that are involved in mt-nDNA interactions.
Figure 4.3. Deletion of <i>MRS1</i> (BY4741 $\Delta mrs1$), a nuclear gene involved in splicing
mitochondrial type-I introns, has no significant effect on the frequency of the COX1-
MSY1 interaction in glucose grown yeast cells.
Figure 4.4. Mitochondrial interaction networks for the biological replicates were highly
Correlated at the Asel restriction fragment level
Figure 4.5. Mit-nDINA Interactions are cell cycle dependent
Figure 4.6. Mito-nuclear DNA interactions are largely specific to each cell cycle phase.
By contrast, a large number of within mitochondrial interactions were unique to the M
phase of the cell cycle
interact with other mitochondrial fragments and M phase mitochondrial genemes are
the most highly connected
Figure 4.8. Mt nDNA interactions do not preferentially involve nuclear encoded
mitochondrial genes
Figure 4.9. Nuclear genes associated with mt-nDNA interactions formed specifically
during metaphase are enriched in biological functions related to genomic DNA
synthesis and energy regulation 145
Figure 4.10. Mt-nDNA interactions that formed specifically during metaphase were
associated with highly transcribed nuclear genes required for ribosome function
Figure 4.11. Mt-nDNA interactions do not globally correlate with the differential
regulation of nuclear genes

Figure 4.12. G1 phase mt-nDNA interactions are enriched for high efficiency, early	
replicating autonomously replicating sequences (origins of replication)	150
Figure 4.13. Three mitochondrial fragments are involved in the majority of the	
interactions with ARS sites during the G1 phase of the cell cycle	151

TABLES

Table 1.1 Advantages and disadvantages of the different molecular methods for the	
detection of chromosomal interactions 4	1
Table 2.1. A summary of <i>E. coli</i> chromosomal interactions	52
Table 2.2. MatS loci were highly clustered in exponentially growing cells	8
Table 2.3. SeqA sites cluster within the E. coli nucleoid. Refer to footnote for the table	÷
legend	;9
Table 2.4. SImA is highly connected with the genome but not with other SImA sites6	51
Table 2.5. H-NS, IHF and Fis sites do not exhibit spatial clustering	51
Table 2.6. Genes up and down regulated in response to SHX treatment were enriched	ł
in specific Gene Ontology terms	53
Table 2.7. Genes that were highly expressed in exponential (exp) cells became weakly	y
expressed in SHX treated cells and vice versa	57
Table 2.8 Escherichia coli strain used in this study7	'4
Table 2.9. PCR primers used to generate the ligation controls used in this study	′5
Table 2.10. Barcoding, sequencing lane and biological replicates did not affect the	
correlation between samples7	'8
Table 2.11. The number of annotated <i>E. coli</i> genes that were significantly up or down	
regulated in response to SHX treatment	32
Table 3.1. A large proportion of interactions detected at each phase of the cell cycle	
were within chromosomes9	12
Table 3.2. The restriction fragments involved in a high frequency interaction detected	
within chromosome II both contained LTR elements9	19
Table 3.3. The absence of the interaction between two LTR elements in chromosome	II
in G2 phase was associated with the up regulation of an overlapping gene9	19
Table 3.4. The number of genes that were significantly differentially regulated during	
each S. pombe cell cycle transition10)4
Table 3.5. Table highlighting the number of genes that had the highest (top 5%) and	
lowest (bottom 5%) transcript levels at each cell cycle phase and whether they were	
differentially regulated during cell cycle transitions10)4
Table 3.6. Schizosaccharomyces pombe strains used in this study.	.8
Table 3.7. An example calculation of the cell culture synchronization efficiency11	.9
Table 3.8. Ligation controls used in this study	21
Table 4.1. The number of interactions within the mitochondrial genome and between	
the mitochondrial and nuclear genomes varies at different phases of the S. pombe cell	I
cycle14	0،
Table 4.2. The numbers of <i>S. pombe</i> genes within the highest, lowest, and differential	
transcript levels at each stage of the cell cycle14	4
Table 4.3. Saccharomyces cerevisiae strains used in this study	6
Table 4.4. Primers and probes used in this study15	8

ABBREVIATIONS

h	hour
min	minute
S	second
mmol	millimole
temp	temperature
Rm	room
O/N	overnight
OD	optical density
nm	nano-meter
MQ	milliQ
H ₂ O	water
μΙ	microliters
rpm	revolutions per minute
°C	degrees celsius
μg	micrograms
U	units
v/v	volume per volume
w/v	weight per volume
ml	milliliters
g	g-force
Amp	ampicillin
PCR	polymerase chain reaction
V	volts
bp	base pair
Kb	kilo-base pair
Mb	mega-base pair
NTC	no template control
EM	electron microscopy
μm	micro-meter
GCC	genome conformation capture
LTR	long terminal repeat
DNA	Deoxyribonucleic Acid
mtDNA	mitochondrial DNA
nDNA	nuclear DNA
mt-nDNA	mitochondrial – nuclear DNA interactions

3C	chromosome conformation capture
4C	circular chromosome conformation capture
5C	chromosome conformation capture carbon copy
6C	combined 3C-ChIP-cloning
ChIA-PET	chromatin interaction analysis with paired-end tag
	sequencing
G1 phase	growth one phase of the cell cycle
S phase	DNA synthesis phase of the cell cycle
G2 phase	growth two phase of the cell cycle
M phase	metaphase of the cell cycle
PE	paired-end