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Abstract 

 

This thesis presents ways of improving the genetic composition, structure and learning 

strategies for a graph-based evolutionary algorithm, called Genetic Networking Programming 

with Reinforcement Learning (GNP-RL), particularly when working with multi-agent and 

dynamic environments. GNP-RL is an improvement over Genetic Programming, allowing for 

the concise representation of solutions in terms of a networked graph structure and uses RL to 

further refine the graph solutions. This work has improved GNP-RL by combining three new 

techniques: Firstly, it has added a reward and punishment scheme as part of its learning strategy 

that supports constraint conformance, allowing for a more adaptive training of the agent, so 

that it can learn how to avoid unwanted situations more effectively. Secondly, an optimal 

search algorithm has been combined in the GNP-RL core to get an accurate analysis of the 

exploratory environment. Thirdly, a task prioritization technique has been added to the agent’s 

learning by giving promotional rewards, so they are trained on how to take priority into account 

when performing tasks. In this thesis, we applied the improved algorithm to the Tile World 

benchmarking testbed, which is considered as one of the standard complex problems in this 

domain, having only a sparse training set. Our experiment results show that the proposed 

algorithm is superior than the best existing variant of the GNP-RL algorithm [1].  We have 

achieved 86.66% test accuracy on the standard benchmarking dataset [2].  In addition, we have 

created another benchmarking dataset, similar in complexity to the one proposed in [1], to test 

the proposed algorithms further, where it achieved a test accuracy of 96.66%; that is 33.66% 

more accurate.  
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Chapter 1 Research Description 

1.1 Overview of the current state of technology 

Artificial intelligence revolution is one of the qualitative developments in computing, 

which increased computer performance and its work. Over the years, scientists have tried to 

simulate human and animal intelligence in the machine, such as the ant algorithm, neural 

networks, and genetic algorithm. 

In 1975 [3], Holland began working on the genetic algorithm (GA) as an algorithm used 

to find the best solution using random search method. This algorithm was inspired by 

simulating the transmission of genes from generation to generation in the living organisms. 

Holland represented the set of solutions with a set of chromosomes for each chromosome group 

of genes that represent the properties of the solution. By crossing the chromosomes and 

working on the mutations, Holland was able to generate new solutions, generation by 

generation. By using the solution function to evaluate individuals, the optimal solution can be 

obtained after several generations. The genetic algorithm has been used to solve many 

problems in productive ways. The chromosome represented with a series of ones and zeros to 

simplify the operations that have been used on them. This algorithm evolved over the years 

until in 1992 and 1994 [4] [5] Koza changed the composition of the chromosome to be a tree 

structure instead of a series of binary numbers as in (GA), and he called it Genetic 

Programming (GP). The new structure has proved it's accomplished in many areas such as 

(robot soccer by Vic in 2002 [6] and tile world problem by Li in 2010 [7]).  

In 2002, a new algorithm produced from the (GP) which called genetic network 

programming (GNP), the algorithm was presented by Katagiri [8] which uses a graph structure 

to represent the chromosomes, each graph has a number of nodes including one start node and 

without finishing node, each node could be visited more than one time and from more than one 

agent. In 2007, the reinforcement learning (RL) had been added to the (GNP) to allow the 

algorithm to solve more complex problems, that by combining several sub-nodes to each node 

and run the RL to learn how to use the graph and which subnode is the best. This algorithm 

called (GNP-RL), and it was addressed by Mabu [9]. This algorithm has achieved better results 

than previous genetic algorithms in solving many problems such as making mobile robot 

behavior [10] and in the Stock trading model [11] especially the problem of tile world which 

the algorithm was applied on it by Mabu [9]. 
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Since 2007, GNP-RL has been improved, and many other algorithms and techniques 

were combined to it. One of these implementations is the distributed (DGNP-RL) and the 

variable-sized GNP-RL (VSGNP-RL). These two techniques are working to divide the 

problem into small tasks by distributing the chromosome structure to some subprograms; each 

subprogram works with a task. VSGNP-RL differs from the DGNP-RL in which the VSGNP-

RL could have different size for each subprogram. These two algorithms were addressed and 

compared by Mabu in 2014 [2]. When Mabu applied VSGNP-RL on the tile world benchmark, 

the algorithm was able to achieve an acceptable result on the training stage but not in the testing 

stage. Li came with a new method which extracts the shared rules from the best individuals and 

uses them with others to get the final serial of rules for the problem. This mechanism was 

applied on the tile world problem and addressed in 2018 [1], it got the best results so far on 

using GNP-RL with the tile world problem which is (19/30) (63.33%) of success on the testing 

stage. 

This work aims to further improve the composition and learning paradigm of the GNP-

RL algorithm when working on a multi-agent and dynamic environment.  As a testbed, we aim 

to get the highest results in tile world problem by working on enhancing the training and 

learning method by adding the reward and punishment and by integrating optimal search 

algorithm to obtain more accurate feedback from the environment to the agents. 

1.2 Research objectives  

The main objective of this work is to develop an improved variant of the GNP-RL 

algorithm that utilizes an optimal search algorithm at its core, in order to solve more effectively 

in a multi-agent, dynamic path-planning benchmarking problem.  The following outlines the 

specific objectives: 

• To improve the GNP-RL chromosome structure to allow for faster learning and higher 

performance. 

• To improve the reinforcement learning technique on the GNP. 

• To improve the fitness function, allowing for adaptive assigning of rewards and 

punishments, proportional to the agent’s goal achievements. 

• To improve the way that the agent used to search for the objects in the grid world, by 

adding the optimal search algorithm to the GNP-RL. 

• To add a learning facility for training the agent on how to avoid getting into trapped 

situations. 

• To add the priority tasks implementation technique to the learning stage. 

• To check if the GNP-RL may suffer from overfitting during training. 
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• To compare the performance of the proposed algorithm against other existing variants 

of GNP-RL on the standard benchmarking testbed known as the Tile World problem, 

using the standard dataset as well as using our extended and more complex 

environments. 

1.3 Scope and limitations of research 

• This work focuses on improving the GNP-RL-based algorithm for solving a multi-agent 

path-planning problem, operating in a dynamic environment.  

• It has been tested in the Tile World Problem, which is one of the complex problems, 

because of the sparse training set. The agents are designed to turn left, turn right, go 

forward, but not go backward. And, they can push the tiles, but can’t pull them. 

• For all implementations in this thesis, the parameters in  Table 1.1 have been chosen. 

Most of these parameters were set in [9] [2] [12] [11] and [13]. 

Population 

Size 
Crossover Mutation Elite 

Max # sub 

nodes 

300 120 175 5 4 

Crossover 

rate Pc 

Mutation 

rate Pm 
ԑ γ α 

0.1 0.01 0.1 0.9 0.9 

Delay time 1 → Judgment node 5 → Processing node 
Table 1.1 Parameters Table 

• For all the implementations, the training has been stopped before 5000 generations if 

one of these cases happened: 

o The algorithm has not improved for a long time. 

o The algorithm enters into an over trained stage. 

• For all the implementations, the test phase has not been implemented if the algorithm 

failed in the training stage. 

• Using optimal search (A* algorithm in finding the shortest path) need a comprehensive 

vision from the agents to the environment.  

• The agents don’t have direct communication between them. 

• Using A* algorithm spend more time. 

• All the experiments in this work have been done on a machine with (Intel® Core ™ 

i7-7700HQ CPU @ 2.80GHz – RAM 16 GB). 

1.4 Overview of the problem domain 

This work was implemented on the Tile world problem, which is one of the multi-

agents, dynamic system benchmarks problem. Pollak described this application in 1990 [14], 

which is a grid world with 5 different objects, Agents, Holes, Tiles, Obstacles, and Floors. In 

this work, the training and testing sets are produced from this benchmark. There are 10 

environments; each one of them is a two-dimensional grid world with 3 agents, 3 tiles, 3 holes, 

and some obstacles and floors, as shown in Figure 1.1. 
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The rules of this problem are: 

1- The agent can turn left, turn right, or go forward (which called Processing node in this 

work, as described in page 31). 

a. The agent can go forward if the next vertex is floor or tile. 

b. If the next vertex is tile, the agent can push the tile to the next vertex except if 

the next vertex is an obstacle or another agent. 

c. If the tile is dropped into a hole, the tile and the hole disappear. 

2- Each agent has sensors that allow making the agents answer some questions such as 

(what is in the right, where is the nearest tile …etc., which described in page 31) (this 

called Judgment node in this work). 

3- Each agent has 60 steps, and each step contains 8 points. So, each agent has a sequence 

of 8 actions on the grid world. These actions could be Processing like (turn left) or 

Judgment as (what is in the right), each Processing action costs 5 points, and each 

Judgment costs 1 point (This called Delay time in this work which is described in page 

31-32). 

4- In the simulation, in each environment, the three agents work to drop all the three tiles 

into the three holes. If the agents could drop all the tiles into the holes, or if the steps 

are finished before that, the algorithm will close this environment and start the next one. 

5- There are two different training sets in this work ( Figure 1.1 & Figure 1.2) 

6- There is one testing set in this work, which was used by Mabu in [2] (Figure 1.3). 
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Training Set (1) [2] 

 

Figure 1.1 Training Set (1) [2] 
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Training Set (2)  

 

Figure 1.2 Training Set (2) 
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Testing Set (1) [2] 

 

Figure 1.3  Testing Environment (1) [2] 
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Testing Set (2)  

 

Figure 1.4 Random Tiles initialised position (from Training Set (1)) 
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1.5 Significance of the research 

It has been observed that the best performing GNP-RL-based algorithm on a multi-

agent, dynamic environment problem such as the tile world problem is still not sufficiently 

adequate enough to solve the problem at an acceptable level, the best results so far are in 2018 

(19/30 = 63.33% [1]).  To address this problem, we have developed an improved GNP-RL 

architecture that uses an optimal search algorithm as one of its judgment nodes.  Also, we have 

devised a new fitness function that can both reward and penalize an agent’s action accordingly, 

while giving a score proportional to the agent’s goal achievements.    Most of the previous 

works on the tile world problem with GNP-RL did not consider using penalty, nor address the 

actual results on this problem, but the results were presented based on the fitness function 

which was not useful in comparing the results especially when changing the fitness function, 

so in this work we will show the results in both ways. Adding to this, we have improved the 

RL in the algorithm to train the agents more sufficiently to use the graph, by teaching them 

how to avoid some troubling situations and to prevent collision between the objects.  Moreover, 

we have added a priority tasks execution technique to the agents, so they trained how to 

implement the tasks prioritize. We have tested the algorithms on two kinds of environments; 

simple and complex environments. Comparing with the other works on GNP-RL with tile 

world problem [9], [2], and [1] , the implementation in this work demonstrates the effectiveness 

of the produced techniques on the GNP-RL with (100%) of training accuracy with the training 

set (1), (96.66%) of testing accuracy on test set (2) which randomly initialized the tile locations, 

and (86.66%) of testing accuracy in testing set (1) from [2]. 

1.6 Research methodology 

In the first stage of this work, for direct comparison against other existing GNP-RL 

architectures, we have tested and compared all proposed algorithms using the same multi-agent 

benchmarking problem, known as tile world (see section 1.4 Overview of the problem domain), 

including the reported training and test environments, as well as the same fitness functions.  

Next, we analyzed the performance of the algorithms based on fitness and goal achievement.  

It was observed that the fitness score is not proportional to the number of goals achieved by 

the agent.  We rectified this problem (page 47) by changing the weights assigned to the different 

components of the fitness function, as well as a penalty component.    

1. Study and implement the original GNP-RL algorithm [9].  Test algorithm on the tile 

world problem.  Analyse experiment results.  Identify strengths and weaknesses.  Here, 

the objective is to replicate the same results (same accuracy) as reported in the literature. 
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2. Study and implement the Variable-Sized GNP-RL algorithm [2]. Test algorithm on the 

tile world problem. Analyse experiment results.  Identify strengths and weaknesses. 

Here, the objective is to replicate the same results (same accuracy) as reported in the 

literature. 

3. Study and implement the diversity using rank space method. 

4. Apply the diversity on the crossover in the GNP-RL. Test algorithm on the tile world 

problem.  Analyse experiment results.  Identify strengths and weaknesses. Here, the 

objective is to improve the results. 

5. Apply the diversity on the crossover and on choosing elite in the GNP-RL. Test 

algorithm on the tile world problem.  Analyse experiment results.  Identify strengths 

and weaknesses. Here, the objective is to improve the results. 

6. Use the reward and penalise when updating the Q-value for the GNP-RL. Test 

algorithm on the tile world problem.  Analyse experiment results.  Identify strengths 

and weaknesses. Here, the objective is to improve the results by training the agent on 

how to avoid trapped in trouble situations. (Constraint conformance GNP-RL) 

7. Add A* with using Manhattan Heuristics to the GNP-RL. Test algorithm on the tile 

world problem.  Analyse experiment results.  Identify strengths and weaknesses. Here, 

the objective is to improve the results by detecting goals accurately. 

8. Add A* with using Manhattan Heuristics to the Constraint conformance GNP-RL. Test 

algorithm on the tile world problem.  Analyse experiment results.  Identify strengths 

and weaknesses. Here, the objective is to improve the results by detecting goals 

accurately. 

9. Use performing tasks by priority on the (A* & Constraint conformance GNP-RL). Test 

algorithm on the tile world problem.  Analyse experiment results.  Identify strengths 

and weaknesses. Here, the objective is to improve the results by training the agent on 

how to execute the tasks by priority to avoid the conflict and collision between them. 

10. Implement the experiments on two kinds of environments (simple, complex). Test 

algorithm on the tile world problem.  Analyse experiment results.  Identify strengths 

and weaknesses. Here, the objective is to check which is the best in training the multi-

agent (simple or complex environments). 

11. Test the experiments from the first generation to the last one. Test algorithm on the tile 

world problem.  Analyse experiment results.  Identify strengths and weaknesses. Here, 

the objective is to check if the algorithm enters into the over-training phase. 
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1.7 Structure of the thesis 

This thesis consists of 8 chapters.  Chapters 3 through 8 introduces a specific variant of 

the GNP-RL algorithm.  We provide details on the evolutionary mechanisms employed, the 

related literature for that variant of the algorithm, as well as the empirical results and analysis. 

Chapter 2 shows a background of the (GA), (GP), and (GNP) algorithms. 

Chapter 3 provides an implementation of the GNP-RL on the Tile world problem 

following the same parameters on [9], and detect the limitation of this implementation.   

Chapter 4 addresses the VSGNP-RL algorithm as in [2] on the same benchmark and 

detects the strengths and limitations of the algorithm and the used fitness function. 

Chapter 5 presents our own novel extension to the GNP-RL architecture, using the 

diversity in the crossover and with choosing the elites on the GNP-RL. Shows the results, 

detects the strengths and limitations of this technique.   

Chapter 6 provides our own novel extension to the GNP-RL architecture incorporating 

a new reward and punishment scheme when updating the Q-value. Shows the results, detects 

the strengths and limitations for using this technique.   

Chapter 7 shows our own novel extension to the GNP-RL architecture, adding A* 

algorithm as a judgment node. Shows the results, detects the strengths and limitations of this 

technique.   

Chapter 8 presents our own novel extension to the GNP-RL architecture, adding a task 

prioritization method. Shows the results, detects the strengths and limitations of this technique.   

Chapter 9 summarizes the results and analysis of all the previous chapters, then states 

our conclusions, as well as identifies some future works. 
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Chapter 2 Background 

2.1 Genetic Algorithm (GA) 

2.1.1 Introduction  

The series of genetic algorithms began in 1975 by Holland [3], who mimicked genetic 

evolution in humans by producing a genetic algorithm (GA). This algorithm was used to find 

the best solution through a random search, by creating a sample of random solutions and 

generating new solutions by applying two operations; crossover, and mutation. Holland 

represented solutions with the chromosome structure so that each solution had a set of 

properties represented by genes. Chromosomes were represented in the genetic algorithm with 

a series of binary numbers. Each problem has an equation through which solutions are 

evaluated called Fitness. The success of this algorithm depends heavily on the composition of 

the chromosome and on the used Fitness that are produced to solve a particular problem [15].  

