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ABSTRACT 

Genomic DNA was isolated from Propionibacrerium shermanii (52W). A 454 bp DNA 

fragment coding for the methylmalonyl-CoA epimerase (EC 5.1.99.1, subsequently 

referred to as epimerase) was amplified from genomic DNA by the polymerase chain 

reaction using primers designed from the known DNA sequence of the gene. 

The P. shermanii epimerase gene was ligated into the 2.47 kbp expression vector pT7-7. 

The ligation reaction mixture was transformed into eleccroporation competent E. coli 

XLl-_Blue cells. Plasmid DNA prepared from several transformants was analysed, by 

agarose gel electrophoresis of restriction enzyme digestions, and transformed into E.coli 

SRP84/pGP 1-2 cells to identify potential epimerase expression constructs (pTEEX) by 

hear shock induction. The insert DNA of one of the putative pTEEX epimerase constructs 

was fully sequenced and shown to be identical to the known DNA sequence of the 

epimerase gene described by Davis ( 1987). 

Using the sequenced expression construct pTEEX, recombinant epimerase was expressed 

to 20-35% of the total cell protein in the protease deficient E. coli strain SRP84 using the 

dual plasmid expression system of Tabor and Richardson (1985). The recombinant 

epimerase was -95-100% soluble in £. coli. 

The recombinant epimerase and the 'wild-type' epimerase produced by P. shermanii were 

purified using the procedures developed for the 'wild-type' epimerase. The addition of a 

heat-treatment step (70"C for 15 min) early in the purification of the recombinant enzyme 

successfully exploited the unusually high thennostability of the epimerase protein. 

The epimerase protein was found to have an anomalously low electrophoretic mobility in 

a modified Laemmli discontinuous Tris-glycine alkaline buffer system for SDS-PAGE 

gels compared to the Weber and Osborn continuous phosphate buffer system. Using the 

latter system, a subunit molecular weight of 16.6 kDa was obtained. This is consistent 

with the molecular weight of 16.72 kDa (methionine on) calculated from the inferred 

amino acid sequence. 

The N-terminal sequence of the purified 'wild-type' and recombinant epimerases were 

identical alchough only half of N-terrninal methionine residues were removed from the 

recombinant protein. The subunit molecular weight, specific activity, activation by 

divalent metal ions and behaviour in crystallization trials of the 'wild-type' and 

recombinant epimerases were very similar. Recombinant epimerase crystals were grown 

in a buffer containing 0.2 M ammonium acetate and 0.1 M citrate, pH 5.6, containing 

30% PEG 4000 as precipitant. These crystals were relatively poorly ordered and 

diffracted to only 4.5 A resolution, but crystals of the recombinant epimerase that diffract 

to 2.6A can be grown under appropriate conditions. 
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CHAPTER 1: INTRODUCTION 

1.1 GENERAL INTRODUCTION 

Mammals and some bacteria, notably the propionibacteria (propionate-producing bacteria) 

and the rumen bacterium Selenomonas ruminancium, possess a metabolic pathway that 

interconvens succinyl-CoA (carboxypropionyl-CoA) and propionyl-CoA. The direction 

in which this pathway operates depends on the role of the pathway and differs in 

mammals and bacteria. In fermentations by propionibacteria, succinyl-CoA is converted 

to propionyl-CoA as part of a complex catalytic cycle in which pyruvate (produced by 

anaerobic glycolysis) is reduced to propionate and NADH oxidised to NAD+ to regenerate 

the electron acceptor required for continuous glycolysis (Retey, 1982). In contrast, 

mammals utilise the same pathway to convert propionyl-CoA into succinyl-CoA which is 

then able to enter the TCA (tricarboxylic acid) cycle where it may be oxidized to produce 

ATP. For good ruminant nutrition the pathway must operate in both directions; from 

succinyl-CoA to propionyl-CoA in the principle propionate-producing rumen bacterium, 

Selenomonas ruminantium, and from propionyl-CoA to succinyl-CoA in ruminant liver to 

utilise the propionate generated in the rumen. In all mammals the pathway is also required 

for the complete degradation of odd-chain fatty acids, the amino acids isoleucine, valine, 

methionine and threonine, and some products of cholesterol metabolism (Kamoun, 

1992). 

