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ABSTRACT 

Acetyl -CoA carboxylase catalyses the rate-limit ing reaction 

in  de novo f atty acid biosynthesis in  a wide var iety of 
organisms. I n  plants however , the signifi cance of this 

enzyme in regulating de novo fatty ac id biosynthesis is 

unknown. 

In  th is invest igat ion acetyl-CoA carboxylase of ma i z e , barley 

and spinach leaves has been studied in  order to compare some 

features of this enzyme in the three pl ants . In mai ze , 

acetyl-CoA c arboxylase is located in chloroplasts , where i t  
occurs as a soluble enzyme in the stromal fraction . Both 

mesophyll and bundle sheath ce l ls also exhibit acetyl -CoA 

carboxylase activity . Activities of acetyl-CoA carboxylase 

in  isol ated c hloroplasts have been compared to rates of l ipid 

synthesis from acetate in orde r to investigate the ro le o f  
acetyl-CoA carboxyl ase i n  regul ating de novo fatty ac id bio­

synthesis from acetate . Although acetyl -CoA carboxylase 

activity was higher than that expected from the rate of  

acetate incorporat ion into l ip ids of isolated chloroplasts 
o f  mai ze and bar ley , the opposite was found for chloroplasts 

isolated from spinach . In chloroplasts from the emerg ing 

leaves of ma i ze seedl ings , l ipid synthesis was max imal with 
chloroplasts isolated from the leaf segment corresponding to 

leaf  greening . However , a relationship between leaf deve lop­

ment and acetyl -CoA carboxylase activity was less apparent . 

Consequently a regul atory role for acetyl-CoA carboxylase in 
de � fatty acid biosynthesis could not be d irectly estab­

l ished from a compar ison of the rates of l ipid synthesis and 

acetyl-CoA c arboxyl ase act iv i t ies . 

An alternative approach to the establishment of  a regulatory 

role for acetyl -CoA carboxylase was to purify the enzyme 

from mai ze and barley leaves , and study its response to var i ­

able concentrations o f  substrates , products and certain 

cellular metabolites . Pur i ficat ion of both enzymes was per-
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formed by identi c a l  procedure s ,  includ ing polyethylene glycol 

fract i onation , hydrophobic chromatography and ge l fi ltration . 

Acetyl -CoA carboxylase from b?th mai z e  and barley leave s 

appeared to be an integral enzyme , a s  no evidence for its 

d i s sociation was found , contrary to the find i ngs  of the 

bacteri a l  enzyme . The kinet ic properties o f  the partially 

puri fied enzyme from mai ze and bar ley were very similar . The 

apparent Michael i s  constants for the substrat e s , acetyl-CoA 
and HCO� , were about O . lmM and 2mM , respective ly for both 

enzyme s . The enzymically active form of the substrate , ATP , 
was found to be Mg . ATP . Furthermore , free ATP inhibited 

enzymic activity , while f ree Mg 2 +  act ivated the enzyme from 

both p l ant source s .  Monovalent cations , particular ly K+
, 

were pos itive e f fectors o f  acetyl-CoA carboxyl ase , on the 

other hand , the products o f  the acetyl -CoA c arboxylase re-

action , malonyl -CoA and ADP were inhibitor s . ADP inhibit ion 

was compet itive with respect to ATP , but uncompetitive with 

respect to acetyl-CoA . I nh ibition of acety l -CoA carboxylase 

activ i ty by CoA was noncompet it ive with re spect to acetyl­

CoA , while palmitoyl-CoA inhibition wa s uncompetit ive with 

re spect to acetyl-CoA . 

From the view point of regulation o f  acetyl -CoA carboxylase 

act iv i ty , the observed response o f  activity to change s in pH , 

and the concentrat ions o f  Mg2+
, K

+ , ATP and ADP in vitro , may 
be o f  s ign i f i c ance . Changes in the chloroplastic  leve l s  of 

the se e f fecto r s  of  acety l-CoA carboxylase act ivity have been 
reported to occur during l ight-dark tran s i tion of chloro­

plasts , and would be cons i stent in regulating acetyl -CoA 
carboxylase a c tivity in the light and dark . 
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C H A P T E R 1 

INTRODUCT ION 

1 . 1  General B ackground 

1 

Acetyl - CoA carboxylase [ acetyl -CoA-carbon d ioxide l igase 

(ADP forming ) , EC  6 . 4 . 1 . 2 ] catalyses the f i r s t  committed 

step in the synthe s i s  of fatty acids from acetyl -CoA . The 

enzyme was found a lmost s imultaneously in avian l iver s by 
several worker s ,  and recognised as an essenti a l  enzymatic  

component requi red for fatty acid synthesis ( P orter and 

Tiet z , 1 9 57; Porter et a l , 1 9 57;  Gibson et a l , 1 9 5 8 a; 
1 9 5 8b; Formica  and Brady , 1 9 5 9 ) . The stoichiometry of  the 

reaction catalysed by the enzyme was descr ibed by Waki 1  

( 1 9 5 8 )  ( Reac t i on 1 ) . 

2+ 
Acetyl -CoA + HC0 3 + ATP � malonyl-CoA + ADP + P i  ( 1 ) . 

Biotin has long been known as a prosthetic group in certain 

HCO�- f ix ing react ions; the "Wood-Werkman'' re act ion of 
H 1 3 CO� incorporat ion into oxaloacetate by a soluble system 

from Micrococcus  1ysode ikt icus ( Lardy et al , 1 9 4 7; Potter 
and Elvehj em, 1 9 4 8; Wes sman and Werkman , 1 9 5 0 )  and the ATP­
dependent carboxy l ation of  propionate to form succ inate 

( Lardy , 1 9 5 2; Lardy and Peanasky , 1 9 5 3 ) , have impl icated 

biotin as  a cofactor . The se reactions  were inhibited by 

avidin , a biot in-binding glycoprotein from egg white ( Al l i son 
et al , 1 9 3 3 ) . Analogous with these reaction s , acetyl-CoA 

carboxylase activi ty was found to be susceptible to avidin­

inhibition ( Titchener and Gibson , 1 9 5 7; Wak i 1  et a l , 1 9 5 8; 

Waki l  and Gibson , 1 9 6 0 )  and was c l a s s i fied as  a biotin­

dependent carboxylase . 
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1 . 2  Acetyl-CoA Carboxyl ase from Animal Sourc e s  

1 . 2 . 1  Molecular properties 

Acetyl-CoA carboxylase has been purif ied to homogene ity 

from a number o f  animal source s .  The enzyme i s  active as 

polyme r i c  filament s of molecular we ight 4 - 8 x 1 0  6 ( Lane et 

al , 1 9 7 4 )  which are in equ il ibrium with the inactive protomer . 

The protomer o f  the avian l iver enzyme has a molecular we ight 
of 4 1 0 , 0 0 0  ( Grego l in et al , 1 9 6 8 b ) , whereas the corre spond ing 

value f o r  the bovine ad ipo se tis sue enzyme i s  5 6 0 , 0 0 0  ( Mos s ,  
e t  al , 1 9 7 2 ) . Early work on the structural organi sation of  

the protomer ind i ca ted that it  was a tetramer o f  four non­

identical  polypeptides of mo lecular we ights 1 1 0  - 1 2 5  x 1 0  3 

( Grego l in et al , 1 9 68b; Kle inschrnidt et al , 1 9 6 9; Guchha it 

et al , 1 9 7 4c ) . However , later worker s found that in fact 
the protomer was composed of two ident ical polypeptides of 
approx imate ly 2 2 0 - 2 4 0 x l 0 3 da ltons ( Inoue and Lowen stein , 

1 9 7 2; Tanabe et al , 1 9 7 5; Mackal l and Lane , 1 9 7 7: Ahrnan 

et al , 1 9 7 8; Witters et a l , 1 9 7 9 a; --

The d i s crepancy with early work has 

a l imited proteolys i s  of  acetyl-CoA 

lat ion ( Tanabe et a l , 1 9 7 5; 1 9 7 7; 

Hardie and Guy , 1 9 8 0 ) . 

been shown to  be due to 

carboxylase  during i so­

Guy and Hard ie , 1 9 8 0 ) . 

1 . 2 . 2  Regulation of  catalytic activity 

Ace tyl-CoA carboxylase c atalyse s the f i r s t  committed 

step in t he format ion of fatty ac id s from acety l -CoA and 

has been found to be a key regulatory point in the control of 

fatty ac id biosynthes i s . These regulatory mechanisms are 
d i scus sed below under the h�ad ings of long-term and short­

term control s  o f  activity . 

1 . 2 . 2 . 1  Long-term c ontrol o f  acetyl -CoA carboxy­

lase 

The rate of fatty acid synthe s is in  a number of 

t i s sues fluctuates under a var iety of  metabo l i c  c onditions , 
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includ i ng dietary , hormona l ,  developmenta l and genetic 

altera t i ons . These long-term f luctuations appear to be 

mediated by a l te ration s in the concentrat ions o f  the enzymes 

involved in the biosynthe s i s  o f  fatty acids , in  particular 

acetyl -CoA c arboxylase and fatty ac id synthe t a s e . Acetyl­

CoA carbo xylase  activity was  lowered in  the l ivers of rats , 

either when the animal s were starved , or fed on  a high- fat 

diet , o r  made a l loxan-diabetic , and was markedly e levated in 

l ivers o f  rats fed a fat- free d iet  ( Numa et a l , 1 9 61 ; 

Wieland e t  a l , 1 9 6 3 ; Al lmann et  a l , 1 9 6 5 ) . Quantitative 

immunopr e c ipitin analysi s o f  crude extracts o f  l ivers indi­

cated that the s e  changes in  acetyl-CoA carboxy l a se activity 

were due to  d i f ferences in the amount of the e n z yme (Maj erus 

and Kilbur n , 1 9 6 9 ; Nakani sh i  and Numa , 1 9 7 0 ) . These in­

c reases in enzyme content are due solely to an  increase in 

the rate o f  synthe s i s  of en z yme , whereas the dec l ine in the 
enzyme c ontent as a consequence of starvat ion etc , was due 

to both d imin i shed rates of synthe s i s  and acce l erated degra­

dation o f  the enzyme (Ma j eru s  and Kilburn , 1 9 6 9 ; Nakaniski 

and Numa , 1 9 7 0 ) . Measurement of the hepatic content of 

spec i f ic p o lysomes synthe s i zing acetyl-CoA carboxylase , 

reflect the c hange s in the rate o f  synthes i s  o f  this  enzyme 

in vivo , brought about by dietary manipulation s and the 

al loxan-d i abetic state (Nakan i shi et a l , 1 9 7 6 ;  Horikawa et 

al , 1 9 7 7 ) . 

Livers o f  genetical ly obese hyperglycemic mice ( C5 7 BL/6J-ob ) 

( Inga l l s  e t  a l , 1 9 5 0 )  exhibi t  a n  increa sed leve l of  l ipo­

genes i s  ( Ja nsen et a l , 1 9 6 7 ) that results from e levated 

leve l s  o f  s everal enzymes involved in long-chain f atty acid 

biosynthesi s ,  including acety l - CoA carboxylase , fatty acid 

synthetas e  ( Chang et a l , 1 9 6 7 ) and c i trate-c leavage enzyme 

( Kornacker and Lowenstein , 1 9 6 4 ) . The increased l evel of 

acetyl-CoA c arboxylase appear s to be due to an i ncreased 

quantity o f  the enzyme (Nakani sh i  and Numa , 1 9 7 1 )  caused by 

an e l evated number o f  polysome s conta ining me s senger RNA 

cod ing for acetyl -CoA carboxyl a se , and the consequent in­

creased rate of synthes i s of  the enzyme ( Tanabe et al , 1 9 7 6 ) . 
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In rat mammary gland s , the onset o f  l actation i s  marked by 

an increase  in the activity o f  enzymes invo lved in the bio­

synthe s i s  of mi lk , including the lactogenic enzyme acety l­
CoA carboxylase ( Howanitz and Levy , 1 9 65; Baldwin and 

Mi ll igan , 1 9 6 6; Kuhn and Lowenste in , 1 9 67;  Gul and Dil s , 

1 9 6 9; Gumaa et al , 1 9 7 3; Ba ldwin and Young , 1 9 7 4 ) . Studies 
into the amount of  immunot i tr atab1e acetyl-CoA carboxylase , 

showed that thi s  r i se in activi�y during lactation was due 

to an increase in the concentration of acetyl-CoA carboxylase 

enzyme ( Macka l l  and Lane , 1 9 7 7 ) . 

1 . 2 . 2 . 2  Short-term control of acetyl -CoA carboxy­

lase 

In contrast to long-term control s  o f  fatty acid 
biosynthe s i s  which manifest the ir e f fects on acetyl -CoA 

carboxy l a s e  over a period o f  days , variat ions in the rate of  
fatty a c id biosynthe s i s  have been ·observed over a per iod o f  

hours ( fo r  reviews see Volpe and Vage los , 1 9 7 3; Numa and 
Yamashita , 1 9 7 4 ) . The se more rapid changes in the rate of 

fatty acid synthesis  appear to be achieved by a lterations 
of  the catalytic effic iency of acety1 -CoA carboxylase , which 

is  the rate - l imiting enzyme . Changes in the re l ative pro­

portions o f  the inactive protomer and active polymer of 

acety1 -CoA carboxylase , that have been observed in vitro 

( Grego l in e t  a l , 1 9 6 6b; Kleinschmidt et a 1 , 1 9 6 9; Moss et 

al , 1 9 7 2 )  h ave been implicated as a means of modulating the 

enzyme's a c t ivity in vivo . 

The equ i l ibrium between  the polymer and protomer in  vitro , 

i s  affecte d  by a number of  metabol ite s and cond itions of 

incubation ( Table 1 )  ( Lane et  a l , 1 9 7 4; Lent et a l , 1 9 7 8; 

Yeh and K im , 1 9 8 0 )  . The phys iologic a l  s ignificance of  these 

e f fects , i n  the control of acetyl -CoA carboxylase activity 

have been stud ied by a number of groups . The occurrence o f  

the polymer-protomer transit ion h a s  been demonstrated in 
vivo by three different methods ( Halestra p and Denton , 1 9 7 4; 

Meredith and Lane , 1 9 7 8; Ashcaft et a l , 1 9 8 0 ) . Lane and 



TABLE I 

PROTOMER-POLY�lliR TRANS ITION OF AN IMAL ACETYL-CoA CARBOXYLASE 

P ROTOMER 

inact ive 

Molecular we ight 4 2 0 , 0 0 0  

Equ i l ibr ium towards protomer favoured by: 
2+ -

ATP . Mg + H C03 

mal onyl -CoA 

fatty acy l -CoA 

alka l i  pH 

NaCl ( > 0 . 2M ) 

low enzyme concentrat ion 

phospho rylat ion 

From Lane et a l . ,  1 9 74 .  

POLYMER 

act ive 

Mo lecular we i ght 4 - 6x l 0 6 

Equ i l ibr ium toward s polymer favoured by: 

c i trate , i soc itrate 

phosphate 

albumin 

pH 6 .  5 - 7 .  0 

high enzyme concentration 

dephosphorylation 

CoA 

U1 
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eo-worker s have suggested that acetyl-CoA carboxylase ac t i ­

vity in vivo i s  control l ed b y  the concentrat ion of c itrate 

( Mo s s and Lane , 1 9 7 2  ; Lane et a l , 1 9 7 4 ) . A posit ive 

cor r e lat ion ha s been reported between de novo fatty ac id 

b i o s ynthe s i s , acetyl -CoA carboxylase ac t iv i ty and the c i t ­

rate c ontent of ce l l s  ( Goodridge , 1 9 7 3 c ; N i shikori et a l , 

1 9 7 3 ; Gee lan and Gibson , 1 9 7 5 ;  Muller et a l , 1 9 7 6 ;  Watk ins 

et a l , 1 9 7 7 ; Gee lan et al , 1 9 7 8 ) . However thi s  view ha s --, --

been c ha l lenged by a number o f  wor kers who found neg l ig ib l e  

chang e s  in c e l lular leve l s  o f  c i tr ate under cond itions that 

apprec i ably changed acetyl -CoA carboxylase act ivity and the 

rate o f  fatty ac id bio synthe s i s  ( Spencer and Lowenste i n , 

1 9 6 7 ; Greenbaum et al , 1 9 71 ;  Guynn et al , 1 9 7 2 ;  Brunen­

graber et al , 1 9 7 3 ; Ha l e s trap and Denton , 1 9 7 3 ; Denton , 

1 9 7 5 ;  Harr i s ,  1 9 7 5 ;  Cook et al , 1 9 7 7 ) . Furthermore , the --

measured cel lular concentrat ion o f  c itrate i s  about 0 . 1 -

0 .  3mM , wh i le 5rn!-1 c i  tra te i s  requ i red for the in vitro ac t i ­

vat i on o f  acety l-CoA carboxylase . 

The c e l lular leve l s  o f  fa tty acyl -CoA thiosters have been 

imp l i cated in th e regul a t ion o f  ac e tyl -CoA c arboxylase in 

mammal s . An inverse r e l a t ion ship has been found between 

the c oncentration of fatty acyl-CoA and the rate of fatty 

acid synthes i s  or acety l -CoA carboxylase activity in l iver s  

( Guynn et  a l , 1 9 7 2 ; Goodr idge , 1 9 7 3 a ;  1 9 7 3b ;  1 9 7 3 c ; 

N i sh i kor i et al , 1 9 7 3 ; Goodr idge e t  a l , 1 9 7 4 ; Cook et a l , 

1 9 7 7 ) and ad ipose t i s sue s ( Halestrap and Denton , 1 9 7 3 ; 

1 9 7 4 ;  Denton , 1 9 7 5 ) . However , som e  workers have a l so re­

ported no change in fatty acyl -CoA concentrat ion both in 

pe rfu sed l ivers  ( Brunengraber et  a l , 1 9 73 ) and i solated 

mou s e  hepatocytes ( Mu l l er et a l , 1 9 7 6 ) , in cond it ion s wh ich 

a l te r ed the r ate of f atty ac id synthe s i s  and acetyl-CoA 

carboxylase act ivity . I t  ha s been suggested that the acti­

vity of  acety l -CoA carboxylase may not be regulated by the 

tota l fatty acyl -CoA c oncentrat i on in the ce l l , but by the 

concen trat ion o f  free f atty acyl-CoA , which may be dependent 

on sp ec i f i c  c e l lular proteins , s im i l ar to a l bumin , which 



bind this c la s s  o f  metabo l ite ( Goodr idge , 1 9 7 2 ;  Lun z er et 

al , 1 9 7 7 ) . 
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Kim and eo-worker s f i r s t  sugge sted that acetyl -CoA c arboxy­

lase activity was regul ated in rat l ivers by a pho sphorylat ion­

depho sphorylat ion cyc l e  (Carl son and Kim , 1 9 7 3 ; l 9 7 4 a , 

l 9 7 4 b )  , which accompan ied en zyme activat ion- inact ivation in 

vitro� ( Lee and K im ,  1 9 7 7 ) ; the phosphorylated enzyme be ing 

inac tive . The se observations have a l so been extended to rat 

epididymal fat pad s  ( Le e  and Kim , 1 9 7 8 ;  Brownsey et  a l , 

1 9 7 9 )  and mammary g land s  f rom rabbi t  ( Hardie and Cohen , 1 9 7 9 )  

and rat ( Hardie and Guy , 1 93 0 ) . The pho sphorylation­

depho sphorylat ion cycle appears to be contro l l ed by factors 

which regulate the in  v ivo rate of fatty ac id synthe s i s . 

The pho sphory l at ion o f  the rat l ive r enzyme i s  stimu l ated by 

cAMP ( Lent et al , 1 9 7 8 )  and glucagon (Witters  et a l , l 9 7 9 a ;  

l 9 7 9b ) , both o f  which inh ibit fatty acid synthe s i s  in l iver 

(Al lred and Roehr ig , 1 9 7 2 ;  Goodr idge , l 9 7 3 a ; Gee lan and 

G ibson , 1 9 7 5 ; Gee l an et a l , 1 9 7 8 ) . S imilar l y  in epididymal 

ad ipose tissue , phosphorylation has been demonstrated to be 

st imu l ated by epin ephrine (Lee and K im ,  1 9 7 8 ; Brownsey et 

a l , 1 9 7 9 ;  Lee and K im ,  1 9 7 9 )  which a l so inhibits fatty ac id 

synthe s i s  in th i s  t i s sue ( Denton and �1 art in , 1 9 7 0 ) . 

Some workers however ,  d i s pute the phys iolog ical s igni f i cance 

of the phosphorylat ion-dephosphory l at ion cyc l e  in the regula­

t ion of acetyl -CoA c arboxylase . P e kala et a l  (1 9 7 8 ) reported 

pho sphory lat ion of chick l iver acetyl-CoA carboxy l a s e , with­

out a s igni f ic ant change in  act iv i ty . However Lee and K im 

(19 7 9 )  point out that not al l pho sphorylation s i te s are 

important for regu lation of enzyme activity . Indeed recent 

stud i e s  of the trypt ic digestion o f  the pho sphorylated 

acetyl -CoA carboxyl a se ind icate s mu l t iple s ites  of pho sphory­

lat ion ( Brownsey and Hard ie ,  _1 9 8 0 ;  Brownsey et a l , 1 9 81 ) . 

Stud ie s o f  the regul atory sign i f icance of · the recently pur i ­

f ied acetyl -CoA carboxylase kina s e  ( S hiao et  a l , 1 9 81 )  and 

acetyl -CoA carboxylase pho sphata se ( Krakower and Kim , 1 9 81 )  

shou l d  c lari f y  the mechani sm invo lved . 



8 

Al losteric activation o f  acetyl-CoA carboxylase by coen zyme A ,  

at phy s iological con cen tration s , i s  accompan ied by poly-

me risation of the en zyme ( Yeh and K im , 1 9 8 0 ) . The CoA 

bindin g  s ite is n o t  affec ted by c i trate , but may be the same 

as the palmitoy l -CoA bindin g  s i te ( Yeh et a l , 1 9 81 ) , thus 

CoA-bin d ing mod i f i e s  the inhibit ion of acety l -CoA carboxylase 

by palmitoyl -CoA . S imi l ar mod i f ic at ions o f  both the e f fects 

o f  palmitoyl -CoA and citrate on acetyl-CoA carboxylase have 

been observed with phosphorylation o f  the en z yme ( Carl son 

and K im , 1 9 7 4 b ) . As has been sugge s ted by other worke r s , 

acetyl-CoA carboxy l ase ac t ivity may be regu lated by an 

in terac tion of the d i f ferent e f fects  d i scu s sed in thi s  

sec tion ( N i shiko r i  e t  a l , 1 9 7 3; Hard i e , 1 9 81 ) . 

1 . 3  Ac etyl -CoA Carboxyl a s e  f rom E scher ichia c o l i  

1 . 3 . 1 Mo lecu lar proper t i e s  

Acetyl-CoA carboxy l a s e  f rom �· c o l i  has been stud ied 

exten s ively in the laborator i e s  o f  Lane and Vage los . 

In itia l ly the en z yme wa s separated in to two protein fract ion s  

kn own a s  E a  and Eb (Alber t s  and Vage l o s , 1 9 6 8 ) . Ea wa s shown 

to con ta in biotin , which wa s carboxyl ated in a ATP-requ ir in g  

reaction ( Reaction 3 )  ( Alber t s  et a l , 1 9 6 9 ) . The protein 

fraction Eb tran s fe rred the c arboxyl group from biotin to 

acety1 -CoA form in g malon y l -CoA ( React ion 4 )  ( Alberts and 

Vage lo s , 1 9 6 8 ) . 

_ Biotin carboxylase 
E-biotin + ATP + HC0 3 · E -b iot in-C02 + ADP + Pi 

E-biot in-C02  + acetyl -CoA rna lonyl�CoA + E-biotin 

Later work demon s trated that acety l -CoA carboxylase in E .  

( 3 )  

( 4 )  

coli  wa s compo sed of  three d i stinct protein s : b iotin carboxy­

lase , b iotin carboxyl-car r i e r  protein ( BCCP ) which toge ther 

con stituted Ea , and carboxy l t ran s ferase (Eb ) ,  a l l  three of 

which have been pur i f ied s eparately ( Dimroth et a l , 1 9 7 0; 

Alberts , et  al , 1 9 71; Nervi e t  a l , 1 9 71 ;  Guchha it et a l , 
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1 9 7  4 a) . 

The BCCP component o f  the e n z yme conta in s cova l ent ly bound 

biotin which plays a key role  in the mechan i sm of the 

carboxy l at ion o f  acetyl -CoA ( Alberts et al , 1 9 6 9 ) . The 

prote i n  wa s in i t i a l ly pur i f i ed as a peptide of mo l ecular 

we ight 9 ,1 0 0 , c ontaining one cova l ently bound b iotin pro s­

thet ic group ( Ne rv i  et al , 1 9 71 ) . Later work , however , 

showed that proteo lysis  had probably occurred during the 

pur i ficat i on . The native form of BCCP is now thought to 

have a mo lecular we i ght of 4 5 , 0 0 0  and to cons i s t  of two sub­

units o f  2 2 , 5 0 0  dalton s , each o f  wh ich contain a biotin 

prosthe t i c  group ( Fa l l  et a l , 1 9 71 ;  Fall and Vagelos , 1 9 7 2 ; 

1 9 7 3 ) . The biotin prosthe t i c  group can be carbox y l ated by 

biotin carboxyl a s e  ( React ion 3 )  and i s  thought to act a s  a 

carboxy l -carr ier ( Alberts e t  a l , 1 9 6 9 ; Nervi et  al , 1 9 71 ) . 

B iotin carboxy l a s e  has a nat ive mo lecular we i ght o f  1 0 0 , 0 0 0  

and i s  c omposed o f  two subun i t s  o f  5 0 , 0 00 dalton s ( Dimroth 

et al , 1 9 7 0 ) . The enzyme c a ta lyse s the carboxylation of the 

biotin group of the BCCP componen t , free d-biot in and a 

number o f  biotin derivat ive s ( Dimroth et  al , 1 9 7 0 ;  Po lakis  

e t  al , 1 9 7 4 ) . Th i s  probab ly has enabled exte n s ive study o f  

the mechan i sm o f  acetyl -CoA c arbox ylase to be performed 

( Guchha i t  e t  a l , 1 9 7 4b ;  Polak i s  et  a l , 1 9 74 ) . 

The carboxyl group f rom the c arboxy l-BCCP is  trans ferred to 

acetyl-CoA by the enzyme , carboxyl trans fera se ( Alberts et  a l , 

1 9 71 ;  Guchha it et  a l , 1 9 71 ) , wh ich has been found to have a 

nat ive mo lecular we ight o f  1 3 0 , 0 0 0  and is compo s ed o f  four 

subun i t s , two of 3 0 , 0 0 0  dq ltons and two of 3 5 , 0 0 0  daltons 

( Guchha i t  et  a l , 1 9 7 4a,.. ) .  

1 . 3 . 2  Reg u l at i on o f  c a ta lyt ic act ivity 

Endogenou s l y  synthe s i zed fatty ac ids in E .  col i appear 

to be exc l u s ive l y  uti l i zed f or the synthe sis  o f  membrane 

l ipids (C ronan and Vage lo s ,  1 9 7 2 ) , sugge sting that control 
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o f  l ipogenesi s  may be c oup l ed to such growth- r e l ated pro­

cesses a s  prote in and RNA synthe s i s . Prote in and RNA 

synthe s i s  appears to be unde r genetic control o f  the r e l  

gene ( Ne idh ardt , 1 9 6 6; E d l in and Broda , 1 9 6 8 ) , which i s  

inope rat ive i n  ' re laxed ' ( re l - ) mutant s .  Fatty ac id syn­

the s i s  has been observed to be under the contro l of the r e l  

gene ( Sokawa et  a l , 1 9 7 3; Golden and Powe l l , 1 9 7 2; P o l ak i s  

e t  al , 1 9 7 3 ) ; amino ac id s tarvation decrea sed the rate o f  

fatty ac id synthes i s  in r e l  
+

ce l l s  but not in r e l  ce l l s . 

During amino ac id starvat i on of rel
+ 

cells , two unusua l  

nuc leotide s ,  ppGpp and pppGpp , accumu late in the cel l s , whi c h  

have b e e n  postul ated to be  the med iator s of the rel gene 

( Cashe l , 1 9 6 9 ;  Ca shel and Gal lant , 1 9 6 9 ;  La z z arini et  a l , 

1 9 71 ) . Polak i s  et  al ( 1 9 7 3 )  have shown that ( p ) ppGpp 

inhib i ts the carboxy ltran s fe rase component o f  acety l -CoA 

carboxy l ase , demon strat in g  the locus of the control of l ipo­

gene s i s  in E .  co l i . 

1 . 4  Acetyl -CoA Carboxylase  from Yeast 

Acety l -CoA carboxylase has been pur i f ied to homogene ity from 

both Saccharomyces cerevi s iae ( Sumper and Riepertinger , 1 9 7 2 )  

and Cand ida lypo lytica ( Mis h ina et a l , 1 9 7 6 a ) , and has been 

found to be composed of one type of subun it o f  mo lecu lar 

we ight 2 3 0 , 0 0 0 , conta ining one cova lently-bound biotin pro s ­

thetic g roup . 

The regu latory proce s s e s  i n  the control of fatty ac id bio­

synthe s i s  have been stud ied extens ively in both S .  cerev i s iae 

and C .  lypolytic a ,  e spec i al ly as  they relate to acetyl -CoA 

carboxylase . These yea s t s  are abl e  to grow on glucose or 

n-a lkane ( or fatty aci d )  a s  the so l e  source o f  carbon . The 

activity o f  acetyl -CoA c arboxyla se , i n  cel l s  grown in n­

alkane wa s found to be l ower  than in g lucos e  grown cel l s . 