The genetic algorithm used to solve a wide range of problems, such as; credit card fraud 

detection [16], edge detection [17], and breast cancers detection [18].  
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Figure 2.1Genetic Algorithm Flow chart [3] 

As presented in Figure 2.1 the genetic algorithm steps. Firstly, the algorithm starts with 

initializing the first population; then it evaluates all the chromosomes in the current generation 

by using a suitable Fitness function. After that, the algorithm selects the best solutions by using 

one of the selection methods. The next step, it applies the evaluation operation on the 

chromosomes to generate new ones by using the crossover and mutation. If the algorithm finds 

the best solution or if it reaches a specific number of generations, it stops, otherwise, it returns 

the steps from the evaluation step. 
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2.1.2 Chromosome structure 

Each individual is a string of zeros and ones, which are the encoding of the chromosome 

properties [15]. For example, if the solution is a rectangle, the chromosome will be as Figure 

2.2. 

 

Genetic Algorithm Chromosome Structure 

High Width Location (x) Location (y) Rotation angle 

a) 

16 20 9 4 90 

b) 

0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 

c) 

Figure 2.2 Genotype Genetic Algorithm Chromosome Structure. a) The chromosome features. b) The chromosome features’ 
values. c) The encoding for the chromosome 

 

As the rectangle could be described with the high, width, location (x,y), and rotation 

angle, these properties can be the genes of the chromosome that represent the solution. 

2.1.3 Initialise the first population 

When the algorithm starts, the first population is initialized randomly. So, each 

chromosome is a string of zeros and ones which are produced randomly depending on the 

solution conditions [15].  

2.1.4 Evaluating and Selection 

Evaluating 

The Fitness function is used to evaluate the individuals to choose the best chromosomes 

to send them to the new generation. There are different kinds of Fitness functions, the fitness 

type depends on the problem domain and which one is suitable. In 2009 Nelson analyzed seven 

different types of Fitness function and compared them [19]. For example, the number of 

correctly dropped tiles in the Tile word problem [9],  or Euclidean distance function as in 

Travelling Salesman Problem [20]. 

Selection  

After evaluating the chromosomes in a generation, the algorithm uses one of the 

selection methods to select specific individuals to send them to the new generation. There are 
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different types of selection such as; truncation selection [21], tournament selection, linear and 

exponential ranking selection [22] 

2.1.5 Evolutionary Operations 

Crossover  

Crossover is an operation that is applied to two chromosomes to generate new two 

chromosomes which share some features from each parent [3].  These two parents can be 

chosen depending on one of the selection methods. The algorithm detects a point in the string 

to divide the parents on it and to crossover them on this point. In some cases, the algorithm set 

two or more points that the chromosomes could be divided on. In [23], Schaffer proved how 

much the location of the divided point could affect the results. Figure 2.3 shows the way that 

the algorithm crossover two parents and generate two new offspring.  

 

 

0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 

a) Parent 1 

0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 

b) Parent 2 

 

 

0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 

c) Offspring 1 

0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 

d) Offspring 2 

 

Figure 2.3 Phenotype Genetic Algorithm Crossover Operation 

 

Mutation 

The mutation is the operation that can be applied on one chromosome to create a new 

one offspring by changing a specific feature inside the string [3]. Usually, mutation uses to 

ensure some diversity in the population. There are many types of  GA mutation such as; Fogel 

produced Gaussian and uniform mutation in linear systems in 1990 [24], Larranaga tested swap 

and insertion method in the Travelling Salesman Problem in 1999 [25], and polynomial and 
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power mutation which was introduced by Deep in 2007 [26]. Figure 2.4 illustrates mutation 

operation in the genetic algorithm with swapping the genes inside the string. 

 

Figure 2.4 Genetic Algorithm Mutation Operation (swap genes) 

 

2.1.6 Summary  

The genetic algorithm was implemented to simulate genetic evolution in living 

organisms. It uses the chromosome structure to represent the solutions, and with the 

evolutionary operations, new solutions are created to generate a new population.   

Since the GA has a liner structure, it is difficult for it to solve the more complicated 

problems, especially the ones that need a complex instruction to solve [27]. To overcome that 

problem, a new algorithm was produced which called Genetic Programming (GP). The next 

section will discuss it. 

 

  

 

0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 

 

0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 

b) offspring  

a) Parent  
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2.2 Genetic Programming (GP) 

2.2.1 Introduction  

In 1992 [4] [5], Koza came with a new structure to represent the solution which uses 

the solutions that have if-then states with a non-linear individual. He came with a structure that 

simulates making decision rules, so he used a tree structure to represent the chromosome. This 

algorithm uses with a more complex problem to find a set of rules that solve the problem. It 

used to solve a biochemistry application [28],  Breast cancer diagnosis [29], in the financial 

area [30], and so in. 

2.2.2 Chromosome structure 

 

Figure 2.5 Phenotype Genetic Programming Chromosome Structure 

Each chromosome represented with a tree structure with nodes. Tree root is the start 

node for the solutions, all the terminal nodes are an action node, and if-then nodes are judgment 

nodes that use to take a decision.  

2.2.3 Initialise the first population 

Before the algorithm starts, the first population is initialized by randomly creating a set 

of trees that represent the solutions. In the first population, the tree length and depth are either 

equal to a predefined number (called Full method) or less than or equal to a predefined value 

(called Grow method) [27]. The depth of each tree could be changed by using crossover and 

mutation. 

start 

If-then If-then 

Terminal  Terminal  Terminal  Terminal  
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2.2.4 Evaluating and Selecting 

After initialized the first population, a Fitness function should be applied to each 

chromosome to test the chromosomes and evaluate them. The Fitness function could be any 

type of evaluated functions that suited to the problem. For instance, the Fitness can be 

determined as the difference between its result error and the optimal value of the solution [31], 

in the classification problem, the fitness was calculated as the rate of the correct classes on the 

total number of classifications [32], and so on. The chromosome with the higher fitness value 

is the chromosome with a higher probability to be selected [32]. 

2.2.5 Evolutionary Operations 

Crossover  

The algorithm selects two parents using one of the selection methods and applies the 

crossover between them to create a new two children. In the tree structure individual, a node 

from the tree is chosen randomly from each parent to exchange the nodes and their offspring 

between them [27]. 
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Figure 2.6 Genetic Programming Crossover Operation modified from [27] 

 

Mutation 

A mutation is an operation which uses to ensure the diversity in the population by 

making a change inside the individual itself. In GP a random node from the tree is selected 

with its children to change it with a new randomly generated node. Since the chromosome has 

a tree structure, losing diversity is not a major problem in the GP. Because of that, the crossover 

in the GP is more effective than the mutation [27].  
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Hence the crossover and mutation can increase the tree depth and length, an important 

problem can occur, which is a significant increase in the search space and in the needed time 

to evaluate the individuals. That need more memory size and high processor performance.  To 

avoid this problem, a new algorithm was implemented, which is Genetic Networking 

Programming. This algorithm will be discussed in the next section. 

2.2.6 Summary  

Genetic programming algorithm was produced as a non-linear chromosome structure 

to solve decision-making problems. It uses a tree structure with start root, if-then nodes, and 

terminal nodes. One of the major limitations for the GP is the possibility of the tree to become 

oversized because of the evolutionary operations. To solve this issue, a Genetic Networking 

Programming Algorithm (GNP) has been produced.  
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2.3 Genetic Networking Programming (GNP) 

2.3.1 Introduction 

To overcome the oversized problem in the GP, a new algorithm was presented by 

Katagiri in 2000 called Genetic Networking Programming (GNP) [33]. GNP was implemented 

to allow for multi-used of nodes. So, each node can be used more than one time. And there is 

no terminal node. By using this mechanism, the oversized problem is solved. GNP used with 

multi-agents systems, such as ants behavior [34], online learning [35], and Prisoner’s Dilemma 

Game [36]. 

2.3.2 Chromosome structure 

The structure for the GNP chromosomes is a network structure (graph) which contains 

a set of nodes see Figure 2.8. There are three types of nodes; judgment node which match (if-

then) node in the GA, Processing node which match (terminal) node in the GP, and start node 

[8]. Judgment node uses to check for a specific condition, Processing node uses to apply an 

action, start node is the node which the simulation starts with. When the algorithm begins, it 

visits the start node; then it follows the connections to transfer to the next node. Each node 

could be visited more than one time, and there is no terminal node. That means, the algorithm 

will continue working on the graph until one of the two states happened; either the available 

time for the individual is finished, or the algorithm finds the solution. Each node has 

connections to guide to the next node, the processing node could be connected from more than 

one node, and it has just one connection to the next node. The judgment node could be 

connected from only one node, and it has more than one connection, each one of them direct 

to a specific node that is the answer to this judgment node [36]. 

 

Figure 2.7 GNP Genotype expression for Chromosome Structure modified from [33] 

 

 

 

 

Node-id Node type Delay time Connections 

Gene(node)#1 Judgment node Dt#1 C#1, C#2, … 

Gene(node)#2 Processing node Dt#2 C#1, C#2, … 

Gene(node)#3 Processing node Dt#3 C#1, C#2, … 

. 
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. 
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…. 
…. 
…. 
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Figure 2.8 GNP Phenotype Chromosome Structure modified from [33] 
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2.3.3 Initialise the first population 

For the first population, a specific number of nodes per chromosome is generated 

randomly. So, each chromosome has the same amount of judgment and processing nodes, but 

the connections between them are different from each other. 

2.3.4 Evaluating and selection 

To evaluate the chromosome, the algorithm should run on the graph by starting with 

the starting node, then continue following the connections and apply the actions of the nodes 

on the problem environment with considering the delay time which is a predefined time that 

the algorithm spends it on a specific node.  The delay time uses to give a time limitation to the 

algorithm to stop working on one chromosome and work on another [36].  To calculate the 

fitness value, GNP can use any type of Fitness function that suited to the problem and checks 

for the feedback from the environment to get a final evaluated value [35]. 

2.3.5 Evolutionary Operations 

Crossover  

Crossover in GNP used to combine some features from parent 1 with some features 

from parent 2 to generate a new two offspring which inherit some genes from their parent. In 

GNP, two chromosomes are chosen with one of the selection methods and used as a parent. 

Some nodes from each parent are selected randomly with a crossover probability to be 

exchanged between the parents to generate the children, as shown in Figure 2.9 [37]. 
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Figure 2.9 GNP Crossover modified from [37] 

Mutation  

There are many ways to apply mutation on the GNP. One of them used by Mabu in 

2010, which change the connection for a randomly selected node from the graph with a new 

random connection [37]. Figure 2.10 illustrates that. 
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Figure 2.10 GNP Mutation modified from [37] 

 

2.3.6 Summary  

In the GNP algorithm, the problem of increasing the chromosome size has been solved 

by implementing a chromosome with network structure (graph) that able to solve a complex 

problem by allowing the multi-using nodes and infinity graph.   

Although the algorithm has been used to solve some complex problems, in some 

problems it needs to increase the probability by increasing the number of nodes so that the size 

of the chromosome becomes large and to solve this problem a new algorithm has been 

produced. This algorithm will be discussed in detail in the next chapter.  
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Chapter 3 (Review) GNP-RL 

3.1 Motivation 

Using GNP-RL to find the most suited trained graph for the Tile world problem is an 

exciting way to combine the genetic networking programming randomization with the 

reinforcement learning algorithm for multi-agent systems. GNP is working to generate random 

individuals (graphs), crossover, and mutate them to create generation after generation, while 

the RL is used to evaluate each chromosome and train the agent how to use this chromosome 

to solve the problem. We choose this algorithm because of its extensibility and flexibility. 

3.2 Related work 

Shingo Mabu was the first one who implemented GNP with reinforcement learning 

algorithm using the Sarsa algorithm in the tile world problem [9] in 2007. He divided each 

node to some sub nodes and ran the RL algorithm to train the agent on the graph to choose the 

best sub node with the maximum Q-value. This method was active with the dynamic 

environments and multi-agents’ systems, and it was used in many applications such as in 

making mobile robot behavior [10] and in the Stock trading model [11]. In 2013 Siti SENDARI 

combined fuzzy with the GNP-RL [38] for Mobile Robot.  A distributed graph with a fixed 

and variable sized distributed graph was proposed by Mabu in 2014 [2] by dividing the graph 

to subprograms as a way to separate the problem to small situations this work showed better 

results than the previous ones.   
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3.3 The algorithms 

 

Figure 3.1  GNP-RL flow chart from [13] with modifying   
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 The GNP-RL algorithm works to find the best solution randomly, which represent as 

a graph. This algorithm starts with a random population which has 300 chromosomes 

(solutions); these random individuals are created depending on some conditions (see section 

Initialise the first population). 

 After generation the first population, each chromosome will be evaluated by applying 

a fitness function on it and by running the Reinforcement Learning on it to train the agents 

which sub node is the best (see section Evaluate the chromosome). To produce the new 

generations, evolutionary operations should be applied on the chromosomes to generate new 

descendants for the new population which have better features than the parents. These 

operations are crossover and mutation, the crossover is the method that uses to create new two 

children from two parents in this implementation the number of offspring that produce from 

the crossover is 120 individuals, and the mutation is used to make a change on one individual 

to create another, the number of individuals that produced using mutation is 175 (see section 

Evolutionary Operators). 

 The new generation has 300 individuals; the best 5 chromosomes from the current 

generation, 120 offspring which are produced from the crossover, and 175 individuals from the 

mutation. After creating the new generation, the algorithm repeats from the evaluation step 

until finding the best solution or after a specific number of generations. 

 

Population Size Crossover Mutation Elite 
Max # sub 

nodes 

300 120 175 5 4 

# Nodes # Judgment nodes # Processing nodes 
Tournament 

Size 

120 80 40 7 

Crossover rate 

Pc 

Mutation rate 

Pm 
ԑ γ α 

0.1 0.01 0.1 0.9 0.9 

Delay time 
1 → Judgment node 

5 → Processing node 
Agent Steps 

60 for each 

agent 

Table 3.1 GNP-RL parameters 
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3.3.1 Individual (chromosome) structure 

 

Table 3.2  GNP-RL Genotype Chromosome Structure (JN → Judgment node) (PN → Processing node) modified from [9] 

 

Each chromosome composed of 120 genes. Each gene (node) has four features (node-

id, node type, delay time, and sub-nodes). Each node has a maximum of four sub-nodes; each 

one of them has three characteristics (Q-value, sub-node ID, and connections). 

 

Node-id Node type Delay time 
SubNodes (SN) 

SN#1 SN#2 SN#3 SN#4 

Gene(node)#1 0=start node. 

1=judgment node. 

2=processing 

node. 

1→ JN. 

5→PN. 

Q-value SN1-Q …. ….. ….. 

ID SN1-ID 

Connections SN1-C#1 
SN1-C#2 
SN1-C#3 

SN1-C#4 

SN1-C#5 

Gene(node)#2    
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Figure 3.2 GNP-RL Phenotype Chromosome Structure modified from [9] 
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Node-id: identical number for each node. 

Node type: there are three types of the node: 

1- Start node → there is one start node in each chromosome which directs to the node 

where the algorithm will start.  [39] In 2006, Tadahiko Murata used more than one start 

node for the multi-agent system (one start node for each agent). 

2- Judgment node → this kind of node is used to ask and answer some questions according 

to the agent situation. There are eight functions of judgment node: 

J1- What is in the FORWARD (JF). 

J2- what is in the BACKWORD (JB). 

J3- what is in the LEFT (JL). 

J4- what is in the RIGHT (JR). 

J5- what is the direction to the nearest TILE from the agent (TD). 

J6- what is the direction to the nearest HOLE from the agent (HD). 

J7- what is the direction of the nearest HOLE from the closest TILE (THD). 

J8- what is the direction of the second nearest TILE from the agent (STD). 

There are five possible answers for each one of these judgment nodes: 

• For the nodes (J1, J2, J3, and J4), the answer should be one of (AGENT, 

TILE, HOLE, FLOOR, or OBSTACLE).  

• For the nodes (J5, J6, J7, and J8), the answer should be one of (FORWARD, 

BACKWARD, LEFT, RIGHT, or nothing).  

3- Processing node → this type of node takes one of these actions (functions) on the 

environment: 

a. Move Forward (MF). 

b. Turn Right (TR). 

c. Turn Left (TL). 

d. Stay (ST). 

