Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Novel particulate vaccine candidates recombinantly produced by pathogenic and nonpathogenic bacterial hosts

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In
Microbiology

at Massey University, Manawatu, New Zealand

Jason Wong Lee 2017

Abstract

Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized as small spherical cytoplasmic inclusion bodies by a range of bacteria. Recently, PHA beads have been investigated for use as a vaccine delivery platform by using engineered heterologous production hosts that allowed the efficient display of vaccine candidate antigens on the beads surface and were found to greatly improve immunogenicity of the displayed antigens. However, like other subunit vaccines, these antigen-displaying (vaccine) PHA beads only provide a limited repertoire of antigens.

In this thesis we investigate the idea of directly utilizing the disease causative pathogen or model organism to produce vaccine PHA beads with a large antigenic repertoire. These beads are hypothesized to have the potential to induce greater protective immunity compared to production of the same PHA bead in a heterologous production host.

This concept was exemplified with *Pseudomonas aeruginosa* and *Mycobacterium tuberculosis* as model human pathogens. For *P. aeruginosa* we describe the engineering of this bacterium to promote PHA and Psl (polysaccharide) production. This represents a new mode of functional display for the engineering, production, and validation of a novel OprI/F-AlgE fusion antigen-displayed on PHA beads. For the disease tuberculosis we investigated the use of nonpathogenic *M. smegmatis* as a model organism for *M. tuberculosis*. We described the bioengineering, production, and validation of Ag85A-ESAT-6 displayed on PHA beads produced in *M. smegmatis*.

Here we showed that both organisms were harnessed to produce custom-made PHA beads for use as particulate subunit vaccines that carried copurifying pathogen-derived proteins as a large antigenic repertoire and the ability of these vaccine PHA beads to generate a protective immune response.

This novel bioengineering concept of particulate subunit vaccine production could be applied to a range of pathogens naturally producing PHA inclusions for developing efficacious subunit vaccines for infectious diseases.

Acknowledgements

"Success, 100% persistence and a bit of luck"

The road to completing this milestone in my life has not been easy, but thanks to my friends, family, and most importantly my partner Yifang has made this journey a lot easier.

I would like to give a big thanks to my supervisor Bernd Rehm and my cosupervisors Bryce Buddle, Axel Heiser, and Neil Wedlock for allowing me this opportunity.

I would also like to give a special mention to Natalie Parlane for her guidance and help with immunology, to all those in the Rehm lab, and those in the Infectious diseases group.

This project was made possible by the finding provided by AgResearch, Bill and Melinda Gates Foundation, and Massey University.

Preface

Below lists the publication status of all chapters in this thesis.

Chapter 1.

General introduction.

This chapter review was written as an introductory chapter for this thesis by Jason Lee.

Chapter 2.

Bioengineering *Pseudomonas aeruginosa* to assemble its own particulate vaccine capable of inducing cellular immunity.

Published: Lee, J. W., Parlane, N. A., Wedlock, D. N., & Rehm, B. H. A. (2017). Bioengineering a bacterial pathogen to assemble its own particulate vaccine capable of inducing cellular immunity. *Scientific Reports*, 7.

This article was written by Jason Lee and reviewed by all other authors. The concept was conceived by Jason Lee and Bernd H. A. Rehm. Experimental design was performed by Jason Lee with the advice of Bernd H.A. Rehm. All experiments were performed by Jason Lee with the exception of some immunological experiments which were planned and performed with the guidance of Natalie Parlane.

Chapter 3.

Engineering mycobacteria for the production of self-assembling biopolyesters displaying mycobacterial antigens for use as tuberculosis vaccine.

Published: Lee, J. W., Parlane, N. A., Rehm, B. H. A., Buddle, B. M., & Heiser, A. (2017). Engineering mycobacteria for the production of self-assembling biopolyesters displaying mycobacterial antigens for use as a tuberculosis vaccine. *Applied and Environmental Microbiology*, 85(4), 2289-2289.

This article was written by Jason Lee and reviewed by all other authors. The concept was conceived by Jason Lee, Axel Heiser, and Bernd H. A. Rehm. All experiments and planning related to molecular biology (Cloning, expression, isolation, and analysis) was performed by Jason Lee with the advice of Axel Heiser and Bernd H.A. Rehm. All experiments related to immunology were planned and performed by Axel Heiser and Natalie Parlane.

