Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

An Investigation into the Effects of Omega-3 Fatty Acids on Bone Resorption in the Female Ovariectomised Rat

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Science In Nutritional Science

At Massey University, Turitea, Palmerston North, New Zealand

Raewyn Carol Poulsen 2004

Abstract

Estrogen deficiency results in disruption of the normal bone remodeling cycle leading to a loss of bone mineral and, in many cases, the development of osteoporosis. Various studies have demonstrated a beneficial effect of essential fatty acids (EFAs) in reducing the loss of bone density as a consequence of estrogen deficiency. The aim of the present study was to examine the specific effects of the n-3 EFA, eicosopentaenoic acid (EPA) on bone density and strength in ovariectomised female rats.

60 Sprague-Dawley rats were randomized into four groups and either ovariectomised (n=45) or sham operated (n=15). Ovariectomised animals were fed calcium adequate diets containing either corn oil (OVX control, n=15), corn oil + 0.1g/kg body weight EPA (low dose, n=15) or corn oil + 1.0g/kg body weight EPA (high dose, n=15) for a period of nine weeks. Sham rats were fed the corn oil diet as per the OVX control group. Urinary calcium and phosphate excretion, serum type 1 collagen c-telopeptide concentration, bone density, bone ash and bone breaking strength were measured. Plasma fatty acid composition and serum concentrations of 25 hydroxyvitamin D₃ were also determined.

Femur bone density was significantly lower in the high dose group compared to sham, OVX control and low dose EPA groups (p<0.001, p=0.0096 and p=0.0047 respectively). Low dose EPA supplementation had no significant effect on bone density. No significant differences in urinary calcium or phosphate concentrations, serum concentrations of type-1 collagen c-telopeptide or bone breaking strength were evident with either dose of EPA compared to unsupplemented, ovariectomised controls. EPA supplementation resulted in significant decreases in the levels of n-6 EFAs and increases in the levels of n-3 EFAs except docosahexaenoic acid in plasma lipids. Both low and high dose EPA supplementation led to significant increases in serum concentration of 25(OH) vitamin D₃.

In conclusion 1.0g EPA/kg body weight had a detrimental effect on bone density in ovariectomised rats. It is proposed that high intake of the highly unsaturated EPA resulted in significant lipid peroxidation. This in turn disrupted membrane structure and inhibited

intestinal calcium absorption thereby stimulating PTH-mediated bone resorption. A potential role for n-3 EFAs in the regulation of vitamin D activity is also outlined.

Acknowledgements

I wish to express my sincere appreciation to the following people who have not only made the development and presentation of this thesis possible but also enjoyable:

- My supervisor, Assoc. Prof. Marlena Kruger who so freely gave her time and energy and shared her expertise.
- The Human Nutrition Cluster staff who willingly shared their wealth of knowledge, sacrificed their time and provided friendship and support throughout the year. In particular:
 - Mrs Gabrielle (Gabby) Plimmer for her patient teaching
 - Mrs Kim Wylie who willingly tackled all the tedious jobs
 - Mrs Anne Broomfield who I'll be forever grateful to for helping with the DEXA scans
 - Mrs Chris Booth who could always be counted on for anything, anytime, anywhere.
 - Mr Jan Steenkamp whose surgical skills and willingness for early morning starts helped ensure we kept to schedule.
- Dr Phil Pearce and the team at the Massey Nutrition Lab who helped with the analytical work.
- Mr Michael Agnew of AgResearch Limited, Hamilton, New Zealand who conducted the plasma fatty acid analysis.
- Mr Karl Geiringer of Brainfats Biotechnology Limited, Auckland, New Zealand who kindly supplied the eicosapentaenoic acid free of charge.

Finally I would like to thank Massey University who provided financial support in the form of a Masterate Scholarship and a MURF grant.