Delay time: the delay time is a chosen time for each type of node to give a theoretical 

value for the node execution, which was firstly used by Shingo Mabu in 2007 [9]. It is used to 

calculate the agent’s steps when the algorithm runs, by giving each agent 60 steps, each step 

could have up to eight delay time, which are total of the delay time for a sequence of the nodes. 

In all the experiments in this work, the delay time for the judgment node costs 1, and for the 

processing node costs 5 as it was chosen by Shingo Mabu in 2014 [2]. 

Q-value: hence, each node has more than one sub-node, reinforcement learning (Sarsa) 

has been used to train the agents to use the graph. So, each sub node has a Q value, which 

initialized by 0. Each time the agent visits the node, it chooses one sub-node to execute. The 
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way that the agent uses to select the sub node will be explained in section (Evaluate the 

chromosome) below.  

ID: each sub node has a function or (ID). This function should be one of the processing 

and judgment functions. If the node is a judgment node, all its sub nodes should be judgment 

and vice versa. 

Connections: for every sub-node, there are some connections to direct the agent to the 

next node. The number of connections for each sub-node depends on the sub node function.  

1- For J1, J2, J3, and J4 the answer is one of (AGENT, TILE, HOLE, FLOOR, or 

OBSTACLE), and for J5, J6, J7, and J8 the answer is one of (FORWARD, 

BACKWORD, LEFT, RIGHT, or nothing).  There are five possible answers, so 

there are five connections from this sub-node to other nodes in the graph. When the 

algorithm works, it chooses the connection that reflects the answer for this node to 

go to the next node. 

2- For FW, TR, TL, and ST, there is just one connection that because this type of node 

is organised to execute the process. So, after processing the action, the algorithm 

directly goes to the next node by following the one connection for this type of node.  

 

3.3.2 Initialise the first population 

Before the algorithm starts, 300 individuals are created randomly using the same 

technique in [2]. Each chromosome has one start node and 120 (80 judgment & 40 processing) 

nodes. The start node is chosen randomly from the 120 nodes. Each gene (node) is created 

depending on these rules: 

1- Node type: randomly created (judgment or processing) (80 & 40) respectively. 

2- Delay time: 1 for the judgment node and 5 for the processing node. 

3- Sub node number: each node has several sub-nodes. This number is initialised randomly 

from 1 – 4. 

a. Q-value: each sub node has 0 as initial value for the Q. 

b. ID: for the judgment node, the ID for its sub nodes could be randomly any 

number from 1 to 8. For the processing node, it could be randomly from 1 to 4. 

c. Connections: each sub node has several connections, as described previously. 

Each connection direct to a randomly node-id this node-id should not be the 

same node that this sub-node is part of to prevent an infinite loop. 

 

3.3.3 Evaluate the chromosome 

To evaluate any chromosome, the reinforcement learning runs on this chromosome for 

the three agents on the tile world environments that is one of the complex problems in which 
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many algorithms have been applied on this problem which was described by Pollack in 1990 

[14]. And apply the fitness function to evaluate and calculate the fitness value for everyone. 

There are ten environments as shown in Figure 1.1 Training Set (1) which was the same training 

environment that used in [2], each environment has three tiles, three holes, and three agents. 

The three agents should push the three tiles into their nearest holes. Once the agent pushes the 

tile to the hole, the tile and the hole disappear, and a floor will be in their locations. After the 

agents push all the three tiles to their holes, the environment will be changed to the next one. 

If the agents spent all their steps before accomplishing the goal, the environment would be 

changed to the next one.  

Each agent starts from the start node and follows the connection to visit the next nodes. 

When visiting the node, the agent should choose one of the sub-nodes. To select one sub-node 

Sarsa with ԑ-greedy technique is used, which was first implemented by Sutton [40]. By setting 

the probability of randomly selected the subnode with 0.1 which called exploration, and 0.9 for 

the sub node with the maximum Q-value which called exploitation.  

After visiting the node, the Q-value will be updated according to Equation 3.1. Where 

Qip is the Q value for the visited sub node, Qjq is the Q-value for the chosen sub-node in the 

next node, 𝛼 is a learning rate it could be any value from 0 to 1, in all the experiments in this 

work a 0.9 was chosen for it, and 𝛾 is a discount rate it is a value from 0 to 1 in this work it is 

0.9. The Reward is equal to 1 for each time a tile is pushed into a hole. The previous method is 

described in Pseudo Code 3.1 GNP-RL . 

 

Equation 3.1 Update Q-value [9] 

 

Finally, after finishing the ten environments, the fitness function is calculated by 

Equation 3.2  Fitness (1), which was produced by Mabu in 2014 [2]. Where Dtile is the number 

of correctly dropped tile in the hole for each environment, Ddistance is how many times the agent 

pushes the tile closer to the hole, and Tremain is the remain agent steps when all tiles are dropped 

in the holes. 

 

Equation 3.2  Fitness (1) [2] 

 

𝑄𝑖𝑝 = 𝑄𝑖𝑝 + (𝛼 ∗ (𝑅𝑒𝑤𝑎𝑟𝑑 + (𝛾 ∗ 𝑄𝑗𝑞) − 𝑄𝑖𝑝)) 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (1) = ∑ [(100 × 𝐷𝑡𝑖𝑙𝑒) + (20 × 𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + (𝑇𝑟𝑒𝑚𝑎𝑖𝑛)]

𝐸𝑁𝑉

𝑒𝑛𝑣=1
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The difference between the training stage and the testing stage is that the training phase 

uses the ԑ-greedy technique which has both the exploration and the exploitation, whereas in the 

testing phase the agent chooses only the sub node with the maximum Q-value that has been 

settled in the training stage. The second difference is that the Q-values will not be updated any 

more on the testing (see  Pseudo Code 3.2 GNP-RL Testing).  
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Pseudo Code 3.1 GNP-RL Training, produced from [9] 

GNP-RL Simulation 

Int Apply_Judgment(ID) 
1. Switch(ID):  
2.  Case(1): answer  what is in the Forward 
3.  Case(2): answer  what is in the Backword 
4.  Case(3): answer  what is in the Left 
5.  Case(4): answer  what is in the Right 
6.  Case(5): answer  what is the direction to the nearest tile 
7.  Case(6): answer  what is the direction to the nearest hole 
8. Case(7):answer  what is the direction from the nearest tile to the nearest 

hole 
9.  Case(8): answer  what is the direction to second nearest tile 
10. Return answer 
 

Int Apply_Processing (ID) 
1. Switch(ID):  
2.   Case(1): Go Forward; IF (tile is dropped into the hole) reward 1 
3.   Case(2): Turn Left 
4.   Case(3): Turn Right 
5.   Case(4): stay 
6. Return reward 
 

Main() 
1.  double RL  0.1   
2. NEXT_NODE  START_NODE 
3. CURRENT_NODE  NEXT_NODE 
4. rand  RAND(0-1) 
5.  IF rand<RL 
6.  SELECTED_SUBNODE  RAND[1-CURRENT_NODE.subnodenum)] //exploration 

7.  IF CURRENT_NODE type is Judgment 
8.   ANSWERanswer the judgment with the current subnode ID 
9. NEXT_NODEthe connection that reflects the ANSWER  
10.  ELSEIF CURRENT_NODE type is Processing 
11.   REWARDApply_Processing(current subnode ID); 
12.   NEXT_NODEthe first connection from the SELECTED_SUBNODE 
13.  ELSE 
14.  SELECTED_SUBNODE  MAX(subnode_Q-value) // exploitation 
15.  IF CURRENT_NODE type is Judgment 
16.   ANSWERanswer the judgment with the current subnode ID 
17. NEXT_NODEthe connection that reflects the ANSWER  
18.  ELSEIF CURRENT_NODE type is Processing 
19.   REWARDApply_Processing(current subnode ID); 
20.   NEXT_NODEthe first connection from the SELECTED_SUBNODE 
21  Qip = CURRENT_NODE.subnode[SELECTED_SUBNODE].Q 
22. [SELECTED_SUBNODE Q value  Qip+(0.9*(REWARD+(0.9*MAXQNEXT)-Qip)) 
23. IF (agent.steps finished) or (all tiles pushed to the holes) 
24.  Change the environment to the next one 
25.  GOTO line2 
26. ELSE  
27.  GOTO line3 
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Pseudo Code 3.2 GNP-RL Testing produced from [9] 

 

3.3.4 Evolutionary Operators 

Crossover 

The crossover is an operation that applied on two chromosomes to generate two new 

offspring. These two children have the same features from both parents. To perform the 

GNP-RL Testing Phase 

Int Apply_Judgment(ID) 
1. Switch(ID):  
2.  Case(1): answer  what is in the Forward 
3.  Case(2): answer  what is in the Backword 
4.  Case(3): answer  what is in the Left 
5.  Case(4): answer  what is in the Right 
6.  Case(5): answer  what is the direction to the nearest tile 
7.  Case(6): answer  what is the direction to the nearest hole 
8. Case(7):answer  what is the direction from the nearest tile to the nearest 

hole 
9.  Case(8): answer  what is the direction to second nearest tile 
10. Return answer 
 
Apply_Processing (ID) 
1. Switch(ID):  
2.   Case(1): Go Forward; IF (tile is dropped into the hole)  
3.   Case(2): Turn Left 
4.   Case(3): Turn Right 
5.   Case(4): stay 
6.  
 
Main() 
1. NEXT_NODE  START_NODE 
2. CURRENT_NODE  NEXT_NODE 
3.  SELECTED_SUBNODE  MAX(subnode_Q-value) // exploitation 
4.  IF CURRENT_NODE type is Judgment 
5.   ANSWERanswer the judgment with the current subnode ID 
6. NEXT_NODEthe connection that reflects the ANSWER from the 

SELECTED_SUBNODE 
7.  ELSEIF CURRENT_NODE type is Processing 
8.   Apply_Processing(current subnode ID); 
9.   NEXT_NODEthew firset connection from the SELECTED_SUBNODE 
10   
11. IF (agent.steps finished) or (all tiles pushed to the holes) 
12.  Change the environment to the next one 
13.  GOTO line2 
14. ELSE  
15.  GOTO line 
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crossover, firstly two parents are picked out from the 300 individuals using the torment 

selection technique with size 7. That means randomly 7 chromosomes are selected then pick 

the best one with the highest fitness value and use it as parent1. Secondly, the same mechanism 

is implemented to select the second parent. Finally, randomly, a gene (node) from parent one 

exchanged with the gene (node) that have the same id from parent2 with crossover probability 

(Pc = 0.1) as in [9]. These two selected genes should be with the same node type. As shown in 

Figure 3.3  GNP-RL Crossover. It had mentioned in [9] that when the two nodes exchanged 

the Q-value for each one will exchange with them also, that means the Q-value will go with 

the nodes through generations and will be updated in the evaluation step. So, we have adopted 

this method.  

 

 

Figure 3.3  GNP-RL Crossover. In this representation, colours uniquely identify the different processing and judgement nodes 
that crossed over between the parents. [9] 

Mutation 

The mutation is an operation that is executed in one chromosome to make a changing 

in some of its genes. In this thesis, three types of mutation are used, which was used by Mabu 

in 2014 [2]. 

Parent 1 Parent 2 

J2 

P1 

J1 

J1 

P1 

J2 

J2 

P1 

J1 

J1 

P1 

J2 

Offspring 1 Offspring 2 
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1- Randomly choose a gene and change its sub nodes functions (ID) to a new function 

with a probability (Pm = 0.01). 

2- Randomly choose a sub-node from a node with a probability (Pm = 0.01) and change 

its connections to new ones with some conditions: 

a. The new connection should not direct to the same node. 

b. The new connection should not be equal to any connection from this sub node. 

3- Randomly choose a node with a probability (Pm = 0.01) and change the number of its 

sub nodes to be more or less. More with adding new sub-nodes or less with deleting 

sub nodes with keeping the maximum sub-nodes number is 4. 
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Figure 3.4  GNP-RL Mutation. (a) Mutation 1 allows for an ID number change. (b) Mutation 2 enables the connection to be 
changed. (c) Mutation 3 allows for insertion/deletion of sub nodes. [2] 
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3.4 Empirical testing and analysis 

 

 

Figure 3.5 GNP-RL training accuracy by fitness 

 

Figure 3.6  GNP-RL training accuracy by a number of correctly dropped tiles 

The tile world problem simulation generates 5000 generations with 300 individuals for 

each one and records the best chromosome for each generation in the training phase. From the 

figures Figure 3.5 and Figure 3.6 we noticed that the results increased within the first 800 

generations with a maximum of 25 correctly dropped tile out of 30 tiles in the training phase, 

and this result is not enough to be adopted in the real world problem that because the algorithm 

failed in the training stage.  
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3.5 Summary 

In this chapter, we have analyzed the learning ability of the original GNP-RL by 

plotting the fitness values as well as the number of tiles successfully used to cover the holes 

(correctly dropped tiles) for every 1 training epoch.  We show that our implementation of the 

algorithm is able to obtain the same level of accuracy, as reported in Mabu [9].  However, upon 

further testing (counting the number of correctly dropped tiles), it was observed that the 

algorithm performed poorly in the training and test sets, covering only 25/30 tiles (83%  

success) in the training stage, while correctly covering only 19/30 tiles ( 63.33 % success) when 

testing the training set and 9/30 tiles ( 30 % success) when testing the test set (1).  We would 

like to note that in the literature, the used fitness function was the number of correctly dropped 

tiles while we used the fitness function from [2] Equation 3.2  Fitness (1) .  Also, the training 

set that used in [9] was a grid world with 30 tiles, 30 holes and 3 agents, whereas the testing 

set that chosen in this implementation was as in [2] which has 10 environments each one of 

them has 3 tiles, 3 holes, and 3 agents. Even we changed the Fitness function and the training 

set, the results matched the implementation in [9].  

As a conclusion, GNP-RL needs to be improved to be able to solve such a complex 

problem like tile world application. Mabu worked on this algorithm and enhanced it by using 

variable sized chromosome in 2014 [2]. The next section will discuss this method. 
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Chapter 4 (Review) VSGNP-RL 

4.1 Motivation 

In 2014 Mabu came with a new chromosome structure that divides each individual into 

variable sized subprograms to separate the problem to small tasks and connect them with a 

transferred connection to ensure that there is a way to navigate from one subprogram to another. 

So, we decided to work with this new construction and compare the results with the previous 

one. 

4.2 Related work 

Yang was the first one who proposed the divided structure method [11] with the GNP-

RL, and he proved the efficiency of this technique with a stock trading model. This method 

divides the problem to small tasks to facilitate the chromosome structure and to make the 

algorithm more functional. Distributed GNP-RL got better results than GNP-RL when applying 

them in the stock trading model. After that, in 2014, Mabu implemented the variable sized 

genetic networking program with reinforcement learning (VSGNP-RL) on the tile world 

problem [2]. This time the distributed structure could have variable sized subprogram. So, each 

subprogram could have a different number of nodes (genes) than the other subprogram. In this 

work, Mabu demonstrated that this mechanism had enhanced the results in the tile world 

system. 
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4.3 The algorithms 

 

Figure 4.1  VSGNP-RL Phenotype Chromosome Structure. The orange-coloured nodes identify the nodes that directly 
connects to another subprogram modified form [2] 

 

Population Size Crossover Mutation Elite 
Max # sub 

nodes 

300 120 175 5 4 

# Nodes 
# Judgment 

nodes 

# Processing 

nodes 

# Sub 

Programs 

Tournament 

Size 

120 80 40 3 7 

Crossover rate 

Pc 
Mutation rate  ԑ γ α 

0.1 

Pm 0.01 
Pmtr 0.001 

Pmtaff1 0.002 
Pmtaff2 0.01 

0.1 0.9 0.9 

Delay time 
1 → Judgment node 

5 → Processing node 
Agent Steps 

60 for each 

agent 

Table 4.1 VSGNP-RL Parameters 

4.3.1 Individual (chromosome) structure 

As shown in Figure 4.1 the individual has the same structure as GNP-RL Figure 3.2, 

but it is divided into some subprograms in this implementation, there are 3 subprograms. The 

total number of nodes in the chromosome is 120 nodes. They are distributed between the 

subprograms. Each node is either a transfer or a normal node. The transfer node is the node 

that direct to a node from another subprogram and the normal node is a node that navigates to 

a node from the same subprogram.  

