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Abstract

Runge-Kutta methods are some of the most widely used numerical integrators for approximat-

ing the solution of an ordinary di�erential equation (ODE). These methods form a subset of a

larger class of numerical integrators called B-series methods. B-Series methods are expressed in

terms of rooted trees, a type of combinatorial graph, which are related to the vector �eld of the

ODE that is to be solved. Therefore, the conditions for B-series methods to preserve important

properties of the solution of an ODE, such as symplecticity and energy-preservation, may be ex-

pressed in terms of rooted trees. Certain linear combinations of rooted trees give conditions for a

B-series to be Energy-preserving while other linear combinations give conditions for a B-series to

be Hamiltonian. B-series methods may be conjugate (by another B-series) to an Energy-preserving

or an Hamiltonian B-series. Such B-series methods are called conjugate-to-Energy preserving and

conjugate-to-Hamiltonian, respectivley. The conditions for a B-series to be conjugate-to-Energy

preserving or conjugate-to-Hamiltonian may also be expressed in terms of rooted trees.

The rooted trees form a vector space over the Real numbers. This thesis explores the algebraic

structure of this vector space and its natural energy-preserving, Hamiltonian, conjugate-to-Energy

preserving and conjugate-to-Hamitlonian subspaces and dual subspaces.

The �rst part of this thesis reviews important concepts of numerical integrators and introduces

the general Runge-Kutta methods. B-series methods, along with rooted trees, are then introduced

in the context of Runge-Kutta methods. The theory of rooted trees is developed and the conditions

for a B-series to be Hamiltonian or have �rst integral are given and discussed. In the �nal chapter

we interpret the conditions in the context of vector spaces and explore the algebraic structure of,

and the relationships between, the natural vector subspaces and dual spaces.



�Do you like Phil Collins? I've been a big Genesis fan ever since the release of their 1980 album,

Duke. Before that, I really didn't understand any of their work. Too artsy, too intellectual. It was

on Duke where, uh, Phil Collins' presence became more apparent. I think Invisible Touch was the

group's undisputed masterpiece. It's an epic meditation on intangibility. At the same time, it

deepens and enriches the meaning of the preceding three albums. Christy, take o� your robe.�

-Brett Easton Ellis

�Wu-Tang Clan ain't nuttin to f ' wit�

-The RZA

�Possibilities of sweetness on technicolor beaches had been trickling through my spine for some

time...�

-Vladimir Nabokov

�I have to return some videotapes.�

-Brett Easton Ellis
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Chapter 1

Introduction

Suppose that x is an unknown function of a variable t. If we know dx
dt (or x′), then we can recover

x, up to an additive constant, by integrating x′:

x(t) =

ˆ
x′(t).dt+ c = F (t) + c.

If we don't know x′ but we know x′′, then we can still recover x, but now we have to integrate twice

and there will be two arbitrary constants:

x′(t) =

ˆ
x′′(t).dt+ C1 = G(t) + C1

x(t) =

ˆ
[G(t) + C1] .dt+ C2 = F (t) + C1t+ C2.

It often happens in mathematics and in applications to other �elds that we don't know x′,

we don't know x′′, we don't know any of the derivatives explicitly, but we do have an equation

that relates x to one or more of its derivatives. An equation that relates an unknown function to

one or more of its derivatives is called an ordinary differential equation. From some di�erential

equations we can recover x completely and describe its action explicitly as a function of t (up to

one or more arbitrary constants). More frequently, we cannot recover x completely, but we can

obtain an equation in t and x which is satis�ed by x and involves none of the derivatives of x. Such

an equation, carrying one or more arbitrary constants, represents a family of curves called integral

curves (solution curves) of the di�erential equation.

If an equation contains only ordinary derivatives of one or more dependent variables with respect

to a single independent variable, the equation is said to be an ordinary differential equation

(ODE). An equation involving partial derivatives of one or more dependent variables of two or
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more independent variables is said to be a partial differential equation.

The order of a di�erential equation is the order of the highest derivative that appears in the

equation. We can express an n-th order di�erential equation in one dependent variable as

F (t, x, x′, . . . , x(n)) = 0

An n-th order ordinary di�erential equation is said to be linear if F is linear in x, x′, . . . , x(n). If

F is not linear then the di�erential equation is said to be non− linear.

It also happens in applications that a single di�erential equation is insu�cient and we in fact

need a set of di�erential equations to describe some phenomena. This set of di�erential equations

is called a system of di�erential equations.

dx1

dt = g1(t, x1, x2, . . . , xn)

dx2

dt = g2(t, x1, x2, . . . , xn)

...

dxn
dt = gn(t, x1, x2, . . . , xn)

When g1, g2,..., gn are linear in the variables x1,x2, ..., xn the system is said to be a linear

system, otherwise the system is non-linear. A solution to the system is a set of functions

(x1(t), x2(t), ..., xn(t)) which satisfy all equations in the system. We may write the system above

in the form

ẋ = f(t,x)

where x represents a point in the Phase Space (the space in which all possible states of the

system may be represented, where each possible state is represented by a unique point in the

Phase Space) and the vector valued function f(x) represents a vector-�eld which, at any point in

the phase space, prescribes the velocity (direction and speed) of the solution x(t) that passes

through that point (Hairer, Lubich and Wanner(2002)).

The flow map, ϕt, of the system is a mapping which, to any point x0 in the phase space,

associates the value x(t) of the solution with initial value x(0) = x0. This map is thus de�ned by

ϕt(x0) = x(t) if x(0) = x0.

(Hairer, Lubich and Wanner (2002)).

Finally, there are di�erential equations (and systems of di�erential equations) from which we

can extract no explicit solutions and no integral curves. Such equations have to be approached by

other methods, in particular, numerical methods.
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1.1 Outline of Thesis

It is with these numerical methods, mentioned above, that this thesis is primarily concerned. In

the next chapter I will summarize some basic numerical methods and attempt to illustrate their

usefulness as well as their short comings with some numerical experiments. General properties of

these methods will be described and commented upon. In chapter 3 I will describe the more general

Runge-Kutta methods; how they are derived and the di�erent forms they may take, i.e. implicit or

explicit Runge-Kutta schemes. In chapter 4 we enter the great jungle of trees and use the concepts of

rooted trees and B-series, pioneered by J. C. Butcher in the years 1963-72, to analyze Runge-Kutta

numerical integrators. In this chapter I will develop and extend the concepts of rooted trees and

B-series, as in [10], and show how they are used to analyze Rung-Kutta methods. This will involve

studying properties of B-series and compositions of B-series which allow us to consider numerical

integrators that are conjugate to other numerical integrators in chapter 6. Chapter 5 deals with

Backward error analysis and uses the developed tools of B-series and rooted trees to analyze how

well a numerical Integrator preserves the qualitative behavior of an ODE. In particular, this chapter

will study the conditions under which a B-series (and hence its corresponding numerical integrator)

is Symplectic or Energy-preserving. Examples are given to illustrate these conditions. In chapter

6 the conditions for a B-series to be Symplectic or Energy-preserving are studied purely in terms

of rooted trees. That is, certain linear combinations of rooted trees determine whether a B-series

is Symplectic and certain linear combinations determine whether a B-series preserves the energy of

a system. These linear combinations form vector subspaces of the vector space of rooted trees and

it is the goal of this chapter to understand the algebraic structure of these vector spaces. Section

6.1 gives an overview of the vector spaces of Energy-preserving trees and Hamiltonian trees along

with some basic results (already given in [5]) which are consequences of the study in chapter 5

and the results given in [14]. Section 6.2 extends the ideas of the previous section to conjugate

B-series and gives an overview of the results given in [5] along with some new results on the space

of Energy-preserving and Conjugate-to-Hamiltonian trees (TH ∩ TΩ̃) and the maps involved in the

construction of this space. Lemmas 56 and 57 and Theorems 59 and 60 of Section 6.2 are original

to this thesis. Section 6.3 gives two constructions of the annihilator of the conjugate-to-Energy

preserving space of trees, one following directly from the results given in chapter 5 (which were

originally given in [9]), and the other, Theorem 63, a new e�cient algorithm based only on the

structure of the Energy-preserving space of trees and the annihilator of the Hamiltonian trees. The

result of section 6.3 is original to this thesis. Finally, in section 6.4 I extend the properties of the

maps introduced in section 6.2 and use these maps to study the relationships and links between

the di�erent vector-spaces of rooted trees which was due to an idea of Elena Celledoni. These

relationships are interpreted and commented upon. The results of this section are all original to

this thesis.
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Chapter 2

Basic Numerical Methods

As mentioned before, many of the di�erential equations that arise in the study of physical phenom-

ena cannot be solved exactly. Therefore, we need other methods to describe solutions or approxi-

mate them. So-called qualitative methods which are used to describe the nature and behavior of

solutions may be employed but they shan't be discussed here, there is a wealth of literature describ-

ing these methods in detail. Rather, we shall focus on basic numerical methods for approximating

solutions and study their accuracy.

2.1 The Lipschitz Condition

Our main goal is to approximate the solution of an ODE ẋ = f(x, t) (where ẋ is as de�ned in

section 1.1) with some initial data (t0,x(t0)). Here f is a su�ciently well behaved function that

maps [t0,∞)× Rn to Rn and the initial data x(t0) ∈ Rn is a given vector. Now, a �well behaved�

function could mean a whole range of things but at the very least we insist on f obeying, in a given

vector norm ‖.‖, the Lipschitz Condition. That is, f is Lipschitz in x (or Lipschitz continuous) on

an open set U ⊆ [t0,∞)× Rn if there exists a K > 0 such that

‖f(x, t)− f(y, t)‖ ≤ K ‖x− y‖ ∀x,y ∈ Rn.

Here K > 0 is a real constant that is independent of the choice of x and y. It is called the Lipschitz

constant. This condition implies that f is continuous with respect to x, but not all continuous

functions are Lipschitz (consider f(x) = x
1
3 ). If ∂fi∂xi

exists and is bounded in U , then f is Lipschitz

with K = supx∈U

∥∥∥ ∂fi∂xi

∥∥∥.
Subject to the Lipschitz condition it is possible to prove that the system of ODEs has a unique

solution in the interval (t0−ε, t0 +ε), for some ε > 0. Thus, throughout this thesis we shall assume

that the function f is Lipschitz and hence the system of di�erential equations will have a solution.
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2.2 The Explicit Euler Method

Let us imagine we have a di�erential equation, dxdt = f(t, x), which cannot be solved analytically.

Since by de�nition dx
dt = limh→0

x(t+h)−x(t)
h , the simplest and most obvious approach to solving

dx
dt = f(t, x) is to approximate it by

x(t+ h)− x(t)

h
≈ f(t, x)

where h is a small but non-zero step size.Thus, given some initial data (t0, x(t0)), we are able to

approximate x(t0 + h) by x(t0) + hf(t0, x(t0)):

x(t0 + h) ≈ y(t0) + hf(t0, x(t0)).

Using this estimate for x(t0 + h), we can go on to estimate x(t0 + 2h), x(t0 + 3h), x(t0 + 4h), etc.

Letting tn = t0 + nh, x0 = x(t0), where h is the time-step, and xn is the numerical estimate of the

exact solution x(tn), n = 0, 1, ... we obtain the iterative scheme

xn+1 = xn + hf(tn, xn).

This method of approximating solution curves is called Euler's Method. Of course this scheme

easily generalizes to systems of ordinary di�erential equations

xn+1 = xn + hf(tn,xn).

Euler's method is by far the simplest of all iterative schemes but also of profound importance.

It provides the foundation for the numerical analysis of di�erential equations and their solutions.

In fact, the more complicated and involved methods such as Runge Kutta methods are simply

generalizations of the concepts provided by the Euler Method.

As an example, consider the di�erential equation dx
dt = 2t(1 + x2), with x(0) = 0, which has

the solution x(t) = tan(t2). Euler's method was used to approximate the solution with a step size

of h = 0.1, h = 0.05, and h = 0.01 and the graphs of these approximations superimposed on the

actual solution are shown in �gure 2.1.

The initial condition being, by de�nition, exact, so is our approximation at t0. As we step

further and further away from our initial condition, our approximation deviates further and further

from the exact solution of our di�erential equation. However, the goal of a numerical solution is

not to avoid errors altogether, after all, the reason we use numerical methods is because we do not

know the exact solution! In every numerical method we will always incur errors but our goal is

to understand why these errors occur and ensure that they do not grow and accumulate beyond a

5



Figure 2.1: Approximate solution curves to dx
dt = 2t(1 + x2) using Euler's Method with step sizes

of h = 0.1, h = 0.05, h = 0.01.
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reasonable level. Thus, the real question of interest is how well does Euler's Method approximate

solutions of ODEs? Figure 2.1 suggests that as the step size h becomes smaller and smaller, our

approximate solution approaches the actual solution. Let us formulate this idea with a little more

formalism.

Suppose we want to approximate the solution of an ODE on the interval [t0, t0 + ε] with some

numerical method involving time steps. It doesn't even need to be Euler's method! We now

cover this interval by an equidistant grid (in the case of Euler's method the spacing of the grid is

determined by the time step h) and use our numerical method to approximate a solution to the

given ODE. The question is whether, as the time step becomes smaller and smaller (and hence the

grid spacing becomes smaller and smaller), the numerical solution tends to the exact solution of

the ODE. Letting xn = xn,h, where h is the time step in the numerical method, for n = 0, 1, ...
⌊
ε
h

⌋
,

we say a numerical method is convergent if, for every ODE with a Lipschitz function f and every

ε > 0, it is true that

lim
h→0

max
n=0,1,...b εhc

‖xn,h − x(tn)‖ = 0

where bac is the integer part of a ∈ R. That is, for every Lipschitz function, the numerical solution

approaches the actual solution of an ODE as the grid becomes �ner and �ner.

It should be noted that convergence is a very necessary attribute of any numerical method.

After all, what good is a numerical method if it is not guaranteed to approach the actual solution.

There are a number of attributes a good numerical method should have, which will be discussed in

the following sections, but convergence is the main ingredient for a useful numerical method. The

following theorem con�rms our previous suspicions that Euler's Method is indeed convergent. The

proof is given by Arieh Iserles and assumes f is analytic, although it is enough to assume that f is

only continuously di�erentiable. We follow that proof here.

Theorem 1. Euler's Method is convergent.

Proof. Let ẋ = f(t,x) be an ODE where f is analytic. Given h > 0 and xn = xn,h, n =

0, 1, ...,
⌊
ε
h

⌋
, let en,h = xn,h−x(tn) be the numerical error. We wish to prove limh→0 maxn=0,1,...b εhc ‖en,h‖ =

0. By Taylor's theorem,

x(tn+1) = x(tn + h) = x(tn) + hẋ(tn) +O(h2) = x(tn) + hf(tn,x(tn)) +O(h2),

and, x being continuously di�erentiable, theO(h2) term can be bounded (in a given norm) uniformly

for all h > 0 and n ≤
⌊
ε
h

⌋
by a term of the form ch2, where c > 0 is a constant. Subtracting the

above equation from Euler's Method, we obtain

en+1,h = en,h + h[f(tn,x(tn) + en,h)− f(tn,x(tn))] +O(h2).

7



By the triangle inequality, the Lipschitz condition, and the bound on O(h2) that

‖en+1,h‖ ≤ ‖en,h‖+ h ‖f(tn,x(tn) + en,h)− f(tn,x(tn))‖+ ch2

≤ (1 + hK) ‖en,h‖+ ch2, n = 0, 1, ...,
⌊ ε
h

⌋
− 1.

The remainder of the proof is done by induction on n. We claim that ‖en,h‖ ≤ c
Kh[(1 + hK)n −

1], n = 0, 1, .... It is certainly true that ‖e0,h‖ ≤ 0 since our initial condition is, by de�nition,

exact. Assume the claim is true up to n. Then

‖en+1,h‖ ≤ (1 + hK) ‖en,h‖+ ch2 = (1 + hK)
c

K
h[(1 + hK)n − 1] + ch2 =

c

K
h[(1 + hK)n+1 − 1]

and the claim is proved. The constant hK is positive and therefore 1 + hK < ehK , and we deduce

that (1+hK)n < enhK . The index n may range from 0 up to
⌊
ε
h

⌋
and hence (1+hK)n < eb

ε
hchK ≤

eεK . Thus we obtain the inequality

‖en,h‖ ≤
c

K
(eεK − 1)h, n = 0, 1, ...

⌊ ε
h

⌋
.

Since c
K (eεK − 1) is independent of h, it is clear that

lim
h→0,0≤nh≤ε

‖en,h‖ = 0.

�

We have in fact done more than just show that Euler's Method is convergent, we have also

found an upper bound on the error. It is always true that the error is bounded above by c
K (eεK −

1)h, but this bound has very little practical value. The problem is not in our proof but in the

unresponsiveness of the Lipschitz constant. An obvious example is the ODE ẋ = −50x, x(0) = 1.

The Lipschitz constant is K = 50, and with x(t) = e−50t, c = K2 we derive the upper bound of

50h(e50ε − 1).With ε = 1 we have

|xn − x(nh)| ≤ 2.59× 1023h.

But we can show that xn = (1− 100h)n and obtain the exact expression

|xn − x(nh)| =
∣∣(1− 100h)n − e−50nh

∣∣
which is much smaller by several orders of magnitude! Therefore, the bound provided by the proof

does not o�er any useful information about the accumulated errors in using Euler's Method. We

are able to obtain a more useful bound on the local error (the error incurred after each step, or

8



local truncation error). That is, if we assume xn is exact, then xn+1 will contain a local truncation

error. We use Taylor's theorem with remainder. If a function x(t) has k + 1 derivatives that are

continuous on an open interval containing tn and tn +h, then, letting tn+1 = tn +h and expanding

x(tn+1)in a Taylor series we obtain

x(tn+1) = x(tn) + hẋ(tn) +
h2

2
ẍ(tn) + ...+

hk+1

(k + 1)!
x(k+1)(c)

where c is a point in the open interval. With k = 1 we obtain

x(tn+1) = x(tn) + hf(tn,xn) +
h2

2
ẍ(c)

or

x(tn+1) = xn + hf(tn,xn) +
h2

2
ẍ(c)

since xn is exact. The �rst two terms are simply Euler's Method, thus we have

x(tn+1) = xn+1 +
h2

2
ẍ(c)

and the local truncation error in xn+1 is

h2

2
ẍ(c), where tn < c < tn+1.

The value of c is usually unknown and so the exact error cannot be calculated, but an upper bound

on the error can be calculated. This upper bound is

max
tn<t∗<tn+1

|ẋ(t∗)| h
2

2

Euler's method is of order one. If we write Euler's method in the form xn+1−[xn−hf(tn,xn)] =

0, replace xi by the exact solution x(tj), j = n, n + 1 and expand into a Taylor series about

tj = t0 + nh, we obtain

x(tn+1)− [x(tn)− hf(tn,x(tn))] = [x(tn) + hẋ(tn) +O(h2)]− [x(tn) + hẋ(tn)] = O(h2).

If we are given an arbitrary time-stepping method

xn+1 = Xn(f , h,x0,x1, ...,xn), n = 0, 1, ...

9



for an ODE, we say it is of order k if

x(tn+1)−Xn(f , h,x(t0),x(t1), ...,x(tn)) = O(hk+1)

for every analytic function f and n = 0, 1, .... The order of a numerical method measures the change

in error of a numerical solution as the step size is decreased, but the information provided is only

about the method's local behavior - moving from tn to tn+1. That is, as we move from tn to tn+1,

for su�ciently small h > 0, we are incurring an error of O(h2). As before, de�ne en,h to be the total

error in the numerical calculation after completing n steps. Then en,h is of order hk, denoted by

O(hk), if there exists a constant C and a positive integer k such that |en,h| ≤ Chk for su�ciently

small h. In general, if en,h in a numerical method is of order hk and h is halved, the new error is

approximately C(h2 )k = C hk

2k
. That is, the error is reduced by a factor of 1

2k
. Theorem 1 shows us

that the total error committed by Euler's method is proportional to h. This is a serious limitation

because decreasing the value of h increases the computation time and produces only a marginal

improvement in accuracy. We would prefer �higher order� methods for which the error in a step

behaves as O(hp+1) and the total error after n steps behaves as O(hp) for p ≥ 2.

2.3 The Implicit Euler Method

In many practical problems Euler's Method is not particularly useful. One particular class of ODEs

in which Euler's method (and other methods) is not useful is the class of �sti�� ODEs. A quick

look at stability is needed �rst. As an example, consider the di�erential equation

x′′ − 10x′ − 11x = 0

with initial conditions x(0) = 1, x′(0) = −1. The solution of this ODE is x(t) = e−t. Suppose now

we change the initial conditions by a small amount ε > 0 so that the initial conditions are now

x(0) = 1 + ε, x′(0) = −1. Now the solution to the ODE with the new initial conditions is

x(t) = (1 +
11

12
ε)e−t +

ε

12
e11t.

Therefore, no matter how small ε > 0 is, the second term in the new solution causes the solution

to approach in�nity as t approaches in�nity. The solution x(t) = e−t of the original ODE is

unstable. That is, arbitrarily small changes in the initial conditions produce arbitrarily large

changes in the solution as t → ∞. It is extremely di�cult to calculate the solutions of these

types of ODEs numerically since round o� and truncation error have the same e�ect as changing

the initial conditions which causes the solutions to diverge. ODEs that are said to be �sti�� are

10



ODEs that exhibit unstable behavior if the time step in the numerical approximation is too large.

Consider the ODE

x′ = −100x+ 100, x(0) = x0

The exact solution is given by

x(t) = (x0 − 1)e−100t + 1.

If we change the initial conditions from x(0) = x0 to x(0) = x0 + ε then the solution becomes

x(t) = (x0 + ε− 1)e−100t + 1

and we see that the solution is stable. Let us apply Euler's method to the problem, then we get

xn+1 = xn + h(−100xn + 100) = (1− 100h)xn + 100h.

We may solve this equation recursively to obtain

xn = (x0 − 1)(1− 100h)n + 1.

Suppose that x0 = 2. Then the original solution to the ODE becomes

x(t) = e−100t + 1

and the recursion equation becomes

xn = (1− 100h)n + 1.