Figure 1.1 shows how the interconversion of succinyl-CoA and propionyl-CoA is 

catalysed by the three enzymes methylmalonyl-CoA mutase (EC 5.4.99.2), 

methylmalonyl-CoA epimerase (EC 5.1.99.1) and a carboxylase enzyme (oxaloacetate 

transcarboxylase (methylmalonyl-CoA carboxyltransferase, EC 2.1.3.1) in 

propionibacteria, and propionyl-CoA carboxylase (EC 6.4.1.3) in mammals). The terms 

epimerase, mutase and transcarboxylase will often be used in this work when referring to 

methylmalonyl-CoA epimerase, methylmalonyl-CoA mutase and oxaloacetate 

transcarboxylase respectively. 

Mutase isomerises succinyl-CoA and the (R) stereoisomeric form of methylmalonyl-CoA. 

This reaction is dependent upon adenosylcobalamin (coenzyme B 12) (Kellermeyer er 

al., 1964). Epimerase plays the pivotal role of racemising the (R) and the (S) 

stereoisomeric forms of the metabolite methylmalonyl-CoA (Allen et al., 1962; Mazumder 

er al., 1962). In propionibacteria, transcarboxylase converts (S)-methylmalonyl-CoA into 

propionyl-CoA. Coupled to this reaction is the utilization of pyruvate to produce 

oxaloacetate (Allen et al., 1962). In contrast, mammalian tissues use propionyl-CoA 

carboxylase to convert propionyl-CoA to (S)-methylmalonyl-CoA (Mazumder er al., 
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F igure 1.1: The reaction pathways involved in the interconversion of succinyl-CoA and 
propionyl-CoA. In propionibacteria the pathway functions from bottom to top. (i.e. 
succinyl-CoA is converted to propionyl-CoA, and subsequently propionate). In 
mammalian tissues the pathway works from the top to the bottom and the product of 
succinyl-CoA enters the TCA cycle (the cycle for the oxidation of fuel molecules in 
cellular mitochondria). Alternatively, (S)-methylmalonyl-CoA may be hydrolysed by 
methylmalonyl-CoA hydrolase (Kovachy et al., 1988) to form methylmalonic acid which 
is excreted in the urine. The directions the pathway operates in mammalian and 
(propioni)bacteria are indicated by the bold arrows on either side of the diagram. 
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1962). Transcarboxylase and propionyl-CoA carboxylase are biotinyl-proteins, and 

transcarboxylase also contains cobalt and zinc. 

1.2 METHYLMALONYL-CoA EPIMERASE FROM MAMMALS 

The epimerase enzyme has been purified and characterised from sheep liver and kidney 

(Mazumder et al., 1962), and also rat liver (Stabler et al., 1985), but no mammalian 

epimerase has been cloned. The rat liver and the rat and human white blood cell epimerase 

are suggested to be immunologically related (Stabler et al., 1985). These animal 

epimerase enzymes have a Mr of approximately 32,000. Studies on the rat liver epimerase 

by Stabler et al. (1985) indicated the presence of two subunits, with a Mr of 16000, that 

are not connected by disulfide bonds. The optimum pH for rat liver epimerase activity 

was 7 .0, and 50% of maximal activity was observed at pH 5.0 and 9.0. The epimerase 

activity was shown to be completely inactivated by the presence of EDTA and later 

reactivated with the addition of Co2+. Other divalent metal ions such as Zn2+, Cu2+, Cu+, 

and Cd2+ completely inhibited epimerase activity, while Mn2+, Co3+ and Fe2+ were mild 

activators. The purified epimerase from rat liver binds 1 mole of Co per subunit. 