Chromosome Structure 

Sub program 1 

Sub program 2 

Sub program 3 

S 

Transferring node 

Normal node 
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4.3.2 Initial the first population 

To initialize the first population, the same technique which used to initialize the first 

population in GNP-RL will be used here with some additions. Each node has 2 more features: 

subprogram number (AF) and node connection type (TR). AF refers to the subprogram that 

this node is part of, and TR refers to if this node is transfer or normal node. In the first 

generation, each subprogram has the same number of nodes, then within the mutation, the 

number of nodes in every subprogram is changed. Each node can be a transfer node with a 

probability of 0.1, and all the other are normal nodes.  

4.3.3 Evaluate the chromosome 

The same mechanism which was used with GNP-RL. 

4.3.4 Evolutionary Operators 

Crossover 

To create a new two children, two parents are chosen with a tournament selection with 

size 7, then crossed over by selecting randomly two nodes one from each parent with a 

probability 0.1 and exchange them between the chromosomes. These two selected nodes should 

be with the same id, type and from the same subprogram. That means, if the selected node from 

parent one is from the subprogram 2, the second selected node from parent 2 should be from 

subprogram 2 also. To make a balance between the subprograms, the same number of judgment 

and processing nodes should be crossed over from each subprogram. For instance, three 

judgment node and one processing node from every subprogram should be crossed over 

between the parents. As shown in Figure 4.2. 
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Figure 4.2  VSGNP-RL Crossover the different colours indicate the nodes that crossed over between the parents. The nodes 
crossed over with another same type node from the same subprogram.  [2] 

Mutation 

Two types of mutation are used in this implementation, as in Figure 4.3: 

1- Choose randomly node with a probably 0.01 and change the node connection type (TR). 

If the node is transferring node, it is changed to a normal node and vice versa with 

considering the connections. If the node is converted to a normal node, the connections 

should also be adjusted to direct to a node from the same subprogram. And if the node 

is converted to a transfer node, the new connections should be changed to lead to nodes 

from another subprogram. 
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2- Choose a node randomly with a probability of 0.01 and change the number of a 

subprogram that it belongs to (AF). After changing the subprogram number, the 

connections of this node should also be changed that because if the node is transferring 

node, the new connections should adjust with the new subprogram and the same for the 

normal node. 

 

Figure 4.3  VSGNP-RL Mutation. (a) Mutation 1 allows changing the connection type from normal to transfer or vice versa. 
(b) Mutation 2 allows changing the subprogram that the node belongs to considering changing the connections also. [2] 
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4.4 Empirical testing and analysis 

 

 

Figure 4.4  VSGNP-RL training accuracy by Fitness 

 

Figure 4.5  VSGNP-RL training accuracy by correctly dropped tiles 
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Figure 4.6 VSGNP-RL Testing Accuracy on the Training Set (1) and Testing Set (1) 

After following the same strategy and parameters, which was used by Shingo Mabu in 

2014 [2], the training result was great depending on the same fitness function but in the testing 

stage, the best chromosome gave 13/30 correctly dropped tiles when testing it on the test 

environment as in Figure 1.3  Testing Environment which is the same test environment that 

used in [2]. And some problems have appeared in this testing: 

1- The agent tries to push the tile near to the hole and then pushed it away from the hole 

then again pushed it near to the hole and that to gain more points. In this way, the fitness 

function will increase, but the number of correctly dropped tiles will not raise. (See this 

video https://youtu.be/IYHeDbLh9ls ) 

2- Because of the distributing inside the chromosome, each agent work with a subprogram. 

And that caused to put all the work on one or two agents and the third agent was not 

doing anything. (See this video https://youtu.be/cPnKVMNU70A ) 

The first problem above appeared because of the used fitness (Equation 3.2  Fitness 

(1)). This fitness adds 20 points to the fitness value each time the agent pushes the tile near to 

the hole and gives 100 points each time the agent drops the tile into the hole. After running the 

algorithm for some generations, it finds that pushing the tile closer to the hole more times will 

gain more points than dropping it. For example, when pushing the tile 6 times closer to the 

hole, it will earn 120 points and that more than 100, which is for dropping it. Se, we decided 

to update the function and change the weights to prevent such problems. Here is the new fitness 

function: 

 

Equation 4.1  Fitness (2) 
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Where Dtile is the number of correctly dropped tiles. Ddistance is (2) points if the agent 

pushes the tile closer to the nearest hole and (-1) when the agent pushes the tile far away from 

the nearest hole. Tremain is the remain steps for the three agents if they push the three tiles into 

the holes before the end of the steps (each agent has 60 steps). The reason for choosing 1000 

as a weight for the correctly dropped tile is that each environment has 10 rows and 10 cols, so 

the maximum time that the agent can push the tile closer or far away is 10 steps, and because 

there are three tiles so each environment needs: 

• 3 × 10 × 2 = 60 when pushing the tile closer to the hole. 

• 3 × 10 × -1 = -30 when pushing the tile far away from the nearest hole. 

For the 10 environments (60 × 10 = 600) and (-30 × 10 = -300) these are the maximum 

and minimum limit for each number of correctly dropped tile. 

By using this equation, the fitness value and the number of correctly dropped tiles will 

be scalable, that means each number of correctly dropped tile has a range of fitness value that 

is not crossed with another number of correctly dropped tiles. The table (Table 4.2) and the 

chart (Figure 4.7) below demonstrate that. 

 

# Correctly 
Dropped tiles 

Min distance - Max distance Max Tremain Fitness 

0 -300 180 -120 

0 600 180 780 

1 -300 180 880 

1 600 180 1780 

2 -300 180 1880 

2 600 180 2780 

3 -300 180 2880 

3 600 180 3780 

4 -300 180 3880 

4 600 180 4780 

5 -300 180 4880 

5 600 180 5780 

6 -300 180 5880 

6 600 180 6780 

7 -300 180 6880 

7 600 180 7780 

8 -300 180 7880 

8 600 180 8780 

9 -300 180 8880 

9 600 180 9780 

10 -300 180 9880 
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10 600 180 10780 

11 -300 180 10880 

11 600 180 11780 

12 -300 180 11880 

12 600 180 12780 

13 -300 180 12880 

13 600 180 13780 

14 -300 180 13880 

14 600 180 14780 

15 -300 180 14880 

15 600 180 15780 

16 -300 180 15880 

16 600 180 16780 

17 -300 180 16880 

17 600 180 17780 

18 -300 180 17880 

18 600 180 18780 

19 -300 180 18880 

19 600 180 19780 

20 -300 180 19880 

20 600 180 20780 

21 -300 180 20880 

21 600 180 21780 

22 -300 180 21880 

22 600 180 22780 

23 -300 180 22880 

23 600 180 23780 

24 -300 180 23880 

24 600 180 24780 

25 -300 180 24880 

25 600 180 25780 

26 -300 180 25880 

26 600 180 26780 

27 -300 180 26880 

27 600 180 27780 

28 -300 180 27880 

28 600 180 28780 

29 -300 180 28880 

29 600 180 29780 

30 -300 180 29880 

30 600 180 30780 
Table 4.2  Fitness (2) limitations 
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Figure 4.7  Fitness (2) Limitations 

As noticed from Figure 4.7 that there is no overlap between the maximum and the 

minimum values for each number of correctly dropped tiles. 

4.5 Summary 

VSGNP-RL is an improvement over the GNP-RL, which divides the chromosome into 

several subprograms to divide the problem into smaller and simpler tasks, this enhancement 

was addressed in [2]. 

After implementing the same strategies in [2], the training results achieved the top 

number of correctly dropped tiles which 30/30; however, the testing results could not achieve 

50% of accuracy. We also found some issues in the used function, so after finding the defect 

in the first fitness and editing it, the new fitness will be used in all the next implementations. 

Even the VSGNP-RL pass in the training stage but its test results still under 50% of success. 

So, the following chapters will discuss some of the new techniques that have not been used yet 

and compare the results with the previous ones. 

 

 

 

 

 

  

-5000

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30 35

Fi
tn

es
s 

V
al

u
e

Number of Dropped Tiles

Fitness (2) Limitations 



Chapter 5 :  (Proposed Architecture #1) GNP-RL with Elitism and Gene Diversification 

52 
 

Chapter 5 (Proposed Architecture #1) GNP-RL with Elitism and 

Gene Diversification  

5.1 Motivation 

One of the most effective operations on the progress of the genetic algorithm is a 

crossover. The crossover was used to improve the next generation of new individuals. On the 

other hand, some researchers suggested the benefits of ensuring diversity in the populations. In 

this section, we will implement a mechanism which using the crossover to apply the diversity 

on the population. 

5.2 Related work 

Losing the population diversity in the genetic algorithms one of the limitations in 

improving the results. In 2006 [41] Shapiro has studied the population diversity loss in the 

distributed algorithms.  In his introduction to the Needle problem, he showed that increasing 

the size of the sample is one of the most critical factors in increasing its diversity. Create the 

variety in the population individuals has not been used yet in the GNP-RL, while the probability 

of diversity loss was calculated for GA, GP, and GNP with Khepera robot by Li in 2010 [42]. 

Selection individuals based on the highest fitness values will result in the appearance 

of samples with similar chromosomes, and this may lead to a decline in the evolution of 

individuals genetic characteristics, which leads to the cessation of the algorithm to improve the 

solutions. Creating diversity among individuals will ensure that solutions are rapidly enhanced. 

Rank space method is one of the ways that used as a technique to ensure the difference in the 

population which selects the individuals by two rankings; the quality rank and the diversity 

rank. This method was addressed on the GA by Winston in 1993 [43]. But it was not used yet 

with the GNP-RL. 

In this chapter, we used the rank space method with two operations in the GNP-RL. 

The first one, the rank space method has been used to select the second parent in the crossover 

operation, and the second operation is selection the second 5 elites by using the rank space 

method. 
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5.3 The algorithms 

Population Size Crossover Mutation Elite 
Max # sub 

nodes 

300 120 170 10 4 

# Nodes # Judgment nodes # Processing nodes 
Tournament 

Size 

120 80 40 7 

Crossover rate 

Pc 

Mutation rate 

Pm  
ԑ γ α 

0.1 0.01 0.1 0.9 0.9 

Delay time 
1 → Judgment node 

5 → Processing node 
Agent Steps 

60 for each 

agent 

Table 5.1 GNP-RL with Elitism and Gene Diversification Parameters 

5.3.1 Individual (chromosome) structure 

This implementation has 300 individuals for each population,5 of them is the best five 

chromosomes from the previous generation depending on the fitness value, 5 are selected by 

the rank space method by using the fitness rank and the diversity rank, 120 of them created by 

the crossover with using rank space method, and 170 are generated by the mutation operation. 

Crossover and Elite diversity have been applied on the GNP-RL, so the chromosome 

structure is the same structure for the GNP-RL see Figure 3.2. 

5.3.2 Initialize the first population 

The same conditions for initiating the first population in the GNP-RL are used here. 

5.3.3 Evaluate the chromosome 

The individuals have been evaluated with Fitness (2) see Equation 4.1. 

5.3.4 Evolutionary Operators 

The mutation had the same operations as in the GNP-RL. The crossover had a new 

technique that is addressed below. 

This research will apply the diversity in the GNP-RL crossover by choosing parent1 

with the tournament selection. After that, use parent1 as a reference to choose parent2 with 

using rank space method to find the most diverse chromosome from the reference. In this step, 

the algorithm calculates the diversity between all the chromosomes in the population and the 

reference which is parent1. To calculate the diversity, two genes picked up to detect the 

distance between them. The first one is the node type, and the second one is the number of sub-

nodes. We choose these two genes after some experiments, and these two genes won. To 
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calculate the distance, Euclidean distance Equation 5.1 [44] and Equation 5.2 have been used, 

where totalnodenum is the number of the nodes in each chromosome. Reference[i] is the node 

number i in the reference (parent1). Ch[i] is the node number i in the chromosome (ch). These 

equations should be calculated for all the individuals in the population. 

After that, each chromosome should have two ranks (diversity rand & quality rank). 

Where diversity rank is depending on their diversity distance (lowest diversity → highest rank), 

and quality rank is depending on their fitness value (most top fitness → highest rank). The next 

step takes the total of these two ranks then rank the total again depending on their sum ranks 

(lowest sum → highest rank considering breaking tie in favour of diversity). In the end, 

calculate the rank fitness by using Equation 5.3 [45] , where reference.fitness is the fitness 

value for parent1, ch.sumrank is the summation of (diversity and quality ranks) for the chosen 

chromosome. Once each has a rank fitness, the chromosome with the highest rank fitness is 

determined to be parent2. In this way, parent 2 is the most diverse chromosome with parent1. 

So, when crossover these two diverse chromosomes, the new children have different features 

and various genes. This technique is coded in Pseudo Code 5.1 below. 

 

Equation 5.1  Calculate Diversity Distance  [44] 

 

 

 

 

 

Equation 5.2  Diversity Proportion  

 

 

 

Equation 5.3  Calculate Rank Fitness  [45] 

 

 

𝒅𝒊𝒔+

=    √ ∑ (𝒓𝒆𝒇𝒓𝒆𝒏𝒄𝒆[𝒊]. 𝒏𝒐𝒅𝒆𝒕𝒚𝒑𝒆 − 𝒄𝒉[𝒊]. 𝒏𝒐𝒅𝒆𝒕𝒚𝒑𝒆)
𝟐

𝒕𝒐𝒕𝒂𝒍𝒏𝒐𝒅𝒆𝒏𝒖𝒎

𝒊=𝟎

+ (𝒓𝒆𝒇𝒓𝒆𝒏𝒄𝒆[𝒊]. 𝒔𝒖𝒃𝒏𝒐𝒅𝒆𝒏𝒖𝒎𝒃𝒆𝒓 − 𝒄𝒉[𝒊]. 𝒔𝒖𝒃𝒏𝒐𝒅𝒆𝒏𝒖𝒎𝒃𝒆𝒓)𝟐  

 

𝑑𝑖𝑠(𝑡 + 1) =
1

𝑑𝑖𝑠(𝑡)2
 

 

𝑠𝑡𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
refrence.fitness

totalfitness
;  

 𝐶 =
𝑠𝑡𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠

1−stdFitness
;  

𝑟𝑎𝑛𝑘𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝐶 ∗ (1 − 𝐶)𝑐ℎ.𝑠𝑢𝑚𝑟𝑎𝑛𝑘−1  
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Pseudo Code 5.1  GNP-RL Crossover Diversity 

 

To simulate this experiment, the same (chromosome structure and initial population) 

are used. The evaluation has been done using Equation 4.1, Figure 1.1 Training Set (1), and 

Pseudo Code 3.1 GNP-RL . And with the same crossover (Figure 3.3  GNP-RL Crossover) and 

mutation (Figure 3.4  GNP-RL Mutation) operations. 

GNP-RL Crossover Diversity 

GNPRL_Crossover(vector<Chromosome> population) 

1.  Chromosome Parent1 = Tournament_Selection(population); 

2.  For all ch as chromosomes in population: 

3.   ch.diversity_distance = Calculate_Diversity_Distance (Parent1 , ch); 

4. Diversity_Rank_population_individuals (population); // lowest diversity → highest rank 

5.  Quality_Rank_population_individuals (population) ;// highest fitness → highest rank 

6. Sum_two_ranks(population); 

7. Sum_Rank_population_individuals(population); // lowest sum → highest rank  

8. For all ch as chromosomes in population: 

9.  ch.rankfitness = Calculate_rank_fitness(parent1, ch); 

10. Chromosome Parent2 = individual_highest_rank_fitness; 

11. Apply_Crossover(Parent1 , Parent2); 

 

Calculate_Diversity_Distance(Chromosome reference, Chromosome ch) 

1. 𝑑𝑖𝑠+=

   ඨ∑ (𝑟𝑒𝑓𝑟𝑒𝑛𝑐𝑒[𝑖]. 𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒 − 𝑐ℎ[𝑖]. 𝑛𝑜𝑑𝑒𝑡𝑦𝑝𝑒)
2

𝑡𝑜𝑡𝑎𝑙𝑛𝑜𝑑𝑒𝑛𝑢𝑚

𝑖=0

⬚

+ (𝑟𝑒𝑓𝑟𝑒𝑛𝑐𝑒[𝑖]. 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑛𝑢𝑚𝑏𝑒𝑟 − 𝑐ℎ[𝑖]. 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑛𝑢𝑚𝑏𝑒𝑟)2  

2. 𝑑𝑖𝑠(𝑡 + 1) =
1

𝑑𝑖𝑠(𝑡)2 

 

Calculate_rank_fitness(Chromosome reference, Chromosome ch) 

1. 𝑠𝑡𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
refrence.fitness

totalfitness
; 

2. 𝐶 =
𝑠𝑡𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠

1−stdFitness
;  

3. 𝑟𝑎𝑛𝑘𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝐶 ∗ (1 − 𝐶)𝑐ℎ.𝑠𝑢𝑚𝑟𝑎𝑛𝑘−1; 
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5.4 Empirical testing and analysis 

When applying the crossover diversity on the GNP-RL, the results increased fast, but 

they stopped growing after about 500 of generations. That’s because, after some generations, 

most of the chromosomes become similar to each other as a result of implementing the 

crossover diversity. To solve this problem, another technique used in this stage, which is the 

elite diversity. Apply the diversity with rank space method on the best five individuals and find 

the most 5 different chromosomes with using the same technique that used with choosing 

parent2 in the crossover but this time by setting the best 5 elites as references. Then add them 

to the next generation to ensure some differences in the epochs. The results grew more than 

with using only the crossover diversity, as shown in Figure 5.1 and Figure 5.2. 

