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The function:
= sin(2k6)q"
P(0;9) =0+3 —
(iq) =0+ ;k(1+qk+q2k)

occurs in one of Ramanujan’s inversion formulas for elliptic integrals. In this article, a common
generalization of the cubic elliptic functions

;0) = —+> k6
gl( 7q) 6+k:11+qk+ 2r COS KU,
1 sin? xa(k)q*
0; = = 2 cos kf
92(0; q) 2ens Tl T g

is given. The function g; is the derivative of Ramanujan’s function ® (after rescaling), and
x3(n) = 0, 1 or —1 according as n = 0, 1 or 2 (mod 3), respectively, and |¢| < 1. Many
properties of the common generalization, as well as the functions g1 and g2, are proved.

1 Introduction

—27t

Suppose Ret > 0 and let ¢ = e . The function

n

1 0 q .
o(6;q) = icoti + Zl g sinnf (1.1)

plays an important role in Ramanujan’s paper (16). For example, Ramanujan (16, eq. (17)) proved
that

b(0: )% = ( cot ) + Z 5 cosnf + ; Z 173]";” (1 —cosnd), (1.2)

n= 1 n=1

and he used this to prove many identities for elliptic functions.
Venkatachaliengar (19, p. 42) generalized Ramanujan’s formula (1.2). Let
ﬁ (1—ayg" (1 -2y q")(1 —¢")?
(1—zg" )1 —271¢") 1 —yg" (1 —y~'q")

F(z,y;q)

n:l
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and
p(zq9) = ,_,_ Z T for |q] < |z] < 1, (1.3)
i
142 > q" _
= T2, f - 1.4
ST=n) T ) ol <lel <l (14)

The function p is related to the function ¢ in (1.1) by
p(e’’) = 2i6(6).

Venkatachaliengar’s generalization of Ramanujan’s identity (1.2) is

0
F(z,y;0)F(2,29) = 25 F(2,y2,9) + F(2,y2,9)(p(y; ) + p(2:0). (1.5)
See (9, p. 66), (10, Thm. 2.2), or (19, p. 37, egs. (3.2), (3.3)). Letting y — 1/z and then setting
z=e? z=¢" we get,
F(e" e q)F (e, 67" q) = 2(¢'(650) — ¢ (a3 0)). (1.6)

See (9, p. 90, eq. (3.23)), (10, (2.41)), (19, p. 112, eq. (6.50)) for the details. This is equivalent
to (20, p. 451, Ex. 1):
o0+ a)o(d —a)
p(e) p(O{) - 0'2(0)02(&) ’

where g is the Weierstrass elliptic function with periods 27 and 2wit, and o is the corresponding
Weierstrass sigma function. Ramanujan’s formula (1.2) may be obtained by expanding (1.6) in
powers of a and extracting coefficients of a®. See (19, pp. 42-45, eq. (3.40)).

The aim of this article is to give analagous results for the functions

1 q"
q(0;9) = G z::l+q T cosnf,
1 sin g x3(n
92(0;9) = 3 sin 2 Z cosnG (1.7)

The antiderivative of the function g; occurs in one of Ramanujan’s inversion formulas for elliptic
integrals. Several properties of g; were established by Berndt, Bhargava and Garvan (4). They
used the notation v(z, q), where

1 .
91(0;q) = gv(e”’,q)

We shall begin by observing that g; and g» have a common generalization. A number of basic
properties of the generalization, and the functions g; and g are given in Section 2. Power series
expansions for g; and g in terms of the corresponding Eisenstein series are given in Section 3. In
Section 4, we prove the transformation formulas

]. 19 27
- —2mt _ . o 5E
gl( ;€ ) t\/gQQ (St’e 3)7

1 10 2
f;e 2™ = — (;e 3t> .
92( ) t\/g g1 ¢

Expanding in powers of 6, we obtain transformation formulas for various Eisenstein series. A
detailed analysis of these Eisenstein series is given in Section 5.
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Connections between the functions g1, go and the Hirschhorn-Garvan-J. Borwein cubic theta func-
tions are given in Section 6 and connections with the Weierstrass p function are given in Section
7. We indicate how to obtain addition formulas for g; and g in Section 7. Various formulas for
g1, 92 g1 and gh, involving infinite products, are given in Section 8.

An analogue of Venkatachaliengar’s formula (1.5) for the function G is given in Section 9, and an
analogue of (1.6) is given in Section 10. Fourier series for g? and g5 are given as a consequence.
These are analogues of Ramanujan’s formula (1.2).

In Section 11, we introduce the cubic transcendentals Z and X. We express Ramanujan’s Eisenstein
series P(q), Q(q), R(q), as well as P(¢?), Q(¢®) and R(g*), in terms of Z and X. In Section 12,
the differential equations satisfied by g; and go are given. Lastly, in Section 13 we prove some
recurrence relations for cubic Eisenstein series.

2 Definitions and basic properties

2.1 The functions F' and G

Let
(zy, gz 'y 4,450 2.1)
(z, g2 Y 9,9y @)oo

F(z,y:q) =

Here we are using the standard notation

(#30)00 = [ (1 = 2¢"7"),

($17x2a e 7$n»Q)oo = (xlaq)oo(x27q)00 e (xn,q)oo

It is straightforward to check that

F(z,y:q9) = Fly,z:q), (2.2)
Flr,y;9) = —Fl 'y ), (2.3)
Fz,y;q) = xF(z,qy;q9) = yF(qz,y;q). (2.4)

By Ramanujan’s 19, summation formula (1, p. 502), (2, Ch. 16, Entry 17), (17, Ch. 16, Entry
17),

0 "
F(z,y;q) = Z T’ for |q| < |z] < 1. (2.5)
. Yyq
Since F' is symmetric in z and y,
o0 yn
Foyiq)= D, 1= forlg <lyl <1 (2.6)
—2q
n=-—oo
Let
1
G(z,y:q) = —= (F(z,wy; q) — F(z,wy; . 2.7
(x93 Z.\/5(( yiq) — Fla,wy;q)) (2.7)

Observe that G is not symmetric in z and y.
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Expanding in powers of z using (2.5) gives

n "
G(z,y5q9) = Z\[ Z <1_qun 1—w? yq>

e -
2
L Tyt e

n, —1

Y r7qy T qy
= ——— 4y —————— 4 ,
1+y+y2 ; 1+yqn+y2q2n Z 1+y—1q7z+y—2q2n

n=1

This series converges for |q| < |z| < |q| 7.
Expanding in powers of y using (2.6) gives

1 & wnyn w2nyn
Gla,yq) = —= -
@) = = 3 ((

x3(n)y"
1—2xq™’

n=—oo

This converges for |¢| < |y| < 1. Another form may be obtained from this as follows:

— x3(n)y" x3(—n)y~"
G(z,y;q9) = +
( ) gl—xq" — 1—axqg™™
_ ixg(ny”(l—xq + zq") Zx:a )&~ y nq"
= 1 —xqn 1—a t¢gn
- — zy"q" | xly™"q
L +7;X3<n>(1 )
B y - zy"q" T lyTngn
TR ;X(n)<1 2" " 1-=x q")

This converges for |q| < |y| < |q|~!.
Also from (2.9) we have

s y3n+1 St ySnf 1

G(xaya Q) = Z 41 — xq3”+1 - Z 1— qun—l

n=—oo n=—oo

= yF(qz,y*;¢°) =y 'Flqg "z, v ¢%).

2.2 The functions ¢g; and ¢

Let

91(0;q) G(e", 1;9),

92(0;q)

N = DN =

S. Cooper

(2.8)

(2.10)

(2.11)

(2.12)

(2.13)
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Equations (2.8) and (2.10) immediately give

a(0) = é + Z T cosnd (2.14)

1 1 e qneiO qne—ié)
— 6+§ng(n) ( + ; (2.15)

1— qneie 1— qnefw

g200) = i A Xg(n)q(icosnﬁ (2.16)

o 0 n —i0 . n
e
2 ¢in % — 1+ eieqn + e2i9q2n 1+ e—ieqn + e—2i9q2n !

(2.17)

Equations (2.14) and (2.16) are Fourier series for g; and go. They converge for |g| < [e?| < |g|7!, or
equivalently, —27 Ret < Im# < 27 Ret. Equations (2.15) and (2.17) are the analytic continuations
of g1 and ¢o, and are valid for all complex values of 6.

