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Abstract 

The youngest major turnover in deep-sea benthic foraminifcra (termed the Stilostomella 

extinction) is documented in two ODP s ites in the South Atlantic Ocean. This study is 

the first detailed investigation of its kind in this region, and reveals the pulsed decline 

and eventual extinction of 33 species of e longate, cylindrical benthic foraminifcra 

belonging to the families Stilostomellidac, Pleurostomellidae, and part of the 

Nodosariidae during the mid-Pleistocene climatic transition (MPT, ~ 1200 - 600 ka). 

Furthermore, the Stilostomella extinction is limited to elongate spec ies with highly 

specific apertural characteristics (e.g. cribrate, s lit lunate, and hooded with secondary 

teeth) , such as Chrysalogonium, Ellipsoglandulina , and Pleurostomella spec ies, 

respectively. 

Micropaleontolog ical and sedimentological data from lower bathyal Sites I 082 and 

I 088 ( 1290 m and 2082 m water depth, respectively) provide a proxy record of 

oceanographic changes in the South Atlantic Ocean through the MPT. This study 

compares the timing and causes of the Stilostomella extinction between two highly 

contrasting environmental settings in relation to paleoceanographic history, sediment 

regime and paleoproductivity. 

In the South Atlantic, the abundance and accumulation rate of Ext inction Group (EG) 

taxa began to decline between ~ I 070 and I 000 ka at both core sites. The rate of decline 

was pulsed, with major declines usual ly associated with cool periods, and partial 

recoveries during intervening warm periods. The timing of highest occurrences (HOs) 

was diachronous between sites, and the final Stilostomella extinction datum is marked 

by the uppermost occurrence of Myllostomella matanzana and Siphonodosaria 

sagrinensis at ~ 705 ka in Site 1082, and Myllostomelfa matanzana and Pleurostomella 

alternans at ~600 ka in Site I 088 . This corresponds with the previously documented 

global Stilostomella extinction datum within the period of 700 and 570 ka. Detailed 

comparisons with North Atlantic and Southwest Pacific studies confirm the highly 

diachronous nature of HOs of EG species, a nd furthermore, revea l that there is a lead 

time of ~ I 00 kyr between HOs of the same species in the North Atlantic, compared with 

the South Atlantic. 



- --------------

This study suggests that declines and extinctions at Site 1082 were primarily driven by 

highly fluctuating food supply associated with increased productivity caused by 

intensi fied upwelling during MPT glacial periods. In contrast, extinctions at Site I 088 

appear to have been a result of the MPT reorganisation of the global deep-water 

'conveyor belt ', wit h 8 13C gradients revealing that high disso lved oxygen Glacial North 

Atlantic Intermediate Water (GNAIW) bathed the region during cool periods. Far from 

a s imple response to change in a s ingle parameter, numerous factors have interacted and 

appear to have caused the demise of the Stilostomelfa extinction taxa. These factors 

include encroachment by well-ventilated (high disso lved oxygen) G AIW, fluctu at ions 

in food supply, and possibly winnowing (of the phytodetritus layer) by vigorous bottom 

currents during MPT glacial periods. 
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I: INTRODUCTION 

1. INTRODUCTION 

1.1 Objectives 

This study is the first high resolution investigation into the Stilostomella extinction 

event in the South Atlantic Ocean. The primary aim of the research was to document 

the progressive decline, the timing of local disappearances, and the eventual extinction 

of deep-sea benthic foraminifcra in two cores from the South Atlantic Ocean during the 

mid-Pleistocene Climatic Transition (MPT) . This youngest period of bcnthic 

foraminifcral extinctions has been attributed to global climate cooling during the MPT 

between ~ 1200 - 600 ka (Hayward, 200 I, 2002; Kawagata et al. in press). 

Previous studies have revealed that the pulsed decline and extinctions were limited to a 

specific group of foraminifcra , namely, elongate deep-sea foraminifcra belonging to the 

families Stilostomellidae, Pleurostomellidae, and part of the Nodosariidae. 

Furthermore, the Stilostomella extinction selectively affected foraminifera with certain 

shell morphologies and highly specific apertural characteristic s. 

South Atlantic ODP Sites 1082 and 1088 have been purposefully chosen to allow for 

comparisons between two highly contrasting environmental settings, in relation to 

paleoceanographic history, sediment regime and paleoproductivity. Regional intcrsite 

comparisons will be undertaken to investigate whether the timings and causes of the 

Stilostomella extinction were similar at both sites. 

Timings of declines and extinctions in the South Atlantic will be compared with proxy 

data for various environmental factors to provide clues to the cause of these mid­

Pleistocene extinctions. Additionally, results will be compared with similar detailed 

Stilostomella extinction studies in the North Atlantic and Southwest Pacific Oceans, in 

an effort to understand the different timings of highest occurrences in different 

watcrmasscs (depth) and in different parts of the oceans. 
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Another aspect to be investigated is the possible link between the morphologic 

characteristics of the Stilostomella Extinction Group taxa (particularly apertural 

modifications) and the ordering of highest occurrences both in the South Atlantic and 

the global scene. 
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1.2 Southeastern Atlantic Site 1082 

1.2.l Regional Geology 

Thirteen sites ( I 075-1087) were drilled during ODP Leg 175, spanning the western 

coast of Africa from 5° to 32° S (Fig. 1.1 ). Site I 082 is located on the Abutment Plateau 

of the Frio Ridge segment of the Walvis Ridge where it adjoins the continental slope of 

Namibia. The Walvis Ridge is an aseismic basaltic ridge formed from hotspot activity 

during the early Cretaceous per iod (Dean and Gardner, 1985). It extends south­

westwards from the continental margin for >2500 km towards the Mid-Atlantic Ridge 

(Shannon and Nelson, 1996), and may have served as a dam to paleocirculation and 

current-transported sediment (Bolli et al., 1978), above which thick, mainly biogenic 

sediment has accumulated. 

1.2.2 Location and Modern Oceanographic Setting 

ODP Site I 082 (2 l.5°S, I l.5°E) was drilled during Leg 175 in 1290 m water depth on 

the Walvis Ridge, c . 250 km offshore from the coast of Namibia. Positioned at the 

outer edge of the modem Benguela Current Upwelling System ( amibian upwelling 

cell) , the core site is overlain by well-oxygenated, low-sa linity Antarctic Intermediate 

Water (AAIW) (Fig. 1.2), which flows equatorward along the slope off Namibia above 

which is the Benguela Current (Wefer et al., 1998). 

3 
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Figure 1.1: Location of Site 1082 in relation to other ODP Leg 175 sites , major bathymetric 
features and previously drilled ODP and DSDP sites in the South Atlantic study region 
{modified from Wefer et al .. 2001 ). 
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Figure 1 2: A cross-section through the major intermediate- and deep-water masses in the region 
of Site 1082, South Atlantic Ocean (modified from Gersonde et al .. 1999) . AABW = Antarctic 
Bottom water; CPDW = Circum-polar Deep Water; NADW = North Atlantic Deep Water; 
AAIW = Antarctic Intermediate Water; SACW = South Atlantic Central Water. 