Now, x(t) decreases very rapidly from its initial condition to its limiting value of 1. Therefore,

we would expect to require a small step size h to compute the solution accurately. However, for

t > 0.1, the solution varies very slowly and is essentially equal to 1 with almost negligible variation,

thus we should expect to be able to obtain su�cient accuracy with Euler's method using a relatively

large value for h. But, we also see from the recursion equation that if h > 0.02, then |1− 100h| > 1

and the approximation xngrows rapidly with each step and shows unstable behavior. The quantity

(1 − 100h)n is an approximation to e−100t, and we know from Taylor's theorem that it a good

approximation for small h but rapidly becomes a rubbish approximation as h becomes as large

as 0.02. Even though the exponential term contributes nearly nothing to the solution for small

t, Euler's method requires us to calculate the numerical approximation su�ciently accurately to

ensure the stability of the solution. This is often ine�ective and expensive in terms of computing

time. The example illustrates the essence of the problem of sti�ness.

11



The general approach to the problem of sti�ness is to use implicit methods. For the ODE

ẋ = f(t,x), the method

xn+1 = xn + hf(tn+1,xn+1)

is known as the backward Euler method. It has the same form as Euler's method except that f

is evaluated at (tn+1,xn+1) rather than at (tn,xn); hence the method is implicit. The backward

Euler method is implicit which means we need to solve an, often non-linear, equation for xn+1.

As an example let dx
dt = xcosx. To implement the backward Euler method we will need to solve

the non-linear equation xn+1 − xn+1cos(xn+1) = xn for xn+1 at any given time-step. A suitable

root �nding technique such as the Newton-Raphson method can be used for this purpose. This is

evidently much more computationally expensive than Euler's method but we use implicit methods

because they are stable. If we apply the backward Euler Method to the ODE x′ = −100x + 100,

x(0) = x0, we obtain

xn+1 = xn + h(−100xn+1 + 100)

which is easily rearranged to give

xn+1 =
(xn + 100h)

(1 + 100h)
.

The actual solution of this recursive equation is

xn = (x0 − 1)(1 + 100h)−n + 1.

For the initial condition x(0) = 2, the solution becomes xn = (1 + 100h)−n + 1 and we see there

is no unstable behavior regardless of the magnitude of h. The backward Euler method is based on

the Taylor series xn ≈ x(tn+1 − h) = x(tn+1) − hx′(tn+1) + O(h2) and a similar argument used

in section 2.2 shows that the backward Euler method is of order 1. Moreover, the backward Euler

method is convergent.

Theorem 2. The backward Euler method is convergent.

I shall omit the proof here as it is almost identical to the proof of the convergence of Euler's

method. We also deduce that the local and global errors in the backward Euler method behave in

much the same way as the local and global errors of Euler's method.

2.4 The Implicit Mid-Point Rule

Taking the mean of xn and xn+1 in the argument of f , we obtain the implicit midpoint rule

xn+1 = xn + hf(tn +
h

2
,
xn + xn+1

2
).
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The approximation xn+1 is obtained implicitly from evaluating f at the midpoint of xn and xn+1

and the midpoint of tn and tn+1. This acts as a smoothing mechanism as we are approximating

the ODE, i.e. the slope of the solution, at the end points xn and xn+1 and the midpoint of xn and

xn+1. Similarly for the time step endpoints tn and tn+1 and their midpoint. The implicit midpoint

rule is similar to the backward Euler method in that we need to solve a system of equations in

order to determine xn+1.

To obtain the order of the implicit midpoint rule we substitute the exact solution,

x(tn+1)− [x(tn) + hf(tn +
h

2
,
x(tn) + x(tn+1)

2
]

= [x(tn) + hx′(tn) +
h2

2
x′′(tn) +O(h3)]− [x(tn) + h(x′(tn) +

h

2
x′′(tn) +O(h2))] = O(h3).

Therefore, the implicit midpoint rule is of order 2. A simple generalization of Theorem 1 will tell us

that the implicit midpoint rule is a convergent method and that the global error behaves as O(h2).

Theorem 3. The implicit midpoint rule is convergent with error bound ‖en,h‖ ≤ c
K e

( εK

1−hK
2

)
h2.

The bound obtained is, once again, of no practical value. However, what is established is that

the global error of the implicit midpoint rule behaves as O(h2), a marked improvement on the

Euler method and the backward Euler method. This is to be expected of a 2nd order method

whose convergence has been established. The implicit midpoint rule is a stable method (although

we have not demonstrated this) and has an acceptable accuracy; therefore, it can be implemented

using a larger step size, thus saving on computation time. However, this computational saving is

o�set by the need to solve a system of equations to determine xn+1. With all numerical methods

there is a trade o�.

2.5 The Symplectic Euler Method

Suppose that we have a system of ODEs

ẋ = f(x, y)

ẏ = g(x, y).

We may consider what is called a partitioned Euler method

xn+1 = xn + hf(xn+1, yn)

yn+1 = yn + hg(xn+1, yn),

13



which is a combination of the explicit Euler method and the backward Euler method. The

x-variable is treated by the implicit Euler method and the y-variable is treated by the explicit

Euler method. To illustrate the convergence of the method, let zn =

 xn

yn

 so that the method

becomes

zn+1 = zn + hM(xn+1, yn+1),

where M(xn+1, yn+1) =

 f(xn+1, yn)

g(xn+1, yn+1)

. Letting n = 0 (for illustrative purposes) we have

z(t0 + h) = z(t0) + hz′(t0) + O(h2) so that e1,h = z1 − z(t0 + h) = h(M(x1, y0) −M(x1, y0)) +

O(h2). By the triangle inequality, Lipschitz condition and big oh notation we have that ‖e1,h‖ ≤

hK ‖e1,h(x)‖+ ch2, where ‖e1,h(x)‖ is the error in the x variable. Following an identical procedure

we have ‖e1,h(x)‖ ≤ h2K
(1−hK) . Since we are considering the limit as h tends to zero we may assume

the h < 1
k so that the inequality is positive. It is clear that ‖e1,h‖ tends to zero as h tends to zero.

As in the proof of Theorem 1, we may continue the procedure inductively and �nd that ‖en,h‖ → 0

as h tends to zero.

The local and global errors behave the same way as the local and global errors of the explicit

and implicit Euler methods. That is, the partitioned Euler method is a �rst order method whose

local errors behave as O(h2) and whose global errors behave as O(h). We call it the Symplectic

Euler Method.

2.6 Numerical Experiments

Using the numerical methods discussed, we shall perform experiments on a few standard problems.

The accuracy and qualitative features of the methods will be compared and evaluated.

2.6.1 The Lotka-Volterra Model

The Lotka-Volterra model describes the interaction between a predator species and a prey species.

Let x(t) and y(t) denote the predator and the prey populations, respectively, at time t; then, a

plausible model of interaction between the two species is given by

ẋ = x(αy − β)

ẏ = y(γ − δx),

where α, β, γ, and δ are positive constants. For concreteness, suppose α = γ = δ = 1 and β = 2.

We solve the system by �rst obtaining an expression for dy
dx , then integrating the expression using

separation of variable.
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Figure 2.2: Level curves of the Lotka-Volterra Equation.

dy
dx = ẏ

ẋ = y(1−x)
x(y−2)

´
y−2
y dy =

´
1−x
x dx

y − 2ln(y) = ln(x)− x+ C

ln(x)− x+ 2ln(y)− y = C

where C is a constant of integration. This equation holds for all t and every solution of the

system lies on a level curve of ln(x)− x+ 2ln(y)− y = C. Some of these level curves are drawn in

�gure 2.2. Since the level curves are closed, all solutions of the system are periodic.

Figure 2.3 displays numerical approximations of the Lotka-Volterra solution curves using the

Euler method, backward Euler method, implicit midpoint rule and the symplectic Euler method.

Only the implicit midpoint rule and symplectic Euler method have the correct qualitative behavior.

Both the Euler method and backward Euler method solutions spiral outwardly. The Lotka-Volterra

model is not a sti� system; every solution curve is periodic and therefore stable. This tells us that

the problems in using the Euler method and backward Euler method are not problems with stability

but rather problems with the preservation of some geometric or physical property.

The implicit midpoint rule is more accurate than the symplectic Euler method; this is to be

expected of a second order method.
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Figure 2.3: Solutions of the Lotka-Volterra equations with step size h=0.12; initial conditions (,)
for the Euler method, (1,1) for the backward Euler method, (2,1) for the implicit midpoint rule
and (,) for the symplectic Euler method.
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2.6.2 The Pendulum

Hamiltonian problems are a very important class of problems, particularly in analytic mechanics

and many other problems of motion. These problems are of the form

ṗ = −Hq(p, q) q̇ = Hp = (p, q),

where the Hamiltonian H(p1, p2, ..., pd, q1, q2, ..., qd) represents the total energy; qi are the position

coordinates and pi the momenta for i = 1, 2, ..., d, with the d the number of degrees of freedom; Hp

and Hq are the vectors of partial derivatives. The total energy is always conserved. That is, along

solution curves of the Hamiltonian system,

H(p(t), q(t)) = Const.

Hp = ∇pH = (∂H∂p )T and Hq = ∇qH = (∂H∂q )T are the column vectors of partial derivatives.

Di�erentiating the Hamiltonian along solution curves (p(t), q(t)),

dH

dt
=
∂H

∂p
.
dp

dt
+
∂H

∂q
.
dq

dt
=
∂H

∂p
.(−∂H

∂q
)T +

∂H

∂q
.(
∂H

∂p
)T = 0.

The Hamiltonian is said to be a first integral of the system.

The mathematics of a pendulum are quite complicated, but we can simplify the situation with

a few assumptions in order to solve the equations of motion analytically. A simple pendulum works

on the following assumption: the rod on which the bob swings is mass-less, inextensible, remains

taut and is of length 1, motion occurs in a 2-dimensional plane, the joint on which the pivots is

frictionless and air resistance is non-existent. The simple pendulum is a Hamiltonian system with

one degree of freedom having the Hamiltonian

H(p, q) =
1

2
p2 − cos q

so that the equations of motion become

ṗ = − sin q q̇ = p.
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Figure 2.4: Level Curves of the Pendulum

Figure 2.4 displays the solution curves of the Pendulum. As was the case for the Lotka-Volterra

model, H(p(t), q(t)) = Const. for all time t. All the level curves are periodic, although this may

not be obvious at �rst. The variable q is 2π periodic and thus natural to consider as a variable

on the circle S1. Hence the true phase space of points (p, q) becomes the cylinder R × S1. If we

identify the points q = −π and q = π and glue the lines q = −π and q = π together, we have

created the cylinder. Now the curves that appear not to close up, drawn in �gure 2.4, closes up on

the cylinder. These curves tell us that if we give the pendulum enough energy it will continue to

rotate 360 degrees on its pivot forever.

We apply the Euler method, Backward Euler method, Implicit Midpoint Rule and Symplectic

Euler method to the pendulum. Figure shows the results of this experiment. As in the case of

the Lotka-Volterra model we observe that the Euler method and backward Euler method display

the wrong qualitative behavior; the Euler method spirals outward and the backward Euler method

spirals inward. These methods are not conserving the energy in the system. The implicit midpoint

rule and the symplectic Euler method both display the correct qualitative behavior, thus conserving

the energy in the system. As before, the implicit midpoint rule is more accurate than the symplectic

Euler method.

The graphs in �gure 2.6 display how each numerical method a�ects the energy in the system. The
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Figure 2.5: Solutions of the Pendulum equations; step sizes h=0.2.

symplectic Euler method and the Implicit Midpoint rule both show long time energy conservation.

The implicit midpoint rule still outperforms the symplectic Euler method as there are less deviations

from the actual energy in the system. The main observation is that in both the Symplectic Euler

method and Implicit midpoint rule, the error in the total energy is small and bounded. The error in

the energy of the Euler method grows linearly with time, whilst the energy in using the backward

Euler method decays exponentially from its initial value.

We have learned from these experiments that we need to use methods that are of a high order and

preserve some physical or geometric property of the system. The numerical methods that achieve

this are called Geometric numerical Integrators. They are of great importance when modeling any

physical system because they preserve the important physical features of the system that classical

numerical methods, such as Euler's method, cannot.

2.7 Symplectic Transformations and Symplectic Integrators

Before advancing to the next chapter it will be worthwhile brie�y de�ning Symplectic transforma-

tions and Symplectic Integrators which will be mentioned in Chapter 5.

The �rst property of Hamiltonian systems is that the Hamiltonian H(p, q) is a first integral

of the system. A second property is the symplecticity of the �ow map. We �rst have the following

de�nition from Hairer, Lubich and Wanner (2002).
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Figure 2.6: Energy Conservation of the numerical methods applied to the Pendulum system.

De�nition 4. A linear mapping A : R2d → R2d is called symplectic if

ATJA = J

where J =

 0 I

−I 0

.
A non-linear map Φ : R2d → R2d is symplectic if its linearization Φ′(x) is symplectic for all x.

In the case d = 1, symplecticity of a linear mapping A is equivalent to area − preservation.

That is, if P is a parallelogram in R2 then A(P ) has the same area as P . In the general case

(d > 1), symplecticity means that the sum of the oriented areas of the projections of P is the same

as that for the transformed parallelogram A(P ).

Now we have the following Theorem due to Poincare.

Theorem 5. (Poincare 1899). Let H(p, q) be a twice continuously di�erentiable function on U ⊂

R2d. Then, for each �xed t, the �ow ϕt is a symplectic transformation wherever it is de�ned.

The natural thing to do is to consider numerical integrators that are symplectic.

De�nition 6. A numerical one-step method is called symplectic if the one-step map x1 = Φh(x)

is symplectic whenever the method is applied to a smooth Hamiltonian system.

Two examples of such integrators are the so-called symplectic Euler method of section 2.5 and
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the implicit midpoint rule of section 2.4. For proofs of the symplecticity of these methods see

Hairer, Lubich and Wanner, IV.3 (2002).
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Chapter 3

Runge-Kutta Methods

3.1 Gaussian Quadrature

The exact solution of the di�erential equation

x′ = f(t), t ≥ t0, x(t0) = x0,

is given by x0 +
´ t
t0
f(τ)dτ . Often, the ODEs we wish to solve are of the form

x′ = f(t,x), t ≥ t0, x(t0) = x0.

Notice that the right hand side of the system is now a function of x and t. The integral that

needs to be computed to solve the system is now decidedly non-trivial and we need to employ the

techniques of computing integrals numerically. This is the logic behind Runge Kutta methods.

Before discussing these methods it will be worthwhile paying some attention to the numerical

calculation of integrals.

The standard practice in calculating integrals numerically is to replace the integral with a �nite

sum, a procedure known as quadrature. Speci�cally, let ω be a non-negative function acting in the

interval (a, b), such that

0 <

ˆ b

a

ω(τ)dτ <∞,

∣∣∣∣∣
ˆ b

a

τ jω(τ)dτ

∣∣∣∣∣ <∞, j = 1, 2, ...;

ω is called the weight function. We approximate as follows

ˆ b

a

f(τ)ω(τ)dτ ≈
ν∑
j=1

bjf(cj),
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where the numbers b1, b2, ..., bν and c1, c2, ..., cν , which are independent of f (but generally depend

upon ω, a and b), are called the quadrature weights and nodes, respectively. We do not require a

and b to be bounded, although we must have a < b.

The obvious question to now ask is, how good is the approximation? It can be easily shown,

using the Peano Kernel Theorem, that a quadrature formula is of order p if∣∣∣∣∣∣
ˆ b

a

f(τ)ω(t)dτ −
ν∑
j=1

bjf(cj)

∣∣∣∣∣∣ ≤ c max
a≤t≤b

∣∣∣f (p)(t)
∣∣∣ ,

or any function f , and c > 0 a constant. We can even go one better with the following Lemma

from Iserles's (1996).

Lemma 7. Given any distinct set of nodes c1, c2, ..., cν , it is possible to �nd a unique set of weights

b1, b2, ..., bν such that the quadrature formula,
´ b
a
f(τ)ω(τ)dτ ≈

∑ν
j=1 bjf(cj), is of order p ≥ ν.

3.2 Explicit Runge-Kutta Schemes

We can now extend the quadrature formula to the ODE, x′ = f(t,x), t ≥ t0,x(t0) = x0, by

integrating from tn to tn+1 = tn + h:

x(tn+1) = x(tn) +

ˆ tn+1

tn

f(τ,x(τ))dτ = x(tn) + h

ˆ 1

0

f(tn + hτ,x(tn + hτ))dτ,

and then replacing the second integral by a quadrature. The outcome of this is

xn+1 = xn + h

ν∑
j=1

bjf(tn + cjh,x(tn + cjh)), n = 0, 1, ...

But there is one problem with this. We do not know the value of x at the nodes tn + c1h, tn +

c2h, ..., tn + cνh. We need to resort to an approximation.

We denote our approximation of x(tn+ cjh)) by kj , j = 1, 2, ..., ν.We �rst let c1 = 0, since then

the approximation is already provided by the previous step of the numerical method, k1 = f(tn, k1).

The idea behind the explicit Runge−Kuttamethod is to express each kj , j = 2, 3, ..., ν, by updating

xn with a linear combination of f(tn, k1), f(tn + hc2, k2), ..., f(tn + cj−1h, kj−1). More speci�cally,

k1 = xn

k2 = f(tn + c2h,xn + ha2,1f(tn, k1))

k3 = f(tn + c3h,xn + ha3,1f(tn, k1) + ha3,2f(tn + c2h, k2))

...
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Figure 3.1: Geometric depiction of the Runge-Kutta method; h=1.

kν = f(tn + cνh,xn + h
∑ν−1
i=1 aν,if(tn + cih, ki))

xn+1 = xn + h
∑ν
j=1 bjkj .

The matrix A = (aj,i)j,i=1,2,...,ν , where missing elements are de�ned to be zero, is called the RK

matrix, while

b =


b1

b2
...

bν

 , c =


c1

c2
...

cν


are the RK weights and RK nodes respectively. We say that the above method has ν stages.

This method has a nice geometric interpretation. We compute several polygonal lines, each

starting at x0 and assuming the various slopes at the points kj on portions of the integral interval,

which are proportional to the given constants aji; at the �nal point of each polygon evaluate a

new slope ki. The last of these polygons, with constants bi, determines the numerical solution x1.

Figure 3.1 shows this. The �rst polygonal line extends from k1 to k2 in an interval proportional

to a2,1 (since we have taken h = 1) by an Euler step. The next polygon is a line with the same

slope as at k1, of length proportional to an amount a3,1, followed by a line with the same slope as

at k2, of length proportional to an amount a3,2, this gives us k3. The �nal polygon is given by a

line with the same slope as at k1, of length proportional to an amount b1, followed by a line with

the same slope as at k2, of length proportional to an amount b2, with the same slope as at k3, of

length proportional to an amount b3, thus giving us x0.
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How should we choose the RK matrix, i.e. the aj,is. The most obvious way is expand the

method into a Taylor series about (tn,xn), but the usefulness of this idea is very limited. As an

example consider the simplest case, ν = 2. Assuming the vector function is di�erentiable, we have

f(tn + c2h, k2) = f(tn + c2h,xn + a2,1hf(tn,xn))

= f(tn,xn) + h[c2
∂f(tn,xn)

∂t
+ a2,1

∂f(tn,xn)

∂t
f(tn,xn)] +O(h2);

therefore the �nal step in the Runge-Kutta method (the expression for xn+1) becomes

xn+1 = xn + h(b1 + b2)f(tn,xn) + h2b2[c2
∂f(tn,xn)

∂t
+ a2,1

∂f(tn,xn)

∂x
f(tn,xn)] +O(h3).

We need to compare this expansion to the Taylor expansion of the exact solution about the same

point (tn,xn).The �rst derivative is provided by the ODE and we can obtain x′′ from this expression

by di�erentiating the ODE with respect to t;

x′′ =
∂f(t,x)

∂t
+
∂f(t,x)

∂x
f(t,x).

Denoting the exact solution at tn+1, subject to the initial conditions xn at tn, by x̃, we obtain

x̃(tn+1) = xn + hf(tn,xn) +
1

2
h2[

∂f(t,x)

∂t
+
∂f(t,x)

∂x
f(t,x)] +O(h3).

Now

xn+1 − x̃(tn+1) =

= h(tn,xn)(1− (b1 + b2)) + h2 ∂f(tn,xn)

∂t
(b2c2 −

1

2
) + h2 ∂f(tn,xn)

∂x
f(tn,xn)(b2a2,1 −

1

2
) +O(h3)

= O(h3)

if

b1 + b2 = 1, b2c2 =
1

2
, a2,1 = c2.

These are the conditions for the order of the method to be greater than or equal to 2.

These conditions do not de�ne a 2-stage Runge-Kutta method uniquely. There are a number of

popular choices for these coe�cients shown in table 3.1 below. Since Butcher's work, the coe�cients

are usually displayed in the RK tableau, which is of the form
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0
1
2

1
2

0 1

0
2
3

2
3
1
4

3
4

0
1 1

1
2

1
2

Table 3.1: RK Tableau's displaying some popular coe�cient choices for a 2-stage Runge-Kutta
method

c A

bT
.

We may obtain the conditions for third order schemes by performing another Taylor expansion

for ν = 3. This requires an incredible amount of e�ort, focus, speed and agility - which happen to

be all the things I lack. Therefore, I shan't perform this feat but rather give the order conditions

instead. We notice from the last expansion that we required b1 + b2 = 1, and in general if we wish

our method to be of order 1 the �rst conditions are

∑
i bi = 1

∑
i aji = cj .

For order 2 we require the above conditions, along with

∑
i bici = 1

2∑
i aji = cj

∑
i bic

2
i = 1

3 .

In addition to the conditions just given, for order 3 we require

∑
i,j

bjaj,icj =
1

6
.

For higher orders, the analysis of the order conditions becomes complicated. It even happens that

ν-stage Runge-Kutta methods of order ν exist only for ν ≤ 4, although, fourth order schemes are

not beyond the powers of the Taylor expansion. Fortunately, there are substantially more

powerful methods of deriving and analyzing the order conditions of Runge-Kutta methods than

Taylor series expansions. However, this method will be deferred to the next chapter.

Some instances of third-order three stage Runge-Kutta methods are important enough to bear

an individual name, for example the classical Runge-Kutta method and the Nystrom method

shown in table 3.2.