The decrease in acetyl -CoA c arboxylase act ivity was due to a 

decrease in the cel lular c on tent o f  the enz yme , rather than 

to a reduced catalytic e f f i c iency of the en z yme ( Kamiryo and 

Numa , 1 9 7 3 ; Mishina et a l , 1 9 7 6b ) . Regu lation of the rate 
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o f  synthe si s ,  rather than the rate of turnover o f  acetyl-CoA 

carboxyl a s e  has been f ound to be important in determining 

the c e l l u l a r  content o f  the enzyme (Mishina et a l , 1 9 7 6 b ) , 

and thi s  wa s reflected in the amount of me s s enger RNA coding 

for acetyl -CoA carbox y l a s e  ( Horikawa et a l , 1 9 8 0 ) . The re­

pre s sion of the synthe si s  of acetyl-CoA carboxy lase  in n­

alkane grown c e l l s  wa s f ound to be mediated by f atty acy l ­

CoAs derived from exoge nou s l y  supplied n-a lkane ( Kamiryo et 

a l , 1 9 7 6 ;  1 9 7 7 ; 1 9 7 9 ) . 

1 . 5  Acetyl -CoA Carboxyl a s e  from P l ants 

Acetyl - CoA c arboxylase wa s fir st studied in p lant embryonic 

ti s sue of wh eat (Hatch and 8tump f , 1 9 6 1 )  and wa s later 

purified to homogeneity (Hein stein and 8tumpf , 19 6 9 ) . The 

en z yme wa s f ound to h ave a mo l ecular weight o f  6 3 0 , 0 0 0  and 

to be separable into 7 . 38 and 9 . 48 component s by ultrac entri­

fugation . The 9 . 48 c omponent contained biotin which under ­

went carboxy lation in t h e  absence o f  the 7 . 38 component 

(Heinstein and 8turnpf ,  1 9 6 9 ) . Comparison with the E .  coli 

enzyme , sugge st s  that the 9 . 48 component contains the biotin 

carboxylase and BCCP c omponent s , and the 7 . 38 component . 

catalyses  the c arboxyltran s ferase reaction . The subunit 

composition o f  the enzyme initially appe ared complex 

( Niel sen et a l , 1 9 7 9 ) . However ,  this may have been due to 

proteolytic dige stion during isolation , since Egin-Buhler et 

al  ( 1 9 8 0 )  have iso l ated the en zyme with a mo l ecular weight o f  

7 0 0 , 0 0 0 , compo sed o f  two types o f  subunit s o f  mo lecular 

weight s 2 4 0 , 0 0 0  and 9 8 , 0 0 0 ; the l arger containing biotin . 

The presence o f  a simi l a r ly si z ed acetyl-CoA carboxylase  in 

bar ley embryos has been d emonstrated by Brock and Kannangara 

( 1 9 7 6 ) , with a molecu l a r  weight of 6 1 0 , 0 0 0 . 

In green l eave s , de novo fatty acid synthe si s ha s been demon­

str at ed to o ccur exc l u sive ly in the chlorop l a st s  ( Ohlrogge 

et a l , 1 9 7 9 ) . However ,  early attempts to demonstrate the 

pre s ence of a cetyl -CoA c arboxylase in iso lated c hlorop l a st s  

were eithe r unsucce s s f u l  ( Burton and 8turnpf , 1 9 6 6 )  or the 
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activity o f  the e n z yme was found to be less than the maximum 

observed rates o f  fatty acid synthesis of 2 0 0 0  nmo l/h/mg 

chlorophyl l ( Kannangara et a l , 1 9 7 1 ; 1 9 7 3 ;  Kannangara and 

Stump f , 1 9 7 3 ; Roughan et al , 1 9 7 9 a ; Browse et a l , 1 9 8 1 ) . 

Kannangara and Stumpf ( 1 9 7 2 )  working with spinach sugge sted 

that the molecular organisation of the chlorop lastic ac ety l ­

CoA c arboxylase wa s similar to that o f  the �- coli en z yme . 

They de s c ribed the presence o f  three component s ,  biotin 

carboxy la s e , c arboxyltrans f erase and BCCP , of which the 

former two were stromal and the latter bound to the l ame l lae . 

The low activity o f  the enzyme wa s thought to be due to the 

instability o f  the c arboxyltrans ferase component , or t o  the 

presence o f  an inhibitor of this component . A similar dis ­

tribution o f  protein -bound biotin wa s described in pla stid s 

from a number o f  specie s ( Kannangara and Stump£ , 1 9 7 3 ) , and 

a biotin - containing protein of molecular weight 2 1 , 0 0 0  was 

is ol ated f rom bar l e y  chloroplast membranes ( Kannangara and 

Jensen , 1 9 7 5 ) . 

Howeve r , l ater wo rkers have reported soluble acetyl -CoA 

carboxyl a s e  activity in ce l l - free extracts of barley ( Reit z e l 

and Nie l sen , 1 9 7 6 ) , which appears to be chlorop l a stic 

( Thomson and Zalik , 1 9 8 1 ) . A soluble acetyl-CoA c arboxylase  

has  a l s o  been partial ly purified from spinach c hlorop l a st s  

and avocado plastid s ,  a fter stabiliz ation o f  the enzyme s 

(Mohan and Kekwick , 1 9 8 0 ) . The enzyme from avocado p l a stid s 

was found to have a molecular weight o f  6 5 0 , 0 0 0  with one 

biotin per mo le of enzyme . A simi l ar l y  large acety l -CoA 

carboxy l a s e  has been puri fied from par sley c e l l  cu ltur e s , 

with a mo l ecul ar weight o f  8 4 0 , 0 0 0 , c omposed o f  subunit s o f  

2 1 0 , 0 0 0  da ltons and 1 0 5 , 0 0 0  daltons , with the former subunit 

containing biotin ( Egin-Buhler et a l , 1 9 8 0 ) . 

1 . 6  Acetyl -CoA Carboxylase  from Other Source s  

Acetyl-CoA carboxyl a s e  has a l s o  been studied i n  a number o f  

additiona l  sourc e s . In P seudomona s citrone l l o lis  acety l -CoA 
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carboxyl a s e  resembl es that from E .  col i in i t s  mol ecu l ar 

organ�sation , with three separable components , name ly bio­

tin carboxy l a s e , c arboxyltrans fera se and BCCP . S D S -po ly­

acrylamide gel  e l ec tropher e s i s  stud i e s , showed that the 

biotin carboxyl ase c omponent wa s a s sociated with a po l ypep­

tide of 5 3 , 0 0 0  da l tons , wh ile  the c arboxyl tran s fe r a s e  c om­

ponent wa s a s so c i ated with two polypeptides of 3 6 , 0 0 0  and 

3 3 , 0 0 0  dal tons . The biotin pro sthetic  group wa s f ound to be 

covalent l y  bound to a 2 5 , 0 0 0  da lton po l ypeptide , wh ich was 

as sumed to be the .BCCP component ( Fa l l  et al , 1 9 7 5 ;  F a l l , 

1 9 7 6 ) . I n  contra s t  to the �- coli  enzyme , however , acety l ­

CoA carboxyl ase from P .  c itrone l lo l i s  could b e  s tabi l i z ed 

and i sol ated a s  a c omplex o f  a l l  three components ( Fal l , 

1 9 7 6 ) . 

Acetyl-CoA c arboxyl ase from Mycobacterium phl e i  ha s been 

partially pur i f i ed and appears to be an aggregated c ompl ex 

wh ich doe s not d i s soc iate into active constituent enzyme s . 

Both ace ty l -CoA and propionyl -CoA were c arboxyla ted by the 

enzyme at approximate ly the same rate ( Erfle , 1 9 7 3 ) . 

A unique s tructur a l  o rgani sat ion for acetyl-CoA c arboxy lase  

ha s been f ound in l ight-grown Euglena grac i l i s , in which the 

enzyme i s  f ound as a complex together with pho spheno l ­

pyruvate carboxyl a s e  and malate dehydrogenase , w i t h  a total 

mo lecular we ight of 3 6 0 , 0 0 0  (Wolpert and Erns t-Fonberg , 

19 7 5a ) . When d i s soc iated , the enzyme s reta ined the same 

activity a s  when c ompl exed , and had mo l ecular we ights o f  

1 8 3 , 0 0 0 , 6 7 , 0 0 0  and 1 2 7 , 0 0 0  for pho sphoenolpyruvate c arboxy­

lase , ma late dehydrogenase and acety l -CoA carboxy l a s e , r e s ­

pectively (Wo lpert and Ernst-Fonberg , 1 9 7 5b ) . Wo l pert and 

Ernst-Fonberg sugge s t  that th i s  mul t ienzyme comp l ex , in con­

j unct ion with ma l ic en zyme , fac i l itate s the format ion of sub­

strate s , malonyl -CoA and NADPH for f atty acid b i osynthe s i s . 

Acety l -CoA c arboxy l ase pur if ied from the free - l iv i ng nematode 

Turbatr ix acet i , has mo lecular we ight of 6 6 7 , 0 0 0 . Ana l y s i s  
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by SDS -g e l  eie ct rophere sis  indicate s  that it consists o f  two 

po lypeptide s  having molecular weight s  8 2 ,000 and 5 8 , 000 , with 

the former c ontai ning biotin ( Meyer et al , 1 9 7 8 ) . The enzyme 

carboxy l ate s propionyl -CoA at a faster rate than acety l -CoA 

and monovalent c ations , e special ly K
+

, activate the enzyme 

( Meyer and Mey er ,  1 9 7 8 ) . 

1 .  7 Acety l -CoA Carboxyl a s e  as a Biotin Enzyme 

Compari son o f  the molecul ar organisation and mechanism o f  

carboxylation o f  a number o f  biotin-dependent enzyme s , such 

as propionyl - CoA carboxylase , 8 -methylc rotonyl -CoA c arboxy­

lase , gerany l - CoA carboxy lase , pyruvate carboxyl a s e , ATP: 

urea amido lyase , methylma lony l -CoA-pyruvate transc arboxylase , 

methy lma lonyl dec arboxy l a s e , oxa loacetate decarboxylase and 

acetyl - CoA carboxylase has enabled a better under standing of 

the propertie s  of the se en zyme s ( fo r  reviews see  Mo s s  and 

Lane , 1 9 7 1 ; Wood and B arden 1 9 7 7 ; Lynen , 1 9 7 9 ) . The common 

feature o f  a l l  these enzymes is the biotin pro sthetic group , 

which function s a s  'HCO�- c arrier' . 

The biotin pro sthetic group appears  to be covalently-bound 

to a l l  o f  the above enzyme s through an amide linkage to a 

lysyl E-amino group . The c arboxy l ated intermediate ha s been 

shown to be 1'-N-carboxy- (+) -biotin for propiony l-CoA 

carboxyl a s e , 8 -methylcrotonyl-CoA c arboxyl a s e , methyl­

ma lony l -CoA-pyruvate transc arboxyl a s e  and acet y l - CoA c arboxy­

lase , and i s  probably identical in a l l  biotin- containing 

enzyme s . 

The c arboxyl ated inte rmedi ate is  formed in an ATP -requiring 

re action ( Re a ction 5 )  in the c arboxy lases , however , in the 

tran s carboxyl a s e s  and decarboxy l a s e s  ( Reaction 6 ) , this  re­

action is independent of ATP. 

Enz-biotin + H O-C02 + ATP + Enz-biotin-C02 + ADP + P i  ( 5 )  

-
Enz -biotin + R1- C O 2 + Enz -biotin-C02 + R1 ( 6) 
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The second hal f- reaction , in the case  o f  the c arboxylases  

and transcarboxy lases involves the transfer o f  the c arboxyl 

group from the intermediate to an acceptor ( Re action 7 ) . 

Howeve r , with the decarboxyl as es , the carboxy l  group is lost 

as C0 2 ( Reaction 8 )  . 

Enz-biptin-C02 + R2 -+ Enz -biotin + R2 -C02 ( 7 )  

Enz-biotin-C02 ---+ Enz-biotin + C02 ( 8 )  

Lynen ( 1 9 7 9 )  h a s  identi fied three c l a s ses  o f  biotin-contain­

ing enzyme s ( Fig . 1 ) . Enzyme s o f  the first c l ass  readily 

separate int o  three active component s: biotin-containing 

component ( BCCP )  , a biotin carboxy lase  component which c ata­

lyse s eithe r reaction 5 or 6 ,  and the carboxy ltransferase 

component c atalysing e ither reaction 7 or 8 .  The second 

group o f  en z yme s separate into two active component s , one of 

which c arboxylates the bound biotin ( Reaction 5 or 6 )  , pre­

sumably a comp l ex o f  tight ly coupled B CCP and biotin 

carboxy lase . The other component c ontains no biotin , but 

catalyses  the c arboxyltrans ferase reaction ( Reaction 7 or 8 ) . 

The third c l a s s  o f  enzymes do not separate into active com­

ponent s and presumably contain the BCCP , biot i n  carboxylase 

and c arboxyltrans ferase combined . 

1 . 8  Fatty Acid Bio synthesis  in Pl ants 

Al l p l ant extracts that carry out de novo fatty acid bio ­

synthe sis  have been shown t o  be stimu lated b y  the addition o f  

acyl-carrier protein (ACP ) , indicating that d e  novo fatty 

acid bio synthe si s in p lant s  is an ACP -dependent proce s s  

( Stump f , 1 9 7 7 ; 1 9 8 0 ) . The demonst rat ion that the sole 

detectable site o f  ACP in spinach protopl asts is  the chloro­

plast , suggest s  t hat thi s organe l le c arries out all  de novo 

fatty a cid bios ynthesi s in photosynthetic ti s sues ( Ohl rogge 

et a l , 1 9 7 9 ) . 

Although the ultimate carbon precursor of acetyl -CoA in 

plant s is C0 2 , the proce s s  by which acet yl-CoA become s avail-
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able for de novo fatty acid biosynthesis in chloroplast s is  

not known . Recent ly evidence has ac cumulated to  support the 

formation of acetyl -CoA within chloroplast s , via the pathway: 

C0 2 + 3 -PGA + 2 -PGA + PEP + Pyruvate + Acetyl -CoA ( Yarnada 

and Nakamura , 1 9 7 5 ;  Murphy and Leech , 1 9 7 7 ; 1 9 7 8 ) . Pho s ­

phoglyceromutase f or the c onve r sion o f  3-PGA , formed b y  the 

carboxy l ation of ribulose 1 , 5 -dipho sphate , to 2 -PGA although 

not f ound in chloroplast s , has been demon strated in pro­

plastid s of castor bean ( Simcox et a l , 1 9 7 7 ) . Enolase , 

catalysing the reaction 2 -PGA + PEP has been found in castor 

bean prop l astid s ( Simcox et a l , 1 9 7 7 )  and pea chloroplast s  

( Stitt and Rees , 1 9 7 9 ) . Pyruvate kinase , cataly sing the 

conver sion of PEP to pyruvate , has been demon strated in 

castor bean propl a stid s ( Simcox et a l , 1 9 7 7 ; De Luca and 

Dennis , 1 9 7 8 )  and chlorop l asts isolat ed from green leave s o f  

castor bean ( Ireland et a l , 1 9 7 9 ) . The presence of this 

enzyme has also be en shown in etiop l a st s  ( I reland et al , 

1 9 7 9 )  and chloroplast s  ( Stitt and Ree s , 1 9 7 9 )  isolated from 

pea l e ave s . Pyruvate dehydrogenase , the fina l enzyme in the 

propo sed pathway for the f ormation o f  acetyl-CoA , has been 

found in the prop lastid s of c a stor bean ( Reid et a l , 1 9 7 7 ; 

Thomson et a l , 1 9 7 7 a ;  1 9 7 7 b ) , and in pea ch loroplasts 

( E lias and Givan , 1 9 7 9 ;  Wil liams and Randal l ,  1 9 7 9 ) . 

Howeve r , the sugge stion t hat c hlorop l a st s  are able to synthe­

si ze acetyl -CoA and thu s fatty acid s from C0 2 has not gone 

uncha l l enged ( Sherratt and Givan , 1 9 7 3 ; Roughan et al , 

1 9 7 9b ) . Roughan et a l  ( 1 9 7 9 a ; l 9 7 9b ) , favour the view that 

acetyl - CoA is  derived from an e xtrachloropl astic source . 

Acetat e  derived from mitochondrial acetyl -CoA , could become 

avai l able  to the chlorop l a st a fter transportation as either 

free acetate or citrate . As both the mitochondrial membrane 

and chloroplast enve lope are permeabl e  to acetate , this 

molecule  would be able to free l y  di f f u s e  from the site o f  

synthe si s ,  i n  the mitochondria , to the c hloroplast , for acti­

vation to acetyl -CoA by the stromal e n z yme acetyl-CoA 

synthetase  ( Jacobson and Stump f , 1 9 7 2 ; Roughan and S l ack , 

1 9 7 7 )  . This  suggestion a l s o  imp lies a function for acetyl -
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was derived via a chlorop l a stic pyruvate dehydrogena se . 
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The pos sibility that chlorop l a stic acetyl-CoA i s  derived from 

mitochondrial citrate ha s been suggested by the work o f  

Ne l son and Rinne ( 1 9 7 5 ;  1 9 7 7 a ; 1 9 7 7 b ) , who found the 

enzyme citrate lyase in the c yto sol o f  deve loping soybean 

seeds . They were a l so able to demonstrate fatty acid 

synthe si s from Tl , S - 1 4 C ]  citrate in this ti s sue . In contrast , 

however ,  avocado me socarp extra cts (Weaire and Kekwick , 

1 9 7 5 ) , and isolated spinach chlorop l a st s  ( Yamada and Nakamura ,  

1 9 7 5 )  were not able to synthe si z e  fatty acids from citrate . 

Fo l lowing the carboxylation o f  acetyl - CoA by acetyl-CoA 

c arboxy l ase in the chlorop l a st ( see S ection 1 . 5 ) , de novo 

fatty acid synthe si s is thought to take place in the chloro­

plast by a series o f  reactions c atalysed by soluble enzyme s , 

which c onvert acetyl -CoA and ma lony l -CoA to palmitic acid 

( Reaction 9 )  

acetyl-CoA + 7 malonyl -CoA + l4NADPH + l4H
+ 

� palmitic acid 

+ 
+ 8CoA + 7C02 + l 4NADP + 6H2 0  ( 9 ) 

Studies to elucidate the natur e o f  thi s  pathway have been 

mainl y  c arried out by fol l owing incorporation of radioactive 

l abe l , from [ 1 4 C]  acetate into fatty a cids by iso l ated 

chlorop l a st s . Rate s of up to 2 0 0 0  nmo l  acetate incorporated/ 

h / mg c h l  have bee n  reported ( Roughan et al , 1 9 7 9a ;  Browse 

et a l , 1 9 8 1 )  with isolated spinach chloroplast s , which i s  

approaching the rat e s  found i n  the intact spinach leave s . 

However ,  l abe l from [ 14 C ]  acet y l-CoA or [ 1 4C ]  ma lonyl- CoA 

was poorly  incorpor ated by intact chloroplast s  into fatty 

acid s ( Stumpf et a l , 1 9 6 7 ; Weaire and Kekwick , 1 9 7 5 ) . This  

i s  thought to be due  to  the  ·impermeabi lity o f  the chlorop l a st 

envelope to CoA est ers . However ,  the removal o f  the chloro­

p l ast enve lope res ults in preparations which show poor r ates  

of  fatty acid synthe sis from acetate and acetyl -CoA , but 

higher r ate s from malonyl-CoA ( Brooks and Stumpf , 1 96 5 ; 
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1 9 6 6 ; Stump f , 1 9 7 7 ) . Thi s  discrepancy was exp l ained by 

implicating an inhibitor to acetyl - CoA carboxylase r e l ea sed 

upon di sruption o f  chlorop l a st s  ( Burton and Stump f , 1 9 6 6 ) . 

Fatty acid bio synthesis by isolated c hlorop l a st s  ha s been 

shown to be a light-dependent proce s s , by a number o f  workers 

( Smirnov , 1 9 6 0 ; Mudd and McManu s ,  1 9 6 2 ; Stumpf and Jame s , 

1 9 6 2 ; . 1 9 6 3 ; Stumpf et a l , 1 9 6 7 ) . The supp ly o f  ATP and 

NADPH wa s sugge sted to cau se the light -dependency of thi s 

proce s s  ( Stump f  and James , 1 9 6 2 ; 1 9 6 3 ) .  Recent ly , Nakamura 

and Yamada ( 1 9 7 9 )  observed that [ 1 4C l] acetate supplied to 

isolated chlorop l a sts in the light wa s incorporated into 

ma lonyl -CoA and acetyl-CoA a s  we l l  a s  fatty a cid s , but only 

acetyl - CoA was l abel led in darkne s s . They suggested there­

fore that the carboxylation of acet y l -CoA could be the light­

dependent reaction in fatty acid synt hesi s . However ,  Roughan 

et a l  ( 1 9 8 0 )  sugge st that the a ccumu l ation o f  l abe l led 

acetyl -CoA from [ 1 4C J acet ate both in the light and dark is 

due to the pre s ence of a thiokina se in an outer chloroplast 

compartment and not due to a dark-block of acetyl-CoA car­

boxyl a s e . 

Although the enzyme s invo l ved in the synthe si s o f  pa lmitic 

acid , in iso l at ed chlorop l a st s , have not been studied 

individua l ly , the ACP requirement f or this proc e s s  suggests 

that de novo f atty acid bio synthe si s  is carried out by a 

system o f  individua l solub l e  e n z yme s , similar to that found 

in E .  c o li ( Stump f , 1 9 7 7 ; 1 9 8 0 ; Ma j e rus and Vage los , 1 9 6 7 ) . 



2 . 1  P l ant Materials 

C H A P T E R 2 

MATERIALS 

2 0  

Mai ze ( Z ea  may s var . XL4 5 )  and bar ley ( Hordeum vul�are ) seeds 

were obta ined from Arthur Yates and Co . ,  Ltd , N Z . The seeds 

were soaked ove rn ight in water and sown in tray s of peat/ 

pumice ( 1 : 2 ,  v/v) pott ing mixture supplied with Hoagland ' s  

solution A ( Hoag land and Arnon , 1 9 3 8 ) . Plants were grown in 

a contro l led environment with day/night temperatures , vapor 

pre s sure de f i c its , and equ iva lent relative humidities at 

2 5 / 2 0°C ,  1 0 / 5  mbar and 6 8 /7 8 % , respectively . Day - l ength was 

l 2 h  and phot o synthet i c a l l y  act ive radiation of 4 0 0 - 7 0 0nm 
-2  

range was  1 7 0 W . m . After 8 days  of growth p l ant s were 

harve sted by cutting the shoots at the base . Ma i z e  acetyl ­

CoA c arboxy l ase was pur i f ied from who le seed l ing t i s sue , but 

in exper iments using ma i ze seedl ings , the coleopti l e  and 

f ir st leaf  wa s removed .  In exper iment s on barley acetyl-CoA 

carboxylase the whole seedl ing was used . 

Spinach ( Sp i na c ia olerace a ) , f ie ld -grow� wa s obtained from 

the loca l market and wa s used on the day of purchase . 

2 . 2  Reagent s 

The fol lowing chemicals  were obtained from S igma Chemical eo . ,  

St Loui s :  ADP , AMP , ATP , avidin , acrylamide , biotin , bis­

acry lamide , B S A  Fract i on V ,  CoA , Coomassie Br i l l iant B lue 

G2 5 0  and R2 5 0 ,  cyanogen bromide , d ithiothre ito l ,  glutathione , 

Hepe s , ma lat e , Me s ,  NADH , NADPH , palmitic acid , PEP , POPOP , 

PPO , Tricine , Tri s .  

Ce l lulase ( Ce l lulysin
™

) and Mirac loth were from Calbiochem , 



La Jo l l a . 

Ce l lulose powder MN 3 0 0  was from Macherey , Nage l and Co . ,  

Duren , Germany . 

Separo se 2B and Dextran T 4 0 were obtained from Pharmacia 

Fine Chemical s , Upp sala . 

Bio-Ge l P6  wa s from Bio-Rad Laboratories , Richmond . 

Ul troge l AcA2 2 was from LKB-Produkter , Sweden . 

1 4 
The radiochemica l s , [ 1 - C ]  acetate and NaH1 4 C0 3 ,  wer e  ob-

tained from The Radiochemical Centre , Arner sham . 

21 

All other reagents we re obtained a s  Analar grade from either 

BDH Chemica l s  Ltd , Poo le , Engl and , or May and Baker Ltd , 

Dagenham , Eng l and . A l l  s o lvents were redistil led be fore u s e . 



C H A P T E R 3 

METHODS 

3 . 1  P repar ation of Acy l - CoA E sters  

2 2  

Acetyl-CoA and prop io ny l - CoA were synthesiz ed by reac t ing 

CoA with ace t i c  anhydr ide and propionic anhydride , .  res­

pect ive ly ( Stadtman , 1 9 5 7 ) , in O . lM NaHC0 3 a t  4 °C for 1 5  

min . The s olut ions wer e  then ad j u sted to pH 4 . 0  with 2 M  HCl  

and dried by lyoph i l i z a t ion . 

Butyryl -CoA and palm itoyl -CoA wer e  synthe s i z ed under nitrogen 

by the procedure of Young and Lynen ( 1 9 6 9 )  . Approximately 

2 0  �moles  of a c id wa s d i s solved i n  tetrahydro furan and re­

acted with 1 5 %  exce s s  of tr iethylamine , after wh ich t he 

mixed anhydride was f o rmed by reac t ing with e thyl chlorofor­

mat e . The CoA este r wa s f inally synthe s iz ed by react i ng the 

mixed anhydride of  t he a c id , with free CoA . Palmi toyl-CoA 

wa s p recipitated by add i t ion o f  pe rchloric ac id to 1 %  and 

the pre c ipit a t e  rec overed by cent r i fugat ion and dr ied under 

a vacuum . Unreacted palmitic acid was extrac ted three t ime s 

with diethy l  e t her and the res idue dried under a s tream o f  

ni t rogen . The solu t ion o f  butyryl -CoA was ad j usted to pH 

4 . 0  with 2M HCl  and d r i e d  under vacuum .  

The synthe s i s  o f  ma lony l -CoA wa s c arr ied out b y  the me t hod 

o f  Rutkoski and Jawo r s k i  ( 1 9 7 8 ) . F ive hundred � 1  o f  O . lM 

thiophenol d i s s olved in t etrahydro furan wa s added to 1 0  

�mo l e s  o f  malonic a c i d , f o l lowed by the add i tion o f  0 . 5  ml 

O . lM d icyc lohexylcarbo d i imide ih t etrahydrofuran over a 

period o f  lh , to  form monothiophenylma lonate .  After 3 h, l 6 

).lmo l e s  o f  CoA d i s so l ved i n  lM Na 2 C0 3  I KHC0 3 bu f fer , pH 9 .  2 ,  

was added ove r a per iod o f  4 h . Finally , 2 0 0  � 1  o f  g lac ial 

ace t i c  ac id wa s added to stop the :Le-act ion and the mixture 

dried unde r vacuum . 
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The acyl-CoA ester s were d i s solved in about 0 . 2  ml of water 

and pur i f ied by ce l lu lose TLC in butano l : acetic  ac id : wa ter 

( 5 : 2 : 3 ) ( Pu l lman , 1 9 7 3 ) . Af ter dry ing the TLC p l a te s , the 

CoA e s te r s  were loc ated under a UV- lamp and the appropriate 

areas of ce llulo se were tran sferred to centri fuge tubes . 

The CoA e s ters wer e  extrac ted three t ime s with 2 ml  of water , 

and the c ombined e xtrac t s  were dr ied by lyoph i l i zation . 

Fina l l y  the produc t s  were d i s solved in water to the approp­

r i ate concentrat ion s , as determined by the absorbance a t  

2 6 0  nm , a s suming E2 6 0  wa s 1 6 4 0 0 . 

All CoA e st ers were more than 9 5 %  pure as  de termined from 

absorbanc e s  at 2 3 2  nm and 2 6 0  nm . The yield o f  acetyl-CoA 

and propionyl -CoA was in the range of 8 0 - 9 5 % . Pa lmi toy l - CoA 

and butyryl -CoA wer e  obta ined i n  approx imate ly 5 5 %  yield , and 

malonyl -CoA in a y i e ld of 4 0 % . 

3 . 2  En z yme As say s 

Acetyl -CoA carboxylase  activ i ty wa s as sayed a s  the acetyl­

CoA-dependent , a c id - s tab le rad ioac tivity der ived f rom H 1 4 C03 

The as say was car r i ed out in a vol ume of 2 0 0  ml · con­

taining : O . lM Tric ine -KOH ( pH 8 . 0 ) , lmM ATP , 2 . 5  mM MgC l 2 ,  

5 0mM KCl , lmM dith i othre i to l , 0 . 3mM acetyl-CoA and e i ther 

l OmM or 3 0m!1. NaH 1 4 C0 3 ( 1  C i/mo l ) . The react ion was started 

by the add i t ion of acetyl -CoA and incubated a t  3 0°C with 

shaking for 5 min , and then stopped by the addi t ion o f  5 0  � 1  

6M HCl . A 5 0  � 1  a l iquot wa s dr ied on a 1 cm x 1 cm square 

of Whatman 3MM pape r , and t he re s idual radioac t ivity deter­

mined . Assays wi thout added acety l -CoA were u sed as  b lanks . 

NADPH-ma late dehydrogenase was as sayed spectrophotometrically  

by the  change in ab sorbance at 3 4 0  nm due to the oxidat ion o f  

NADPH when oxaloace t ate wa s c onverted to ma late  ( Hatch and· 

S lack , 1 9 6 9 ) . The a s say was carried out in a 1 ml  cuv e t t e  

contain ing : 5 0mM T r i c ine-K OH (pH 8 . 0 ) , 3mM oxaloacetate 

and 0 . 2mM NADPH . The enzyme was f i r s t  activated at 2 0°C 



with 2 5mM d i'th iothreitol , and then added to the rema in ing 

reactan t s  in the cuvette to start the as say . 

2 4  

RuDP c arboxyl a s e  and PEP carboxylase , respec t ive l y , were 

as sayed a s  the RuDP - and PEP-dependent , ac id- s table radio­

activity der ived from NaH1 4 C0 3 (Wishnick and Lane , 1 9 7 1 ) . 

The a s s ay s  were c arried out in a vo l ume of 2 0 0 � 1  containing : 

0 . 2M Tr i s -HCl ( pH 7 . 8 ) , 0 . 0 6mM EDTA , 5mH DTT , l OmM MgC l 2 ,  

5 0mM NaB 14  CO 3 ( 0 .  5 Cijno l )  and e ither 0 .  5mM RuDP or 0 .  5m1'1 PEP . 