Modem oceanographic conditions off Southwest Africa have been documented by 

Moroshkin et al. ( 1970), Bang ( 197 1 ), Nelson and Hutchings ( 1983), Shannon ( 1985a, 

19856), a nd more recently by Hay and Brock ( 1992) and Dowsett and Willard ( 1996). 

A major component o f the heat trans fer system from the southeastern Atlantic is the 

Angola-Bengucla Current (ABC) system, compris ing the Angola Current and the 

Benguela Current (Fig . 1.3). The Bengucla Current is a shallow (<80 m) equatorward­

flowing cool surface current, flowing para lle l to and within ~ 320 km off the southwest 

margin of the African continent (Durham et al., 200 1). At ~ 16° S latitude, these 

no rthward flowing waters meet the warm and sa line southward-flowing Angola Current 

and develop the Angola-Bengucla Front (ABF) (Summerhayes et al., 1995). At this 

front, the Benguela Current is deflected west and merges with the South Equatoria l 

Current, making up the eastern limb of the South At lantic Subtropical Gyre. Upwelling 

of cold, nutrient-rich South Atlantic Central Water (SACW) (from depths between 200-

500 m) occurs over the shelf break in response to offshore divergence and along the 

southwestern African coast in response to offshore Ekman transport (Fig. 1.2). Beneath 

the SACW lies cold nutrient-rich Antarctic Intermediate Water (AAIW). AAIW is 
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Figure 1.3. Location of ODP Site 1082 and the maior surface currents 1nfluenc1ng the region today. Arrows 
represent present day surface currents 1n the Southeast Atlanti c Ocean (modified from Motoyama, 2001 ). 
AB= Agulhas Bank, ABF = Angola-Benguela Front; STF = Subtropical Front. AC = Angola Current, 
BC = Benguela Current. 

found in a ll sectors of the Southern Hemisp here oceans to the north of the Antarctic 

polar front. Throughout the tropica l South Atlantic, AAIW occupies the depth range 

from 650 to 1050 m (Reid, 1994), w ith typical temperature and sa linity va lues of 3° C 

and 34.3 psu, respectively. AAIW spreads across the equator where traces can be found 

as far north as 30° N in the North Atlantic (Ta lley, 1996). 

The Benguela Current is unusua lly productive because it delivers an admixture of 

nutrient-rich AAIW and SACW to the surface through a two-step process (Fig. 1.4) 
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(Hay and Brock, 1992). Below the surface Bcngucla Current, a poleward flowing 

cyclonic subsurface gyrc wells up nutrient-rich AAIW (A in Fig. 1.4) to just below the 

pycnoclinc, which shoals to less than 250 m off Walvis Bay (Dowsett and Willard, 

1996). Herc it mixes with the nutrient-rich SACW, and surface upwelling processes, in 

tum, bring this water up from between 200 m and 330 m to the surface (8 in Fig. I .4) , 

creating a region of cold, nutrient-rich water where primary productivity is very high . 

BENGUELA COASTAL UPWELLING SYSTEM 
ANGOLA DOME 

1a·s 

WALVIS RIDGE 

Figure 1.4: Schematic view of the southwest African ma rgin and Walvis Ridge , showing the Angola Current (AC), 
Benguela Current (BC) , coasta l upwelling system, and the Angola Dorne . Note : A and B refer to upwelling of 
Antarctic Intermediate Water (AAIW) and South Atlantic Central Water (SACW) (refer to text) 
(Modified from Hay and Brock , 1992). 

Wind conditions along the coast, responsible for the upwelling, arc extremely stable 

because winds circulating around the South Atlantic subtropical high pressure cell arc 

constrained by the steep Kalahari escarpment. The wind stress that intensifies during 

the Southern Hemisphere summer results in maximum upwelling between December 

and April each year (Dowsett and Willard, 1996). 

To the north, the Bcngucla Current Upwelling System (BCUS) is bounded, at about 16° 

S, by the Angola-Bcngucla Front (ABF) (Fig . 1.3). The ABF migrates seasonally 

between about 14° S and 16.5° S (Summcrhaycs et al. , 1995). In the late austral 

summer the front weakens and warm, sa line, Angolan water penetrates south along the 

coast, occasionally reaching 20° Sin ' Bcngucla El Nino' events. 
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To the south, the BCUS is bounded by the Agulhas Bank (AB in Fig. 1.3), south of 

which lies the Subtropical Front (STF) . This front is known to induce the northward 

flow of cold filaments of Subantarctic Surface Water (SASW) . South of the African 

coastline and north of the STF warm waters of the Agulhas Current flow in from the 

Indian Ocean and return cast, generating eddies of warm water that spin off to the 

northwest in the Bcngucla Current (Summcrhaycs et al. , 1995). 

The western margin of the upwelling region is not well defined in terms of sca-surfacc­

tcmpcraturc anomalies. Satellite imagery has shown large-scale frontal features, 

resembling 'g iant rip-currents' , extending up to 500 km offshore (Hay and Brook, 

1992). 

Present day coastal upwelling vanes seasonally, with the seasonal signal more 

pronounced off Namibia (north of the Orange River) than further south. During the 

austral winter and spring, water cooler than 16° C extends along the entire coast, but in 

the summer and autumn its northward extent is reduced. Lutjcharms and Mceuwis 

( 1987) have subdivided the present day Namibian coastal upwelling into four zones or 

cells, based on the relative strength of the upwelling cell (Fig. 1.5). Their investigations 

showed upwelling to be particular ly strong at ~25° S (centre of the Luderitz upwelling 

cell), somewhat less so at ~22° S (Walvis cell, ODP Site I 082) and at ~ 19° S (Namibia 

cell) , and weakest ~ 17° S (Cunene cell). The Luderitz cell is the coldest, the most 

persistent, and extends the farthest offshore. Lutjeharms and Mccuwis ( 1987) also 

found a strong correlation between intensity of upwelling and the direction and strength 

of coastal winds. Further, there is also a loose association between the location of 

upwelling cells and the shape of the seabed, upwelling being more intense where the 

deep water is closest to the coast (S hannon, 1985) . The highest productivity is currently 

reached off Namibia between 20°S and 25°S . At this latitude optimumal productivity 

prevails because of the rate of upwelling and the nutrient content of the upwelled 

waters. Trade winds arc strong, offshore transport is vigorous, and cold upwellcd water 

is high in both phosphate and silicate (We fer et al. , 200 I). 