However, the specific metal that binds the epimerase in vivo is yet to be established. The 

fact that Co2+ provides the greatest degree of activation for both mammalian and P. 

shermanii epimerase (Leadlay, 1981) is interesting since cobalt has been considered to be 

an essential trace element only as a component of the cyanocobalamin (vitamin B12) 

molecule, which is only synthesized by certain microorganisms, including some rumen 

bacteria. The Km of rat liver epimerase for methylmalonyl-CoA is 0.1 mM and the kcat 

was found to be 250,000 molecules of substrate per minute (Stabler et al., 1985). The 

mammalian enzyme in located in the mitochondrial matrix, together with the other two 

enzymes of this pathway converting propionyl-CoA to succinyl-CoA. Because the 

methylmalonyl-CoA hydro lase (Figure 1.1) acts only on the (S) isomer of 

methylmalonyl-CoA, whereas mutase acts only on the (R) isomer, the epimerase plays an 

important role in determining the fate of (S)-methylmalonyl-CoA after it is formed from 

propionyl-CoA. 

Three alternative mechanisms have been suggested for the epimerase catalysed­

epimerization of the methylmalonyl-CoA: (i) the intermolecular transfer of the coenzyme 

A moiety to methylmalonic acid, (ii) the intramolecular CoA transfer from one carboxyl 

group to another, or (iii) a shift of the a-hydrogen atom (Mazumder et al., 1962). 

Experiments by Mazumder et al. ( 1962) have ruled out possibilities (i) and (ii) and have 

suggested that the epimerization occurs via mechanism (iii) where the epimerase enzyme 

relocates the carboxyl group on the C-2 position of (S)-methylmalonyl-CoA to form the 

(R)-methylmalonyl-CoA stereoisomer by the exchange of the methylmalonyl-CoA C-2 
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hydrogen atoms with protons in the medium. 

1.3 METHYLMALONYL-CoA EPIMERASE FROM P. SHERMAN/I 

Propionibacterium shermanii (52W) is a propionate-producing species of the 

propionibacterium genus from the family propionibacteriaceae. Propionibacteria are gram 

positiv·e, chemo-organotrophic, non-spore-forming, non-motile, usually rod-shaped 

bacteria that anaerobically metabolize carbohydrates (e.g. glucose), polyols (e.g. glycerol) 

and organic acids such as lactate. Propionibacteria are generally anaerobic to aerotolerant 

anaerobes (Moore and Holdman, 1975). 

Propionibacteria fermentation products include a combination of propionic and acetic 

acids and frequently lesser amounts of mono- and dicarboxylic acids, such as isovaleric, 

formic, succinic or lactic acids, and C02. All species of propionibacteria produce acids 

when grown on glucose. Alchough most strains in this genus grow most rapidly under 

strictly anaerobic condicions, many strains grow well in a peptone/yeast-extract/glucose 

broth exposed to air when a large inoculum is used. Bacterial growth is most rapid 

between 30-37°C at a pH near 7.0 (Moore and Holdman, 1975). Propionibacteria 

produce pigments and colonies may be white, gray, pink, red, yellow or orange. 

Propionibacceria are isolated from and used in the manufacture of dairy products such as 

cheese. The C02 produced by P. shermanii strains during cheese maturation is 

responsible for che holes in some types of Swiss cheese. Species have also been isolated 

from the skin of animals. Some propionibacteria species may be pathogenic, and have 

been implicated in the development of facial acne. Until recently propionibacteria were 

cultivated as commercial sources of vitamin B 12 and derivacives. The GC content of the 

DNA of most propionibacteria species ranges between 59% and 66% (Moore and 

Holdman, 1975). 

Methylmalonyl-CoA epimerase has been purified to homogeneity from P. shermanii strain 

52W (Allen et al., 1963; Leadlay, 1981). The purified epimerase protein was indefinitely 

stable indefinitely when stored at -20°C and pH 7.0. 

