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The function:

Φ(θ; q) = θ + 3

∞∑
k=1

sin(2kθ)qk

k(1 + qk + q2k)

occurs in one of Ramanujan’s inversion formulas for elliptic integrals. In this article, a common
generalization of the cubic elliptic functions

g1(θ; q) =
1

6
+

∞∑
k=1

qk

1 + qk + q2k
cos kθ,

g2(θ; q) =
1

2

sin θ
2

sin 3θ
2

+

∞∑
k=1

χ3(k)q
k

1− qk
cos kθ,

is given. The function g1 is the derivative of Ramanujan’s function Φ (after rescaling), and
χ3(n) = 0, 1 or −1 according as n ≡ 0, 1 or 2 (mod 3), respectively, and |q| < 1. Many
properties of the common generalization, as well as the functions g1 and g2, are proved.

1 Introduction

Suppose Re t > 0 and let q = e−2πt. The function

φ(θ; q) =
1
4

cot
θ

2
+

∞∑
n=1

qn

1− qn
sinnθ (1.1)

plays an important role in Ramanujan’s paper (16). For example, Ramanujan (16, eq. (17)) proved
that

φ(θ; q)2 =
(

1
4

cot
θ

2

)2

+
∞∑

n=1

qn

(1− qn)2
cosnθ +

1
2

∞∑
n=1

nqn

1− qn
(1− cosnθ), (1.2)

and he used this to prove many identities for elliptic functions.
Venkatachaliengar (19, p. 42) generalized Ramanujan’s formula (1.2). Let

F (x, y; q) =
∞∏

n=1

(1− xyqn−1)(1− x−1y−1qn)(1− qn)2

(1− xqn−1)(1− x−1qn)(1− yqn−1)(1− y−1qn)
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and

ρ(z; q) =
1
2

+
∞∑

n=−∞
n6=0

zn

1− qn
, for |q| < |z| < 1, (1.3)

=
1 + z

2(1− z)
+

∞∑
n=1

qn

1− qn
(zn − z−n), for |q| < |z| < |q|−1. (1.4)

The function ρ is related to the function φ in (1.1) by

ρ(eiθ) = 2iφ(θ).

Venkatachaliengar’s generalization of Ramanujan’s identity (1.2) is

F (x, y; q)F (x, z; q) = x
∂

∂x
F (x, yz; q) + F (x, yz; q)(ρ(y; q) + ρ(z; q)). (1.5)

See (9, p. 66), (10, Thm. 2.2), or (19, p. 37, eqs. (3.2), (3.3)). Letting y → 1/z and then setting
x = eiθ, z = eiα, we get

F (eiθ, eiα; q)F (eiθ, e−iα; q) = 2 (φ′(θ; q)− φ′(α; q)) . (1.6)

See (9, p. 90, eq. (3.23)), (10, (2.41)), (19, p. 112, eq. (6.50)) for the details. This is equivalent
to (20, p. 451, Ex. 1):

℘(θ)− ℘(α) = −σ(θ + α)σ(θ − α)
σ2(θ)σ2(α)

,

where ℘ is the Weierstrass elliptic function with periods 2π and 2πit, and σ is the corresponding
Weierstrass sigma function. Ramanujan’s formula (1.2) may be obtained by expanding (1.6) in
powers of α and extracting coefficients of α0. See (19, pp. 42–45, eq. (3.40)).
The aim of this article is to give analagous results for the functions

g1(θ; q) =
1
6

+
∞∑

n=1

qn

1 + qn + q2n
cosnθ,

g2(θ; q) =
1
2

sin θ
2

sin 3θ
2

+
∞∑

n=1

χ3(n)qn

1− qn
cosnθ. (1.7)

The antiderivative of the function g1 occurs in one of Ramanujan’s inversion formulas for elliptic
integrals. Several properties of g1 were established by Berndt, Bhargava and Garvan (4). They
used the notation v(z, q), where

g1(θ; q) =
1
6
v(eiθ, q).

We shall begin by observing that g1 and g2 have a common generalization. A number of basic
properties of the generalization, and the functions g1 and g2 are given in Section 2. Power series
expansions for g1 and g2 in terms of the corresponding Eisenstein series are given in Section 3. In
Section 4, we prove the transformation formulas

g1(θ; e−2πt) =
1
t
√

3
g2

(
iθ

3t
; e−

2π
3t

)
,

g2(θ; e−2πt) =
1
t
√

3
g1

(
iθ

t
; e−

2π
3t

)
.

Expanding in powers of θ, we obtain transformation formulas for various Eisenstein series. A
detailed analysis of these Eisenstein series is given in Section 5.
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Connections between the functions g1, g2 and the Hirschhorn-Garvan-J. Borwein cubic theta func-
tions are given in Section 6 and connections with the Weierstrass ℘ function are given in Section
7. We indicate how to obtain addition formulas for g1 and g2 in Section 7. Various formulas for
g1, g2 g′1 and g′2, involving infinite products, are given in Section 8.
An analogue of Venkatachaliengar’s formula (1.5) for the function G is given in Section 9, and an
analogue of (1.6) is given in Section 10. Fourier series for g2

1 and g2
2 are given as a consequence.