8 
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Figure 1.5: Locations of Benguela Current Upwel ling System Cells (Modified 
from Weter et al., 2001 ). Note: The size of the upwelling cell is based on its 
rela tive upwelling strength. 
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1.2.3 Past changes in Benguela Current Upwelling System 

Previous evidence from the region of the Walvis Ridge has proved to be contentious 

over the issue of glacial-interglacial upwelling intensity changes, and has been debated 

by several authors. Studies by Oberhansli ( 1991 ), Surnmerhayes et al. ( 1995) and Little 

et al. ( 1997) concluded that upwelling at the latitude of the Walvis Ridge general ly 

increased during glacial periods, conversely, other studies suggest that intensity 

increased during interglacial periods (Diester-Haass, 1985). It has since been suggested, 

however, that the discrepancy between these studies may in fact be due to the 

complexity of the site, resulting from past changes in thermo ha line circulation, and poor 

preservation of upwelling indicators (Durham et al. , 2001). 

Productivity records from nearby Site I 081 (also on the Walvis Ridge) generally 

provide evidence for increased productivity during glacial intervals, particularly prior to 

~ 1000 ka (Durham et al. , 2001). The Mid-Pleistocene Transition (MPT) and associated 

increased cooling and aridity on the adjacent landmass, brought about changes in the 

chemical and physical properties of the upwelling water masses and their nutrient 

content. Durham et al. 's 2001 study revea led a significant and rapid drop in overall 

productivity at ~800 ka. Between 800 and 500 ka productivity began to increase again, 

however, this was followed by another rapid decrease in productivity at ~500 ka. Post-

500 ka fluctuations in productivity were common, with short-lived peaks in response to 

( I) nutrient-enriched bottom waters being closer to the surface due to sea-level drop and 

(2) less volume of water in which nutrients were distributed (Hay and Brock, 1992). 

These peaks were short-lived as enhanced productivity removed nutrients faster than 

they could be replaced, and consequently, the system stabilized, and productivity 

decreased once again. 

During the Last Glacial Maximum (LGM) the 7° of latitude northward displacement of 

the Polar Front (PF), the 2° northward displacement of the STF, and the 2-5° C cooling 

of the Subantarctic Surface Waters, all suggest that the thermal gradient south of Africa 

steepened in glacial intervals, displacing the South Atlantic mid-latitude high pressure 

cell north by 2-5° of latitude (Tyson, 1986). The equatorward movement of the pressure 

system forced a similar shift in the upwelling- favourable Trade Winds, with the steeper 

thermal gradient also strengthening them. This strengthening of the coastal and shelf-

10 
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edge wind field is thereby thought to have enhanced upwelling (intensity and increased 

productivity) along the Namibian margin during glacial and cooler intcrstadial periods. 

Productivity records from past studies in the region of Site I 082 show that there may 

not necessarily be a simple response to apparently linear changes, and that in fact, 

numerous factors may interact together and influence the records of deep-sea sediments 

in these complex regions of high productivity. 

1.2.4 Sediment Regime 

Site I 082 has a continuous sedimentary record based on density, magnetic susceptibility 

and colour reflectance data, spliced in small intervals from Holes I 082B and I 082C, 

where sediment column was disturbed or missed during the coring process. The 600 m 

long sediment sequence of Hole I 082A has wcll-dcvclopcd cyclic sedimentation, with 

glacial and interglacial cycles represented as cycles of carbonate dissolution, 

productivity, and terrigcnous sediment supply. Sediment is composed of continuous 

hcmipelagic mud spanning the latest Miocene to Holocene (5 .8 - 0 Ma), with the early­

mid to late-Pleistocene, investigated in this study, composed of alternating intervals of 

bioturbatcd olive and black nannofossil- and foraminifcr-rich clay (Jahn et al. , 2003). 

Varying abundances of diatoms, nannofossils, foraminifcrs , and radiolarians, and minor 

authigcnic minerals, such as glauconitc and gypsum, arc found throughout the study 

interval (We fer et al. , 200 I). 

Sedimentation rates arc comparatively high within Leg 175 sites, varying between 70 to 

150 m/myr (Durham et al. , 200 I) , Glacial- interglacial cyclicity of the late Quaternary 

is represented by cycles of carbonate dissolution, productivity, and terrigenous sediment 

supply, and is recorded as dark and light colour variations in the sediment retrieved 

from Site I 082. These colour cycles (total reflectance) reflect sharp changes in 

concentrations of calcium carbonate, organic carbon, and total sulphur. Generally, the 

darker layers have higher concentrations of organic carbon and total sulphur, and lower 

concentrations of calcium carbonate and biogenic opal (We fer et al. , 1998). Changes in 

magnetic susceptibility down the core can also be utilized and reflect changes in 

terrestrial sediment input and calcium carbonate deposition across climatic cycles. At 

Site I 082, these wcll-dcvclopcd cycles, in which concentrations of calcium carbonate 

11 
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and organic carbon vary between I and 85% and <0. 1 and 16. 1 wt%, respectively, 

reflect fluctuations in the elevated marine production associated with the Bcnguela 

Current Upwelling System; higher concentrations of organic carbon recording higher 

productivities over the past 2 Ma (Wcfcr et al. , 1998). This high supply of organic 

matter drove intense diagcnctic activity and periods of elevated carbonate dissolution. 

Studies by Berger ( 1970), Berger et al. ( 1982), and Emerson and Bender ( 1982), 

suggest that carbonate disso lution on continental margins in water depths above the 

oceanic lysoclinc or carbonate compensation depth (i.e. Site I 082) can only be 

attributed to decomposition of organic matter and resultant production of pore water 

CO2. This dissolution is controlled by two processes: (a) surface water productivity 

(Berger, 1970) and (b) lateral supply of organic matter from the shelf and/or upper 

continental slope (Dicstcr-Haass et al. , 1986) . The cquatorward movement of the South 

Atlantic high pressure system produced a similar shift in the upwelling-favourable 

Trade Winds (Tyson, 1986), strengthening of the coastal and shelf-edge wind field, and 

is thereby thought to have enhanced upwelling (intensity and increased productivity) 

along the Namibian margin during glacia l and cooler intcrstadial periods. 