Table of Contents

ABSTRACT	İ
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	x
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	χv
INTRODUCTION	1
CHAPTER 1 LITERATURE REVIEW	3
SECTION 1 Bone Metabolism	3
1.1 Bone Structure and Function	3
1.2 The Bone Remodeling Cycle	6
1.2.1 Osteoclast Differentiation	7
1.2.1.1 Regulation of Osteoclast Differentiation	8
1.2.2 Osteoclast Activity	8
1.2.3 Osteoblast Differentiation	10
1.2.3.1 Regulation of Osteoblast Differentiation	! 1
1.2.4 Osteoblast Activity	12
1.2.5 Other Bone Cells	13
1.2.5.1 The Osteocytic Membrane	13
1.3 Regulation of Bone Metabolism	14
1.3.1 Lifestyle Factors	14
1.3.2 Hormonal Regulation	14
1,3.2.1 Estrogen and Growth Hormone	15
1.3.2.2 Insulin	15
1.3.2.3 Parathyroid Hormone and Vitamin D ₃	15
1.3.3 Localised Regulation	17
SUMMARY	18

SECTION 2 Mis-Regulation of Bone Metabolism	20
1.4 Definition of Osteoporosis	20
1.5 Pathogenesis of Osteoporosis	20
1.5.1 The Uncoupling Theory	21
1.5.2 Decline in the level of growth factors in bone matrix	22
1.6 Estrogen Imbalance – Bone Modeling	23
1.7 Estrogen Imbalancve - Bone Remodeling	24
1.7.1 Effects of Estrogen on Osteoblastogenesis	24
1.7.2 Effects of Estrogen on Osteoclastogenesis	24
1.7.2.1 Oxidation	25
1.7.2.2 Adiposity	25
1.7.2.3 Modulation of Cytokine Activity	25
1.7.3 Effects of Estrogen on Calcium Absorption and Excretion	26
SUMMARY	28
SECTION 3 Essential Fatty Acids	29
1.8 Metabolism of Essential Fatty Acids	29
1.8.1 Cyclooxygenase	30
1.8.2 Desaturases and Elongases	31
1.9 Roles of Essential Fatty Acids and their metabolites	31
1.10 Observed Relationship of Essential Fatty Acids and Bone	32
1.10.1 Epidemiological Studies	32
1.10.1.1 Essential Fatty Acid Deficiency	32
1.10.1.2 Bone Density	32
1.10.1.3 Infants with Congenital Heart Disease	33
1.10.1.4 Observational Studies	33
1.10.1.5 Kidney Stone Formation	33
1.10.2 Clinical and Experimental Studies	34
1.10.2.1 Calcium Absorption and Excretion	34
1.10.2.2 Bone Density - Human Studies	35
1.10.2.3 Bone Density - Animal Studies	36

1.10.2.3.1 Bone Modeling	36
1.10.2.3.2 Bone Remodeling	37
1.11 Mechanisms of Essential Fatty Acid Action in Bone	38
1.11.1 Membrane Structure	38
1.11.2 Activity of Membrane Transporters	39
1.11.3 The Role of Eicosanoids	41
1.11.3.1 Prostaglandins	41
1.11.3.2 Interactions between Essential Fatty Acids, Eicosanoids and	42
Hormones	
1.11.3.3 Interactions between Essential Fatty Acids, Eicosanoids and	43
Localised Regulatory Factors	
1.11.4 Regulation of Osteoclast/Osteoblast Differentiation	45
1.11.5 Collagen Synthesis	46
SUMMARY	47
SECTION 4 Motivation and Study Objectives	49
1,12 Motivation for the Study	49
1.13 Purpose of the Study	50
1.14 Objectives	50
1.15 Hypothesis	50
CHAPTER 2 MATERIALS AND METHODS	51
2.1 Procedures	51
2.1.1 Animals	51
2.1.2 Diets	51
2.1.3 Tail-Vein Sampling	52
2.1.4 Dual Energy X-Ray Absorptiometry (DEXA) Scans	52
2.1.5 Terminal Heart Puncture	54
2.1.6 Urine Collection	54
2.1.7 Biochemical Markers	54
2.1.8 Biomechanics	54

2.1.9 Bone Ash Content	54
2.1.10 Urinary Calcium, Phosphate and Creatinine Concentration	55
2.1.11 Plasma 25-Hydroxyvitamin D ₃ Concentration	55
2.1.12 Plasma Lipid Analysis	55
2.1.13 Statistical Analyses	56
2.2 The Ovariectomised Rat as a Model for Postmenopausal Osteoporosis	56
2.3 Dual Energy X-Ray Absorptiometry	58
2.4 Biochemical Markers of Bone Metabolism	59
2.4.1 Type-1 Collagen Cross-Links	59
2.5 Biomechanical Testing	60
2.5.1 Definition of Parameters Measured	61
SUMMARY	62
CHAPTER 3 RESULTS	63
3.1 Diet Analysis	63
3.2 Uterus Weight	63
3.3 Rat Weight	64
3.4 Urinary Calcium and Phosphate Excretion	64
3.5 Serum C-Telopeptides of Type 1 Collagen (CTX)	65
3.6 Bone Density	66
3.6.1 Lumbar Spine	66
3.6.2 Femurs	68
3.7 Bone Ash Content	72
3.8 Bone Breaking Strength	74
3.9 Plasma Lipid Content	76
3.10 Vitamin D ₃ Metanolites	78
3.11 Pearson Correlations	79