In fact, the implicit midpoint rule that we used in the last chapter is a second order Runge-

Kutta method. Its tableaux is also shown in table 3.2. By setting b1 = 1 and b2 = 0 we recover

Euler's method!
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0
1
2

1
2

1 -1 2
1
6

2
3

1
6

0
2
3

2
3

2
3 0 2

3
1
4

3
8

3
8

1
2

1
2

1

Table 3.2: Left: The classical Runge-Kutta method, Centre Left: The Nystrom Method, Centre
Right: Implicit Midpoint Rule

The fourth order, four stage method is given by

xn+1 = xn + h[
k1

6
+
k2

3
+
k3

3
+
k4

6
]

with

k1 = f(tn,xn)

k2 = f(tn +
h

2
,xn +

h

2
k1)

k3 = f(tn +
h

2
,xn +

h

2
k2)

k4 = f(tn + h,xn + hk3).

Its Butcher tableaux has the form

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

.

The local truncation error for this method is O(h5).

3.3 Implicit Runge-Kutta Schemes

Just like the implicit numerical methods described in chapter 2, we can de�ne an implicit Runge-

Kutta method by allowing the vector functions to depend on each other in a more general way.

Consider the scheme

kj = f(tn + cjh,xn + h

ν∑
i=1

aj,if(tn + cih, ki)), j = 1, 2, ..., ν

xn+1 = xn + h

ν∑
j=1

bjkj

In this case, the matrix A = (aj,i)j,i=1,2,...,ν is an arbitrary matrix, whereas with explicit Runge-

Kutta methods the matrix was strictly lower triangular. In the implicit case, the slopes ki can

no longer be computed explicitly, and may not even necessarily exist! But we are assured by the
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implicit function theorem that, for su�ciently small h, the nonlinear Implicit Runge-Kutta scheme,

for the values k1, k2, ..., kν , has a locally unique solution close to kj ≈ f(t0,x0).

To check the order conditions of the implicit Runge-Kutta method we can once again expand

the method into a Taylor series. This leads to the same order conditions obtained for explicit

Runge-Kutta methods.
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Chapter 4

Butcher's Order Conditions for

Runge-Kutta Methods

4.1 Runge-Kutta Order Conditions

In this section we derive the order conditions of Runge-Kutta methods by comparing the Taylor

series of the exact solution of x′ = f(x) with that of the numerical solution. Note that the system of

ODE's we are considering does not depend on time explicitly. This system is called an autonomous

system of ODE's. The computations of the Taylor series are greatly simpli�ed by considering

autonomous systems and by the use of rooted trees (de�ned later). One can see that it is reasonable

to only consider autonomous systems because any system of the form ẋ = f(t,x) can be brought

into the autonomous form by appending the equation ṫ = 1.

Although the theory of the order conditions of Runge-Kutta methods was developed by Butcher

in the years 1963-72, this chapter will follow the four-step development given by Hairer, Lubich

and Wanner (2002) where all de�nitions, theorems and proofs are provided by the aforementioned

authors.

4.1.1 Derivation of the Order Conditions

Step 1. We compute the higher derivatives of the solution x to x′ = f(x) at the initial point t0.

For this we have

x(k) = (f(x))(k−1)

where the right-hand-side is computed using the chain rule, product rule, the symmetry of

partial derivatives and the notation f ′(x) for the derivative as a linear map (i.e. the Jacobian),
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f ′′(x) the second derivative as a bilinear map and similarly for higher derivatives. To make this

idea clear consider the second derivative of x in terms of components. The ith component of the

second derivative of x is

d2

dt2x
i(t) = d

dtf
i(x(t))

=
∑
j

∂
∂xj f

i(x(t)) ddtx
j(t)

=
∑
j

∂
∂xj f

i(x(t))f j(x(t))

or in matrix notation

d2

dt2


x1(t)

x2(t)
...

xn(t)

 =



∂
∂x1 f

1(x(t)) ∂
∂x2 f

1(x(t)) · · · ∂
∂xn f

1(x(t))

∂
∂x1 f

2(x(t)) ∂
∂x2 f

2(x(t)) · · · ∂
∂xn f

2(x(t))
...

...
. . .

...

∂
∂x1 f

n(x(t)) ∂
∂x2 f

n(x(t)) · · · ∂
∂xn f

n(x(t))





d
dtx

1(t)

d
dtx

2(t)
...

d
dtx

n(t)

 .

By associating the left-hand-side with the notation x′′, the Jacobian matrix with f ′(x) and the

vector of time derivatives of x with x′, the computations of the derivatives become greatly simpli�ed.

Using this notation we obtain

x′ = f(x)

x′′ = f ′(x)x′

x(3) = f ′′(x)(x′,x′) + f ′(x)x′′

x(4) = f (3)(x)(x′,x′,x′) + 3f ′′(x)(x′′,x′) + f ′(x)x(3)

x(5) = f (4)(x)(x′,x′,x′,x′) + 6f (3)(x)(x′′,x′,x′) + 4f ′′(x)(x(3),x′) + 3f ′′(x)(x′′,x′′) + f ′(x)x(4)

etc.

Step 2. The above procedure has given a recursive relationship between the derivatives of x.

We can substitute the computed derivatives x′,x′′, ... into the right-hand-side of the higher order

derivatives. The result of doing this is shown for the �rst few formulas with the arguments (x)

suppressed.

x′ = f

x′′ = f ′f

x(3) = f ′′(f , f) + f ′f ′f

x(4) = f (3)(f , f , f) + 3f ′′(f ′f , f) + f ′f ′′(f , f) + f ′f ′f ′f .
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The terms that appear in each formula, denoted by F (τ), will be called the elementary

differentials. We represent each of them by a suitable graph (rooted tree) τ , but �rst we need a

few de�nitions of graphs, their properties and rooted trees.

De�nition 8. (Graphs) A graph G is an ordered triple (V (G), E(G), ψG) consisting of a non-empty

set, V (G), of vertices, a set E(G), disjoint from V (G), of edges and an incidence function ψG that

associates with each edge of G an unordered pair of (not necessarily distinct) vertices of G.

De�nition 9. (Walks) A Walk in a graph G is a �nite, non-null sequence W = v0e1v1e2v2...ekvk,

whose terms alternately vertices and edges, such that for 1 ≤ i ≤ k, the ends of ei are vi−1 and vi.

The vertices v0 and vk are called the Origin and Terminus of W, respectively. The integer k is the

length of the walk, W. A walk, W, is closed if it has positive length and the Origin and Terminus

are the same.

De�nition 10. (Trails and Paths) If the edges e1, e2, ..., ek in a walk, W, are all distinct, then W

is called a Trail. If, in addition, the vertices v0, v1, ..., vk are all distinct, then W is called a path.

De�nition 11. (Connected Graph) A graph G is Connected if for any two vertices u, v ∈ V (G)

there exists a Path such that u is the Origin (Terminus) and v is the Terminus (Origin).

De�nition 12. (Cycles and Acyclic Graphs) A closed Trail is called a Cycle. A Graph without

any closed Trails (Cycles) is called Acyclic.

De�nition 13. (Rooted Trees) A rooted tree is a Connected, Acyclic graph where one vertex is

speci�ed as the root.

After a laborious de�nition of Rooted trees we may now continue with the development of the

order conditions of Runge-Kutta methods. As mentioned before, we may represent each elementary

di�erential by a rooted tree. This is done as follows:

Each f becomes a vertex, each f ′ becomes a vertex with one edge pointing upwards, and a kth

derivative f (k) becomes a vertex with k edges pointing upwards. The arguments of the k-linear

mapping f (k)(x) correspond to trees that are attached on the upper ends of these edges. As an

example I shall construct the rooted tree corresponding to the elementary di�erential f ′′(f ′f , f).
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Figure 4.1: Construction of the rooted tree corresponding to f ′′(f ′f , f).

Figure 4.2: Rooted tree obtained recursively from τ1, ..., τm.

This will be a multi-step process as we will need to also construct the rooted tree corresponding to

f ′f = f ′(f), the steps are shown in �gure 4.1. The �rst derivative f ′ corresponds to a vertex with

one edge pointing upwards, then f corresponds to a single vertex which is attached to the top of

this edge. Now f ′′ corresponds to a vertex with two edges pointing upwards; the rooted tree we

have just constructed is then attached to the top of one of these edges and there is one argument

remaining, namely f , which is attached to the top of the remaining edge as a single vertex. We can

construct all rooted trees corresponding to the elementary di�erentials in this recursive manner.

De�nition 14. (Trees). The set of (rooted) trees T is recursively de�ned as follows:

1. the graph • with only one vertex (called the root) belongs to T;

2. if τ1, ..., τn ∈ T , then the graph obtained by grafting the roots of τ1, ..., τn to a new vertex

also belongs to T (shown in �gure 4.2). It is denoted by τ = [τ1, ..., τn], and the new vertex

(denoted by []) is the root of τ .

We also denote by |τ | the order of τ (the number of vertices), and by α(τ) the coe�cients

appearing in the formulas for x′,x′′,x(3), .... It is important to note that some of the trees among

τ1, ..., τm may be equal and that τ does not depend on the ordering of τ1, ..., τm. That is, we do

not distinguish between [[•], •] and [•, [•]].

Essentially, we can build any tree from the single node tree, •, via this recursive de�nition. For

instance, we can start with • and build a new tree [•], which is obtained by joining two single node

trees by an edge. From these two trees we can obtain a number of new trees; [•, •], [[•]], [[•], •],

[[•], [•]] etc.

De�nition 15. (Elementary Di�erentials). For a tree τ ∈ T the elementary differential is a

mapping F (τ) : Rn → Rn, de�ned recursively by F (•)(x) = f(x) and

F (τ)(x) = f (m)(x)(F (τ1)(x), ...F (τm)(x)) for τ = [τ1, ..., τm].
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With these de�nitions and the expressions for the derivatives of x(t), we obtain:

Theorem 16. (Hairer, Lubich and Wanner (2002)). The kth derivative of the exact solution

is given by

x(k)(t0) =
∑
|τ |=k

α(τ)F (τ)(x0),

where α(τ) are positive integer coe�cients.

We also note that the coe�cient α(τ) is the number of monotonic labellings of the tree τ . As

an example, consider how the tree is obtained:

x(3) = f ′′(f , f) + f ′f ′f corresponds to the expression x(3) = + , and the vertices have been

labeled monotonically (each vertex attached to the top of an upward pointing edge has a label

strictly greater than the vertex connected directly below). Note also that the labellings shown are

the only possible monotonic labellings of these trees. In di�erentiating x(3), we obtain

[f (3)(f , f , f) + 2f ′′(f ′f , f)] + [f ′′(f ′f , f) + f ′f ′′(f , f) + f ′f ′f ′f ].

In the �rst bracket of the above expression we obtain 2 . This comes from the labeled tree

and in di�erentiating the arguments in the expression f ′′(f , f) which is equivalent to adding a vertex

in the following two ways: and . In the second bracket we obtain which comes from

the tree and di�erentiating the �rst f ′ in th expression f ′f ′f . This is equivalent to adding a vertex

to to obtain , which is the only other possible monotonic labeling of . The monotonicity

of the labeling is arising because of matrix multiplication which is non-commutative. For example,

we only obtain one monotonic labeling of from di�erentiating the expression f ′f ′f because by

the product rule di�erentiation of the �rst f ′ does not yield the same tree as di�erentiation of

the second f ′ because matrix multiplication is not commutative. Therefore, the ordering of the

di�erentiation matters (only in a single term such as f ′f ′f of course!) and dictates that the ordering

of the trees is monotonic. Therefore, the coe�cient α(τ) is the number of monotonic labellings of

the tree τ .

Step 3. We now turn to the numerical solution of the ODE, namely the Runge-Kutta method,

which, by putting hki = gi, we write as

gi = hf(ui)

and
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ui = x0 +
∑
j

aijgj x1 = x0 +
∑
i

bigi,

where ui, gi and x1 are functions of h. Here we have used the more general implicit Runge-Kutta

method. Substituting the expression for ui into the argument of f in the expression for gi will yield

the form of Runge-Kutta methods given in chapter 3. We can compute the derivatives of gi in

the same way as we computed the derivatives of the exact solution in step 2. Di�erentiating with

respect to h and using the product rule yields

ġi = f(ui) + hf ′(ui)u̇i

g̈i = 2f ′(ui)u̇i + h(f ′′(ui)(u̇i, u̇i) + f ′(ui)üi)

g
(3)
i = 3(f ′′(ui)(u̇i, u̇i) + f ′(ui)üi) + h(f (3)(ui)(u̇i, u̇i, u̇i) + 3f ′′(ui)(üi, u̇i) + f ′(ui)u

(3)
i )

and one is easily convinced of the general formula

g
(k)
i = h(f(ui))

(k) + k(f(ui))
(k−1).

We are interested in the limit as h tends to zero, after-all, Runge-Kutta methods are convergent

and approach the exact solution as h tends to zero. The general formula, for h = 0, gives

g
(k)
i = k(f(ui))

(k−1),

which is exactly the same as the expression for the derivatives of x given in the �rst step except

with x replaced with ui and with an extra factor k. Consequently,

ġi = f(x0)

g̈i = 2f ′(x0)u̇i

g
(3)
i = 3(f ′′(x0)(u̇i, u̇i) + f ′(x0)üi)

g
(4)
i = 4(f (3)(x0)(u̇i, u̇i, u̇i) + 3f ′′(x0)(üi, u̇i) + f ′(x0)u

(3)
i )

g
(5)
i = 5(f (4)(x0)(u̇i, u̇i, u̇i, u̇i)+6f (3)(x0)(üi, u̇i, u̇i)+4f ′′(x0)(u

(3)
i , u̇i)+3f ′′(x0)(üi, üi)+f ′(x0)u

(4)
i )

etc.

The argument of f appears because we are evaluating the derivatives of gi at h = 0, therefore

ui = x0 in the argument of f .

Step 4. Once again, we can substitute the computed derivatives ġi, g̈i,... into the expressions
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on the right-hand-side of the higher order derivatives. This will give the next higher derivative of

gi, and, using

ui
(k) =

∑
j

aijg
(k)
j ,

which follows from the Runge-Kutta method de�ned in step 3, we can �nd the derivatives of ui.

This process begins as

ġi = 1 · f u̇i = (
∑
j aij) · f

g̈i = (1 · 2)(
∑
j aij)f

′f üi = (1 · 2)(
∑
j,k aijajk)f ′f

and so on. If we compare these expressions with expressions derived for the exact solution in step

2, we see that the results are exactly the same, apart from the extra factors. We denote the

integer factors 1, 1 · 2, ... by γ(τ), the factors containing the aij 's in the expression for g
(k)
i by

gi(τ) and the factors containing the aij 's in the expression for u
(k)
i by ui(τ). Continuing the

above process inductively we obtain, in contrast to Theorem 16,

g
(k)
i |h=0 =

∑
|τ |=k γ(τ) · gi(τ) · α(τ)F (τ)(x0)

u
(k)
i |h=0 =

∑
|τ |=k γ(τ) · ui(τ) · α(τ)F (τ)(x0),

where α(τ) and F (τ) are the same quantities as in Theorem 16. We can see that α(τ) and F (τ)

are the same quantities as in Theorem 16 by continuing the insertion process of the derivatives of

u
(k)
i into the right-hand side of the derivatives of gi. For example, if u̇i and üi are inserted into

3f ′′(üi, u̇i) we obtain

3f ′′((1 · 2)(
∑
j,k aijajk)f ′f , (

∑
j aij)f)

= [(1 · 2)(
∑
j,k aijajk)(

∑
j aij)]3f

′′(f ′f , f)

and the 3f ′′(f ′f , f) corresponds to the quantities α(τ) and F (τ) de�ned in Theorem 13. The

elementary di�erential f ′′(f ′f , f) corresponds to the tree [[•], •]; the factors containing the aij 's in

the above expression correspond to ui([•]) and ui(•), and the integer factors correspond to γ([•])

and γ(•). Therefore, in the expression for g
(4)
i |h=0 , the term corresponding to 3f ′′(üi, u̇i) will

have the form

(1 · 2 · 4)[ui([•])ui(•)]3f ′′(f ′f , f).

Firstly, we can see that gi([[•], •]) = ui([•])ui(•). For a general tree τ = [τ1, ..., τm] this will be
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gi(τ) = ui(τ1) · ... · ui(τm).

Secondly, the integer factor corresponds to 4 · γ([•])γ(•). The factor of 4 appears because of the

order of the tree corresponding to the elementary di�erential. For a general tree τ = [τ1, ..., τm],

the γ's will receive the additional factor k = |τ | (which comes from the derivatives of gi), thus we

have in general

γ(τ) = |τ | γ(τ1) · ... · γ(τm).

Using ui
(k) =

∑
j aijg

(k)
j and the expressions for the derivatives of ui and gi we obtain

∑
|τ |=k

γ(τ) · ui(τ) · α(τ)F (τ)(x0) =
∑
j

aij
∑
|τ |=k

γ(τ) · gj(τ) · α(τ)F (τ)(x0).

after equating equivalent trees and canceling the γ and α factors we see that

ui(τ) =
∑
j

aijgj(τ) =
∑
j

aijuj(τ1) · ... · uj(τm).

This formula can be used repeatedly, as long as some of the trees τ1, ..., τm are of order> 1. Finally,

we use the expression x1 = x0 +
∑
i bigi from the Runge-Kutta method. We have that

x
(k)
1 |h=0 =

∑
i big

(k)
i =

∑
i bi
∑
|τ |=k γ(τ) · gi(τ) · α(τ)F (τ)(x0)

=
∑
|τ |=k γ(τ) · (

∑
i bigi(τ)) · α(τ)F (τ)(x0).

We denote the term
∑
i bigj(τ) by φ(τ) and call the elementary weights. These results are

summarized in the following theorem.

Theorem 17. (Hairer, Lubich and Wanner (2002)). The derivatives of the numerical solution

of a Runge-Kutta method, for h=0, are given by

x
(k)
1 |h=0 =

∑
|τ |=k

γ(τ) · φ(τ) · α(τ)F (τ)(x0),

where α(τ) and F (τ) are the same as in Theorem 16, the coe�cients γ(τ) satisfy γ(•) = 1 and

γ(τ) = |τ | γ(τ1) · ... · γ(τm). The elementary weights φ(τ) are obtained from the tree τ as follows:

attach to every vertex a summation letter (i to the root), then φ(τ) is the sum, over all summation

indices, of a product composed of bi, and factors ajk for each vertex j directly connected with 'k' by

an upwards directed edge.
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Proof . For a general tree τ = [τ1, ..., τm] we have that

φ(τ) =
∑
i bigi(τ) =

∑
i biui(τ1) · ... · ui(τm)

=
∑
i bi(

∑
j aijgj(τ1)) · ... · (

∑
s aisgs(τm))

=
∑
i,j,...,s biaij · ... · aisgj(τ1) · ... · gs(τm).

This is equivalent to attaching the summation index i to the root of τ and the summation indices

j, ..., s to all vertices that are directly connected to the root by an upward edge and summing over

the coe�cients bi and factors aij . But the τk's may also be of order> 1, therefore we may repeat

the above procedure on gj(τ1) · ... · gs(τm) and obtain an identical interpretation. Continuing this

procedure until the argument in each gl is the single node tree we �nd that the elementary weight

φ(τ) is the collection of
∑
i bi and all

∑
j aij . This is equivalent to attaching to every vertex a

summation letter ('i' to the root), then summing over all summation indices a product composed

of bi, and factors ajk for each vertex j directly connected with k by an upwards directed edge.�

Theorem 18. (Hairer, Lubich and Wanner (2002)). The Runge-Kutta method has order p if

and only if

φ(τ) =
1

γ(τ)
for |τ | ≤ p.

Proof. The su�ciency follows from a comparison of Theorem 17 with Theorem 16. The necessity

follows from the linear independence of the elementary di�erentials.

Example 19. ([10]) For the following tree of order 9 we can calculate the elementary weight, φ(τ),

using γ(τ) as follows

Using the recursive de�nition of γ(τ) we have γ(τ) = |τ | γ(τ1)γ(τ2)γ(τ3) = 9 · γ(τ1)γ(τ2)γ(τ3),

where

τ1 = , τ2 = •, τ3 = . Then γ(τ1) = |τ1| · γ(•) = 2 · 1 = 2, γ(τ2) = γ(•) = 1 and γ(τ3) =

|τ3| · γ(τ1a)γ(τ2a) = 5 · γ(τ1a)γ(τ2a), where

τ1a = • and τ2a = . Hence γ(τ1a) = γ(•) = 1 and γ(τ2a) = |τ2a| γ(•)γ(•) = 3 · 1 · 1 = 3, thus

γ(τ3) = 5 · 3. Therefore γ(τ) = 9 · 2 · 5 · 3 and we require φ(τ) = 1
270 .

The quantities φ(τ) and γ(τ) for all trees up to order 4 are given in Table 4.1. This also veri�es

the formulas for the order conditions of Runge-Kutta methods stated in the last chapter.
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|τ | τ Graph α(τ) F(τ) γ(τ) φ(τ) σ(τ)

1 • • 1 f 1
∑
i bi 1

2 [•] 1 f ′f 2
∑
ij biaij 1

3 [•, •] 1 f ′′(f, f) 3
∑
ijk biaijaik 2

3 [[•]] 1 f ′f ′f 6
∑
ijk biaijajk 1

4 [•, •, •] 1 f ′′′(f, f, f) 4
∑
ijkl biaijaikail 6

4 [[•], •] 3 f ′f ′′(f, f) 8
∑
ijkl biaijajkajl 1

4 [[•, •]] 1 f ′′(f ′f, f) 12
∑
ijkl biaijaikajl 2

4 [[[•]]] 1 f ′f ′f ′f 24
∑
ijkl biaijajkakl 1

Table 4.1: Trees, Elementary Di�erentials and Coe�cients.

4.2 B-Series

We are now in a position to introduce the concept of B-series, which gives a deeper insight into

the qualitative and quantitative behavior of numerical methods and allows for extensions to more

general classes of methods.

We study power series in h|τ | containing elementary di�erentials F (τ) and arbitrary coe�cients

which are now written in the form a(τ). Such a power series will be called a B − Series. We start

with

B(a,x) = x + a(•)hf(x) + a([•])h2(f ′f)(x) + ... = x + δ,

and get by Taylor expansion

hf(B(a,x) = hf(x + δ) = hf(x) + hf ′(x)δ +
h

2!
f ′′(x)(δ, δ) + ...

Inserting the expression for δ and multiplying out, we obtain

hf(B(a,x) = hf(x) + a(•)h2f ′f + a([•])h3f ′f ′f + a(•)2h
3

2!
f ′′(f , f) + a(•)a([•])h4f ′′(f ′f , f) + ....