The a s s ay mixture s with enzyme , but without the. substrate , 

were incubated at 3 0°C for 2 min , be fore add ing e i ther RuDP 

or PEP . The a s say was a l l owed to cont inue for a further 5 

min , before the addit ion o f  5 0  � 1  6M HCl , to s top the reac­

tion . The ac i d - s table rad ioact ivity was determined as des­

cr ibed above for the as say for acetyl -CoA c arboxylase . 

Catal a s e  activity was f o l l owed by the change in  absorbance 

at 2 4 0  nm , due to the d i s appearance of H 2 0 2  ( Luck , 1 9 63 ) .  

The a s say wa s carried ou t in a 1 ml  cuv ette , c onta ining S OmM 

pho sphate buf f er ( pH 7 . 0 ) and 0 . 0 5 %  H 2 0 2 . The a s s ay wa s 

started by the addition o f  the solution containing the 

enzyme . 

Fumarase ac t iv ity was a s sayed by f o l lowing the absorbance 

change at 2 5 0  nm due to the format ion of fumarate from ma late 

( H i l l  and Brad s haw , 1 9 6 9 ) . The a s say wa s carr ied out in a 

volume o f  1 ml  c ontaining 5 0mM pho sphate bu f fer and 5 0mM 

malate ( pH 7 . 8 ) . The a s say wa s started by the add it ion of 

the enzyme . 

2 + 2 + . 
Mg -ATPa s e  wa s as sayed a s  the Mg -dependent · r e l ease o f  

inorgan ic pho s ph ate from ATP ( Douc e  e t  a l . , 1 9 7 3 ) . Enzyme 

preparat ion s were incubated in 1 m l  solutions containing 

lOmM ATP and l OmM MgC1 2 at 3 7 °C for 20 min . At the end of 

the incubat ion , 1 ml ·of  2 0 %  tr ichloroacetic ac id wa s added 

and the mixture centri fuged at 2 0 0 0g for 5 min . An a l iquot 

of the supernatant was a s sayed for inorgan i c  pho sphate by 

the procedure o f  Tau ssky and Shorr ( 1 9 5 3 ) . 
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Biotin carboxylase activity was . a s sayed as t h e  biotin- and 

ATP-dependent , rad ioactiv i ty der ived from NaH 1 4 C0 3 wh ich wa s 

stable  to " C0 2  bubbl ing " ( Guchhai t  et a l , l 9 7 4 a ) . The a s say 

was carried out in a volume of 0 . 5  ml , conta i n ing : O . lH 

triethanol amine -Bel ( pH 8 . 0 ) , lmM ATP , 8mM MgC l 2 ,  l OmM 

biotin , 3mM g l utathione , 0 . 3  rng BSA , 5 0  � l  ethano l , 8mM 

NaH 1 4 C0 3 ( 1 . 2 5 C .:i/mo l ) .  The as say was started by the addition 

of en
.
z yme and was incubated at 3 0°

C for 10 min , a fter which 

the react ion wa s qu ickly c ooled by the addit ion of 1 . 0  ml o f  

ice -cold wate r , and f o l l owing the addit ion o f  a drop of 

�-heptanol , C02  wa s bubb l e d  through the so lut ion for 30  min 

at 2°
C to remove excess  H 1 4 CO� and the res idual rad ioactivity 

determ ined . As s ays without added ATP were u sed as blanks . 

The b i o t in pro s thetic group of acety l -CoA carboxylase wa s 

labe l l ed by carboxylation with NaH 1 4 C0 3 ,  us ing excess  

part i a l l y  pur i f ied biotin c arboxylase from E .  col i ( Guchhait 

et a l . , l 9 7 4 a ) . The a s s ay wa s carr ied out in a volume of 

0 . 5  ml , cont a i n ing : O . lM triethano lamine -Bel ( pH 8 . 0 ) , lmM 

ATP , 8 mM MgC l 2 ,  O . l 8mM NaH1 4 C0 3 ( 6 0  Ci/mo l ) ,  0 . 3  mg BSA , 2 

mi l l iun i ts o f  b iotin carboxylase ( s ee Section 3 . 6 ) .  The 

as say wa s started by the addit ion of extract to be te s ted 

for the biot i n  prosthetic group and incubated at 3 7 °C for 

1 0  min . The a s say was s topped and rad ioact iv i ty in the 

biot in prosthe t ic group determined as descr ibed for the 

as say o f  biotin carboxy l a s e . 

3 . 3  Preparat i on o f  Ce l l -Free Extract s  

Ce l l - free extracts from p l ant t i s sues  we re prepared a t  4°C 

by homogen i s ing about Sg  o f  leaf mate r ia l , cut into about 

5 mm segment s ,  i n  a chi l l ed mortar and pe stle with lg o f  

acid-was hed s and and two volume s o f  cold O . lM Tri s-HCl buf fer 

at pH 8 . 0  cont a ining 2 0rnM 8 -mercaptoethanol and loo4 EDTA 

( O . lM T r i s  bu f f e r ) . The bre i was f i ltered immed iately 

through a l ayer o f  M irac loth and l ml of f i l trate wa s de­

sal ted on a B i og e l  P 6  column , wh ich had been previously 
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equi l ibrated with O . lM Tr i s  bu f fer . The green e luate of 

approx imately 2 ml wa s co l le cted and stored on ice . 

3 . 4  Preparat ion o f  Chlorop l a s t s  

Chlorop l a sts  were i solated f rom l eave s , by homogeni sat ion a t  

4 °
C ,  f o r  3 s e c  and 5 sec , with mix ing i f  nec e s s ary in be­

tween , in  a Waring Blendor at full  speed wi th four vo lume s 

o f  0 . 5M sucro se buffer ( 0 . 5M sucro se , 5 0mM Tr ic ine , 2 0mM 

8 -mercaptoethano l ,  lmM MgC l 2 , ad j u sted to pH 8 . 0  with NaOH ) . 

The bre i was f il tered through two l ayers of Miracloth , and 

the chloroplasts  pel leted at 2 0 0 0� for 1 min ( Hawke et a l . , 

l 9 7 4 a )  . The chlorop lasts we re resu spended in a minima l 

volume o f  0 . 5M suc rose buf fer , f i ltered through a layer o f  

Miracloth and centri fuged through 0 . 6M sucro s e  at 8 0 0� for 

1 5  min ( Leese  et a l . , 1 9 7 1 ) . The f inal chlorop l a st pe l l et 

was re suspended in  0 . 5M sucrose bu f fer . 

Disruption o f  i sol ated chloroplasts  wa s carr ied out by 

passage o f  a l ml al iquot o f  i sol ated. c hlorop l a s t s  through 

a column ( bed volume 1 0  ml ) of B ioge l P 6 , prev iou s ly equ i l i ­

brated with O . lM Tris-HCl ( pH 8 . 0 ) c onta ining 2 0mM 8-mercap­

toethano l  and lmM EDTA . The green e luate was c o l l ected and 

homogen i sed in a g lass  Ten-Broek homogenise r to ensure com­

plete d i s ruption . This procedure not only removed the low 

mo lecul ar we ight o smot icum , sucrose , causing d i s rupt ion of 

the chloroplasts , but a l so the low mol ecular we ight sub­

s trate , RuDP , whose c arboxylat ion by RuDP c arboxyl ase inter­

fered w i th the a s say for acety l -CoA c arbox y l a s e  activity . 

3 .  5 Preparation o f  r.1esophyl l  Protop l a s t s and Bundle Shea th 

Stran ds 

Maize  l e ave s were cut into 0 . 5  nun tran sver se segment s and 

d igested with a 2 %  so lut ion o f  Cel lulys in in 0 . 6M sorbitol , 

2 0mM MES bu f fer and 5mM MgC 1 2 ad j u sted to pH 5 . 5  with NaOH , 
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for 3 h  a t  3 0°C with gent l e  shaking a t  3 0  rev/min ( Kana i and 

Edward s ,  l 9 7 3 a ) . At the end of the incubat ion the leaf  

segment s we re f i ltered through an  8 0  �m  nylon net and wa shed 

with a solution of 0 . 6M sorbitol , 5 0mM Tr ic ine , 5mM MgC l 2 

ad j u s t ed to pH 8 . 0  with NaOH ( 0 . 6M sorbitol buf fer ) . The 

combined f i ltrate and wa shings were centri fuged at 2 0 0 g  for 

3 min and the s upernatant d i scarded . The pe l let of crude 

mesophy l l  protop lasts was re suspended in 0 . 6  ml of 0 . 6M 

sorb i t o l  bu ffer and d i spersed in a mixture o f  1 . 6 5 ml 3 0 %  

(w/w) polyethylene glycol 6 0 0 0 , 4 . 5  m l  2 0 %  ( w/w ) Dextran 

T4 0 ,  1 . 5  ml 2 . 4M sorbitol and 0 . 4 5 ml 0 . 2M sod ium pho sphate 

bu f f e r  ( pH 7 . 8 ) . The d i s per sed protoplasts were centr i fuged 

in a swinging bucket rotor at 3 0 0� for 6 min at 4
°

C ( Kanai 

and Edwards , l 9 7 3 b ) . The purif i ed me sophy l l  protop l a s t s  

col l ec ted a t  the inter face of the two -phase sys tem , wer e 

recove red by means of a Pa steur pipette . The two-pha se 

pur i f ic ation procedure wa s r epeated and the protop l a s t s  

fina l l y  suspended i n  0 . 6M s orbito l bu f fer and pel leted by 

centr i fugat ion ( 3 0 0� for 3 min ) and suspended in a sma l l  

volume o f  0 . 6M sorbitol bu f fer . 

The bund le sheath strand s were obtained from the ma terial  

on the 8 0  �m  nylon net and were pur i f i ed by the f i ltrat ion 

and sed imentat i on procedure s of Ko j ima et a l  ( 1 9 7 9 ) . The 

mate r i a l  on the 8 0  �m nylon net wa s suspended in 1 2  ml o f  

0 . 6M s orbitol  bu f fer and w a s  allowed t o  sett l e  for 5 m i n  in 

a 1 5  ml centri fuge tube . The cut icular fragments f loa ted 

to the top of the solut ion and we re r emoved with a P a s teur 

pipette . The volume wa s made to 1 2  ml with 0 . 6M sorbitol  

buf fe r , mixed gent ly and again a l lowed to  settl e , and the 

cut i c u l ar material  removed . The s e t t l ing proc edure wa s 

repeated once more , and the strand s were collected by centr i­

fugat i on at 4 0 0 g  for l min . The supe rnatant . f luid wa s re­

moved and the who l e  procedure repeated . Fina l ly , the strand s 

were c o l l ected by centri fugat ion and resuspended in 0 . 6M 

sorbitol  bu ffe r . 

Extracts of me sophyll  protoplasts and bundle sheath strand s 
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were prepared b y  homogeni sation i n  a glass  Ten-Broek homo­

gen i ser , with a sma l l  volume o f  5 0mM Tricine-NaOH { pH 8 . 0 ) , 

conta in ing 2 0mM 8-merc aptoethano l and lmM EDTA { 5 0mM 

Tr i c ine bu f fe r )  and f i l ter ing through a layer of Mirac loth . 

3 . 6  Preparat ion of E .  co l i  Acety l - CoA Carboxylase Components 

The biotin carboxylase and biotin c arboxyl -c arrier protein 

{ BCCP ) of acety l -CoA c arboxylase  o f  �- col i was partia l ly 

pur i f i ed by the procedure of Guchhait  et al { l 9 7 4 a ) . E .  

c o l i  B ce l l s  we re grown in 3 0 £  batches in a Fermace l l  

Fermenter { New Brun swick S c ient i f ic Co . ,  Inc . )  i n  a med ium 

containing : 0 . 1 % KH 2 P0 4 , 0 . 1 % K 2 HP 0 4 , 0 . 1 % NaCl , 0 . 4 %  { NH 4 ) 2  

S0 4 , 0 . 0 7 % MgS0 4 . 7 H 2 0 , 0 . 0 5 %  sod ium c i trate , 0 . 5 % g lucos e  and 

0 . 0 5 %  peptone . At about full  log-phase of growth , ce l l s  were 

harve s ted by centrifugation at 7 , 0 0 0� for 1 0  min , and wa shed 

twic e  with O . lM pota s s i um pho spha te bu ffer { pH 7 . 0 ) c ontain­

ing 5mM 8 -mercaptoethano l and lmM E DTA . Ce l l s  were broken 

by two pa s sage s through a French Pre s sure Ce l l  at 2 0 , 0 0 0  psi  

and c entri fuged at 2 0 , 0 0 0� for 3 0  min . The supernatant wa s 

fract ionated with ammonium sulphate , and the prote in 

fract ion prec ipi tated between 2 5 %  and 4 2 %  saturat ion o f' 

ammon ium sulphate wa s d i s solved in 5mM pota s s ium pho sphate 

bu f fe r  { pH 7 . 0 ) containing 2 0 %  g l yc e rol , 5mM 8-mercapto­

ethanol and lmM EDTA , and dialysed o vernight aga inst the 

same buf fer . The biot in c arboxyl a s e  and BCCP components 

were separated by calc ium pho sphate g e l  fract ionation . 

Su f f ic ient calc ium phosphate g e l  wa s added to g ive a g e l : 

prot e i n  o f  1 : 1  · and stirred for 3 0  min . The g e l  wa s co l lected 

by centr i fugation { l O , O O Og , 1 5  min ) and washed three t imes 

with 5mM pota s s ium pho sphate buf fer { pH 7 . 0 ) . The wa shings 

and s up�rnatant c ontaining BCCP we re combined , and the pro­

tein pre c ipitated at 8 0 %  s aturat ion of ammonium sulpha te 

wa s p e l leted by centri fugat ion and s tored at - 8 0°C .  

Biotin carboxyl as e  wa s e luted , by wa s h ing the gel  three 

time s with O . l 2M pota s s ium pho sphate bu ffer ( pH 7 . 0 ) con-



2 9  

tai ning SmM B -merc aptoethano l and lmM EDTA . The wa shings 

we re pooled , and the prote in prec ipitated at 5 0 %  ammon ium 

sulphate was col lected by centri fugat ion and stored at - 8 0°C .  

3 .  7 Incorporat ion o f  [l - 1 4C ]  Acetate into Lipids 

3 .  7 . 1  [ l - 1 4C ]  acetate incorporat ion into l ipids by 

i solated chlorop l a s t s  

The incorporation o f  [ l - 1 4 C ]  acetate into l ipids by 

i so l ated chloroplasts  wa s carr i ed out in 1 5  ml stoppered 

tube s in a vo lume o f  2 5 0  � 1 , conta ining : 0 . 3M sorbitol , 

S OmM Tric ine -KOH , pH 7 . 8 ,  3 0mM NaHC0 3 , 2 . 0mM ATP , 0 . 5mM CoA , 

lmM MgC1 2 , 2 . 5mH DTT , 0 . 2mM NADPH , 0 . 2mM NADH , 0 . 2 5mM , [l -1 4 C] 

acetate ( 1 6  Ci/mo l )  and chlorop l a s t s  equ iva lent to 3 0 - 7 0 �g  

o f  chlorophy l l . Incubations wer e  carried out at 2 0°C under 

an i l lumination of 2 0 , 0 0 0  lux f rom tung sten l amps , with 

ag i tat ion at 7 8  cyc l e s/min for 2 0  - 3 0  min . Reactions were 

stopped by the addition o f  suf f i c i ent chloroform :methanol 

( 2 : 1 ) to form a s ing le pha se . Water was added , and the 

chloroform layer wa shed separate l �  with 1 %  acetic a c id , 

O . lM NaCl and three t ime s with water . The f inal chloro form 

solut ion wa s dried under a stream o f  N 2  and the res idue 

d i s solved in 1 ml of chloroform . A suitable al iquot wa s 

dried in a scinti l l at ion vial  and rad ioactivity determ ined . 

3 . 7 . 2  [ l -1 4 C ] acetate incorporat ion into l ipids  by 

leaf  sl i ce s 

One gram o f  fre sh leaf  t i s sue wa s s l iced transversely 

into 1 mm strips and i ncubated in  5 ml o f  O . lM pho sphate 

buf fer pH 7 . 4 ,  5 0mM NaHC0 3 and 5 � ci of [ l-1 4 C] acetate 

( 0 . 0 8 �moles ) ,  for l h  at 3 0
°

C under 2 0 , 0 0 0  lux i l l um ination . 

Lip id wa s extracted with c hloro form : methano l ( 2 : 1 )  by the 

method of B l i gh and Dyer ( 1 9 5 9 )  , and wa shed success ive ly 

with 1%  ace t ic ac id , O . lM NaCl and three time s wi th water . 

The f inal chloroform solut ion wa s dr ied under a stream o f  



ni trogen and the r e s idue d i s solved in 1 rnl o f  chloro form . 

An appropr iate a l iquot wa s dr ied in a scint i l l at ion vial  

and rad ioactivity determined . 

3 . 8  Preparation o f  Mai z e  Lea f  Sect i ons 

3 0  

Lipid synthe s i s  and acetyl -CoA carboxy lase act ivity wa s 

mea sured in def ined segment s o f  th e emerg ing second l e a f  

from 8 day old , l ig ht-grown ma i z e  p l ants . The s e  leave s show 

succe s s ive stages  o f  c e l l  and plastid d i f ferent iat ion , with 

immature t i s sue near the base and mature tissue in the 

d i stal sect ions o f  the l eave s ( Leech et al , 1 9 7 3 ) . Eac h 

leaf  from about 5 0 0 - 7 0 0  plants  wa s cut tran sver sely into 

four sect ions of 2 ern l ength ( l eaf sect ions A - D ) from the 

base and the rema in ing d i s t a l  sect ion ( E )  wa s 2 - 5 ern in 

length . 

3 . 9  Preparat ion o f  Sepharo s e -N -Propane 

Hydrophobic column chromatography as described by Sha l t i e l  

( 1 9 7 4 ) , with Sepharo se-N-propane wa s used to pur i fy acetyl­

CoA c arboxyl ase . l O Og o f  S ep haro se 2B  wa s act ivated with 

l O g  o f  cyanogen bromide at pH 1 1 . The activated Sepharo se 

was  suspended in  1 0 0  rnl o f  O . lM NaHC0 3 ( pH 9 . 5 ) and mixed 

with 2 5  ml of propylarnine , 5 0  ml NaHC0 3 (pH 9 . 5 ) and 5 0  ml 

N , N-d irnethyl forrnamide . The c oupl ing wa s allowed to proceed 

for l Oh at room temperature , t hen the re sin wa s washed 

succe s s ively with 5 0 0  rnl of water , 0 . 2M acetic a c id , water , 

5 0mM NaOH , wate� d ioxane-water ( 1 : 1 ) , 0 . 2M acetic acid and 

f inal ly with 2 £  of water . When not in use the r e s in was 

stored in  0 . 0 2 %  NaN 3 at 4 °C .  

3 . 1 0 Pol yacrylamide Gel E l ec trophor e s i s  

Polyacryl amide g e l  e l ectrophor e s i s  wa s c arried out in 0 . 7  ern 
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x 1 0  cm gla s s  tube s , accord i ng to the system o f  Davis  ( 1 9 6 4 ) . 

The separat ing gel was 7 %  acrylamide , 0 . 2 3 %  bi s-acrylamide 

d i s solved in bu f fer ( 0 . 0 6M HC l , Tris to pH 8 . 9 ) and N , N , N ' , 

N ' -te trame thylethylened i amine ( TEMED ) ( 5 0 � 1  per 1 0 0  ml ) . 

The stacking gel  wa s 2 . 5 % acrylamide , 0 . 6 2 5 %  b i s - acrylamide , 

1 %  suc rose d i s solved in bu f fer ( 0 . 0 6 2  Tris -HCl , pH 6 . 7 ) and 

TEMED ( 5 0 � 1  per l O O  m l ) . Ge l s  were polymeri sed with ammon­

ium persulphate ( l O O  mg per 1 0 0  ml ) , which was d i s solved in 

the gel j u s t  be fore pouring . 

Protein samp l e s  we re d ia lysed for 2h against e lec trode reser­

vo ir buf fer ( 3 8 . 5  mM g lyc ine , Tri s to pH 8 . 3 ) , be fore electro ­

phqre s i s , and were app l i ed to  the gels i n  a solut ion containing 

2 0 %  g lycerol and 0 . 0 0 5 %  bromophenol blue . E lec trophore s i s  wa s 

carried out with a c urrent o f  2 rnA  per gel , unt i l  the tracking 

dye entered the separat ing gel , then at 4mA per gel . At the 

end of e l ectropho res i s , the ge l s  were removed from the tubes 

with a f ine needle , the track ing dye marked w i th a piece o f  

f ine wire , and t h e  g e l s  sta ined for 2h at  5 0°C i n  a so lution 

of 0 .  2 5 %  Cooma s s ie Br i l l i ant B lue R2 5 0  in methano l/acet i c  ac id/ 

water ( 9 : 1 : 1 0 ) . Exce s s  stain wa s removed by d i f fus ion in 

met hanol/acet i c  ac id/water ( 9 : 1 : 1 0 )  and the g e l s  were stored in  

7%  ace tic ac id , for up t o  2 weeks , before be ing photographed . 

3 . 1 1 Centri fugat ion 

Ultracentri fugat ions and s uc rose density grad ient centr ifuga­

t ions we re c arr i ed out on a Beckman Mode l L 2 - 6 5B U l tracentr i ­

fuge . Centr i fugat ion s a t  low speed s were performed in Sorva l l  

RC-2B  o r  RC- 3  centri fuge s .  All  centrifuga tions were carr ied 

out at 4
°

C ,  and a l l  centri fugal forces -are quoted as g max 

value s . 

I so l ated chlorop l a s t s  ( Se c t ion 3 . 4 ) were centr i fuged on a 

d i sc on t inuou s sucro s e  den s i ty grad ient ( Mi fl i n  and Beevers , 

1 9 7 4 ) , composed o f  a 4 ml  cushion o f  6 0 %  (w/w) sucrose , over ­

l ayed with 6 ml  o f  a l in ear grad ient from 6 0 %  ( w/w) to  4 2 %  

( w/w) sucrose , 5 ml o f  4 2 %  (w/w) sucrose , 1 0  ml o f  a l inear 

grad ient from 4 2 %  ( w/w) to 3 0 % (w/w) sucrose and a f inal  
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3 m l  o f  3 0 % ( w/w) sucro s e . I solated chlorop lasts  were over­

layed on the gradient and centri fuged in  a SW2 7 rotor at  

4 , 0 0 0  rpm for 5 min and then at  1 0 , 0 0 0  rpm for a further 

1 0  min . Grad ients we re fract ionated on an I SCO Den s it y  

Gradient Fractionato r , into 1 . 2  m l  frac tion s . 

I sol ated d i srupted chloroplasts  ( S ect ion 3 . 4 )  were separated 

into stromal and membrane fractions by centri fugat ion on a 

d i scontinuous sucrose dens ity grad ient compo sed o f  2 ml of 

6 0 %  ( w/w) suc rose and 9 ml  o f  1 5 %  ( w/w) sucro s e . D i srupted 

chloroplasts were ove r l ayed on the gradient and centri fuged 

in an SW4 1Ti  rotor at 2 8 6 , 0 0 0� for lh . Frac t ionation o f  

the gradient into 1 . 2  m l  f ractions was carr i ed out on an 

ISCO Dens ity Gradient F r ac t ionator . 

Al l sucrose solutions were prepared in 5 0mM Tr ic ine -NaOH 

pH 8 . 0  bu ffer contain ing 2 0ru� B-mercaptoethano l and lmM 

EDTA . 

3 . 1 2 Ana lytical  Method s  

3 . 1 2 . 1  Determinat i on of prote in 

Prote in wa s dete rmined by the Cooma s s i e  dye bind ing 

method of Bradford ( 1 9 7 6 ) , and by absorbance mea surements 

at 2 8 0 nm .  Bovine serum a l bumin wa s used as the standard 

prote i n  in the prote in dye binding procedure . Solution s of 

bovine serum a lbumin were PLe pared in p . OlM pho sphate buffer  
l %  

( pH 7 . 2 )  and standard i z ed a s suming A1 cm at 2 7 9 nm o f  6 . 6 7 

( Fo ster and Sterman , 1 9 5 6 ) . 

3 . 1 2 . 2  Determinat ion o f  chlorophyl l 

Chlorophyl l  was determined in 8 0 % (v/v ) acetone a s  

descr ibed by Arnon ( 1 9 4 9 )  . 
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3 . 1 3  De terminat ion o f  Rad ioactiv i ty 

14 C radio ac t iv i ty wa s determined w i th a Beckman Mod e l  LS B O O O  

Scint i l lat ion Counter . Aqueous samples were c ounted in 

Tr iton X-1 0 0/to luene ( 1 : 2 ,  v/v ) containing 0 . 4 % PPO and 

0 . 0 1 %  POPOP . Non-aqueous samp les were counted in to luene 

contain i ng 0 . 4 % PPO and 0 . 0 1 %  POPOP . Carboxyl ase activities 

were determined by drying react ion samples on 1 cm x 1 cm 

squar e s  o f  3MM paper and count ing a s  a non-aqueous sample . 

Rad ioact ivity on chromatograms was detec ted by scanning on 

a Packard Model 7 2 0 0  Rad iochromatogram Scanner . 

3 . 1 4 Chromatographic Procedures 

3 . 1 4 . 1  Gel  f i l trat ion chromatography 

Ge l f i l trat ion chromatography was carried out in a 

Pharmac i a  Kl S/9 0 c olumn , packed with Ultroge l AcA2 2 a s  in­

structed by the manufacturer . Bu f fer wa s pumped with an 

LKB Mod e l  4 9 1 2A Peristalt i c  P ump , a t  a rate of 4 ml/h and 

e luent s  were co l l ected on an I SCO MOdel  3 2 8  Fraction 

Col lector . Ultrav i o. let  absorbance o f  the e luate wa s moni ­

tored w i t h  a n  I S CO Mode l UA- 5 Absorbance Mon i to r . 

3 . 1 4 . 2  Thin-layer c hromatography 

MN3 0 0  c e l l ul o se plates  were prepared as ins tructed by 

the manuf acturer , to a t h ic kne s s  of 1 mm ,  and a l l owed to 

ai r-dry at room t emperature for 2 days . 

Al l thin - l ayer c hromatography was carr ied out at room tem­

perature . 

3 . 1 4 . 3  Paper chromatography 

P aper chromatography was carr i ed out in the a sc end ing 
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direct ion i n  g l as s  j ar s  using Whatman No . 1 and 3MM paper . 

3 . 1 5 Pur i f ic a t ion o f  Acetyl-CoA Carboxylase from Leaves 

Acetyl -CoA c arboxylase from leave s wa s pur i f i ed by two pro­

cedure s ,  Procedure I and I I , to approx imately the s ame degree 

of pur ity . The initial  puri fic at ion step s were ident ical  in 

both procedu re s and are de scr ibed below .  Al l pur i f ication 

step s were c arr i ed out at 4
°

C .  

4 5 0 g  o f  plant l eave s were harve sted and homogeni sed in a 

sta i n l e s s  ste e l  War ing B lendor at full-speed for 3 0  sec , 

with two vo lume s o f  O . lM Tris-HCl bu f fer ( pH 8 . 0 ) , conta in­

ing 2 0mM B -rner c aptoethanol and lmM EDTA . The bre i  wa s f i l ­

tered through a layer o f  Mirac loth and one o f  nylon bol ting 

cloth , an d the f il trate centr ifuged at 3 0 , 0 0 0g ,  in an S S 3 4  

rotor for 3 0  min . The pel let was d i scarded , and to the 

supernatant wa s added f ine ly ground polyethy l ene g lycol 

6 0 0 0  ( PEG ) to a l eve l o f  6g/1 0 0  ml , with con s tant stirr ing . 

After s t irr ing for a further 1 5  min the prec i p itated prote in 

wa s p e l leted by centri fugation at 1 2 , 0 0 0� for 2 0  min in a 

GS 3 rotor and d i scarded . PEG wa s added to the supernatant 

to a l evel o f  8 g/ 1 0 0  ml with con stant st irring and the pre­

c ipitated prot e i n  wa s pe l l eted by centri fugat ion . The 

supernatant was d i scarded and the pe l let resu spended in 

l OmM Tr i s -HCl bu f fer ( pH 8 . 0 ) containing 2 0m}� B-mercapto­

ethanol and lmM EDTA ( l Oll}� Tr i s  buf f e r )  . 

Procedure I: 

The PEG fract ion wa s loaded on to a column o f  S epharo se-N­

propane ( l O O ml bed volume ) which was previo u s l y  equ i l i ­

brated with l OmM T r i s  buf fer . Unbound protein wa s washed 

o f f  the c olumn with l OmM Tris buf fer and elution wa s carried 

ou t overnight wi th a l inear gradient from l OmM Tr i s  buf fer 

( 3 0 0 ml ) to 0 . 2M KCl in l OmM Tr i s  buf f er ( 3 0 0  ml ) , at a rate 

of 3 0  ml/h . 
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The fract ion s  with acetyl-CoA carbox y lase a t  a spec i f i c  

act ivity gre ater  than 8 0  nrno l/min/mg were poo l ed and con­

centrated by u l trafiltrat ion through a Dia f lo PM3 0 ul tra­

f i ltrat ion membrane , to a final volume of about 7 ml . Of 

this fract ion , 5 ml was pur ified further by g e l  f i l trat ion 

through a c o l umn of Ultrogel AcA2 2 ,  equ il ibra ted with l OmM 

Tr i s  bu ffer ( S ection 3 . 1 4 . 1 ) . Fractions contain ing acetyl­

CoA c arboxyl a se o f  high spec i f ic a c tivity were pooled and 

used to char a c ter i ze the enzyme . 