HAPTER 4 DISCUSSION	83
ECTION 1 Observations	83
1 Urinary Calcium and Phosphate Excretion	83
4.1.1 Effect of Ovariectomy	83
4.1.2 Effect of EPA Supplementation	84
2 Serum C-Telopeptides of Type 1 Collagen	86
4.2,1 Effect of Ovariectomy	86
4.2.2 Effect of EPA Supplementation	87
3 Bone Density	89
4.3.1 Effect of Ovariectomy	89
4.3.2 Effect of EPA Supplementation	89
4 Bone Ash Content	92
4.4.1 Effect of Ovariectomy	92
4.4.2 Effect of EPA Supplementation	93
5 Bone Breaking Strength	93
4.5.1 Effect of Ovariectomy	93
4.5.2 Effect of EPA Supplementation	94
6 Plasma Lipid Content	95
7 Vitamin D ₃ Metabolites	96
4.7.1 Effect of Ovariectomy	97
4.7.2 Effect of EPA Supplementation	97
8 Statistical Correlations	98
4,8,1 Relationship between Outcome Measures	98
4.8.2 Organic Bone Matter and EFAs	99
4.8.3 Bone Mineral Density and EFAs	99
4.8.4 Vitamin D ₃	100
4.8.5 Possible Roles of other EFAs in the Regulation of Bone Metabolism	102
4.8.5.1 Gamma-Linolenic Acid (GLA)	102
4.8.5.2 Docosahexaenoic Acid (DHA)	103
9 Cantext	102

SECTION 2 Proposed Mechanisms	105
4.10 High Dose EPA Supplement and Calcium Handling	105
4.10.1 High Dosc EPA Supplementation Resulted in Calcium Deficiency	105
5.10.1.1 Effect of High Dose EPA on Intestinal Calcium Absorption	106
5.10.1.2 Ectopic Calcification	108
5.10.2 EPA inhibits Mitochondrial Mixed Function Oxidases	109
5.10.3 High Dose EPA Supplementation led to PTH-mediated Bone]][
Resorption	
5.11 The Essential Fatty Acid/Hormone Interaction Theory	111
CHAPTER 5 CONCLUSIONS AND FUTURE	115
RESEARCH	
5.1 Conclusions	115
5.2 Implications for Future Research	115
REFERENCES	117

List of Figures

FIGURE	TITLE	PAGE
1	Cortical and Trabecular Bone	4
2	Proportions of Cortical and Trabecular Bone in Various Parts of the Skelcton	4
3	The Bone Remodeling Cycle	6
4	Control of Differentiation and Activation of Osteoclasts	8
5	Electron Micrograph of an Osteoclast attached to Bone	9
6	Factors influencing Osteoclast Activation	10
7	Factors influencing Osteoblast Differentiation and Activation	12
8	Effects of Estrogen Deficiency on Bone Metabolism	27
9	Metabolism of Essential Fatty Acids	30
10	Photograph showing positioning of a rat for DEXA scanning	53
11	Load Deformation Curve	61
12	Lumbar Spine Bone Mineral Content - % change from baseline	67
13	Lumbar Spine Bone Mineral Density - % change from baseline	68

FIGURE	TITLE	PAGE
14	Designation of Femur Regions for analysis of ex vivo bone mineral content and density	70
15	Bone Mineral Content (Ashed Bone Weight) after correction for body weight	73
16	Ratio of Non-Mineral:Mineral Bone Matter.	74
17	Total Plasma Lipid and Fatty Acid Composition	77

List of Tables

TABLE	TITLE	PAGE
1	Localised Regulators of Bone Metabolism.	17
2	Specification for EPA supplement.	52
3	Percentage composition of fatty acids in the corn oil and EPA supplement used in study diets.	63
4	Final uterus and total body weights following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	64
5	Urinary calcium and phosphate concentrations following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	65
6	Serum type-1 collagen c-telopetide concentrations following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	66
7	Lumbar spine bone mineral content and density measures following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	67
8	Ex vivo femur bone mineral content and density measures following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	69