This formula is still not quite perfect yet for two reasons. First, there is a factor of 1
2! in the fourth

term. This factor appears because of the symmetry of the tree . We therefore introduce the

symmetry coe�cients (originally de�ned by Butcher, 1987). Secondly, there is no �rst term x.

Thus, we make use of the coe�cient a(∅).

De�nition 20. (Symmetry Coe�cients). The symmetry coe�cients σ(τ) are de�ned by σ(•) = 1

and, for τ = [τ1, τ2, ..., τm],

σ(τ) = σ(τ1) · ... · σ(τm) · µ1!µ2! · ...,
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where the integers µ1, µ2, ... count equal trees among τ1, τ2, ..., τm.

Example 21. As an example, consider the tree of order 9 from the previous example. This tree

may be represented as τ = [[•], •, [•, [•, •]]] so that τ1 = [•], τ2 = • and τ3 = [•, [•, •]]. Then

σ(τ1) = σ(τ2) = 1. The tree τ3 is of the form [τ1a, τ2a], where τ1a = • and τ2a = [•, •] so that

σ(τ1a) = 1. Now there are two equal trees in τ2a, therefore µ1a = 2 and σ(τ2a) = σ(•)σ(•) · 2! = 2.

Thus, σ(τ3) = σ(τ1a) ·σ(τ2a) = 2 since τ1a 6= τ2a. Putting all the information together we �nd that,

since no trees among τ1, τ2, τ3 are equal, σ(τ) = σ(τ1)σ(τ2)σ(τ3) = 2.

De�nition 22. (B-Series). For a mapping a : T ∪ {∅} → R a formal series of the form

B(a,x) = a(∅)x +
∑
τ∈T

h|τ |

σ(τ)
a(τ)F (τ)(x)

is called a B-Series.

B-Series were �rst introduced by Hairer & Wanner (1974), although, the main results of the

theory of B-Series have their origin in the paper of Butcher (1972). The normalization factor of

1
σ(τ) is due to Butcher and Sanz-Serna (1996). The next Lemma gives an alternative way of �nding

the order conditions.

Lemma 23. Let a : T ∪ {∅} → R be a mapping satisfying a(∅) = 1. Then the corresponding

B-Series inserted into hf(·) is again a B-Series. That is,

hf(B(a,x)) = B(a′,x),

where a′(∅) = 0, a′(•) = 1, and

a′(τ) = a(τ1)a(τ2) · ... · a(τm) for τ = [τ1, ..., τm].

P roof. Since a(∅) = 1 we have B(a,x) = x+O(h), so that hf(B(a,x))can be expanded into a

Taylor series around x. We obtain

hf(B(a,x)) = h
∑
m≥0

1
m! f

(m)(x)(B(a,x)− x)m

= h
∑
m≥0

1
m! f

(m)(x)(
∑
τ∈T

h|τ|

σ(τ)a(τ)F (τ)(x))m (Since a(∅) = 1)

= h
∑
m≥0

1
m!

f (m)(x)((
∑
τ1∈T

h|τ1|

σ(τ1)
a(τ1)F (τ1)(x)) · ... · (

∑
τm∈T

h|τm|

σ(τm)
a(τm)F (τm)(x)))

= h
∑
m≥0

1
m!

∑
τ1∈T · · ·

∑
τm∈T

h|τ1|+...+|τm|

σ(τ1)·...·σ(τm)
· a(τ1) · ... · a(τm) · f (m)(F (τ1)(x), ..., F (τm)(x))

= h
∑
m≥0

1
m!

∑
τ1∈T · · ·

∑
τm∈T

h|τ1|+...+|τm|

σ(τ1)·...·σ(τm)
· (µ1!µ2!...
µ1!µ2!...

) · a(τ1) · ... · a(τm) · f (m)(F (τ1)(x), ..., F (τm)(x))
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(Where the µ′is are from definition 20)

∑
m≥0

∑
τ1∈T · · ·

∑
τm∈T

h|τ|

σ(τ) ·
µ1!µ2!...
m! · a′(τ) · F (τ)(x)

for a tree τ = [τ1, ..., τm] and a(τ1) · ... · a(τm) = a′(τ)

=
∑
τ∈T

h|τ|

σ(τ)a
′(τ)F (τ)(x) = B(a′,x).

The last equality follows from the fact that there are

 m

µ1, µ2, ...

 possibilities for writing the

tree τ in the form τ = [τ1, ..., τm]. For example, the trees [•, •, [•]], [•, [•], •] and [[•], •, •] appear as

di�erent terms in the upper sum, but only as one term in the lower sum.�

4.2.1 Order Conditions

Let a Runge-Kutta method, say

gi = hf(ui)

and

ui = x0 +
∑
j

aijgj x1 = x0 +
∑
i

bigi,

be given. All quantities in the de�ning formulas are set up as B-Series, gi = B(gi,x0), ui =

B(ui,x0), x1 = B(φ,x0) with ui(∅) = 1 and φ(∅) = 1. Using gi = hf(ui) and Lemma 23 we have

that

gi(τ) = ui(τ1) · ... · ui(τm)

for τ = [τ1, ..., τm] and gi(∅) = 0. Using ui = x0 +
∑
j aijgj we obtain

x0 +
∑
τ∈T

h|τ |

σ(τ)
ui(τ)F (τ)(x0) = x0 +

∑
i

aij
∑
τ∈T

h|τ |

σ(τ)
gj(τ)F (τ)(x0)

and hence

ui(τ) =
∑
i

aijgj(τ).

Finally, using x1 = x0 +
∑
i bigi we obtain

x0 +
∑
τ∈T

h|τ |

σ(τ)
φ(τ)F (τ)(x0) = x0 +

∑
i

bi
∑
τ∈T

h|τ |

σ(τ)
gi(τ)F (τ)(x0)
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and deduce that

φ(τ) =
∑
i

bigi(τ).

These formulas are identical to the formulas derived in Step 4 of Section 4.1 which justi�es the

starting point as B-Series.

Now assume that the exact solution of the di�erential equation, x′ = f(x), to be a B-series

B(e,x0). The B-series is really an expansion in powers of h about the initial condition and is

therefore a function of h. Thus, in taking the derivative of the exact solution we take the derivative

of B(e,x0) with respect to h and obtain

∑
τ∈T
|τ | h

|τ |−1

σ(τ)
e(τ)F (τ)(x0).

Substituting this into the left hand side of the di�erential equation and B(e,x0) into the argument

of f on the right hand side then multiplying both sides by h we get

∑
τ∈T
|τ | h

|τ |

σ(τ)
e(τ)F (τ)(x0) = hf(B(e,x0)).

An application of Lemma 23 yields

e(τ) =
1

|τ |
e(τ1) · ... · e(τm).

Compared to the de�nition of γ(τ) we obtain

e(τ) =
1

γ(τ)
.

Thus, the B-series of the exact solution is B(e,x0) and repeated di�erentiation of this series proves

x(k)(t0)|h=0 =
∑
|τ |=k

|τ |!
σ(τ)γ(τ)

F (τ)(x0)

and the formula

α(τ) =
|τ |!

γ(τ)σ(τ)
.

Now a comparison of the series for the derivatives of the exact solution and the B-series for the

Runge-Kutta method will yield the order conditions of Theorem 18.

If the tools of B-series are enriched by a more general composition law then this procedure may
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be applied to yet larger classes of numerical methods.

4.3 Composition Methods

We now wish to �nd a way of calculating the order properties of the composition of two Runge-

Kutta methods. That is, �nd formulas for the composition of two sets of elementary weights of two

Runge-Kutta methods. Suppose that, starting from an initial value x0, we compute a numerical

solution x1 using a Runge-Kutta method with coe�cients aij , bi and step size h. Then, continuing

from x1, we compute a value x2 using another method with coe�cients a∗ij , b
∗
i and the same step

size. This composition is now considered as a single method (with coe�cients âij , b̂i). How can

we express the elementary weights φ̂(τ) of the composition of the two methods in terms of the

elementary weights of each individual method?

If the value x1 from the �rst method is inserted into the starting value for the second method,

we can see that the coe�cients of the combined method are given by (here written for two stage

methods)

â11 â12

â21 â22

â31 â32 â33 â34

â41 â42 â43 â44

b̂1 b̂2 b̂3 b̂4

=

a11 a12

a21 a22

b1 b2 a∗11 a∗12

b1 b2 a∗21 a∗22

b1 b2 b∗1 b∗1

The idea is to write the sum for φ̂(τ) , say for the tree , in full detail

φ̂(τ) =

4∑
i=1

4∑
j=1

4∑
k=1

4∑
l=1

b̂iâij âikâkl = ...

and split each sum into two di�erent index sets. The �rst index set will be the sum from i = 1 up

to 2 and the second index set will be the sum from i = 3 up to 4. We get 2|τ | di�erent expressions:

φ̂(τ) =

2∑
i=1

2∑
j=1

2∑
k=1

2∑
l=1

./.+

4∑
i=3

2∑
j=1

2∑
k=1

2∑
l=1

./.+

2∑
i=1

4∑
j=3

2∑
k=1

2∑
l=1

./.+ ...

We symbolize each expression by drawing the corresponding vertex of τ as a bullet for the �rst index

set and as a circle for the second. However, due to the zero pattern in the Butcher Tableaux above,

each term with �circle above bullet� can be omitted since the corresponding âij 's are zero. Therefore

the only combinations to be considered are those of �gure 4.3. Each �circle� vertex in �gure 4.3

corresponds to coe�cients a∗ij , b
∗
i . Inserting the quantities from the right Butcher Tableaux into

the expressions corresponding to the trees in �gure 4.3 we obtain

φ̂( ) =
∑
biaijaikakl+

∑
b∗i bjbkakl+

∑
b∗i a
∗
ijbkakl+

∑
b∗i bja

∗
ikbl+

∑
b∗i a
∗
ija
∗
ikbl+

∑
b∗i bja

∗
ika
∗
kl+
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Figure 4.3: Combinations of Bullets and Circles with non-zero products.

∑
b∗i a
∗
ija
∗
ika
∗
kl

and observe that each factor of the type bj interrupts the summation so that the terms decom-

pose into factors of elementary weights of the individual methods as follows:

φ̂( ) = φ( ) +φ∗(•) ·φ(•)φ( ) +φ∗( ) ·φ( ) +φ∗( ) ·φ(•)φ(•) +φ∗( ) ·φ(•) +φ∗( ) ·φ(•) +

φ∗( ).

The trees composed of the �circle� nodes of τ in �gure 4.3 constitute all possible �sub-trees� θ

having the same root as τ . This is the key to understanding the general result. In order to formalize

the procedure of �gure 4.3 we introduce the set OT of ordered trees recursively as follows: • ∈ OT

and if ω1, ..., ωm ∈ OT , then also the ordered m−tuple (ω1, ..., ωm) ∈ OT . As the name suggests,

in the graphical representation of an ordered tree the order of the branches leaving cannot be

permuted. If we ignore the ordering, a tree can be considered as a representative of an equivalence

class of ordered trees. For example, the tree of �gure 4.3 has two orderings: and . Denote

by ν(τ) the number of possible orderings of a tree τ . It is de�ned recursively by ν(•) = 1 and

ν(τ) =
m!

µ1!µ2! · ...
ν(τ1) · ... · ν(τm)

for τ = [τ1, ..., τm], where the integers µ1, µ2, ... count equal trees among τ1, ..., τm. This number is

closely related to the symmetry coe�cient σ(τ) because the product κ(τ) = σ(τ)ν(τ) satis�es the

recurrence relation

κ(τ) = m!κ(τ1) · ... · κ(τm).

We now introduce the set OST (ω) of ordered subtrees of an ordered tree ω ∈ OT by

OST (•) = {∅, •}

OST (ω) = {∅} ∪ {(θ1, ..., θm) : θi ∈ OST (ωi)} for ω = (ω1, ..., ωm).

Each ordered sub-tree θ ∈ OST (ω) is naturally associated with a tree θ̄ ∈ T obtained by

neglecting the ordering and the ∅-components of θ. However, the concept of ordering is only

useful for �nding the sub-trees corresponding to the index set expressions. Thus, for every tree

τ ∈ T we choose, once and for all, an ordering. We denote this ordered tree by ω(τ), and we

put OST (τ) = OST (ω(τ)). For the tree of �gure 4.3, considered as an ordered tree, the ordered

sub-trees correspond to the sub-trees composed of the �circle� nodes.
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Figure 4.4: A tree with a sub-tree θ composed of �circle� nodes and sub-trees δ left over.

Figure 4.5: A tree with Symmetry

The general composition rule now becomes clear: for θ ∈ OST (ω(τ)) we denote by ω(τ) \ θ the

�forest� collecting the trees left over when θ has been removed from the ordered tree ω. Using the

conventions φ∗(θ) = φ∗(θ̄) and φ∗(∅) = 1 we have

φ̂(τ) =
∑

θ∈OST (ω(τ))

φ∗(θ) · ∏
δ∈ω(τ)\θ

φ(δ)

 .

As an example, consider the tree in �gure 4.4. Each sub-tree δ that is left over after the sub-tree

θ has been removed is an element of the set ω(τ) \ θ. Then the product, in the above formula, is

over every sub-tree in the set ω(τ) \ θ, while the sum is over every ordered sub-tree of ω(τ).

The composition formulas for the trees up to order 3 are

φ̂(•) = φ∗(∅) · φ(•) + φ∗(•)

φ̂( ) = φ∗(∅) · φ( ) + φ∗(•) · φ(•) + φ∗( )

φ̂( ) = φ∗(∅) · φ( ) + φ∗(•) · φ(•)2 + 2φ∗( ) · φ(•) + φ∗( )

φ̂( ) = φ∗(∅) · φ( ) + φ∗(•) · φ( ) + φ∗( ) · φ(•) + φ∗( ).

The factor 2 in the composition formula for the tree τ = has its origins in the symmetry of τ .

The ordered sub-trees of τ are displayed in �gure and we can see that the third and fourth sub-trees

are topologically equivalent. Even though the node labellings of the two sub-trees are di�erent, the

convention φ∗(θ) = φ∗(θ̄) produces the factor 2.

4.4 Composition of B-Series

Our goal is to now extend the composition law we found in the previous section to general B-series.

That is, we compose a B-series with another B-series and demonstrate that the result is again

a B-series. This will allow us to consider a B-series that is conjugate (by a B-series) to another

B-series. Due to the similarities between the proofs of Lemma 23 and Theorem 24 (although the
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proof of Theorem 24 is technically more di�cult) we shall just state the Theorem for later use.

Theorem 24. (Hairer, Lubich and Wanner (2002)). Let a : T ∪ {∅} → R be a mapping

satisfying a(∅) = 1 and let b : T ∪ {∅} → R be arbitrary. Then the B-series B(a,x) inserted into

B(b, ·) is again a B-series

B(b, B(a,x)) = B(ab,x),

where the group operation ab(τ) is the composition law from Section 4.3, i.e.,

ab(τ) =
∑

θ∈OST (τ)

b(θ)a(τ \ θ) with a(τ \ θ) =
∏
δ∈τ\θ

a(δ)

Example 25. The composition rules for the trees of order ≤ 4 are

ab(•) = b(∅) · a(•) + b(•)

ab( ) = b(∅) · a( ) + b(•) · a(•) + b( )

ab( ) = b(∅) · a( ) + b(•) · a(•)2 + 2b( ) · a(•) + b( )

ab( ) = b(∅) · a( ) + b(•) · a( ) + b( ) · a(•) + b( )

ab( ) = b(∅) · a( ) + b(•) · a(•)3 + 3b( ) · a(•)2 + 3b( ) · a(•) + b( )

ab( ) = b(∅) · a( ) + b(•) · a( ) + b( ) · a(•)2 + 2b( ) · a(•) + b( )

ab( ) = b(∅) ·a( )+b(•) ·a(•)a( )+b( ) ·a( )+b( ) ·a(•)2 +b( ) ·a(•)+b( ) ·a(•)+b( )

ab( ) = b(∅) · a( ) + b(•) · a( ) + b( ) · a( ) + b( ) · a(•) + b( )

Before we proceed to the next chapter it will be useful to give the following de�nition regarding

operations on trees which is due to Butcher (1972).

De�nition 26. (Butcher Product). For two trees in T , u = [u1, u2, ..., um] and v = [v1, v2, ..., vl]

we denote

u ◦ v = [u1, ..., um, v]

and call this the Butcher Product.

Example 27. Given the trees u = [[•, •], •] = and v = [•, •] = ,

u ◦ v = [[•, •], •, [•, •]] =

v ◦ u = [•, •[[•, •], •]] =

Notice that the operation u ◦ v is simply the joining of the root of u to the root of v by an

upward leaving branch.
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Chapter 5

Backward Error Analysis

Backward error analysis is one of the most powerful tools in analyzing the long-time qualitative

behavior of a numerical method. The construction of the modi�ed equation (which will be explained

in the following section), a formal power-series of the step size, provides a lot of insight into the

numerical method. The approach taken here is the same as that of Hairer, Lubich and Wanner

(2006). All Theorems, Proofs and De�nitions were provided by the aforementioned authors.

5.1 The Modi�ed Di�erential Equation

We start with an autonomous system of ODE's, ẋ = f(x), and a numerical method, Φh(x), that

produces the approximations x0,x1,x2, .... The idea of backward error analysis is to search for a

modi�ed di�erential equation, ˙̃x = fh(x̃), of the form

˙̃x = f(x̃) + hf2(x̃) + h2f3(x̃) + ...,

whose exact solution at time nh is given by the numerical method, i.e.

xn = x̃(nh),

and then study the di�erences between the vector �elds f(x) and fh(x̃). This gives great insight

into the qualitative behavior of the numerical method and global error. It is important to note that

the vector �eld usually diverges and one has to truncate it suitably.

For the computation of the modi�ed vector �eld we put x := x̃(t) for a �xed t, and we expand

the solution of the modi�ed equation into a Taylor series

x̃(t+ h) = x + h ˙̃x +
h2

2!
¨̃x + ...
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= x+h(f(x̃)+hf2(x̃)+h2f3(x̃)+...)+
h2

2!
(f ′(x̃)+hf ′2(x̃)+h2f ′3(x̃)+...)(f(x̃)+hf2(x̃)+h2f3(x̃)+...)+...

We also assume that the numerical method Φh(x) can be expanded as

Φh(x) = x + hf(x) + h2d2(x) + h3d3(x) + ...

The functions dj(x) are known and are expressed in terms of f and its derivatives. Φh(x) becomes

the explicit Euler method if dj(x) = 0 for all j ≥ 2. Now if we require xn = x̃(nh) for all n then

we must have that x̃(t + h) = Φh(x). Comparing like powers of h in the Taylor expansion for the

solution of the modi�ed equation and the expansion of the numerical method gives

f2(x) = d2(x)− 1

2!
f ′f(x)

f3(x) = d3(x)− 1

3!
(f ′′(f , f)(x) + f ′f ′f(x))− 1

2!
(f ′f2(x) + f ′2f(x)).

5.2 The Modi�ed Equation and Trees

Theorem 14 shows that the numerical solution x1 = Φh(x0) of a Runge-Kutta method can be

written as a B-series

Φh(x) = x + hf(x) + h2a([•])(f ′f)(x) + h3(
1

2
a([•, •])f ′′(f , f)(x) + a([[•]])f ′f ′f(x)) + ....

We can exploit the structure of Φh(x) in order to get formulas for the functions f2(x), f3(x), ... of

the modi�ed di�erential equation. Comparing like powers of h in the Runge-Kutta B-series with

the expansion of the solution of the modi�ed di�erential equation we obtain

f2(x) = (a([•])− 1

2
)(f ′f)(x)

f3(x) =
1

2
(a([•, •])− a([•]) +

1

6
)f ′′(f , f)(x) + (a([[•]])− a([•]) +

1

3
)f ′f ′f(x).

Continuing in this fashion, it is not hard to see that the general formula is given by

fj(x) =
∑
|τ |=j

b(τ)

σ(τ)
F (τ)(x)
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Figure 5.1: Splitting of an ordered tree ω into a sub-tree θ and {δ} = ω \ θ

so that the modi�ed equation becomes

˙̃x =
∑
τ∈T

h|τ |−1

σ(τ)
b(τ)F (τ)(x)

with b(•) = 1, b([•]) = a([•]) − 1
2 , etc. Our goal is to �nd the recursion relation between the

coe�cients b(τ) and a(τ).

5.3 B-Series of the Modi�ed Equation

In obtaining the recurrence relations for the coe�cients b(τ) we follow the approach of Hairer (1999)

and use the Lie-derivative of B-series, although, the relations were �rst given by Hairer (1994) and

by Calvo and Sanz-Serna (1994). We shall once again make use of ordered trees and de�ne, for a

tree τ , a new set called the set of splittings as follows;

SP (τ) = {θ ∈ OST (τ) : τ \ θ consists of only one element}.

OST (τ) is the set of ordered sub-trees of τ as previously de�ned.

The following Lemma, and its accompanying proof, is given by Hairer and gives the Lie-

derivative, which evaluates the change of a vector �eld along the �ow of another, of a B-series.

Lemma 28. (Hairer (1999)). (Lie-Derivative of B-Series). Let b(τ) (with b(∅) = 0) and c(τ)

be the coe�cients of two B-Series, and let x(t) be a formal solution of the di�erential equation

hẋ(t) = B(b,x(t)). The Lie-derivative of the function B(c,x)with respect to the vector �eld B(b,x)

is again a B-series

h
d

dt
B(c,x(t)) = B(∂bc,x(t)).

Its coe�cients are given by ∂bc(∅) = 0 and for |τ | ≥ 1 by

∂bc(τ) =
∑

θ∈SP (τ)

c(θ)b(τ \ θ).
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Proof. It will be convenient to work with ordered trees ω ∈ OT . Since ν(τ) denotes the number

of possible orderings of a tree τ ∈ T , a sum
∑
τ∈T ·/· becomes

∑
ω∈OT

1
ν(ω) · /·.