Table of contents

Abstract	I
Acknowledgements	II
Preface	III
Table of Contents	V
List of Figures	VIII
List of Tables	X
Abbreviations	XI
Chapter 1: General introduction	1
1.1 Introduction to immunology	1
1.2 Innate immunity	1
1.2.1 Pattern recognition receptors (PRRs)	3
1.2.2 Complement system	5
1.2.3 Phagocytosis	6
1.3 Adaptive immunity	7
1.3.1 Effector T cells	8
1.3.2 Interplay and plasticity of effector T cells	9
1.3.3 Effector B cells	12
1.4 Introduction to vaccines	13
1.5 Traditional vaccines	14
1.5.1 Live attenuated	14
1.5.2 Killed inactivated	15
1.5.3 Toxoid	15
1.5.4 Subunit	15
1.6 Novel vaccines approaches	16
1.6.1 Adjuvants	18
1.6.2 Deoxyribonucleic acid	19
1.6.3 Delivery systems	20
1.7 Polyhydroxyalkanoate	25
1.7.1 Polyester synthases	26
1.7.2 Self-assembly of polyester particles	27
1 7 3 Granule-associated-proteins (GAPs)	30

1.8 Tuberculosis	31
1.9 Pseudomonas aeruginosa	35
1.9.1 Potential vaccine targets against P. aeruginosa	37
1.10 Conclusion	40
1.11 References	41
Chapter 1A: Thesis scope	50
1.12 Problem statement	50
1.13 Aim	50
1.14 Objectives	50
1.15 Scope	51
Link to next chapter	52
Chapter 2: Bioengineering <i>Pseudomonas aeruginosa</i> to assemble its own	
particulate vaccine capable of inducing cellular immunity	53
Abstract	53
2.1 Introduction	54
2.2 Results.	58
2.2.1 Bioengineering of <i>P. aeruginosa</i> for self-assembly of antigen-dis	olaying
PHA inclusions	58
2.2.2 Immunological response to vaccination with antigen-displaying P	HA_{MCL}
beads	68
2.3 Discussion	74
2.4 Methods	79
2.5 Acknowledgements	91
2.6 References	91
Supplementary material	95
Link to next chapter	118
Chapter 3: Engineering mycobacteria for the production of self-assembling	
biopolyesters displaying mycobacterial antigens for use as tuberculosis vac	ine119
Abstract	119
3.1 Introduction	120
3.2 Methods	123
3.3 Results.	131
3.3.1 Production of MBB	131
3.3.2 Production of MBB displaying Ag85A and ESAT-6 (A:E-MBB).	135

3.3.3 TEM analysis	136
3.3.4 MBB vaccination and challenge with <i>M. bovis</i>	136
3.4 Discussion	140
3.5 Conclusions	145
3.6 Acknowledgements	146
3.7 References.	146
Supplementary material	149
Chapter 4: Discussion and outlook	165
4.1 Discussion	165
4.2 Outlook	171
4.2.1 Optimization of PHA production and antigen-display	171
4.2.2 Bead isolation	174
4.2.3 Bead purification	175
4.2.4 Alternative antigens	176
4.2.5 Adjuvants	177
4.2.6 Alternative mycobacterial production host	177
4.2.7 Characterization of <i>P. aeruginosa</i> mutant PAO1 ΔCΔ8ΔF	178
4.2.8 Challenge trial – Pseudomonas vaccine beads	178
4.2.9 Route of administration – Mucosal immunity	179
4.2.10 Heterolgous prime-boost strategy	180
4.3 References	181
Appendix	185
Statement of contribution to doctoral thesis containing publications.	

VII

Copyright form and declaration confirming content of digital version of thesis.