These are analogues of Ramanujan’s formula (1.2).
In Section 11, we introduce the cubic transcendentals Z andX. We express Ramanujan’s Eisenstein
series P (q), Q(q), R(q), as well as P (q3), Q(q3) and R(q3), in terms of Z and X. In Section 12,
the differential equations satisfied by g1 and g2 are given. Lastly, in Section 13 we prove some
recurrence relations for cubic Eisenstein series.

2 Definitions and basic properties

2.1 The functions F and G

Let

F (x, y; q) =
(xy, qx−1y−1, q, q; q)∞
(x, qx−1, y, qy−1; q)∞

. (2.1)

Here we are using the standard notation

(x; q)∞ =
∞∏

n=1

(1− xqn−1),

(x1, x2, · · · , xn; q)∞ = (x1; q)∞(x2; q)∞ · · · (xn; q)∞.

It is straightforward to check that

F (x, y; q) = F (y, x; q), (2.2)
F (x, y; q) = −F (x−1, y−1; q), (2.3)
F (x, y; q) = xF (x, qy; q) = yF (qx, y; q). (2.4)

By Ramanujan’s 1ψ1 summation formula (1, p. 502), (2, Ch. 16, Entry 17), (17, Ch. 16, Entry
17),

F (x, y; q) =
∞∑

n=−∞

xn

1− yqn
, for |q| < |x| < 1. (2.5)

Since F is symmetric in x and y,

F (x, y; q) =
∞∑

n=−∞

yn

1− xqn
, for |q| < |y| < 1. (2.6)

Let

G(x, y; q) =
1
i
√

3

(
F (x, ωy; q)− F (x, ω2y; q)

)
. (2.7)

Observe that G is not symmetric in x and y.
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Expanding in powers of x using (2.5) gives

G(x, y; q) =
1
i
√

3

∞∑
n=−∞

(
xn

1− ωyqn
− xn

1− ω2yqn

)

=
∞∑

n=−∞

xnqny

1 + yqn + y2q2n

=
y

1 + y + y2
+

∞∑
n=1

xnqny

1 + yqn + y2q2n
+

∞∑
n=1

x−nqny−1

1 + y−1qn + y−2q2n
.

(2.8)

This series converges for |q| < |x| < |q|−1.
Expanding in powers of y using (2.6) gives

G(x, y; q) =
1
i
√

3

∞∑
n=−∞

(
ωnyn

1− xqn
− ω2nyn

1− xqn

)

=
∞∑

n=−∞

χ3(n)yn

1− xqn
. (2.9)

This converges for |q| < |y| < 1. Another form may be obtained from this as follows:

G(x, y; q) =
∞∑

n=1

χ3(n)yn

1− xqn
+

∞∑
n=1

χ3(−n)y−n

1− xq−n

=
∞∑

n=1

χ3(n)yn(1− xqn + xqn)
1− xqn

+
∞∑

n=1

χ3(n)x−1y−nqn

1− x−1qn

=
∞∑

n=1

χ3(n)yn +
∞∑

n=1

χ3(n)
(
xynqn

1− xqn
+
x−1y−nqn

1− x−1qn

)

=
y

1 + y + y2
+

∞∑
n=1

χ3(n)
(
xynqn

1− xqn
+
x−1y−nqn

1− x−1qn

)
. (2.10)

This converges for |q| < |y| < |q|−1.
Also from (2.9) we have

G(x, y; q) =
∞∑

n=−∞

y3n+1

1− xq3n+1
−

∞∑
n=−∞

y3n−1

1− xq3n−1

= yF (qx, y3; q3)− y−1F (q−1x, y3; q3). (2.11)

2.2 The functions g1 and g2

Let

g1(θ; q) =
1
2
G(eiθ, 1; q), (2.12)

g2(θ; q) =
1
2
G(1, eiθ; q). (2.13)
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Equations (2.8) and (2.10) immediately give

g1(θ) =
1
6

+
∞∑

n=1

qn

1 + qn + q2n
cosnθ (2.14)

=
1
6

+
1
2

∞∑
n=1

χ3(n)
(

qneiθ

1− qneiθ
+

qne−iθ

1− qne−iθ

)
, (2.15)

g2(θ) =
1
2

sin θ
2

sin 3θ
2

+
∞∑

n=1

χ3(n)qn

1− qn
cosnθ (2.16)

=
1
2

sin θ
2

sin 3θ
2

+
∞∑

n=1

(
eiθqn

1 + eiθqn + e2iθq2n
+

e−iθqn

1 + e−iθqn + e−2iθq2n

)
.

(2.17)

Equations (2.14) and (2.16) are Fourier series for g1 and g2. They converge for |q| < |eiθ| < |q|−1, or
equivalently, −2πRe t < Im θ < 2πRe t. Equations (2.15) and (2.17) are the analytic continuations
of g1 and g2, and are valid for all complex values of θ.
Equation (2.11) gives

g1(θ; q) =
1
2
(
F (qeiθ, 1; q3)− F (q−1eiθ, 1; q3)

)
, (2.18)

g2(θ; q) =
1
2
(
eiθF (q, e3iθ; q3)− e−iθF (q−1, e3iθ; q3)

)
. (2.19)

These expressions are valid for all complex values of θ.
The locations of the poles and periodicity properties are readily determined from (2.15) and (2.17).

