Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Redox Characteristics of Shallow Groundwater in the

Tararua Ground Water Management Zone

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science in Earth Science

at Massey University, Manawatū, New Zealand

Peter Grant McGowan

2018

Abstract

Groundwater redox conditions have a major influence on transport and transformation of nutrients such as nitrate from farms to rivers and lakes. This study focused on measurement and analysis of chemical and physical characteristics of groundwater to determine the spatial distribution of redox characteristics across the Tararua Ground Water Management Zone in the Manawatu River catchment. The influence of catchment characteristics such as soil texture and drainage, and rock type have on groundwater chemistry and its redox characteristics across the Tararua GWMZ is investigated using multivariate statistical analysis.

Existing geographical information was collated and analysed to map spatial distributions of landuse, soil characteristics and lithologies across the study area. This information was utilised to identify potential site locations for sampling and analysis of shallow groundwater in the Tararua GWMZ. A direct-push system capable of penetrating a range of substrates including deep, imbricated, and coarse gravels was developed. Using this system, shallow groundwater samples were recovered from contrasting hydrogeological settings, areas where water wells are rarely installed; such as along the margins of the axial ranges, and from areas considered not to have groundwater; e.g. the mudstone country on the east of the Tararua District.

Data collected with the direct-push method was combined with similar data collected from existing wells by Rivas et al. (2017) and classified according to redox status. The data was subjected to multivariate statistical assessment using Hierarchical Cluster Analysis to determine the water type, and Principle Component Analysis to determine the influence of discrete catchment characteristics on redox reactions occurring in shallow groundwater of the Tararua GWMZ.

The in-field and chemical analysis revealed significant variation of groundwater quality parameters and redox characteristics across the Tararua GWMZ. The regional trend was for reducing conditions in gravel aquifers in the north western areas of the Tararua GWMZ and oxidising in gravel aquifers of the south western; although statistically significant variations of redox characteristics is also recognised within these areas. Groundwater samples were collected from mudstone where little, if any, groundwater research has been conducted previously. Groundwater characteristics from mudstone are generally classified as anoxic and strongly reducing, with very high specific conductivity and analyte levels such as bromide, chlorine, sodium, fluorine, dissolved inorganic carbon and magnesium. Identifying the influence of discrete catchment characteristics on groundwater chemistry and redox characteristics was complex and difficult to quantify. Extrapolation of the principal component inferred to be associated with redox characteristics provides a useful means to evaluate the influence of discrete catchment characteristics on redox conditions in shallow groundwater of the Tararua GWMZ. The direct-push method provided an opportunity to compare groundwater chemistry between samples collected proximal and distal to production wells. Statistically significant differences in redox related parameters such as DOC, Eh, Fe²⁺, Mn²⁺, NH₄⁺-N, and NO₂⁻-N were detected in groundwater samples collected from existing wells compared to groundwater samples collected with the direct-push method. Factors contributing to this effect were explored but found to be difficult to isolate.

Acknowledgements

Massey University is an amazing institution, without the extramural program and financial support via generous scholarships I would have never been able to complete this thesis. I would also like to thank Horizons Regional Council who provided generous financial support for the analysis of my groundwater samples. I sincerely appreciate the confidence my supervisors placed in me to progress and develop my thesis as I saw fit; yet were always there to provide incisive direction when necessary, thank you Ranvir and Alan.

I gratefully acknowledge the farmers who kindly granted permission for me wander on their land and poke holes through their pasture. Nitrate contamination of groundwater, particularly for the dairy industry is a hot topic at present, yet the farmers were welcoming and keen to establish what was happening on a local and regional basis.

Sincere thanks must go to Terrance from Perry Geotech who kindly provided expensive drill rods for the project and never blinked an eye when I lost an entire string down a hole...twice. Also to David Feek who's technical, engineering and problem solving abilities were outstanding, and his mordant comments on my fieldwork aspirations never failed to jolt me back to reality.

I also would like thank my close friends, Shaun and Fiona, and Bruce and Debbie who over a beer and dinner would often quietly sit and listen to my ramblings of experiences and newfound geological knowledge. I could see your eyes, glazed at times, but never closed, thank you.