List of Figures

Chapter 1	
Figure 1.1. The four classes of polyester synthases	26
Figure 1.2. Metabolic pathways of PHA production	28
Figure 1.3. Models for polyester bead self-assembly	29
Figure 1.4. Schematic representation of a PHA granule and its associated prote	ins30
Chapter 2	
Figure 2.1. Engineering the pathogens intrinsic ability to produce PHA _{MCL} bear particulate subunit vaccines	
Figure 2.2. A schematic of the generation of <i>P. aeruginosa</i> knockout mutant Pa $\Delta C \Delta 8 \Delta F$	
Figure 2.3. Assessment of the tolerance of the class II PHA synthase (PhaC1 _{Pa})	to C
terminal fusion	60
Figure 2.4. Antigenic epitopes of OprI, OprF, and AlgE	61
Figure 2.5. Bioengineering and production of vaccine PHA _{MCL} inclusions in viv	vo63
Figure 2.6. Protein analysis of vaccine PHA _{MCL} beads	66
Figure 2.7. Analysis of soluble recombinant protein His ₁₀ -Ag	67
Figure 2.8. Antibody response to vaccination with vaccine PHA _{MCL} beads	69
Figure 2.9. Antigenic response to vaccination with alum formulated vaccine	
PHA _{MCL} beads	71
Figure 2.10. Cytokine response to vaccination with vaccine PHA_{MCL} beads	72
Supplementary Figure 2.1. DNA sequencing results for the generation of <i>P</i> .	
aeruginosa knockout mutant PAO1 ΔCΔ8ΔF	96
Supplementary Figure 2.2. Multiple alignment of primary structures from 33	
known and putative PHA synthase from bacterial human pathogens	97

Chapter 3

Figure 3.1. Two-plasmid and one-plasmid system for PHB expression in	
mycobacteria	.133
Figure 3.2. SDS-PAGE and immunoblot analysis of proteins from whole-cell lysa	te
and isolated mycobacterial PHA biobeads material	.134
Figure 3.3. TEM analysis of isolated mycobacterial PHA biobeads material by	
density gradient	.137
Figure 3.4. Cytokine responses from vaccinated mice	.138
Figure 3.5. Bacterial counts in lungs and spleens of vaccinated mice	.139
Supplementary Figure 3.1. Construction of plasmid pMycVec1_pNit-phaC	.150
Supplementary Figure 3.2. Construction of plasmid pMycVec2_Pwmyc-phaAB	.151
Supplementary Figure 3.3. Construction of plasmid pMIND_pTet-phaC	.152
Supplementary Figure 3.4. Construction of plasmid pMV261_pNit-phaC	.152
Supplementary Figure 3.5. Construction of plasmid pMV261_pNit-A:E-phaC	.153
Supplementary Figure 3.6. Construction of plasmid pMV261_pNit-phaC-Pwmyc	-
phaAB	.154
Supplementary Figure 3.7. Analysis of PHB in whole-cell by GC/MS	.155
Supplementary Figure 3.8. Confirmation of pNit promoter activity	.157
Supplementary Figure 3.9. Analysis of PHB in whole-cell by GC/MS	.158
Supplementary Figure 3.10. Confirmation of ESAT-6	.164
Chapter 4	
Figure 4.1. Epitope arrangement	.172

List of Tables

Chapter 1	
Table 1.1 Current novel TB vaccines in clinical trials	34
Table 1.2 Potential vaccine targets against P. aeruginosa	36
Table 1.3 P. aeruginosa vaccines	37
Chapter 2	
Supplementary Table 2.1 Protein identification of fusion proteins by MALDI-T	OF
MS	101
Supplementary Table 2.2 Protein identification of dominant HCPs by peptide	
finger printing using MALDI-TOF MS	102
Supplementary Table 2.3 Amino acid alignment of peptides identified by MAL	DI-
TOF MS in dominant HCPs with respective PHA synthase fusion protein and	
mapping of anti-PhaC1 antibody epitopes	108
Supplementary Table 2.4 33 known and putative PHA synthases from bacterial	
human pathogens	111
Supplementary Table 2.5 Percent Identity Matrix from multiple sequence	
alignment of 33 known and putative PHA synthases from bacterial human	
pathogens	114
Supplementary Table 2.6 Strains, plasmids, and oligonucleotides used in this st	udy
	115
Chapter 3	
Table 3.1 Bacterial strains and plasmids used in this study	124
Table 3.2 PHB biosynthesis of <i>M. smegmatis</i> harboring various plasmids	135

Abbreviations

3-HB methyl 3-hydroxybutanoate 3-HD methyl 3-hydroxydecanoate 3-HDD methyl 3-hydroxydodecanoate 3-HH methyl 3-hydroxyhexanoate 3-HHD methyl 3-hydroxyhexadecanote 3-HN methyl 3-hydroxynonanoate 3-НО methyl 3-hydroxyoctanoate 3-HTD methyl 3-hydroxytetradecanoate 3-HUD methyl 3-hydroxyundecanoate

A:E Fusion antigen of Ag85A and ESAT-6 epitopes
A:E-MBB Ag85A-ESAT-6 displaying mycobacterial biobeads