Equation (2.11) gives

91(6;q) (F(qe”,1;¢*) — F(g e, 1;¢%)), (2.18)

92(0;q9) = 5(ewF(%e?’”;q?’)—6_"9F((J‘1763"9;q3))- (2.19)

e

These expressions are valid for all complex values of 6.
The locations of the poles and periodicity properties are readily determined from (2.15) and (2.17).

Theorem 2.20. Let ¢ = e 2™, where Ret > 0. Then
1. g1(0 +2m;q) = 91(0; q)
91(0 + 67it; q) = g1(6; q).

2. g1(0;q) is meromorphic on C, with simple poles at 6 = 2wm + 2wint, m, n € Z, n Z 0
(mod 3), and no other singularities. The residue at each pole is 55 x3(n).

3. g2(0 + 2m;q) = g2(0; )
g2(0 + 2mit; q) = g2(0; q)-

4. g2(0;q) is meromorphic on C, with simple poles at 6 = 27n/3 4+ 2mwimt, m, n € Z, n £ 0
(mod 3), and no other singularities. The residue at each pole is %Xg(n).

Proof
Let z = €. The Fourier series (2.14) shows g1 (6 + 27;q) = ¢1(0; q).
Next, from (2.15) we have

g1(0 + 67it; q) — g1(6; q)

_ 1 > q3n+1z q3n+2z an—Sz—l q3n—4z—1

- §; 1—gdntly 11— g3nt2y + 1—gdn—5z-1 1 gdn—dy-1
1 i q3n72z q3n71Z q3n72Z71 q3n71Z71
2 — 1— q3n72z 1— anflz 1— q3n72271 1— q?mflzfl

1 gz N Pz g 221 gzt

o 2\1—gqz 1—¢%2 1—q2z1 1—glz7!

= 0.
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Equation (2.15) implies that g1(6,¢) is meromorphic and has simple poles at 8 = 27wm + 2wint,
n # 0 (mod 3), and no other singularities. The residue at § = 2mwit may be calculated as follows.

Res (¢1(0;q), 0 =2mit) = Gllglm(Q —2mit)g1(0; q)
— L i 0 amin 2
2 9—2mit 1—qe
_ 1 lim qe™"
2 93mit 7(1 — qe—w)
1
= o

Similarly, Res (g1(0;¢), 6 = 4mit) = —%. The residue at the singularity 8 = 2mm + 2mwint is there-
fore 5-x3(n) by the periodicity properties.
The corresponding properties for the function go may be proved in the same way, using (2.17).

O

2.3 The functions ¢, h; and h,

The function ¢ is defined by (1.1). Its analytic continuation, quasi-periodicity properties and the
location of its singularities are given by

Theorem 2.21. Let ¢ = e~ 2™, where Ret > 0. Then

1.
1 0 1 e qneia qne—ie
0;q) = —cot — + — — — . 2.22
(03q) = 7 oo 2+2in_1<1—qne29 1—qrei?)’ (2.22)
valid for all complex values of 6.
2.

PO +2mq) = ¢(6;q)
d(0 + 2mit;q) = ¢(0;q) — 5.

3. The function ¢(6;q) is meromorphic on C, with simple poles at = 27n + 2wimt, and no

other singularities. The residue at each pole is L.

2
Proof

Starting with (1.1) and writing z = ¢, we have
$(6: ) Leot? ¢ i . o
; = —cot= sinn
4 19T T
= —cot +—Z a (" —27")
4 1 = 1—qm

|
==
O
+
M8 |
Mg
§
3
k
N
=

n=1 m:l
q"z ¢z (2.23)
—\1l-qmz 1-qmz7! '
1 1 > qmezﬁ qmefw
= “cotz+— :
4CO + 2 Z (1—(]7”67‘9 1_qme 6
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This proves the first part of the theorem.

The quasi-periodicity properties, location of the singularities and values of the residues can be
determined from (2.22) using the same procedure as in the proof of Theorem 2.20.

O
For future reference, we define the functions h; and hs by
hi(0;9) = ¢'(6;9) — ¢'(6;¢°)
= i nq" —cosnb — Z —cosnd (2.24)
n=1 1- 7
hao(0;q) = &'(6;9) —94'(36; ¢° )
1
= §CSCQ§ — —csc? = +Z cosn@—QZ cosSn@.
(2.25)

The analytic continuations, periodicity properties and location of poles follow right away from the
definition of these functions and Theorem 2.21.

2.4 The cubic theta functions

The cubic theta functions are defined by

oo (oo}
d(q,2) = Z Z gm e, (2.26)
agz) = 3 Y grrmentmen, (227)
m=—00 n=—00
oo (oo} 5 R
b(q,z) = Z Z gm rmndnt ymen g n (2.28)
gz) = 33 gD ) men (2.29)

m=—0o0 Nn=—00

where w = exp(27i/3) and |q| < 1. When z = 1, we will denote the functions a’(¢,1) = a(g, 1)
simply by a(g). Similarly, we will abbreviate b(q,1) and ¢(q,1) to b(q) and ¢(q), respectively. The
functions a/(q, 2), a(q, z), b(q,2) and c(q, z) were introduced! by Hirschhorn et. al. (12). They
showed (12, (1.22), (1.23)) that

bg,2) = (q;q>m(q3;q3)m(q§f;§§ Eq% ?3] o (2.30)
1 3. 3 Ly (@) (P27 ¢ )
o(,2) = ¢ (GD0(@®d¥)c(l+2z+27") e N
(2.31)

IThe function c(g, z) in (12) differs from the one defined here by a factor of q%.



30 S. Cooper

We also record, for future reference, the properties

s > 2 2
3n—1
¢ q
= 1+6Z<1 P 2_1q3n1) (2.33)
qn
= 146 — 2.34
> > 2 2
bg) = Y Y dmrmmrOmn (2.35)
(¢ 93
- (2.36)
lg) = Z Z g(mHE) HmA ) (n+5)+(nt5)° (2.37)
- 3q3(‘ng)), (2.38)
a(g)’® = b(g)® +c(g)’. (2.39)

Equations (2.32), (2.35) and (2.37) follow from (2.26) — (2.29), by definition. Equations (2.33) and
(2.34) are proved in (6, (2.21), (2.25)), and (2.36) and (2.38) follow from (2.30) and (2.31). Proofs
of equation (2.39) are given in (5), (6) and (15).

3 Laurent series expansions

Theorem 3.1. Define the cubic Bernoulli numbers s, by
1 Sinhg _ i Sn o
2 sinh 3¢ n!
2 n=0

Let ¢ = e 2™ where Ret > 0. Forn=1, 2, 3,---, let

B2n e an—lqk
Es, - L n=1,2,3--, 3.2
2n(q) i +k§ " (3.2)
Solq) = +i ¢* (3.3)
T T Tt '
st anqk
Son = - n=1,2,3, 3.4
k2n k k
EQn(XS; Q) = Son + Z XS qk)q = 07 17 27 Tty (35)
ES)(q) = E%(q)—Ezn(qd), n=1,23, (3.6)
EP(q) = Fanlq) — 3" Fan(q®),n=1,2,3,-- . (3.7)

Then
a(q)

So(q) = Eo(x3:q) = %
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and
o) = ot Y s e
ga0ia) = > ((;:L;TS%(Q)HZ",
n=0 :
g200:0) = ) @y Pon (63 )6
n=0 :
i) = 3 G B
n=0 ’
. —2mt _ - (_1)71 (2) 2n
h2(9,6 ) Z (27?,)' E2n+2(q)9 .
n=0 :

The series expansion for ¢ is valid for 0 < |0| < min{2x, |2mit 4+ 27k|, k € Z}, and the others for
|0] < min{2, |27it + 27k|, k € Z}.

Proof
The first result is a restatement of (2.33) and (2.34). The expansion for ¢ follows by expanding
(1.1) in powers of 0, with the help of the expansion

I 0 1 SBou(=D)" oy

—cot - = — ———"" "
2% 0+n§ (2n)!

The expansions for g1 and g follow by expanding the Fourier series (2.14) and (2.16) in powers

of 8. The expansions for hy and hs follow from the expansion for ¢ by using the definitions (2.24)

and (2.25).
O

Remark 3.8. We shall call the numbers sg, s1, S2,---, the cubic Bernoulli numbers. These num-
bers were introduced by Liu (15, eqs. (1.11), (1.18)), who expressed them in terms of derivatives
of the cotangent function evaluated at w/3. From the definition, it is clear that sap+1 = 0. The
first few values of soy, are:

1 1 1
50 = &> 82 = —g> S4 =3
_ 7 __ 809 _ 1847
86__57 88_277 810__37
__ 55601 __ _ 6921461 _ 126235201
S12 = 3 S14 = 3 y  S16 = 3 .