My very dear mentor and friend, Monty Blomfield guided and supported me over the last 25 years for which I am eternally grateful. Unashamedly from the "old school" Monty taught me so much and encouraged me to take the plunge into academia. Our many fishing and hunting adventures were awesome, but simply spending time in his presence counted more than anything; more so now that he has passed on.

Over the course of my studies both my parents also passed away. Truly wonderful parents and friends, they always encouraged me to remain positive, develop an enquiring mind, look for the good in everyone, and enjoy life's every moment. I feel so sad that they weren't able to see to where my journey has led.

To our children Krystie, Jarrad, and Ryan, you guys are simply the most amazing young people, and if you ever agree to go in the car with me again, I promise not to hold you hostage and waffle on about subduction, obduction, rocks, minerals, plate tectonics, back arc volcanism, turbidites, ultramafics, ophiolites, hydrothermal alteration, mineralization, aquifers, hydraulic conductivity, etc. etc. etc.

Finally I would like to thank my wonderful wife Julie for putting up with me over these long years. I may have been a tad temperamental on the odd occasion, and living apart for 2 ½ years was very difficult for both of us. But you understood that although times were tough, I was following my dream and you never complained. Thank you so much, I will make it up to you.

Frontispiece: The Mangatewainui Stream. This image captures the essence of the Tararua GWMZ; swift flowing streams, vast quantities of greywacke gravels, and tectonically deformed marine sediments that underlie shallow gravel aquifers often mantled with a veneer of loess.

Table of Contents

Abs	stract	ct	i
Ack	nowl	vledgements	iv
Tabl	le of	f Contents	vii
List	of Fi	Figures	xiii
List	of Ta	Гables	xvii
List	of E	Equations	xviii
List	of Al	Abbreviations and Acronyms	xix
Cha	pter	r 1: Thesis Overview	1
1.	1	Introduction	1
1.	2	Thesis Aims and Objectives	5
1.	3	Thesis Outline	5
Cha	pter	r 2: Fundamental Concepts of the Nitrogen Cycle	7
2.	1	Characteristics of Nitrogen Compounds	7
2.	2	Elements of the Nitrogen Cycle	8
	2.2.1	.1 Nitrogen Fixation	9
	2.2.2	.2 Ammonification	9
	2.2.3	.3 Nitrification	10
	2.2.4	.4 Mineralisation	10
	2.2.5	.5 Volatilisation	11
	2.2.6	.6 Nitrogen Attenuation	11
2.	3	Denitrification	12
	2.3.1	.1 Factors that Regulate Denitrification	16
	2.3.2	.2 Presence of Suitable Bacteria	16
	2.3.3	.3 Dissolved Oxygen Content	17
	2.3.4	.4 Dissolved Carbon Content	17
	2.3.5	.5 pH	18
	2.3.6	.6 Temperature	18
	2.3.7	.7 Nutrient Availability	19

	2.3.	8 Nitrate-N Concentrations	19
2	2.4	Redox in Groundwater Environments	20
	2.4.	1 Introduction	20
	2.4.	2 Redox Potential	22
	2.4.	3 Limitations of Redox Potential Measurements	23
	2.4.	4 Redox in Groundwater	23
	2.4.	6 Redox Fronts	25
	2.4.	5 Redox and Denitrification in Groundwater	26
	2.4.	7 Identifying Redox Processes Occurring in Groundwater	27
	2.4.	8 Groundwater Measurements to Determine Redox Status	29
Ch	apter	3: Literature Review	31
3	3.1	Nitrogen and Denitrification Research in New Zealand	31
	3.1.	1 Modelling	36
3	3.2	Manawatu Studies	40
3	3.3	Influence of Geology, Soils, and Climate on Redox Status	45
3	3.4	Anthropogenic Influences on Groundwater Recharge and Quality	54
3	3.5	Summary and Conclusions	55
Ch	apter	4: The Tararua GWMZ	57
4	1.1	Introduction	57
4	1.2	Location and Description	57
4	1.3	Landuse	58
4	1.3	Precipitation	59
4	1.4	Hydrology	59
4	1.5	Potentiometric surface	60
4	1.6	Rocks of the Tararua GWMZ	62
	4.6.	1 Introduction	62
	4.6.	2 Basement Rocks	65
	4.6.	3 Cretaceous Rocks	67
	4.6.	Paleogene (Paleocene to Oligocene) Rocks	68
	4.6.	5 Neogene (Miocene to Early Pliocene) Rocks	69