Proc edure I I : 

In this  procedure the pur i f ication steps up to the PEG 

fract i onat ion were as de s cribed above , except only l O Og o f  

l eave s were u sua l ly used . To the PEG fraction sol id 

ammon ium sulphate was added at pH 8 . 0  to a level of 2 4 . 4  g/ 

1 0 0  ml . The p re c ip itated prote in was collected by centr i ­

fugat i on and r e su spended i n  l OmM Tr i s  bu f fer , t o  g ive a 

f ina l volume o f  about 5 ml . This f ract ion wa s pur i f i ed 

further by ge l f i l tration on a column of Ultrogel AcA2 2 as 

in Proc edure I .  Fractions which conta ined acetyl -CoA c ar-

boxyl a s e  we re poo l ed and used to characteriz e the enzyme . 
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GENERAL FEATURES AND STAB ILITY OF LEAF ACETYL-CoA CARBOXYLASE 

4 . 1  General  Feature s of Acetyl-CoA Carboxyl a s e  Activity 

Since ac etyl -CoA c arboxy l a s e  i s  a poor ly char ac terized 

en zyme. ,  in  a l l  exc ept a £ew p l ant . spec;:: ies , name ly 

spinach ( Mohan and Kekwic k , 1 9 8 0 )  and barley ( Thomson and 

Zali� 1 9 8 1 ) , initial  work in  thi s  study on ma i z e  tissue was 

concerned with the demon strat ion of acetyl-CoA c arboxylase 

activity i n  c e l l - f ree extracts . An acetyl-CoA-dependent , 

acid- stable r ad i oactive produc t  derived from N aH 1 4 C03 wa s 

found to a ccumu l ate in ma i z e  leaf  ce l l - free extracts . The 

produc t wa s ident i f ied as malonic acid after a lkal i hydro­

lysis , by thin- layer chromatography ( Huang , 1 9 7 0 )  ( F ig . 2 )  

and paper chromatography ( Deni son and Phares , 1 9 5 2 )  ( Fig . 3 ) . 

The H 1 4 co ; - f ix ing ac tivity showed an ab solute requirement 

for MgC l 2 and ATP , and wa s st imul ated to some extent by OTT 

and KCl . Avidin , a biot in-bind ing protein , was found to be 

a potent inhibitor , but pretreatment o f  avid i n  with biotin 

prevented the inhibi tion ( Table  I I ) . These f e a tures are 

characte r i s tic  of previou s ly-characte r i �ed acetyl-CoA car­

boxy l a s e s  from other source s  ( Lane et  a l . ,  1 9 7 4 ) , thus con­

f irming t h at this H 1 4 co; - f ix ing activ i ty in ma i z e  l eaf 

c e l l - free  extracts wa s due to acety l -CoA carboxyl ase . 

Acetyl-CoA c arboxyl a se activity in c e l l - free extracts was 

f ound to b e  proport{ona l to the amount o f  pro t e i n  in the 

a s say , up t o  l O O  � g  ( Fig . 4 )  and wa s a l s o  l inear with time 

o f  incubat ion , up to about 1 5  min ( F ig . 5 ) . There fore sub­

sequent a s s ay s  contained l e s s  than l O O  �g of protein and 

were incubated for 5 min . 
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F I GURE 2 :  Identi fication of the product of the acetyl -CoA carboxylase 
a s say by TLC . 

50 �1 of the products o f  a standard acetyl -CoA carboxylase assay was 
chromatographed on a Gelman TLC plate ( ITLC-SG ,  Type 2 0 ) , ( a )  be fore 
and (b)  a fter hydrolysi s with 2M KOH . The chromatogram was deve loped 
in water-saturated ether/formic acid ( 7 : 1 ) . After drying , the plates 
were scanned for radioactivity and malonic acid detected by spraying 
with with a neutral to s l i ghtly alkaline solution of bromocresol green 
( 4 00 mg/1)  in 9 5 %  ethanol . Authenti c  malonic ac id ( 2 �mole s )  was u sed 
as a standard . 
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FIGURE 3 :  Identi fication of the £ro�uct of the acety l -CoA carboxyl ase 
assay by p�er chromatography . 

50  �1 o f  the products of a standard acetyl -CoA carboxylase as say was 
chromatographed on Whatman No . 1 paper ( 2 0  ern x 5 cm) 1 ( a ) before and 
(b)  afte r hydrolysi s  with 2M KOH . The chromatogram was developed in 

d iethyl ether/glacial acetic ac id/water ( 1 3 : 3 : 1 )  1 and after drying was 
scanned for radioactivity . Ma lonic acid was detected with a neutral to 
slightly alkaline solution o f  bromocresol green ( 4 00 mg/ 1 )  in 95% 
ethanol .  Authenti c  malonic ac i d  ( 2  �mole s )  was used a s  a standard . 
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TABLE I I  

COFACTOR REQUI REMENTS OF ACETYL-CoA CARBOXYLASE ACTIVITY IN 

CELL-FREE E XTRACTS OF MAIZE  

Omi s s ion 

None 

Acety l -CoA 

ATP 

MgC l 2  

H 1 4 co; 

DTT 

KC l 

Ma i z e  l e a f  extract ( 7 0 �g prote in )  

None + Avidin ( 0 . 2  units ) 

None + Avidin ( 0 . 2  uni t s )  pretreated with 
biotin 

1 4  - I H C0 3 f ixed a s say 
(dpm) 

1 6 , 0 2 5  

8 8 5  

1 2 0  

1 9 0  

0 

1 4 , 4 7 5  

1 4 , 7 7 5  

8 0  

6 5  

1 5 , 0 8 6  

Assay cond itions were a s  de scr ibed i n  S ection 3 . 2 ,  with 3 0mM 

NaHC0 3 •  



1 5  

-1 0 
c 
E 

lf) -... 
0 
E 
c -

"'C QJ 
- �  
.�f") s 
0 
LJ 
::r: 

0 

0 1 00 200 
Protein (�g/assay) 

FIGURE 4 :  Dependence o f  acetyl-CoA carboxylase activity on protein 
leve l s  of cell-free extracts of maize leaves .  

Ce ll-free extracts of maize leave s were prepared as in Sectio� 3 . 3. 
As say condi tions :  as described i n  Secti on 3 . 2  using l OmM  HC0 3 . 
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FIGURE 5 :  Effect o f  t ime on acetyl-CoA carboxylase activity in c e l l ­
free extracts o f  mai z e  leave s . 

Assay conditions : a s  described in Section 3 .  2 using l OmM  HC0 3 . , and 
cell-free extract o f  maize leaf containing 98 �g of prote in , prepared as 
in Sect i on 3 . 3 .  



4 . 2  Stab i l i�ation o f  Acetyl -CoA Carboxylase in  Cel l -Free 

Extrac t s  by S u l fhydryl Protect ing Agent s 
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I t  wa s c l e arly advan tageou s to stab i l i z e  acetyl- CoA carboxy­

la se activity in c e l l - free extrac t s , in order to proceed 

with the pur i f icat i on of this enzyme . As in a lmos t  all pre­

vi ous s tud ie s  o f  acetyl-CoA carboxy l a s e , worke r s  had inclu­

ded a s u l f hydry l pro tecting agent in the isolat ion buf fer , 

a study wa s carried out to inve stigate the e f f e c t  o f  the s e  

agent s o n  the activity o f  the mai z e  l e a f  enzyme . 

In the abs ence o f  a sul fhydryl reagent , acetyl-CoA carboxy­

l ase in c e l l - free extracts wa s relat ive ly unstabl e . 

Acetyl -CoA carboxy l a s e  activity wa s lost  with in 2 0 0  min o f  

the preparat i on o f  t h e  mai ze ce l l - f ree extract ( F ig . 6 ) , and 

in bar ley c e l l - free extrac ts ac tivity wa s reduc ed by 7 0 %  in 

6h ( F ig . 7 ) . The addition of 8 -mercaptoethano l to the c e l l ­

free extrac t s  o f  both mai z e  ( F ig . 6 )  and barley ( F ig . 7 ) 

leave s stab i l i zed acety l-CoA carboxyl a s e  activity . Storage 

of the c e l l - free extracts unde r an atmo sphere o f  ni trogen 

appeared to improve the stabi l ity of the enzyme , a l though 

not to the extent o f  8 -mercaptoethanol .  

Acetyl -CoA c arboxyl a s e  act ivity in c e l l - free extrac t s  o f  

spinach l eave s wa s f ound d i f f icult t o  determine due t o  the 

very low l eve l s  pre sent . Thi s problem was overcome by pre­

c ipitating the enzyme with po lyethlene g lyco l and re  su spend ­

ing the pre c ipitate i n  a small volume o f  bu ffer . S pinach 

leaf acety l -CoA carboxylase activity wa s unstable , and wa s 

lost dur ing the t ime o f  the experiment ( about l h ) , when O . lM 

Tr i s -HCl bu f f e r  ( pH 8 . 0 )  conta ining 2 0mM 8-mercaptoethanol 

and lmM EDTA was u sed ( Table I l l )  . Fo llowing the publ ica­

t i on of Mohan and Kekwi ck' s ( 1 9 8 0 )  work on acetyl -CoA 

c arboxylases  f rom avacado plastids and s pinach c hloroplasts , 

it wa s con f i rmed that inclus ion o f  1 5 %  glycerol and 0 . 1 % 

BSA i n  the i so lation bu f fer stabi l i z ed ac etyl -CoA carboxy­

lase in ce l l - f ree extracts of s pinach l eave s ( Table I I I ) . 

The inclu s ion o f  1 5 %  glycerol and 0 . 1 % BSA in bu f f e r s  did 
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FIGURE 6 :  S tabili zation of acetyl-CoA carboxylase activity in cell-
free extracts of maize_by 8-merca£!oethanol . 
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Activity of acetyl -CoA carboxyl ase in the cell -free extracts o f  maize 
without 8-mercaptoethanol (Q) . 2 min <e> , 30 min (�) , and 70 min <•> 
after preparation the cell -free extracts contained 20mM 8-mer�aptoethanol .  
Assay conditions : as described in S ection 3 . 2  us ing 3 0mM HC0 3 . 
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FIGURE 7 :  Stab i l i zation of acetyl -CoA carboxylase activity in c e l l -
free extracts of barley by 8-mercap�oe!hano l . 
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Activi ty o f  acetyl-CoA carboxylase i n  the cell-free extracts o f  barley 
without 8-mercaptoethanol (0) . 1 min <e> , 4 0  min ·<•> , and 90 min (•) 
after preparation the cell-free extracts contained 20mM 8-mercapto­
ethanol . As say conditions : a s  described in Section 3 . 2  u s ing l OmM  
NaHC03 . 
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ACETYL-CoA CARBOXYLASE ACT IVITY I N  CELL-FRE E  EXTRACTS OF 

S P I NACH LEAVES 

4 5  

Fraction 

Acetyl -CoA Carboxylase Ac tivity 
( nmo l/min/4 0g tis sue ) 

Ce l l - free extrac t 

3 0 , 0 0 0g supernatant 

6 - 1 4 %  PEG 

A 

4 6 0  

zero 

z ero 

B 

6 2 3  

4 1 2  

1 2 2  

Two batche s , 4 0g fre sh we ight o f  spinach leave s ( A  and B ) , 

we re homogeni sed , centri fuged at 3 0 , 0 0 0g and frac tionated 

wi th po lyethylene glycol ( PEG ) , as descr ibed in Section 3 . 1 5 . 

The buf fer u s ed with batch A wa s O . lM Tr i s -HCl ( pH 8 . 0 ) 1 

conta ining 2 0mM S-mercaptoethano l and lmM EDTA , whi le with 

batch B the buf fer wa s O . lM Tri s-HC l ( pH 8 . 0 ) , conta in ing 

2 0mM S -mercaptoethano l , lrnl1 EDTA 1 1 5 %  g lycerol and 0 . 1 % BSA . 

Ace ty l -CoA carboxylase activitie s were determined in standard 

as says ( Sect ion 3 . 2 ) 1 u s ing l OmM NaHC0 3 • 
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not enhance the s tability o f  acetyl - CoA carboxy lase in c e l l ­

free extracts o f  e i ther ma i z e  or bar ley leave s .  

LOCAT I ON OF ACETYL-CoA CARBOXYLASE IN MAI Z E  LEAVES 

4 . 3 Location o f  Ace tyl-CoA Carboxylase  in Chloroplasts  o f  

Ma i z e  Leave s 

Chlorop l a s t s  i so l ated from the second leaf of ma i z e  seedl ings 

were cen tr i fuged o n  the d i sc ont inuous sucro se dens ity 

gradient de scr ibed i n  Sec t i on 3 . 11 .  Fractionat ion of the 

gradient s howed two c learly de fined regions contai ning 

chlorophyl l  ( F ig . 8 ) . The chlorophyl l  peak of higher dens­

i ty contai ned RuDP carboxyl a s e  ( 8 3 %  of the activ ity app l ied 

to the grad i ent )  a nd NADPH -mal ate dehydrogenas e  ( 9 5 %  of the 

activity app l i ed to the grad ient ) , wh ich are commonly u s ed 

enzyme s for the characteri zation o f  intact chlorop l a s t s  f rom 

bundle s heath and me sophyl l  c e l l s , respectively , of C 4 

plants . Observation by pha s e -contra st micro scopy con f irmed 

the intact nature o f  the chloroplasts  in thi s  reg ion o f  the 

gradient . The absence o f  the s e  en z yme s from the chlorophy l l  

band of l ighter den s i ty ind ic ated that this band contained 

broken chloroplas t s , which wa s con s i s tent with the ir appe ar­

ance in pha s e -contra st micro s c opy . The s ing le z one of 

acetyl-CoA carboxylase  activity ( 1 0 7 %  o f  the act ivity app l i ed 

to the gradient)  c orre sponded to the intact chloroplast  band 

as ·indicated by the marker e n z yme s . I n  contrast , no detect­

able acety l-CoA c ar boxyl ase act ivity wa s found in the 

fractions c onta ining broken chloroplast s . 

A high pur ity o f  the chlorop l a st. preparat ion wa s ind icated 

by the absence of d etectabl e  PEP carboxyl ase , fumarase and 

catalase , which are cytoplasmic , mitochondrial and perox i ­

somal enzyme s , respective ly . Centr i f ugat ion o f  the chloro­

pl ast pre p aration through a 0 . 6M suc r o s e  layer , pr ior to 

density gradient centr i fugat i on , removed non- chloroplastic  
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FIGURE · S :  Di str ibu tion of enzyme s , chlor?Ehyl l and protein fol lowing 
the cent r i fugati on of purified maiz e  chloroplasts in a 
sucrose density gradi ent . 
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Chloroplasts i solated from mai z e  l eaves ( Secti on 3 . 4 )  were centri fuged 
in a sucrose dens i ty gradient described in Sec tion 3 . 1 1 .  Fractionation 
of the gradi ent was carried out on an I SCO Gradient Fractionator . 
Sucrose ( • ) , acetyl - CoA carboxylase ( e ) , RuDP carboxylase ( • ) ,  protein 
( o ) , chlorophyll ( o ) , and NADPH-malate dehydrogenase ( 6 ) .  
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contaminants and e n zyme s rele ased f rom chloroplasts broken 

dur ing the isol at ion procedure . The lack of chloroplastic  

enzyme s at  the top o f  the  sucrose den s i ty gradient wa s in­

d i cat ive of the minima l breakage of chloroplasts during 

dens i ty gradient ce ntr i fugation . The l arge protein band at 

the top of the grad i ent wa s due to the BSA which was inclu­

ded in  the chlorop l ast i so l at ion bu f fer . From the propor­

t i on o f  ch lorophy l l , in the two chlorophyllou s  bands , it 

wa s e st imated that about 6 0 %  o f  the chloroplasts were in­

tact , wh i ch agree s with phase -contra s t  microscopy observa­

tion of the chlorop l a s t  preparation prior to dens ity 

gradient centri fugat ion ( F ig . 9 ) . 

4 . 4 So lubility o f  Mai z e  Chloroplastic  Acetyl-CoA Carboxy­

l a s e  

Al though there i s  now increas ing evidence that chloroplastic  

acetyl -CoA carboxyl ase i s  a stroma l enzyme ( Mohan and Kek­

wick , 1 9 8 0 ; Thomson and Za l i k , 1 9 8 1 ) , at the time thi s 

inve stigat ion wa s begun the so luble nature o f  thi s  en zyme 

wa s not e stabl i s hed . In i so l ated ma i z e  chloropla sts , which 

were d i srupted by p a s sage through a d e s a lting column 

( Sec t ion 3 . 4 ) , the solub i l ity character i stics  o f  acetyl -CoA 

carboxylase  wer e inve s t igated by centri fugation on a d i s ­

cont inuou s dens ity gradient ( Sect ion 3 . 1 1 ) . The stroma l 

content o f  the chloroplasts  wa s  e f f ic iently separated from 

the membrane frac t i on s  by th i s  procedure , as j udged by the 

d i str ibution of the marker enzyme s in the grad ient ( F ig . 

1 0 )  . The c oinc idence o f  RuDP carboxylase ( 1 0 7 %  o f  the 

activity app lied to the grad ient)  and acetyl -CoA carboxylase 

( 1 1 1 %  of  the activity app l ied to the grad ient ) activitie s 

in the gradient c on f i rmed the recent f ind ing s of the stromal 

location o f  acety l -CoA carboxyl ase . 



FIGURE 9 :  Repre sentat ive f i e ld of a preparation of isolated mai ze 
chloropla st s . 

4 9  

Chloropla sts we re i solated from maize leave s as descr ibed in Section 3 . 4 ,  
and photographed under phase-contrast . Magnif ication l 6 00x . 
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FI GURE 10 : Distribut ion o f  enz�es , chlorophyll , and protein fol lowing 
the centri fugation o f  disru£ted maize chloroplasts in a 
di scontinuous sucrose density gradi ent . 

Chloroplasts isolated from maize leaves were disrupted by a desa l t ing 
procedure ( Section 3 . 4 ) and centrifuged i n  a di scont inuous sucrose 
density gradient a s  described in Section 3 . ll .  Fractionation of the 
grad i ent was carried out on an

2
�sco Gradi ent Fract ionator . Sucrose ( 1 ) , . 

acetyl-CoA carboxyl ase ( • ) , Mg -ATPase ( e ) , RuDP carboxylase ( 6 ) , 
protein ( o )  and chloroplyl l ( o )  . 
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4 . 5  Loc a t i oh o f  the Biotin Prosthetic Group o f  Ch loroplas­

t i c  Acetyl -CoA Carboxylase 

Although a stroma l acetyl -CoA carboxy l a s e  wa s demonstrated 

in chlor opla sts o f  ma i z e  ( Section 4 . 4 ) , the po s s ibil ity o f  

a second enzyme requ iring membrane bou nd biot i n  still  

ex i s ted ( Kannangara and S tumpf , 1 9 7 2 ) . The locat ion o f  the 

biotin pro sthetic group of acetyl -CoA ca rboxy lase within 

ma i z e  c h loroplasts wa s there fore inve s t igated , by carboxy­

lat ion o f  the biotin mo iety with H 1 4 co;  u s ing a biotin car­

boxyl a s e  preparation from E .  coli ( S e c t ion 3 . 6 ) . Biot i n  

carboxy l a s e  was prepared f r e e  o f  a l l  o ther components o f  the 

E .  c o l i  acetyl -CoA carboxyl as e , BCCP and carboxyl tran s ferase , 

by adsorption on to a calc i um pho sphate gel ( S ect ion 3 . 6 ) . 

Prior t o  s eparation o f  the component s o f  the enzyme , total 

acetyl - CoA carboxylase activity incre a s ed dur i ng pur i f icat ion 

( Table I V ) , perhap s due to the remova l of the inh ibitor 

reported p reviou sly  ( Guchha i t  et al . ,  1 9 7 4 a ) . 

As we l l  a s  carboxyl ating free biotin , biotin carboxylase 

appeared to carboxylate the biotin pros thetic group of 

acetyl - CoA carboxylase o f  d i srupted ma i z e  chl oropl asts . 

Th i s  reaction requi red ATP and MgC 1 2  a nd wa s inhibited by 

av idin ( Table V) , propert i e s  wh ich were analogous to the 

carboxylation o f  BCCP in E .  col i ( Guchhait et al . ,  1 9 7 4 a ) . 

I n  ord e r  to demon strate that the above reac t ion carboxylated 

the b i o t in pro sthetic group of ma i z e  acetyl-CoA carboxylase , 

the tran s f e rence o f  the rad ioact ive l abe l from carboxyl -

biotin to acety l - CoA wa s examined . Following the carboxy-

lat ion o f  the biotin pro sthetic group in d i s rupted ma i z e  

ch loropl asts wi th biotin carboxylase o f � - c o l i  and H 1 4 co; , 
i n  the absence o f  acetyl -CoA , by the procedure de scr ibed in 

Section 3 . 2 ,  5 2 5 0  dpm we re stabl e to gass ing with C02 ( Table 

VI ) . Mo st o f  this  rad ioact ive labe l wa s un stable in  ac id 

cond i t i o n s , con s i stent with prev iou s  f ind i ng s  o f  the s tabi l ­

i ty o f  c arboxyl - biotin ( Guchha it e t  al . ,  1 9 7 4 b) .  However ,  

upon further i ncubati on with added ac etyl-CoA and fresh 

m a i z e  c hlorop l ast extrac t ,  85%  o f  the  radioac t ivity f ixed to 



Fraction 

Ce l l - free 
· extract 

2 0 , 0 0 02_ 
supernatant 

2 5  - 4 2 %  ammonium 
sulphate 

5mM pho sphate 
wash of  ge l 

0 . 1 2M pho sphate 
wash of gel 

TABLE I V  

PREPARATI ON OF B I OTIN CARBOXYLASE FRO.M E .  coli 

Total 
Prote in 

(mg )  

1 1 3 5  

9 2 8  

2 4 0  

1 0 2  

8 5  

Acetyl-CoA 
Carboxylase 

Total Spec1fic  
Act ivity Activity 

(nmol/min )  ( nmo l/min/mg ) 

3 6 . 3  0 . 0 3 2  

1 8 0 . 4  0 . 1 9 4  

4 8 9 . 3  2 . 0 4 0  

none 

none 

Biotin 

Total 
Activity 

( nmol/min)  

n . d .  

n . d .  

n . d .  

none 

8 6 1  

Carboxylase 

Spec i f ic 
Activity 

( nmol/min/mg) 

1 0 . 1  

Deta i l s  o f  the pur i f icat ion procedures used are given in Section 3 . 6 .  Acetyl-CoA carboxylase 
and biotin carboxyl ase activit ies were assayed as the acetyl-CoA- and blotin-dependent f ixation 
of  H 1 4 co� , respectively , as descr ibed in Sect ion 3 . 2 . n . d .  = not determined . 

Vl 
N 



TABLE V 

COFACTOR REQUI REMENTS FOR THE CARBOXYLAT ION OF THE B IOTIN 

P ROSTHETIC GROUP IN  MAI ZE CHLOROPLASTS BY B IOT IN 

CARBOXYLASE OF E .  coli  

5 3  

Omi s s ion 
1 4  -

H C0 3 f ixed/as say 

None 

ATP 

MgC l 2  

B i o t i n  carboxylase 

Chloropl ast extract ( 2 9 � g  chlorophy l l )  

None + Avidin ( 0 . 2  uni t s )  

( dpm ) 

1 5 , 1 1 3  

5 7 9 

3 0 0  

3 8 7  

2 8 5  

7 8 8  

De ta i l s  of the cond it ions for the c arboxy lation of the biotin 

pro sthe t ic group o f  ace tyl-CoA c arboxylase are g iven in 

Sec t i on 3 . 2 .  Chloropl a s t s  were i so l ated from mai z e  leave s 

and d i srupted by a de sal t ing procedur e  ( S ection 3 .  4 )  . B iotin 

carboxylase o f  E .  coli wa s prepared a s  de scr ibed in Sec t i on 

3 .  6 .  
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TABLE V I  

MALONYL-CoA FORMAT ION FROM CARBOXYL-BIOTIN BY MAI Z E CHLORO­

PLASTS 

Tre a tment of a s s ay 

Ga s s ing with C0 2 

Ac id i f ied wi th 1 0 0 � 1  6M HCl  

Ga s s i ng with C0 2 + incuba t ion with 

acetyl -CoA and ma i z e  ch loroplast  

extract and then ac id i f ied with 

1 0 0 � 1  6M HCl 

1 4  -
H C0 3 f ixed/as say 

(dpm ) 

5 2 5 0  

3 2 0  

4 4 5 0  

The b iotin prosthetic group in three separate a l iquo t s  o f  

d i s rupted ma i z e chlorop l a s t s , equivalent to l O � g  chlorophyl l ,  

wa s carboxylated with biot in carboxy lase ( Sect ion 3 . 2 ) . 

Fol lowing whi ch , the a s says we re e i ther gas sed with C0 2 or 

ac id i f ied with 1 0 0 � 1  6M HCl or i ncubated further at 3 0°C for 

1 5  min after the add it ion o f  acety l -CoA ( 0 . 3rnM) and di srupted 

mai z e  chloropl ast s equ iva lent to 2 0 � g  o f  chlorophy l l , and 

the n  acidif ied w i th 1 0 0 � 1  6M HCl . 



carboxyl -biot i n  became a c id- stable , consistent with the 

format ion o f  1 4 C-malony l -CoA ( Table VI ) .  

5 5  

Chloroplasts i solated from ma i z e , barley and sp inach leave s 

wer e  d i srupted by passage through a desalting column 

( S ec t ion 3 . 4 ) , and the stroma l and membrane fraction s  sepa­

rated by centr i fugation on d i scont inuou s sucrose den s i ty 

grad ients de s c r i bed in  Se ct ion 3 . 1 1 .  9 1 - 1 0 6 %  o f  the b iotin 

carboxylated by biotin ca rboxyl a s e  of �- col i in  d i s rupted 

chl oroplasts , was recovered in the stroma l fractions , whi l e  

the membrane fractions  c onta ined o n l y  3 - 7 % of the carboxy­

l ated biotin ( Table VI I ) . 

4 . 6  Distr ibut ion o f  Ac etyl -CoA Carboxylase Between Meso­

phyll and Bundle Sheath Ce l l s  o f  Ma ize Leave s 

Plants whi ch fix  C0 2 by the so- c a l led ' C 4 -pathway ' ,  such a s  

mai z e , di str ibute certain en z yme s d i f ferentially between 

the two type s o f  chlorophy llou s  c e l l s , me sophyl l and bundl e  

sheath ( S la ck et  al . ,  1 9 6 9 ) . Fo l l owing the d ige stion of 

ma i z e  leave s wi th ce llulase , me sophyl l  protoplasts  and 

strands of bund le sheath cel l s  we re obta ined ( S ection 3 . 5 )  

virtually free o f  cros s - contami nat ion , as j udged by the 

marker enzyme s PEP carboxylase and RuDP carboxylase ( S lack 

et a l . ,  1 9 6 9 )  ( Table VI I I )  and observation by pha se -contra s t  

microscopy ( F ig . l l  and 1 2 ) . Ac etyl-CoA carboxy lase  acti­

vity was found in both c e l l  type s ,  with the spec i f ic acti­

vity somewhat greater in  the me sophyl l  protoplasts . 

LEVELS OF ACETYL-CoA CARBOXYLASE ACT IVITY IN  LEAVES 

4 . 7  Inve st i ga t i on o f  the Re l at i ons hip Between Lea f  Deve lop­

ment , Acetyl- CoA Carboxy l a s e  Act ivity and [ l - 1 �] acetate 

Incorporat ion into Lipids 

The partially emerged sec ond leave s of mai ze seed l ings have 



5 6  

TABLE V I I  

DISTRIBUTION O F  THE B IOT IN PROSTHET I C  GROUP IN CHLOROPLASTS 

ISOLATED FROM THE LEAVES OF THREE PLANTS 

Chl oroplast dpm H 
4

co; f ixed 

Source Broken 
S troma Membranes Chloropl a s t s  

Ma i z e  1 , 0 0 5 , 0 0 7  1 , 0 6 9 , 1 3 3  4 0 , 2 3 8 

Spin ach 4 9 1 , 0 9 6  4 8 0 , 2 0 3 1 4 , 9 6 6  

Barley 8 8 , 1 7 3  8 4 , 4 9 1 6 , 7 6 0  

Chloropla sts were i sol ated from ma i ze , spinach and bar l ey 

leave s and d i s rupted by a desal ting procedure ( S ection 3 . 4 ) . 

The biotin pro sthetic group of acetyl -CoA carboxylase was 

carboxyl ated with biot in c arboxylase ( S ec tion 3 . 2 )  in the 

ch loropl ast extract , and the stromal and membrane fract ions 

prepared by centri fugation on di scont inuous sucrose den s i ty 

grad ient ( S ect ion 3 . 1 1 ) . D i srupted chloropla s t s  of ma i z e , 

spinach and barley equ iva lent to 5 9 0 � g , 4 2 0�g  and l 7 5 � g  o f  

chlorophyl l ,  re spect ive ly , were used i n  the se expe riments . 



TAB L E  V I I I  

D I S T R I B U T I ON OF E N Z YMES B E TWEEN ME S O P H YLL P ROTOPLASTS 

AND BUNDLE S HEATH S T RANDS 

5 7  

Ac t i v i ty ( nmo l /m i n/mg pr o t e i n ) 
En z yme 

PEP c a r b o x y l a s e 

Ru DP c a r b o x y l a s e  

Ac e ty l - C o A  c a rbox y l a s e  

MP 

1 1 0 5  

1 5  

1 2 1  

B S S  

2 8  

1 6 7 0 

8 5  

Extr a c t s  o f  me s o p h y l l  p r o t op l a s t s  a n d  b u n d l e  s h e a t h  s t r a n d s 

we re p re p a r ed by e n z ym i c  d i g e s t ion o f  m a i z e  l e ave s ( S e c t i o n  

3 . 5 ) . A s s ay cond i t  s a r e  d e s c r i be d  i n  S e c t i o n  3 . 2 . l OmM 

NaHC0 3 w a s  u s ed i n  t h e  a s s a y s  for a c e t y l - C oA c a r boxy l a s e  

a c t i v i t y . MP me s op hy l l  p r o t o p l a s t s ; B S S  = bund l e  s h e a t h  

s t rand s . 



FIGURE 1 1 :  Representative field o f  a preparation of isol ated maize 
me sophyl l  protoplasts . 

5 8  

Mesophyl l  protoplasts were i solated from maize leaves a s  described in 
Section 3 . 5 ,  and photographed under phase -contrast . Magni fication 8 00x . 
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FIGU RE  1 2 : Repr esentative field of a preparation of maize bundle sheath 
strands . 