Studies on the subunit structure of the epimerase have shown no evidence for the 

formation of any aggregates larger than dimers. Histidine was the free N-terminal residue 

identified when S-carboxymethylated epimerase was subjected to the dansyl procedure. 

This is consistent with the two subunits being identical. These results were further 

supported by the peptide-mapping experiments of Leadlay (1981), although given the N­

terminal sequences obtained in the current study (see Figure 3.20), an N-terminal 

histidine residue seems unlikely. It was also suggested that there may be at least two 



s 

active sites per epimerase dimer. Each of the two identical dimer subunits has an 

approximate Mr of 16,500 and a total Mr of 33,000 (Leadlay, 1981). 

The activity of the epimerase enzyme is increased by preincubation with cenain divalent 

metal ions, especially Co2+, and to a lesser extent by Ni2+, Zn2+ and Mn2+ (Roeder and 

Kohlaw, 1980; Leadlay, 1981). Several metal ion chelating reagents, such as EDTA, 

have been found to inactivate epimerase activity although this inactivation was reversible 

in most instances (Leadlay, 1981). This suggests the presence of tightly bound metal 

ions, and a role for metal ions in epimerase catalysis or thermostability, although this is 

yet to be proven. 

Methylmalonyl-CoA epimerase is unusually thermostable. Studies have indicated that 

50% inactivation of epimerase required approximately 5 min in a boiling water bath and 

10 to 20 min at 1oo·c to achieve complete inactivation (Allen er al., 1963). Sedimentation 

velocity studies found that the epimerase sediments as a single, apparently symmetrical, 

boundary (Leadlay, 1981). This study was in good agreement with that done earlier by 

Allen er al. (1963). A discrepancy exists, however, with regard to the stability of 

epimerase activity in acid solutions. While Allen er al. (1963) stated that the P. shermarzii 

epimerase was resistant to l M perchloric for up to 30 min at o·c, Leadlay (1981) found 

that the enzyme activity was not unusually acid stable. 

In P. shermarzii the epimerase enzyme catalyses the epimerization of (R)- and (S)­

mechylmalonyl-CoA within a larger metabolic cycle chat reduces pyruvace co propionate 

with the oxidation of NADH to NAD+ (Figure 1.2). This production of propionate is 

important for the propionibacteria in that it ensures the continuity of its nutrition by 

allowing it to utilise the high amount of glucose present in its environment as food. 

Without propionate production the regeneration of NAD+, necessary for continuous 

glycolysis, could not occur. 

The sequence of events in the larger metabolic cycle begins with the carboxylation of 

pyruvate to oxaloacetate by the biotin-containing transcarboxylase using (S)­

methylmalonyl-CoA as carboxyl donor. Oxaloacetate is then reduced to malate, which in 

tum is dehydrated to fumarate by the action of the enzyme couple malate dehydrogenase 

and fumarase. The second reduction is performed by a flavin-containing fumarate 

reductase, reaction leading to succinate, which is then activated to succinyl-CoA by a 

coenzyme A transferase making use of propionyl-CoA as CoA donor. The other product 

of this transesterification is propionate that will be released into the medium as waste. The 

role of mutase becomes apparent in the conversion of succinyl-CoA to (R)­

methylmalonyl-CoA. Since transcarboxylase, the closing member of the cycle, is specific 

for (S)-methylmalonyl-CoA, an epimerization of the (R)-stereoisomer is required, and is 
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Figure 1.2: The metabolism of lactate in propionibacteria (after Asmundson (1982)). 
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catalysed by epimerase (Retey, 1981). 