	4.6.6	5	Neogene (Mid to Late Pliocene) Rocks	71
	4.6.7	7	Quaternary (Early Pleistocene to Holocene) Rocks	72
4.7	7	Soil	s of the Tararua GWMZ	76
	4.7.	l	Introduction	76
	4.7.	3 8	Soil Texture	78
	4.7.	2 8	Soil Drainage and Soil Carbon	79
	4.6.	7 S	Summary	80
Cha	pter	5: N	Methods and Materials	82
5.	1	Inti	oduction	82
5.2	2	Dig	ital Data	83
5	3	Site	Selection	84
5.4	4	Dir	ect-Push Shallow Groundwater Sampling Methodology	92
	5.4.	1	Practical Observations of Direct-Push Groundwater Sampling	97
5.	5	Gro	oundwater Sampling	100
	5.5.	l	Sampling Procedure	101
5.0	6	Lab	oratory Analysis of Groundwater	103
5.	7	Dat	a Processing and Analysis Methods	104
	5.7.	l	Censored Values	105
	5.7.2	2	Charge Balance Error	106
	5.7.3	3	Data Screening, Transformation, and Standardization	107
	5.7.4	4	Outliers	109
	5.7.5	5	Water Type Classification	111
	5.7.5	5.1	Piper Diagrams	112
	5.7.7	7	Hierarchical Cluster Analysis	113
	5.7.8	3	Pearson's Product-Moment Correlation Analysis	115
	5.7.9)	Principal Component Analysis	116
	5.7.	10	ANOVA and Independent-Samples T-Test	118
Cha	pter	6: R	Results and Discussion	120
6.	1	Inti	oduction	120
6.2	2	Gro	oundwater Chemistry from Existing and Direct-Push Wells	123

6.2.	.1	Validity of Comparing Shallow and Deeper Wells	129
6.3	Gro	undwater Chemical Analysis	129
6.3	.1	Charge Balance Analysis	129
6.3	.2	Groundwater Analytes Exceeding MAV and GV's	131
6.4	Gro	undwater Characteristics	134
6.4	.1	Physical Attributes	134
6.4	.2	Anions and Cations	136
6.4	.4	Redox Sensitive Parameters	138
6.4	.5	Redox Classification	149
6.4	.6	Groundwater Type Classification	154
6.5	Prin	cipal Component Analysis	158
6.5	.1	Principal Components	159
6.5	.2	Influences of Physical Factors on Redox Status	166
6.5	.2.1	Landuse	167
6.5	.2.2	Soils	169
6.5	.2.3	FSL Soil Texture	171
6.5	.2.4	FSL Soil Drainage	176
6.5	.2.5	FSL Soil Carbon	177
6.5	.2.6	FSL Soil pH	179
6.5	.2.7	Lithological Characteristics	181
6.5	.2.8	Water Type	183
6.5	.2.9	Nitrogen Attenuation Classes	186
6.6	Con	nparison of Direct-Push and Existing Wells	192
6.7	Uns	uccessful Direct-Push Sites	197
6.8	Add	litional Observations	199
Chapter	r 7: Sı	ummary and Conclusions	203
7.1	Intr	oduction	203
7.2	Dire	ect-Push	204
7.3	Gro	undwater Chemistry of the Tararua GWMZ	206
7.4	Red	ox Processes and Characteristics	207