For the computation of the Lie-derivative of B(c,x) we have to di�erentiate the elementary

di�erential F (θ)(x(t)) with respect to t. Using the product rule, this gives |θ| terms, one for every

vertex of θ. Then we need to evaluate this derivative in the direction of the B-series B(b,x(t)), i.e.

insert the series for hẋ(t). This means that for a given tree θ in B(c,x(t)), each tree δ appearing in

B(b,x(t)) is attached with a new branch to each vertex of θ that has been di�erentiated. Written

out as formulas, this gives

h
d

dt
B(c,x(t)) =

∑
θ∈OT∪{∅}

h|θ|c(θ)

ν(θ)σ(θ)

∑
γ

∑
δ∈OT

h|δ|b(δ)

ν(δ)σ(δ)
F (θ ◦γ δ)(x(t)),

where
∑
γ is the sum over all vertices of θ, and θ ◦γ δ is the ordered tree obtained by attaching

the root of δ with a new branch to γ(�gure 5.1). Now choose one of the n(γ) + 1 possibilities of

attaching δ to γ (because in terms of ordered trees, the ordering of the branches, and hence the

order in which δ is attached to γ, matters), where n(γ) denotes the number of upwards leaving

branches of θ at the vertex γ. We now collect the terms with equal ordered trees ω = θ ◦γ δ, and

notice that ν(θ)σ(θ) = κ(θ). This gives

h
d

dt
B(c,x(t)) =

∑
ω∈OT

h|ω|

 ∑
θ◦γδ=ω

c(θ)b(δ)

(n(γ) + 1)κ(θ)κ(δ)

F (ω)(x(t)),

where
∑
θ◦γδ=ω is over all triplets (θ, γ, δ) such that θ ◦γ δ = ω, and we have divided by the factor

n(γ) + 1 because we want to be able to change from sums over OT to sums over T . Because

κ(ω) = κ(θ)κ(δ)(n(γ) + 1), we get

h
d

dt
B(c,x(t)) =

∑
ω∈OT

h|ω|

κ(ω)

 ∑
θ◦γδ=ω

c(θ)b(δ)

F (ω)(x(t))

=
∑
τ∈T

h|τ |

σ(τ)

 ∑
θ∈SP (τ)

c(θ)b(τ \ θ)

F (τ)(x(t)).

�

As an example of the Lie-derivative formula, consider the tree shown in �gure 5.2 with �ve

vertices, along with all possible splittings of this tree. Note that θ may be the empty tree ∅

and that always |δ| ≥ 1. The tree ω may be obtained in several ways: (i) di�erentiation of

F (∅)(x) = x and adding F (ω)(x) as argument, (ii) di�erentiation of the factor corresponding to

the root in F (θ)(x) = f ′′(f , f)(x) and adding F ([•])(x) = (f ′f)(x), (iii) di�erentiation of all f 's in
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Figure 5.2: Splittings of an ordered tree with 5 vertices (example taken from [10])

F (θ)(x) = f ′′′(f , f , f)(x) and adding F (•)(x) = f(x) and �nally, (iv) di�erentiation of the factor for

the root in F (θ)(x) = f ′′(f ′f , f)(x) and adding F (•)(x) = f(x). This shows that

∂bc([[•, •], •, •]) = c(∅)b([[•, •], •, •])) + c([•, •])b([•]) + c([•, •, •])b(•) + 2c([[•, •], •])b(•).

The formulas for ∂bc are shown below for all trees up to order 3:

∂bc(•) = c(∅)b(•)

∂bc([•]) = c(∅)b([•]) + c(•)b(•)

∂bc([•, •]) = c(∅)b([•, •]) + 2c([•])b(•)

Lemma 28 will allow us to determine the recursion formula for the coe�cients b(τ) of the

modi�ed di�erential equation.

Theorem 29. (Hairer, Lubich and Wanner (2002)). If the method Φh(x) is given as in

section 5.2, the functions fj(x) of the modi�ed di�erential equation satisfy the relation given in

section 5.2, where the coe�cients b(τ) are recursively de�ned by b(∅) = 0, b(•) = 1 and

b(τ) = a(τ)−
|τ |∑
j=2

1

j!
∂j−1
b b(τ),

where ∂j−1
b is the (j − 1)th iterate of the Lie-derivative ∂b de�ned in Lemma 28.

Proof . The right-hand side of the modi�ed di�erential equation is the B-seriesB(b, x̃(t)) divided

by h. It therefore follows from an iterative application of Lemma 28 that

hjx̃(j)(t) = B(∂j−1
b b, x̃(t)),

so that the Taylor series expansion x̃(t + h) = x + B(
∑
j≥1

1
j!∂

j−1
b b,x), where x := x̃(t). Since

we have to determine the coe�cients b(τ) in such a way that x̃(t + h) = Φh(x) = B(a,x), a

comparison of the two B-Series gives
∑
j≥1

1
j!∂

j−1
b b(τ) = a(τ). This proves the statement, because

∂0
b b(τ) = b(τ) for τ ∈ T so that b(τ) = a(τ)−

∑|τ |
j=2

1
j!∂

j−1
b b(τ), and ∂j−1

b b(τ) = 0 for j > |τ |(as a

consequence of b(∅) = 0) so that b(τ) depends only on b(ω) for |ω| < |τ |.�
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The table below shows the formula from Theorem 29 for trees up to order 3 [10].

τ = • b(•) = a(•)

τ = [•] b([•]) = a([•])− 1
2b(•)

2

τ = [•, •] b([•, •]) = a([•, •])− 1
2b([•])b(•)−

1
6b(•)

3

τ = [[•]] b([[•]]) = a([[•]])− 1
2b([•])b(•)−

1
6b(•)

3

5.4 Elementary Hamiltonians

Recall from chapter 1 that a Hamiltonian system is given by

ṗ = −Hq(p, q) q̇ = Hp = (p, q),

where the Hamiltonian H(p1, p2, ..., pd, q1, q2, ..., qd) represents the total energy; qi are the position

coordinates and pi the momenta for i = 1, 2, ..., d, with d the number of degrees of freedom;

Hp and Hq are the vectors of partial derivatives. With the notation x = (p, q) and the matrix

J =

 0 I

−I 0

 we may write the Hamiltonian system in the form

ẋ = J−1∇H(x),

where ∇H(x) = H ′(x)T .

We shall now consider Hamiltonian systems of the above form. According to Theorem 3.1

of Hairer, Lubich and Wanner (Pg 293, 2002), if ẋ = J−1∇H(x), then the modi�ed di�erential

equation is again Hamiltonian (i.e. a Hamiltonian system). More precisely, there exist smooth

functions Hj : R2d → R for j = 2, 3, ... such that fj(x) = J−1∇Hj(x) and therefore the modi�ed

di�erential equation has the form

˙̃x = J−1∇H̃(x),

where

H̃(x) = H(x) + hH2(x) + h2H3(x) + ....

The question is, can we �nd explicit formulas for H̃(x)?

As an example (taken from Hairer, Lubich and Wanner (2006)), consider the implicit midpoint

rule. Written as a B-series, its coe�cients are a(τ) = 21−|τ | which is easily seen from di�erenti-

ating the vector �eld and using the chain rule. Using this information, we are able to calculate
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the coe�cient functions, fj(x) =
∑
|τ |=j

b(τ)
σ(τ)F (τ)(x) using the recursive formula for b(τ), for the

modi�ed di�erential equation. Firstly, f2(x) = b([•])f ′f(x) = 0 since b([•]) = a([•]) − 1
2b(•)

2 =

1
2 −

1
2 = 0 and f3(x) = 1

2b([•, •])f
′′(f , f)(x) + b([[•]])f ′f ′f(x) = 1

24 (2f ′f ′f(x)− f ′′(f , f)(x)) since

b([•, •]) = a([•, •]) − b([•])b(•) − 1
3b(•)

3 = −1
12 and b([[•]]) = a([[•]]) − b([•])b(•) − 1

6b(•)
3 = 2

24 .

Consider the function

H3(x) = − 1

24
H ′′(x)(J−1∇H(x), J−1∇H(x)).

Since f(x) = J−1∇H(x), we have that f ′(x) = (J−1)2∇2H(x) = −H ′′(x) and f ′′(x) = (J−1)3∇3H(x) =

H ′′′(x). Therefore,

J−1∇H3(x) =

− 1
24 (J−1)3∇3H(x)(J−1∇H(x), J−1∇H(x))− 2

24 (J−1)2∇2H(x)((J−1)2∇2H(x), J−1∇H(x))

= − 1
24 f
′′(f , f) + 2

24 f
′f ′f

= f3(x).

We have just shown that f3(x) = J−1∇H3(x) and have found an explicit formula for the

Hamiltonian corresponding to the vector �eld f3(x). The above computations lead to expressions

previously introduced (although in a di�erent context) by Sanz-Serna and Abia (1991).

De�nition 30. (Elementary Hamiltonians). For a given smooth function H : D → R (with open

D ⊂ R2d) and for τ ∈ T we de�ne the elementary Hamiltonian H(τ) : D → R by

H(•)(x) = H(x), H(τ)(x) = H(m)(F (τ1)(x), ..., F (τm)(x))

for τ = [τ1, ..., τm]. Here, F (τi)(x) are elementary di�erentials corresponding to f(x) = J−1∇H(x).

Notice that the expression for H3(x) is simply the elementary Hamiltonian corresponding to the

tree [•, •].

Hairer, Lubich and Wanner (2006) give the following Theorem, for the case when a symplectic

method is applied to a Hamiltonian system, regarding the coe�cients b(τ) of the coe�cient func-

tions fj(x) of the modi�ed di�erential equation. We shall only quote the Theorem here and refer

the reader to Hairer, Lubich and Wanner (2006), chapter VI.7 for a complete characterization of

symplectic methods and the results on which the proof of this Theorem relies.

Theorem 31. (Faou, Pham and Hairer (2004)). Suppose that for all Hamiltonians H(x) the

modi�ed vector �eld (of the modi�ed di�erential equation), truncated after an arbitrary power of h,

is (locally) Hamiltonian. Then,
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= ◦

Figure 5.3: The super�uous (left) and non-super�uous (right) free trees of order 4

b(u ◦ v) + b(v ◦ u) = 0 ∀ u, v ∈ T.

The aim is to prove that, for symplectic methods applied to Hamiltonian systems, the coe�cient

functions, fj(x), of the modi�ed di�erential equation satisfy fj(x) = J−1∇Hj(x), where Hj(x) is a

linear combination of elementary Hamiltonians.

Lemma 32. (Faou, Pham and Hairer (2004)). Elementary Hamiltonians satisfy

H(u ◦ v)(x) +H(v ◦ u)(x) = 0 ∀ u, v ∈ T.

In particular, H(u ◦ u)(x) = 0 for all u ∈ T .

Proof. This follows from the fact that for u = [u1, ..., um] ∈ T and for v ∈ T we have

H(u ◦ v) = H(m+1)(F (u1), ..., F (um), F (v)) = F (v)T (∇H)(m)(F (u1), ..., F (um)) = F (v)TJF (u) =

(F (u)TJTF (v))T = −(F (u)TJF (v))T = −(H(v ◦ u))T = −H(v ◦ u).�

Notice that the Butcher product of two trees u, v ∈ T induces an equivalence relation on T, the

smallest equivalence relation satisfying u ◦ v ∼ v ◦u for every u, v ∈ T ([9]). That is, u ◦ v and v ◦u

have the same graph and only di�er in the root position. For two trees θ and τ , κ(θ, τ) denotes the

number of times the root must be shifted in order to obtain θ from τ . As an example, consider the

two equivalent trees θ = , τ = . Then κ(θ, τ) = 2. Each equivalence class is called a free tree

and the set of free trees of order n is denoted by FTn. Let π(τ) be the free tree (equivalence class)

to which τ ∈ T belongs. A free tree is called superfluous if it contains an element of the form u◦u

for some u ∈ T . All other free trees are called non − superfluous (Celledoni, McLachlan, Owren

and Quispel (2010)). We denote the set of non-super�uous free trees by FTNS Figure 5.3 displays

the super�uous and non-super�uous free trees of order 4.

The following Lemma is due to Faou, Hairer and Pham (2004) and gives a description of the

elementary Hamiltonian in terms of elementary di�erentials (as in our example of f3(x) and H3(x)).
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Lemma 33. For a tree τ belonging to a non-super�uous free-tree we have

J−1∇H(τ)(x) = σ(τ)
∑
θ∼τ

(−1)κ(θ,τ)

σ(θ)
F (θ)(x).

P roof . We wish to compute J−1∇H(τ)(x). The expression H(τ)(x) contains |τ | factors corre-

sponding to the vertices of τ , each of which is di�erentiated by the product rule. Di�erentiation of

H(m)(x) and premultiplication by the matrix J−1yields F (τ)(x) (as in the example of J−1∇H3(x)

and corresponds to the di�erentiation of the root of τ . In order to di�erentiate the other factors

(vertices of τ) we bring the vertex that is to be di�erentiated down to the root. In light of Lemma 32

this only multiplies H(τ)(x) by (−1)κ(θ,τ), and shows that di�erentiating the corresponding factor

yields F (θ)(x). Since τ is a member of a non-super�uous free tree, the number of possibilities of

obtaining θ from τ by exchanging roots is equal to σ(τ)
σ(θ) . �

We are now able to give an explicit formula for the Hamiltonian of the modi�ed di�erential

equation provided that the numerical method can be written as a B-series. This Theorem is due

to Faou, Hairer and Pham (2004).

Theorem 34. (Faou, Pham and Hairer (2004)). Consider a numerical method that can be

written as a B-series, and that is symplectic for every Hamiltonian system ẋ = J−1∇H(x). Its

modi�ed di�erential equation is then Hamiltonian with

H̃(x) = H1(x) + hH2(x) + h2H3(x) + ...,

where

Hj(x) =
∑

|τ |=j,τ non−superfluous

b(τ)

σ(τ)
H(τ)(x),

the coe�cients b(τ) are those of Theorem 29 and the sum is over only one representative of each

non-super�uous free tree

Proof. Apply the method Φh(x) (written as a B-series as in section 5.1) to a Hamiltonian

system so that the modi�ed di�erential equation is, again, (locally) Hamiltonian of the form

H̃(x) = H1(x) + hH2(x) + h2H3(x) + ....

Following the same procedure as in section 5.1 we have that

Hj(x) =
∑
|τ |=j

b(τ)

σ(τ)
F (τ)(x).
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Since the modi�ed di�erential equation is Hamiltonian, it follows from Theorem 31 that the coef-

�cients b(τ) satisfy b(u ◦ v) + b(v ◦ u) = 0. This implies that b(θ) = (−1)κ(τ,θ) whenever θ ∼ τ and

that b(ω) = 0 for all trees belonging to a super�uous free-tree. Putting this information into the

expression for Hj

Hj(x) =
∑
|θ|=j, θ non−superfluous, θ∼τ

b(θ)
σ(τ) (−1)κ(τ,θ)F (θ)(x)

=
∑
|θ|=j, θ non−superfluous, θ∼τ

b(θ)
σ(θ) (−1)κ(τ,θ) σ(θ)

σ(τ)F (θ)(x)

=
∑
|θ|=j, θ non−superfluous

b(θ)
σ(θ)H(θ)(x),

(by an application of Lemma 33 and the fact that the vector field is Hamiltonian),

and the �nal sum is over only one representative of each non-super�uous free tree after applying

Lemma 33 (that is, not every member of each non-super�uous free tree appears in the sum, only

one member from each non-super�uous free-tree).�

Faou, Hairer and Pham (2004) also note that the elementary Hamiltonians only depend on

derivatives of H(x) and therefore the modi�ed Hamiltonian is globally de�ned. They also obtain a

simple corollary from Theorem 34 and 31.

Corollary 35. (Faou, Pham and Hairer (2004)). The di�erential equation hẋ = B(b,x) with

b(∅) = 0 is Hamiltonian for all vector �elds f(x) = J−1∇H(x), if and only if

b(u ◦ v) + b(v ◦ u) = 0 ∀ u, v ∈ T.

5.5 First Integrals Close to the Hamiltonian

Given a Hamiltonian ODE, ẋ = J−1∇H(x), and a symplectic numerical method, Φh, that admits

a B-series, we have seen, from Theorem 34, that the modi�ed di�erential equation, based on the

Hamiltonian ODE, is Hamiltonian with a function of the form

H(c, y) =
∑

τ∈FTNS

h|τ |−1

σ(τ)
c(τ)H(τ)(x),

with c(τ) = b(τ) and the sum being over only one representative from each non-super�uous free

tree (that is, not every member of each non-super�uous free tree appears in the sum, only one

member from each non-super�uous free-tree). The problem is then reset and we ask the question

whether for non-symplectic methods a function of the above form, with c(τ) not necessarily equal

to b(τ), can be a �rst integral of the modi�ed di�erential equation ([9]). This question is answered

in the a�rmative by the following Lemma and corollary found in [9].
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Lemma 36. (Faou, Pham and Hairer (2004)). Let x(t) be a solution of the modi�ed di�erential

equation which can be written as hẋ = B(b,x(t)). We then have

d

dt
H(c,x(t)) = H(δbc,x(t))

where δbc(•) = 0 and, for τ ∈ FTNS, with |τ | > 1,

δbc(τ) =
∑
θ∼τ

(−1)κ(τ,θ)σ(τ)

σ(θ)

∑
ω∈FTNS∩SP (θ)

c(ω)b(θ \ ω).

The �rst sum is over all trees θ that are equivalent to τ and the second sum is over all splitting

of θ (as de�ned in section 5.3) such that the sub-tree containing the root of θ belongs to a non-

super�uous free-tree.

Corollary 37. (Faou, Pham and Hairer (2004)). The function H(c,x) is a �rst integral of

the di�erential equation for every H(x) if and only if

δbc(τ) = 0 ∀ τ ∈ FTNS .

The proof of Lemma 36 is almost identical to the proof of Lemma 28 and a proof of corollary

37 may be found in [9]. Corollary 37 gives us a linear system to solve in order to �nd conditions

on the coe�cients b(τ) so that H(c, y) is a �rst integral of the modi�ed di�erential equation given

in section 5.2. As example, let us calculate δbc for the tree τ = . The �rst sum in the formula

tells us to write down the sum of all trees related to τ by shifting the root and multiplying by the

appropriate symmetry coe�cients. We obtain

−2 − +

We need to �nd the splittings of each of these trees such that the sub-tree containing the original

root of each tree belongs to a non-super�uous free-tree. Let ω denote the sub-tree containing the

original root. We obtain the following splittings for each tree,

: (ω = , τ \ ω = •), (ω = , τ \ ω = ),

: (ω = , τ \ ω = •), (ω = •, τ \ ω = )

: (ω = , τ \ ω = •),

: (ω = •, τ \ ω = ).

Putting this information into the formula we get

δbc(τ) = c( )b(•) + c( )b( ) − 2(c( )b(•) + c(•)b( )) − c( )b(•) + c(•)b( ). Below are

the formulas for δbc(τ) for all non-super�uous trees up to order 6 (�rst given in [9]). Note that we
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only need one representative from each free-tree since any tree members of a free-tree will give the

same formula (up to sign).

δbc( ) = −2c(•)b( )

δbc( ) = 3c( )b(•)− 3c(•)b( )− 6c( )b(•)

δbc( ) = 4c( )b(•)− 4c(•)b( )− 12c( )b(•)

δbc( ) = c( )b(•) + c( )b( )− 2(c( )b(•) + c(•)b( ))− c( )b(•) + c(•)b( )

δbc( ) = 2c(•)b( )− 2c( )b( )

δbc( ) = 5c( )b(•)− 5c(•)b( )− 20c( )b(•)

δbc( ) = 3c( )b(•) + c( )b(•) + c( )b( )− 3c(•)b( ) + c(•)b( )

δbc( ) = 2c( )b(•) + c( )b(•)− c(•)b( ) + 2c(•)b( )

δbc( ) = 2c( )b(•) − c( )b(•) − c( )b( ) − c( )b( ) − c( )b( )+2c(•)b( ) +

c(•)b( ).

Corollary 37 gives us a linear system of equations to solve in order to �nd conditions on the

modi�ed di�erential equation (i.e. conditions on the b(τ) coe�cients) for H(c,x) to be a �rst

integral. For completeness, Faou, Hairer and Pham (2004) solve this system for trees up to order 6.

This is replicated below. Consider a consistent method, i.e. b(•) = 1 and search for a �rst integral

H(c,x) close to the Hamiltonian, i.e. c(•) = 1.

|τ | = 3: The condition δbc(τ) = 0 for τ = gives b( ) = 0 and we conclude that whichever

method has H(c,x) as a �rst integral will have to be of order 2.

|τ | = 4: The condition is satis�ed by setting b( ) = 3c( )−6c( ).

|τ | = 5: The last of the order 4 conditions gives b( ) = 0. The �rst order 4 condition gives

c( ) = −b( ) − 3c( ) and substituting this expression into the second order 4 condition we

�nd that we must satisfy

b( ) + b( )− 2b( ) = 0.

It is important to note that this equation is satis�ed by symplectic methods, i.e. methods whose

coe�cients satisfy b(u ◦ v) + b(v ◦ u) = 0.

|τ | = 6: Performing similar substitutions for the order 5 conditions we �nd that the modi�ed

di�erential equation has H(c,x) if and only if the following conditions is satis�ed;

5b( ) + 5b( ) + 6b( ) + 6b( )− 12b( ) + 3b( )− 15b( ) = 0.

This condition is also satis�ed by every symplectic method. In general, the conditions on the

modi�ed di�erential equation forH(c,x) to be a �rst integral are satis�ed by all symplectic methods.
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This is encapsulated by the following Lemma of Faou, Hairer and Pham's (2004).

Lemma 38. (Faou, Pham and Hairer (2004)). Let c(τ), τ non-super�uous, be given and

assume c(•) = 1 and b(∅) = 0. Then, for �xed b(•), the linear system , δbc(τ) = 0 for b(τ), τ ∈ T

has at most one solution satisfying b(u ◦ v) + b(v ◦ u) = 0 for all u, v∈ T .

Theorem 39. (Chartier, Faou and Murua 2005). The only symplectic method (as a B-series)

that conserves the Hamiltonian for arbitrary H(x) is the exact �ow of the di�erential equation.

Proof . If the method conserves exactly the Hamiltonian, we have H(c,x), δbc(τ) = 0 with

c(•) = 1 and c(τ) = 0 for all other trees belonging a non-super�uous free-tree (this is because

H(c,x) is a perturbation of the Hamiltonian and we want the exact Hamiltonian to be conserved).