From an evolutionary point of view, it is interesting to question why three different 

enzymes are required to interconvert succinyl-CoA and propionyl-CoA in both 

mammalian tissue and P. shermanii. It would have been more efficient if evolution had 

evolved mutase and transcarboxylase enzymes with a common reactant, either the (R) or 

(S) stereoisomer of methylmalonyl-CoA, thus eliminating the need for an epimerase 

enzyme. Instead, nature has opted for an unusual three enzyme pathway in which initially 

C02 has to be attached to the C-2 position of propionyl-CoA, to give the (S)­

stereoisomer of methylmalonyl-CoA, by propionyl-CoA carboxylase. Methylmalonyl­

CoA epimerase then has to invert the configuration at C-2 of the methylmalonyl portion of 

the CoA thioester. The bulky -CO-S-CoA group then has to be moved from the C-2 to the 

C-3 position by the mutase enzyme by exchanging it with the C-3 hydrogen atom to form 

succinyl-CoA. 

1.4 CLONING AND EXPRESSION OF THE P. SHERMAN/I 

EPIMERASE GENE 

The genes for the P. shermanii epimerase (Davis, 1987), mutase (Marsh et al., 1989), 

and transcarboxylase (Samols er al., 1988) enzymes have all been cloned and sequenced. 

The genes for the mutase (McKie et al., 1990) and the transcarboxylase (Samols et al., 

1988) enzymes have also been expressed in £. coli. 

1.4.1 METIIYLMALONYL-CoA EPIMERASE GENE EXPRESSION IN 

STREPTOMYCES LIV/DANS 

Davis (1987) cloned and sequenced the epimerase gene from P. shermanii. The approach 

taken involved the purification of the epimerase from P. shermanii (52W), followed by 

proteolysis using Arg-C and Lys-C proteases (Boehringer) to generate peptides for N­

terminal sequencing. Selected RP-HPLC-purified peptides and the intact enzyme were 

subjected to N-terminal sequencing and the amino acid sequence information was used to 

design redundant oligonucleotides probes for the epimerase gene. 

AP. shermanii mini-library was prepared by digestion of P. shermanii genomic DNA 

with the restriction enzyme KpnI and the ligation of DNA fragments larger than 1 kbp into 

pUC18 (digested with KpnI and treated with CIAP). The ligation mix was transformed 

into£. coli to produce the P. shermanii mini-library. A redundant 18-mer oligonucleotide 

probe designed to hybridize to an internal portion of the epimerase gene was used to 
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probe the library by colony hybridization. Plasmid DNA isolated from hybridizing 

colonies was sequenced using primers designed from the protein sequence and an open 

reading frame coding for a protein with the epimerase N-terminal protein sequence and 

subunit Mr was identified. At the time this work was done, there was some evidence to 

suggest that P. shermanii promoters did not function well, if at all, in gram-negative 

bacteria such as E.coli (Murtif et al., 1985). The gram positive Streptomyces lividans 

was therefore chosen as the host for the heterologous expression of P. shermanii 

epimerase from its own promoter. The epimerase gene was subcloned into a high copy 

number S. lividans vector, that conferred resistance to the antibiotic thiostrepton, to create 

the epimerase expression plasmid pND2. S. lividans protoplasts transformed with pND2 

expressed moderate levels of P. shermanii epimerase when grown in liquid medium 

containing thiostrepton. 

Although the S. lividans heterologous expression system for epimerase was functional, 

there were several disadvantages compared with a possible heterologous expression 

system in E. coli. Firstly, the level of expression obtained in S. lividans was considerably 

lower than could normally be expected for a foreign bacterial gene expressed in E. coli 

under the control of a strong promoter. In addition, the pND2 epimerase expression 

plasmid was not stable in S. lividans; it would often be lost or modified so that P. 

shermanii epimerase was not expressed. This plasmid instability may have been due in 

part to the fact that S. lividans has its own epimerase gene. The presence of low levels of 

a host epimerase also complicated the purification of recombinant epimerase. The 

purification of recombinant epimerase from S. lividans was further complicated by 

difficulties in lysing S. lividans, which is quite resistant to conventional lysis techniques, 

and by the presence of aggressive proteolytic activities in the cell extract. The latter caused 

some degradation of the recombinant epimerase before and during purification. 