7.5	Direct-push vs Existing Wells	210
7.6	Further Work	210
Referen	ices	213
Append	lices	234
Appe	ndix A: Geological History of the Tararua GWMZ	235
A.:	Introduction	236
A.2	Geological Structure of the Tararua GWMZ	236
A.3	B Early Pliocene	239
A	Mid to Late Pliocene	240
A	Early Pleistocene	242
A.6	Early to Middle Pleistocene	243
A.7	Late Pleistocene to Holocene	243
Appe	ndix B: Digital Data Sources	245
B.1	Geographical and Hydrogeological Digital Data Sources	246
Appe	ndix C: Groundwater Quality Analysis Methods	248
C.1	Laboratory Analysis Method and Detection Limits	249
Appe	ndix D: Statistical Analysis Tables	251
D.	Key PCA Criteria	252
D.:	2 Independent-Samples T-Test	253
D.:	Pearson Correlation Table	255
Appe	ndix E: FSL Class Definitions	260
E.1	FSL Soil Carbon Classes	261
E.2	FSL Soil pH Classes	262
E.3	FSL Soil Drainage	263
Appe	ndix F: Laboratory Analysis Results	264
F.1	Laboratory Analysis Results for the Direct-push Dataset	265
Appe	ndix G: Charge Balance Analysis	276
G.	Charge Balance Equations for Both Datasets	277
Appe	ndix H: Analytes Exceeding MAV	278
Н.	Groundwater Analytes Exceeding MAV's and GV's	279

Appendix I: QMap Lithological Classes		280
I.1	Description of QMap Lithological Classes	281
Appen	dix J: Attenuation Classes	283
J.1 F	Parameters used to Derive Attenuation Factors	284

List of Figures

Figure 1: The head of the Manawatu Gorge	4
Figure 2: The global nitrogen cycle	7
Figure 3: Schematic diagram of the nitrogen cycle	9
Figure 4: The ecological succession of redox processes	13
Figure 5: Thermodynamic sequence of electron acceptors	14
Figure 6: Schematic diagram of a natural systems redox potential	22
Figure 7: Conceptual diagram of nitrogen sources and flow paths	24
Figure 8: Esk Head Belt outcrop	47
Figure 9: Four distinct gravel types observed in the Tararua GWMZ	48
Figure 10: Greywacke gravels overlying lignite, and lacustrine sediments	50
Figure 11: Road cutting north of the Whakaruatapu River	51
Figure 12: Soil cores reveal very different properties	53
Figure 13: An old style well installed in a productive artesian spring	54
Figure 14: A suite of alluvial terraces	56
Figure 15: The Tararua Ground Water Management Zone	57
Figure 16: Area of the various land use categories of the Tararua GWMZ	58
Figure 17: 30 year mean rainfall for the Manawatu-Wanganui Regions	59
Figure 18: Main river systems and drainage pattern of the Tararua GWMZ	60
Figure 19: Potentiometric map	61
Figure 20: Cross section of the eastern margin of the Wanganui Basin	62
Figure 21: Main geological units of the Tararua GWMZ	63
Figure 22: Depth to Basement, Tertiary, and Quaternary rocks	64
Figure 23: Extent of basement rocks in the Tararua GWMZ	66
Figure 24: Cretaceous rocks	68
Figure 25: Paleogene rocks	69
Figure 26: The Alfredton Fault	70
Figure 27: Pliocene sediments	71
Figure 28: The Mangaheia Group	72

Figure 29: Pleistocene sediments
Figure 30: Holocene gravels
Figure 31: Gravels74
Figure 32: Location of bores in the Tararua GWMZ75
Figure 33: Soils of the Tararua GWMZ76
Figure 34: A paleochannel of the Mangatainoka River
Figure 35: FSL soil textures
Figure 36: FSL soil drainage and carbon levels in the Tararua GWMZ79
Figure 37: The upper Manawatu River at Otope Road, Dannevirke
Figure 38: The area for each combination of main-rock and soil-type
Figure 39: Comparison of slope and clipped potentiometric surface
Figure 40: Typical site selection map
Figure 41: Locations of the sites91
Figure 42: Schematic diagram of the direct-push system
Figure 43: CPT Rod, sampling head and sacrificial tip94
Figure 44: Pump setup
Figure 45: Direct-push setup
Figure 46: Comparison between drill rods
Figure 47: Installing a well with the direct-push method
Figure 48: Clogged screen
Figure 49: A range of different coloured groundwater
Figure 50: Histograms of nitrate-nitrogen and boron
Figure 51: Comparison of transformation methods for the bromide dataset110
Figure 52: Piper diagrams
Figure 53: Components of a dendrogram
Figure 54: Scatter plots of transformed DIC, potassium, bromide and silica115
Figure 55: Parameters used in SPSS for initial Principal Component Analysis 118
Figure 56: Location of main Tararua GWMZ catchments
Figure 57: Groundwater sampling site locations