The tcrrigcnous input signal inferred fi-om nearby S itc I 081 reveals an increase in the 

supply of aeolian material during g lacial periods (Durham et al. , 2001). [n addition to 

increased supply of terrestrial material in response to the lowering of sea-level (global 

cooling and increased ice volume) and erosion of the now exposed continental shelf and 

slope areas, the strengthening of the coastal wind field during glacial intervals (and 

continental aridity) is inferred to have enhanced aeolian transport of sediment (including 

Fe and Si, recognized as having key roles in increasing primary productivity during 

glacial periods (Boyd et al. , 2004)) fi-om the Namib desert into the region of the Walvis 

Ridge (Dicstcr-Haass et al., 1988). These two processes, an increase in surface water 

productivity and increase in the lateral supply of organic matter from continental 

shelf/upper slope areas, resulted in an increase in net organic matter accumulation and 

thus an enhanced carbonate dissolution during glacial times (Dicstcr-Haass et al. , 1992). 

lee-rafted debris (IRD) has not been encountered in previous studies as far north as Site 

I 082 (Siesser, 1980; Dicstcr-Haass et al., 1986, 1992). 
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1.3 Southern Ocean sector of Southeastern Atlantic - Site 1088 

1.3.1 Regional Geology 

Sites drilled during Leg 177 arc assoc iated with the Agulhas Bas in and arc arranged 

a long a north-south transect extending fro m the Agulhas Frac ture Zone Ridge in the 

north, to Bouvct Is land in the south (Fig . 1.6). The Agulhas Basin lies on the African 

Plate and is bounded by the Agulhas Fracture Zone to the no rth, the Southwest Indian 

Ridge to the south, the Meteo r Rise to the west, and the Agulhas Plateau to the cast 

(Gcrsondc et al. , 1999). 
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Figure 1.6: Location of Site 1088 in relation to other ODP Leg 177 sites (1088 - 1094). major bathymetric 
features and oceanic frontal boundaries (after Gersonde et al . 1999) Note: The position of previous 
ODP sites 1n the Southern Ocean sector of the South Atlantic Ocean are also given 
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The Agulhas Ridge is an elongate topographic feature that parallels the Agu lhas 

Fracture Zone and extends from the northern tip of the Meteor Rise to terminate 

abruptly at 40°S, I 5°E, where it intersects the northern end of an abandoned spreading­

ridge axis in the Agulhas Basin (Gcrsondc et al. , 1999) . Formation of the Agulhas 

Ridge is hotly debated; theories include formation from extension at the fracture zone 

resulting in scrpcntinitc diapirism (Bonatti , 1978) , and volcanic construction resulting 

from extension and/or a mantle plume, such as the Shona Hotspot (Kastens, 1987; 

Hartnady and le Rocx, 1985) . A thick sequence of pelag ic mud covers the basement 

rocks of the Agulhas Ridge . 

1.3.2 Location and Modern Oceanographic Setting 

ODP Site 1088 (4l.8°S, 13.3°E) was drilled during Leg 177 in 2082 m water depth on 

the broad northeastern end of the Agulhas Ridge , in the Southern Ocean sector of the 

South Atlantic Ocean, c. 700 km southwest of the tip of South Africa (Fig. 1.6). 

The southeastern South Atlantic is an important component of the global conveyor 

circulation, representing the junction point of major ocean currents and the initial entry 

point of North Atlantic Deep Water (NADW) into the Southern Ocean. Site 1088 is 

located in the northern Subantarctic Zone between the Subtropical Front (STF) and the 

Subantarctic Front (SAF) (Fig. 1.6) . This site is influenced by distal eddies and 

filaments of the Agu lhas Current retroflection (Dickmann and Kuhn, 2002). Site I 088 

is one of the shallowest of sites in ODP Leg 177 (well abo ve the regional CCD) and is 

located at the boundary between upper Circum Polar Deep Water (CPDW) and North 

Atlantic Deep Water (NADW) (Fig. 1.7) . 
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Figure 1. 7: A cross-section of th e presen t day intermediate- and deep-water masses , and frontal systems in the 
Southern Ocean sector of the South Atlant ic Ocean , S~e 1088 (modified from Gersonde et al .. 1999 ) 
AABW = An tarctic Bottom VVa ter; CDW= Circum-polar Deep Water; NADW = North Atlantic Deep Water; AAIW= 
Antarctic Intermediate Water: SASW = South Atlantic Surface Water: SAF= Subantarctic Front; PF= Antarctic 
Polar Front 

1.3.3 Past Oceanographic Changes 

The unique location of Site 1088 gives great potential to reconstruct changes m the 

mean deep water mass composit ion over time, and elucidate past fluctuations m the 

production rate of Northern Component Water (NCW) (high latitude northern 

hemisphere sourced waters, such as the NADW), the strength of the NADW conveyor, 

and mixing ratios between NCW and Southern Component Water (SCW) (southern 

sourced waters, such as CPDW). Dickmann and Kuhn (2002) recognise two distinct 

modes of conveyor belt circulation in the study region during the MPT. The modern 

interglacial warm - route conveyor mode implies a far southward injection of relatively 

warm and sa line NADW into the ACC, compensated to a large extent by the northward 

flow of warm surface and intermediate waters, which enter the South Atlantic via the 

Agulhas Current (Gordon et al., 1992) . The second mode of circulation occurred during 

glacial periods, when the cold-route conveyor mode is implied. This mode was 

characterised by prevailing cold southern-source water masses with a diminished 

NADW influx, in combination with only sporadic influence of the Agulhas Current 

leakage (Dickmann and Kuhn, 2002) . These studies by Dickmann and Kuhn (2002) at 

nearby ODP Site I 090 revealed that glacial-interglacia l contrasts in the regional 
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conveyor circulation strengthened across the MPT, roughly in accordance with global 

ice-volume fluctuations. Dickmann and Kuhn (2002) also inferred changes in 

dccpwatcr circulation over the MPT using variations in sediment composition and clay 

mineralogy. Clay mineralogical studies revealed that Circumpolar Deep Water (CDW) 

expanded farther north during glacials after 1.2 Ma, further supporting the isotopic data 

of Yenz and Hodell (2002) 

1.3.4 Sediment Regime 

Three holes were drilled representing a spliced record of 223.4 m, with the sediment 

investigated in this study, sampled between 5.39 and 14.38 med, being predominantly 

foraminifcr-bcaring nannofossil ooze (Gcrsondc et al. , 1999). Rock fragments 

interpreted as ice-rafted debris ([RD) occur at various frequencies down core. Site I 088 

is situated northward of the Antarctic Polar Front (a zone centred at ~45°S with a 

latitudinal span of approximately ± 2.5° (Lutjcharms and Mccuwis, 1987)), such that 

glacial-interglacial migrations of this ecological and physical water mass boundary arc 

unlikely to have had great influence on the biogcnic sediment constituents at the site. 

Other than a slight shift: in the area of dominant diatom deposition towards Site I 088, 

calcareous oozes, composed of calcareous phytoplankton (mainly coccoliths), 

calcareous zooplankton (mainly planktic foraminifcra), form the biogcnic component 

during both glacial and interglacial intervals (Dickmann et al., 2003). Glacial­

interglacial carbonate variations at Site I 088 arc likely to be a result of dilution effects 

of biogcnic and lithogcnic sediment components, by changes in the mode of biological 

productivity and/or enhancement of terrestrial erosion and fluvial sediment supply 

during cold climate stages. During these stages, low stands of sea level facilitated 

glacigenic and flu vial sediment supply beyond the shelf and sediment gravity transport 

towards the deep sea. The water depth of < 3500 m places Site 1088 well above the 

regional lysoclinc, and thus the settling of calcareous particles is relatively unaffected 

by disso lution processes initiated by the glacial incursion of the corrosive CPDW. 