In Section 5, we will show that (—1)"sa, > 0. Observe also that

1sing S (—1)"s9,
- — 70271.
2sin 3¢ nz:% (2n)!

For future reference, we make the definitions

_ _ — ng"
Plg) = —24By(q)=1-24) o (3.9)
n=1
0 n3qn
Qa) = 240By(q) =1+240)  — ot (3.10)
n=1
e 5 n
Rlg) = —504Bs(q)=1-504 fqun- (3.11)
n=1
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4 The modular transformation

4.1 The modular transformation for cubic theta functions

Theorem 4.1. Suppose Ret > 0. Then

a/(6727rt ei@) — Lexp ;02 a (67%{ @%)
’ V3 6t ’ ’
a(e”2mt ) = Lexp — a’ (67% eg)
) t\/g 2t ) )
, 1 —6? x
6(6727‘17 610) = % exp (671't> c (67%76%) 9
, 1 —6? 2n 8
—27tt 16 _2r 0
c(e , e = ——exp|— b(e 3t,et)
( ) 3 P ( m&)
Proof
See (11, Theorem 5.12).
O
Corollary 4.2. Suppose Ret > 0. Then
1 2
—27t -
ale ——ale 3t ),
() = ma(e¥)
1 2
be™?™) = ——¢ (e_?) ,
) = =
1 2
—2nt —=£
c(e = —=b (e Bt) .
) = =
Proof
Let 6 = 0 in Theorem 4.1. Also see (5, (2.2)) or (11, Corollary 5.19).
O
4.2 The modular transformation for ¢; and ¢,
Theorem 4.3.
1 0 2«
- —27t - = o3
gl( ;€ ) t\/§92 <3t76 3 >
1 10 _o2x
0: —27t - ZoemE |
92(76 ) t\/§g1<t763)
Proof ) ”
Observe that by Theorem 2.20, the functions g; (6; e~2™*) and %QQ (;t’ 323715> both have simple

poles at 8 = 2rm + 2wint, m, n € Z, n £ 0 (mod 3), and no other singularities. Furthermore, the
residue of each function at each pole is - x3(n). Therefore the difference

1 10 2r
0: =27ty 5
gl( 76 ) t\/§92 (gtve 3 )

is entire. Again by Theorem 2.20, the difference is doubly periodic, and therefore by Liouville’s
theorem, it is a constant. The value of the constant can be found by plugging in a value for 6, for
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example 6 = 0:

1 10 2 1 27
0: =27ty _ _ — . %t _ L2ty .
g1(0;e ) t\/§92 (315’6 ) g1(0se ) t\/§g2 (076 )
_ 1 =27ty 1 72—’{
= 5 (a(e ) —t\/ga (e ))
= 0, (4.4)

by Lemma (4.2). This proves the first part of the theorem.
The second part follows from the first part by replacing ¢ with 1/3¢, then replacing 6 with i0/t,
rearranging and using the fact that g; and go are even functions of 6.

O

4.3 The modular transformation for ¢, h; and h,

The transformation properties for the functions h; and ho are obtained from the corresponding
transformation formula for ¢.

Lemma 4.5. Let Ret > 0. Then

Proof
See (11, (4.7)) or (19, pp. 32-35).

Theorem 4.6. Suppose Ret > 0. Then

1 16 27 1
. —27t . .o 5t _
mBe™) = gahe <3t’€ ’ ) 6mt’
1 16 2 1
. —2mt _ .o 3t
h2(9,€ ) = 7152 hy (t e 3 ) + ot

Proof
Differentiating the result in Lemma 4.5 with respect to 0 gives

1 10 2n 1

/ 0 —27t — M. -

067 =~ (e F ) -

Replacing ¢ with 3¢ in Lemma 4.5 and then differentiating with respect to 6 gives
1 0 2n 1

/ 0: —67t — 25 o )

o) = —gp | 5 12t

Therefore, on writing ¢ = e~ and p = e 2"/3 we have

hi(039) = ¢'(6:9) — ¢'(6;¢°)

_ L fif g L1 i N1
T2 rals 4wt 92 3P 127t
1 e AT 1
e (¢ (3t’p) % (t’p Gt

_o L (0 y 1
= 2™\ 3'P) T bt

This proves the first part of the theorem. The second part follows from the first by replacing ¢
with 1/3¢, and then replacing 0 with 0/it.

_|_

|
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4.4 Transformation of Eisenstein series

Corollary 4.7. Suppose Ret > 0 and let ¢ = e~ 2™, p = e~ 5. Then, for m >0,

S2m(q) = WEZm(X?);p)a
EQm(XS; Q) = ﬂ/gSQm(p)-

Proof
These follow by expanding the equations in Theorem 4.3 in powers of € using Theorem 3.1, and
equating coefficients of §2™.

O

Remark 4.8. A different proof of Corollary 4.7 was given by Chan and Liu (7). Another proof of
this result (for m > 1) will be given in the next section.

Corollary 4.9. Suppose Ret > 0 and let g = e~ 2™, p = e 27/3t Then

E = —=B(p*) - — 4.10
2(q) 2 E2(07) = o (4.10)
Wy — L g 1

E = —F - — 4.11
> (9) o B2 (P) = 5 (4.11)
@) 1 - 1
E = =k — 4.12
Do) = BP0+ 5 (4.12)
and form =2, 3, 4,--- , we have
—1)m
Bn(@) = ). (113)
1 (_1)(m—1) 9
EMN(g) = WE%(P% (4.14)
9 (_1)(m—1) 1
Eg(a) = g E5(p)- (4.15)
Proof
Substitute the series expansions from Lemma 3.1 into Lemma 4.5 and Theorem 4.6.
]

5 More on Eisenstein series

The Bernoulli numbers {B,,} are defined by
T = "
er—1 Z Bnﬁ’
n=0

and it is well known (for example, see (1, p. 12)), that for each positive integer n,

i i — (_1)n+122’ﬂ—1 B2 ﬂ_2n
pot k2n (2n)! "t

The analogous result for the cubic Bernoulli numbers is
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Theorem 5.1. Let the cubic Bernoulli numbers {s,} be defined by

1 sinh § i "

ST = ) ST

2 sinh 3% n!
sinh 5 =

or equivalently by

Then

1. For all complex numbers T,

T

X3(/€) N 2iSin 3
‘ T+k - 3sinar’

(5.2)
k=—

The series on the left converges for all complex values of T (except for integer values of the
form 3k=+1, where there are simple poles), but not absolutely. An absolutely convergent series

is given by
= 1 1 27 sin &T
E k —— ] =— 3 .
Xs( )(T—i—k k) V3sinwT (5-3)

k=—o

2. For each non-negative integer n,

-~ xs(k)  (=prent

2n+1
k2n+1 T qop4t i B
34"z (2n)!

n
k=1

3. (=1)"s2p > 0.

Proof
Starting with the partial fractions expansion of the cotangent (1, p. 11)

R 1 1
7TCOt7T£L':+Z( + ),
r = T+n T—n

we obtain

Next, using
t@ + ) " ) 2sin 2y
cot(x —cot(zx —y) = —————
Y Y cos 2x — cos 2y
and
1 sinx

14 2cos2x  sin3z’
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we get

271'/\/> QLSin%

1+2cos 22T /3sinwr’

(cotg(T—i—l) — cot §(T_ 1)) :

il
3

Equating (5.4) and (5.5) proves (5.2).

The series on the left hand side of (5.2) can be seen to be convergent by considering the real

and imaginary parts of the terms. It is clear that the series is not absolutely convergent, since
k —k

. The series (5.2) and (5.3) converge to the same value because x3(k) =— el k ),

and the series in (5.3) converges absolutely because ‘ x3(k) (m - %) ’ =0 ( k?) This completes

the proof of the first part of the Theorem.

Expanding the left hand side of (5.2) in powers of 7 gives

T+k -

= xs(k) kxs(k
—~ T+k = 2 Z k2 — 7'2
X3

( kz)
_ X3 ZO -

= 2 Z ( k‘2n+1> ", (5.6)

valid for |7| < 1. Expanding the right hand side of (5.2) in powers of 7 gives
27 sin % 32n 27\ 2"
NeTr Z ( 3 > ' (5.7)

Equating coefficients of 72" in (5.6) and (5.7) completes the proof of the second part of the Theorem.