Figure 58: Depth to water table
Figure 59: HCA dendrogram of both datasets combined (n=99)
Figure 60: Charge balance errors
Figure 61: Bicarbonate levels that exhibited a CBE >15%
Figure 62: NO ₃ -N levels recorded adjacent to the Oringi Abattoir132
Figure 63: Groundwater analytes exceeding MAV and GV's
Figure 64: Dissolved oxygen levels measured in the Tararua GWMZ139
Figure 65: NO ₃ -N levels measured in the Tararua GWMZ
Figure 66: Manganese levels measured in the Tararua GWMZ
Figure 67: HCO ₃ levels measured in the Tararua GWMZ143
Figure 68: NH ₄ ⁺ -N levels measured in the Tararua GWMZ144
Figure 69: SO ₄ ²⁻ levels measured in the Tararua GWMZ
Figure 70: DIC and DOC levels
Figure 71: ORP values measured in the Tararua GWMZ148
Figure 72: Redox categories measured in the Tararua GWMZ
Figure 73: Redox status of groundwater samples
Figure 74: HCA Water type classification dendrogram
Figure 75: Groundwater clusters and water type in the Tararua GWMZ157
Figure 76: Scatter-plot of redox status plotted n = 94
Figure 77: Scatter-plot of redox status plotted n = 87
Figure 78: Spatial distribution of redox conditions in Tararua GWMZ165
Figure 79: Cmp1 vs Cmp2 Redox status
Figure 80: Scatter-plot of Cmp1 and Cmp2 related to main land uses168
Figure 81: Scatter plot of Cmp1 and Cmp2 sample size vs soil
Figure 82: Error bar charts for soil texture and the mean of Component 2170
Figure 83: Relationship between FSL soil texture and redox characteristics172
Figure 84: Scatterplot of soil textures
Figure 85: Box plots of redox parameters plotted in relation to soil texture175
Figure 86: Scatterplot of soil drainage

Figure 87: Boxplots of redox specific characteristics and soil drainage1	177
Figure 88: Scatterplot of FSL soil carbon classes	178
Figure 89: Boxplots of FSL soil carbon classes	178
Figure 90: Scatterplot of FSL soil pH	l 8 0
Figure 91: Boxplots of FSL soil pH	l 8 0
Figure 92: Scatter plot classified using QMap Key_Name criteria1	181
Figure 93: Scatter plot centroids for the QMap Sim_Name classs	l82
Figure 94: Elevation plot upstream of site 50.9	183
Figure 95: PCA component scatterplot of water type1	l 84
Figure 96: Redox category generated by two different methods	l 86
Figure 97: Redox category and attenuation class comparison	188
Figure 98: Spatial representation of Nitrogen attenuation classes	189
Figure 99: Spatial distribution of redox conditions in the Tararua GWMZ1	l 9 0
Figure 100: Catchment characteristics1	192
Figure 101: Box and whisker plot of redox related parameters	193
Figure 102: Bar plots of dissolved iron and potassium	194
Figure 103: Unsuccessful sites	199
Figure 104: Onoke group sediments in a road cutting	200
Figure 105: High DOC levels recorded in mudstone areas	202
Figure 106: Tectonic setting for Southern Hawkes Bay – Northern Wairarapa 2	237
Figure 107: Faults and active folds in the Tararua GWMZ	238
Figure 108: Conceptual diagram of sediments deposited during the Pliocene 2	239
Figure 109: The extent of Central New Zealand's landmass around 4.0 Ma	240
Figure 110: The extent of Central New Zealand's landmass around 3.0 Ma2	241
Figure 111: The extent of Central New Zealand's landmass around 2.4 Ma	242
Figure 112: By 1 Ma the seaways had closed off and the sediments exposed2	244
Figure 113: Boxplot of HCO ₂	77