Ag Fusion antigen of OprI/F-AlgE

Ag-PhaC1_{Pa} N terminal fusion of OprI/F-AlgE to the PHA synthase

Ag85A Antigen 85A

Alum Aluminum hydroxide

Ap Ampicillin

APC Antigen Presenting Cell BCG Bacillus Calmette–Guérin

BDW Bead Dry Weight
Cb Carbenicillin

CD Cluster of Differentiation

CD40L Cluster of Differentiation 40 ligand

CDW Cell Dry Weight
CF Cystic Fibrosis

CFTR Cystic Fibrosis Transmembrane Regulator

CLR C-type Ligand Receptor

CLSM Confocal Laser Scanning Fluorescence Microscopy

ConA Concanavalin A

CTL Cytotoxic T Lymphocytes

DAMP Damage Associated Molecular Patterns

DC Dendritic cell

DMEM Dulbecco's Modified Eagle's Medium

DNA Deoxyribonucleic acid

ELISA Enzyme-Linked Immunosorbent Assay

EPS Exopolysaccharide

ESAT-6 6 kDa early secretory antigenic target

FM Fluorescence microscopy
GAP Granule Associated Protein

GC/MS Gas Chromatography/Mass Spectrometry

GFP Green Fluorescent Protein

Gm Gentamicin

HCP Host Cell Protein HCV Hepatitis C Virus

His₁₀-Ag 10x His-tagged fusion antigen HIV Human Immunodeficiency Virus

HRP Horseradish peroxidase

IFN Interferon

IgG Immunoglobulin G

IL Interleukin

ISCOM Immune stimulating complex

kDa Kilodalton LB Luria Broth

LPS Lipopolysaccharide

MAC Membrane Attack Complex

MALDI-TOF MS Matrix-Assisted Laser Desorption-Ionization Time-Of-Flight Mass

Spectroscopy

MASPs MBL-Associated Serine Proteases

MBB Mycobacterial biobeads
MBL Mannose Binding Lectin
MDR Multidrug-resistance

MHC Major Histocompatibility Complex MOG Myelin Oligodendrocyte Glycoprotein

MSM Mineral Salt Medium

MVC Mycbacterial vector control

ND Not detected

NF-κB Nuclear Factor-κB

NK Natural Killer

NLR (NOD)-Like Receptor

NLRA NOD-Like Receptor Acidic transactivating domain

NLRB NOD-Like Receptor Baculovirus inhibitor of apoptosis protein

repeat

NLRC NOD-Like Receptor Caspase activation and recruitment domains

NLRP NOD-Like Receptor Pyrin domain

OD Optical Density

OMP Outer membrane protein
OMV Outer Membrane Vesicle

OpdA Organophosphorus pesticide hydrolase

OprF Outer membrane protein F
OprI Outer membrane lipoprotein I

OprI/F-AlgE Fusion antigen of OprI, OprF, and AlgE (loops 5 & 6) epitopes

PAMP Pathogen Associated Molecular Patterns

PAO1 ΔCΔ8ΔF P. aeruginosa PAO1 triple knockout mutant

PBS Phosphate Buffer Saline

PBST Phosphate buffer saline + tween 20

PHA Polyhydroxyalkanoate

PhaC1_{Pa}-Ag C terminal fusion of OprI/F-AlgE to the PHA synthase

PhaC_{Pa} PHA synthase from *P. aeruginosa*

PhaC_{Re}
PHA synthase from *Ralstonia eutropha*PHA_{LCL}
Long chain length polyhydroxyalkanoate
PHA_{MCL}
Medium chain length polyhydroxyalkanoate
PHA_{SCL}
Short chain length polyhydroxyalkanoate

PHB Polyhydroxybutyrate

PHBHHx Copolymers of 3-hydroxybutyrate and 3-hydroxyhexanoate
PHBV Copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate

PHO Poly 3-hydroxyoctanoate
PLGA Poly(lactic-co-glycolic acid)

PMLA Poly(β ,L-malic acid) RLH (RIG-I)-Like Helicases

RNA Ribonucleic acid

scFv Single-chain antibody variable fragment

TB Tuberculosis
TCR T Cell Receptor

TEM Transmission Electron Microscopy

Tfh T Follicular helper cell

Th T helper

TIR Toll/Interleukin-1 Receptor

TLR Toll-Like Receptor
TNF Tumor Necrosis Factor

TRIF TIR-domain-containing adapter-inducing interferon-beta

VLP Virus Like Particle

WHO World Health Organization XDR Extensively drug-resistant