TABLE	TITLE	PAGE
9	Final ex vivo bone mineral content and density by femur area following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	71
10	Dry femur weight and composition following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	72
11	Results of biomechanical tests on right femurs following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	75
12	Plasma lipid content and fatty acid composition following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	78
13	Serum 25(OH) Vitamin D ₃ concentration following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.	79
14	Pearson Correlations between measurements of bone composition, bone strength, markers of bone metabolism and calcium and phosphate balance following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented dict.	80

TABLE	TITLE	PAGE
15	Pearson Correlations between EFAs in rat plasma following	81
	ovariectomy or sham operation and 9 weeks of feeding a	
	corn oil or EPA supplemented dict.	
		82
16	Pearson Correlations between plasma EFA composition and	
	measurements of bone composition, bone strength, markers	
	of bone metabolism and calcium and phosphate balance	
	following ovariectomy or sham operation and 9 weeks of	
	feeding a corn oil or EPA supplemented diet.	
17	Correlation between known functions of 1,25(OH) ₂ Vitamin	101
	D3 and Plasma EFA levels obtained following ovariectomy	
	or sham operation and 9 weeks of feeding a corn oil or EPA	
	supplemented diet.	

List of Abbreviations

 $1,25(OH)_2D_3$ 1,25 dihydroxyvitamin D_3

25(OH)vitD₃ 25 hydroxyvitamin D₃

AA Arachidonic Acid (20:4n-6)

ALA Alpha-Linolenic Acid (18:3n-3)

ATP Adenosine Triphosphate

ATPase Adenosine Triphosphatase

BGP Bone Gla Protein (osteocalcin)

BMI Body Mass Index

BMP Bone Morphogenic Protein

BRU Bone Remodelling Unit

Ca or Ca²⁻ calcium

cAMP Cyclic Adenosine Monophosphate

Cbfa-1 Core Binding Factor 1

Cl Chloride

CLA Conjugated Linoleic Acid

COX Cyclooxygenase

CTX C-terminal telopeptide of type-1 collagen

DHA Docosahexaenoic Acid (22:6n-3)

DLX-5 Distal-less 5 transcription factor

DPA Docosapentaenoic Acid (22:5n-3)

Dpyd Deoxypyridinoline

EFA Essential Fatty Acid

EGF Erythrocyte Growth Factor

ELISA Enzyme-linked Immunoassay

EPA Eicosapentaenoic Acid (20:5n-3)

FGF Fibroblast Growth Factor

g gram

GLA Gamma Linolenic Acid (18:3n-6)

gp130 Glycoprotein 130

GTPase Guanisine Triphosphatase

H Hydrogen

hGH Human Growth Hormone

HMG-CoA Hydroxymethylglutaryl Coenzyme A

IFN Interferon

IGF Insulin-like Growth Factor

IGFBP Insulin-like Growth Factor Binding Protein

IL Interleukin

IV intravenous

K or K Potassium

kg kilogram

LA Linoleic Acid (18:2n-6)

LT Leukotriene

LTB4 Leukotriene B4

LTB5 Leukotriene B5

M-CSF Monocyte-Macrophage Colony Stimulating Factor

mg milligram

Mg or Mg² Magnesium

mL milliliter

mm millimeter

mMol millimoles

MMPs Matrix Metalloproteinases

N Newton

n-3 omega 3

n-6 omega 6

n-9 omega 9

Na or Na Sodium

NF-κB Nuclear Factor-κB

ng nanogram

N/mm² Newtons per square millimeter

OPG Osteoprotegerin

OVX ovariectomised

PDGF Platelet-derived Growth factor

PGE₂ Prostaglandin E2
PGE₃ Prostaglandin E3
PKC Protein Kinase C

PO₄ Phosphate

POV Peroxide Value

PPAR Peroxisome Proliferator Activated Receptor

PPRE Peroxisome Proliferator Response Element

PTH Parathyroid Hormone

PTHrp Parathyroid Hormone-related protein

PUFA Polyunsaturated Fatty Acid

RANK-L RANK ligand

RXR Retinoid X Receptor

SD Standard Deviation

SE Standard Error

T3 Triiodothyronine 3

T4 Thyroxine

TGF Transforming Growth Factor

TNF Tumour Necrosis Factor

TRAFs Tumour Necrosis Factor Receptor-Associated Factors

TxB2 Thromboxane B2

VDR Vitamin D Receptor

WHO World Health Organisation

Yrs Years