List of Tables

Table 1: Parameters to classify denitrification potential in groundwater	15
Table 2: Parameters and sources to classify denitrification potential in NZ	27
Table 3: Water table depth and surficial geology of the Tararua GWMZ	85
Table 4: Site selection classes for direct-push and existing well datasets	89
Table 5: Parameters recorded with the smarTROLL MP instrument	103
Table 6: Cations, anions, nutrients and metals and others	104
Table 7: Groundwater analysis values under DL's	106
Table 8: Pearson Coefficient associations	116
Table 9: One-way ANOVA for sites with gravel + silt loam	127
Table 10: Turkey post hoc analysis of wells located in gravel + silt loam settings	128
Table 11: Chemical analysis of groundwater from both datasets	135
Table 12: High analyte levels collected from mudstone	136
Table 13: Characteristics of methanogenic wells	151
Table 14: Redox classification and water type cluster membership	151
Table 15: PCA rotated component matrices	162
Table 16: Soil texture classification	173
Table 17: Pearson's moment correlation coefficients	185
Table 18: Independent-samples t-test results	195
Table 19: Sources of geographical and hydrogeological digital data.	246
Table 20: A description of laboratory analysis methods	249
Table 21: Key criteria in PCA outputs generated by SPSS	252
Table 22: Independent-Samples T-Test results	253
Table 23: Laboratory analysis results n = 43	265
Table 24: Laboratory analysis results n =56	271
Table 25: Charge balance equations	277
Table 26: Groundwater analytes exceeding MAV's and GV's	279
Table 27: OMap lithological classes	281

List of Equations

Equation 1	9
Equation 2	10
Equation 3	10
Equation 4	10
Equation 5	11
Equation 6	12
Equation 7	21
Equation 8	26
Equation 9	107

List of Abbreviations and Acronyms

Major Inorganic Constituents

Abbreviation	units	Parameter Name
Ca ²⁺	mg L ⁻¹	Dissolved calcium
Cl ⁻	mg L-1	Dissolved chlorine
DIC	mg L ⁻¹	Dissolved inorganic carbon
DOC	mg L ⁻¹	Dissolved organic carbon
HCO ₃ -	mg L ⁻¹	Dissolved bicarbonate
K ⁺	mg L ⁻¹	Dissolved potassium
Mg^{2+}	mg L ⁻¹	Dissolved magnesium
Na ⁺	mg L ⁻¹	Dissolved sodium
SiO_2	mg L ⁻¹	Dissolved silica

Minor Inorganic Constituents

units	Parameter Name
mg L ⁻¹	Dissolved arsenic
mg L ⁻¹	Dissolved boron
mg L ⁻¹	Dissolved bromide
mg L ⁻¹	Dissolved cadmium
mg L ⁻¹	Dissolved methane (gas)
mg L ⁻¹	Dissolved carbon dioxide (gas)
mg L ⁻¹	Dissolved fluoride
mg L ⁻¹	Dissolved Iron; ferrous (oxidation state +2)
mg	Iron; ferric (oxidation state +3)
mg L ⁻³	Dissolved bisulphide
mg L ⁻¹	Dissolved hydrogen sulphide
mg L ⁻¹	Dissolved manganese (oxidation state +3)
mg	Manganese (oxidation state +4)
mg L ⁻¹	Sodium chloride
meq L ⁻¹	Alkalinity milliequivalents
	mg L ⁻¹

TATemp	°C	Temperature at total alkalinity analysis
TitrantVol	ml	Titrant volume
ТАрН	pН	Total alkalinity; titrant analysis pH
TA_mgCaCO ₃	mg L ⁻¹	Total alkalinity as calcium carbonate