 

Figure 5.1  GNP-RL Crossover Diversity Training results 

 

Figure 5.2 GNP-RL Crossover Diversity + Elite Diversity Training results 
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5.5 Summary 

In this chapter, we applied the rank space method on the GNP-RL crossover to ensure 

that the two parents that used in the crossover are different and have a variety of features. Using 

crossover diversity make the results increased in early generations, but as a result of using this 

mechanism for many generations, the algorithm loses the difference between the individuals in 

the population. When applying the elite diversity in the implementation with the crossover 

diversity, the algorithm has ensured some variety in individuals, and that gave some 

enhancement. However, the results were not good enough to start the test stage. So, the next 

chapters will work with more new techniques to improve the algorithm. 
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Chapter 6 (Proposed Architecture #2) GNP-RL with Constraint 

Conformance 

6.1 Motivation 

This technique has been implemented after noticing that most of the tiles unaccounted 

in the test stage have been pushed to a trapped location such as one of the states in Figure 6.1, 

which makes them trapped and could not be pushed again to anywhere and that make the Agent 

loos this Tile (See this video https://youtu.be/g7NsiK_Fueg ). So, to help the algorithm dealing 

with these cases, we came with a technique that trains the agent how to deal before pushing the 

tile to one of these situations and how to avoid trapped in one of them. We chose to apply this 

technique on the basic GNP-RL. This technique uses two methods. The first one, changing the 

number of connections in the processing node (changing the chromosome structure). The 

second method introduces a reward and punishment scheme in order to allow the agents to 

learn from their mistakes. 

 

Figure 6.1 some Tile trapped locations (4) the Tile surrounded by obstacles. (5) the Tile has two borders with obstacles. (6) 
the Tile in the grid border with no Hole in the same edge. (0) the Tile stuck with another Tile. 

6.2 Related work 

In 1998, Watkins started using the Q-learning method with reward and punishment, 

which allows the agents to learn from their actions without needing to know the environment 

[46]. Such as Sutton in 1984 [47], who adopted the method of learning based on the rewards 
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and penalties received by the agent immediately after the implementation of the actions, and 

by the accumulation of values in the long term, the best states could be identified. After Mabu 

came with the idea of adding the RL to the GNP [9], we have observed through our experiments 

that bad actions are not efficiently penalized by the GNP-RL. In this chapter, the reward and 

punishment feedback learning method will be used with the GNP-RL. 

6.3 The algorithms 

Population Size Crossover Mutation Elite 
Max # sub 

nodes 

300 120 175 5 4 

# Nodes # Judgment nodes # Processing nodes 
Tournament 

Size 

120 80 40 7 

Crossover rate 

Pc 

Mutation rate 

Pm  
ԑ γ α 

0.1 0.01 0.9 → 0.1 0.9 0.9 

Delay time 
1 → Judgment node 

5 → Processing node 
Agent Steps 

60 for each 

agent 

Table 6.1 GNP-RL with Constraint Conformance Parameters 

First point (two different possible paths) 

The basic GNP-RL has only one connection emanating from a processing node.  

Therefore, straight after applying an action defined in the processing node, the link will direct 

the agent to the same next node, regardless of whether the action was right or wrong.  In the 

proposed constraint conformance technique, we have incorporated two connections on the 

processing node.  This ensures that there are two different possible paths for the agent to take, 

after executing an action. The presence of the two paths allows the algorithm to do the 

necessary corrections, whenever an action leads towards an unwanted or hazardous state. 

Second point (punishment) 

GNP-RL uses equation 𝑄𝑖𝑝 = 𝑄𝑖𝑝 + (𝛼 ∗ (𝑅𝑒𝑤𝑎𝑟𝑑 + (𝛾 ∗ 𝑄𝑗𝑞) − 𝑄𝑖𝑝))  to update 

the Q-learning algorithm by using a positive/negative reward. Using the positive reward 

ensures an increasing in the Q-value and thus will increase the probability to choose this sub 

node the next time an agent visits this node. Using negative rewards when updating the Q-value 

guarantees decreasing the Q-value and thus will reduce the probability of choosing this sub 

node again when visiting the same state.   

These two techniques work together to make the agents learn from their actions. 
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6.3.1 Individual (chromosome) structure 

The chromosome structure for this experiment is similar to the GNP-RL chromosome 

structure except for the number of connections used with the Processing node. In GNP-RL 

there is just one connection from the Processing node and that direct to the next node after 

executing the processing action, whereas in this algorithm the processing node, which has (Go 

Forward) function, has 2 connections. The first connection will be used when the Tile is pushed 

to a safe vertex, but the next connection will be used when the following location is a trapped 

vertex. As shown in Figure 6.2. 
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Figure 6.2 Constraint conformance Chromosome Structure 
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6.3.2 Initial the first population 

To generate the first population, the same instructions that have been used with the 

GNP-RL initial population (see section 3.3.2) are used here, adding to this that the connections 

for the Trapped node are chosen randomly from the chromosome nodes (120 nodes).   

6.3.3 Evaluate the chromosome 

To evaluate the chromosome, Fitness function (2) Equation 4.1 is used to run two 

experiments. One of them on the Training Set (1) (see Figure 1.1) which was produced by 

Mabu in 2014 [2], and the second one on the Training Set (2) ( see Figure 1.2) which was 

designed by us. In the training set (2) we arranged the environments to make them have 

different locations for the Tiles, Holes, and Obstacles, while Training set (1) has 10 similar 

environments with changing only the Tile’s locations. We produced different set to make sure 

that the algorithm is correctly working even with the more challenging environment, and it is 

not memorized the environment.  

From this chapter and later, At the beginning of training, the rate of exploration is set 

at (0.9), while the rate of exploitation is set at (0.1), thus, giving the algorithm the liberty to try 

out the different actions available within the chromosomes which have been initialized. By 

decreasing the rate of exploration and increasing the rate of exploitation by (0.1) after each 100 

generations, at later stages of training (900th generation), the rate of exploration will eventually 

be (0.1) and the rate of exploitation at (0.9).  This switch in parameters ensures that the agent 

will be utilizing the knowledge learned through interaction than exploring a random sub node. 

Since the chromosome’s fitness evaluation is carried out at the same time as the 

reinforcement learning process, reducing the exploration rate and increasing the exploitation 

rate over the time can have a significant impact on the stability of the evaluation results and 

efficiency of training. 

When running the algorithm, the agents start implementing the nodes from the graph. 

If the agent faces a (Trapped node) Processing node with ID →1 (function → go Forward), 

before applying the node, the agent check the next location for the Tile (see Pseudo Code 6.1): 

• If it is trapped location, there are three actions the algorithm will take: 

1- The algorithm will prevent the Agent from pushing the Tile. 

2- Punish the Agent, that means to give -1 for the Reward when updating the Q-

value in Equation 3.1. 

3- Choose the second connection in the trapped node to go to the next node. 

• If it is a safe location: 
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1- The algorithm will apply the go forward action. 

2- If the Agent pushes the Tile into the Hole, reward the Agent by giving 1 as a 

reward in Equation 3.1. 

3- Choose the first connection in the trapped node to go to the next node. 

 

 

 

Pseudo Code 6.1 Processing node in the Constraint conformance GNP-RL 

 

6.3.4 Evolutionary Operators 

Crossover 

The crossover operation has done using the same technique which was used in the basic 

GNP-RL (see page 36). When choosing the trapped node to be crossed, it will be crossed over 

with another Processing node from the second parent.  Adding to this, in this implementation 

when choosing node1 from parent1 randomly, a node2 will be chosen randomly also from 

parent2, unlike the crossover in GNP-RL which exchange a node1 from parent1 with a node2 

that has the same id as node1 from parent2. 

Mutation 

The same Mutation operation that used with GNP-RL (see page 36) has been used here. 

Considering that the trapped node connections could also be changed in the mutation. 

Processing node in the Constraint conformance GNP-RL 

Int Apply_Processing(ID) 
1.    Switch(ID):  
2.  Case(1):  
3.   If (the next location is trapped location) 
4.    Don’t Go Forward; 
5.    Reward  -1; 
6.  NEXT_NODEthe second connection from the selected subnode of the 

current node 
7.   Else If(the next location is not trapped location) 
8.    Go Forward; 
9.  NEXT_NODE the first connection from the selected subnode of the 

current node 
10.   If (the agent dropped a tile into a hole) 
11.    Reward  1; 
12.  Case(2): Turn Left; 
13.  Case(3): Turn Right; 
14.  Case(4): stay; 
 15.  Return Reward; 
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6.4 Empirical testing and analysis 

Two experiments have been done on the constraint conformance GNP-RL. One of them 

with the training set (1) Figure 1.1 [2], and the other with training set (2) Figure 1.2. After 

running both implementations for 5000 generations with the same parameters used in the basic 

GNP-RL (see page 32), we noticed that both experiments gave similar results. The differences 

were in the time that the algorithm needs to reach the best individuals. In the simple set, which 

was a training set (1), the algorithm could get the best individuals earlier than when using the 

more complex environment, which was a training set (2). This concludes that the simplest the 

set was, the easier it is for the agent to learn and thus find the best results faster. 

Conversely, if the environment is more challenging, it takes the agent a period to 

understand and extract the rules from the data. Adding to this, we found that agents learned 

how to keep the tiles from losing, resulting in higher results in a shorter period than the basic 

GNP-RL when using a simple method such as Constraint conformance. This technique was 

able to get 28 Tiles over 30 as the highest result in the training phase, and this result was better 

than the original algorithm, which achieved a maximum of 25/30 Tiles. 

 

Experiment (1) – Training Set (1) [2] Figure 1.1 

 

Figure 6.3 Constraint conformance GNP-RL Training 
Accuracy with Fitness (Training Set (1)) 

 

Figure 6.4 Constraint conformance GNP-RL Training 
Accuracy with correctly Dropped Tiles (Training Set (1)) 

Experiment (2) – Training Set (2) Figure 1.2

 

Figure 6.5 Constraint conformance GNP-RL Training 
Accuracy with Fitness (Training Set (2)) 

 

Figure 6.6 Constraint conformance GNP-RL Training 
Accuracy with correctly Dropped Tiles (Training Set (2)) 
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Testing on Experiment (1) – Training Set(1) Figure 1.1+ Testing Set (1)Figure 1.3

 

Figure 6.7 Testing Constraint conformance GNP-RL on the Experiment (1) 

 

Testing on Experiment (2) – Training Set(2) Figure 1.2 + Testing Set (1)Figure 1.3 

 

Figure 6.8 Testing Constraint conformance GNP-RL on the Experiment (2) 

 

To verify the effectiveness of the algorithm, we tested the best chromosomes every ten 

generations once on the training set and again on the test group. We tested over the first 

generation to the 5000 generation to make sure that the test results did not get a drop-in over-

training.  It is noted that when the test results are increased on the training group, the test results 

also increase in the test group to a certain extent, then the test results stop growing and get 
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were better than the test results on the second experiment. The best individuals achieved 26 

results over 30 in the training group the equivalent of (86.6%), and 17 over 30 in the test group 

(56.6%). 

 

6.5 Summary 

After noting the reason for losing the Tiles which was when the Tile trapped in some 

locations that make it could not be pushed again, we came with a Constraint conformance 

technique which was applied in the basic GNP-RL. This technique has two main methods; the 

first one is a simple changing in the chromosome structure by giving two connections for the 

Processing node with ID = 1 (function go forward) and call this node Trapped node. The second 

method trains the agents on how to act when facing a trapped location by rewarding and 

punishing them when updating the Q-value for the RL. When implementing this mechanism, 

a better result is shown in the training and testing phases with (86.6%) in the training set, and 

(56.6%) of testing success. 

Even this technique achieved a better result than the basic GNP-RL, but it still needs to 

be improved. One of the problems observed when testing the best chromosome on the 

environment is that the agent tries to reach the tiles without taking into consideration the 

obstacles between them, we noticed that the agent tried to across the obstacles to access the 

tiles, and this made it lose steps without actually reaching the tile (See this video 

https://youtu.be/u7Ht4V_qhvk ). This issue will be discussed in the next chapter.  

  

https://youtu.be/u7Ht4V_qhvk
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Chapter 7 (Proposed Architecture #3) GNP-RL with Optimal 

search and Constraint Conformance 

7.1 Motivation 

One of the reasons why we use the optimal search method in the GNP-RL algorithm is 

how the Agent determines the direction of the nearest tile or hole. We have noticed that the 

technique used by Mabu in 2007 with GNP-RL [9] to determine the direction of objects is the 

way shown in Figure 7.1 (a) by specifying the direction of the goal for the agent regardless of 

any obstacles between them. That led to the agent trying to reach this direction and lose many 

steps, especially if there are obstacles between them. To solve this problem, we used the 

Optimal Search algorithm (A*) in determining the shortest path between the agent and the 

target, whether Tile or Hole. When determining the shortest way, the first step in the path is 

used to determine the direction to the nearest Hole or Tile. As shown in Figure 7.1 (b). 

7.2 Related work 

In the previous implementations for the GNP-RL on the Tile world problem, the way 

that used to answer the judgment node (5,6,7, and 8) for detecting the directions to a specific 

objects is way (a) in Figure 7.1 which detects the directions from the agent to the object without 

considering any other objects between them. This way was used by Mabu in 2007 [9] to solve 

the tile world benchmark with GNP-RL. He also used the same way in 2014 with the VSGNP-

RL [2]. On the other hand, there is another way to find the path between two objects which 

uses the heuristic methods to find the shortest path with considering the obstacles and walls. In 

1971, Nilsson used heuristics to take advantage of feedback from the environment to make the 

process of finding the shortest path with A* algorithm faster [48]. The heuristics could be found 

by using many ways such as Manhattan distances, Euclidean distance [44]…etc. In this chapter, 

a Manhattan heuristic and A* algorithm have been used to answer the judgment nodes (5,6,7, 

and 8) by finding the shortest path to the goal then detecting the direction to the first point in 

this path as the answer. 
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7.3 The algorithms 

Pseudo Code 7.1 A* algorithm with Manhattan heuristics modified from [49]  

A* guarantees finding the optimal path provided that the heuristic function used is 

admissible. Using the optimal search with the heuristic function allows detecting the nearest 

object to the agent (the object with the smallest cost path) and then detecting the direction to 

it. 

To make A* more efficient; that is, to prevent it from expanding states more than once, 

we made use of the strict expanded list and made sure that the heuristic is also consistent.  This 

approach guarantees that in the worst case, if there are N states in the problem domain, there is 

a maximum of N state expansions. 