Furthermore, it has been inferred that improved carbonate preservation was likely at 

Site I 088 during the MPT, as slightly increased sedimentation rates (from 7 m/myr in 

the Pliocene, to 10 m/myr in the Pleistocene; Gcrsondc et al. , 1999) may promote 

survivability of calcareous particles. 
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lnorganic terrestrial sediment is sourced from the arid continental regions of South 

Africa and around the southern African margin, being supplied by the south-eastern 

trade winds, and to a lesser extent, through fluvial input and ocean currents. The latest 

findings from ODP Site 1090, which is situated to the west of Site 1088, have shown 

that fluctuations in illitc chemistry (representing the major clay mineral from South 

Africa) arc consistent with climatic oscillations in southern Africa (Dickmann and 

Kuhn, 2002). These studies reveal that abundant iron-bearing illitc is indicative of arid 

conditions with prevailing physical weathering, typical of glacial intervals, whereas 

chemical weathering under humid interglacial conditions attacks and depletes iron­

bearing illitcs and favours more stable Al-illitcs. Other significant studies, such as 

fluctuations in the ratio of kaolinite to chloritc, can be used to demonstrate changing 

source region of river particulates and latitudinal shifts in watcrmass boundaries. For 

example high kaolinitc/chloritc ratio s demonstrate Site I 088 was within the reaches of 

the Agulhas Current retroflection (Dickmann et al. , 2003). 

A study of ice-rafted debris (IRD) delivery to the South Atlantic was undertaken by 

Kanfoush et al. (2000) , in order to reconstruct the distribution of [RD across the PFZ. 

ln the South Atlantic, !RD peaks reflect instability of ice shelves in the Weddell Sea 

region, and arc associated with intcrstadial warm periods, and increased N AD W 

production in the North Atlantic (Gersondc et al., 1999) Kanfoush et al. (2000) 

revealed that the first identifiable IRD above background levels occurred at southerly 

ODP Site 1092 (~47°S) (Fig. 1.6) in the late Pliocene (~3. 18 Ma) , yet across the MPT 

there was no change in the ampl itude or pacing of !RD delivered to the site . IRD has 

not been previously studied at Site I 088 . 
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1.4 Previous Paleoceanographic Studies 

1.4.1 Southeastern Atlantic Site 1082 

The upwelling system associated with the Bcngucla Current is one of the most 

productive areas of the modern ocean, and as a consequence has been the focus of 

several studies into the evolution of upwelling and changes in productivity over 

geological time. Sediments from Deep Sea Drilling Project (DSDP) Sites 362 and 532 

( 1325 m and 1331 m water depth, respectively) (Fig. 1. 1 ), which arc close to Walvis 

Ridge ODP Sites 1081 and 1082, have provided a preliminary record of the evolution of 

upwelling and changes in biological productivity of the upwelling system. 

Site 362 was rotary drilled during DSDP Leg 40 in 1975 , resulting in all of the cores 

taken above a sub-bottom depth of 200 m being badly disturbed. Despite this, Sicsscr 

( 1980) was able to conclude from changes in organic carbon and diatom abundances 

from Site 362 that upwelling-enhanced productivity had gradually increased since the 

onset of the Bcngucla upwelling system ~ IO Ma (Miocene) . 

Hydraulic piston coring of Site 532 was undertaken in 1980, and yielded a more 

complete record of upwelling history (Hay and Brock, 1992). Peaks in concentrations 

of organic carbon and diatoms indicated that productivity also peaked at the Walvis 

Ridge location in the late Pliocene to early Pleistocene (Dean et al. , 1984). Further, Site 

532 also revealed light-dark alternations in sediment colour, corresponding to changes 

in the concentrations of organic carbon, calcium carbonate, and clay minerals. Dicstcr­

Haass et al. ( 1986, 1992) conclude these colour changes record glacial-interglacial 

shifts of the Bcnguela Current, sea-level changes, oxidation strength, and source of 

tcrrigcnous elastic sediment components. 

Reconstructing the glacial-interglacial shifts in upwelling intensity were of high priority 

in studies by Durham et al. (200 I). Preliminary investigations at ODP Sites I 081 and 

I 082 generally provide evidence for increased productivity during glacial periods. 

There is a prominent peak in all proxy records of productivity at I I 00 ka that coincides 

with a maximum abundance of diatoms. This diatom abundance is observed in many 

records from the South Atlantic (Berger and Wcfcr, 1996) and is followed by a decrease 
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in abundance. Following this there is a rapid change in the dominant microfossil, with 

the abundance of foraminifcra beginning to increase. The timing of these changes in 

productivity suggests that they may be related to the MPT. 

The terrigenous input signal of the Walvis Ridge sites has also been a focus of previous 

study (Diester-Haass et al. , 1988). As expected, magnetic susceptibility records of Site 

532 revealed increased terrigenous input during glacial periods in association with 

global cooling and enhanced aridity, leading to an increase in the supply of aeolian 

material. In the case of the Walvis Ridge location, aeolian transport from the Namib 

Desert by northeasterly to easterly winds was enhanced during glacial times (Durham et 

al., 200 I). In addition, Diester-Haass et al. ( 1988) suggested that the lowering of sea­

levels in response to global cooling and increased ice volume during glacial periods, left 

greater areas of the continental shelf and slope exposed to erosion, which forms an 

important component of terrestrial input to Walvis Ridge sites . Studies by Diester­

Haass et al. ( 1986) and Lutjeharms and Meeuwis ( 1987) , revealed two contrasting 

terrigenous signals, one evident pre-M PT (prior to ~ 1200 ka) , and another dominating 

the Walvis Ridge in the last 800 ka . Clay mineralogical evidence at DSDP Site 532 

revealed that over the past 800 ka, supply of terrigenous material to the ridge has been a 

mix of reworked material fi-om the continental shelf and material from the Orange River 

to the south, transported to the ridge by the intensified strength and flow of the 

Benguela Current during glacial periods (Lutjeharms and Meeuwis, 1987) . In contrast, 

an opposite signal was evident in the pre-MPT period (prior to ~ 1200 ka) , where 

mineralogy suggests increased terrigenous material during interglacial periods. This 

suggested that the supply of terrigenous material via aeolian input may have only been 

significant at the Walvis Ridge in the last 800 ka, implying that prior to this period a 

different source of terrigenous material played a major role. Further studies by Diester­

Haass et al. ( 1986) revealed that the fluctuating position of the Angola-Benguela Front 

(ABF) (which controls the latitude at which the Benguela Current turns west, and the 

southerly extent of the southward- flowing Angola Current) (Fig. 1.3) influenced the 

source of terrigenous materials to the ridge . Kaolinite concentrations in interglacial 

sediments in the 1500 to I 000 ka period show a source of terrigenous material from the 

Kunene River, inferring that during this time the ABF may have been far enough south 

to allow supply and transportation to the Walvis Ridge via the Angola Current (Fig. 