Strands of bundle sheath c e l l s  were prepared from mai ze leaves as des­
cribed in Section 3 . 5 ,  and photographed under phase -contrast . Magni­
fication 400x . 
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been used by a number o f  workers to inve stigate the proce s s  

of l ea f  and p l a s t id deve lopment ( Leech e t  a l . ,  1 9 7 3 ; Hawke 

et a l . , 1 9 7 4 b ;  Baker and Leec h , 1 9 7 7 ) . Such l eave s show 

succe s s ive l eve l s  o f  ce l l  and plastid development , with the 

least d i f fe rent i ated cel l s  and plastids neare s t  the base o f  

the l ea f , t h e  ful l y  diffe rent iated ce l l s  in t h e  d i stal part 

of the l ea f , and the inte rmed iate sect ion s o f  the leaf show 

a l inear progre s s ive sequence o f  c e l l  and p l a s t id different­

iation . Se rial s e gments from base to tip of such leave s 

there fore , o f fe red a natura l system in which the r e lationship 

be tween l e a f  devel opment , acetyl -CoA carboxyl a s e  activity and 

the r ate o f  [ 1 4C ]  acetate incorporation into l ip i d s  could be 

stud ied . 

4 . 7 . 1  Incorporation o f  [ l - 1 4C ]  acetate by ma i ze leaf 

s l i ce s  

The s econd eme rging l eave s o f  8 day-old mai ze seedl ings 

were sectioned a s  descr ibed in Section 3 . 8 .  T i s sue from 

each sect ion o f the leave s wa s s l iced and incubated with 

[l- 1 4 C ]  acetate in  the l ight , to determine l ip id s ynthe s i s  

( Sect ion 3 . 7 . 2 ) . The rate o f  [ 1 4C ]  acetate incorporation 

into l ipids  of the l eaf s l i ce s , expre s sed on a f r e sh we ight 

bas i s , wa s at a minimum in the ba sal section s ( sec t ions A 

and B )  wh ich c ontain the l ea st dif ferent iated c e l l s  ( Table 

I X ) . Sect ion C ,  whi ch corre sponds to the region o f  the lea f 

in tran s i t ion between undeve l oped and deve loped t i s sue , 

showed the max imum r ate o f  acetate incorpora t i on . In the 

two d i stal  s ec t i on s  ( D  and E )  , whi ch c ontain mor e  deve loped 

tis sue , the rate o f  [ 1 4C ]  acetate incorporati on wa s found to 

decrease f r om that found in s ec t ion C .  

4 . 7 . 2  Incorporation o f  [ l - 1 4 C]  acetate into l ipids by 

i s o l ated chlorop l a s t s  from developing ma ize  leave s 

Chloropl a s t s  at succ e s s ive leve l s  o f  dev e lopment were 

i so l ated by the procedure de s c r ibed in S ection 3 . 4 ,  from 

secti oned leaves o f  ma i z e  ( Se c t ion 3 . 8 ) . Each o f  the chloro-
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TABLE I X  

E FFECT O F  LEAF DEVELOPMENT ON [ 1 -
1 4

c J  ACETATE 

I NCORPORAT ION INTO L I P I DS BY LEAF SLICE S OF MAI Z E  

Leaf 
Sect ion 

A 

B 

c 

D 

E 

[ 1 - 4
c J acetate incorporation into l ipids 

( nmol/h/g fresh we ight ) 

1 3 . 1  

1 3 . 0  

2 2 . 5  

1 5 . 8  

1 4 . 7  

Mai z e  s e ed l ings grown for 8 days as de scribed i n  Section 2 . 1 ,  

we re cut i nto 2 cm sections ( S ection 3 . 8 ) . T i s sue from each 

l e a f  s e c t i on wa s s l i ced into lmm strips and a s s ayed for the 

capac ity to incorporate C1 4 c J acetate into 1 ipids  ( S ection 

3 . 7 . 2 ) . 
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plast preparat ions were a s sayed f o r  their capac ity t o  in­

corporate [l -1 4 C] acetate into l ipid s . The rate s o f  l ip id 

synthe s i s  from ace tate with reference to chlorophyll leve l s , 

the usual ba s i s for expre s s i on o f  activity , showed a max imum 

wi th chloropla sts i sol ated from the least deve loped t i s sue 

( s ection A) , whi l e  chlorop l asts  i so lated from tissue o f  in-

creas ing maturity and d i f f erentiat ion ( s ections B - E ) , 

showed progre s s ively  lower rate s . However , the chang ing 

leve l s  o f  chlorophyll in i solated chloropla sts  at d i f ferent 

deve lopme nta l stage s ( Leech et a l , 1 9 7 3 ; Baker and Leech , 

1 9 7 7 )  con fuses the above c ompari son . Therefore , use has 

been made of data on plast id numbers obta ined in mai ze 

seed l i ngs grown under a lmo s t  ident i c a l  conditions by Leech 

and eo-workers ( Leese et a l . , 1 9 7 1 ; Baker and Leech , 1 9 7 7 ) , 

which enables the compar i s on o f  the rates of acetate incor­

porati on to be made in r e l at ion to p l astid development . 

The chlorophyll c ontent o f  l 5 0 x l 0 6 plas tids , i solated f rom 

sections A ,  B ,  C ,  D and E o f  mai z e  l eaves has been def ined 

as being equiva lent to 4 5 ,  5 0 ,  7 5 ,  1 2 5  and 2 0 0  �g o f  

chlorophyll , respective l y . On the ba s i s  of plastid number s  

( Table X )  , the rate of de novo l ipid synthe s i s  wa s h ig he s t  

i n  chloroplasts i solated from s ec t ions C and D ,  wh ich are 

the sections corresponding to the transition reg ion of the 

leaf between undeve loped and deve l op ed ti ssue . 

4 . 7 . 3  Acetyl-CoA carboxylase act ivity i n  cell- free 

extract s  o f  devel oping ma i z e  leave s 

T i s sue from e ach sect i on o f  ma i z e  leave s ( S ection 3 . 8 ) 

were u sed to prepare c e l l - free extracts ( Sect ion 3 . 3 ) . 

Acetyl -CoA carboxyl ase act ivity wa s determined in the s e  

extrac t s , to inve st igate the e f fect o f  leaf deve lopment o n  

ac t ivity . On the bas i s  of l eaf  fre s h  weight , acetyl -CoA 

carboxyl ase activity showed no c lear trend in the d i f f erent 

sections (Table X I ) . Howeve r ,  when based on protein content 

act ivi ty increased from the l east d i f f erentiated t i s sue in 

s ec t ion A to reach a max imum in the intermed i ate s ection C ,  

and then dec l ine in  the more fully d i f ferent iated t i s sue in 



Leaf 
Sect ion 

A 

B 

c 

D 

E 

TABLE X 

EFFECT OF LEAF DEVELOPMENT ON [ l -
14

cJ ACETATE 

INCORPORATION INTO L I P I DS BY ISOLATED 

CHLOROPLASTS OF MAI ZE 

6 3  

4 [ 1 - C] aceta te incorporat ion into l ipids  

nmol/h/mg chl  nmo l/h/1 5 0x l 0 6 plastid s  

5 2  2 . 3  

3 6  1 . 8  

3 8  2 . 9  

2 6  3 . 3  

1 3  2 . 6  

E ight day o l d  mai z e  s eedl ing s grown a s  de scr ibed in Sect ion 

2 . 1 ,  were cut into 2 cm sect ions ( Sect ion 3 . 8 ) . Ch lorop l a s t s  

were i solated from t i s sue o f  each  section ( S ect ion 3 . 4 ) , and 

a s s ayed for t heir capac ity to incorporate t 4
cJ ac etate into 

l ipids ( S ect i on 3 . 7 . 1 ) . 
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TABLE XI 

ACETYL-CoA CARBOXYLASE ACTIVITY IN CELL-FREE EXTRACTS 

OBTAINED FROM SECT I ONS OF MAI ZE LEAVES 

Acetyl-CoA carboxyl a s e  activity 
Leaf 

S e ction nmo l /min/mg nmol/min/g 
protein fresh we ight 

A 1 1 . 6  8 7  

B 1 8 . 6  1 3 0  

c 3 1 . 0  1 0 4 

D 2 1 . 6  9 8  

E 1 9 . 0  1 3 2  

Mai ze p l ants  we re g rown and s ect ioned a s  descr ibed in Table 

� Acety l - CoA carboxyl ase a c t ivity was  determined in ce l l - free  

extracts  ( S ect ion 3 . 3 ) o f  t i s sue from each section , by the 

standard a s say ( Section 3 . 2 ) , u s ing l OmM NaHC0 3 •  



s ection s  D arid E ( Tab le XI ) . 

4 . 7 . 4  Acetyl -CoA c ar boxylase activity in i solated 

chloropl asts  from deve loping mai z e  leave s  

I so l ated chloroplast preparat ion s  from suc c e s s ive 

section s o f  ma ize  seedling s , wh ich we re used to determine 

6 5  

the rate o f  [ 1 4 C ]  ac etate incorporat ion into l ipids ( S ection 

4 . 7 . 2 ) , were di srupted by a de salting procedure ( Sect i on 3 . 4 ) , 

and the activity o f  acetyl -CoA carboxylase determined in the 

extrac t s . Activi t ie s we re related to c hlorophy l l  and p l a st id 

numbers ( Lee se et al . ,  1 9 7 1 ) , and in both compar i sons ( Tab l e  

XI I )  acetyl -CoA c arboxyl a s e  activity wa s at a max imum in 

chloropl a s t s  from the lea s t  developed t i s sue ( s ect ion A )  and 

decreased in chloroplasts  from · the succ e s sive ly more deve­

loped t i s sue ( s ec t ion s  B to E ) . However ,  when act ivity was 

expre s �ed on the ba s i s  of pl astid numbe r s  thi s  trend wa s not 

as clear a s  when expre s s ed on the bas i s  of chlorophy l l . 

4 . 8 Ac etyl -CoA Carboxylase  Ac tivity and Lip id Synthe s i s  in  

Le ave s of Ma i z e , Barl ey and Spinach 

Acetyl-CoA carboxylase  act ivities in c e l l-free extracts o f  

maize , barley and s pinach leaves showed wide d i f ferenc e s  . . 

Activity wa s highest  in extracts  prepared from whole leav e s  

of 8 day-old mai z e , which wa s about twice that found i n  

barley extracts  prepared b y  the ident ical  proc edure ( Section 

3 . 3 ) ( Table XI I I ) . I n  order to determine the acetyl-CoA 

carboxylase activity in c e l l - f ree extrac ts of s pinach leave s , 

1 5 %  glyc erol and 0 . 1 %  BSA wa s inc luded in the bu f f er ( Mohan 

and Kekwick , 1 9 8 0 ;  Sect ion 4 . 2 ) , thus precluding the ex-

pre s s ion of the act ivity o n  a protein ba sis . However , on 

the ba s i s  of fre s h  we ight , acetyl -CoA carboxyl a s e  activity 

in spinach l eave s was on l y  1 5 % · of that f ound in mai z e . Pre­

paration o f  ma i z e  and barley cell-free extracts  with buf fe r s  

containing 1 5 %  glycero l  and 0 . 1 % BSA d id not a f fect acety l ­

CoA carboxyl ase activ ity . 
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TABLE X I I  

ACETYL-CoA CARBOXYLASE ACT IVITY I N  CHLOROPLASTS I SOLATED 

FROM SECT I ONS OF MAI ZE LEAVES 

Leaf 
Sect ion 

A 

B 

c 
D 

E 

Acety l -CoA carboxylase act ivity 

nmol/min/mg 
chl 

5 5 0  

2 0 8  

1 6 7  

6 9  

1 8  

nmol/min/1 5 0xl 0 6 

plastids  

2 4 . 7  

1 0 . 4  

1 2 . 6  

8 . 6  

3 .  6 

Acety l -CoA carboxyl ase a c t ivity was determined by the a s say 

de s c r i bed in Sect ion 3 . 2 ,  using 3 0rnM NaHC0 3 , in the same 

iso l ated chlorop l asts  u s ed in the exp�r iment descr ibed in 

Tab l e  X , after d i sruption by the desalt ing procedure d e s ­

cribed i n  Sec t i on 3 . 4 .  



TABLE XI I I  

[ l -
1 4

cJ ACETATE INCORPORAT ION INTO LIPIDS OF CHLOROPLASTS AND ACETYL-CoA CARBOXYLASE ACT IVITIES 

IN  CELL-FREE EXTRACTS AND CHLOROPLASTS FROM MAIZE , BARLEY AND SPINACH 

P lant 

Mai z e  

Bar ley 

Sp inach 

1 4  
[ C ]  acetate 
incorporat ion 

into l ipid s o f  
chloroplasts  

nmo l/min/mg chl  

0 . 3 3 

0 . 1 2 

6 . 0 0 

Acetyl -CoA carboxylase activity 

I solated 
Chlorop lasts  

nmo l/min/mg 
chl 

3 4 . 5  

8 . 5  

2 . 8  

Ce l l - free extracts 

nmo l/min/mg 
protein 

2 7 . 2  

l l . 2 

n . d .  

nmo l/min/g 
fresh we ight 

1 7 2  

9 5  

2 4  

Chl orop lasts we re i s o l ated and ce l l - free extracts prepared from leave s o f  ma i z e , bar ley and 

spinach by the procedures described in Sections 3 . 4  and 3 . 3 ,  re spect ively . Ac etyl -CoA carboxy­

lase activity was a s sayed u s ing l OmM Hco; , as descr ibed in Sect ion 3 . 2 ,  following d i sruption of 

chloroplasts  by de salting ( Sect ion 3 . 4 ) . c
1 4

� acetate incorporation into l ipid s by intact 

chloroplasts  wa s per formed as in Sect ion 3 . 7 . 1 .  n . d .  = not de termined . 

"' 
-..J 
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The pre sence o f  an inhibitor t o  acetyl -CoA carboxy lase ha s 

been reported i n  a number of previ ous stud ie s ( Burton and 

Stumpf , 1 9 6 6 ; Kannangara and Stump f , 1 9 7 2 ) . However , the 

nearly c ompl e te recovery of acetyl -CoA carboxylase  act ivity 

upon mixing o f  cell- free extract s  o f  mai z e  and sp inach 

leave s  ( Table XIV) , would appear to rule out the pre �ence 

of an inhibitor to acetyl -CoA carboxylase in s p inac h leaves . 

Ace tyl -CoA carboxylase activity in isol ated c hloroplasts 

was determined , and compared to the rate o f  [ 1� C ]  acetate 

incorporation into l ipids ( Section 3 . 7 . 2 ) by the same 

chloroplast  preparat ions from ma i z e , barley and sp inac h 

leave s . Chloropla sts i solated a s  in Sect ion 3 . 4  f rom ma i ze , 

bar ley and s pinach l eave s , conta ined 5 0 - 6 0 % , 3 0  - 5 0 %  and 

8 0  - 9 0 %  inta c t  chloropl ast , re spective ly , as j udged by 

examinat ion unde r phase- contrast microscopy . Acetyl -CoA 

carboxylase act ivity wa s determined fol lowing d i srupt ion of 

the c hlorop l as t s  by the desalt ing procedure d e scr ibed in 

Sect i on 3 . 4 ,  except that spinach chloroplasts were desalted 

in an elut i on buffer c ontaining 1 5 %  glycerol and 0 . 1 % BSA . 

Ma i z e  chloropl a st extracts showed the highe st acety l -CoA 

carboxyl ase act ivity , followed by extract s  of bar ley and 

sp inach , whi c h  showed 2 5 %  and 8 %  o f  the activity found in 

ma i z e  chloropl a st extracts , respective ly ( Tabl e X I I I ) . 

However , [ 1� C ] acetate incorporat i on into lipids  wa s h ighest 

with chlorop l asts o f  spinach , which was 1 7 -fold and 5 0 - fold 

higher than t he rate s shown by chlo roplasts o f  ma i z e  and 

barl ey , r e spec t ively . Compar i son o f  acetyl -CoA c arboxylase 

activ ity with the rate o f  [ 1 � C ]  acetate incorporat ion into 

l ipids  by the d i f ferent chloroplasts , ind icated that ma ize  

and bar ley c h loroplastic acetyl-CoA carboxylase act ivity 

wa s 6 0- fo ld and l O O -fold in exce s s  of the rate o f  , T 1 � C]  

ac etate incorporation , re spec t ive l y . Spinach chloroplast s ,  

on the other hand , appeared to c ontain acetyl-CoA c arboxy­

l a s e  activity wh�ch wa s only hal f that expected from the 

rate of [ 1 � C ]  acetate incorporat ion . 
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TABLE XIV 

ACETYL-CoA CARBOXYLASE ACTIVITIES IN MAI ZE AND SP INACH LEAVES 

Source of c e l l ­
free extract 

Ma i z e  l eave s 

Spinach l eave s 

Ma i z e  + s p inach leave s 

Vo lume 
(ml ) 

1 . 0  

1 . 0  

2 . 0  

Acetyl -CoA 
carboxyl a se activity 

( nmol/min )  

2 3 . 8 5 

2 . 0 5 

2 4 . 8 3 

Ce l l -free extracts we re prepared f rom ma i ze and sp inach 

leave s as de s c r ibed in Section 3 . 3 ,  except the spinach ce ll­

free  extract wa s prepared in  a bu f fer contain ing 15%  glycero l 

and 0 . 1 % B SA . lml al iquot s  o f  e ac h  extract were mixed and 

acetyl -CoA c arboxylase activity wa s assayed by the standard 

pro c edure ( Se c t ion 3 . 2 ) , u s ing l OmM NaHC0 3 •  



4 . 9  E f fe c t  o f  Light on Acetyl -CoA Carboxylase  Act iv ity in 

Mai z e  Leaves 

7 0  

Recently Nakamura and Yamada ( 1 9 7 9 )  have sugges ted , on the 

bas i s  of the concentration o f  intermed iates , that acetyl -CoA 

carboxy l a s e  i s  the l ig ht-dependent enzyme in de novo bio­

synthe s i s  o f  fatty ac ids  in chloropl asts . I t  might be ex­

pected there fore to find d i f ferent acetyl-CoA carboxylase 

ac tivi t i e s  i n  leave s s ubj ected to d i f f erent l ight-dark 

treatment s .  Maize plant s , grown for 8 days under a s tandard 

l i ght -dark reg ime ( Sec tion 2 . 1 ) , were p l aced in the dark for 

1 8 h . Wh i l e  half  the batch o f  plants  ( D )  were kept in the 

dark dur ing the sampl ing per iod , to serve as a contro l , the 

rema ining p l ants  ( L )  were placed i n  sunl ight for 2 6  min , and 

then returned to the dark . At each samp l ing t ime cel l- free 

extracts were prepared from about 3g  of l eave s ( Sect ion 3 . 3 )  

and ac ety l -CoA ·carboxyl ase activity determined . The re wa s 

no obviou s d i f ference between the enzyme ' s  activity in the 

extracts from dark and i l luminated leave s ( F ig . 1 3 ) . 

PURIF ICAT ION OF LEAF ACETYL-CoA CARBOXYLASE 

4 . 1 0 Pur i f ication o f  Acetyl-CoA Carboxy lase from Ma i z e  

Leave s 

The puri f i c at ion of acety l-CoA carboxyl a s e  from mai z e  leave s 

was c arried out to enable the kinetic character i s t i c s  of the 

enz yme to be i nvestigated . The in stabil i ty of the enzyme 

hampe red the i solat ion o f  the enzyme to homogeneity , and 

con s e quent ly the subsequent inve s t igation of i t s  molecu lar 

struc ture wa s precluded . Partia l puri f i c ation wa s obta ined 

by two procedures ( Procedure I and I I , see  Section 3 . 1 5 ) , 

each o f  wh i ch resulted i n  preparation s  o f  the en.zyrne o f  

s imilar spec i fi c  activity . 

In both procedures , pur i f ication commenced by the fraction-
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ne s s  (0) . Acetyl -CoA carboxylase activity was assayed as in Section 3 . 2  us ing lOrnM Hco; , in the cel l-free extracts 
of leaves prepared as in Section 3 . 3 .  
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at ion o f  the· 3 0 , 0 0 0g s upernatant o f  the homogenate with 

polyethy lene glycol 6 0 0 0  ( PEG ) . Prote in precipitated bet­

ween 6% and 1 4 %  saturat ion of PEG conta ined all of the 

enzyme act iv ity found in the 3 0 , 0 0 0g supernatant , with a 

four- fold incre a s e  in  spec i fic  activity (Tabl e XV and XVI ) . 

In Procedure I ,  the next pur i f ication s tep wa s hydrophobi c  

column chromatography o n  Sepharo se-N-propane . Thi s method 

o f  fract ionat ion i s  dependent on the hydrophobic  inter­

act ion between the l igand ( propane ) and the protein be ing 

chromatogvaphed . Shaltiel  and eo-workers ( Er-el  et a l . , 

1 9 7 2 )  f i r s t  d e sc r i bed this procedure in  the pur i f ication o f  

glycogen pho sphory l a s e  b ,  and s ince then it has become a 

widely used method i n  protein purif icat ion . 

7 2  

Sepharo se-N-propane wa s chosen a fter inve stigat ion o f  the 

binding of acetyl - CoA carboxyla s e  to a serie s of columns 

conta ining a homologous series  of hydrocarbon-coated agaros e  

( Shaltiel Hydrophob i c  Chromatography K i t  I ,  from M i l e s -Yeda 

Ltd , Rehovo t , I srae l ) . Each column ( bed vo lume 1 m l ) wa s 

equil ibrated wi th l OrnM Tri s-HCl bu ffer ( pH 8 . 0 ) contain ing 

2 0mN 8-merc aptoethanol and lrnM EDTA , and loaded with a 0 . 2  

ml so lution c onta ining acetyl -CoA carboxylase in  the above 

bu f fer . Unbound prote in wa s eluted from each column with 

2 ml o f  the start buf fer and the bound prote ins were e luted 

wi th 2 ml of lM KC l in start buf fer . None of the added 

enzyme bound to agar o s e  without any l igands , however 8 5 %  

and nearly 1 0 0 %  o f  the added enzyme wa s bound to agaro se-N­

ethane and agaro se-N-butane , re spec t ive ly (Table XVI I ) . 

Ag arose with hexane , octane and decane a s  ligands a l so 

bound a l l  o f  the added enzyme , and in a l l  cas e s  lM KCl. 

e luted approx imate ly 9 0 %  o f  the bound enzyme . S epharo s e -N-
� 

propane wa s chosen a s  i t  would appear f rom the s e  r e s u l t s  to 

j u st bind a l l  o f  the added carboxyl ase , and wou ld thus 

result in t he grea t e s t  puri f icat ion . Dur ing pur i f i c at ion , 

this procedure gave a recovery o f  4 0 %  accompan ied w i th a 

1 0 - fold increase in  spec i fic ac t ivity ( Table XV )  . A typical 

e lution pro f i le o f  prote in and acetyl-CoA carboxyl a s e  acti-



TABLE XV 

PURIF I CAT I ON OF ACETYL-CoA CARBOXYLASE OF MAI ZE LEAVES US ING PROCEDURE I 

Fract ion 

Homogenate 

3 0 , 0 0 0� supernatant 

6 - 1 4 %  PEG 

Sepharose-N-Propane 
Af f inity chromatography 

Ultrog e l  AcA 2 2, 
Ge l f i l trat ion 

Vo lume 
(ml ) 

1 3 5 0  

1 2 9 0  

9 1  

6 8  

7 

Activity 
( nmo l/min ) 

1 6 , 2 0 0  

9 , 0 4 0  

1 0 , 0 6 2  

4 , 1 5 6  

1 , 3 2 3  

Prote in 
(mg )  

5 0 6 3  

3 2 2 5  

1 0 3 1  

4 1  

3 . 0  

Spec i f ic 
Recovery Activity ( % )  

( nmo l/min/mg ) 

3 . 2 1 0 0  

2 . 8  5 6  

9 . 8  6 2  

1 0 1 . 9  2 6  

4 7 3 . 2  8 

Purif ication 
( fold )  

1 

0 . 9  

3 

3 2  

1 3 6  

The pur i f ication o f  acetyl -CoA carboxylase wa s carr ied out from 5 0 0g o f  ma i z e  leave s a s  de s­

cribed in Sect ion 3 . 1 5 .  

--..! 
w 



TABLE XVI 

PURIF I CAT I ON OF ACETYL-CoA CARBOXYLASE OF MAI Z E LEAVES US ING PROCEDURE I I  

Fract ion 

Homogenate 

3 0 , 0 0 0  g s upernatant 

6 - 1 4 %  PEG 

4 0 %  ammon ium sulphate 
pre c ipitate 

Ul troge l AcA 2 2  Ge l 
f i l trat ion 

Vo lume 
(ml ) 

2 8 4  

2 6 3  

2 5  

5 . 2  

5 

Act ivity 
( nmol/min ) 

5 2 2 0  

5 2 7 4  

5 9 2 1  

1 9 9 9  

1 3 0 8 

Prote in 
(mg )  

7 1 0  

4 4 7 

1 4 5  

5 0  

8 . 5  

Spe c i f i c 
Act ivity 

( nmo l/min/mg ) 

7 . 4  

1 1 . 8  

4 0 . 8  

4 0 . 0  

1 5 3 . 9  

Recovery Pur i f ication 
( % )  ( fold ) 

l O O  1 

1 0 1  1 . 6  

1 1 3  5 . 5  

3 8  5 . 4  

2 5  2 0 . 8  

The pur i fi cation o f  acetyl -CoA carboxyl ase wa s carried out from l O Og of  ma i ze leaves a s  de s ­

cr ibed in Section 3 . 1 5 .  

-.) 
.t:. 
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TABLE XVI I 

INTERACTI ON OF ACETYL-CoA CARBOXYLASE WITH SEPHAROSE -N-C X 

Li gand chain l ength 
( x )  

Acetyl-CoA carboxyl a s e  activity ( % )  

l OmM Tr i s  wa sh lM KCl wash 

0 l O O  0 

2 1 5  8 0  

4 2 9 0  

6 0 9 2  

8 0 9 1  

1 0  0 9 0  

Shaltiel  Hydrophobic Chromatography Kit I columns ( from M i l e s ­

Yeda Ltd , Rehovot , I srae l ) , were equ i l ibrated with l OmM Tr i s ­

HCl buf fe r  ( pH 8 . 0 ) conta ining 2 0mM S -mercaptoethanol , lmM 

EDTA and loaded with acetyl -CoA carboxylase ( total ac t ivity 

of 3 0  nmo l/min ) . The column s were succe s s ively  eluted with 

2ml each o f  equ i l ibrat ion bu f fer and lM KCl in  equil ibrat ion 

buf fer . Total activity in e ach e luate , as  a p ercentage o f  

the app l i ed activity , i s  g iven above . 
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vity from Sepharos e -N -propane , with a l inear salt  grad ient 

from z ero to 0 . 2M KCl , i s  shown in F i g . 1 4 . 

The fract i on s  containing acetyl-CoA carboxylase activity 

from the above proc edure we re pooled and concentrated to 

about 7 ml , by ultra f i ltrat ion through a Diaf l o  PM3 0 U ltra ­

f i l ter ( S e ct ion 3 . 1 5 ) , wi thout af fect ing acety l -CoA carboxy­

lase  activity . The f ina l pur i f icat ion s tep wa s obtained by 

g e l  f i l trat ion on a column o f  U l trogel  AcA2 2 . U ltrogel 

beads are composed o f  three-dimens ional polyacrylamide 

lattice w i th an interstitial  agarose g e l , resulting in beads 

o f  high r ig idity . Thi s e nab l e s  a higher flow rate than more 

convent ional med ia for gel f i l trat ion , such as  S epharose . 

The med i um used in  thi s study , U l trog e l  AcA2 2 ,  has a 

f ract i onation range o f  1 0 0 , 0 0 0  to 1 , 2 0 0 , 0 00  da ltons . 

A typical  e lut ion f rom a column o f  U l trogel AcA2 2 i s  shown 

i n  F ig . 1 5 , and typ ica l ly g e l  f i l tration on thi s  medium 

resulted i n  a four- fold increa se in  spec i f ic act ivity , how­

ever recovery wa s only 3 0 %  o f  the app l i ed activity . Over a l l , 

Proc edure I resulted in  a 1 3 0 -fold pur i f ication o f  acetyl-CoA 

carboxy l as e , with a n  8 %  recove ry o f  the initial activity 

( Table XV) . 

I n  Procedure I I , the polyethylene g lycol fract ionat ion d e s ­

cribed above , wa s f o l l owed b y  a further fract ionat ion with 

ammonium sulphate . The prot e i n  prec ipi tated at 4 0 % satu ­

rat ion o f  ammon ium sul phate ( Se c t ion 3 . 1 5 )  wa s subsequently 

frac t i onated by ge l f i l trat ion on U ltroge l AcA2 2 .  Although 

the ammon ium sulphate fractionation did not re sul t  in a 

f u rther increase i n  spec i f ic activ ity , i t  enabled the PEG 

fract ion . to be concentrated to a sma l l  volume nec e s sary for 

the subsequent ge l f i l trat ion step . Furthermore , if the 

ammon ium sulphate prec ipitation wa s omitted , chromatography 

on the U l troge l AcA2 2 column resulted in a poor recovery o f  

the e n z yme . 

A typ ic a l  e l ution pro f i le from U l trog e l  AcA2 2 obta ined with 
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Ace tyl-CoA carboxylase precipitated between 6% and 1 4 %  PEG was re suspended in l OmM Tri s-HCl buffer (pH 8 . 0 ) contain­
ing 2 0mM 8-mercaptoethanol and lmM EDTA ( l OmM Tris bu ffe r )  and was loaded on to a column of Sepharose-N-Propane , 
equil ibrated with lOmM Tris buffer . Unbound protein was washed off with l OmM Tri s  buffer and e lution was carried out 
with a linear gradient from zero to 0 . 2M KCl (- -) in lOmM Tri s  buffer , at a rate of 3 0  ml/h . Fractions of approxi­
mately 1 0  ml 

'
were collected and acetyl -CoA carboxylase activity ( o ) , and A

2 8 0  
(-) determined . -....! 

-....! 