 

Population Size Crossover Mutation Elite 
Max # sub 

nodes 

300 120 175 5 4 

# Nodes # Judgment nodes # Processing nodes 
Tournament 

Size 

120 80 40 7 

Crossover rate 

Pc 

Mutation rate 

Pm  
ԑ γ α 

0.1 0.01 0.9 → 0.1 0.9 0.9 

Delay time 
1 → Judgment node 

5 → Processing node 
Agent Steps 

60 for each 

agent 

Table 7.1 GNP-RL with Optimal Search and Constraint Conformance Parameters 

Apply A* algorithm with Manhattan Distance to answer the Judgment node 

Apply_A_Star(start, goal, grid_world) 
1. calculate the heuristics for the all vertexes in the grid world 

 h  |vertex.row – goal.row | + |vertex.col – goal.col | 
2.   QØ 
3. ExpandedList  Ø 
4. start.f  start.h 
5. start.g  0 
6. Q.push(start) 
7. While(Q not empty) 
8.  Q.pop(path with the smallest f) 
9.  If the goal is found Then stop and return the shortest path 
10.  For all the neighbours of the vertex (except the obstacles) 
11.   If the neighbour is not in the expandedList 
12.    g+=1 
13.    f = h+g 
14.    Add this neighbour to the current path 
15.    Q.push(newpath) 
16.    expandedList.push(neighbour) 
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7.3.1 Individual (chromosome) structure 

There is no changing on the chromosome structure from the previous chapter (see 

Individual (chromosome) structure). 

7.3.2 Initial the first population 

According to the chromosome structure, and the initial population technique, they have 

implemented exactly as the Constraint conformance GNP-RL implementation (see page 29).  

7.3.3 Evaluate the chromosome 

Using A* algorithm inside the GNP-RL graph has produced to give more accurate 

directions in the four judgment nodes (5,6,7, and 8) which asked for the directions. This method 

has been implemented after noting that in some cases in J5, J6, J7, or J8 the answer gives the 

direction regardless of the presence of obstacles or agents in its way. So, by using A*, it will 

provide the shortest path to the detected goal and then it will provide the direction to the first 

vertex in that path as the answer to the judgment node. For instance, if the judgment node is 

(what is the direction to the nearest tile), A* algorithm will set the agent as the start point and 

the tiles as the goals. By finding the shortest paths to the available tiles, the nearest tile will be 

the tile with the smallest cost path, and the direction will be the direction from the agent to the 

first point in the shortest path. As in Pseudo Code 7.1 A* algorithm starts its working by 

calculating the heuristic with using Manhattan distance for the all vertex in the environment as 

in Equation 7.1. It starts with an empty queue and an expanded list. Then the start vertex with 

f = h and g = 0 will be pushed to the queue. The algorithm works on a loop until one of the two 

conditions is met. The first is to find the shortest path for the target and the second when the 

queue is empty. In each loop, the path with the smallest f value will be picked to explore its 

neighbors and add them with the picked path as a new one to the queue to explore it another 

time. 

  

Equation 7.1 Heuristic Manhattan Distance  

 

Heuristic =  |vertexrow  – goalrow|  +  |vertexcol– goalcol| 
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Figure 7.1 Find the directions ways: (a) Using Global information to detect the direction. (b) using A* to determine the 
direction. 

Depending on the figures above Figure 7.1 (a) and (b), if the judgment node asks about 

the direction to the nearest tile in the previous method, the answer will be Forward. But with 

using A*, the answer will be Left, which is the direction to the first vertex in the shortest path. 

So now the answer will be more accurate, and the agent can go to the correct direction instead 

of trying to cross the obstacle.  

 

7.3.4 Evolutionary Operators 

The crossover and mutation in this implementation have been executed as the 

Architecture #2 evolutionary operation (see page 63). 

7.4 Empirical testing and analysis 

To test the effectiveness of using A* in the judgment nodes with (ID = 5,6,7, or 8), an 

implementation of GNP-RL with A* has been done on training environments set (1) Figure 

1.1. The results as in Figure 7.2, which have achieved a maximum of 23/30 correctly dropped 

tiles. This result was not good enough to start the testing stage.  
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Figure 7.2 A* & GNP-RL Training Accuracy with the Training Set (1) by Correctly dropped tiles /30 

 

After that, we decide to apply A* technique on the Constraint conformance GNP-RL. 

That means use trapped node in the processing nodes and use A* node with the judgment ones, 

combine both methods had great results in the training and testing phases. 

In an experiment (1) the training phase (on the training set (1) Figure 1.1), the results 

reached the highest point in only 1,000 generations. Through this result the ability of this 

technique to find the best results in a faster time is proved by the strength of the A* algorithm 

to find the target accurately, making the agent reach the goal faster. However, in the experiment 

(2) the training on the training set (2), the results have not been able to reach the top within the 

first 1000 generation. That because training set (2) is more complicated, and that made the 

learning difficult for the agent as what happened on the constraint conformance experiments 

(see page 64). 
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Experiment (1) – Training Set (1) [2] Figure 1.1 

 

Figure 7.3 A* node & Constraint conformance GNP-RL- 
Training Results (training set (1)) with the Fitness 

 

Figure 7.4   A* node & Constraint conformance GNP-RL- 
Training Results (training set (1)) with the number of 

correctly dropped tiles 

Experiment (2) – Training Set (2) Figure 1.2 

 

Figure 7.5 A* node & Constraint conformance GNP-RL 
Training Results (Training Set(2)) with the Fitness 

 

Figure 7.6 A* node & Constraint conformance GNP-RL 
Training Results (Training Set(2)) with the number of 

correctly dropped Tiles 

 

Figure 7.7 A* node & Constraint conformance GNP-RL Testing Accuracy (Experiment (1)) with the number of correctly 
dropped Tiles 
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Figure 7.8 A* node & Constraint conformance GNP-RL Testing Accuracy (Experiment (2)) with the number of correctly 
dropped Tiles 

 

When testing the best individual on the training set Figure 1.1, it gave 30/30 correctly 

dropped tiles (100%) of accuracy, and on the testing set (1) Figure 1.3, the results are as shown 

in Table 7.2 which gave 23/30 correctly dropped tiles and that provide a 76% of accuracy in 

the testing phase. This result was better than the best result that was produced by Li in 2018 

[1], for the 2018 results, the test was random (randomly place initial positions of tiles/robot), 

and the averaged highest score was 19.3/30 = 64.33% of accuracy. To make the comparison 

fair, we created a group of random environments under the same conditions used in 2018 [1] 

in the random elementary positions of the tiles, and we tested the best chromosomes on them, 

and the results were as in Table 7.3 which was 24/30 (80%) of success on the testing set (2) 

Figure 1.4. 
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Best individual Test Accuracy on the Testing Set (1) Figure 1.3 
__________________________________________________________________________________

Generation number 1770 in the test 
environment 

Env Number of correctly dropped tiles 

1 2 

2 2 

3 3 

4 3 

5 1 

6 3 

7 2 

8 2 

9 2 

10 3 

Total 23/30  → 76% 
Table 7.2 Best individual test results on the testing set (1) 

from generation #1400 

 

 

Figure 7.9 number of correctly dropped tiles for each 
environment for the best chromosome in the testing set (1) 

_________________________________________________________________________________
 
 

Best individual Test Accuracy on the Testing Set (2) Figure 1.4 (Random Tiles initial positions) 
__________________________________________________________________________________

Generation number 1770 in the test 
environment 

Env 
Number of correctly dropped 

tiles 

1 2 

2 1 

3 3 

4 3 

5 2 

6 3 

7 3 

8 1 

9 3 

10 3 

Total 24/30  → 80% 
Table 7.3 Best individual test results on the testing set (2) 

from generation #1400 

 

Figure 7.10 number of correctly dropped tiles for each 
environment for the best chromosome in the testing set (2) 

_________________________________________________________________________________ 
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We figure out that the GNP algorithm can implement an acceptable graph and the 

reinforcement learning algorithm can train the agents on this graph to choose the best sub node 

from each node, but after each generation, a crossover and mutation are executed in the same 

graph. So, the sub-nodes, the nodes, and their connection are changed within these operations. 

In this point, we decided to pick the best chromosome and train the agent on it more with the 

RL without applying the crossover and mutation on it, to check if the RL can help raise the 

performance of the chromosome, and the result we got as shown in Figure 7.11. Training the 

agents more using Reinforcement Learning did not increase the chromosome performance. 

Instead, the results fluctuate between 5 tiles (which is the lowest result) and the highest value 

obtained by the chromosome before (which is 30 for the training and 24 for the testing). So, 

this technique proved inefficient. 

 

Figure 7.11 Training the Agents on the best individual for 60000 times 

 

7.5 Summary 

To make the direction determination more precise and to solve the problem of the agent 

trying to overcome the obstacles, we have introduced the optimal algorithm (A* algorithm) in 

the Judgment node as a way to determine the first point of the shortest path to the target. When 

adding this technique to the constraint conformance GNP-RL, the results achieved high 

performance of the algorithm in the training and testing phases. In training, we got the most 

top results in a shorter time, and in the testing phase, we got the best results discovered so far 

on the tile world problem. However, when we saw the agents working on the tile world problem 

in the testing phase, we noticed that the agents lost some tiles due to the agent fighting on the 
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tiles, mainly if one tile remained. This problem was the result of not taking into account the 

priority of tasks at execution between the agents (See this video  https://youtu.be/jJQeM8e85p4 

). So, in the next chapter, we will address this problem. 

 

 

  

https://youtu.be/jJQeM8e85p4
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Chapter 8 (Proposed Architecture #4) GNP-RL with Task 

Prioritization, Optimal Search and Constraint Conformance 

8.1 Motivation 

Cooperative work of agents increases the efficiency and performance of the system. 

Particularly when the agents cooperate to deliver the target to the desired place. In some cases, 

agents fight on one Tile, so that all agents attempt to push the Tile to the target location at the 

same time without direct contact between them. This leads to the agents wrapping around the 

target so that no one can push the Tile to the right place. This problem arises if one tile remains 

in the environment, or when one of the Tiles is the closest tile to two or more Agents. In these 

two cases, the agents dispute to work on this target, so all agents work on this tile at the same 

time because it is the closest and ignore the rest, leading to loss of the steps, time, and effort. 

To resolve this problem, we have added priority to the execution of tasks for agents, so that the 

agent is trained to prioritize the execution of tasks by promotional rewards. This method will 

be explained in detail in The algorithms section below. 

8.2 Related work 

The GNP-RL algorithm has been applied to the tile world problem in many researches 

from 2007 to today. Most of the research has determined the reward of the agent in the RL by 

(1 if the agent dropped the Tile into the Hole) such as Mabu in 2007, 2014 [9] [2], and Li in 

2018 who set the equivalent values either by 1 for the Processing node or 0 for the Judgment 

node [1]. Since we have set the equivalence values either 1 or -1 in the Proposed Architecture 

#2 (see page 58), we will discuss in this chapter the use of scalable values of the reward from 

-10 to 10 to give each action its own value and to make the agents perform the tasks as a 

priority. 
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8.3 The algorithms 

 

Pseudo Code 8.1 Apply the priority tasks in the Processing Node (Go Forward function) 

Prioritization technique combines the reward and punishment techniques with the 

optimal search to train the agent how to perform task prioritization. Applying the optimal 

search algorithm with the heuristic function on the problem before running the GNP-RL to 

order the tasks required for each agent allows for the sorting and distributing of the tasks to 

each of the agents without requiring any communications between them. Using the promotion 

rewards and punishments brings about the cooperative behavior between the agents that helps 

them to perform the tasks and solve the problem as a team. This is because each time the reward 

becomes higher, Q-value increases for the sub node, and thus to rise in probability of choosing 

the same sub node next time.  The same is true with the effect of punishment. Each time the 

punishment is made higher (reward becomes lower), the Q-value decreases, diminishing the 

probability of choosing the same sub node again next time.  

 

Apply the priority tasks in the Processing Node (Go Forward function) 

Int Apply_Processing(ID) 
1. Switch(ID):  
2.   Case(1):  
3.   If the agent pushes the nearest tile to the nearest hole 
4.    Reward 4 
5.   ElseIf the agent pushes the nearest tile nearest to not the nearest hole 
6.    Reward 2 
7.   ElseIf the agent pushes the nearest tile far away from the nearest hole 
8.    Reward  -1 
9.   ElseIf the agent pushes a not nearest tile nearest to the hole 
10.    Reward  2 
11.   ElseIf the agent pushes a not nearest tile far away from the nearest hole 
12.    Reward  -1 
13.   ElseIf the agent pushes the tile to the hole 
14.    Reward  10 
15.   ElseIf the agent pushes the tile to the trapped location 
16.    Reward  -10 
17.   Go Forward if it is not trapped location; 
18.   Case(2): Turn Left; 
19.   Case(3): Turn Right; 
20.   Case(4): stay; 
21. Return Reward; 
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Population Size Crossover Mutation Elite 
Max # sub 

nodes 

300 120 175 5 4 

# Nodes # Judgment nodes # Processing nodes 
Tournament 

Size 

120 80 40 7 

Crossover rate 

Pc 

Mutation rate 

Pm  
ԑ γ α 

0.1 0.01 0.9 → 0.1 0.9 0.9 

Delay time 
1 → Judgment node 

5 → Processing node 
Agent Steps 

60 for each 

agent 

Table 8.1 GNP-RL with Task Prioritization, Optimal Search and Constraint Conformance Parameters 

8.3.1 Individual (chromosome) structure 

The same chromosome structure in Figure 6.2 Constraint conformance Chromosome 

Structure is used here in this implementation. 

8.3.2 Initialize the first population 

The same initial population in constraint conformance GNP-RL page 62. 

8.3.3 Evaluate the chromosome 

The priority tasks execution (own tile priority technique) is applied in the evaluation 

stage. This method has implemented within two parts. The first part is applied before the 

algorithm starts; A* algorithm should be applied to the environment to decide which tile and 

which hole is the nearest to each agent. So, each agent has its own tile and own hole depending 

on the shortest paths that have been discovered by A* algorithm. After that, to train the agent 

how to follow the own Tile and Holes first, the Reward in the (Equation 3.1 Update Q-value ) 

has different values depending on which tiles and any Holes the agent has done during the 

current move. The Rewards are described in Pseudo Code 8.1 and these points: 

a. If the agent pushes the nearest tile to the nearest hole, the algorithm will give reward 4. 

b. If the agent pushes the nearest tile nearest to (not the nearest hole), the algorithm will 

give reward 2. 

c. If the agent pushes the nearest tile far away from the closest hole, the algorithm will 

give a reward -1. 

d. If the agent pushes a (not nearest tile) nearest to the hole, the algorithm will give reward 

2. 

e. If the agent pushes a (not nearest tile) far away from the nearest hole, the algorithm will 

give reward -1. 

f. If the agent pushes the tile to the hole, the algorithm will give reward 10. 

g. If the agent pushes the tile to the trapped location, the algorithm will give a reward -10. 
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When the agent pushes the closest Tile to the nearest Hole, that means the agent work 

on his own Tile and Hole, in this action; the agent will get reward 4. But if the agent pushes 

the nearest Tile closer to another Hole (This hole is not the Hole that was chosen by A* as the 

closest one) the agent will get reward 2 because it follows the priority in the Tile but not in the 

Hole. In case if the agent pushes any Tile closer to the nearest Hole, it will get reward 2, due 

to its following in the Hole priority but not for the Tile. For any actions that the agent pushes 

any Tile far away from the nearest Hole, it will get punished by -1.  

To add the priority technique to the constraint conformance technique the last two steps 

(f & g) have been added to the previous points which they are, the agent will get reward 10 if 

it dropped any Tile into any Hole, and it will get punishment -10 if it tries to push the Tile to a 

trapped location. 

8.3.4 Evolutionary Operators 

The same crossover and mutation operations that have been used with constraint 

conformance GNP-RL (see page 63) is used in this implementation. 