1.3). The timing of this change in supply and source ofterrigenous input to the Walvis 
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Ridge coincided with the onset o f the MPT. T he associated increase in arid ity of the 

African continent during this time may also have caused a decrease in the flow of the 

Kunene River (Durham et al., 200 I). 

1 .4.2 Southern Ocean sector Site 1088 

Previous deep-sea drilling in the Southern Ocean include DSDP Leg 7 1 (S ites 51 1-5 14); 

O DP Legs 11 3 (Sites 689-697) , 11 4 (S ites 698-704) , 11 9 (Sites 739-746), and 120 

(S ites 747-75 1 ), some o f which arc shown in figure 1.6. Sections recovered have 

provided a basic understanding of the paleoceanographic and paleoclimatic evolution of 

the southern high latitudes during the Cenozoic, but o ften core sections from previous 

Antarctic drill ing arc incomp lete. Furthermore, cores arc easily disturbed when 

recovered from the hostile seas of the Southern Ocean (Gersondc et al., 1999). As a 

result of incomplete core recovery, disturbance, the presence of hia tuses, and 

diminished CaCO3 preservation potential at high lat itudes, efforts to obtain continuo us 

paleoclimatic records in the Southern Ocean have been few and far between. Compared 

with the excellent records now available from the high-latitude North Atlantic Ocean, 

prior to Leg 177, the South Atlantic sector o f the Southern Ocean had an obvious 

deficiency in the distribut ion of ocean-drilled cores, with re lat ively few continuous late 

Neogene records recovered. Of the 32 sites dr illed during legs 11 3, 11 4, 11 9, and 120, 

only Site 704 (Leg 11 4) (Fig. 1.6) had su fficient stratigraphic continuity in the Plio­

Pleistocene interva l to allow fo r high-reso lutio n pa leoceanographic and paleoclimatic 

studies (Hodel l and Yenz, 1992). Thus, o ne o f the primary aims during Leg 177 was to 

fill a cr itica l gap in the distribution o f drilled ocean sites to decipher the role the 

Southern Ocean had in the Quaternary histo ry o f the Earth 's c limatic system. 

O DP Site 704 is positio ned in the eastern Subantarctic South Atlant ic (46°52.8'S, 

7°25.3'E) (Fig. 1.6), w ith in the mixing zone o f the North Atlantic Deep Water (NADW) 

and Circum Polar Deep Water (CPDW), just no rth of the Antarctic Polar Front Zone 

(PFZ). The PFZ separates cold, nutrient-rich Antarctic surface water to the south from 

warmer, Subantarctic sur face waters of lower nutrient status, to the north. Furthermore, 

the PFZ represents a trans ition zone from pure d iato m ooze to the south near the 

Antarctic Po lar Front to a mixed si liceous-calcareous ooze to the north near the 

Subantarctic Front (Hodell and Yenz, 1992). Values of the 8180 of precip itated ca lc ite 
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demonstrate the PFZ is also a region of steep temperature gradients, and as a result , 

even subtle changes in the position of the PFZ can be recorded by the 8180 ofplanktic 

foraminifcrs. 

Isotopic data from Site 704 provided new insights into the climatic evolution of the 

Southern Ocean during the Plio-Plcistoccne. Global climate is generally considered to 

have been warmer than today during the Pliocene (prior to 3.2 Ma) , and the cryosphere 

is believed to have been unipolar and restricted to Antarctica (Hodell and Yenz, 1992). 

During this time the amplitude of the planktic and bcnthic 8180 signals was low 

(~0 .5%o), accommodating some warming and minor dcglaciation during the Pliocene. 

However, records arc inconsistent with major warming and massive deglaciation of the 

Antarctic continent. Isotopic records from S itc 704 suggest that the Antarctic glacier 

system did not fluctuate on a large sca le prior to 3.2 Ma, rather, it was not until the late 

Gauss (2.7-2.4 Ma) (when the large Northern Hemisphere ice sheets developed) , that 

the Southern Ocean underwent a major climatic trans ition. During this time fauna! 

assemblages indicate the northwards advance of the PFZ and the accumulation of IRD 

in the Subantarctic sector. It is also thought that the lowering of sea level by increased 

ice in the northern hemisphere stimulated ice advance along the Antarctic margin. In 

addition, increased glacial suppression of NADW after 2.7 Ma may have decreased the 

heat flux to the Southern Ocean (Hodell and Yenz, 1992). Carbon isotopic gradients 

between the North Atlantic (Site 607), the Southern Ocean (Site 704) and the Pacific 

(Site 677) suggest that the suppression of NADW intensi fied greatly during glacial 

periods after marine oxygen isotope (MIS) stage 52 ( 1.55 Ma), which in turn is 

attributed to an increase in the amplitude of the Earth's obliquity cycle (Hodell et al., 

2003). 

Documentation of IRD, including Heinrich Events, in the North Atlantic has contributed 

greatly to our understanding of Laurcntidc Ice Sheet dynamics (Yenz and Hodell, 2002). 

Kanfoush et al. (2000) found s imilar evidence for millennial-scale variability in the 

Antarctic Ice Sheet, through discrete episodes of IRD deposition throughout the last 

glaciation and over the last four climate cycles. The study of IRD delivery to the South 

Atlantic at Site I 094 (54°S) found that the last four g lacial cycles were marked by high 

IRD abundance during the latter half of the interglacial period or onset of ncoglaciation 

(composed predominantly of volcanic ash (source believed to be South Sandwich 
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Is lands in the Scotia arc) and quartz with minor amounts of fine-grained volcanics, 

coarse-crystalline rock fragments, and mica); possibly reflecting the instability of the ice 

shelves in the Weddell Sea region (Yenz and Hodell, 2002). 
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I. 5 Mid-Pleistocene Climatic Transition 

The mid-Pleistocene Climate Transition (MPT) is the name given to the period of time 

when the dominant periodicity of glacial-interglacial cycles changed from the 41-kyr 

obliquity signal to the I 00-kyr eccentricity signal (Durham et al. , 200 I). Brocckcr and 

van Donk ( 1970) described it as the transition observed in proxy climate records from 

symmetrical low-amplitude, high-frequency (41 -kyr) ice volume variations to high­

amplitudc, low- frequency ( I 00-kyr) asymmetrical saw-toothed ice volume variations 

indicating gradual ice build-up terminated by rapid dcglaciation events. During the 

MPT, glacial-interglacial contrasts became more severe and the I 00-kyr climate cycles 

developed their distinctive asymmetric pattern of the late Quaternary, resulting in a 

change in the mean state of the global climate system, including lower global 

temperatures, increased global ice volume, and lower sea-surface temperatures 

(Shackleton et al. , 1990). 