The third part of the Theorem follows immediately from the second part, since the sum of the
series is positive.

O
Lemma 5.8. Suppose ImT > 0. Then
S ! ( 27Tz)n+1 EOO n 2mwitk .
Z (7- + k)n+1 = n! k"e ) an Z 1; (59)
k=—o0 k=1
> X3(k) — 2 2mi " n 2mitk/3 -
Z r+ k)l T a3\ 3 E x3(k)k™e . ifn>0.
k= —o0 !
(5.10)

Proof
The first of these is a standard result, for example, see (13, p. 226, eq. (8.9)) or (14, p. 65, Th.
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4). We shall prove the second part. By Theorem 5.1 we have, on writing u = e2™7/3,

— xs(k)  2msinTf

T+k 3sinwr

k=—o0

This proves the & = 0 case of the Lemma. The general case follows from this by first rewriting the
left hand side as an absolutely convergent series using (5.3):

oo

5 ) (- 1) = 22 S e,
k=1

k=—o0

and then differentiating n times with respect to 7.

Theorem 5.11. Suppose Ret > 0, let T = it, ¢ = e 2™ = €2™". Then

> 2 ! _ 27(27”) By (q) (5.12)

(mm)#(0,0) (m 4 n7)* (25— 1)!
3 o, en)Y b
Z Z (m + nr)% 2(2] 1! 1By (a) (5.13)

m=—00 nz0 (mod 3)
—2 (27ri>2j @), 1
Z Z = |5 E (q3) (514)
—1)! 27
m#Z0 (mod 3) n=—00 m + TLT (27 ]-) 3

(27i)2+L

Z Z m = _QWSZJ'(Q) (5.15)

m=—00 Nn=—0o0

> X =203 [ 2mi 2j+1E o
> > m = @) 3 25 (X35 4%)-
m=—00 n=—00

(5.16)
Equations (5.12)-(5.14) hold for j > 2, and (5.15)—(5.16) hold for j > 1.

Proof
The first of these is a standard result, for example, see (13, p. 226, eq. (8.10)). The second and
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third results follow from the first. For example

- 1
DR DI e

m=—00nZ0 (mod 3)

DD SNSRI DD

(m,n)£0,0) (m+n7)2  (m,n)#(0,0) (M + 3nT)%

(2mi)% (2mi)% 3
M) By (q) — 2,
(271'i)2j (1)
= QWEQj (9),
and this is (5.13). Equation (5.14) is obtained similarly.
Next, by Lemma 5.8,
o0 o0 o0 o0 1
m;oo n_ZOO m + nT 2j+1 - ’r; XS(n) m;oo (m + n7)2j+1
= 2 (=2mi)PH
= 2 Z x3(n) Z Wk%an
n=1 k=1 J
2mi) 2 &, & "
= 2P R
’ k=1 n=1
LS
@) = 1-g¢*
(273)2+1
= - W 2;(q)-
This proves (5.15). Finally, by Theorem 5.1 and Lemma 5.8,
Z Z m + TLT 2]+1
m=—0o0 Nn=—0o0
- 2 +1 Z Z 2 +1
mﬂ)mi me o0 m0 m+nT J
— x3(m)
_ X3(m) 4m 2mi T m2J 2ﬂzmn'r/3
ERE=ERECTING ( 3) L
7 (_1)j22j+2ﬂ_2j+18 (_1)j22j+2ﬂ_2j+1 0 Xg(m)mzjq%
- 1. 2j 1. ™
325+2 (25)! 3tz (25) A= 1—gq3
<_1)j22j+2ﬂ-2j+1 N
- 32i+3 (25)! Enj(x3:47),

which proves (5.16).
O

Remark 5.17. Corollary 4.7 in the case m > 1, and Corollary 4.9 in the case m > 2 follow
immediately from Theorem 5.11. The cases m = 0 of Corollary 4.7 and m = 1 of Corollary 4.9
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do not follow from Theorem 5.11, because the double series on the left hand sides do mot converge
absolutely.

Corollary 5.18. Let Q,y, = 2mm + 2mint and Q0 = 27"” + 2mint. Then

o oo

nO0) = 0Oy Y Y 6o et o

m=—00 N=—00

1 0 1
92(0:9) = g2(05q) — 2\[ Z Z Xs(m [Q—Q;‘nn+(9%n)2+9%n}.

m=—00 Nn=—00

Proof
The functions g7 (6; q) and - Z Z —2==—~ — are both doubly periodic with periods 27 and

m=—0o0 N=—00
6mit. Furthermore, they both have poles at 0= Qmm n # 0 (mod 3), and no other singularities,
and the singular parts of both functions at each pole are identical. Consequently their difference
is an entire, doubly periodic function, which is therefore constant, i.e.,

Z Z +ec

m=—0o0 N=—0o0 "ln)

The value of ¢ may be found by plugging in a value for 8, for example § = 0. Using Theorems 3.1
and 5.11, we obtain ¢ = 0.

Applying fog df to both sides and using the fact that ¢1(0;¢) = 0, we get

1 1
91(; Z Z x3(n { =0 )

m=—00 Nn=—00

Applying f09 df again we complete the proof of the first part of the theorem.

The second part may be proved similarly, or obtained from the first part using the modular
transformation.
O

6 Connection between cubic elliptic functions and cubic theta functions

The cubic elliptic functions g1 (6; q), g2(0; ¢) are related to the cubic theta functions b(q, z), ¢(q, 2)
as follows.

Theorem 6.1.

1 (9%(d%dY)E blg,—€®) 1 b(g)?

alia) = 3 (0% %) (0% ¢) e bg,ei?) 12 b(q2) (6:2)
oy = Lo (@aS(a)s e, g2e’) 1 c(g)?

92(97(]) - 2q (q2 q2) ( % %) (q7619) 6c(q%) (63)

Proof
As usual, let ¢ = e=2™*, Ret > 0. Let us put

B(6;q) =
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Clearly B(#;q) is periodic with period 2. Next, from (2.28) or (2.30) we find (12, (1.17)) that
b(g,2) = 2°¢°b(q, 2¢°),

and therefore B(6;q) is periodic with period 67it.
From (2.30), we see that B(6; q) has simple poles at § = 2xm + 2mint, m, n € Z, n Z 0 (mod 3),
and no other singularities. We calculate the residue at 2mit:

Res(B(0;q); 0 = 2mit)
) ) b(6727rt,76i0)
=l 0= 2mi) Sy
_ o 0=2mit) (=g q)oo (=47 q)o0 (275 0%)oo(@Pe 7507
o—2mit (L= e >70) (—¢3e"; ¢%)os (=% 1% )0 (4671 @) (P71 q)
(=% oo (1) (¢%6%) (0% ¢%) o0
(0% ¢%) o (—0% )0 (0% D) oo(¢5 D)oo
9 (0% (6% ¢ )
(4:9)3. (4% 4*)%

)

after simplification. Similarly,

. -(q2§(12)00(qﬁ§qﬁ)oo
Res(B(0; q); 0 = 4mit) = 20 —
(B(6:9) ) (5 9)3 (4% 4*)%

)

and by the periodicity properties of B, we obtain
(4% ¢*)oc(a% %)
(4 0)3. (6% ¢*)3

2
Res(B(6;q); 0 = 2mm + 2mint) = gX?,(n)

By Theorem 2.20, it follows that
n(0g)— (¢:9)3%(4%;6*)% blg, —€")
T A(d%0%) (65 ¢%) blg,e?)
is doubly periodic and entire. Therefore by Liouville’s theorem it is constant. Letting 8 = 0 we
find that the value of the constant is given by

1 (4:9)% (% ¢>)% blg,—1)

91(0:4) - 4(4% %) (4% ¢%)e b(g, 1)
_ Lag-t (1:93%(% )% (—a:9i (66°)5%
6 4(q% %00 (4% ¢%) 0 (=% ¢®)% (30)%
— la(q) _ E(q?)?qs)go (qzqu)oo
6 4 (g9)3 (¢%4%)%
1 1 c(q)?
EG(Q) - EC(qQ)
1 0(g)*
12b(q%)

The last step follows by (12, (1.29)). This completes the proof of the first part of the Theorem.
The second part may be proved similarly. Alternatively, it can be deduced from the first part by

applying the modular transformation and using Theorems 4.1 and 4.3.
O

Remark 6.4. Fquation (6.2) was proved by Berndt et. al. (4, Lemma 8.2). The proof we have
given here is simpler.
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7 Connection between cubic elliptic functions and the Weierstrass p
function

In this section, we establish connections between the cubic elliptic functions g1, g2 and the Weier-
strass p function. The results in this section will be used in Section 12 to obtain differential
equations for g; and go, and also in Section 13 to prove recurrence relations for the Eisenstein
series Sa;,(q) and Ea;,(x3;q)-

Theorem 7.1.