-
--J E -
c:: 

0 · 8  . E  400 � 
-
E 
c 

g 0 ·6  N 
-

QJ u c:: 
_g 0 ·4  c... 
0 (/) 

...c 
<( 

10 20 30 40 
Fract ion num ber 
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Ace tyl-CoA carboxylase ( 5  ml) , recovered from hydrophobic chromatography , was sub j ected to ge l filtration on a 
column of Ul trogel AcA 2 2 , with lOmM Tri s -HCl buffer ( pH 8 . 0 ) containing 2 0mM B-mercaptoethanol and lmM EDTA 
( Section 3 . 14 . 1 ) . Acetyl-CoA carboxylase activity ( o )  and A

2 8 0  
(-) was determined in each fraction ( 4  m l ) . -...J 

OJ 
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Procedure I I  is shown in Fig . 1 6 . The recovery and puri f i ­

cat ion o bta ined wa s similar t o  that obtained during thi s  

step i n  Procedure I .  Procedure I I  r e su lted in  a 2 0 - t o  4 0 -

fo l d  increase in spec i f i c  activity with a 2 5 %  recovery o f  

the init ial activity ( Table XVI ) . 

The spec i f ic activity o f  acetyl-CoA c arboxylase  obtained by 

bot h  pur i f icat ion procedure s  wa s in the range of 2 0 0 - 5 0 0  

nmol/min/mg of prote in . Analy s i s  o f  the final enzyme pre­

paration wa s carr ied out by po lyac ryl amide gel  e l ec tro­

phore s i s . Fol lowing e l ec trophore s i s , a n  un sta ined gel wa s 

s l i ced transversely into 2 mm s l ices and the en zyme located 

by as saying each s l ice for acetyl -CoA c arboxylase  activity 

in 0 . 5  m l  solut ion containing : O . lM T r i s-HCl buffer ( pH 

8 . 0 ) , SmM 8-mercaptoethanol ,  lmM ATP , SmM MgC 1 2 , S OmM KC l ,  

2mM NaH 1 4 C0 3 ( SC i/mo l )  and O . lmM ac etyl -CoA . Fol lowing 

incubat i on at 3 0°C for 3 0  min , 0 . 1  ml o f  6M HCl wa s added 

to sto p  the react ion and 0 . 3  ml from each assay wa s dr ied 

on a 2 cm x 2 cm square o f  Whatman 3MM paper and the rad io­

activity f ixed into malony l -CoA dete rmined . Acetyl -CoA 

carboxyl a s e  activity coinc ided with the pos it ion of the 

heavi l y  sta ined protein band on an identical g e l  ( F ig . 1 7 ) . 

The area under the absorbance peak correspond ing to acety l ­

CoA carboxylase act ivity compared with the total area o f  

the absorbance pro f i l e  suggested that the enzyme was 4 0 - 6 0 % 

pure . The partia l l y  pur i f ied acetyl -CoA carboxylase con­

ta ined no detectable PEP c arboxylase o r  RuDP carboxyla se . 

Acetyl - CoA carboxyl ase prepared by both procedures was 

re lat ivel y  un stable , los ing 5 0 %  o f  the init ial activity in 

5 days when stored at 4°C in  l OmM Tr i s -HCl bu f fer ( pH 8 . 0 ) 

contain ing 2 0mM 8 -mercaptoethano l and lmM EDTA in an atmo s ­

phere o f  nitrogen gas ( Tabl e  XVI I I )  . I ndlus ion o f  g lycero l 

in the buf fer at 2 0 %  concentrat ion had l ittl e e f fect on the 

stabi l it y , and free z ing at - 2 0°C caused compl ete inac t ivat ion 

of the enzyme . These instab i l ity probl ems made further 

pur i f i c a t ion d i f f i cult and consequently  the molecular we ight 

and subun it organi sation o f  the enzyme wa s not inve s tigated . 
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FIGURE 16 : �1 filtration of acetyl-CoA carboxylase o f  maize on Ultrogel AcA 2 2 . 
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Acetyl -CoA carboxylase precipitated at 40% ammonium sulphate , in pur i fication Procedure I I  ( S ection 3 . 1 5 ) , was re­
suspended in l OmM Tris-HCl buffer (pH 8 . 0 ) containing 2 0mM B-mercaptoethanol and lmM EDTA , was sub j ected to gel 
filtration on Ultroge l AcA 22 under the conditions described in Fig .  1 5 . Acetyl-CoA carboxyl ase activity (o ) and 
A

2 
(-) was determined in each fraction ( 4  ml) . 

80 . 

CO 
0 
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FIGURE 1 7 : Polyacrylamide gel e lectrophere s is of acetyl -CoA ca�boxylase 
of maize leave s . 

Upon polyacrylamide gel electrophere s i s  ( Section 3 . 1 0 )  o f  partially 
puri fied acetyl-CoA carboxylase of maize l eaves ( 50 � g  protein ) , the 
gel was eithe r  s li ce d  into 2 mm sections and each slice as sayed for 
acetyl -CoA carboxylase activity (o ) as described in Section 4 . 10 ,  or 
stained with Coomas s ie Bri l li ant Blue ( Se c t ion 3 . 10 )  and the A

5 8 0  (�) 
scan was obtained on an ISCO Gel Scanner Model 1310 . 
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TABLE XVI I I  

STAB IL I TY OF PART IALLY PUR I F I ED ACETYL-CoA CARBOXYLASE 

Age o f  preparat ion 
( day s )  

0 

3 

5 

7 

9 

1 2  

Acety l -CoA carboxylase act ivity 
( nmo l/min/mg ) 

4 1 3  

2 8 9  

2 2 2  

1 7 6 

1 2 2  

7 7  

Acety l - CoA carboxylase o f  ma i z e  pur i f i ed by Procedure I ,  

a fter g e l  f i ltrat ion on U l trogel AcA 2 2  ( day 0 ) , wa s s tored 

at 4 °C in l OmM Tr i s -HCl bu f fe r  ( pH 8 . 0 ) conta in ing 2 0mM 

8 -mercaptoethanol and lmM EDTA under an atmo sphere of n itro­

gen . 
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The characteri zation o f  the kinetic properti es  o f  the enzyme 

were inve st igated within 5 day s of the end of the purif ica­

t ion . 

I n  deve loping the two procedure s that were finally adopted 

to puri fy acetyl-CoA c arboxyla s e , a number of al ternative 

procedure s were inve s t igated , but none were found sati s fac ­

tory . . When the 3 0 , O O Og supernatant o f  the total homogenate 

wa s fract ionated with ammonium sulphate , only the prote in 

f ract ion precipitated between 2 0 %  and 4 0 % ammonium sulphate 

saturation contained acetyl -CoA carboxyl ase . However , thi s  

c ompr i sed on ly 2 0  - 3 0 % o f  the origina l activity , and the in­

crease in spec i f i c  activity wa s sma l l . Acetyl-CoA carboxy­

l ase a fter PEG fract ionat ion wa s not absorbed to ei the r 

DEAE-ce l l ulose , DEAE - Sephadex o r  CM-S ephadex when appl ied in 

l OmM Tr i s -HC l bu ffer between pH 7 . 5  and 8 . 5 .  On the other 

hand , the en zyme appe ared to be either irreversibly bound to 

or completely inac t i vated by pho sphoce l lulose , s ince no 

activity could be e luted even at  SM NaC l . Af f inity chroma­

tography u s i ng Sepharose -CoA ( Ch ibata et al . ,  1 9 7 4 )  and 

S epharo se -avidin ( He nr ikson e t  a l . , 1 9 7 9 ) , re spectively , 

h ave been used to pur i fy enz yme s that r equire CoA , and are 

bi otin-dependent carboxyl ases . However ,  neither o f  the s e  

a f f inity med ia proved sati sfactory in pur ifying ma ize  leaf  

acetyl -CoA c arboxy l a s e . Onl y  5 0 %  o f  the enzyme a f ter 

hydrophobic chromatography wa s bound to Sepharose-CoA and 

e lut ion o f  the bound enzyme with a sa l t  grad ient gave no 

increase in spec i f i c  act ivity . Ac ety l - CoA carboxylase d id 

not bind to Sepharb s e-avidin . 

4 . 1 1 Puri f icat ion o f  Acetyl - CoA Carboxylase from Barley 

Leave s 

In order to ensure that acety l - CoA carboxylase o f  mai z e  

leave s wa s not atypical  o f  acetyl-CoA c arboxylases  from 

photo synthetic t i s su e , and a l so for a compar i son o f  the en­

z yme from c� and C 3  p l ants , acetyl-CoA carboxylase wa s a l so 
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purifi ed from barley l eave s . The bar ley leaf enzyme ex­

hibited very s imilar proper t i e s  to that o f  the en zyme from 

ma ize leaves during each stage o f  puri f ication with 

Procedure I ( see Sect ions 3 . 1 5 , 4 . 1 0 )  ( Table X I X ) . Approx i­

mate ly a 2 0 -fold in crease in spec i f i c  act ivity wa s obtained 

during pur i f icat ion , wi th the f inal spec i f ic activity o f  

enzyme be ing about 2 0 0  nmo l/m in/mg o f  protein . As  with the 

en zyme pur i f ied from ma ize  l eave s , the ma j or probl em en­

countered dur ing pur i f icat ion and subsequent storage o f  the 

barley enzyme was that of stab i l i ty . S torage at 4
°

C under 

a nitrogen atmo sphere in l OrnM Tr i s -HCl bu ffer ( pH 8 . 0 ) con­

taining 2 0rnM 8-merc aptoethanol and lrnM EDTA l ed to 4 0 % l o s s  

o f  activity i n  5 days , while freez ing at -20°C re sulted i n  

compl ete inact ivat i on o f  the enzyme . Due to thi s  problem 

the kinetic proper t ie s  o f  acetyl -CoA c arboxylase from bar ley 

wa s stud ied within 5 days o f  pur i f icat ion . 

KINET I C  PROPERTIES OF ACETYL-CoA CARBOXYLASE 

4 . 1 2 Ef fect o f  Ace ty l -CoA and Hco; Concentrat i ons on 

Acetyl-CoA Carboxylase Ac t ivity 

I ncreas ing the concentrat i on of acetyl -CoA in the as say 

f rom O . O l 5rnM to 0 . 3rnM ,  resul ted in a s ix-fold increase in 

the activity o f  acetyl -CoA carboxylase  of ma i z e  ( F ig . 1 8 )  

and barley ( Fig . 1 9 ) . Max imum activ ity of the enzyme s from 

both sourc e s  occurred above O . l 5rnM acety l -CoA , but the max i ­

mum rate atta ined was dependent o n  the Hco; concentrat ion . 

Lineweaver-Burk p l o ts ( Lineweaver and Burk , 1 9 3 4 )  o f  the 

d t · d · t d · · 1 K 
acetyl-CoA 

1 1 0 1 1 a a 1n 1ca e very s 1m1 ar va ues , name y . �  
m 

mM ( F ig . 2 0 )  and O . l OrnM ( F ig . 2 1 ) , f or acetyl-CoA carboxy-

lase of ma i z e  and barley , re spective l y . 

Activity o f  the ma i z e  ( F i g � 2 2 )  and bar l ey ( Fig . 23 ) acety l ­

CoA carboxylase increa sed f ive - and seven-fold , re spect ive l y , 

when the Hco; concentration wa s increa sed from 0 . 5rnM to 2 0rnM .  



TABLE XIX 

PURI F I CAT I ON OF ACETYL-CoA CARBOXYLASE OF BARLEY LEAVES US ING PROCEDURE I 

Fraction 

Homogenate 

3 0 , 0 0 0� supernatant 

6 - 1 4 %  PEG 

Sepharo se-N-Propane 
Aff inity chromatography 

Ultroge l AcA 2 2  Gel 
f i l trat ion 

Volume 
( ml ) 

9 4 0  

8 9 5  

6 7  

1 9 6  

1 3 . 5  

Activity 
( nmo l/min ) 

2 0 , 3 3 7  

2 2 , 7 2 7  

1 6 , 5 8 6  

7 , 3 0 3  

2 , 5 5 0  

Protein 
(mg ) 

2 , 3 5 0  

1 , 9 2 4  

8 9 8  

6 6  

1 3 . 5  

Spec i f ic 
Activity 

( nmo l/min/mg ) 

8 .  6 

1 1 . 8  

1 8 . 5  

1 1 0 . 5  

1 8 8 . 9  

Recovery Pur i f i cation 
( % )  ( fold ) 

1 0 0 1 

1 1 2  1 . 4  

8 2  2 . 2  

3 6  1 3  

1 3  2 2  

The pur i f ication o f  acetyl-CoA carboxylase wa s carried out from 3 0 0g o f  barley leave s a s  des­

· cribed in Sect ion 3 . 1 5 . 

CO 
Vl 



8 6  

CJ) 
-€ c 
� 
g c 
>. 

� 100 > 
....... u 0 
Cl tll 

.52 
::..... X 0 ..0 
L... 50 0 u 

<( 0 
u 

I 
>. -� u 

<( 
0 

0 0·1 0·2 0·3 
[Acety l  C oAl  ( m M  
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activity o f  maize leaf acetyl -CoA carboxylase . 

As say conditions : as described in_Section 3 . 2 ,  except the concentration 
of acetyl-CoA was vari ed , with HC0 3 concentrations at O . SmM (o ) I l . OmM  
( e ) , 2 . 0mM ( o ) , S . OmM < • l , l OmM  ( A )  and 2 0  mM ( & ) . 
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Analysis o f  the data presented in Fig .  18 . 
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Lineweaver -Burk plots gave va lue s o f  K HC0 3 o f  l . 4mM and 
m 

2 . lmM for the ma ize ( F ig . 2 4 )  and barley ( F ig . 2 5 )  enzymes , 

re spec t ive l y . 

4 . 1 3 E f fect o f  ATP and MgCl 2 Concentrations on Acetyl-CoA 

Carboxyl ase Activity 

Initial characterization o f  the cofactor requ irement o f  

acetyl -CoA carboxy lase act ivity i n  c e l l - free extracts o f  

ma i z e , ind icated an absolute requi rement f o r  ATP and MgCl 2 

9 2  

( Sect ion 4 . 1 ) . As the biolog i c a l l y  active form o f  ATP in a 

number o f  e n z yme s is Mg . ATP , the r e l at ionship between Mg
2 + , 

ATP and the activity o f  acetyl -CoA c arbox y l a s e  wa s inve sti­

gated . 

At constant ATP concentrat ion s ,  increased MgC l 2 concentra­

tion s resu l ted in  a sigmo idal increase in the act ivity of 

acetyl -CoA carboxylase of both ma i z e  ( F ig . 2 6 )  and bar l ey 

( F i g . 2 7 ) . Ma i z e  acetyl -CoA carboxylase activity wa s max i-

mal at 3mM and 4mM MgC 1 2  when the ATP concentrat ions were 

mainta ined at lmM and 3mM , re spec t i ve ly . Max imum activity 

o f  bar l ey acetyl -CoA carboxylase at  lmM ATP wa s atta ined 

when the MgC 1 2  concentrat ion wa s increased to 4mM . 

In the pre sence o f  2 . 5mM and S . OmM MgC l 2 , increas ing the ATP 

concentrat ion up to about 2 . 0mM resulted in hyperbol ic in­

crea s e s  in the activit ies  of both ma i z e  ( F ig . 2 8 )  and bar ley 

( F ig . 2 9 )  acetyl-CoA carboxyla se s .  Ac tivit i e s  o f  both en-

z yme s were max imal in the range o f  about 0 . l  - 1 .  SmM ATP , 

when the MgC 1 2 c oncentrat ion wa s 2 . 5mM . Whi l e  at S . OmM 

MgC l 2 , max imum act ivity wa s over a l arger range o f  ATP con­

centrations , between O . lmM and 3 . 5mM . H igher c oncentrations 

o f  A�P resul t ed in inhibition o f  the activity o f  the acetyl ­

CoA c arboxy l as e s . · 

The interdepe ndence o f  acetyl -CoA c arboxy l a s e  act ivity with 

Mg
2 + and ATP c on centrat ion s wa s a l so inve stigated by varying 
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As say conditions : as described in section 3 . 2  using l OmM HC0 3 , lmM ( e )  or 3 . 0mM (o ) ATP and varying concentrations 
of MgC l 2 . 
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As say conditions : as described in Section 3 . 2  us ing lOmM HC0 3 , 2 . 5mM ( e )  or S . OmM  ( o )  MgCl 2 and varying concen­
trations of ATP . 
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both Mg 2+ �nd ATP concentrations ,  and maintaining a constant 
rel ative difference between the two cofactors . When the 

MgC 1 2 concentrat ion was always lmM less  than that of ATP , 

activity of both maize  ( F ig . 3 0 )  and barley ( F ig . 3 1 )  leaf 

acetyl -CoA carboxylases showed a s igmoidal re sponse  to in­

creas ing ATP concentration . However , upon increas ing the 

r e lative con centration o f  MgC1 2 , so that it is e i ther equal 

to , or in 2 . 5mM exce ss  o f  the ATP concentration , activities 
o f  acetyl-CoA carboxyl ases o f  bo th ma ize  and barley showed 

increas ingly hyperbolic response s to increasing ATP concen­

trat ion . The Hill-coe f f i c ient ( n ) , which can be taken as  a 

measure of  1 s igmoidici ty 1 , decreased from 2 .  7 to 1 .  2 to 1 . 1  

when the MgC1 2 concentration wa s lmM less  than , equal to and 

in 2 . 5mM exces s  of the ATP concentration , respect ively , for 

the maize enzyme (Fig . 3 2 ) . Concurrently the value of  ATPO . Sv 
decreased from 3 . 4mM to 1 . 9mM to  0 . 2mM when the relation ship 

between the ATP and MgC 1 2 concentrations were altered as  

de scribed above ( Fig . 3 2 ) . The bar ley leaf acetyl -CoA car­

boxylase showed almost ident ica l  behaviour , with the Hi l l ­

c oeffic ients decreas ing from 2 . 3  to 1 . 5  t o  1 . 2 ,  while the 

value of ATPO . Sv 
changed from 3 . 2mM to l . SmM to O . l SmM , a s  

t h e  rel ative MgC1 2 concentration wa s altered from 

lmM less than , to be equa l to , and 2 . 5mM in exc e s s  of ATP , 

respect ively (Fig . 3 3 ) . 

Starer and Cornish-Bowden ( 1 9 7 6 )  have calculated the concen­

trat ions of  the Mg . ATP complex , with different proportions 
of MgC1 2 and ATP . Max imum concentration of Hg . ATP occurs 

when MgC1 2 i s  in exc e s s  of  ATP by about 1 - 3mM , and as maxi ­

mum acetyl-CoA carboxylase act ivity occurs under such con­

ditions ( F ig . 2 6 - 2 9 ) , Mg . ATP a ppear s to be the substrate 

of this  enzyme . However , both free Mg 2 + and free ATP can 

af fect the activity of the enzyme . London and S teck ( 1 9 6 9 )  

have described a number kine t i c  model s of enz yme reactions , 

in which MgC 1 2 and ATP combine with the enzyme and each 

other . The pos s ibilities inv e s tigated were o f  an enzyme 

with Mg . ATP as the substrate , which was either inhibited by 

free ATP and free Mg 2 + , or inhibited by free ATP and act i -

MASSEY UNIVER ITY 
LIBR; "Y 
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FI GURE 3 2 : Analysis by Hill-plot o f  the relationship between ATP , MgC 1 2  concentrations and the activity of  maize 
leaf acetyl-CoA carboxylase . 

Analys i s  of the data presented in Fig . 3 0 . 
constants are shown be low . 

Re lationship between MgC1 2 and [ ATP ] 

[ MgC1 2 ] = [ ATP ] - lmM ( e ) 
[ MgC1 2 ] = [ ATP ] (o )  
[ MgC1 2 ] = [ ATP ]+ 2 . SmM ( 6 )  

Vm a s  obtained by the method o f  Endrenyi e t  a l  ( 1 9 7 5 )  . The H i l l -plot 
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F I GURE 3 3 : Analysis by H i l l -£lot of the re lationship between ATP , MgCl 2 
c�centrations and the activity of barley leaf acetyl -CoA 
c�rboxyl ase . 

Analysis o f  the data pre sented in Fig . 3 1 . Vm was obtained by the method 
of Endrenyi e t  al ( 1 9 7 5 ) . The Hill-p lot constants are shown be low . 

Relationship between Hill  ATPvo . 5 
Mg:Cl 2 and ATP Coefficient (mM) 

[ MgCl 2 ]  = [ ATP ] - lmM ( • l  2 . 3  3 . 2  
[ MgCl 2 ]  = [ ATP ] (o )  1 . 5  1 . 5  
[ MgCl 2 J  = [ ATP ] + 2 . 5mM ( <>) 1 . 2  0 . 1 5 
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vated by free Mg 2 + , or act ivated by free Mg 2 + only . The 

properti e s  of acetyl-CoA carboxylase of mai ze and barley 

appear t o  fit the second model ,  with free Mg 2 + acting as  an 

activato r , and free ATP behaving as an inhibitor . Thus , in­

h ibit ion of acetyl-CoA carboxylase by ATP was respons ible 

for the decrease i n  the act ivity when the ATP concentration 

was increa sed above that o f  Mg 2 + ( F igs  2 8  and 2 9 )  , and a l so 
the sigmoidal increase in activity with increas ing Mg 2 + 

concentrations ( Fi g s  2 6  and 2 7 ) . Mg 2 + activation of acetyl­

CoA carboxylase on the other hand was respons ible for the 

decrease in the H i l l -coef f i c i ents and in the values of  
ATPvO . S ' when the relative Mg 2 + concentration was increased , 

from lmM less  than the ATP c oncentration , to be equal to , and 
2 .  5mi'-1 i n  exce s s  ( Figs 3 0  - 3 3 ) . 

These interesting effects o f  Mg 2 + and ATP concstrations on 

acety l -CoA carboxylase , may have phy s iological s ignif icance 

with regard to the effect of light and dark on the activity 

of  thi s  enzyme , and with i t s  pos s ible effect on the rate o f  

fatty a c id biosynthesis  in c hloropl asts . 

4 . 1 4  Spec i f ic ity o f  the Divalent Metal Ion Required for 

Acetyl -CoA Carboxyl ase Activity 

Of the divalent cations t e s ted as  a lternative s to Mg 2 + , only 
Mn 2 + s upported acetyl -CoA carboxylase activity , but the maxi­

mum activity attained was only 2 5 % o f  that observed with 

Mg 2 +  ( Fig . 3 4 ) . Maximum a c t ivity when the ATP concentration 

was lmM , occurred at lmM Mn 2 + , compared with 3rrLM Hg 2 + . Ca 2 + , 

Ni 2 + and Co 2 +  were ineffec t ive in replac ing Mg 2 + . 

4 . 1 5 E ffect o f  pH on Acetyl -CoA Carboxylase Activity 

Initial attempts  to inve st igate the effect o f  pH on acetyl­

CoA c arboxylase were car r i ed out u s ing the buf fers Mes , 

Hepe s , Tric ine and phosphate ind ividually . As acetyl-CoA 



-a 
-E c 
. E  1 50 --0 
E c -
>-. -

· :;  
:.;::: 
� 100  
QJ V) d ->-. 
� ..c L... d w so 

<( 0 w 
I ->-. -QJ u <( 

0 

0 2 4 6 8 12  
[Metal I o n ]  (mM} 

FIGURE 34 : �ffect of divalent metal ions on the activity of maize leaf acetyl-CoA carboxylase . 

As say conditions : as described in Section 3 . 2  using l OmM HC0 3 and varying concentrations of MgCl z ,  ( e) ; MnCl z ,  ( o ) ; 

CoCl z ,  NiCl z , CaCl z ,  ( o ) . f-' 
0 
0'1 



1 0 7 

carboxylase activity was a ffected dif ferently by each bu f f e r , 

dif ficulty was encountered in determining the e f fect o f  pH 
on activity . This  problem was overcome by us ing a mixture 

of the buffers Mes , Hepes and Tric ine ad justed to the ap­

propriate pH with NaOH . 

Acetyl-CoA carboxyl ase from both maize  ( F ig .  3 5 )  and barley 

( Fig . . 3 6 )  showed very s imil ar dependence on pH , with the pH  

optimum at  8 . 4 .  The  activit i e s  decreased sharply on  e ither 

s ide of the opt imum and s howed minimal activities  be low 6 . 5  

and above pH 9 . 0 . 

4 . 1 6 · Effect o f  Temperature on Acetyl-CoA Carboxylase Act i ­

vity 

Precipitati on of  prote ins by heat denaturation i s  a wid e l y  

used procedure i n  the puri f ication of  enzymes . However , the 

in stabil ity of  mai z e  leaf acetyl -CoA carboxylase at high 

temperatures precluded the use  of  thi s procedure in the 

purification of the enzyme . In 5 min a s says , the activity 

of maize leaf acetyl -CoA carboxylase increased rapidly as 

the temperature was raised from 2 0°C to 4 0°C .  However , 

above 4 0°C activity decreased rapid ly a s  the enzyme was un­

stable at the se higher temperature s , so that 5 4°C only 1 5 %  
o f  the activity at the opt imum temperature rema ined . Rou­

tine as says in thi s study were carr ied out at the more 

phys iological temperature o f  3 0°C ,  where activity was 7 0 % 

o f  maximum . 

4 . 17 Act ivation o f  Acetyl-CoA Carboxylase Activity by 

Monovalent Cations 

Acetyl-CoA carboxyl a se from wheat germ showed a HCO�-depen­
dent activation by monoval ent cations , e special ly K

+ 
( N i e l sen  

et al . ,  1 9 7 9 ) . Sim ilarly , the  inc lus ion of K+ in an  othe r ­

wi se standard assay solut ion , enhanced the act iv ity o f  the 
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Assay condition s : a s  described i n  Section 3 . 2 ,  u s ing l OrnM  HC0 3 , except 
the buffer was a mixture of O . lM Mes ,  O . lM Hepes , 0 . 1  Tri c ihe adj us ted 
to the f inal pH with NaOH . 
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mai z e  leaf e'n z yme . Greatest act ivation by K
+ was observed 

at 0 . 1 8mM HCO� ( Fig . 3 8 ) , which was the lowe st  HC0 3 concen­

tration examined . Compared with a 3- fold st imulation ob­

tained at thi s  HCO� concentrat ion , a 2 - and 1 . 4 -fold acti-
+ vation by K wa s observed at lmM and l OmM . Maximum acti-

vation of acetyl-CoA carboxylase a t  each HCO� concentration 

examined occurred above 1 2  - l SmM K+
. 

The spec i f ic i ty o f  the monovalent c ation required for ac ti­

vati on of  acetyl -CoA carboxylase wa s tested by subst i tution 

of K+ with Li
+

, C s
+ 

and NHt , us ing c hlor ide salts  with each 
- + cat ion . At lmM and l OrnM HC0 3 , K was the mo st  ef fective 

+ + activator fo l l owed in order by NH � and C s  ( Table XX) . Mono-

valent cation activation of  acetyl -CoA carboxylase was 

greate r at lrnM than at l OrnM HC0 3 • Li
+ 

inhibited acetyl-CoA 

carboxylase at both of these HC0 3 concentrat ions . 

4 . 1 8  Substrate Spec i f ic ity o f  Acetyl -CoA Carboxylase 

Partially pur i f ied acety l-CoA carboxylase of ma i z e  leaves , 

carboxylated propionyl-CoA as  wel l  as  acetyl-CoA . Be low 

O . lrnM ,  propionyl -CoA was a lmo st a s  effec t ive as acetyl -CoA 

as a substrate , but was inhibitory at h igher concentrations 

( Fig . 3 9 ) . The rate of propiony l -CoA carboxylation was 

about 4 5 % that of acetyl -CoA , at the optimum concentration 

for each subs trate . Butyryl -CoA wa s not carboxylated by 

acetyl-CoA carboxylase under thes e  standard c ond i t ions . 

4 . 1 9  Inhibit ion o f  Ma i z e  Leaf Ace tyl-CoA Carboxylase by 

Malonyl -CoA 

Ma lonyl -CoA , the carboxylated product of the acetyl-CoA car­

boxylase cata l y s ed react ion , strongly inhibited the activity 

of  the enzyme from maize  ( Fig . 4 0 ) . Malonyl-CoA , at a con­

centrat ion o f  l . SrnM ,  inhibited acetyl -CoA carboxylase acti­

vity by 9 5 % , while  50% inhibit ion occurred at about 0 . 3 5rnM .  
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Assay conditions : as described in Section 3 . 2 ,  except NaOH was used for pH ad j ustments a�d the KCl concentration 
varied as shown . Acetyl -CoA carboxylase activities were : 1 2 . 1  nmol/min/mg at 0 . 18rnM HC0 3 ( 6 ) ,  2 3 . 1  nmol/min/mg at 
lrnM Hco; ( o ) ,  and 1 2 3  nmol/min/mg at lOrnM Hco; (e ) , without added KCl . f-' f-' 

1\J 



TABLE XX 

ACTIVATI ON OF MAI ZE LEAF ACETYL-CoA CARBOXYLASE 

BY MONOVALENT CATI ONS 

1 1 3  

Rel at ive acetyl -CoA carboxylase act ivity 
Cation 

l OmM Hco-; 

None 1 . 0 0 l .  0 0  

K
+ 

2 . 1 1 1 . 3 4 

Li
+ 

0 . 9 0 0 . 6 4 

Cs
+ 1 . 1 6 1 . 0 9 
+ 

NH 4 1 . 3 5 1 . 2 4 

Acetyl -CoA c arboxylase a s says were performed with lmM or 
l OmM Hco; ( Sect ion 3 . 2 ) using NaOH for adjustment o f  pH . 