By the uniqueness statement of Lemma 38 and the symplecticity of the method (corollary 35), we

obtain b(τ) = 0 for |τ | > 1. Consequently, no perturbation is permitted in the modi�ed di�erential

equation of the method.�

Thus, we �nd that no B-series of the modi�ed di�erential equation can be simultaneously

symplectic and energy-preserving.
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Chapter 6

The Algebraic Structure of B-Series

In this chapter we are interested in the algebraic structure of B-series. In particular, we wish to bet-

ter understand certain properties of the elementary di�erentials (rooted trees) when the vector �eld

of an ODE is Hamiltonian, and classify the elementary di�erentials according to these properties.

Chapter 5 gave conditions for the B-series of the modi�ed di�erential equation to either be Hamil-

tonian or energy-preserving. These conditions have implications for the elementary di�erentials

and we shall see that certain linear combinations of elementary di�erentials are Hamiltonian and

certain linear combinations have �rst integral H, where H is the Hamiltonian (although these are

not the only properties elementary di�erentials may posses). The linear combinations of elementary

di�erentials de�ne linear subspaces of the vector space over rooted trees (with base �eld R). These

subspaces inherit the linear- and Lie-algebraic structure induced by the elementary di�erentials

even when the original vector �eld f , of the ODE, is �forgotten� and we work only with rooted trees

(Celledoni, McLachlan, Owren and Quispel 2010). This chapter will explore and understand these

subspace, their dimensions and their annihilators.

6.1 Energy-Preserving and Hamiltonian B-Series

Recall that T is the set of all rooted trees and Tn is the set of rooted trees of order n (i.e. trees

having n vertices). Let

T n = span(Tn),

T = span(T ) = ⊕∞n=1T n.

T is the real vector space generated by the set T . It consists of �nite linear combinations of

elements of T . We use the notation |·| to denote the order of a tree and the cardinality of a set,

therefore dim(T n) = |Tn| (Celledoni, McLachlan, Owren and Quispel 2010).
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For Hamiltonian systems, we shall consider the more general case where ẋ = Ω−1∇H with Ω

a constant, anti-symmetric, invertible d × d matrix. The Hamiltonian vector �eld is de�ned by

f = XH = Ω−1∇H. We extend the elementary di�erential F to T by linearity, e.g. F (a •+b[•]) =

aF (•) + bF ([•]). Consequently, the coe�cients b(τ) are linear in τ . Also, a forest is an unordered,

possibly empty, collection of trees where each tree can appear an arbitrary number of times. For

example, t1 = (•, •, [•, •]) is a forest so that t = [t1] = [•, [•, •]]. we denote the set of all forests by

T̄ . De�ne a map B− : T → T̄ by B−(τ) = (t1, ..., tm) for a tree τ = [t1, ..., tm] ∈ T .

The following de�nition of the two sub-spaces of interest comes from (Celledoni, McLachlan,

Owren and Quispel 2010).

De�nition 40. The energy-preserving subspace (of order n) is de�ned by

T nH = {t ∈ T n : F (t) has first integral H when f = Ω−1∇H}.

The Hamiltonian subspace (of order n) is de�ned by

T nΩ = {t ∈ T n : F (t) is Hamiltonian w.r.t Ω when f = Ω−1∇H},

with

TH = ⊕∞n=1T nH

TΩ = ⊕∞n=1T nΩ

In section 5.4 we calculated the coe�cient functions of the modi�ed di�erential equation us-

ing the implicit midpoint rule. We found that f3(x) = 1
24 (2f ′f ′f(x)− f ′′(f , f)(x)) and this is a

Hamiltonian combination of trees with Hamiltonian

H3(x) = − 1

24
H ′′(x)(J−1∇H(x), J−1∇H(x)).

Therefore, f3(x), written in terms of rooted trees, is an element of the subspace T nΩ . In sec-

tion 5.4, Lemma 33 gives the linear combination of elementary di�erentials that are Hamiltonian.

Written in terms of rooted trees, the Hamiltonian linear combination of trees is given by

Xt = σ(t)
∑
θ∼t

(−1)κ(θ,τ)

σ(θ)
θ,

for a non-super�uous tree t, where Xt denotes the Hamiltonian combination of trees associated
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with t. Since any two trees belonging to the same free tree will give the same Hamiltonian combi-

nation of trees (ignoring sign), a basis for the linear subspace of Hamiltonian trees is given Xt, for

one representative t from each non-super�uous free-tree. Thus,

|T nΩ | =

{
|FTn| n odd

|FTn| −
∣∣T n

2

∣∣ n even

because for odd n there cannot exist any trees of the form u ◦ u, u ∈ T and for n even, an

element of the form u ◦ u is given by taking a tree of order n
2 and taking the butcher product of

this tree with itself. The number of such super�uous free-trees (with order n) is given by
∣∣T n

2

∣∣.
Example 41. The non-super�uous free-trees of order 5 are , , . Therefore, a basis for∣∣T 5

Ω

∣∣ is given by

{ −4 , −2 − + , −2 +2 }.

If the B-series of the modi�ed di�erential equation is Hamiltonian then, since the numerical

method is the exact solution of the modi�ed di�erential equation and the �ow of Hamiltonian

vector �elds are symplectic, we know that the numerical method is symplectic. But, as we shall see

later, the Hamiltonicity of the modi�ed di�erential equation does not mean the numerical method

will also preserve the energy of the system.

Linear transformations from a vector space V to the base �eld F are very important. The next

two de�nitions are due to Roman (2008).

De�nition 42. Let V be a vector space over F . A linear transformation f , de�ned on V , whose

value lies in the base-�eld F is called a linear functional on V . The vector space of all linear

functionals on V is denoted by V ∗ and is called the algebraic dual space of V .

The functionals f ∈ V ∗ are de�ned on vectors in V , but we may also de�ne f on subsets M of

V by letting

f(M) = {f(v) : v ∈M}.

De�nition 43. Let M be a non-empty subset of a vector space V . The annihilator, Ann(M), of

M is

Ann(M) = {f ∈ V ∗ : f(M) = {0}}.

The annihilator consists of all functionals that send every vector in M to zero. Ann(M) is

always a subspace of V ∗ even when M is not a subspace of V .
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Let V be a vector space with basis B = {vi : i ∈ I}. For each i ∈ I, we can de�ne a linear

functional v∗i ∈ V ∗ by the orthogonality condition

〈v∗i , vj〉 = v∗i (vj) = δi,j

where δi,j is the Kronecker delta function de�ned by

δi,j =

{
1 if i = j

0 if i 6= j

The set B∗ = {v∗i : i ∈ I} is clearly linearly independent (Roman (2008)).

In �nite dimensional vector spaces it is customary to identify the dual of the algebraic dual

space, or double dual V ∗∗, with V and to think of the elements of V ∗∗ simply as vectors in V .

The most natural space of linear functionals de�ned on T is the space of coe�cients, b(τ),

where b : T → R. We set b(τ) := τ∗ ∈ V ∗and use the pairing
〈
τ∗, 1

σ(θ)θ
〉

= δτ,θ, where δτ,θ is

the Kronecker delta function de�ned above. From Corollary 35, section 5.4, if a linear combination

of trees is Hamiltonian, then b(u ◦ v) + b(v ◦ u) = 0 and we deduce that the set of dual trees that

annihilate T nΩ is given by

{(u ◦ v)∗ + (v ◦ u)∗ : ∀ u, v ∈ T, such that |u|+ |v| = n}.

Example 44. For n = 5, the pairs (u, v) of trees satisfying |u|+ |v| = n are (•, [•, •, •]), (•, [[•, •]]),

(•, [•, [•]]), (•, [[[•]]]), ([•], [•, •]), ([•], [[•]]). Thus

Ann(T 5
Ω ) = { ∗+ ∗, ∗+ ∗, ∗+ ∗, ∗+ ∗, ∗+ ∗, ∗+ ∗}

This information can be collected in the following Theorem.

Theorem 45. A basis of T nΩ is given by {Xti} where one ti is chosen from each element of FTn.

A basis of the annihilator Ann(T nΩ ) of T nΩ is given by

{(u ◦ v)∗ + (v ◦ u)∗ : ∀ u, v ∈ T, such that |u|+ |v| = n},

so that Hamiltonian B-series of the form σ(t)
∑
θ∼t

(−1)κ(θ,τ)

σ(θ) θ ∈ Tn, satisfy

b(u ◦ v) + b(v ◦ u) = 0 ∀ u, v ∈ T, such that |u|+ |v| = n.

The dimension of T nΩ is given by
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dim(T nΩ ) = |T nΩ | =

{
|FTn| n odd

|FTn| −
∣∣T n

2

∣∣ n even
.

The conditions to be Energy-preserving, i.e. the conditions for the modi�ed di�erential equation

to preserve the Hamiltonian H(x), are given by Lemma 36 and Corollary 37, section 5.5 with

c(•) = 1 and c(τ) = 0 ∀ |τ | > 1 (we have these conditions on c(τ) if we wish to only conserve the

Hamiltonian and not a perturbation of the Hamiltonian). A set of energy-preserving trees was �rst

given by Quispel and McLaren (2008). The proof is given by Celledoni, McLachlan, Owren and

Quispel (2009).

Theorem 46. (Celledoni, McLachlan, Owren, Quispel) Let

S = {[t1, [t2, ..., [tm, •] · · ·] + (−1)m[tm, [· · · [t2, [t1, •] · · ·] : tj ∈ T̄},

then S ⊆ TH .

Proof . Any element of S is of the form t+ (−1)mt̂ with

t = and t̂ = .

We �rst note that t is a representation of an arbitrary tree, with the spine being the path from

the root to any leaf. From the chain rule, we have that the Hamiltonian H is preserved by the �ow

map of a vector �eld g if and only if H ′(g(x)) = 0 along integral curves x. We must prove that this

is true for the vector �eld F (t) + (−1)mF (t̂). From the de�nition of the elementary Hamiltonians

we see that H ′(F (t)) = H([t]). Using the root shifting property H(u ◦ v) = −H(v ◦ u) for all trees

u and v, the root of [t] can be moved to an adjacent vertex incurring a change of sign. We shift the

root up m+ 1 places until it reaches the designated • in [t̂] = [[tm, [· · · [t2, [t1, •] · · ·]]. The resulting

tree is [t̂], thus κ(t, t̂) = m + 1, and we �nd that H([t̂]) = (−1)m+1H([t]). Using the de�nition of

elementary Hamiltonians we conclude that H ′(F (t)+(−1)mF (t̂)) = 0, thus proving that the vector

�eld F (t) + (−1)mF (t̂) preserves H.�

The table below shows the energy-preserving pairs up to order 5.
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|τ | Energy-preserving pair

1 •

2 -

3

4 +

5 , , + , + , −

Example 47.

The key to �nding these energy-preserving pairs was the so called �Average Vector Field� (AVF)

method. This method was �rst introduced by McLachlan, Quispel and Robidoux (1999) and was

shown to be linear and energy-preserving by McLaren and Quispel (2008). For the ODE

ẋ = f(x)

the AVF method is the map x→ x′ de�ned by

x′ − x

h
=

ˆ 1

0

f(ξx′ + (1− ξ)x)dξ.

Celledoni, McLachlan, McLaren, Owren, Quispel and Wright (2008) give the following proof that

the AVF method is a B-series method. Assume x′ has a B-series given by

x′ = x +
∑
τ∈T

h|τ |

σ(τ)
a(τ)F (τ)(x).

This can be substituted into f(ξx′ + (1− ξ)x) and an application of Lemma 23 of section 4.2 will

yield the resulting coe�cients. Integrating term by term we obtain

a(•) = 1, b([t1, ..., tm]) =
1

m+ 1
a(t1) · ... · a(tm).

Thus, the B-series for x′ has the form

x′ = x+hf+
1

2
h2f ′f+h3(

1

3
f ′′(f , f)+

1

4
f ′f ′f)+h4(

1

4
f ′′′(f , f , f)+

1

6
f ′f ′′(f , f)+

1

6
f ′′(f ′f , f)+

1

8
f ′f ′f ′f)+....

Using the recurrence relation given in Theorem 29, section 5.3, the coe�cients for the modi�ed

di�erential equation are therefore

b(•) = 1

b([•]) = 1
2 −

1
2b(•)

2 = 0
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b([•, •]) = 1
3 − b([•]) · b(•)−

1
3b(•)

3 = 0

b([[•]]) = 1
4 − b([•]) · b(•)−

1
3b(•)

3 = −1
12

b([•, •, •]) = 1
4 −

3
2b([•, •])b(•)−

1
6 (6b([•])b(•)2)− 1

24 (6b(•)4) = 0

b([[•, •]]) = 1
6 −

1
2 (b([•, •])b(•) + 2b([[•]])b(•))− 1

6 (6b([•])b(•)2)− 1
24 (6b(•)4) = 0

b([•, [•]]) = 1
6 −

1
2 (b([[•]])b(•) + b([•])2 + b([•, •])b(•))− 1

6 (2b([•])b(•) + b([•])b(•) + 2b([•])b(•))−
1
24 (5b(•)4) = 0

b([[[•]]]) = 1
8 −

1
2 (2b([[•]])b(•) + b([•])2)− 1

6 (4b([•])b(•)2 + b([•])b(•))− 1
24 (5b(•)4) = 0,

etc.

giving the B-series of the modi�ed vector �eld of the AVF method as

•− 1

12
h2[[•]]+ 1

720
h4 (9[[[[•]]]]− ([[•, •, •]] + [•, •, [•]]) + 2([[•], [•]] + [[•, [•]]])− 4[•, [•, •]] + 4([[[•, •]]]− [•, [[•]]])) .

The coe�cients have naturally grouped the trees into energy-preserving pairs.

As was mentioned before, the conditions to be energy-preserving, i.e. for the modi�ed di�erential

equation to conserve the Hamiltonian H(x) (and not a perturbation of it) is given by Lemma 36

and Corollary 37, section 5.5 with c(•) = 1 and c(τ) = 0 ∀ |τ | > 1. Therefore, in obtaining the

conditions for the modi�ed vector �eld to be energy-preserving we only consider splittings, of a

tree τ , of the form (•, τ \ •). Since the conditions to be energy-preserving de�ne a basis for the

annihilator of the energy-preserving subspace of trees in the same way as for Hamiltonian trees, a

basis for the annihilator, Ann(T nH ), of the energy-preserving subspace at order n is

∑
τ∈φ, τ=[τ̄ ]

(−1)κ(τ0,τ) 1

σ(τ)
τ̄∗

where φ is a non-super�uous free-tree of order n+ 1, τ0 is a designated element of φ and the sum

is taken over all trees in φ having exactly one sub-tree attached to the root.

Example 48. We shall calculate the conditions to be energy-preserving for n = 4. The three

non-super�uous trees of order 5 are

1. { , }

2. { , , , }

3. { , , }

For the �rst non-super�uous free-tree, let τ0 = and then the only tree with exactly one

sub-tree attached to the root is τ = = [ ] with κ(τ0, τ) = 1. Therefore, the �rst condition to

be energy-preserving is

−1
6

∗.
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For the second non-super�uous free-tree, let τ0 = and the only trees with exactly one sub-

tree attached to the root are τ1 = = [ ] and τ2 = = [ ] with κ(τ0, τ1) = 1 and κ(τ0, τ2) = 2.

Therefore the second energy-preserving condition is

1
2
∗− ∗.

Lastly, we let τ0 = with τ = = [ ] and κ(τ0, τ) = 2. Thus, the last energy-preserving

condition is

∗

The dimension of Ann(T nH ) is dim(T n+1
Ω ). Since dim(T n) = dim(T nH ) + dim(Ann(T nH ), (see

Roman (2008) for a full treatment of vector spaces, annihilators and their properties) it follows

immediately that dim(T nH ) = dim(T n) − dim(T n+1
Ω ). A basis for T nH is obtained by choosing a

linearly independent set from S of the appropriate dimension. The following Theorem due to

Celledoni, McLachlan. Owren and Quispel (2010) encapsulates the above information.

Theorem 49. (Celledoni, McLachlan, Owren, Quispel) (i) A basis for the annihilator

Ann(T nH ) of T nH can be indexed over the non-super�uous elements of FTn+1 as follows

 ∑
τ∈φ, τ=[τ̄ ]

(−1)κ(τ0,τ) 1

σ(τ)
τ̄∗ : φ ∈ FTn+1

NS


where τ0 is a designated element of φ and the sum is taken over all trees τ ∈ φ having exactly

one sub-tree attached to the root.

(ii) The dimension of T nH is given by

dim(T nH ) = dim(T n)− dim(T n+1
Ω ).

(iii) S spans TH .

(iv) Each τ ∈ Tn satis�es either (a) τ ∈ T nH , if π([τ ]) is non-super�uous (where π([τ ]) denotes

the free-tree to which [τ ] belongs); (b) τ∗ ∈ Ann(T nH ) (that is, it appears nowhere in any energy-

preserving B-series), if π([τ ]) is symmetric and non-super�uous; or (c) it appears in a basis of T nH
chosen from S, if neither (a) nor (b) hold.

As a consequence of Theorem 39, section 5.5 (the only Hamiltonian B-series that preserves the

energy is the exact �ow of the di�erential equation), the energy-preserving and Hamiltonian trees

only intersect in the exact �ow of the di�erential equation:
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Figure 6.1: Venn diagram of the Energy-preserving and Hamiltonian subspaces

TH ∩ TΩ = Span({•}).

The reason for this is if the modi�ed di�erential equation is Hamiltonian with respect to the same

symplectic structure, Ω, as the original di�erential equation, then since the modi�ed di�erential

equation is close to the original one we have a modi�ed Hamiltonian H̃(x). Therefore the Hamil-

tonian modi�ed di�erential equation preserves the same symplectic structure as the original ODE

but preserves a di�erent Hamiltonian to the original ODE. Similarly if the modi�ed di�erential

equation is Energy-preserving, i.e. preserves the same Hamiltonian H as the original ODE then we

must have a modi�ed symplectic structure, Ω̃ in the modi�ed di�erential equation.

6.2 Conjugate-to-Energy Preserving and Conjugate-to-Hamiltonian

B-Series

Theorem 24 of section 4.4 has allowed us to consider B-series that are conjugate (by a B-series) to

another B-series. We now wish to consider whether a B-series can be conjugate (by a B-series) to

an energy-preserving of Hamiltonian B-series. Conjugate B-series do not form linear spaces, but

some of their properties such as their dimension can be described using two new spaces called T n
H̃

and T n
Ω̃

(Celledoni, McLachlan, Owren, Quispel (2010)).

A numerical integrator Φ is said to be conjugate-symplectic if there exists a map Ψ such that

ΨΦΨ−1 is symplectic. We only consider methods that admit B-series. Thus we require both Φ and

Ψ have B-series. The method Φ preserves a modi�ed symplectic form (Ψ−1)∗Ω not the original

form Ω (Celledoni, McLachlan, Owren and Quispel (2010)). The conditions on Φ (and its modi�ed

vector �eld) that ensure conjugate-symplecticity have been derived by Scully (2002) and Hairer,

Lubich and Wanner (2002)

At each step of the method ΨΦΨ−1, the perturbing e�ect of the Ψ transformation will be

corrected by the Ψ−1 transformation at the next step. Thus, (ΨΦΨ−1)n = ΨΦnΨ−1. Butcher
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and Sanz-Serna (1996) show that an application of the method Ψ−1 at the start of the iteration

process adjusts the initial point to account for the error which would occur when applying the map

Ψ at the last iteration. Therefore, two methods which are conjugate to each other share the same

long-term behavior, irrespective of whether both methods are of a certain order, or are symplectic,

or are energy-preserving, or share any other properties. Thus, even if the original B-series method

Φ is not Hamiltonian (energy-preserving), it may be conjugate (by, for example, a method Ψ) to

a method which is Hamiltonian (Energy-preserving) and these properties will be preserved by the

using the conjugacy. Our goal then, is to describe the modi�ed vector �elds that are conjugate

by a B-series to Hamiltonian or Energy-preserving B-series, i.e. eliminate the conjugacy from the

description. This is a �rst step to determining which B-series (if any) we should conjugate to

achieve Hamiltonicity or Energy preservation.

The easiest way to eliminate the conjugacy is by considering the conjugacy to be �xed up to

some order and variable thereafter. This is reasonable because, given a modi�ed vector �eld that

is conjugate to a Hamiltonian vector �eld, the conjugacy is determined, essentially uniquely, order

by order (Celledoni, McLachlan, Owren and Quispel (2010)).

In order to continue we will need to use Lie brackets of vector �elds. The Lie bracket will be

denoted by [|f, g|] to distinguish them from the root-grafting operation • ◦ t = [t]. The Lie bracket

of vector �elds induces a Lie bracket on T via the elementary di�erentials: [|τ1, τ2|] is the sum of

the grafts of τ1 onto each vertex of τ2 minus the sum of the grafts of τ2 onto each vertex of τ1

(Celledoni, McLachlan, Owren, Quispel (2010)),

[|τ1, τ2|] =
∑
γ∈V τ2

τ2 ◦γ τ1 −
∑
δ∈V τ1

τ1 ◦δ τ2,

where τ2 ◦γ τ1 denotes the grafting of a tree onto a vertex γ of τ2 (similarly for the second sum), the

�rst sum is taken over all vertices of τ2 and the second sum is taken over all vertices of τ1(see example

55). This de�nition follows directly from the Lie-derivative of B-series. Since the Hamiltonian and

Energy-preserving vector �elds form Lie sub-algebras, TH and TΩ form graded Lie sub-algebras of

T . I shall now give the setup for the idea of conjugate Hamiltonian B-series as given in the paper

�Energy-preserving Integrators and the Structure of B-Series�.

Let c be the B-series whose �ow conjugates the �ow of f̃ :

ecef̃e−c = ef̂

where f̂ is Hamiltonian. c is called the conjugacy. Upon rearranging we get

ef̃ = e−cef̂ec.
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Therefore, the conjugate Hamiltonian B-series is

{
log(e−cef̂ec) : c ∈ T , f̂ ∈ TΩ

}
.

This is the same as expanding the right-hand-side into the exponential series and multiplying out,

{
f̂ −

[∣∣∣c, f̂ ∣∣∣]+
1

2!

[∣∣∣c, [∣∣∣c, f̂ ∣∣∣]∣∣∣]− ... : c ∈ T , f̂ ∈ TΩ

}
,

where we have collected the appropriate terms, after multiplying out, into the Lie-bracket.