(91(0:9) = 92(0:9)) (¢' (03 4*) — &/ (2miti ¢*)) = Sziq),
(92(85q) — 92(0;9)) (gf)/(@;q) —¢ <237r7q>) = w
Proof
Let

o) = 91(0;9) — 91(0;9),
BO) = ¢0;¢%) — ¢ (2mit; ¢*).

By Theorems 2.20 and 3.1,
e « is periodic with periods 27w and 67it;
e « has simple poles at 8 = 2wm + 2wint, n Z 0 (mod 3), and no other singularities;
e « has zeros of order 2 at § = 2mm + 6mint, and no other zeros.
Similarly, by Theorem 2.21, and the fact that ¢’ is an even function, we have that
e [ is periodic with periods 27 and 6mit;
e (3 has simple zeros at 8 = 27rm + 2wint, n Z 0 (mod 3), and no other zeros;
e /3 has poles of order 2 at § = 2rm + 6mint, and no other singularities.

It follows that the product «(6)3(f) is a doubly periodic function with no zeros or poles, and
therefore is a constant. Letting # — 0 and using the expansions in Theorem 3.1, we find that the
value of the constant is S3(q)/4. This proves the first part of the theorem.

The second part may either be proved similarly, or obtained from the first part using the transfor-
mation t — 1/3t.

O
The Weierstrass p function with periods w; and ws is defined by
1 1 1
p(0;wi,we) = — + Z Z ( 3 2)’
0 (m,n)#(0,0) \ (0 — mw — nws) (mw1 + nws)
It can be shown that (9), (10)
P
(62, 2it) = 26/ (B:) ~ DL (7.2

where ¢ = e=2™t. Using this in Theorem 7.1, we obtain
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Theorem 7.3.

S2(q)
2 (p(2mit; 2m, 6mit) — p(0; 27, 6mit))’
Es(x3;9)
2 (p(&; 2m, 2mit) — p(0; 2w, 2mit))

91(0;q9) —91(0;q) =

92(059) — 92(0;q) =

O
A slightly different formulation of Theorem 7.3 will be given in Section 12.

We conclude this Section by observing that addition formulas for g; and go which express g1 (a+ )

(resp. ga(a+ B)) in terms of g1 (), g1(8), g1(a) and g1(8), (resp. g2(a), g2(8), ga(a) and g5(53))
can be obtained from Theorem 7.3 and the addition formula for the Weierstrass g function:

pla+5) +pla) +p(6) = i (M) '

8 Infinite product representations

The functions g; and g may be expressed as differences of infinite products.

Theorem 8.1.
(0 oo 2 2
n(0:q) = (¢:9)% (sin(5+3) I 1—2¢" cos(0 + &) + ¢
(% ¢*) o Sing it 1—2¢™cos @ + ¢
_oin(3 —§) T L2t eos(0 %) 4 g™ ©2)
sing it 1—2¢"cosf + ¢*" '
(0;q) = m _ig (%€*,qe™3: %)
N (q®e39,e=310: ¢%) o
3i0 2,-3i0. 3
i0 (2™, %" %) oo
- Y I —— . 8.3
© (&30 g3e=3i0; 3) ) (8:3)
Proof

Equation (8.2) follows from (2.1), (2.7) and (2.12), and some simplification. Equation (8.3) is
obtained from (2.1) and (2.19). Alternatively, (8.3) can be proved by applying the modular trans-
formation t — 3 to (8.2).

O

The derivatives g] and g5 can both be written as single infinite products.

Theorem 8.4.

d (q362i9 q3€—2i9.q3) ( 3ei9 qSe—iG.q-?))Z
_ 9’ [ : 3; 3\3 - 0 ) 7A o) ‘ 5 5 0o
ap 10O = @) s (407 e %),

5200 = (:9)%. (4% ¢*) o 5in 0(qe®™, ge ™ q) o

20 1 —4
S5 (g€ gem?q)%
sin? 32 (¢330, e300, ¢3)2,
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Proof

dg1 i ng™ sin nf
do —1+qh+ q3"
—in9)

1 i n(qn _ q2n)(ein9 —e
1

_ q3n

1 S nqneznG nqne—inG annean nq2ne—in9
= _Z (1_q3n_ 1_q3n B 1_q3n+ 1_q3n (85)
n=1
Observe that
i nqneinG - i n(qn _ q4n + q4n)ein0
n=1 1—(]3" n=1 ]_—q3”
4n ,in6
B 0 ng*"e
= ann in Z ——
10 0 in
qe’ ng'"e
- ey
— 0i0)2 _ 3
(1 — ge®?) = 1—g
1 ,0+27mit N ngtre™?
= ~1 csc — + ,;1 W7
and similarly
i ng?mem? 1 504 4mit n i ng°"em?
——— — ——cSC .
n=1 1- q3" 4 2 n=1 1- q3"
Substituting these into (8.5) and using (1.1) we get
dgy 1 1 0 + 2mit = ng" .
o = (—4 csc? —y +2 Z D cosn(6 + 2mit)
n=1

1 1 6 + 4mit = an
+27, <4 csc? % + 2; 17?q3n cosn(f + 47rit)>

= i (¢/(0+2mit;e ") — ¢ (0 + dmit; e 0)) .
Finally, using (1.6) and (2.1), this becomes

gy
do

J F(6i9747rt e

)

i0727rt; 6767rt)F(efi6+47rt7 6i9727rt_

)

—67t
e o)
(*¢*,e720 71 ¢* ¢, ¢, ¢, % %)
(q2€i9,q€ ze’qe’te’q2€fi9 q7267i9 q56i9’qei0’q267i9;q3)oo
(I—q ') (1—g%")
(1-¢q) (1-g2e7%)
y (®e®, ¢ %) oo (4; Do (65 4%)3,
(g€, ¢%¢i?, ge— 17, q2e—0; 32
(q3e210’q367219 q ) (q36197q36719;q3)c2>0
(qe'?, qge=%; q)% ’

i
2
)
2

_ %(1 _ 6—21'9)

—4(4;9)c (¢*; ¢°)2, sin 6

This proves the first part of the theorem.
The second part may be proved similarly, or by using the modular transformation ¢t — 1/3t.
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Remark 8.6. The first part of Theorem 8.4 was proved by Berndt et. al. (4, Lemma 8.5), using
the g summation formula. The proof we have given here is simpler.

9 A multiplicative identity for G

In this section, we give a multiplicative identity for G, which is analogous to Venkatachaliengar’s
identity (1.5) for F. We begin with some preparatory lemmas.

Lemma 9.1.
F(z,y:q) + F(z,wy; q) + F(z,0%y; q) = 3F(z,5% ¢%).
p(z;q) + p(wz; @) + p(w?z; q) = 3p(a®; ¢°),

Proof
The first of these follows immediately from the series representation (2.5). The second follows from
(1.3).

O
Lemma 9.2. Let -
f(x) = Z Cnxn7
in some annulus r1 < |x| < re. Let
(oo}
sift(f(x); x, m, k) Z Conng ™ F,
Then
sift(p(x;9);2,3,0) = p(a®;¢°),
sift(p(z; q); x, 3, 1) = zF(2® q;¢%),
sift(p(a39);2,3,2) = «?F(2°,¢%¢°),
sift (F(x, y; q); y,3 0) = Flz,9%4%),
sift(F(z,y:9);9,3,1) = yF(qz,y°;¢%),
sift(F(z,439);9,3,2) = v’ F(¢*2,9°¢°).
Proof
These all follow directly from the series representations (2.5) and (1.3).
O
Lemma 9.3. Suppose the series Zn__oo an,x™ and ZZOZ_OO b,x™ both converge in the annulus

r1 < |x| < ra. Then in this annulus,

i nT Z bpx™ + Z anw? " Z Wbz + Z anw"x” Z Wb, x"

n=-—oo n=-—oo

3 E azn ™" E b3 + E agn412°" E bnp12"
n n n n
3n42 3n+42
+ E agni2z”" E bnpoz” T
n n
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Proof
Write

1 2
§ :anxn _ § :a?mxSn + § a3n+1x3n+ + E a3n+2x3n+

and sift each of the other series >_ a,w™z™, 3 apw?z™, Y bya™, Y. byw™z™ and Y byw?"a™ sim-
ilarly. The result follows by expanding and simplifying.