The selected c at i on was added to a f inal concentration of  

2 0mM .  Without the added cation , acetyl-CoA carboxylase 
act ivity was 2 3 . 1  and 1 2 3  nmol/min/mg at lmM and l OmM HC0 3 , 

respectively . 
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4 . 2 0 Effect o f  ADP on Acetyl-CoA Carboxylase Activity 

Prel iminary s tud i e s  s howed that acetyl-CoA carboxylase  from 

mai z e  was inhibited by ADP , a product of  the react ion . This  

inhibition by ADP was investigated in detail  ( F ig . 4 1 ) . A 

Lineweaver-Burk plot o f  the data showed that the inhibition 

was competitive with re spect to ATP ( Fig . 4 2 ) . The values 

of K
ATP increased from 0 . 1 5mM in the absence of  ADP , to 3 . 0  
m 

mM in the pre sence o f  5 . 0mM ADP . Analy s i s  of  the same data 

as described by Dixon ( 1 9 5 3 ) , confirmed the compet i t ive 

nature of  the inhibit ion with re spect to ATP and provided 

the inhibition constan t ,  K�DP of 0 . 4rnM ( F ig .  4 3 ) . 
l 

Inhibit ion o f  the c arboxylation o f  acetyl-CoA by ADP , was 

also investigated at d i f ferent concentrations of acety l - CoA 

( F i g . 4 4 ) . Analysis  of the data by the Lineweaver-Burk 
method ( Fig . 4 5 ) , indicated that inhibition was uncompeti­

tive with re spect to acetyl-CoA . Increas ing concentrations 
acetyl -CoA of ADP decrea sed the values of Vffiax and Km . 

4 . 2 1 Effect o f  CoA on Acetyl -CoA Carboxylase Activity 

Recent investigation s  in the laboratory o f  K im have shown 

CoA activation o f  rat l iver acetyl -CoA carboxylase ( Yeh and 

Kim , 1 9 8 0 ;  Yeh et a l . , 1 9 8 1 ) . As ma i z e  acetyl-CoA carboxy­

lase was found to interac t with CoA , immobil i z ed on Sepharose 

( Sect ion 4 . 1 0 ) , an invest igation o f  the effec t of CoA on 

acetyl -CoA c arboxylase  activity was carried out . I n  c on­

trast  to the r at l iver enzyme , acetyl -CoA carboxylase from 

ma ize  leaves was inhibited by free CoA ( Fig . 4 6 ) . A L ine­

weaver-Burk plot  of the data shown in F ig . 4 6 , indicated 

that increas ing concentrat ion of CoA did not affect the 
acetyl-CoA . value of Km . , but decreased the Vffiax o f  the react 1on 

( F i g . 4 7 ) . Treatment of · the data according to Dixon ( 1 9 5 3 ) 

indicated that the inhibi tion of  acetyl -CoA c arboxyl a s e  

act ivi ty by CoA was noncompetitive with respect t o  acetyl­
CoA , and the inhibition c onstant , KroA was 1 . 5 8rnM ( F ig . 4 8 ) . 
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Assay conditions : a s  de scribed in Section 3 . 2  u s ing l OmM HC0 3 1 except 
the acetyl-CoA· conce ntration was vari ed and ADP was added to a final 
concentration of 0� ( e )  1 0 . 2mM ( o )  1 0 . 4mM (o ) and 2 . 0mM  ( • ) . 
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Assay cond itions : as described i n  S ection 3 . 2  u s ing l OmM  HC0 3 , except 
the acetyl -CoA concentration was varied and CoA was added to a fina l 
concentrati on of OmM ( e ) , 0 . 2mM ( o ) , O . SmM ( o ) , l . OmM < • > , l . SmM (o) 
and 2 .  OmM (•) . 
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4 . 2 2 Effect o f  Palmitoyl-CoA on Acetyl-CoA Carboxyla s e  

Activity 

1 2 5  

Acetyl-CoA carboxylases  from mammalian sources  have been 

shown by a number of workers to be susceptible to inhibit ion 

by fatty acyl -CoA e ster s ( Lane et al . , 1 9 74 ) . These me ta­

bol i tes being the end product o f  de  novo fatty ac id biosyn­

thes i s , may play an impo rtant role in the regulation of t h i s  

proce ss . Palmitoyl-CoA wa s found to inhibit acetyl-CoA 

carboxylase from mai z e , with a lmost complete inhibition a t  

37 . 5 �M ( F ig . 4 9 ) . Ana l y s i s  o f  the inhibition with respect 

to acetyl-CoA , by the L ineweaver-Burk method indicated that 

the inhibition was uncompetitive (Fig . 5 0 ) , decreas ing bot h  
. acetyl-CoA the Vmax of the react 1on and K m • 

4 . 2 3 Effect of  AMP , Pho sphoenolpyruvate , oxaloacetate 

and Citrate on Acetyl-CoA Carboxylase Activity 

In C 4  plants , such a s  mai z e , pho sphoenolpyruvate and 
oxaloacetate play an important role in the f ixat ion of C0 2 .  

It  was o f  interest therefore to determine i f  the se compound s 

have any regulatory s igni f icance in acetyl-CoA carboxylation . 

Only sl ight inhibition wa s observed with both compound s :  

2mM PEP and SmM oxa loacetate resul ted in 1 5 %  and 2 0 %  inhibi­

tion of act ivity , respect ively . Ma ize leaf acetyl-CoA 

carboxyl ase was also inhibited by AMP , with l OmM AMP caus ing 

3 8 %  inhibition . As t he se  effects on act ivity were only 

s light , further characteri zation was not carried out . 

Acetyl -CoA carboxylases  from mammalian sources are a l lo ster i ­

c a l ly activated by c itrate ( Lane et al . ,  1 9 7 4 ) . However , 

SmM citrate inhibited mai z e  acetyl-CoA carboxylase by about 

6 5 % . Addi tion of equimolar amounts of  MgC1 2 with c itrate 

re stored ful l  activity of the· enzyme , indicating that the 

cause of  inhibit ion by c itrate was l ikely to be due to the 
comp lexing o f  free Mg 2 + by c itrate . 
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acety l -CoA carboxylase , 

Assay condi tions : as described in Section 3 . 2  u s ing l OmM HC0 3 , except 
the acetyl-CoA concentration was vari ed and palrnitoyl-CoA was added to 
a final concen tration of O�M ( e ) ,  4 . 2�M ( • ) , l 2 . 6�M ( o ) , 2 5 , 0�M (o )  and 
37 . 5�M ( t d . 
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4 . 2 4 E f fect o f  Sulfhydryl Reacting Reagents on Acetyl-CoA 

Carboxyl ase 

The stab i l i z at ion of acetyl-CoA carboxylase activity in 

c e l l -free extracts  of maize  by sul fhydryl protecting agent s , 

such as 8-mercaptoet hanol ( Section 4 . 2 ) , suggests that this  

enzyme may require sul f hydryl group ( s )  for  activity . Exam­

i nation of the susceptibil ity of the par t ially pur if ied 

acetyl -CoA c a rboxyl ase  of  ma i z e  to inhibition by sulfhydryl 

reacting reagents appeared to support thi s pos s ib i l i ty . 

Fol lowing exhaustive d ialysis  of  the partially pur i f i ed en­

z yme against l OmM T r i s -HCl buf fer ( pH 8 . 0 ) containing lmM 

EDTA , to remove 8 -mercaptoethanol , a l iquots of the enzyme 

were incubated with d i fferent concentrations o f  either p ­
chloromercur ibenzoate or N-ethylmale imide . The rema ining 

acetyl-CoA c arboxyla s e  activity wa s then assayed by the 

standard method ( Sect ion 3 . 2 ) . Comple te inhibit ion o f  

activity was observed with 6 0�M p -chloromercur ibenzoate , 

while N-ethylmaleimide required a concentration o f  O . SmM 

for complete inhibit ion ( Tabl e  XXI ) . 
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TABLE XXI 

INHIB I TION OF MAI Z E  LEAF ACETYL-CoA CARBOXYLASE ACTIVITY BY 

SULFHYDRYL REACTING REAGENTS 

Treatment 
be fore a s saying 

None 

O . SmM NEM 

l . OmM NEM 

3 0 ]1M pCMB 

6 0 �M pCMB 

1 2 0 �M pCMB 

Acetyl-CoA carboxylase act ivity 
( nmo l/min/mg ) 

1 0 1 . 8  

4 .  0 

3 . 4  

33 . 4  

5 . 4  

2 . 2  

Maize leaf acet y l - CoA carboxylase preparation wa s dialysed 

for l 6 h  against two changes of 5 0  volumes of l OmM Tr i s -HCl 

buffer ( pH 8 . 0 ) c on taining lmM EDTA , and treated for 2 0  min 

at 2 0°C with the appropr iate reagent . Acetyl-CoA carboxy­

lase act ivity was determined with l OmM HC0 3 . 

NEM = N-ethylma l eimide ; pCMB = E-chloromercur i benzoate . 



C H A P T E R 5 

DISCUSS I ON 

5 . 1  ·Acetyl -CoA Carboxylase - its  General Features and 

Stab i l i ty 

1 3 0  

The short-term regulation o f  de � biosynthes is o f  fatty 
acids in animal t i s sue s and E .  col i is greatly influenced 

by the activity o f  acetyl-CoA c arboxylase ( reviewed in Volpe 

and Vagelos , 1 9 7 3 ; Lane et al . ,  1 9 7 4 ; Numa and Yamashita , 

1 9 7 4 )  . Fundamental to thi s regulatory role i s  the influence 
of  metabol ites such as pyrophosphate derivatives of guanos­

ine in E .  c o l i , c i trate and fatty acyl-CoA esters in animals , 

and phosphorylation-dephosphorylation o f  the enzyme in 

animal t i s sues . 

Acetyl-CoA carboxylase from p l ant sources is l e s s -well  

characte r i zed : indeed its low activity , in the few photo­

synthetic t i s sue s examined , has greatly hindered a detai led 

study o f  the properties of thi s  enzyme . Cons iderable 

di fficulty was exper ienced in e arly attempts to demonstrate 

acetyl -CoA carboxylase activity in chloroplast  preparations 

from spinach ( Kannangara and S tumpf , 1 9 7 2 ) , and barley 

(Kannangara and Stumpf , 1 97 3 )  unle s s  supplemented with 

acetyl-CoA carboxylase components of  E .  col i . Due to thi s  

difficulty the regulatory role o f  acetyl-CoA carboxylase in 

fatty ac id biosynthe sis  by photosynthetic t i s sue s has not 

been e stab l i shed . 

De spite the early reports of  low activity o f  acetyl-COA 

carboxyla s e  in c hloroplast preparations from bar ley 

( Kannangara and Stumpf ,  1 9 7 3 ) , cons iderably higher activi­

ties o f  t h i s  enzyme were subsequently found in c e l l- free 

extracts  p repared from barley leaves ( Reit z e l  and Niel sen , 

1 9 7 6 ) . The app l ication of s imilar i so lation method s in this 
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study t o  mai z e  and barley leave s gave equally  promising 

result s ,  a l t hough initial d i f f icult ies were exper ienced 

with the maintenance of activity . Previous i nvestigations 

of acetyl -CoA c arboxylase of avian l iver ( Grego l in et al . , 
1 9 6 8 b )  wheat germ (Hatch and Stump f , 1 9 6 1 ) , Turbatrix 

aceti ( Meyer and Meyer , 1 9 7 8 ) , and yeast (Matsuha shi et  al . ,  

1 9 6 4 ) reported the requirement o f  free sul fhydryl group ( s )  

for activity o f  the enzyme . I n  the present s tudy with 

ma i z e  and barley  tissues , the inc lus ion of a sul fhydryl 

protecting agent such as S -mercaptoethanol i n  the homogeni s­

ation buf fe r  was effective in increasing the stab i l ity of 

acetyl-CoA carboxylase . This  stabi l i zation of acetyl-CoA 

carboxyl ase was probably partly due to the protection o f  
read i ly oxid i s able sul fhydryl group ( s ) on the enzyme , which 

are reduced in the act ive enzyme , s ince sul fhydryl attacking 

reagents such as N-ethylmale imide and p -chloromercur ibenzoate 

inhibited the partially pur i f ied enzyme from mai z e . 

Although the pre sence of  sulfhydryl protecting agents during 

the i so l at ion of ma i ze and barl ey leaf acety l -CoA carboxylase 

resulted in the isolation of act ive enzyme , the appl ication 

of the same i so l ation procedure to spinach l e a f  failed to 

isolate the act ive enzyme . Mohan and Kekwick ( 1 9 8 0 )  recently 

reported the stabilizat ion of spinach chloropl a s t  acetyl-

CoA carboxyl ase  by the inc lus ion of glycerol , BSA , citrate 

and NaHC0 3 in  t he isolation buf fe r . A reinve s t igation of 

the spinach e n z yme confirmed that it was very labile in 

buf fers not containing glycerol and BSA . Whi l st the lability 

of the s pinach enzyme explains the earlier d i f f iculties in 

the detection o f  this enzyme in s pinach chloroplast prepar­

ations ( Kannangara and Stump f , 1 9 7 2 ) , the mea sured levels  

of  acety l-CoA c arboxylase activity are  st i l l  r e l atively low , 

even when i s o l at�d in the presence o f  glycerol and BSA , 

compared to the  activity o f  the e n z yme in extracts of maize 

and barley . The activities  o f  acetyl-CoA carboxylase were 

also undetectable in extracts  o f  broad bean and pea leaves , 

when prepared with buffers l acking glycerol and BSA (J  E 

Tularam , per s ona l communication)  . The effect o f  us ing the 
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Mohan and Kekwic k  ( 1 9 8 0 )  buf fer in i solating broad bean and 

pea acetyl -CoA carboxylase has not been s tud i ed . More ex­

ten s ive inve stigat ions o f  acetyl-CoA carboxyl a s e  from broad 

bean and pea may indicate intere sti ng trends between 

spec i e s . 

5 . 2  C e l lular Location o f  Acetyl -CoA Carboxylase in Ma i z e  

Leaves 

The r e striction o f  ACP to chlorop l a s t s  i solated from spinach 

protop l asts , sugge sts that this organe l le may be the sole 

s ite of de novo fatty ac id b iosynthe s i s  in l e ave s ( Ohlrogge 

et a l . , 1 9 7 9 ) . I t  would be expected therefore that acety l ­

CoA carboxylase i s  simi larly di stributed . I ndeed , centr i fug­

ation o f  pur i f ied mai z e  chloroplasts  on a sucrose den s ity 

grad ient demonstrated the l ocation o f  acetyl - CoA carbox ylase 

in intact chloropl ast s . The high pur ity of  the i solated 

chloro p l asts was indi cated by the absence of detectable 

cytop l a smic , mitochondrial and peroxi somal enzymes in the 

dens i ty gradient . The se chlorop l a s t  preparations contained 

a mixture o f  me sophyll  and bund le sheath chlorop lasts as both 

NADPH -malate dehydrogena s e  and RuDP carboxy l a s e , enzyme s 

re str i c ted to the me sophy l l  and bundle s heath c hloropl a sts , 

re spec t ive ly ( S lack et a l . ,  1 9 6 9 ) , occurred in  the prepar­

ation s . However ,  compar i son o f  the activ i t i e s  of the s e  two 

enzyme s in the density grad ient rel at ive to tho se reported 

in preparations of isolated me sophyl l  protop l as ts and 

strands  o f  bundl e  sheath ce l l s  ( Kanai and Edwards , 1 9 7 3 a ;  

Gutierre z et a l . ,  1 9 7 4 )  ind icates the predominance o f  

mesophy l l -derived chlorop l a sts , probably resu l t ing from the 

eas i e r  re l ease and di srup t i on of me sophy l l  c e l l s  compared 

with bundle sheath cel l s  dur ing homogen i s ation of the l eave s  

( B j or kman and Gauhl , 1 9 6 9 ;  Berry e t  al . ,  1 9 7 0 ;  Bucke and 

Long , 1 9 7 1 ) . 

Cert a i n  enzymes involved in  the f ixation of C0 2 , by c � p l ant s 

such a s  ma ize , are restr i cted to one of the two chlorophy l lous 
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ce l l  type s ,  mesophy l l  and bund l e  sheath c e l l s  ( S l ack e t  a l . ,  

1 9 6 9 )  . The spec i f ic activitie s o f  acetyl -CoA carboxyl a s e  in 

extract s  o f  me sophyl l  protop l a s t s  and s trands o f  bundl e  

sheath ce l l s  we re found to be s imilar , indicat ing the 

location o f  thi s  enzyme in both c e l l  type s . Although 

me sophy l l  chloroplasts can now be pur i f i ed from i so lated 

me sophy l l  protoplasts  ( Day et  a l . ,  1 9 8 1 ) , the pur i f ication 

of bu�dle s heath chloroplasts has not been achieved . Con­

sequent ly i t  was not pos s ible to demonstrate unequ ivocal ly 

the location o f  acetyl -CoA carboxyl a s e  in both chloroplast  

types . S ince Hawke et  al  ( 1 9 7 5 )  demonstrated that both 

me sophy l l  and bundle sheath chlorop l a s t s  were able to in­

corporate [ 1 4C J acetate in to fatty a c id s , it seems rea s on­

abl e  to a s s ume that acetyl -CoA c arbox y l a s e  occurs in 

chloropla s t s  o f  bo th c e l l  type s . 

Although the pre sent s tudies have d emonstrated that ace ty l ­

CoA carboxylase occurs i n  chlorop l a s t s , they have not shown 

that the enzyme i s  re s tric ted exc lus ive l y  to the se organe l l e s . 

An extra-chloroplastic acetyl-CoA carboxylase may have a 

function in  the supply of malony l -CoA required for the 

e longation o f  fatty ac id s in the bio synthe sis of cuticular 

waxes ( for review see Kol attukudy e t  a l . ,  1 9 7 6 ) . I n  the 

ce l l  fract i onat ion stud ies employed many chloroplasts  were 

broken , re sulting in  c ontamination o f  non-chloroplastic  

fractions by chloroplastic enzyme s . Perhaps a more deta i led 

study with gently lysed protopl a s t s  may in the future 

character i ze the locat ion of acety l -CoA carboxylase . 

Earl ier inve stigati on s  of the nature o f  spinach chloropl astic  

acetyl -CoA carboxylase  indicated that this  enzyme was 

readily d i s soc iable i nto three prote in c omponent s , s imilar 

to the E .  c o l i  enzyme . The b iot in-co nta ining prQtein was 

membrane -bound whereas the other two p roteins , one cata l ys ing 

a biot in carboxyl ase react ion and the o ther a carboxyl ­

transferase reaction , were located i n  the stroma ( Kannangara 

and S tump f , 1 9 7 2 ) . These f indings were l ater extended to a 

number o f  o ther p l ant tissues such a s  tobacco , pea , butter 
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l ettuce , mai�e and barley ( Kannangara and Stumpf , 1 9 7 3 ) . 

Furthe rmore , a biotin -containing prot e i n  was identified on 

the chlorop last l ame l lae of bar l ey seedl ing s which had been 

grown in a medium containing . [1}C]-biotin ( Kannangara and Jensen , 

1 9 7 5 ) . However , later worker s  have reported the presence 

of solub l e  acetyl-CoA carboxylases in  photosynthetic t i s sue s . 

Reitzel  and Nie l sen ( 1 9 7 6 )  f i rst i so l ated a so luble enzyme 

in ce l l -free extracts of bar l ey and sub s equently the c hloro ­

plastic location o f  this enzyme wa s e stablished ( Thomson and 

Z al ik , 1 9 8 1 ) . The s troma l l ocat ion o f  acety l -CoA carboxy­

lase has a l so been d emon strated in c hloroplasts o f  spinach 

and p l astids  o f  avocado ( Mohan and Kekwick , 1 9 8 0 ) . Con s i st ­

ent with the se recent report s ,  acetyl -CoA carboxylase o f  

ma ize chloropla s t s  wa s l ocated i n  the s troma , without any 

membrane requirement for ful l activity .  However , the 

pos s ibil i ty of two i soenzyme s of acetyl -CoA carboxylase , 

one c omp l etely soluble and the other with a membrane c om­

ponent as described by K�nnangara and S tumpf ( 1 9 7 2 ) , is not 

totally  exc luded , a l though i t  appear s unlike l y  as  all but 

4 %  of the biotin carboxyl ated by biot in carboxylase of E .  

col i , wa s present in the stroma o f  ma i z e  chloroplasts . 

Para l l e l  exper iment s , in this  study , with disrupted c hloro­

plasts i so l ated f rom barley and sp inach also con f irmed the 

stromal l ocation o f  the biotin pro sthetic group o f  acety l ­

CoA c arboxylase i n  the se t i s sue s . Recent measurements o f  

the biotin conten t o f  barley chlorop l a sts  ( Thomson and 

Zal ik , 1 9 8 1 ) , showed that 8 0 %  of c h l o roplast biotin wa s 

located in  the stroma , agree ing with the pre sent f ind ing s .  

A definit ive explanat ion for the ident i ficat ion o f  a mem­

branous biotin -prote in on the one hand ( Kannangara and 

Stump f , 1 9 7 2 ) , and a stroma l holoprotein on the other , i s  

not po s s ible at pre s ent . However , i t  may be relevant that 

Mohan and Kekwick ( 1 9 8 0 )  reported a l o s s  of activity and 

also of a prote in f ragment conta in ing b iotin , when the 

avocado pla stid a c e ty l-CoA carboxylase  was trans ferred to 

buf fers not conta in ing BSA . It is c onceivabl e  that such a 

biotin -prote in re l e ased upon di sruption of sp inach chloro-
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plasts in the absence o f  BSA , may bind to lamel lae membrane s 

by non - specific hydrophobic  or ionic  interactions . However , 

the amino ac id ana ly s i s  o f  the BCCP component o f  E .  col i  

acetyl -CoA carboxylase ( F a l l  and Vagelos , 1 97 2 ) , which may 

be similar to the biotin-protein of spinach chloroplas t s , 

does not indicate any unusual enr i c hment of hydrophobi c  

amino acid residues  to account for excessive hydrophobic 

interactions . Rather BCCP o f  E .  c o l i  has an ac idic iso­

electric point and consequently an overall negative c harge 

at phys iological conditions ( Fall  and Vagelos ,  1 9 7 2 ) . I f  

the biotin-protein fragment o f  spinach chloroplastic acetyl­
CoA carboxylase reported by Kannangara and Stumpf ( 1 9 7 2 )  i s  

simi l arly charged , repuls ive forc e s  would be antic ipated 
between thi s prote in fragment and thylakoid membrane s ,  which 

are al so negatively charged at pH 7 . 8 (Westr in et al . ,  1 9 7 6 ) . 

It  is  still pos s ible however , that i solated areas on the 

surface of the biotin-protein fragment or thylakoid membrane s 

may be oppositely  charged and thus l ead to non- spec i f i c  

binding . Examp l e s  o f  non- spec ific  binding o f  soluble enzyme s  

to membrane s have been reported previously . Dall ing et  a l  

( 1 9 7 2 ) found that non-spe c i f ic bind ing of nitrate reductase 

to isolated chloroplasts  was prevented by the inc lus ion of 

BSA in buffers , and recently McNe i l  and Walker ( 1 9 8 1 )  re­

ported the binding o f  RuDP carboxyl a s e  to thylakoid membranes 

when spinach c hloroplasts were d i srupted in the presence of  

Mg2+ . Although the above possibi l i t ies  may explain the 

pre sence of a . b iotin-containing protein �n thylako id prepar­

ations from spinach chloroplasts ( Kannangara and Stump f , 

1 9 7 2 ) , the difference in the solub i l ity of  acetyl-CoA car­

boxyl ase of  mai z e  and bar l ey chloroplasts reported in recent 

stud ie s , and tho se of  Kannangara and Stumpf ( 1 9 7 3 )  and 

Kannangara and Jensen ( 1 9 7 5 )  cannot as yet be explained . 

5 . 3  Re lationsh ip Between Acetyl -CoA Carboxylase Activi!J 

and Lipid Synthes i s  in  I solated Chloroplasts 

One of  the long- standing problems in the investigation of 



1 3 6  

l ipid synthe� i s  by i s o l ated c h l o ropl asts has been the low 

l eve l s  of a ce tyl-CoA carboxy l a s e  activity compared to the 

rates o f  de novo fatty ac id synthes i s . For examp l e , i so­

l ated spinach chloropl a sts have been observed to incorporate 

[ 1 4 C ]  acetate into l ipids at rates of up to 2 0  - 3 0  nmol/min/ 

mg chl ( Roughan et a l . ,  1 9 7 9 a ;  Browse et al . , 1 9 8 1 ) . How­

ever � reported l eve l s  o f  acety l - CoA carboxylase activity in 

spina�h chloroplasts are r e l a t ively low : Roughan e t  al , 

( l 9 7 9a )  reported the activity a t  4 . 1  nmol/min/mg c h l , whi l e  

Mohan and Kekwick ( 1 9 8 0 )  f ound the act ivity a t  0 . 1 3 nmo l/ 

min/mg prote in , which as suming a chlorophyll : prote in ratio 

o f  1 5  for i solated s pinach c h l o ropl asts  ( Kirk and T i lney-

Bas sett , 1 9 7 8 a ) , converts to 2 . 0  nmo l/min/mg chl . In thi s  

study , isol ated chloroplasts  o f  spinac h l eave s  showed 

s imi l ar activities , with [ 1 4 C ] a cetate incorporat ion into 

l ipids at 6 . 0  nmol/min/mg c h l , while  acetyl-CoA c arboxy lase  

activity wa s only 2 . 8  nmol /min/mg chl . Thi s r e l a t ively low 

activity o f  acetyl-CoA carbox yl a se may have been due to the 

presence o f  an inhibito r  to the enzyme , which wa s f irst 

sugge sted to explain the '
absence o f  acetyl-CoA c arboxylase  

activity in  l ettuce chloropl a s t s  ( Burton and Stump f , 1 9 6 6 ) . 

However , the l ack o f  inhibition o f  acetyl -CoA carboxylase  

activity in  maize  leaf  ce l l - free extracts fol lowing mix ing 

with cel l - free extract of spinach leave s appears to rule out 

thi s po s s ibil ity . 

I solated ma ize  chlo roplasts  i n  thi s  s tudy had an acetyl-CoA 

carboxyl a s e  activity of 3 4 . 5  nmol/min/mg chl , whi le [ 1 4 C ] 

acetate incorporat ion into l ipids wa s only 1 %  o f  th i s  rate . 

A s imi l ar exce s s  o f  acety l - CoA carboxylase ac tivity above 

that of l ipid synthe s i s  wa s a l so obta ined with barley chloro­

plasts : 8 . 5  nmo l/min/mg chl for acetyl-CoA carboxylase , 

compared with 0 . 1 2 nmol/min/mg chl. o f  [ 14 C J acetate incorpor­

ation into l ipids . 

Although isolated mai z e  and bar ley chloroplasts  appear to 

show exce s s  acetyl-CoA c arboxylase activity above that o f  

[1 4 c J acetate uti l i zat ion , the measured rates  o f  [ 1 4 c J acetate 
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incorporat ion into l ip i d s  are probably reduced from those 

found in vivo . In contrast  however , improved isolation 

techniques h ave resulted in increa sed measured rates o f  

[ 1 �C] acetate incorporat i on into l ipids by isolated chloro­
plasts  of s pinach in vitro ( Roughan et al . ,  l 9 7 9a ) . The 

re latively low act ivity of acetyl-CoA carboxylase in i so­

lated chloropl asts of s pinach therefore is pu z z l ing . It  

may be s ign i ficant however ,  that acetyl-CoA c arboxylase 

activity in i solated chloroplasts  of maize  and barley is 

of the s ame order as the observed rate of lipid synthes i s  

by i solated spinach chloroplasts . 

5 . 4  Rel at i on s hip Between Acetyl-CoA Carboxylase Activity,  

Lipid Synthes i s  and Leaf Development 

The morphological change s  dur ing development of the mono­

cotyledonous l eaf inc lud e s  d i f ferentiation of smal l agranal 

proplastids into chlorop l a s t s  by enlargement o f  the organel le 

and accumulat ion of l i p id -r ich lamellae ( Leech et al . ,  1 9 7 3 ) . 

A pronounced and rapid increase in plast id l ipids occurs 

immediately fol lowing emergence of the expanding leaf , from 

the surrounding sheathing l eaves , into the l ight . In  thi s  

segment o f  the leaf there i s  presumably an e levated rate o f  

l ipid synthe s i s ,  compared with that in the l e s s  mature 

segments below and the more mature segments above . These 

variations in the cel lular requirements for l ip id should 

a l so be r e f lected by a ltered c apacities for malonyl-CoA 

synthe s i s . 

In  the pre sent study , the rate o f  [ 1 �C ]  acetate incorporation 

into l ip i d s  was maximal with l eaf slices prepared from the 

region o f  the leaf corre sponding to lamel lae synthes i s  in 

chlorop l as t s . Cons i stent with this finding were the m�asured 

rates of [ 1 � C] acetate incorporation into l ipids  by i solated 

chloroplas t s , which were maximal with chloroplasts i solated 

from the s ame region o f  the l eaf . These stud ies  conf irm 

earl ie r  work  on the e ffect of  leaf development on l ipid 
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synthes i s  b1 leaf s l ic e s  o f  mai z e , bar ley and wheat ( Hawke 

et al , 1 9 7 4b ; Bolton and Harwood , 19 7 8 )  and i so lated - -

chloroplasts o f  mai ze leaves ( Hawke et al . ,  1 9 7 4 a ; McKee , 

1 9 7 9 ) . 

However the e f fect o f  leaf  deve lopment on acetyl -CoA carboxy­

lase activity was not as c lear . Chloroplasts i so lated from 

the younge st t i s sue o f  ma ize  leaves showed maximum acetyl­

CoA carboxylase activ i ty . But the variable degree o f  intact­

ne ss of  chloroplasts i so lated from tissues of varying age 
po s s ibly confuses thi s  compar ison . The greater activity 

in chloroplasts  isolated from the younger t i s sue may be due 

to the higher degree of intactnes s  of these preparations 

compared to chloropl ast s i solated from the o lder t i s sue o f  

the leave s . In  cel l -free extracts ,  where thi s  problem doe s  

not occur , n o  c lear relationship was seen between leaf 

deve lopment and acety l - CoA carboxylase activity when related 

to fresh we ight of t i s sue . However , on a protein bas i s , 

acetyl-CoA c arboxylase activity was maxima l in c e l l - free 

extracts prepared from t i s sue in which l amel lae synthe s i s  i s  

taking p l ace . Recent ly , Thomson and Zal ik ( 1 9 8 1 )  reported 

a s imilar re lationship between leaf development and acety l ­

CoA carboxyl ase activity i n  barley . As in this study , this  

relationship was be st s hown in cell-free extracts  only  when 

the activity was expres sed on a protein bas i s , whereas on 
the bas i s  o f  fresh we ight the relationship is  not so c lear . 