The MPT occurred over several hundred thousand years (between c. 1200 and 600 ka) 

and is documented by bcnthic foraminiferal 8180 records in marine sediments from the 

world's oceans. Bcnthic foraminifcral 8180 records document a general increase in 

global ice volume and the onset of weak 100-kyr cycles between 1250 ka and 900 ka 

and the establishment of strong I 00-kyr cycles since 600 ka (Ruddiman et al. , 1989; 

[mbric et al., 1993; Berger et al. , 1994; Chen et al., 1995 ; Mudclscc and Schulz, 1997). 

Ruddiman et al. ( 1989) and Mix et al. ( 1995) report a bcnthic 8180 increase of 

approximately 0.29%0 at ~920 ka, which corresponds to a sea level fall of about 30 m. 

During the same time interval s ignificant changes in carbon cycling was occurring, 

including changes in the mean ocean 813C, probably caused by the addition of terrestrial 

carbon to the ocean-atmosphere reservoirs as global aridity increased (Raymo et al. 

1997). Positive feedbacks to the CO2 budget on earth, an increase in carbon in the 

marine realm (from increased primary production and transport from continental shelf 

to deep sea), along with many other factors, arc thought to have affected deep-water 

physical and chemical composition in the North Atlantic (NADW) and subsequently the 

global thcrmohalinc circulation of the oceans. 
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The timing, duration, and the cause of the MPT is yet to be adequately explained. It is, 

however, known that the MPT was a global event, and its occurrence has been well 

documented in both marine and continental records worldwide. The problem lies in 

identifying a mechanism that would amplify the climate system's response to relatively 

weak insolation forcing. The MPT demonstrates that the causal link between insolation 

and ice volume suggested by Milankovitch ( 1930) is, in fact, much more complex than 

it may first appear. During the Pliocene and early Pleistocene it appears that a linear 

relationship between orbital forcing, ice volume and climate variations existed ([mbrie 

et al. 1993) . Yet, reconstructions of insolation values by Berger and Loutre (1991) 

suggest that there is no significant change in the pattern of insolation at the time of the 

MPT to account for the transition observed in climatic variations from 41- to I 00-kyr 

cycles. The lag between ice growth at 920 ka and the establishment of strong I 00-kyr 

world at - 650 ka, further complicates the problem, indicating decoupling between ice 

volume and the I 00-kyr cycle. 
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1.6 Previous Studies on the Extinction of deep-sea 

Benthic F oraminifera 

1.6.1 Cenozoic Turnover of Benthic Foraminifera 

I : INTRO DUCT IO 

Three periods of increased taxonomic turnover and in fauna! abundance changes in 

deep-sea foraminifcra during the Cenozoic have been identified globally (Thomas, 

1992; Miller et al., 1992) : the Paleocene-Eocene boundary, Eocene-Oligocene 

boundary, and middle Miocene. Of these, the first, resulted in the most severe 

extinctions ofbenthic foraminifcra (loss of30-50% of species ; Thomas, 1992; MacLeod 

et al. , 2000) during the Paleoeene-Eocene thermal maximum (PETM , ca. 55 Ma) . This 

extinction has been attributed to an abrupt warming and change in ocean circulation due 

to circulation of oxygen-poor, warm, corrosive bottom waters , coupled with changes in 

primary productivity in the surface waters (Katz et al., 1999) . The second and third 

periods of increased taxonomic turnover the 36-30 Ma and 16-12 Ma were more 

gradual, correlating with a decrease in high latitude and deep-water temperatures 

(Shackleton and Kennett , 1975 ; Thomas, 1992), and a shift in 8 13C values (initiated by 

changes in surface ocean productivity) , respectively. 

1.6.2 Mid-Pleistocene Extinction of Benthic Foraminifera 

The mid-Pleistocene extinction or "Stilostomella extinction event" (Weinholz and 

Lutze, 1989) has now been recognised as the most recent turnover in benthic 

foraminiferal taxa. First documented in DSDP Site 397 off north-west Africa in the 

Atlantic Ocean (Lutze, 1979), it marks the final phase in the progressive decline of 

elongate cylindrical taxa (belonging to the families Stilostomellidae, Pleurostomellidae 

and uniserial Nodosariidae). [t includes the extinction of all elongate, cylindrical, 

uniserial, biserial or multiserial tests with highly specific apertural characteristics: i.e. 

cribrate (Chyrsafogonium, Cribronodosaria), slit lunate, hooded with two teeth 

(P leurostomellidae), or secondarily toothed, necked (Stilostomellidae) apertures 

(Hayward, 2002). These fauna reached their greatest abundance (up to 70% of benthic 

foraminifcral faunas) in the latest Eocene (40-35 Ma), forming a significant proportion 

of middle bathyal to upper abyssal (c . 500-3000 m depth) benthic foraminifcral faunas 

(Thomas et al. , 2000). Since the latest Eocene this group of elongate taxa has 
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progressively declined in abundance and diversity, with strongest declines occurring 

during the late Eocene-early Oligocene cooling when the East Antarctic Ice Sheet 

formed (Thomas and Vincent, 1987) , and the late middle Miocene cooling, related to 

the expansion of the West Antarctic fee Sheet (Thomas 1987, 1992) . The final demise 

of the Extinction Group taxa, called the "Stilostomella extinction", reported here, 

occurred between I 000 and 600 ka (Lutze, 1979; Weinholz and Lutze, 1989; Schonfeld, 

1996), and has been hypothesized to be related to the intensification of Northern 

Hemisphere glaciation, and associated changes in the oxygenation of bottom-water 

masses and food supply fluctuation s. 

Figure 1.8 illustrates the global locations of deep-sea ODP and DSDP sites in which the 

"Stilostomella extinction" event has previously been documented. Lutze ( 1979) 

identified the decline and extinction of IO benthic foraminifcral species from six genera 

( e.g. Stilostomella, Orthomorph in a, Plectofrondicularia, E llipsoglandulina, 

Nodogenerina, and Pleurostomella) between I 000 and 600 ka in DSDP 397 off 

northwest Africa in the Atlantic Ocean. 

When Weinholz and Lutze ( 1989) undertook a detailed investigation of DSDP 658 and 

659, off west Africa they initiated the term "Stilostomella Extinction", named after the 

family Stilostomellidae which disappeared at this time; which has been used since to 

describe this global benthic foraminifcral extinction event. Their study revealed the 

diachronous nature of the fauna! boundary, with highest occurrence datums (HOs) of 

the Extinction Group taxa spanning some two hundred thousand years (810 - 640 ka) , 

the timing differing between sites and water depth. An important discovery made by 

Weinholz and Lutze was that the final extinction of the taxa appeared to be c . I 00 kyr 

earlier in the deeper water (DSDP 659, 3081 m) than shallower (DSDP 658, 2263 m). 