O
Theorem 9.4.
G(7,y;9)G(7, 2;q)
0
= x% (F(x,yz;q) — F(x,y%2 ,qg))

+(F(x,y2;q)—F(fcyz;q ) (p(y*;¢%) + p(%;¢%))

—yzF(qz,y°2% ¢°) (yF (¢, v°; ¢%) + ZF(7 2%q ))

—* 2 F(*z,v°2% ¢°) (V' F(¢*,v°: ¢°) + 2°F(¢°, 2% ¢%)) -
Proof

Using the definition (2.7) and the multiplicative identity (1.5), we obtain

F(z,wy;q) — F(z,0%y;q)) (F(z,wz;q) — F(z,0%2;q))
F(z,wy; q)F (z,wz; q) + F(z,wy; ) F(x, w2 q)
—F(z,0%y;q)F(z,wz;q) — F(z,wy; ) F(z,0%2; )

= —3rg. (Flz,wyza) + F(z,wyz; q) — 2F (2, y2:q))

—3F (=, w?yz; q)(p(wy; q) + p(wz;q))

1
—3F(@,wyz; 0)(p(wWPy; q) + p(w®z;q))
1
—3F (@92 0)(p(wys g) + p(w?y; q) + p(wz; q) + p(w?z; q)).
Applying Lemmas 9.1, 9.2 and 9.3 to this gives
G(z,y;9)G(7, 2;q)
0
= a5 (Flayzq) - F(z,y°2% ¢%))
X
1
+§F(w, yz;q) (p(y; @) + p(2;9))
—F(z,9°2%¢%) (p(y%: ¢*) + (2% %))
—y2F(qz,y°2% ¢*) (yF (¢, v%:¢%) + 2F(q, 2% ¢°))
~y* 2P (2,52 %) (P F (2, 9% %) + 22 F (2, 2% ¢%))
1
+3F(2,yz9) Bp(w*: ¢*) — ply; @) +3p(2°; ¢°) — p(219)) -

Simplifying, we complete the proof.
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10 Squares

An important special case of Theorem 9.4 is the limiting case y — 1/z. We begin by proving a
number of preliminary lemmas which will be useful in computing this limit. Let

d
Vz;q) = a—plz;q)

> nx" .

= Z_: T—g if [q| <z| <1,
o
T S nq”(x”—l—x_”) ) .
= — — = if < < , 10.1
d
Alz;q) = x%F(q,x q°)
ad nx™ .
= Z Tt if |¢°] < || < 1,
e

© @tz ng3"—lp—n
_ ¢l s L
B 1_3; Z(l_q3n+1 1— g3n—1 )7 if [q” < x| <q|7°.

(10.2)
Observe that, from (1.1), (2.24) and (2.25), we have
Qeq) = 20/(6;9), (10.3)
Qeiq) — Ui q®) = 2m(8:q), (10.4)
Qe q) —90(e*;¢*) = 2ha(a;q). (10.5)
Lemma 10.6. P
ygq}zw%F(m,yZ; q) = Qx;q),
lim ng(x 223 ¢%) = Q(z;¢%).
y—1/z ox ’ ’ ’
Proof

The first of these follows by expanding F' in powers of z using (2.5), computing the partial derivative
and then evaluating the limit. The second part follows from the first part, by replacing y, z and ¢
by their cubes.

O

Lemma 10.7.

thn}(1—t)F(x,t;q) = 1
lim (1-y°2°)F(z,y2;9) = 3,
y—)l/z
lim (1-y°2%)F(z,5°2%q) = 1.
y—»l/z

Proof
The first part follows from the definition (2.1). The second and third parts follow using 1 —y32% =
(1 —y2)(1 + yz + y?2?) and simple changes of variable.
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Lemma 10.8.
i PWhE) + (2% 6% _0( ¢
y—1/z 1—y323 N 4
. F(q.2%¢%) — Flq,y™% ¢%) 3
yLHBz 1—y323 = —AGS ).
Proof

1

From (1.4), we obtain p(t;q) = —p(t~*; q). Therefore, putting w = y~! we get

p(y?; ¢°) + p(2%; ¢°) 30(2%¢%) — p(w®; ¢°)

lim = — limw

y—1/z 1-— y3z3 w—2z 23 w3
d
3 3 3. 3
= B2t — —Q(23: ¢%).
Zdtp(,q)t:z3 (2%¢°)
Similarly,
F 3.3\ 3.3
i (q,2%4°) F(g,y ;q°)
y—1/z 1—9328
F 3.,.3 - F 3. .3
_ hm 711.)3 (Qazqu §q7w7q)
w—z zZ°0 —w
d
= P Fatd’)]  =-AlE%a).
dt t=z3
O
Lemma 10.9.
lirln/ Y22 F(qr, 2% > ) F (¢, 2% ) + y* 22 F (2, y° 2% ) F (2, %5 ¢%)
y—1/z
1
— a0 ) (G0 - ).
lim/ Y22F(qz, y* 2% ¢*)F (0, 9% ¢%) + v*2 ' F(Pa, y* 2% ) F (¢, 2% ¢°)
y—1/z
L - - 1
= G ) (Gt - )
Proof

First, using (2.3) and (2.4), we have

F(@*v%¢%) = —y°Flq,y™ % ¢%).
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Using this, together with Lemma 10.8,

we obtain

lim y2°F(qz,y°2%¢*)F(q, 2% ¢*) + y* 22 F (P2, y° 2%, ¢*)F (¢, v°; ¢°)

y—1/z

y—1/z

y—1/z

+z lim F(q,yig;q

y—1/z

This proves the first part. The second

Lemma 10.10.

z lim F(qz,y32%¢%) (1 —422%)

—2M(2% ) + 2F(q, 2% ¢%) )
—2A(2% ) + 2F(q, 2% ¢%) Y

—zM(z%q) + 2F (q,2°; ¢°) (G(% 1:q)

lim y2° (F(qz, 2% ¢*)F(q, 2% ¢*) — F(¢*z,y°2% ¢*) F(q,y™ % %))

F(q,2%¢*) — Flq,y™ % ¢%)
1— 323

) (Flqz,y°2% ¢°) — F(¢*x,y°2% ¢°))

qnl.n q2nxn
1— an 1— q?m

an’ﬂ
1 _|_qn +q2n

_;)

part follows from this by change of variable.

n#0

n#0

2F(q,2%¢%) + 27" F(q,27%¢*) = G(1, z;q),

U 1 1
ZA(2°5q) + 27 A (2 B;Q):gQ(ZHJ)—Q(ZB;qg)—gG(LZ;Q)-

Proof

S. Cooper

The first of these follows from (2.11), using (2.2). The second is proved by series manipulations.

From (10.1) and (10.2), we have

1
S0z0) - Q%) — 2AG

iq) — 2 'A(z %)

1 =z n 1 i ng (=" + =)
= = = 2" 4z
_ )2 _
3(1—=2) 31— qn
3 > 3n
Z ngq 3n —3n
T .82 g (2727
(1-2%)2 Z—1-g¢"
Z4 s nq3n+lz3n+1 nan—lz—Bn—i-l
_4(1 — 23)2 o — ( 1 _ q3n+1 1 _ q3n—1 )

(nq?m—i-lz—?m—l

nq3n—1z3n—1 )

o] 1 — g3n+l 1— g3n1
1 z 23 P 274
3 (1—-2)2 (1-23)2 (1-23)2 (1-273)2
L n Bn=2)¢*2 4, —(3n—2)
3 ,; 1—g¢*n? Tt )
+1 i (3n —1)g®n—1 (371 4 o~ (Bn=1)y
3 — 1— q3n71
oo 3n+1 o0 3n—1
nq 3n+1 —(3n+1) ng 3n—1 —(3n—1)
_Zl_anJrl(z T2 )_Zl_qgnq(z Tz )-
n=0 n=1
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Simplifying, we obtain

1 L
3Uz19) - Q2% ¢%) — 2A(z%q) — 27 A (2735 q)

— ; + 1 i ﬁ( 3n—2 + *(3"*2))
T REY = i ‘
Iem ¢ g —(3n—1)
7§n; 1 an—l( +z )
_ z Lo xs(m)d” .
= 3(1+z+z2)+3z g (" +27")

by (2.10).