 

8.4 Empirical testing and analysis: 

After implementing the task prioritisation (priority tasks execution) technique to the 

(A* node & Constraint Conformance GNP-RL algorithm) on the training set (1) Figure 1.1, 

the training results were excellent with experiment (1), the algorithm was able to reach the top 

performance after only 120 generations, and that saves a lot of time as shown in Figure 8.2. In 

the testing stage, it clearly to notice that the results are significantly increased until getting the 

best individual. After that, there was a fluctuation and decreasing in the results due to the 

inability of the algorithm to learn more, and this is what we observed in previous 

implementations. The best chromosome was appear in the generation number 860, which was 

able to get 100% of accuracy when testing it in training set (1) and (26/30) 86.66% of accuracy 

in the testing set (1), and 29/30 (96.66%) int Testing Set (2). This result is the best result that 

appears until now. On the other hand, in the experiment (2) in training the results could not 

reach the top until after 600 generations, and for the testing, the algorithm was able to get 100% 

of accuracy in the Training Set (2) after 2400 generations. That also proves that the easier the 

training environment, the easier it is to learn. 
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Experiment (1) – Training Set (1) [2] Figure 1.1 

 

Figure 8.1 Constraint conformance + A* node + task 
prioritisation training result on Training Set (1) by Fitness 

 

Figure 8.2 Constraint conformance + A* node + task 
prioritisation training result on Training Set (1) by 

Number of correctly dropped Tiles 

 

 

Experiment (2) – Training Set (2)Figure 1.2  

 

Figure 8.3 Constraint conformance + A* node + task 
prioritisation training result on Training Set (2) by Fitness 

 

Figure 8.4 Constraint conformance + A* node + task 
prioritisation training result on Training Set (2) by 

Number of correctly  Dropped Tiles 

 

 

 

Figure 8.5 Constraint conformance + A* node + Task prioritisation testing results on the experiment (1)  
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Figure 8.6 Constraint conformance + A* node + task prioritisation testing results on the experiment (2) 
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Best individual Test accuracy on the Testing Set (1) Figure 1.3 [2] 
__________________________________________________________________________________

Generation number 860 in the test set (1) 

Env Number of correctly Dropped Tiles 

0 3 

1 3 

2 2 

3 3 

4 3 

5 3 

6 3 

7 1 

8 2 

9 3 

Total 26/30 → 86.66%  
Table 8.2 Best Individual Test Result on the Testing Set (1) 
from generation #860 

 

Figure 8.7 Best Individual Test Results on the Testing Set (1) 

_________________________________________________________________________________
 

 

Best individual Test accuracy on the Testing Set (2) Figure 1.4 (Random Tiles initial positions) 
__________________________________________________________________________________

Generation number 860 in the test set (2) 

env tiles 

0 3 

1 2 

2 3 

3 3 

4 3 

5 3 

6 3 

7 3 

8 3 

9 3 

Total 29/30 → 96.66% 
Table 8.3 Best Individual Test Result on the Testing Set (2) 
from generation #860 

 

Figure 8.8 Best Individual Test Results on the Testing Set (2) 

_________________________________________________________________________________ 
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8.5 Summary 

In this chapter, agents were trained to prioritize tasks to reduce their inconsistencies. 

To do this, we have changed the values of rewards and penalties when the agent moves to 

update the Q-values depending on the priority of the actions. When adding this technique to 

the (A* node & constraint conformance GNP-RL) algorithm, we have accomplished the best 

results achieved so far in applying the GNP-RL algorithm to the tile world problem(100%) on 

testing the training set (See this video https://youtu.be/QoFgPTMzwfs  ) and (86.66%) on the 

testing set (1)  (See this video https://youtu.be/LRjvcfV4EyE )  and (96.66%) when testing on 

testing set (2) (See this video https://youtu.be/I-1hTRHWUvY ).  In order to ensure the efficacy 

of the algorithm, and that the successful results were not happening randomly, four experiments 

have been implemented using this algorithm and the average of them has been shown in the 

next chapter Summary. 

  

https://youtu.be/QoFgPTMzwfs
https://youtu.be/LRjvcfV4EyE
https://youtu.be/I-1hTRHWUvY
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Chapter 9 Summary and Conclusions  

9.1 Comparison of the Different Variants of the GNP-RL algorithm 

Parameters 
 

(Review) 
GNP-RL 

[9] 

(Review) 
VSGNP-

RL 
[2] 

(Review) GNP 
with Rule 

accumulation 
[1] 

(Propose
d 

Architec
ture #1) 
GNP-RL 

with 
Elitism 

and 
Gene 

Diversifi
cation 

(Propose
d 

Architect
ure #2) 
GNP-RL 

Constrai
nt 

conform
ance 

(Propos
ed 

Architec
ture #3) 
GNP-RL 

Constrai
nt 

conform
ance + 

Optimal 
Search 

(Propose
d 

Architec
ture #4) 
GNP-RL 

Constrai
nt 

conform
ance + 

Optimal 
Search + 

Task 
prioritisa

tion 

By S. Mabu S. Mabu Xianneng Li Us  Us  Us  Us  

In 2007 2014 2018 2019 2019 2019 2019 

Chromosomes 
(Individuals) 

300 

Genes (nodes) 120 120 
60 

5 from each 
type 

120 

Node Types 
8 Judgment nodes 
4 Processing nodes 

Judgment 
Nodes 

80 

Processing 
Nodes 

40 

Max 
Subnodes 

4 

Subprograms - 3 - 

Crossover 120 

Mutation 175 170 175 

Elite 5 10 5 

Crossover 
Rate 

0.1 0.9 0.1 

Mutation 
Rate 

0.01 

Pm 0.01 
Pmtr 
0.001 

Pmtaff1 
0.002 

Pmtaff2 
0.01 

0.01 

Tournament 
size 

7 2 7 

Fitness 
Function 

# correctly 
dropped 

tiles 

Fitness 
(1) 

Fitness (3) Fitness (2) 

Agent Steps 
60 for each agent for 1 

env 
500 for the 
simulation 

60 for each agent for 1 env 

Delay time 1 →Judgment 
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Parameters 
 

(Review) 
GNP-RL 

[9] 

(Review) 
VSGNP-

RL 
[2] 

(Review) GNP 
with Rule 

accumulation 
[1] 

(Propose
d 

Architec
ture #1) 
GNP-RL 

with 
Elitism 

and 
Gene 

Diversifi
cation 

(Propose
d 

Architect
ure #2) 
GNP-RL 

Constrai
nt 

conform
ance 

(Propos
ed 

Architec
ture #3) 
GNP-RL 

Constrai
nt 

conform
ance + 

Optimal 
Search 

(Propose
d 

Architec
ture #4) 
GNP-RL 

Constrai
nt 

conform
ance + 

Optimal 
Search + 

Task 
prioritisa

tion 

5 →Processing 

Q value 
Equation 

Q value Equation Equation 3.1 

γ , ά 0.9 

з 0.1 0.9 → 0.1 (- 0.1 after each 100 generations) 

Reward 
1 if the agent pushes the 

tile into the hole. 
 

0 → J 
1 → P 

1 if the 
agent 

pushes 
the tile 
into the 

hole. 
 

1 if the agent pushes 
the tile to the hole. 

 
 

-1 if the agent tries to 
push the tile to 

trapped location. 
 

(*) 

Training Set 
Training Set 

(1) 
Training 
Set (1) 

Training Set (1) 
Experiment (1) → Training Set (1) 
Experiment (2) → Training Set (2) 

Testing Set - 
Testing 
Set (1) 

1- randomly 
place initial 
position of 

tiles/agents. 
2- randomly 
place initial 
position of 
tiles/agent, 
obstacles, 

holes. 

- 
Testing 
Set (1) 

Testing Set (1)  
& 

Testing Set (2) 

Best Training 
Result 

25/30 
(83.3%) 

30/30 
(100%) 

- 
26/30 

(86.66%) 
28/30 

(93.33%) 
30/30 
(100%) 

30/30  
(100%) 

Best Testing 
Results on 
Training Set 
(1) 

19/30 
(63.33%) 

29/30 
(96.6%) 

24.1/30 
(80.3%) 

- 
25/30 

(83.33%) 
30/30 
(100%) 

30/30  
(100%) 

Best Testing 
Result on 
Testing Set (1) 

9/30 
(30%) 

13/30 
(43.3%) 

- - 
17/30 

(56.6%) 
23/30 
(76%) 

26/30 
(86.66%) 

Best Testing 
Result on 
Testing Set (2) 

- - 
19/30 
 (63%) 

- - 
24/30 
(80%) 

29/30 
(96.66%) 

Table 9.1 Comparing the Algorithms 

 

(*) 
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a. If the agent pushes the nearest tile to the closest hole, give reward 4. 

b. If the agent pushes the nearest tile nearest to (not the nearest hole) give reward 2. 

c. If the agent pushes the nearest tile far away from the nearest hole give reward -1. 

d. If the agent pushes a (not nearest tile) nearest to the hole give reward 2. 

e. If the agent pushes a (not nearest tile) far away from the nearest hole give reward -1. 

f. If the agent pushes the tile to the hole, give reward 10. 

g. If the agent pushes the tile to the trapped location give reward -10. 
 

Table 9.1 compares 7 algorithms 3 of them are reviewed and 4 are proposed on this thesis.  

Reviewed algorithms: 

1- GNP-RL, which was in 2007 by Mabu with a training result 25/30 (83.3%), because 

the algorithm failed in the training stage, we have not started the testing phase. 

2- VSGNP-RL which was in 2014 by Mabu with a training result 30/30 (100%), and 

testing results: 

a. 29/30 (96.6%) when testing on the training set. 

b. 13/30 (43.3%) when testing on the testing set (1). 

3- GNP with Rule accumulation which was in 2018 by Li with a testing result: 

a. 24.1/30 (80.3%) when testing on the training set. 

b. 19/30 (63%) when testing on the testing set (2). 

Proposed Algorithms: 

4- (Proposed Architecture #1) GNP-RL with Elitism and Gene Diversification which was 

addressed in this thesis with a training result 26/30 (86.66%). 

5- (Proposed Architecture #2) GNP-RL with Constraint conformance which was 

addressed in this thesis with training results 28/30 (93.33%), and a testing result: 

a. 25/30 (83.33%) when testing on the testing set (1). 

b. 17/30 (56.6%) when testing on the testing set (2). 

6- (Proposed Architecture #3) GNP-RL Constraint conformance + Optimal Search which 

was addressed by this thesis with a training result 30/30 (100%) and testing result: 

a. 23/30 (76%) when testing on the testing set (1). 

b. 24/30 (80%) when testing on the testing set (2). 

7- (Proposed Architecture #4) GNP-RL Constraint conformance + Optimal Search + Task 

prioritisation which was addressed by this thesis with a training result 30/30 (100%), 

and testing results: 

a. 26/30 (86.66%) when testing on the testing set (1). 

b. 29/30 (96.66%) when testing on the testing set (2). 
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Training and Testing Sets 

Training Set (1) [2]

 

Training Set (2) 

 

Testing Set (1) [2]

 

Testing Set (2) 
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Fitness Functions 

𝑭𝒊𝒕𝒏𝒆𝒔𝒔 (𝟏) = ∑ [(100 × 𝐷𝑡𝑖𝑙𝑒) + (20 × 𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + (𝑇𝑟𝑒𝑚𝑎𝑖𝑛)]  𝐸𝑁𝑉
𝑒𝑛𝑣=1  [2] 

Where: 

 𝐷𝑡𝑖𝑙𝑒→ number of correctly dropped Tiles. 

𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 → how many steps the agent pushes the tile closer to the hole. 

𝑇𝑟𝑒𝑚𝑎𝑖𝑛 → the remain steps for the agents if they finish dropping all the tiles to the hole. 

𝑭𝒊𝒕𝒏𝒆𝒔𝒔 (𝟐) = ∑ [(1000 × 𝐷𝑡𝑖𝑙𝑒) + (𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + (𝑇𝑟𝑒𝑚𝑎𝑖𝑛)]

𝐸𝑁𝑉

𝑒𝑛𝑣 =0

 

Where: 

𝐷𝑡𝑖𝑙𝑒→ number of correctly dropped Tiles. 

𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 → 2 if the agent pushes the tile closer to the hole< and -1 if the agent pushes the 

tile far away from the hole. 

𝑇𝑟𝑒𝑚𝑎𝑖𝑛 → the remain steps for the agents if they finish dropping all the tiles to the hole. 

 

𝑭𝒊𝒕𝒏𝒆𝒔𝒔 (𝟑) =  (100 × 𝑃𝑇) + (3(𝑆𝑇 − 𝑆𝑇𝑢𝑠𝑒𝑑) + (20[∑ 𝐷(𝑡) − 𝑑(𝑡)𝑡 ∈𝑇𝑖𝑙𝑒 ])  [1] 

Where: 

𝑃𝑇→ number of correctly dropped Tiles. 

ST → the total steps. 

𝑆𝑇𝑢𝑠𝑒𝑑 → the number of using steps. 

𝐷(𝑡) → the distance from the tile to the nearest hole before pushing the tile. 

𝑑(𝑡) → the distance from the tile to the nearest hole after pushing the tile. 

 

Reinforcement Learning Equation 

 

Where: 

 𝑄𝑖𝑝 → the Q value for the visited sub node. 

𝑄𝑗𝑞 → the Q-value for the chosen sub-node in the next node. 

 𝛼 → a learning rate it could be any value from 0 to 1. 

 𝛾 → a discount rate it is a value from 0 to 1. 

𝑅𝑒𝑤𝑎𝑟𝑑 → equal to 1 for each time a tile is pushed into a hole (This value changed from 

algorithm to another).  

𝑄𝑖𝑝 = 𝑄𝑖𝑝 + (𝛼 ∗ (𝑅𝑒𝑤𝑎𝑟𝑑 + (𝛾 ∗ 𝑄𝑗𝑞) − 𝑄𝑖𝑝)) [9] 
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9.2 Summary of Performance Analysis 

 

Figure 9.1 Compare the Dynamic training accuracy for the  Algorithms by taking the average for each 10 generations 

 

Figure 9.1 shows the dynamic training accuracy for the algorithms when running the 

RL on the GNP graph by calculating the number of correctly dropped tiles for each generation. 

The results illustrate the differences between the algorithms, the three algorithms that able to 

reach the top (30/30) are VSGNP-RL, proposed architecture #3, and proposed architecture #4. 

It’s clear to notice that proposed architecture #4 is the algorithm that reaches the top earlier 

than the other. 
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Figure 9.2 Comparing the algorithms – training accuracy for the training set (1) 

Figure 9.2 shows the results for the algorithms when testing them on the training set (1) 

by choosing the sub node with the maximum Q-value. The results have been tested after each 

10 generations. From the results, we have figured the overfitted for the algorithms. So, after a 

number of generations the algorithm results stopped increased; instead they decreased, in this 

stage, the algorithm has been stopped. Proposed Architecture #4 had the best results and the 

fastest algorithm that reach the top (30/30) 100% of accuracy. Proposed Architecture #3 also 

could reach 100% but it needed more time for that. The other algorithms could not achieve 

100% of training accuracy. 

 

0

5

10

15

20

25

30

35

1 490 990 1490 1990 2490 2990 3490 3990 4490 4990

Comparing the Algorithms 
Training Accuracy for Environment (1)

(Review) VSGNP-RL

(Proposed Architecture #2) GNP-RL with Constraint conformance

(Proposed Architecture #3) Optimal Search & Constraint conformance GNP-RL

(Proposed Architecture #4) Task prioritisation , Optimal Search & Constraint conformance GNP-RL



Chapter 9 :  Summary and Conclusions 

92 
 

 

Figure 9.3 Comparing the algorithms’ test accuracy for the testing environment (1) 

Figure 9.3 shows the test accuracy for the algorithms when testing them on the testing 

set (1) after each 10 generations. From the figure, Proposed Architecture #4 was the algorithm 

that gave the best test accuracy on the testing environment (1). 
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This thesis covered some of the GNP-RL algorithms and their implementations on 

applying them on the Tile world problem (GNP-RL, VSGNP-RL GNP-RL with Elitism and 

Gene Diversification, Constraint conformance GNP-RL, Optimal Search & Constraint 

conformance GNP-RL, Task prioritisation & Optimal Search & Constraint conformance GNP-

RL). 

9.2.1 GNP-RL 

This algorithm invented by Mabu in 2007 [9] which combine the genetic network 

programming with reinforcement learning Sarsa by dividing each node to several sub nodes, 

and then make the RL train the agent on the graph to choose the best sub node depending on 

the maximum Q-value. This technique allows the chromosome to contain more nodes to solve 

the complex problem while keeping the chromosome structure simple. 

This algorithm proved superior to the GNP by obtaining higher results. But in spite of 

that, this algorithm is still unable to solve the tile problem effectively. 

9.2.2 VSGNP-RL 

In 2014 Mabu [2] produced the VSGNP-RL technique, which divides the chromosome 

into some subprograms. He implanted this method as a solution to break up the problem into 

smaller tasks so that each subprogram performs a task to make the agent able to move between 

subprograms and to solve tasks step by step. 