Gupta ( 1993) then confirmed the decline in relative abundance and eventual demise of 

Siphonodosaria lepidula (as Stilostomella lepidula) in the Pliocene and Pleistocene of 

two DSDP sites (DSDP 214 and 219) in the Indian Ocean. Benthic census data showed 

a progressive decline in relative abundance of Siphonodosaria /epidu/a, from greatest 

abundance during the late Pliocene (3 .2-1.8 Ma), comprising I 0-20% of the benthic 

foraminifcral fauna > 150 µm , to an abrupt decrease and regional disappearance at ~ 730 

ka, near the Brunhes/Matuyama boundary (780 ka) . 
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In the Pacific Ocean the "Stilostomella extinction" has been recognised in the northwest 

(Kaiho, 1992; Keller, 1980; Jian et al. , 2000), central (Schonfeld, I 995) , southeast 

(Schonfeld and Spiegler, 1995) and southwest (Hayward , 200 I, 2002). 

Schonfeld ( 1996) reviewed all known records of the mid-Pleistocene extinction event, 

which confirmed the extinction (HOs) of the relevant species of elongate benthic 

foraminifera between I 000 and 600 ka (predominately 800 to 700 ka) with highly 

variable timings. He noted the diachronous nature of highest occurences in sites only a 

few tens or hundreds of kilometres apart, e.g. DSDP 658 and 659, or 548 and 549, in the 

Central and North Atlantic Ocean, with HOs of Siphonodosaria lepidula differing by 

166,000 and 155 ,000 years respectively (Schonfeld, 1996). Schonfeld also concluded 

that regional extinctions took place earlier in water depths below 3500 m, farther 

offshore, and at mid- to low southern latitudes, possibly linking rapid changes in deep­

water formation and ventilation with the "Stilostomella extinction". 

Hayward (200 I, 2002) undertook the first detailed "Stilostomella extinction" study 

which included the decline and extinction of the rare and small taxa (>63 µm) , which 

had been overlooked in most previous studies. Hayward (2002) revealed that in the 

southwest Pacific , the total abundance of Extinction and Die-back Group specimens 

decline dramatically during the early and middle Pleistocene ( 1200-700 ka) , the rate of 

decline is not uniform but pulsed, o ften with major declines coinciding with the onset of 

cold intervals . Further, Hayward (2002) concluded that in the southwest Pacific, the 

local disappearances of the Extinction Group species occurred earlier in deeper and 

cooler water locations (earliest site ODP 1123 and latest site ODP 1125), suggesting the 

pattern may be related to food supply. Contrary to Schonfeld ' s conclusion of highly 

variable youngest occurrence timings of the Extinction Group taxa (900-600 ka, 

Schonfeld, 1996), Hayward's southwest Pacific sites revealed a highly consistent final 

disappearance of the taxa, constraining the Stilostomella extinction datum to 650-570 

ka, despite differences in depth. 

Most recently, Kawagata et al. (in press) document the extinctions of deep-sea bcnthic 

foraminifera in the North Atlantic Gateway. ODP Sites 980 and 982, located in 

intermediate water depths in the northern North Atlantic, arc close to the present 

formation area of North Atlant ic Deep Water (NADW). Both cores reveal the 
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progressive decline and eventual regional extinct ion of 51 species of elongate, 

cylindrical bcnthic foraminifcra, with the majority of Extinction Group taxa (~96%) 

having HOs between 1200 and 700 ka. The last of these species to disappear in the 

North Atlantic was Pleurostomella alternans at ~679 ka and ~694 ka in Sites 980 and 

982, respectively. These North Atlantic studies arc in good agreement with the 

previously documented final global ·'Stilostomella extinction" datum of 700-580 ka 

(Wcinho lz and Lutze, 1989; Ka iho, 1992; Gupta, 1993; Schonfeld, 1996; Hayward, 

200 I, 2002). They concluded that changes in chemical ventilation of the bottom water 

and food supply to the sea floor might have decimated the elongate, uniscrial deep-sea 

foraminifcra during the MPT. 
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I. 7 Marine Oxygen Isotope Stages 

The Milankovitch theory o f c limate change, linking variations in the Earth's orbita l 

parameters to climate fluctuations, continues to gather support as the primary driver for 

g lac ial and interglac ia l climatic cycles. Muc h o f the climatic cycl icity that is 

docume nted in the marine sed imentary reco rd over the past I millio n years can be 

expla ined by linear responses o f c limate to the 4 1,000-ycar o rbita l obliquity and 23,000-

year orbita l precessio n cycles. The increasing avai la bility o f lo ng, high qua lity ODP 

cores has made it poss ible to monito r spectral s ignals and phase re lationships bac k 

beyo nd the Miocene. However, o rbita lly modulated fluctuations o f so lar irradianee 

a lone cannot expla in the lo nger-term evo lution o f the Earth's c limate system. An 

important compone nt in the lo ng-term Cenozoic cooling trend was pla te tectonics, 

namely its influence on mo untain up lift and ocean c irculat ion. There is now abundant 

evide nce that the reconfiguration o f oceans and continents, no tably the opening and 

c losure of oceanic gateways, and assoc iated change in thermo ha line c irculation and heat 

transport, set the stage fo r northern hemisphere g laciation ( lmbrie et al.. 1993). 

Thermoha line forcing thro ugh changes in deep water temperature has been proposed by 

lmbrie et al. ( 1993) to be one possible d river o f the 100,000-ycar climate cycle. Further 

studies invo lving high-reso lution correlations between ice core pa leoclimate records and 

the marine 8180 record support not only a dominant greenhouse forc ing (Shackleton, 

2000), but a lso reveal a lag period between ice vo lume (as seen in the marine reco rd) 

and atmospheric CO2 c hanges. Such evidence fa vours atmospheric CO2 as the primary 

player during the lo ng-term cyc les o f glac ia l- interglac ia l c limatic c hange (Shackleton, 

2000). 
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The marine oxygen isotope stage numbering system that is used throughout this thesis is 

based upon the timescale calibrated by Chen et al. ( 1995), fo r the 0- 1.8 Ma period (Fig. 

1.9). Chen et al. ( 1995) use the 8 180 records from the bcnthic foraminifcral species 

Cibicides ·wuellerstor/i to simulate orbitally-induced ice vo lume changes over the past 

3.6 Ma (ODP 758). The marine isotope stages (MIS) arc recognised in the glacial and 

interglacial periods based on the downcorc variation o f the 8180 of foraminifcra and arc 

labelled us ing conventional notations of even numbers fo r glac ial stages and odd 

numbers for interglacial stages . 

.. 
) ~ ) 0 d I 2 • j 1 1 

Figure 1 .9· Calibrated ages for marine isotope stages (MIS) for last 1 8 Ma, using ice volume simulation 
( from Chen et al . 1995) 
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