The following three restrictions have been made by Celledoni, McLachlan, Owren and Quispel

(2010):

1. Only consider B-series of consistent integrators, i.e. f̂(•) = f̃(•) = 1.

2. Only consider non-Hamiltonian conjugacies c. This is acceptable because a Hamiltonian vec-

tor �eld conjugated by a Hamiltonian vector �eld is obviously Hamiltonian and the de�nition

of non-Hamiltonian is immaterial. We simply let T ′Ω be any �xed complement of TΩ in T

(that is, T ′Ω is any vector sub-space disjoint from TΩ such that T = TΩ ⊕ T ′Ω). Similarly, we

let T ′H be any �xed complement of TH in T . As an example, T 3
H = Span({[[•]]}), therefore

we could choose T 3
H '= Span({[•, •]}) or T 3

H '= Span({[•, •]− [[•]]}) or any other 1-dimensional

space disjoint from T 3
H . We choose c ∈ T ′Ω.

3. Instead of allowing the conjugacy c to range over all non-Hamiltonian B-series, we will take

its terms of order < n− 1 to be �xed; and instead of allowing f̂ to range over all Hamiltonian

B-series, we will take its terms of order < n to be �xed. This will be a useful restriction

because it so happens that, given f̃ , the c that conjugates it to a Hamiltonian B-series will be

determined uniquely order-by-order.

The following Lemmas are due to Celledoni, McLachlan, Owren and Quispel (2010).

Lemma 50. (Celledoni, McLachlan, Owren, Quispel). The map ad• : T n → T n+1 de�ned

by ad•(τ) = [|τ, •|] is 1-1 on T n for n > 1.

Proof. (Vector Fields). Suppose the Lemma is false. Then there are distinct trees τ1, τ2 such

that [|τ1, •|] = [|τ2, •|]. Then [|F (τ1 − τ2), f |] = 0, i.e. f has the non-trivial symmetry F (τ1 − τ2)

for all f . But there are f 's with no non-trivial symmetries, a contradiction.�

The Lie bracket on T has the form [|τ1, τ2|] =
∑
γ∈V τ2 τ2 ◦γ τ1−

∑
δ∈V τ1 τ1 ◦δ τ2. We can identify

the two pieces of the Lie bracket with the non-associative Left pre−Lie product .. We then obtain∑
γ∈V τ2 τ2 ◦γ τ1 = τ1 . τ2 and

∑
δ∈V τ1 τ1 ◦δ τ2 = τ2 . τ1 so that [|τ1, τ2|] = τ1 . τ2 − τ2 . τ1. We may
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then de�ne L• and R• as the linear maps L• : u→ • . u and R• : u→ u . • = [u] for a tree u ∈ T .

We can now write ad• = R• − L•. The transpose of ad• is denoted ad∗• = R∗• − L∗• and is a map

from the algebraic dual space, (T n+1)∗ to the algebraic dual space (T n)∗ (bases for these spaces

are obtained as described in section 6.1). We have that ad∗•((T n+1)∗) = (T n)∗ due to Lemma 50.

If u ∈ Tn+1 and v ∈ Tn, we let r(u, v) count the number of leaves that, when removed from u,

would yield v. Clearly we may have r(u, v) = 0. Then we have the following formulas for R∗• and

L∗• applied to the dual element u∗:

L∗• =
∑
v∈Tn

r(u, v)v∗ R∗• =

 ū∗ if u = [ū]

0 otherwise

 .

We may naturally interpret the Butcher product on dual elements as u∗ ◦ v∗ = (u ◦ v)∗ for any

u, v ∈ T . For convenience we shall augment the basis T with the identity element ∅ of grade 0,

such that ∅ · τ = τ · ∅ = τ for any τ ∈ T ⊕R∅. We then have L∗•(•∗) = ∅∗ and by convention

τ ◦∅ = −∅ ◦ τ = τ for any τ ∈ T .

Lemma 51. (Celledoni, McLachlan, Owren, Quispel). ad•(TH ') ∩ TH = 0.

Proof. (Vector Fields) Suppose the Lemma is false. Then there exists g = F (τ), τ ∈ TH '

satisfying [|g, f |] (H) = 0. Then

0 = [|g, f |] (H) = g(f(H))− f(g(H)) = f(g(H)).

That is, f has �rst integral g(H). But there exist f whose only independent �rst integral is H; in

this case, g(H) = G(H) for some scalar function G. But g is an elementary di�erential of f so

G(H) = 0. That is, g ∈ TH , a contradiction.�

Lemma 52. (Celledoni, McLachlan, Owren, Quispel). ad•(TΩ') ∩ TΩ = 0.

Proof. The vector �eld f is assumed Hamiltonian, that is, ifΩ = dH or difΩ = 0. Suppose the

Lemma is false. Then there exists g = F (t), t ∈ TΩ' such that [|f ,g|] is Hamiltonian, i.e.,

0 = di[|f ,g|]Ω

⇒ 0 = d(Lf igΩ− igLfΩ)

⇒ 0 = dLf igΩ

⇒ 0 = d(dif igΩ + ifdigΩ)
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⇒ 0 = dif Ω̃ where Ω̃ = digΩ = LgΩ.

That is, the �ow of the vector �eld f preserves both Ω and Ω̃. (In coordinates, Ω̃ = Ωg′+g′TΩ.)

But there exist f whose �ow does not preserve two independent 2-forms: for example, in R2 with

Ω = dx ∧ dy, Ω̃ = w(x, y)dx ∧ dy, we would need ∇ · f = 1 = w(x, y). Regardless of t there will

exist f for which w(x, y) 6= 1, a contradiction.�

From the third assumption made above, we know that the conjugacy c is �xed for terms of

order < n− 1 and variable for terms of order ≥ n− 1 and the Hamiltonian vector �eld f̂ is �xed for

terms of order < n and variable for terms of order ≥ n in the conjugate-to-Hamiltonian B-series.

Therefore, at order n, the only variable terms are f̂n and
[∣∣cn−1, •

∣∣]. The �xed lower order terms

are all constant and can be collected into a single constant b. Since f̂n ranges over the space T nΩ ,

and cn−1 ranges over the space T n−1
Ω ', the order n terms in the B-series for f̃ ranges over the a�ne

space

T n
Ω̃

+ b

T n
Ω̃

= T nΩ ⊕
[∣∣T n−1′

Ω , •
∣∣] ,

the direct sum owing to Lemma 52. Since ad• is a 1− 1 map on T , it is a 1− 1 map on any

subspace of T and dim(
[∣∣T n−1′

Ω , •
∣∣]) = dim(T n−1′

Ω ). Therefore, the dimension of T n
Ω̃

is given by

dim(T n
Ω̃

) = dim(T nΩ ) + dim(T n−1)− dim(T n−1
Ω ).

By an identical argument, we obtain a similar result for the conjugate-to-Energy-preserving sub-

space. That is, the order n terms in the conjugate-to-Energy-preserving B-series for f̃ ranges over

the a�ne space

T n
H̃

+ b

T n
H̃

= T nH ⊕
[∣∣T n−1′

H , •
∣∣] ,

where

dim(T n
H̃

) = dim(T nH ) + dim(T n−1)− dim(T n−1
H ).

These results were �rst given by Celledoni, McLachlan, Owren and Quispel (2010) and may be

collected into the following Theorem.
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Theorem 53. (Celledoni, McLachlan, Owren, Quispel). Let n > 2. As the conjugacy c

ranges over TΩ' with terms of order < n − 1 �xed, and f̂ ranges over TΩ with f̂(•) = 1 and terms

of order < n �xed, the order n terms in the conjugate-to-Hamiltonian B-series

f̂ −
[∣∣∣c, f̂ ∣∣∣]+

1

2!

[∣∣∣c, [∣∣∣c, f̂ ∣∣∣]∣∣∣]− ...
ranges over the a�ne space

T n
Ω̃

+ b

where T n
Ω̃

is the linear space

T n
Ω̃

= T nΩ ⊕
[∣∣T n−1′

Ω , •
∣∣]

and b ∈ T n is a constant depending on the lower order terms in c and f̂ . The space T n
Ω̃

is well-

de�ned in the sense that it does not depend on the choice of complement T n−1′
Ω . The dimension of

T n
Ω̃

is

dim(T n
Ω̃

) = dim(T nΩ ) + dim(T n−1)− dim(T n−1
Ω ).

Let n > 2. As the conjugacy c ranges over TH ' with terms of order < n − 1 �xed, and f̂

ranges over TH with f̂(•) = 1 and terms of order < n �xed, the order n terms in the conjugate-to-

Hamiltonian B-series

f̂ −
[∣∣∣c, f̂ ∣∣∣]+

1

2!

[∣∣∣c, [∣∣∣c, f̂ ∣∣∣]∣∣∣]− ...
ranges over the a�ne space

T n
H̃

+ b

where T n
Ω̃

is the linear space

T n
H̃

= T nH ⊕
[∣∣T n−1′

H , •
∣∣]

and b ∈ T n is a constant depending on the lower order terms in c and f̂ . The space T n
H̃

is well-

de�ned in the sense that it does not depend on the choice of complement T n−1′
H . The dimension of

T n
H̃

is
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dim(T n
H̃

) = dim(T nH ) + dim(T n−1)− dim(T n−1
H ).

It will be useful to de�ne a map X[·] : T n → T n+1
Ω by

X[·](t) = X[t] = σ([t])
∑
θ∼[t]

(−1)κ(θ,[t])

σ(θ)
θ,

for all trees t ∈ T n. Then we have the following Lemma from Celledoni, McLachlan, Owren and

Quispel (2010).

Lemma 54. (Celledoni, McLachlan, Owren, Quispel). [|t, •|]−X[t] ∈ TH for all trees t ∈ T .

Proof. We claim that for all t ∈ T , [|t, •|] − X[t] ∈ TH . That is, the Hamiltonian component

of [|t, •|] ∈ TH̃ is X[t] and the remainder is energy-preserving. The equivalent claim for elementary

di�erentials is established. Let g = F (t). The elementary di�erential associated with [|t, •|] is

[|g, f |], and the elementary di�erential associated with X[t] is XH′(g) = Xg(H). Using f = XH and

f(H) = 0 gives

([|g, f |]−Xg(H))(H) = g(f(H))− f(g(H))−Xg(H)(H)

= −XH(g(H))−Xg(H)(H)

= −{H,g(H)} − {g(H), H}

= 0.

Thus, the remainder is energy-preserving and [|t, •|]−X[t] ∈ TH .�

Note that the above decomposition holds for any vector �eld g when f is Hamiltonian with

respect to any symplectic structure, not just g an elementary di�erential of f and Ω constant, as

was assumed everywhere else (Celledoni, McLachlan, Owren and Quispel 2010). For an analysis

and discussion of the above decomposition see (R. I. McLachlan 2009).

We may now de�ne another map EP : T n → T n+1
H by

EP (t) = [|t, •|]−X[t]

for all trees t ∈ T n.
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Example 55. Consider t = . We have

[| , •|] = − −3 .

The Hamiltonian vector �eld associated with [t] is

X[·]( ) = 4 − .

Therefore,

EP (t) =[| , •|]−X[·]( ) = −3( + ),

and

[| , •|] = X[t] + 3( + ).

The following Lemmas give some properties of the maps X[·] and EP .

Lemma 56. TH = ker(X[·]).

P roof . Each Energy-preserving tree is a linear combination of trees of the form

1. t1, such that [t1] = −[t1]

2. t2 + t3, such that [t2] = −[t3]

3. t4 − t5, such that [t4] = [t5].

Now

X[t1] = X−[t1] = −X[t1] ⇒ X[t1] = 0

X[·](t2 + t3) = X[t2+t3] = X[t2]+[t3] = X[t2]−[t2] = X0 = 0

X[·](t4 − t5) = X[t4−t5] = X[t4]−[t5] = X[t4]−[t4] = X0 = 0.

Thus, if t ∈ TH then X[·](t) = 0 and t ∈ ker(X[·]).

Suppose t ∈ ker(X[·]). Then X[·](t) = 0. Therefore, by Lemma 54 we have that ad•(t) =

EP (t) ∈ TH . Thus, by Lemma 51 t ∈ TH .�

Lemma 57. TΩ = ker(EP ).

P roof . We claim that for all t ∈ T , [|Xt, •|] = X[Xt]. We can establish the equivalent claim

for elementary di�erentials. Let g = F (t), the elementary di�erentials associated with [|Xt, •|] is

[|Xg, f |] and the elementary di�erential associated with X[Xt] is XH′(Xg). Using f = XH we have

[|Xg, XH |] = −X{g,H} = X−{g,H} = X{H,g} = XH′(Xg).

Thus,

EP (Xg) = [|Xg, XH |]−XH′(Xg) = 0
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and Xg ∈ ker(EP ).

If t ∈ ker(EP ) then EP (t) = 0. Therefore ad•(t) = X[t] ∈ TΩ and by Lemma 52 t ∈ TΩ.�

We obtain the following Theorems as a direct result of Lemmas 54, 56 and 57

Theorem 58. (Celledoni, McLachlan, Owren, Quispel).T n
H̃

= T nH ⊕ T nΩ for n > 1

Proof.T n
H̃

= T nH⊕
[∣∣T n−1′

H , •
∣∣] and every element of

[∣∣T n−1′
H , •

∣∣] can be written as a Hamiltonian

combination of trees plus an Energy-preserving combination of trees. Since T n
H̃

contains all energy-

preserving trees as a subspace, we may recover the purely Hamiltonian combinations of trees from

the elements of
[∣∣T n−1′

H , •
∣∣] as elements of T n

H̃
. Since T n−1′

H does not contain the kernel of the

map X[·] and dim(T n−1′
H ) = dim(T nΩ ), every Hamiltonian combination of trees of order n appear

as elements in T n
H̃
. Therefore, T n

H̃
consists of all Energy-preserving trees (which form the subspace

T nH ) and all Hamiltonian trees (which form the subspace T nΩ ). Since these are the only trees in T n
H̃

we have that

T n
H̃

= T nH ⊕ T nΩ .

�

Theorem 59. T n
Ω̃

= T nΩ ⊕ EP (T n−1) for n > 1.

Proof. T n
Ω̃

= T nΩ ⊕
[∣∣T n−1′

Ω , •
∣∣] and every element of

[∣∣T n−1′
Ω , •

∣∣] can be written as a Hamilto-

nian combination of trees plus an Energy-preserving combination of trees. Since T n
Ω̃

contains all

Hamiltonian trees as a subspace, we may recover the purely energy-preserving trees from the ele-

ments of
[∣∣T n−1′

Ω , •
∣∣] as elements of T n

Ω̃
. Therefore, we can construct T n

Ω̃
from T nΩ and EP (T n−1′

Ω ).

Since TΩ = ker(EP ), EP (T n−1′
Ω ) = EP (T n−1

Ω ⊕ T n−1′
Ω ) = EP (T n−1). Thus

T n
Ω̃

= T nΩ ⊕ EP (T n−1).

�

Theorem 59 tells us that EP (T n−1) = T nH∩T nΩ̃ 6= ∅ since dim(EP (T n−1)) = dim(Ann(T n−1
Ω )) 6=

0 for n > 1. That is, there are B-series that are Energy-preserving and conjugate-to-Hamiltonian,

but are not the (reparameterized) �ow of the original di�erential. This is good news since we saw

that there cannot exist B-series that are both Energy-preserving and Hamiltonian so the next best

thing is to �nd an Energy-preserving method that is conjugate to a Hamiltonian method. Theorem

60 tells us that such B-series may exist although we do not know how to construct them. Theorem

59 �rst appeared in [5], although not in the same form. It was shown that T nH ∩ T nΩ̃ is the only
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Order n 1 2 3 4 5 6 7 8 9 10

dim(T n) 1 1 2 4 9 20 48 115 286 719
dim(T nΩ ) 1 0 1 1 3 4 11 19 47 97
dim(T nH ) 1 0 1 1 5 9 29 68 189 484
dim(T n

Ω̃
) 1 0 2 2 6 10 27 56 143 336

dim(T n
H̃

) 1 0 2 2 8 13 40 87 236 581

dim(T nH ∩ T nΩ̃ ) 1 0 1 1 3 6 16 37 96 239

Table 6.1: Dimensions of the Linear spaces spanned by the rooted trees and their 5 natural subspaces

non-empty subspace that is independent of the four naturally de�ned subspaces of B-series and

the version of Theorem 59 that appeared described T n
Ω̃

as T nΩ ⊕ (T nH ∩ T nΩ̃ ) without knowledge of

EP (T n−1) = T nH ∩ T nΩ̃ .

Theorem 60. A basis for the space T nH ∩ T nΩ̃ is given by applying the EP isomorphism to the

subset of T n−1 consisting of trees of the following form: (i) Each tree belonging to a super�uous

free-tree is an element in the set (ii)From each non-super�uous free-tree φ, select any |φ| − 1 trees

to be elements in the set.

Proof. The Theorem follows from the proof of Theorem 59 and Lemma 57. �

Example 61. We shall construct T 5
H ∩ T 5

Ω̃
. In order to construct the set of trees to be mapped by

EP onto T nH ∩ T nΩ̃ we need to know about the super�uous and non-super�uous free trees of order

n− 1. There is only one non-super�uous free-tree and one super�uous free-tree. These are

φ = π( )

ψ = π( )

The non-super�uous free-tree φ contains two elements, we need only one and we shall select .

The super�uous free-tree ψ contains two elements and we need all two trees and . Therefore,

a basis for T nH ∩ T nΩ̃ is given by

EP

(
{ , , }

)
= { + , −( + )−2 +( − ), ( − )−( + )−2 }.

The dimensions of all the natural subspaces of B-series are shown in table 6.1.

Since EP (T n−1) ⊆ T nH it is evident that T n
Ω̃
⊆ T n

H̃
. The diagram in �gure 6.2 illustrates the

relationship between all the subspaces.

6.3 The Annihilator of T n
H̃

We have characterized the subspaces T nH , T nΩ and their annihilators along with the subspaces T n
H̃
,

T n
Ω̃

and T nH ∩ T nΩ̃ . Our goal is to characterize the annihilator of Ann(T n
H̃

).

Since T n
H̃

= T nH ⊕T nΩ , we have Ann(T n
H̃

) = Ann(T nH )∩Ann(T nΩ ) (See Roman (2008) for details

on Annihilators and their properties). That is, we are looking for linear combinations of dual trees
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Figure 6.2: Relationship between the 5 natural subspaces of B-series. The dot represents the exact
�ow of the di�erential equation and is an element of every subspace.

that annihilate the Energy-preserving subspace and annihilate the Hamiltonian subspace. We are

able to �nd such trees. Recall from Corollary 37 and Lemma 38 that the B-series of the modi�ed

di�erential equation, B(b,x), has �rst integral H(c,x) if and only if δbc(τ) = 0 ∀τ ∈ FTNS and

that this system has a unique solution satisfying b(u ◦ v) + b(v ◦ u) = 0 for all u, v ∈ T . Comparing

the expansion of the function H(c,x) to the conjugate-to-Energy preserving B-series, we see that

the coe�cients c(τ) give the conjugacy. In order to �nd the annihilator of the conjugate-to-Energy

preserving subspace we need to eliminate the conjugacy c(τ) from the system δbc(τ) = 0 to �nd

conditions on b(τ). In Section 5.5 we solved this system by eliminating the conjugacy c(τ) to obtain

n = 4 : b( ) = 0, b( ) + b( )− 2b( ) = 0.

n = 5 : 5b( ) + 5b( ) + 6b( ) + 6b( )− 12b( ) + 3b( )− 15b( ) = 0.

Since the coe�cients b(τ) represent dual trees, these two expressions are precisely the annihilator

conditions for Ann(T n
H̃

) at order 4 and 5.

Ann(T 4
H̃

) = { ∗, ∗+ ∗ − 2 }

Ann(T 5
H̃

) = {5 ∗ + 5 ∗ + 6 ∗ + 6 ∗ − 12 ∗ + 3 ∗ − 15 ∗}.

The dimension ofAnn(T n
H̃

) is dim(Ann(T n
H̃

)) = dim(T n)−dim(T nH )−dim(T nΩ ) = dim(Ann(T nH ))−

|FTnNS | =
∣∣FTn+1

NS

∣∣− |FTnNS |. To check that we obtain the correct dimension in solving the linear

system δbc(τ) = 0 note that we need to solve
∣∣FTn+1

NS

∣∣ equations. But the only tree splittings

(ω, ω \ θ) allowed are for π(ω) ∈ FTnNS ∪ {•}. Since we are eliminating the conjugacy c(ω) from
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each equation, we lose |FTnNS | equations due to substitution. Therefore, the number of conditions

obtained from the system is
∣∣FTn+1

NS

∣∣− |FTnNS | = dim(Ann(T n
H̃

)).

We are able to construct a basis for the subspace Ann(T n
H̃

) at any order but the price we pay

for eliminating the conjugacy c(τ) is solving a linear system. We wish to characterize a basis for

Ann(T n
H̃

) not involving the conjugacy c(τ). Since Ann(T n
H̃

) = Ann(T nH ) ∩Ann(T nΩ ) it would seem

obvious to try and write the basis for Ann(T nΩ ) for certain trees in terms of the basis for Ann(T nH ).

However, the basis for Ann(T nΩ ) is obtained from trees of order n whilst the basis for Ann(T nH ) is

obtained from non-super�uous trees of order n+ 1. Thus, the annihilator bases for Ann(T nH ) and

Ann(T nΩ ) do not communicate in such a nice way. However, we are able to construct a basis for

Ann(T n
H̃

) using the structure of the energy-preserving basis vectors for T nH and the basis vectors

for Ann(T nΩ ).

Theorem 62. A basis for Ann(T n
H̃

) may be chosen from the set

{σ(t2)(t∗1+(v◦u)∗)+(−1)m+1σ(t1)(t∗2+(w◦x)∗) : t1 = (u◦v), t2 = (x◦w), u, v, w, x ∈ T , t1+(−1)mt2 ∈ T nH}.

P roof . Any element of the form (u ◦ v)∗ + (v ◦ u)∗ will annihilate a Hamiltonian combination

of trees. Since Ann(T n
H̃

) = Ann(T nH ) ∩ Ann(T nΩ ), we want to �nd which linear combinations of

elements of the form (u ◦ v)∗ + (v ◦ u)∗ annihilate Energy-preserving pairs. It is enough to �nd the

combinations of elements of the form (u ◦ v)∗+ (v ◦u)∗, |u|+ |v| = n, that annihilate a basis for T nH
as given by Quispel and McLaren (2008) and Celledoni, McLachlan, Owren and Quispel (2010).