Theorem 10.11.
o . . 9
G(e”, e q)G (e, e q) + 491(0; 9)g2(cv; q) = 2h1 (03 q) + ha(asq).

Proof
First rewrite Theorem 9.4 in the form

Gz, y;9)G (2, 2 9)

0
= af(Fwyzq F(z,y°2%¢%))

+

(F(z,yz; xyz,q?’)(p + (%))
— (V*2F(qz,y°2%¢°) F(q, 9% q 3)+y z (q z,y°2%*)F (¢, 2% ¢°))
— (y2°F(qz,y°2%¢*)F(q, 2% ¢%) + y*2°F (P2, y* 2 ¢*) F (¢, v°; ¢°)) -

Now take the limit as y — 1/z, using Lemmas 10.6 — 10.9, to get

G(z,2,q)G(x, 27 5 q)
= Qz;q) — Ua; ¢%) — 202 ¢%)

FoAG ) - (0 (Gt -

+2 (2% q) — 27 F (g, 2% 0%) <G(177 1;q) - 1) :
Apply Lemma 10.10 to this, and simplify to get
G(z,2:)G(z, 2715 q)
1
= Qz:1q) — Uas¢°) + 392=9) — 30(2% ¢%) = G(2,1;9)G(1, 7 ).

Setting = = €?, 2 = ¢'*, and using the definitions (2.12), (2.13), (10.4) and (10.5), we complete
the proof.
O

Theorem 10.11 immediately implies the following results of Liu (15, Theorems 5 and 7):
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Corollary 10.12.

a(q) hi(0) | 9P(¢*) — P(q) | a(a)®
(gl(e’q) * 12) = = 144 LYV
a 2 3) — a 2

Proof
Take « = 0 and § = 0 in Theorem 10.11, respectively, use (2.24) and (2.25) and complete the
square.

O
Corollary 10.13.
3 1
a(q) = SP(*) - 5P),
B (q) = 6S0(q)S2(a),
EP (@) = 18Eo(xs:q)Ba(xs:9).
Proof
Letting # = 0 in either part of Corollary 10.12, and using (2.24) (or (2.25)), we get
a(9)® _ 9P(¢°) = Plg) , P(¢*) — Plg) | ale)’
16 144 48 144 °
Simplifying, we get the first part.
The second and third parts follow by equating coefficients of #2 in Corollary 10.12.
O

Remark 10.14. Corollary 10.13 was given by Ramanujan (16, eq. (19)). He obtained it by
putting 0 = 2m /3 in his identity (1.2). A more general result than Corollary 10.18 can be obtained
by equating coefficients of 02. This will be given in Section 183.

Corollary 10.15.

1 a 6 2m a
. t

G(ezﬂ’ eia; 6727rt)G(6i0’ efioc; 6727rt) _ @

Proof
By Theorem 10.11, followed by Theorems 4.3 and 4.6, and then Theorem 10.11 again, we obtain

G(ew’ eia; e—27rt)c_,v(ei97 e—ia; e—27rt)

= 2h1(0;¢7%™) + Sho(a;e ™) — 4g1(0; e ™) go(a; e~ 2™)
1 10 2n 1 2 /(1 xe’ 2n 1
= 2 —ho| —:e 3t | — — —( =hy | —:e 3¢ I
<9t2 2<3t’€ 67rt>+3(t2 1<t’e >+27rt>
4 0 7231 o0 _2n
PR — e t — e t
3272\ 3¢° I\
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11 The transcendentals Z and X

Definition 11.1. Let

Z=2@q) = alq),
c 3
cx -

The main result of the section is Theorem 11.11, which expresses various Eisenstein series in terms
of Z and X. We begin with some lemmas.

Lemma 11.2.
b(a)®
1-X(g) = ,
T
1 2
Ze ™ = —Z (67§),
(e7"™) /3
X2 = 1-X (e*%> .
Proof
The first part follows from equation (2.39), and the other two parts follow from Lemma 4.2.
O
Lemma 11.3.
2
1 0 1 & n
(8 cot? 3 + 0] + Z I?q" (1 — cos n0)>
1 5,0 1 )2 1 = nig"
= —cot -+ — | +— 5+ cosnb).
(8 2 12 12n:117q"( )
Proof

This was given by Ramanujan (18, eq. (18)). It is equivalent to the differential equation satisfied
by the Weierstrass p function:

o' (2) = 69°(2) — g2/2.

O
Lemma 11.4.
(%, qa=%;q) oo (4 0)S,
a
(a,qa=%;q)4,
a(l+a) < m*¢" . .
(1—a)3+m§::11—qm(a a”™).

Proof

Multiply both sides of (1.6) by €!®/(e?® — ei®), take the limit as § — «, and finally put a = €'®.
This is equivalent to (20, p. 459, ex. 24).

O
Lemma 11.5.
b(q)* = —9Es(xs:9), (11.6)
c(q)® = 27S:(q), (11.7)
@) = 15 (Q)+9Q("). (118)
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Proof
Let a = ¢*™/3 in Lemma 11.4 and simplify to obtain (11.6). Replace ¢ with ¢ in Lemma 11.4, let
a = ¢ and simplify to obtain (11.7). Take § = 27/3 in Lemma 11.3 and simplify to get

2
(3769 - 37(0) = (@) +90().

Now apply Corollary 10.13 on the left to complete the proof of (11.8).
O

Remark 11.9. FEquation (11.7) was given by Ramanujan; see (4, Theorem 8.7). Equation (11.8)
was given by Berndt et. al. (4, Corollary 4.6). Equations (11.6) and (11.7) were given without
proof by J. M. and P. B. Borwein (5, Remark 2.4 (iii)). All of (11.6)-(11.8) were given by Liu
(15, eqs. (1.15), (1.16) and (1.19)). The proof of Lemma 11.5 that we have outlined above is
substantially the same as Liu’s.

Theorem 11.10.

a(:9)% = %ZlQX(l—X):S, (11.11)
qs(q3;q3)gél _ 3%Z12X3(1—X), (11.12)
dx )
o Z2°X(1 - X), (11.13)
P - P = 7 (11.14)
P(q) = Z2(1—4X)+12ZX(1—X);Z—)Z(, (11.15)
P(¢®) = Z2(1—7X)+4ZX(1—X)%, (11.16)
Qlg) = Z4(1+8X) (11.17)
Q*) = 2'(1-:X), (11.18)
R(q) = 26(1720)( 8X?), (11.19)
R(¢®) = Zﬁ(l——X+287X) (11.20)

Proof
Equations (11.11) and (11.12) follow from Definition 11.1, Lemma 11.2 and the infinite product
formulas (2.36) and (2.38).

d
Taking the logarithm of (11.11) and applying chq gives

4 1
1- 242 ”q 70 o8 (27212)((1 - X)3> ,

which is equivalent to

dX (12 dZ 1 3
P(q) = ——t = — 11.21
(@) =a3, <ZdX+X 1—X> (11.21)
Applying the same procedure to (11.12) leads to
dX (12 dZ 3 1
Pl — 12 AN 11.22
SP@’) = a7 (ZdX+X 1X> (11.22)
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Subtracting (11.21) from (11.22) and dividing by 2 gives
dX (1 1
3y _ N T
(3P(¢°) — P(9)) T (X+ 1_X)-
Simplifying using Corollary 10.13 we obtain
ax _
dqg

N =

q Z?X(1 - X).

This proves (11.13).

Equation (11.14) is just a restatement of the first part of Corollary 10.13. Equations (11.15) and
(11.16) are obtained by substituting (11.13) into (11.21) and (11.22).

By (3.3), (3.5), Corollary 10.13 and Lemma 11.5, we have

B (g) = g-ala)e(a),
B = —al)he).

Expressing Eil) and Ef) in terms of Q(q) and Q(q¢®) using (3.6), (3.7) and (3.10), and expressing
a(q), b(q), c(q) in terms of X and Z using Definition 11.1 and Lemma 11.2, we get

Q) - Q) = 7',
81Q(¢°) - Q(q) = 80Z*(1-X).