S imilarly , with isolated c hloroplasts , the relat ionship 

between leaf development and acetyl-CoA carboxylase  activity 

was unclear . The uncertainty which appear s to exist  in the 

relationship between l ipid synthes i s  and acety l -CoA carboxy­

lase activity in isolated chloroplasts of  var iable develop­

ment , may pos sibly be due to the lack o f  techniques to 

i solate chlo roplasts ,  f rom mai z e  and barl·ey leave s , which 

are able to synthe s i z e  l ipids at rates comparable to tho s e  

in vivo , and are thu s minimally altered from the ir i n  vivo 

s ituations . 

Alternative l y , greening o f  dark-grown plant t i s sues have 
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been uti l i z ed to study the effect  o f  leaf  deve lopment on 

acetyl-CoA c a rboxylase  activity . The morpholog ical and 

biochemical  changes which take p lace during the greening o f  

etiolated t i s sues a r e  very d i f ferent from those occurring 

in plant s grown under a normal l ight-dark regime (We ier and 

Brown , 1 9 7 0 ;  Leech et  al . ,  1 9 7 3 ; Leech ,  1 9 7 7 ; Kirk and 

T ilney-Bas sett , 1 9 7 8 b ;  Boffey et al . ,  1 9 8 0 ) . Dur ing growth 

of pl�nts in the dark , propla s t ids d i fferent iate into etio­

plasts containing the prolamel lar body , which upon i l lumin­

at ion is d ispersed a nd replaced by thylakoid membranes a s  

the etiopl asts  deve lop into chloroplast s . Us ing this  system ,  

rather contradictory results have been reported . Despite 

the increa sed capa c i ty of  iso lated barley chlorop l a sts to 

incorporate [ 1 4 C] acetate into l ipid s , the activity of 

acetyl -CoA c arboxyl ase  decrea sed with the age of  the etio­

lated t i s sue and with increas ing time of il lumination of  

etiol ated seedl ing , from which chloroplasts were i solated 

( Kannangara et al . ,  1 9 7 1 ) . However , later work indicated 

increas ing acetyl -CoA carboxyl a se activity in cel l - free 

extracts , with increas ing age o f  etio lated and l ight-grown 

barley seedl ings , and time of  greening o f  etiolated barley 

seedl ings ,  from whi ch the extracts were prepared ( Reitzel  

and Niel sen , 1 9 7 6 ) . This  later f inding of increas ing 

acetyl-CoA carboxyl ase  activity in greening t i s sue , i s  

consi stent with t h e  increa sed c apac ity o f  chloroplasts , 

i solated from thi s  t i s sue , to synthe s i z e  lipids from acetate . 

5 . 5  Pur i f i cation o f  Acetyl-CoA Carboxylase 

Acetyl-CoA carbox y lase has been pur i f ied to homogene ity 

from a wide numbe r  o f  sour ces . From animal t i s sues the 

enzyme has been pur i fied . from l iver ( Gregolin et al . ,  1 9 6 8a ; 

Nakanishi  and Numa , 1 9 7 0 ; Inoue and Lowenste in , 1 9 7 2 ) , 

mammary gland ( Mi l l er and Levy , 1 9 6 9 ; Manning et al . ,  1 97 6 ;  

Ahmad et a l . ,  1 9 7 8 ; Hardie and Cohen , 1 97 8 )  and adipose  

tissue ( Mo s s  et a l . , 1 9 7 2 )  to  spec i f i c  activitie s in  the 

range of 5 - 1 5 �mol /min/mg of protein , which were  about 3 0 0-
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to 2 0 0 0 -fold greater than the spec i f ic activity in the 

initial extracts .  From the yeasts � - l ipolytica ( Mi shina 

et al . ,  1 9 7 6b )  and s .  cerevi s iae ( Sumper and Rieper tinger , 

1 9 7 2 ) , acetyl -CoA carboxylase was puri f i ed to a f inal spec i­

f i c  activity o f  8 �mol/min/mg o f  prote in . 

The only preparations of  acetyl -CoA carboxylase from p lant 

sources which  attained speci f ic activities a s  high a s  those 

from anima l s  and yea s t s  have been prepared from embryoni c  

tissues . He inste i n  and Stumpf ( 1 9 6 9 )  reported a 1 0 0 0 -fold 

pur ificat ion of acetyl -CoA carboxylase of  wheat germ , by 
column chromatography on ion-exchange resins fol lowed by 

sucro se dens ity gradient centr i fugation , to g ive a final 

specific  activity of about 6 . 3  �mol/min/mg of prote in . 

Applicat ion o f  thi s  procedure to barley embryos r e sulted in 

a preparation of  acetyl -CoA carboxylase with a spec ific 

activity o f  7 . 1 �mol/min/mg o f  protein ( Brock and Kannangara ,  

1 9 7 6 ) . More recent l y ,  acetyl-CoA carboxylase o f  wheat germ 

was puri f ied 2 , 2 0 0- fo ld with a modi fied procedure ,  which 
included a f f inity c hromatography on a column o f  B lue­

Sepharo se ( Egin-Buhler et al . , 1 9 8 0 ) , to a f inal spec i f i c  

activity o f  1 . 4  �mol /min/mg o f  protein . The low s pec i f ic 

activity o f  acetyl -CoA carboxylase in this preparation , 

relative to that o f  Heinstein and Stumpf ( 1 9 6 9 ) , was due to 

the low spec ific  activity of the enzyme in the init ial 

extract . Appl ication of  the same puri f ication procedure to 

acetyl-CoA carboxyl ase of  par s l ey cell culture , r e sulted in 

a 3 0 0 - fold pur i f icat ion of  the enzyme , to a spec i f ic 

activity o f  0 . 4  �mol/min/mg o f  prote in . 

The only reported pur i f ication of acetyl-CoA carboxylase 

from leave s , is that of spinach chloroplasts . U s i ng ammonium 

sulphate fractionat ion , fol lowed by gel filtration , Mohan 

and Kekwick ( 1 9 8 0 )  obtained a 2 0 0 - fold increase in spec i f ic 

activity , to 0 . 0 2 5  �mol/min/mg of prote in . The identical 

puri ficat ion procedure applied to plastids o f  avocado , re­

sul ted in nearly a 2 0 0 0-fold purif ication of  acetyl-CoA 

carboxylase , to a speci fic act ivity of 0 . 0 8 4  �mol/min/mg o f  
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prote in . 

In this study , the final puri ficat ion procedur e s  adopted to 

pur ify acetyl-CoA carboxylase o f  mai z e  leave s , followed 

exten s ive attempts at puri fying this  enzyme by some of the 
procedures u sed previously in puri f ying acetyl- CoA carboxy­

lase from other source s .  Ammonium sulphate fract ionation , 

ion-exchange c hromatography , CoA and avidin a f f in i ty chroma­

tography were e i ther unsucce s sful or gave infer ior pur i f ic­

ations compared with the procedures  f inally adopted . 

Acetyl-CoA carboxylase o f  mai z e  leaves was puri f ied by two 

procedures whi ch uti l i zed combinations of polyethylene 

glycol fract ionation , ammonium sulphate prec i p i tation , 

hydrophobic chromatography and gel f i ltration . The two 

procedures that were finally used to purify acetyl -CoA 

carboxylase , r e sulted in preparations of sim i lar spec i f ic 

activi t ies , in the range of  0 .  2 - 0 .  5 ]Jmol/min/mg o f  protein . 

Analy s i s  by po lyacrylamide gel e lectrophere s i s  indicated 

the purity of acetyl-CoA carboxylase to be in range of 4 0 -

6 0 % . Acetyl -CoA carboxylase of  barley leave s  was a l so 

pur if ied by one o f  the two alternat ive procedur e s  used to 

puri fy the enzyme from maize . This  enzyme behaved identi­

cally to that from mai z e  dur ing pur i f ication , reaching a 

final spec i f ic activity o f  0 . 2  ]Jmol/min/mg o f  prote in , which 

may be ind icative of the s imilarity of  acetyl -CoA carboxy­

lase s from mai z e  and barley leave s . 

Acetyl-CoA carboxylase from both mai ze and barl ey leaves  

was relatively unstable during pur i fication , which l imited 

the degree o f  purification obtained . The spe c i f i c  activities  

of  the preparations from mai z e  and barley leave s were , as  

expected , l e s s t han the spec i f ic act ivities o f  pure acetyl­

CoA carboxyl a s e  from animals , yeas t s  and embryonic t.is sue 

of wheat and b ar ley . However , c ompared to the recently 

reported preparations o f  this  enzyme from spinach chloro­

plasts and avocado plastids (Mohan and Kekwic k , 1 9 8 0 ) , 

acetyl -CoA carboxylase puri fied from maize and bar l ey 

leaves , in thi s study , showed spec i f ic activ i t ie s  1 0 -fold 
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higher . 

Following po lacry l amide gel electropheres is o f  the purif ied 

mai ze l ea f  acety l -CoA carboxylase , the co inc idence of 

enzymic activity with a s ingle stained prote in band dis­

counted the pos s ibility that thi s  enzyme dissociates into 

separate active protein components , a s  occur s in E .  col i 

( Guch�a i t  et a l . , 1 9 7 4a )  and was sugge sted for the spinach 

chloropl a s t  enzyme ( Kannangara and Stumpf , 1 9 7 2 ) . 

5 . 6  K in e t ic Properties o f  Acetyl-CoA Carboxylase 

5 . 6 . 1  E f fect of substrates on acetyl-CoA carboxylase 

Ace t y l-CoA c arboxylase of  mai z e  and bar ley leaves 

showed very s imilar dependence o f  act ivity on the concen­

tration o f  the substrates , acetyl-CoA and Hco; . Both 

enzymes had very similar a f f inities for these substrates , as 

j udged by the apparent Michae l i s  constants , O . l OmM and O . l lmM 

for acetyl -CoA and 1 . 4mM and 2 . lmM for Hco; , for the mai z e  

and bar l ey enzymes ,  respectively . Comparison o f  these 

con stant s  with tho se of  acetyl-CoA carboxyla s e s  from other 

plant sources  indicates the s imilar ity of the se  enzymes . 

The Michae l i s  constant for acetyl -CoA were determined as 

0 . 1 5mM , O . l OmM and 0 . 2 6rn!<1 for the en zyme from wheat germ 

(Hatch and Stump f , 1 9 6 1 ) , spinach chloroplas t s  and avocado 

plastid s ( Mohan and Kekwick , 1 9 8 0 ) , respectivel y , while the 
Kms for Hco; were  1 . 0 5mM , 3 . 0mM and 8 . 0mM for the same 

enzyme s , respec t ively . 

In contra st , acetyl-CoA carboxylases  f rom animal sources 

have I<ros for acetyl:-CoA in the range of 16 - 3 0  ]JM (Miller 

and Levy , 1 9 6 9 ; Moss et a l . , 1 9 7 2 ) , about an order of 

magnitude below that found for the plant enzyme s , and for 

Hco; t he I<ros are in the range o f  1 0  - 1 5mM ( M i l ler and Levy , 

1 9 6 9 ; Maragoudaki s , 1 9 7 0 ) , about an order o f  magnitude 

greater than the enzyme from plants . Acety l - CoA carboxylase 
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from yeasts , · which are evolutional ly c l oser to plants than 

anima l s , show apparent Km s for acetyl-CoA and HCO� of 0 . 2 6mM 

and 3 . 7mM , respectively ( Mishina et  al . ,  1 9 7 6a) , which are 

s imil ar to those of acetyl -CoA carboxylases  from plants . 

Al l acetyl -CoA carboxylases , that have been studied , require 

both ATP and MgC1 2 for max imum activity ( Lane et al . ,  1 9 7 4 ) . 

In l ine with a number o f  other enzyme s which utiliz e ATP , the 

biolog i c a l ly active form of  this substrate in the acetyl-CoA 

carboxyl ase reaction appears to be Mg . ATP complex . Both 

acetyl-CoA c arboxylases from mai z e  and barley show similar 

properties , with Mg . ATP as active substrate for the reaction . 

Furthermore , compari son of  the k inetic properties of the 

mai z e  and barley enzyme , with the kinetic  mode l s  of London 

and S teck ( 1 9 6 9 ) , indicate that these two enzymes are 

activated by free Mg 2+ and inhibited by free ATP . Detailed 

stud i e s  of the Mg2+ and ATP requirements  of  acetyl-CoA 

carboxyl ases o f  wheat germ (Nielsen et a l . ,  1 9 7 9 )  and avocado 

plastids  (Mohan and Kekwick , 1 9 8 0 ) , have shown very s imilar 

resul ts . Both these enzymes require Mg . ATP a s  the substrate 

Mg 2+ 
and whereas free ATP inhibits activi�y , free was found 

to be an activator . 

5 . 6 . 2  Substrate spec ificity of  acetyl- CoA carboxylase 

A ·number of acetyl -CoA c arboxylases have been shown to 

carboxylate other acyl-CoA ester s , as wel l  as acetyl-CoA . 

Propionyl -CoA carboxyl at ion has been demonstrated to occur 
with acetyl - CoA carboxyl ase of rat mammary g l and (Mil ler 

and Levy , 1 9 6 9 ) , bovine adipose t i s sue ( Mo s s  et al . ,  1 9 7 2 ) , 

chicken l iver ( Gregol in et al . ,  1 9 6 6 a ) ,  yea s t  (Matsuhashi 

et a l . ,  1 9 6 4 ) , ! · aceti ( Meyer and Meyer , 1 9 7 8 )  and wheat 

germ ( Hatch and Stumpf , 1 9 6 1 ) . Al l thes e  enzymes , except 

the enz yme from ! · acet i , carboxylated p ropionyl-CoA less  

e f f i c i ently than acetyl-CoA , and the enz yme from wheat germ 

was a l so able to carboxylate butyryl-CoA . Although acetyl ­

CoA c arboxyl ase o f  mai z e  d id not carboxylate butytyl-CoA , 

propionyl -CoA carboxylation occurred at up to 6 0 %  the rate 
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o f  acetyl -CoA carboxylat ion . 

Recently , Mohan and Kekwick ( 1 9 8 0 )  reported an apparent lack 

of  d i scrimination between Mg2+ and Mn2+ by acetyl-CoA car­

boxylase o f  avocado p l a s t ids . S imilarly , the biotin car­

boxyl a s e  component of E .  coli acetyl -CoA carboxylase i s  

able to carry out i ts enzymic function at the same e f f ic iency 

with e ither Mg2 +  or Mn2+ 
( Guchhait  et  a l . ,  1 9 7 4a ) . However , 

acety l - CoA carboxylases  o f  chicken l iver ( Gregolin et a l . , 

1 9 6 8 a ) ,  rat mammary glands (Miller and Levy , 1 9 6 9 )  and 
wheat germ (Hatch and Stumpf , 1 9 6 1 )  show reduced activity 

2+ 2+ when Mg is  replaced by Mn Acety l - CoA c arboxylase of 
2+ 

mai z e  behaved similarly to these l ater enzymes ,  as  Mn re-
2+ 

placement of Mg caused a 7 5 % reduction in activity at 

optimum concentrations of metal ion s . 

5 . 6 . 3  Effectors o f  acetyl-CoA c arboxylase  act ivity 

Monovalent cation s , in  particular K
+

, were found to 

activate acetyl-CoA carboxylase of mai z e . Almost ident ical 

activation of  acetyl-CoA c arboxyl a s e  pf  wheat germ ha s been 

reported , with activat ion being inversely proportional to 

the c on centrat ion of  Hco; ( Nielsen et a l . ,  1 9 7 9 ) . Activa-

tion by K+could be mimmicked by NHt and to a l e s ser extent 

by C s+ 
with both acetyl-CoA carboxylases  of ma ize and wheat 

germ . H owever , Li
+ 

was found to inhibit the enzyme from 

mai z e . A number of other enzyme s are a l so activated by 

monovalent cation s , in particular kina s e s  and l igases  

( Suel ter , 1 9 7 0 ) . The cation ionic radius appears to be 

important in this activation , with ions + 
larger than K , such 

+ + + . 
as  Rb , Cs and NH 4 activating , whereas cations with a 

smaller  ionic rad ius , such as Li+ 
and Na

+
, are either inhibi-

tory or neutral in their  e ffect on enzymic . ac t ivity (Mildvan , 
1 9 7 0 ) . Seulter ( 1 9 7 0 )  i n  his  review o f  monova lent activation 

of  enzymes , suggests that activation may be due to the 

formation of  a funct ional ternary comp lex between substrate , 

enzyme and the cation , which fac i l itates the enzymic re­

action . 
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A number o f  important metabol ites involved in de novo fatty 

ac id bio synthe s i s  were found to inhibit the activity o f  

acetyl-CoA carboxyl ase of  mai z e , in particular the products 

o f  acety l-CoA carboxylation , malony l -CoA and ADP . Malonyl­

CoA inhibition o f  the avian l iver acetyl -CoA carboxylase has 

been reported , and has been suggested to have s ignif icance 

in the regulat ion o f  the activity of this enzyme ( Grego l in 

et ai . , 1 9 6 6b ; Chang et a l . ,  1 9 6 7 ) . However ,  inhibition 

o f  acety l - CoA carboxylase by ADP has not been reported pre­

viously , and detai l ed inves tigation of this inhibition 

s howed that it was competit ive with respect to ATP , and 

uncompet itive wi th r e spect to acety l - CoA . Alteration of  the 

Kms of both these substrate s in the pre sence of ADP , suggests  

that ADP binds e i ther to the binding s ites of ATP and 

acetyl-CoA or that ADP binding alters  these binding s i tes  so 

that binding of ATP and acetyl-CoA becomes more d i fficult . 

Fatty acyl -CoA e sters , which are the final products of  de 

novo fatty ac id biosynthes i s , are thought to play an import­

ant role in the control of acetyl-CoA carboxylase activity 

in animal ti ssues ( Lane et al . ,  1 9 7 4 ) . Inhibition of  

acetyl-CoA carboxylase act ivity by palmitoyl-CoA , and a 

number o f  other fatty acyl -CoAs , has been investigated by a 

number o f  workers and appear s not to be due to a general 

detergent effect o f  thi s  c la s s  of metabolites ( Bortz and 

Lynen , 1 9 6 3 ;  Numa et a l . ,  1 9 6 5 ; Greenspan and Lowenstein , 

1 9 6 8 ) . In  the c a s e  o f  acetyl-CoA c arboxylase o f  mai ze , 

palmitoyl-CoA was a potent inhibitor o f  enzymic activity . 

The uncompetitive nature o f  thi s inhibition with respect to 

acetyl-CoA indicated that p a lmitoy l -CoA binding to the enzyme 

altered the binding s i te for acetyl-CoA . The ,inhibition of  

acetyl -CoA carboxylase activity in c hloroplasts  by acyl -CoA 

esters may be s igni ficant in avoid ing the accumulation of  

this  metabolite , a s  its  strong detergent properties would 
cause maj or di sruption in c hlorop l a s t s  (Bertrams et al . ,  

1 9 8 1 ) , where membrane structure appears to be very important 
in the maintenance o f  functional integrity . However , de 

novo f atty acid biosynthe s i s  in chloroplasts is an ACP -
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dependent process ( Stumpf , 1 9 7 7 ; 1 9 8 0 ) , and the l eve l o f  

acyl-CoA esters i n  the stroma i s  still  to be determined . 

Thus the phys iologi cal s ign i f icance o f  this e f fect  is un­
certain . 

Recently acetyl-CoA carboxyl a s e  o f  rat liver has been s hown 

to be activated by free CoA ( Yeh and Kim ,  19 8 0 ; Yeh et a l . ,  

1 9 8 1 ) . These workers have speculated that thi s  activat i on 

may be important in the control o f  the activity o f  thi s 

enzyme and thus fatty ac id synthes i s  in vivo . However ,  

acetyl-CoA carboxylase of  mai � e  showed the oppos it e  behaviour , 

with free CoA caus ing inhibition o f  the activity o f  thi s  

enzyme . Further investigations o f  the CoA concentration in 

the stroma of  chloroplasts is required to ascertain i f  this  

effect has  any s igni ficance i n  vivo . 

Acetyl-CoA carboxylases o f  an imal t i s sues are act ivated by 

citrate in vitro ( Lane et a l . , 1 9 7 4 ) . As this  metabol ite  i s  

the direct  precur sor  o f  cytopl asmic acetyl-CoA , c itrate 

activat ion of thi s  enzyme i s  thought to be s ignif icant in 

the regulation of acetyl-CoA c arboxylase activity in vivo . 

Although the in vivo precur sor  o f  chloroplastic acetyl-CoA 

has not as yet been ident i f ied , Mohan and Kekwick ( 1 9 8 0 )  

have reported the act ivat ion o f  acetyl-CoA carboxyla se s of  

spinach chloroplasts  and p l a stids of  avocado by c itrate . 

Previous reports had sugge sted  the l ack of such activat i on 

o f  acetyl -CoA carboxylase from plant tissues ( Burton and 

Stumpf , 1 9 6 6 ) . I n  the pre sent study , citrate d id not 

activate acetyl-CoA carboxylase o f  mai z e ,  but inhibition 

arose ,  probably due to comp lexing o f  free Mg 2+ . Support 

for an inhibitory e f fect due to complexing o f  free Mg 2 +  

comes from a simi l ar respon s e t o  o ther Mg2+ complexing com­
pounds , such as phosphate . 

5 . 7  Li�ht-Dark Modulation o f  Acetyl -CoA Carboxylase Activity 

Although fatty ac id biosynthe s i s  f rom acetate by i solated 
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chloroplasts i s  a l ight-dependent process ( Smirnov , l 9 6 0 i 

Mudd and McManus ,  l 9 6 2 i S tumpf and James , 1 9 6 3 ) , the exact 

nature of  thi s  l ight-dependency is  unknown . The l imitation 

of ATP and NADPH in the d ark was first suggested to cause 

the light-dependency of fatty a c id biosynthes i s  ( Stumpf and 

Jame s , 1 9 6 2  i 1 9 6 3) , however , later work demonstrated 
that reduction o f  ATP and NADPH levels  in chloroplasts  d id 

not greatly a f fect fatty a c id synthesis  ( Givan and S tumpf , 

1 9 7 1 ) . Recently , acety l -CoA c arboxylase has been suggested 

to be the l ight-dependent reac t i on in the bio synthe s i s  o f  

fatty acids (N akamura and Yamada , 1 9 7 9 )  . Although Roughan 

et al ( 1 9 8 0 )  challenged the arguments of Nakamura and Yamada 

( 1 9 7 9 ) , the importance o f  acetyl -CoA carboxyl a s e  in regulat­

ing fatty acid biosynthe s i s  in  a lmost all other t i s sues 

( Lane et al . ,  l 9 7 4 i Volpe and Vage los , l 9 7 3 i Numa and 

Yamashita , 1 9 7 4 ) , make s t h i s  enzyme a logica l c andidate to 

regulate fatty acid biosynthes i s  in chloroplasts  as wel l . 

The kinetic properties o f  acetyl -CoA carboxylase , o f  mai z e  

and barley , suggest that the a c t ivity. of thi s  enzyme may be 

modulated by l ight-dependent c hanges of metabol ite levels in 

chloroplasts . Although the determination of metabol ite 

leve l s  in c hloroplasts has been a d i ff icult task , there i s  
now increas ing amount o f  publ i shed data avai lable on thi s  subj ect , 

particularly in spinach c hlorop l a s t s . I solated spinach 

chloroplasts  in the dark appear to show level s  of ATP and 

ADP in the range of  0 . 1  - 1 .  SmM and 0 .  3 - 0 .  8mM , respectively 

(K eys , 1 9 6 8 i Heber , 1 9 7 3 i Reeves and Hal l ,  1 9 7 3 i Mig iniac-

Mas low and Champigny , 1 9 7 4 i Krause and Heber , 1 9 7 6 i  

Lil ley et a l . , 1 9 7 7 i Kai ser · and Urbach , 1 9 7 7 i I noue et a l . ,  

1 9 7 8 i Kobayashi  et al . ,  1 97 9 ) . Despite the cons iderable 

variation in the leve l s  found by .differen� worke r s , there 

is general agreement that upon i l lumination of chloroplasts  

·the concentrations o f  ATP increa ses  and that o f  ADP de­

creases . Concurrently with the c hanges in the leve l s  o f  

ATP and ADP i n  chlorop l a s t s  dur ing the dark- light transition , 

the stromal pH change s from about 7 . 1 to 8 . 0  a s  proton s are 
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taken up into the thylakoid space ( Heldt et al . ,  1 97 3 ; 

Werdan e t  a l . , 1 9 7 5 ) . An ionic ba lance acros s  the thylakoid 

membrane i s  maintained by a redi str ibution o f  ions , 

particul ar ly of  Mg 2+ . I solated chloroplasts in the dark 

show a s tromal Mg 2 + concentration in the range of  1 - 3mM 

( Portis Jr . and Heldt , 1 9 7 6 ; Port is Jr . ,  1 9 8 1 )  which in­

creases by 1 - 5rnM on exposure of chloroplast to l ight ( H ind 

et al . ,  1 9 7 4 ; Bulychev and Vredenberg , 197 6 ; Chow et a l . ,  

1 9 7 6 ; Port i s  Jr . and Heldt , 1 9 7 6 ;  Krause , 1 9 7 7 ) . Under 

certain conditions an increase in the stromal concentration 

of  K
+ 

has also been reported during dark-light transition of 

chloropl a s t s  ( H ind et al . ,  1 9 7 4 ; Chow et al . ,  1 9 7 6 ) . 

As suming that the se change s in the metabolite levels dur ing 

l ight-dark tran s i t ions a l s o  o ccur in the chloroplasts o f  

maize and barley , t hey would have the e f fect of  increa s ing 

the activity o f  acetyl-CoA c arboxylase in the l ight . A 

number o f  chloropl a stic enzyme s involved in the Calvin cycle , 

including RuDP c arboxylase , fructose 1 , 6 -diphosphatase and 
sepoheptulose 1 , 7 -diphosphatase , appear to be regulated by 

such change s in c hloroplastic metabol ite level s  dur ing the 

light-dark tran s i t ion ( Ke l ley et al . ,  1 9 7 6 ; Walker , 1 9 7 6 ;  

Jensen and Bas sham , 1 9 6 8 ) . I t  is po s s ible that regulati on 
of  C0 2 f ixation and de novo fatty acid biosynthe s i s  may be 

by such s imil ar means . Although the kinetic properties o f  

acetyl -CoA carboxylase suggest a l ight-dependent modulation 

of activity , this  could not be demonstrated in cell-free 

extract s  of  mai z e  leaves . However , the light-dependent 

change s in the levels  of  metabolite s , which a ffect acetyl ­

CoA carboxylase  a ctivity , could have been de stroyed during 

the preparation o f  the c e l l - free extracts . 

5 . 8  Summary and Suggestion s  for Further Stu£y 

At the t ime thi s study wa s begun , chloroplas t ic acetyl -CoA 

carboxyl ase wa s thought to be s imilar to that of  E .  col i , 

dissoc iable into three components ,  one of whi ch, the biotin-
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containing protein was membrane bound . Although a soluble 

acetyl-CoA carboxylase was reported in cell-free extract s  of 

barley leave s , it  was c on s idered to be a pos s ible isoe n z yme . 

However , soluble  acetyl - CoA carboxylases have s ince been 
demonstrated in the c hloroplasts of barley , spinach and 

plastid s  of avodaco . This  study has confirmed these f indings 

in spinach and barley l e aves , and has estab l i shed a soluble 

chloioplastic acetyl-CoA carboxylase in maize  leaves , which 
.. 

i s  pre sent i n  both mesophyll and bundle sheath ce l l s . The 

demonstration of the soluble nature of the biotin-conta i ning 

prote in in chloroplasts  o f  maize , barley and spinach , rules 

out the pos s ible pre sence of  isoenzyrnes , one soluble and the 

other requir ing membrane -bound biotin . 

Acetyl -CoA c arboxylase has now been demonstrated in a number 

of  plants , and in part icular in this  study , the act ivity o f  

this enzyme h a s  been f ound to b e  in exc e s s  of  the rate o f  

fatty ac id synthe s i s  from acetate in chloroplasts i solated 

from mai z e  and bar ley . However , i solated c hloroplasts  o f  

spinach which show the highest rates o f  i n  vitro fatty acid 

synthe s i s , and are thu s  pre ferred for the study of fatty 

acid biosynthes i s , appear to show lower acetyl-CoA carboxy­

lase activity than that expected from the rate of fatty ac id 
biosynthes i s  from acetate . Further re search of  the nature 

of  acetyl -CoA carboxylase in spinach chloroplasts is required 

to explain thi s d i s crepancy . 

Acetyl -CoA carboxylase  has been pur if ied to some extent from 

s ix plant sources , namely wheat germ , barley embryos , spinach 

chloroplast s , avocado p lastids , mai ze and barley leave s . 

Compar i son o f  the reported properties o f  these enzyme s ,  in  

particular their  kinetic properties , indicate cert�in s imi­

larities , such as  the requirement for Mg . ATP a s  the substrate , 

activation by free Mg 2 + and by K
+

, and the a lmost identical  

apparent Michael i s  c on s tants for  the substrates acetyl-CoA 

and HCO 3 •  De spite the se  similar ities between the enzyme from 

the di fferent source s ,  available data on the structural  

nature o f  these enz yme s i s  limited and confus ing . Further 

investigat ions of the molecular structure of acetyl-CoA 
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carboxylases from plant sources ,  could confirm the s imilari­

ties between these  enzyme s which are hinted at by the ir 

kinet i c  proper t ie s . 

The l ight-dependency o f  de � fatty ac id biosynthe s i s  in 

chloroplasts has been known for a number of years , but the 

exact  nature o f  t h i s  dependency i s  a s  yet unknown . The 

kineti c  properti e s  o f  acetyl -CoA carboxylase o f  mai z e , 

inves t i gated i n  this  study , suggest that thi s  enzyme may 

be l ight-activated by c hanges in the levels o f  chloroplast ic 

ATP , Mg 2+
, ADP , K

+
, a long with changes in the stromal pH , 

dur ing l ight-dark tran s i t ion of  c hloroplasts . However ,  

further invest igations are required to estab l i sh the occur­

rence o f  light -dependent changes in the act ivity of  acetyl­

CoA carboxylase in vivo and to e s tabl i sh if  such changes in 

activity regul ate de novo fatty ac id biosynthe s i s  in 

chloroplasts . 
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