Note that each energy-preserving pair is of the form t1 ± t2 (depending on the parity of the

spine) with t1 � t2, or t3 (where [t3] belongs to a super�uous free-tree). Thus, if t1 +t2 is an energy-

preserving pair, then it may be annihilated by the element σ(t2)(t∗1 +(v ◦u)∗)−σ(t1)(t∗2 +(w ◦x)∗),

where t1 = u ◦ v and t2 = x ◦w for some u, v, w, x ∈ T . Similarly, if t1 − t2 is an energy-preserving

pair, then it may be annihilated by the element σ(t2)(t∗1 + (v ◦ u)∗) + σ(t1)(t∗2 + (w ◦ x)∗), where

t1 = u◦v and t2 = x◦w for some u, v, w, x ∈ T . But any trees of the form t3 cannot be annihilated

by any basis elements of Ann(T nΩ ).

We may then construct a basis for Ann(T n
H̃

) by grouping the basis vectors of T nH into groups

whose trees are related by a single root shift before/after applying the σ(t2)(t∗1+(v◦u)∗)±σ(t1)(t∗2+

(w ◦ x)∗) to a single basis vector in T nH and making use of trees that do not appear in T nH . �

Example 63. T 4
H = { + } where t1 = and t2 = . Therefore, the element that annihilates

this energy-preserving pair and T 4
Ω is

( ∗+ ∗) − 2( ∗+ ∗). For even order vector spaces the tall tree is always in Ann(T 2k
H̃

),

therefore

Ann(T 4
H̃

) = {( ∗+ ∗)− 2( ∗+ ∗), } = { ∗+ ∗ − 2 ∗, }.
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For higher orders this process becomes more complicated although quicker than calculating

splittings and solving a linear system as in Faou, Hairer and Pham (2004).

Example 64. n = 5. T 5
H = { , + , , + , − }.

Recall that dim(Ann(T n
H̃

) =
∣∣FTn+1

NS

∣∣ − |FTnNS | =. Notice that there are two elements of the

form t3, with [t3] super�uous. These cannot be annihilated by any element of Ann(T nΩ ) and cannot

appear in any linear combination of trees that annihilate T 5
H Moreover, these are. Secondly, notice

that when we construct the elements that annihilate the remaining basis vectors of T 5
H , we see that

these three remaining elements are related. Start with + . The element that annihilates this

pair is

2( ∗+ ∗) − 6( ∗+ ∗) = A. But the tree also appears in the energy-preserving

pair + and hence for A to be a basis vector of Ann(T 5
H̃

) it must also annihilate this pair.

Therefore we need to add C( ∗+ ∗) to A, where C is a constant so that the new vector will

annihilate both + and + . By inspection C = 3. Thus we have

2( ∗+ ∗) − 6( ∗+ ∗) + 3( ∗+ ∗) = B. But the tree also appears in −

and hence we need to add D( ∗+ ∗) to B. By inspection D = 3
2 . Therefore we have

2( ∗+ ∗) − 6( ∗+ ∗) + 3( ∗+ ∗) + 3
2 ( ∗+ ∗). Finally, since we cannot have

the tree appearing in any annihilator element of Ann(T 5
H̃

) we can transform + using the

element ∗+ ∗ ∈ Ann(T 5
Ω ) to obtain

3
2 ( ∗− ∗). All that is left to do is update the coe�cient of ∗+ ∗ as this is not related

to any other trees other than ∗+ and ∗− . The updated coe�cient is 5
2 . Therefore,

Ann(T 5
H̃

) = { 5
2 ( ∗+ ∗)− 6( ∗+ ∗) + 3( ∗+ ∗) + 3

2 ( ∗− ∗).

Example 65. n = 6. Ann(T 6
H) = { + , + , − , + , + , − ,

+ , + , + }.

Below are the sets of Energy-preserving pairs that are related to each other and the basis element

of Ann(T 6
H̃

) constructed from these sets.

{ + , + } −→( ∗+ ∗)− 4( ∗+ ∗) + 4( ∗+ ∗)
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{ + , + } −→2 ∗ − 4
3 ( ∗+ ∗) + 1

3 ( ∗+ ∗)

{ + } −→( ∗+ ∗) + 2 ∗

{ − , + } −→ ( ∗+ ∗)+ ∗ − 1
2 ( ∗+ ∗)

{ + } −→ ∗ − ( ∗+ ∗)

{ + , + , − , + } −→

( ∗+ ∗)− ( ∗+ ∗)− 1
3 ( ∗+ ∗)− 1

2
∗.

Since n = 6 is even, the tall tree belongs to Ann(T 6
H̃

) and along with the above vectors forms a

basis for Ann(T 6
H̃

). Since the sets of related energy-preserving elements are linearly independent,

we know that the constructed basis elements are independent. Therefore,

Ann(T 6
H̃

) = {( ∗+ ∗)−4( ∗+ ∗)+4( ∗+ ∗), 2 ∗− 4
3 ( ∗+ ∗)+ 1

3 ( ∗+ ∗),

( ∗+ ∗) + 2 ∗, ( ∗+ ∗)+ ∗ − 1
2 ( ∗+ ∗), ∗ − ( ∗+ ∗), ( ∗+ ∗) −

( ∗+ ∗)− 1
3 ( ∗+ ∗)− 1

2
∗, ∗}.

As a consequence of this construction we have a set of conditions for a B-series to be conjugate-

to-energy-preserving. Recall that a basis for the annihilator of a subspace of rooted trees came

from the conditions on the coe�cients of a B-series to lie in that space. As an example, a B-series,

B(a,x), is Hamiltonian if and only if a(u ◦ v) + a(v ◦ u) = 0 for all u, v ∈ T and the annihilator,

Ann(T nΩ ) was obtained for this space by a(u◦v)+a(v ◦u) = (u◦v)∗+(v ◦u)∗, since the coe�cients

are linear functionals de�ned T . Therefore, in example 65 above, the conditions for a B-series,

B(b,x), to lie in the conjugate-to-Energy preserving subspace at order 6 are given by identifying

the dual tree, t∗, with the coe�cient b(t) = 0. This is in accordance with Corollary 37 and Lemma

38 of Faou, Hairer and Pham (2004).

6.4 Relationships Between the Sub-spaces.

This next section is due to an idea of Elena Celledoni. Her original idea was to study the relation-

ships between the various subspaces which would hopefully lead to a basis for Ann(T n
H̃

). Although

this idea did not lead to a basis it still gives insight into the algebraic structure of B-series. Recall

the adjoint transpose map ad∗•. By Lemma 54, ad• = X[·] + EP so that ad∗• = X∗[·] + EP ∗. The

maps X∗[·] and EP
∗have the following properties (all of which follow directly from Lemmas 56, 57
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and the properties of transpose maps found in Roman (2008)):

1. im(X∗[·]) = Ann(T nH )

2. im(EP ∗) = Ann(T nΩ )

3. ker(X∗[·]) = Ann(T n+1
Ω )

4. ker(EP ∗) = Ann(T n+1
H ∩ T n+1

Ω̃
)

We may consider Ann(T n
H̃

)∗, where the elements of this space are treated as vectors in T n and

Ann(T n
H̃

)∗ ∩ T n
H̃

= ∅, so that T n = T n
H̃
⊕ Ann(T n

H̃
)∗ (Roman (2008)). Ann(T n

H̃
)∗ is thought of as

the canonical complement of T n
H̃

in T n. Since Ann(T n
H̃

)∗ ∩ T n
H̃

= ∅, we have Ann(T n
H̃

)∗ ∩ T nH = ∅

and Ann(T n
H̃

)∗ ∩ T nΩ = ∅.

Lemma 66. The map X[·] is one-to-one from T nΩ ⊕Ann(T n
H̃

)∗ onto T n+1
Ω .

Proof . By Lemma 56, the kernel of X[·] on T nΩ ⊕ Ann(T n
H̃

)∗ is {0} so that X[·] is one-to-one.

Since dim(T nΩ ⊕ Ann(T n
H̃

)∗) = dim(T nΩ ) + dim(T n) − dim(T nH ) − dim(T nΩ ) = dim(T n+1
Ω ), the map

is onto. �

Lemma 67. The map EP is one-to-one from T nH ⊕Ann(T n
H̃

)∗ onto T n+1
H ∩ T n+1

Ω̃
.

Proof . By Lemma 57, the kernel of EP on T nH ⊕ Ann(T n
H̃

)∗ is {0} so that EP is one-to-one.

Since the dimensions of the two spaces agree, EP is onto. Also, T n+1
H ∩ T n+1

Ω̃
= EP (T n) =

EP (T nH ⊕Ann(T n
H̃

)∗). �

Consider the linear mapping annH : T n → Ann(T nH ) de�ned on the basis T n as follows,

annH(t) =

{ ∑
θ∈π([t]) θ=[θ̄](−1)κ([t],θ) 1

σ(θ) θ̄
∗, π([t]) ∈ FTn+1

NS

0 π([t]) Superfluous

The map annH corresponds one and only one annihilator condition to each t ∈ T n and is therefore

well-de�ned.

Lemma 68. Let t1, t2 ∈ T n. Then annH(t1) = ±annH(t2) if and only if t1, t2 is an energy-

preserving pair.

Proof. If t1, t2 is an Energy-preserving pair then clearly annH(t1) = ±annH(t2) as [t1] ∼ [t2].

Now suppose annH(t1) = ±annH(t2). Then

∑
θ∈π([t1]) θ=[θ̄]

(−1)κ([t1],θ) 1

σ(θ)
θ̄∗ =

∑
δ∈π([t2]) δ=[δ̄]

(−1)κ([t2],δ) 1

σ(δ)
δ̄∗
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These two sums are equal (up to sign) if and only if they are over the same non-super�uous

equivalence class of trees, since free trees are disjoint equivalence classes. Thus π([t1]) = π([t2]).

Therefore [t1] = ±[t2] and hence t1, t2 is an Energy-preserving.�

Corollary 69. The map annH is one-to-one from T nΩ ⊕Ann(T n
H̃

)∗ onto Ann(T n
H̃

)∗.

Proof . T nΩ ⊕ Ann(T n
H̃

)∗ contains no Energy-preserving trees. Thus, by Lemma 63, annH is

one-to-one on T nΩ ⊕Ann(T n
H̃

)∗. Since the dimensions of the two spaces agree, annH is onto.�

Theorem 70. The map annH can be factorized as follows

Ann(T nH ) ←−X∗
[·]

(T n+1
Ω )∗

annH ↑ ↑ ∗

T nΩ ⊕Ann(T n
H̃

)∗ −→X[·] T n+1
Ω

where annH , X[·] and X
∗
[·] are bijective maps.

Proof . The Theorem follows directly from Corollary 69, Lemma 66 and property 1 of the

transpose map X∗[·].

Consider the linear map annΩ : T n → Ann(T nΩ ) de�ned on the basis T n as follows

annΩ(t) =
∑

u,v∈T u◦v=t

1

σ(v ◦ u)
((u ◦ v)∗ + (v ◦ u)∗).

To each t ∈ T n, annΩ corresponds one and only one annihilator condition and therefore the maps

is well-de�ned.

Lemma 71. ker(annΩ) = TΩ.

Proof. It is enough to show that the map annΩ sends each basis element of T nΩ to zero. The

map X· maps a tree t ∈ T to T nΩ . Then

annΩ(X·(t)) =
∑
θ∼t

(−1)κ(t,θ) σ(t)

σ(θ)

∑
u,v∈T u◦v=θ

1

σ(v ◦ u)
(θ∗ + (v ◦ u)∗)

=
∑
θ∼t

(−1)κ(t,θ) 1

σ(θ)

∑
u,v∈T u◦v=θ

σ(t)

σ(v ◦ u)
θ∗ +

∑
θ∼t

(−1)κ(t,θ) 1

σ(θ)

∑
u,v∈T u◦v=θ

σ(t)

σ(v ◦ u)
(v ◦ u)∗.
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In the expression
∑
u,v∈T u◦v=θ

σ(t)
σ(v◦u)θ

∗, σ(t)
σ(v◦u) is the number of ways of obtaining the tree v ◦ u

from t. Therefore, the sum over all u, v, so that u ◦ v = θ, gives deg(θ) (where deg(θ) gives the

number of edges incident on the root of θ) since any root shift of t to obtain v ◦ u will either have

to go through the root of θ or stop one root shift away from θ and σ(t)
σ(v◦u) then tells us how many

edges are incident on the root of θ. Thus,
∑
u,v∈T u◦v=θ

σ(t)
σ(v◦u)θ

∗ = deg(θ)θ∗. As for the second

component we shall �rst calculate how many times the tree θ∗ appears. The tree θ will appear in

the sum when a tree δ ∼ t is one root shift away from θ in the Hamiltonian part of the sum. Now θ

has opposite sign from its corresponding θ in the �rst component. Therefore the number of times

the tree θ appears in the second component is given by the sum over all trees δ that are one root

shift away from θ,

∑
δ

−σ(t)

σ(δ)

1

σ(θ)
θ∗ =

−deg(θ)

σ(θ)
θ∗,

where the equality was obtained by using the same argument as for the �rst component. Doing the

above for all trees related to t, the second component is −
∑
θ∼t

deg(θ)
σ(θ) θ

∗. Therefore

annΩ(X·(t)) =
∑
θ∼t

deg(θ)

σ(θ)
θ∗ −

∑
θ∼t

deg(θ)

σ(θ)
θ∗ = 0

and TΩ ⊆ ker(annΩ).

Now suppose t ∈ T such that annΩ(t) = 0. Then

∑
u,v∈T u◦v=t

1

σ(v ◦ u)
t∗ = −

∑
u,v∈T u◦v=t

1

σ(v ◦ u)
(v ◦ u)∗.

Now the trees on the left hand side di�er from the trees on the right hand side by exactly one root

shift. Therefore, these two sums can only be equal if every tree related to t appears on both sides.

Multiplying both sides by (−1)κ(t,θ) (which we need, for otherwise the trees on the left hand side

will not have the same sign as the trees on the right-hand side since trees on the LHS di�er from

trees on the RHS by exactly one root shift), we get

∑
θ∼t

(−1)κ(t,θ)
∑

u,v∈T u◦v=θ

1

σ(v ◦ u)
θ∗ =

∑
θ∼t

(−1)κ(t,θ)
∑

u,v∈T u◦v=θ

1

σ(v ◦ u)
(v ◦ u)∗.

As it stands, a tree δ on the LHS side will not have the same coe�cient as the δ on the RHS. For

example, a tree δ in the right hand side will have a coe�cient equal to

∑
ω

1

σ(δ)
δ∗ =

k

σ(δ)
δ∗
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where k is the number of distinct sub-trees attached to the root of δ and the sum is over all trees

ω that are precisely one root shift away from δ. However, δ will have a coe�cient equal to

δ∗
∑
ω

1

σ(ω)

on the RHS, where the sum is over the number of distinct sub-trees ω attached to the root of δ.

Since the symmetry coe�cients of two distinct trees ω and δ are, in general, not equal, δ will not

have the same coe�cient on both sides of the equation. However, the coe�cients can only be made

equal if we multiply the LHS coe�cient of δ by σ(t)
σ(δ) and the RHS coe�cient of δ by σ(t)

σ(ω) (under

the sum) to get

LHS :
∑
ω

σ(t)

σ(δ)σ(ω)
δ∗ =

deg(δ)

σ(δ)
δ∗

RHS :
∑
ω

σ(t)

σ(δ)σ(ω)
δ∗ =

deg(δ)

σ(δ)
δ∗

Note that if we were able to make the two coe�cients equal by multiplying by any other factors

then these di�erent factors would have to be in the same ratio as σ(t)
σ(δ) and σ(t)

σ(ω) thus giving the

same result, only multiplied through by a constant that will appear on both sides. Putting this

back into the original equation, we �nd that the LHS is

∑
δ∼t

(−1)κ(t,θ) σ(t)

σ(δ)

∑
u,v∈T u◦v=δ

1

σ(v ◦ u)
δ∗.

The RHS becomes, after summing over all trees δ ∼ t and reversing the argument given in the �rst

half of the proof,

∑
δ∼t

(−1)κ(δ,t) deg(δ)

σ(δ)
δ∗ =

∑
δ∼t

(−1)κ(t,θ)
∑

u,v∈T u◦v=δ

1

σ(v ◦ u)
(v ◦ u)∗.

Now t ∈ TΩ. Therefore ker(annΩ) ⊆ TΩ. �

Corollary 72. annΩ is a one-to-one map from T nH ⊕Ann(T n
H̃

)∗ onto Ann(T nΩ ).

Proof. By Lemma 67, the kernel of annΩ on T nH ⊕Ann(T n
H̃

)∗ is {0} so that annΩ is a one-to-one

map from T nH ⊕Ann(T n
H̃

)∗ to Ann(T nΩ ). Since the dimensions agree, the map is also onto. �

Theorem 73. The map annΩ factorizes over the vector spaces T nH ⊕ Ann(T n
H̃

)∗, T nH ∩ T nΩ̃ and

Ann(T nΩ ) as follows
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Ann(T nΩ ) ←−EP∗ (T n+1
H ∩ T n+1

Ω̃
)∗

annΩ ↑ ↑ ∗

T nH ⊕Ann(T n
H̃

)∗ −→EP T n+1
H ∩ T n+1

Ω̃

where annΩ , EP , and EP ∗ are bijective maps.

Proof. The proof follows directly from Corollary 72, Lemma 67 and property 2. of the transpose

maps. �

Theorem 74. A canonical basis for T nH ∩ T nΩ̃ is given by EP (T nH ⊕Ann(T n
H̃

)∗).

Proof . The Theorem follows directly from Lemma 67. �

Theorems 70 and 73 gives us a very interesting insight into the structure of B-series. In par-

ticular, the relationship between energy-preserving B-series, TH , and the Energy-preserving and

conjugate-Hamiltonian B-series, TH ∩ TΩ̃. Recall that the kernel of the Hamiltonian map, X[·], is

the space of Energy-preserving trees so that

EP (TH) = ad•(TH) ⊂ TH ∩ TΩ̃.

This gives a simple and explicit construction of many (but not all) Energy-preserving and conjugate-

to-Hamiltonian B-series of modi�ed vector �elds and EP (T ) gives them all. Moreover, adk•(TH) ⊂

TH ∩ TΩ̃. We are able to understand the space of Energy-preserving and conjugate-Hamiltonian

trees, TH ∩ TΩ̃, with the simplest map possible. Although the space TH ∩ TΩ̃ is known to be non-

empty (see table 4.1), an integrator whose modi�ed B-series lies in this space is yet to be exhibited.

But Theorem 73 may provide a starting point to �nding this integrator. Consider the B-series of the

modi�ed vector �eld corresponding to the AVF method (see example 47). All trees in this B-series

are either Energy-preserving or group into Energy-preserving pairs. Applying ad• to this B-series

we get a new B-series whose linear combinations of trees lie in TH ∩ TΩ̃. We now have a B-series

which is Energy-preserving and conjugate-to-Hamiltonian that may have a numerical method as

its exact solution. We are even able to calculate the (original) B-series that constitutes the exact
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solution of this B-series. If a(t) are the coe�cients of a B-series corresponding to a numerical

method, then the coe�cients, b(t), of the B-series of the modi�ed vector �eld corresponding to the

numerical method are given by

b(t) = a(t)−
|t|∑
j=2

1

j!
∂j−1
b b(t),

where ∂j−1
b b(t) is the (j − 1)th iterate of the Lie-derivative of B-series. Therefore, if we know the

coe�cients of the B-series of the modi�ed di�erential equation, we are able to calculate coe�cients

of the original B-series corresponding to the numerical method by

a(t) = b(t) +

|t|∑
j=2

1

j!
∂j−1
b b(t).

Denote the B-series of the modi�ed vector �eld corresponding to the AVF method by B(mod)AV F

and the B-series of the AVF method by BAV F . Then, diagrammatically we have

AV F → BAV F →b(t) B(mod)AV F

l? ↓ ad•

ΦNew ←? BNew ←a(t) B(mod)New

where ΦNew is a new numerical method that would be conjugate-to-symplectic and Energy-preserving.

Although ad• is the in�nitesimal analogue of conjugation, it should be noted that ad•(B(mod)AV F )

is not the same as conjugating the original AV F method (B-series, BAV F ) with the �ow of the

di�erential equation. This is because the coe�cients a(t) and b(t) are, in general, di�erent and

EP = ad• only on the space of energy-preserving trees. But a relationship between transforming

the B-series of the modi�ed di�erential equation and transforming the B-series of the numerical

method is sure to exist, especially since we know exactly how the AV F method, BAV F , B(mod)AV F

and B(mod)New are all related. This may open the possibility to some transformation from the

AVF method to ΦNew.
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Chapter 7

Conclusions

Although this thesis has given a characterization and construction of two new subspaces of rooted

trees, the description of the entire vector space of rooted trees is not yet complete. Two spaces yet

to be characterized are Ann(T nH ∩T nΩ̃ ) and Ann(T n
Ω̃

). A characterization of these spaces will solidify

our understanding of B-series in that conditions will be obtained for a B-series to lie in either of

these spaces. It will be of particular interest to �nd conditions on the coe�cients of B(b,x) so that

this B-series lies in the conjugate-to-Hamiltonian and Energy-preserving subspace.

Secondly, the Energy-preserving and Hamiltonian spaces of rooted trees may not be the only

spaces of interest, although, for the most part they are the most useful. There may be B-series

that preserve other geometric properties that are worth algebraically characterizing. A search for

a characterization of the spaces Ann(T nH ∩ T nΩ̃ ) and Ann(T n
Ω̃

) may bring other subspaces to light.

In Chapter 6, the natural maps ad•, X[·] and EP were studied and their elementary properties

were given. These maps were shown to give interesting relationships between the di�erent spaces

of rooted trees. This could be a useful tool not only for classifying B-series methods but showing

how di�erent B-series methods are related to each other and maybe even obtained from each other.

These relationships were initially found through attempting to describe the space Ann(T n
H̃

) and

a similar attempt to describe the spaces Ann(T nH ∩ T nΩ̃ ) and Ann(T n
Ω̃

) may also reveal a deeper

structure and link between the known spaces. Although the space TH ∩ TΩ̃ is known to be non-

empty, an integrator whose modi�ed B-series lies in this space is yet to be exhibited. The natural

maps and the way they link and relate di�erent subspaces may provide a starting point to �nding

this integrator. There is possibly an analogue of these natural transformations on the map level

which may be worthwhile pursuing in order to understand how numerical integrators themselves

may be transformed.
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