 This method achieved a higher result than the basic GNP-RL, but it could not 

effectively solve the tile world problem. And this method has proved its limitation in two 

issues; the first one is that when the algorithm is allowed to change the size of the subprograms 

in the individual, one of the subprograms become very large and contains the majority of the 

nodes and the other becomes too small; thus, ineffective. The second point is that in some cases 

when the agent starts working in a subprogram, it hangs inside it and can’t move to another 

subprogram, which makes the agent unable to work correctly. 

9.2.3 (Proposed Architecture #1) GNP-RL with Elitism and Gene Diversification  

Using the diversity in the population has been discussed in the genetic algorithms, but 

it has not been covered for the GNP-RL till now. So, we decided to apply diversity in two axes. 

The first in the selection of the elite and the second when the chromosomes crossover. In the 

first axis, when selecting the best five individuals (elite) in the population, the algorithm also 
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selects the most diverse chromosome to the best five and passes them to the new population; 

thus, the algorithm ensures diversity in the next sample. The second axis is that at the crossover 

operation, the algorithm selects the first parent based on tournament selection, and the second 

parent chooses as the most diverse individual from the parent1 in the population. In this way, 

we guarantee that the nodes will be different in the parents, and this ensures that the children 

get new features. 

These two mechanisms make the algorithm work faster and get the results in early 

generations, and improve the results slightly, but they also could not solve the tile world 

problem clearly.  

9.2.4 (Proposed Architecture #2) GNP-RL with Constraint conformance  

One of the noticed problems when testing the chromosome on the tile world problem 

is that the agent’s loss some tiles due to pushing them to a trapped location, thus prevent them 

from being pushed again to anyway. To solve this issue, we came with a technique that trains 

the agent how to act before pushing the tile to a trapped position. This method works on reward 

and penalizes the agents for training them to avoid pushing the tiles to unsafe locations and to 

find another path on the graph to solve that. 

This method proved it effectively in the training and testing results 28/30 (93.33%) & 

17/30 (56.66%) respectively. 

9.2.5 (Proposed Architecture #3) Optimal Search & Constraint conformance GNP-RL 

With the previous algorithms, the agent did not take into account the obstacles when 

determining the direction of the target and this was observed when the agent tries to overcome 

the obstacles to reach the goal and thus lose a lot of steps without actually achieving the goal. 

Optimal search algorithm (A*) has been used in the Judgment node to solve this problem. The 

judgment nodes with (ID = 5,6,7, and 8) have been modified to use A* algorithm to find the 

shortest path to the goal and detect the direction to the first point in this shortest path as an 

answer for the judgment node. 

When adding this procedure to the constraint conformance GNP-RL, the algorithm has 

improved significantly, with 30/30 (100%) and 23/30(76%) in the training and testing results 

respectively. 
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9.2.6 (Proposed Architecture #4) Task prioritisation, Optimal Search & Constraint 

conformance GNP-RL 

Until now, agents work on the nearest target at the moment but without taking into 

consideration the priority of the implementation of the tasks and this is what made the agents 

in some cases conflicting on the target, especially if there is one goal is the closest to all agents 

and so the agents lose their steps without any achievement. Therefore, we have been working 

on adding priority to the agents. By changing the reward and punishment values for each agent, 

we have been able to train agents to prioritize by assigning tasks to each agent before starting 

the algorithm and then rewarding the agent when the same priority is implementing. 

This technique has achieved the best results on the tile world problem using GNP-RL 

so far in training and testing results with 30/30 (100%) and 26/30 (86.66%) respectively. 

9.2.7 Running Time 

Although the added techniques to the GNP-RL increased the training time especially 

the Optimal Search algorithm, the results achieved by the new algorithm and the speed of 

learning made the final total time to reach the best results is much lower than in the previous 

algorithms. Table 9.2 shows this: 

 

Algorith
m 

(Review) 
GNP-RL 

[9] 

(Review) 
VSGNP-

RL 
[2] 

(Proposed 
Architecture 

#1) 
GNP-RL 

with Elitism 
and Gene 

Diversificati
on 

(Proposed 
Architectur

e #2) 
GNP-RL 

with 
Constraint 
Conforman

ce 

(Propos
ed) 

GNP-RL 
with 

Optimal 
search 

(Proposed 
Architecture 

#3) 
GNP-RL with 

Optimal 
search and 
Constraint 

Conformance 

(Proposed 
Architectur

e #4) 
GNP-RL 

with 
Constraint 
Conforman
ce, Optimal 
Search and 

Tasks 
Priorities 

The 
average 
time for 

each 
individu

al 

0.554 0.823 0.906 0.748 2.628 2.628 2.696 

# 
individu

als 
300 300 300 300 300 300 300 
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Algorith
m 

(Review) 
GNP-RL 

[9] 

(Review) 
VSGNP-

RL 
[2] 

(Proposed 
Architecture 

#1) 
GNP-RL 

with Elitism 
and Gene 

Diversificati
on 

(Proposed 
Architectur

e #2) 
GNP-RL 

with 
Constraint 
Conforman

ce 

(Propos
ed) 

GNP-RL 
with 

Optimal 
search 

(Proposed 
Architecture 

#3) 
GNP-RL with 

Optimal 
search and 
Constraint 

Conformance 

(Proposed 
Architectur

e #4) 
GNP-RL 

with 
Constraint 
Conforman
ce, Optimal 
Search and 

Tasks 
Priorities 

# 
generati
ons to 
reach 

the 
highest 
results 

5000 2700 5000 5000 5000 1700 600 

Total 
time 

831000 670680 1359000 1122000 3664500 1340280 485280 

The 
highest 
result 
on the 
testing 
stage 

(testing 
set (1)) 

9/30 
(30%) 

13/30 
(43.3%) 

- 
17/30 

(56.6%) 
- 

23/30 
(76%) 

26/30 
(86.66%) 

Table 9.2 Comparing the training time for each algorithm 
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9.3 Representation of One of the Best Chromosomes for the Tile World 

Problem 

When testing one of the best chromosomes from Architecture #4 on the testing set (1) with a result 

(26/30), the transitions of the agents have been recorded, and the steps were as Figure 9.4, Figure 

9.5, and Figure 9.6 for agent1, agent2, and agent3 respectively (See video 

https://youtu.be/LRjvcfV4EyE ): 

Follow the first agent transitions in the 10 environments with the node id: 

 

Figure 9.4 Transitions of agent 1 on the 10 environments when running on the graph in Figure 9.7 Figure 9.7 

 

Follow the second agent transitions in the 10 environments with the node id:

 

Figure 9.5 Transitions of agent 2 on the 10 environments when running on the graph in Figure 9.7 

https://youtu.be/LRjvcfV4EyE
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Follow the third agent transitions in the 10 environments with the node id: 

 

Figure 9.6 Transitions of agent 3 on the 10 environments when running on the graph in Figure 9.7 

Node Type 

0 Start Node 

1 Judgment Node 

2 Processing Node 
Table 9.3 Node types 

Judgment Node Functions Judgment Node Connections 

1 Judge Forward (JF) Floor = 0, Obstacle = 1, Tile = 2, Agent = 3, Hole = 4 

2 Judge Backword (JB) Floor = 0, Obstacle = 1, Tile = 2, Agent = 3, Hole = 4 

3 Judge Left (JL) Floor = 0, Obstacle = 1, Tile = 2, Agent = 3, Hole = 4 

4 Judge Right (JR) Floor = 0, Obstacle = 1, Tile = 2, Agent = 3, Hole = 4 

5 
Direction to the nearest Tile 

(DT) 
Forward = 0, Left = 1, Right = 2, backword = 3, nothing = 4 

6 
Direction to the nearest Hole 

(DH) 
Forward = 0, Left = 1, Right = 2, backword = 3, nothing = 4 

7 
Direction to the nearest Hole 

from the nearest Tile (TH) 
Forward = 0, Left = 1, Right = 2, backword = 3, nothing = 4 

8 
Direction to the second nearest 

tile (DST) 
Forward = 0, Left = 1, Right = 2, backword = 3, nothing = 4 

Table 9.4 Judgment Node Functions 

Processing Node Functions Processing Node Connections 

1 Move Forward (MF) Without trapping =0, with trapping = 1 

2 Turn Right (TR) One connection to the Next node 

3 Turn Left (TL) One connection to the Next node 

4 Stay (ST) One connection to the Next node 
Table 9.5 Processing Node Functions 
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The properties for each node in the tested chromosome (note: the subnode with the maximum Q-value is 

shown): 

 

 

Figure 9.7 A chromosome representation (with the best sub node) for one of the best chromosomes 

 

 

  

 

  

 

 

 

 

 

 

 

id 120 NT 1 
Fun 1 

38  11  67  73  92 

Node id 
Node type 

Function 

Connection 

Note: 

The chosen sub node is the sub node with the 

maximum Q-value. 

In the chromosome representation here only the 

maximum sub node is showed. 
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Figure 9.4, Figure 9.5, and Figure 9.6 show the transitions for each agent in the chromosome that 

represented in Figure 9.7  

 

 

Figure 9.8 Example for following the agent’s transitions 

… (and so on, 

and so forth) 

Start node refers to node number 58 

Node number 58 is a judgment node (1) with function (3 ) judge 

left  as presented in Table 9.3, Table 9.4, and Table 9.5. 

Depending on the giving feedback from environment 1 about 

what is in the left which is (Floor = 0), so the selected connection 

will be connection number [0] which is (next node_id→38). 

Then agent 1 will visit node number 38 which is processing 

node with function (go forward), and so on …….. 

When agent 1 finish step 1 (which is 8 delay time), it will give 

the turn to agent 1 to continue. And the same for agent 3. 

The simulation will run until the three tiles in the environment 

correctly dropped on the holes, or until the agent finish their 

steps which is 60 steps for each agent. 
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Figure 9.9 Times of using for each function type when testing a chromosome from Architecture #4 on the testing set (1) with 
the result (26/30) 

 

From Figure 9.9, it has been noticed that the agents have not used (JF, JR, DST). 

(Judgment Forward, Judgment Right, and the direction to the second nearest tile). It seems that 

the (judgment Backward, and Judgment Left) are enough for the agent to give decisions. And 

(direction to the second nearest tile) is not important, the agents used the (direction to the 

nearest tile more than the other judgment nodes). (The direction to the nearest tile and Move 

forward) are the most using nodes in the chromosome.   
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9.4 Conclusion  

In conclusion, through developed techniques on the GNP-RL; Constraint Conformance, 

optimal search and tasks priorities, we have achieved the highest results to date on the tile 

world problem. The previous best result was in December 2018 (19/30 = 63.33% [11]). After 

using the techniques presented in this study, we were able to achieve 100% training accuracy 

and 86.66% test accuracy in Testing Environment (1) [2] and 96.66% test accuracy in Testing 

Environment (2, proposed environment). These results were implemented on the complex 

benchmark which is tile world problem. The difficulty of this problem is that the training set is 

sparse and the agents work together to put all the tiles in the holes within the shortest possible 

time. The agents cannot pull the tiles and all they can do is push or turn right or left. This makes 

the agent sometimes push the tiles to a place where it cannot be pushed again anymore to 

anywhere, which makes it lose the tiles. We implemented the restriction of constraints GNP-

RL technique to train the agent on how to prevent pushing the tile into a trapped location. We 

used the optimal search algorithm inside GNP-RL to give an accurate direction for the objects 

in the grid world. We added the task prioritization to GNP-RL in order to influence the way 

agents work to solve the problem more efficiently (e.g. prevent any collisions or waste time 

and efforts). The proposed training strategies were employed on two experiments for each 

variant of the GNP algorithm; each one on a different type of training set.  Training is stopped 

based on the performance of the algorithm on the validation/test set, in order to avoid 

overfitting (as we have observed).  When we combined all the three proposed techniques and 

the training strategies on the GNP-RL, we achieved the best results. 

Generalised strategy for solving real world problems 

Here we summarize the main points that need to be considered when applying the 

proposed three techniques on real world problems with multi-agents and dynamic environment. 

To apply the three proposed mechanisms, the following general approach applies: 

Constraint conformance: 

Every problem imposes some conditions or limitations on the agent’s behavior. For 

example, agent actions should: prevent collisions between agents, avoid some hazardous paths 

or walls, or avoid putting objects on unwanted places, etc.   To use the constraint conformance 

mechanism on any real-world problem, firstly, identify all conflicting situations in the problem 

domain and incorporate the appropriate functions (into the library of functions for which GNP-

RL selects from) for detecting those conflicting situations.  Secondly, train the agents how to 
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avoid all the unwanted cases by punishing them each time their actions produce one of those 

unwanted cases. The punishment is imposed by way of penalties when updating the Q-values 

in RL.  

 

Task prioritization: 

In order to influence the agents to perform task prioritization, motivational/promotional 

rewards should be given to the agents each time they finish a task. Each task should be given 

a specific reward that is proportional to its importance/priority. The greater the importance is, 

the greater the reward must be.  By using this technique, the agents will try to perform the most 

importance task first, to get more rewards, before solving tasks of lesser importance. 

 

Optimal Search: 

Using the optimal search component alone without the help of the other proposed 

mechanisms will not solve the problem itself. That means, to solve the problem, the GNP-RL 

needs to derive a meta-level reasoning strategy that combines selectively together a number of 

functions from the given library of functions, specific to the problem domain.  When asking 

about the shortest path using one of the optimal search algorithms like A*, A* in this proposed 

framework will not tell the agent a complete path (where to go). Instead, the GNP-RL will 

detect the next action for the agent by considering many questions that are answered by A*, 

such as (where is the nearest Tile, where is the nearest hole, where is the nearest hole to the 

nearest tile, and where is the second nearest tile). So, A* can answer these questions by finding 

the shortest paths to each of those queries and gives the direction to the first waypoint along 

that path.  It is important to note that A* does not give the ultimate next action for the agent.  

GNP cleverly combines the answers to those queries using multiple judgement nodes.  

Consequently, combining the optimal search together with the constraint conformance and task 

prioritization components with the GNP-RL ultimately achieves a meta-level reasoning 

strategy.  In our proposed framework, A* can be found at the lower level of decision-making, 

while GNP-RL is at the top of the hierarchy of decision-making. 

 

Other real-world examples to demonstrate the proposed strategies 
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Robot Football: 

One of the real-world problems that could benefit from the proposed algorithm is the 

Robot Football. It involves two opposing teams, with each group having attacking/defending 

players and a goalkeeper. To apply the three techniques on this problem, firstly:  impose 

constraint conformance by punishing the agents when unwanted actions occur (e.g. pushing 

the ball to a player from the other group, pushing the ball outside the playing field, kicking the 

ball into their own team goal, touching the ball with the hand, and so on…). Secondly: apply 

the optimal search by finding the shortest paths to multiple source and target destinations (path 

to the ball, to the nearest player from the same team, to the nearest player with the ball, and so 

on…). Thirdly: apply the task prioritization by giving the highest reward (10) when the player 

scores a goal.  Another reward when the player kicks the ball to another player that scores a 

goal (this time the reward is lower than the first one by one point (9)). Moreover, a reward for 

the player that prevents the ball from entering their own goal post (8) … (etc.). 

 

Automated Storage System (Multi-Agent): 

Business owners are working on automating storage systems to save money and time. 

The difficulty of this problem is how can the agent store the object in the right place with the 

perfect size without wasting any free space between the objects.  Moreover, it should reuse the 

same space once it becomes free.  To utilize the proposed method on this problem, firstly: 

implement the constraint conformance by punishing the agents when it makes unwanted 

decisions (e.g. putting a small object in a big place, trying to put a big object in a smaller 

destination space, putting an object in a wrong place, colliding with another agent, loosing the 

object, … and so on). Secondly: using the optimal search to compute the shortest paths to 

appropriate target destinations (path to the nearest object that needs to be moved, to the nearest 

fitting destination for the object, and so on…). Thirdly: implementing task prioritization by 

giving the best reward when the agent puts the nearest object to the nearest fitting destination 

that is free (10), a lower reward when the agent puts the nearest object to the nearest destination 

that is a little bigger (9), and so on and so forth.  

 

9.5 Future work 

For the future work, the Task prioritisation & Optimal Search & constraint conformance 

GNP-RL algorithm could be applied to another benchmark. Also, A* technique could be 
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exchanged with other optimal search algorithms such as (LPA*, D*, …) to save more time. 

The effectiveness of the Elitism and Gene Diversification could be checked by implementing 

it on another problem. The reward and penalization technique could be used with another 

variant of GNP-RL to prove its benefits. 
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