Nutrients

Abbreviation	units	Parameter Name
$\mathrm{NH_{4}^{+}}$	mg L ⁻¹	Ammonium cation (atomic mass = 18)
NH_4^+ -N	mg L ⁻¹	Ammoniacal nitrogen (atomic mass = 14)
NO_3^-	$mg L^{-1}$	Nitrate anion (atomic mass = 62)
NO_3^N	$mg L^{-1}$	Nitrate as nitrogen (atomic mass = 14)
NO_2^-	$mg L^{-1}$	Nitrite anion (atomic mass = 46)
NO_2^N	$mg L^{-1}$	Nitrite as nitrogen (atomic mass = 14)
$N_{\rm r}$	n/a	Reactive nitrogenous compound
SO_4^{2-}	$mg L^{-1}$	Sulphate
TON	$mg L^{-1}$	Total organic nitrogen
TRP	$mg L^{-1}$	Total reactive phosphorus
TOC	mg L ⁻¹	Total organic carbon

Physical Characteristics

Abbreviation	units	Parameter Name
Baro	kPa	Barometric pressure
DO	mg L ⁻¹	Dissolved oxygen
DOsat	%	Dissolved oxygen; percentage saturation
EC	μS cm ⁻¹	Electrical conductivity
Eh	μS cm ⁻¹	Electrical conductivity (hydrogen electrode)
O_2	n/a	Oxygen gas
N_2	n/a	Nitrogen Gas
ORP	mV	Oxidation-reduction potential
рН	рН	The acidity or basicity of an aqueous solution
SPC	μS cm ⁻¹	Specific conductivity; EC temperature corrected

SpActual	μS cm ⁻¹	Actual conductivity
TDS	ppm	Total dissolved solids
Temp	°C	Temperature

QMap, Geological, and GIS

Abbreviation	Parameter Name
Cong	Conglomerate
Coq	Coquina
Grv	Gravel
GrW	Greywacke
LST	Limestone
MST	Mudstone
SST	Sandstone
KEY_NAME	Combines stratigraphic age, stratigraphic name, and
	lithological information
MAIN_ROCK	Mainrocks QMap class derived from the most commonly
	encountered rocks in an particular area (scale 1:250,00)
QMap	Geological map series of N.Z.
SIM_NAME	Combines stratigraphic age and depositional environment
SUBROCK	subrocks QMap A class derived from subordinate rock types
	found with main rock types (scale 1:250,00)
SUBROCK_Simple	Sub rocks simplified and condensed

Statistical

Abbreviation	Parameter Name
ANNOVA	Analysis of variance
Cmp	Principal component derived by PCA
HCA	Hierarchal cluster analysis
IDF	Inverse-DF function used to normalise data
KMO	Kaiser-Meyer-Olkin measure of adequacy
PCA	Principal component analysis

General

Abbreviation	Parameter Name
AirTemp	Ambient temperature at time of sampling
ATP	ATP adenosine triphosphate
CBE	Charge Balance Equation
CNC	Computer Numerical Control
CPT	Cone Penetration test
DEA	Denitrifying enzyme activity
DEM	Digital Elevation model
DL	Detection limit
DNRA	Dissimilatory nitrate reduction to ammonia
DRASTIC	Drastic
FSL	FSL fundamental soil layers
GIS	Geographic information systems
GNS	New Zealand Crown Research Institute; formerly Institute of
	Geological and Nuclear Sciences
GPS	Global positioning system
PPK	Post Processing Kinematic GPS
GV	Guideline value
ha	Hectares
HRC	Horizons Regional Council (HRC)
KML	File extension registered with Google Earth software
LCDB	Land Cover Database version 4.1.
LRIS	Land Resource Information Systems Portal
MAV	Maximum allowable value
MP	Multi-purpose
27777	The National Institute of Water and Atmospheric Research
NIWA	Ltd.
NOF	National Objectives Framework which defines upper and

lower limits for water quality parameters including nitrates

OC Organic carbon

OM Organic matter

OSH Occupational Safety and Health

Polyethylene terephthalate (thermoplastic polymer resin

PET containers)

Redox Oxidation-reduction reaction

smarTROLL Handheld multi-parameter water quality instrument

Soln solution

SOM Soil organic matter

Tararua GWMZ Tararua Groundwater Management Zone

TEAP Terminal electron acceptor process

Tg 1×10^6 tonne

TVZ Taupo Volcanic Zone

WHO World Health Organization