Solving for Q(g) and Q(q¢®) we obtain (11.17) and (11.18).
Next, using Jacobi’s discriminant

Q(q)® — R(q)* = 1728q(q; q)22,

(see (18, p. 144) for a simple proof), and making use of (11.11) and (11.17), we obtain

R(@? = Qa)° —1728¢(q;0)%
= Z2(1+8X)*— 1;gzuxu - X)3

= Z"(1-20X —8X?)%

Taking square roots and comparing the coefficients of ¢ to determine the sign, we obtain (11.19).
Equation (11.20) is obtained in the same way, using (11.12) and (11.18).
O

12 Differential equations
Lemma 12.1. Let p(f) = p(0;27,27it) and g = e~2"t. Then
©'(0)? = 4p(0) — G200(0) — g,

where

G = 60 Z 1 :Q(Q>,

imt):
(m2(0.0) (2mn + 2mimt) 12

B o= 10 3 ! )

B 6 .
(ma(0.0) (2mn + 2mimt) 216

2The Weierstrassian parameters o and §3 should not be confused with our functions g1 and go.
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Proof

This is a statement of the differential equation satisfied by the Weierstrass g function. See, for
example, (8, Ch. 3 and 6) or (19).

O

Theorem 12.2. Writing g1 = g1(0;q) and g2 = g2(0; q), we have

dgr \ 2 z

(%) = -5 (n-5) Gt 4226t - 20 - x)).
das\ 2 2 Z :

( dSZ) 9 <92 - 6> (bhos + 27765 = 2°X)

Proof

Using Lemma 13.5 and the table after Theorem 13.11, observe that Theorem 7.3 may be written
in the form

Z -73X
— = 12.3
N6 T Ba(p + 22/12) (12.3)
Differentiating and squaring we get
B ZGX2 (@/)2
Cb542 (p+ z2/12)%

Using Lemma 12.1 and (12.3), this becomes

) 542 Z\* Qg R(¢3
0= e (0= 5) (98- G- 55 )

Using (11.18) and (11.20) and rearranging, we get

4
e 542 (91 Z) <4p3_Z4(9—8X) ALl —§X+;‘7X2)>

76X?2 6 108 Y~ 216

542 Z\* z22\° 72\?
- 7w (%) (4@*12) -0+ %)
X7 (2P X7
27 \V T 12 o2 )
Using (12.3) again, this simplifies to

A Z , Z3(X-1)
N2 _y _Z 3, 22 A1
(91) (91 6) (91‘*‘ 291+ 51 )

Rearranging, we complete the proof of the first part of the Theorem.
The second part follows from the first by the modular transformation, using Theorem 4.3 and
Lemma 11.2.

O

Remark 12.4. The first part of Theorem 12.2 was first proved by Berndt et. al. (4, p. 4209, eq.
(8.32)). The proof we have given here has also been found independently by Chan and Liu (7). It
would be useful to have proof of Theorem 12.2 in the style of Venkatachaliengar (19, pp. 11-13).
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13 Recurrences for the Eisenstein series S5,(¢) and Ey,(x3;q)

Expanding the results in Corollary 10.12 in powers of # using the series expansions in Theorem
3.1, we obtain the following results of Liu (15, Theorems 6 and 8):

Theorem 13.1.

3E2(0) ~ Bale®) = 10 (@) + 15 582(a) = Sofa)? = Bolxs: )%

and, forn > 1,
1

1 — [2n

3Eea() = 350(@)S20(0) + 3 (51 ) Sav(a)Sn-20(0) (132)

k=1

n—1

2

5 Eéi)w( ) = 3Fo(x3; q) Ean(x3; 9) + (22) B (x3: 0) Ean—2k(x3: q)- (13.3)

k=1
o

Remark 13.4. Fquation (13.3) can be deduced from (13.2) (and vice versa) by the modular trans-
formation, using Corollaries 4.7 and 4.9.

Lemma 13.5. Let ¢ = e~ 2™, Then

# Critsa*) = 5 (Bala) - Ba(d?))

§(6:4%) — o (2mits ¢°) = — = — 2So(a)? + > (_1)7E2n+2(q3)92"-

202 2 — (2n)
Proof
From (1.1),
@'(0;q) = —= csc = + Z — cosnf.
Therefore
L 1= ng®(¢" +q7")
it }) = —L 4=
_ q I T n(g" +¢*)
- 2(1—61)2 anq +QZ 1_q3n
n=1 n=1
_ EZ (qn +q2n +q3n) _1 e nq?m
9 —~ 1— q3n 9 ~ 1— q3n

1()0
S MR o

= §(E2(Q) — E>(q%)).

This proves the first part.
The second part follows from the first part, using (7.2) and (11.14).
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Next, using Theorem 3.1 and the first part of the lemma, we get
¢'(6;4°) — ¢(2mit; ¢°)

el _1\n—1
=t Y e - L (Bale) - Bala?)

|
|
\H
+
S
| oo
&}
[\v]
()
N
|
| =
5
—
=S
~~_
+
(]
T
=
3
&}
[\v]
3
+
[\v]
—~
<
w
N—
>
[V
3

Applying Theorem 13.1 we complete the proof.

Theorem 13.6. Forn=1, 2, 3, ---,

San+2(q) = 3(2n + 1)(2n + 2)S0(¢)* S2n (9)

n—1
2n 3
—2(2n+1)(2n +2) Jz::l (2]>82J )E2n12-25(q"),

*Ean(x339)

Eanta(xs;q) = —9(2n +1)(2n + 2) Eo(x3: )
—2(2n+1)(2n +2) Z <ZZL) E2j(x339) Eant2-2i(q)-

Proof
Expand both sides of Theorem (7.1) in powers of 6 using Theorem 3.1 and Lemma 13.5, and equate
coefficients of §2*. This proves the first part. The second part follows from the first, using the

transformation ¢t — 1/3t.
O

Remark 13.7. Chan and Liu (7) have obtained a formula for Sa, purely in terms of Sax, with
k < n, by differentiating the first result in Theorem 12.2.

Lemma 13.8. Forn=2, 3, 4,---,

Baw(q) = Y. K;xQ(@/R(g)", (13.9)
2j+3k=n

where K 1, are rational numbers, and p,(X) is a polynomial in X with rational coefficients and
degree |2n/3].

Proof
A proof of (13.9) has been given by Ramanujan (18, p. 141). Equation (13.10) follows from (13.9)
by induction and making use of (11.18) and (11.20).

O

Theorem 13.11. Sy(q) = Eo(x3;9) = %, and form=1,2, 3,---,
S2n(q) = Z2n+lpn(X)7 (1312)
Ean(xs;q) = 3"Z*"7'P,(1-X), (13.13)

where P, is a polynomial with rational coefficients and degree < |(2n+1)/3].
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Proof

o7

Equation (13.12) follows by induction from Theorem 13.6, using Lemma 13.8. The bound on the

degree of P, follows because

2n+1—2j 2n + 1
1<
3 3

=)+ J.

Equation (13.13) follows from (13.12) using Corollary 4.7 and Lemma 11.2.

The first few instances of Theorem 13.11 are as follows:

1

)

S = 2
1 3
SQ == 2772 X
]- [
S4 - 2772‘)X
1 4
= —Z'X(1+:X
Se 5 < +3 )
1
Sy = 27Z9X <1+8X+§(1)X2>
1 848
%==WWXOHM+wXﬁ
1 448 12448 6080
= —zBx[1+=x X2 x3
e 27 ( TRt T
1 422432 289792 . 70400
= —Z"X (1+604X X? X3 4
e 27 <+60 R s T a9
1
Eo(xs,q) = ¢Z
1
Es(xs,q) = §Z3(1—X)
1
Ey(xs.q9) = §Z5(1—X)
4
Eg(xs,q) = T“‘”(“@“—Xo
80
Es(x3,q) =3WO—D(H%O<H+&u—mﬁ
— 92— x4 M8y
Eio(xs,q) = 92"(1=X) (143601 - X) + ——(1- X)
: 448 12448
Babaa) = 272%0-3) (1+ 3P0 - 30+ B0 - x2
6080
71—X3
+ - x7°)
422432
Eu(xs,q) = 81Z2"(1-X) <1+604(1—X)+ = (1-X)?
289792 70400
1- X2+ ——(1-X)*).
S T )>
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