Heterologous expression in E. coli offered several advantages: (i) no host epimerase gene; 

(ii) faster growth of the host organism (12 h versus 2-3 days for S. lividans); (iii) easier 

plasmid transformation procedures; (iv) cheaper antibiotic costs (thiostrepton is 6x more 

expensive than kanamycin and 25x more expensive than ampicillin); (v) easier cell lysis; 

(vi) the possibility of taking advantage of the intrinsic thermostability of the epimerase by 

adding a heat-treatment seep co the epimerase purification scheme developed by Leadlay 

(1981). 

1.4.2 EPIMERASE GENE EXPRESS ION IN E. COLI 

The instability of a functional P. shermanii epimerase expression plasmid in S. lividans, 

and difficulties with epimerase purification, led to the idea of expressing the epimerase 

gene in E. coli. The availabilicy of protease-deficient E. coli strains is an attractive feature 
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of choosing £. coli for heterologous expression of proteins. The TI-based expression 

system of Tabor and Richardson ( 1985) was to be used. This system places the gene to 

be expressed under the control of the <I> 10 17 promoter, a strong promoter for 17 RN A 

polymerase. Induction is either by heat shock or isopropyl P-D-thiogalactopyranoside 

(IPTG). In addition, the pT7-7 expression vector ensures that the mRNA contains a 

consensus£. coli ribosome binding site at an optimal spacing from the ATG start codon 

of the gene to be expressed (see Figure 2.1). This system had worked well for the 

expression of P. shermanii methylmalonyl-CoA mutase in£. coli (McKie et al., 1990). 

1.5 EXPERIMENTAL STRATEG IES AND OBJ ECTIVES 

The aim of this study was to express the P. shermanii methylmalonyl-CoA epimerase 

gene in £. coli and to conduct a preliminary characterization of the purified recombinant 

epimerase protein obtained, comparing its properties to the 'wild-type' epimerase purified 

from P. shermanii. 

This required the growing of P. shermanii cultures and isolation of genomic DNA, the 

amplification of the P. slzermanii epimerase gene by PCR, the ligation of the epimerase 

gene PCR product into the£. coli expression vector pTI-7, and the identification of the 

desired expression construct (called pTEEX). Because the epimerase gene inserted into 

the pTI-7 expression vector had been produced by PCR, it was necessary to check the 

sequence of the epimerase gene in pTEEX to guard against the possibility of errors having 

been introduced by the infidelity of Taq polymerase in the PCR amplification process. 

The epimerase gene was expressed by heat shock induction of E. coli SRP84/pGP1-

2/pTEEX. Purification of the expressed recombinant and the 'wild-type' epimerase, 

together with the purification of the coupling enzymes, mutase and transcarboxylase, 

needed to assay epimerase, allowed a comparison of the specific activity of the 

epimerases. It was vital to obtain the N-terminal sequence of both the 'wild-type' and 

recombinant epimerases, their specific activities and subunit Mr, and to perform 

crystallisation trials in order to assess how similar the 'wild-type' and recombinant 

epimerase proteins were. 

The immediate goal of this study was to provide a convenienc and abundant recombinant 

source of methylmalonyl-CoA epimerase, free of contaminating methylmalonyl-CoA 

mutase and oxaloacetate transcarboxylase activities, for use in enzyme coupled assays of 

the mutase and transcarboxylase enzymes. It was also hoped that it would be possible to 

crystallize both the 'wild-type' and the recombinant epimerase, and that they would 

behave similarly in crystallization trials. As a longer term goal, it was hoped that X-ray 

crystailographic studies of the enzyme might provide a structural foundation for further 
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investigation of possible metal ion-mediated catalysis and stability in the epimerase 

enzyme. 