Theorem 2.20. Let q = e−2πt, where Re t > 0. Then

1. g1(θ + 2π; q) = g1(θ; q)
g1(θ + 6πit; q) = g1(θ; q).

2. g1(θ; q) is meromorphic on C, with simple poles at θ = 2πm + 2πint, m, n ∈ Z, n 6≡ 0
(mod 3), and no other singularities. The residue at each pole is 1

2iχ3(n).

3. g2(θ + 2π; q) = g2(θ; q)
g2(θ + 2πit; q) = g2(θ; q).

4. g2(θ; q) is meromorphic on C, with simple poles at θ = 2πn/3 + 2πimt, m, n ∈ Z, n 6≡ 0
(mod 3), and no other singularities. The residue at each pole is −1

2
√

3
χ3(n).

Proof
Let z = eiθ. The Fourier series (2.14) shows g1(θ + 2π; q) = g1(θ; q).
Next, from (2.15) we have

g1(θ + 6πit; q)− g1(θ; q)

=
1
2

∞∑
n=1

(
q3n+1z

1− q3n+1z
− q3n+2z

1− q3n+2z
+

q3n−5z−1

1− q3n−5z−1
− q3n−4z−1

1− q3n−4z−1

)

−1
2

∞∑
n=1

(
q3n−2z

1− q3n−2z
− q3n−1z

1− q3n−1z
+

q3n−2z−1

1− q3n−2z−1
− q3n−1z−1

1− q3n−1z−1

)
=

1
2

(
−qz

1− qz
+

q2z

1− q2z
+

q−2z−1

1− q−2z−1
− q−1z−1

1− q−1z−1

)
= 0.
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Equation (2.15) implies that g1(θ, q) is meromorphic and has simple poles at θ = 2πm + 2πint,
n 6≡ 0 (mod 3), and no other singularities. The residue at θ = 2πit may be calculated as follows.

Res (g1(θ; q), θ = 2πit) = lim
θ→2πit

(θ − 2πit)g1(θ; q)

=
1
2

lim
θ→2πit

(θ − 2πit)
qe−iθ

1− qe−iθ

=
1
2

lim
θ→2πit

qe−iθ

d
dθ (1− qe−iθ)

=
1
2i
.

Similarly, Res (g1(θ; q), θ = 4πit) = − 1
2i . The residue at the singularity θ = 2πm+ 2πint is there-

fore 1
2iχ3(n) by the periodicity properties.

The corresponding properties for the function g2 may be proved in the same way, using (2.17).

2.3 The functions φ, h1 and h2

The function φ is defined by (1.1). Its analytic continuation, quasi-periodicity properties and the
location of its singularities are given by

Theorem 2.21. Let q = e−2πt, where Re t > 0. Then

1.

φ(θ; q) =
1
4

cot
θ

2
+

1
2i

∞∑
n=1

(
qneiθ

1− qneiθ
− qne−iθ

1− qne−iθ

)
, (2.22)

valid for all complex values of θ.

2.

φ(θ + 2π; q) = φ(θ; q)

φ(θ + 2πit; q) = φ(θ; q)− i

2
.

3. The function φ(θ; q) is meromorphic on C, with simple poles at θ = 2πn + 2πimt, and no
other singularities. The residue at each pole is 1

2 .

Proof
Starting with (1.1) and writing z = eiθ, we have

φ(θ; q) =
1
4

cot
θ

2
+

∞∑
n=1

qn

1− qn
sinnθ

=
1
4

cot
θ

2
+

1
2i

∞∑
n=1

qn

1− qn

(
zn − z−n

)
=

1
4

cot
θ

2
+

1
2i

∞∑
n=1

∞∑
m=1

(
qmnzn − qmnz−n

)
=

1
4

cot
θ

2
+

1
2i

∞∑
m=1

(
qmz

1− qmz
− qmz−1

1− qmz−1

)
(2.23)

=
1
4

cot
θ

2
+

1
2i

∞∑
m=1

(
qmeiθ

1− qmeiθ
− qme−iθ

1− qme−iθ

)
.
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This proves the first part of the theorem.
The quasi-periodicity properties, location of the singularities and values of the residues can be
determined from (2.22) using the same procedure as in the proof of Theorem 2.20.

For future reference, we define the functions h1 and h2 by

h1(θ; q) = φ′(θ; q)− φ′(θ; q3)

=
∞∑

n=1

nqn

1− qn
cosnθ −

∞∑
n=1

nq3n

1− q3n
cosnθ, (2.24)

h2(θ; q) = φ′(θ; q)− 9φ′(3θ; q3)

=
9
8

csc2 3θ
2
− 1

8
csc2 θ

2
+

∞∑
n=1

nqn

1− qn
cosnθ − 9

∞∑
n=1

nq3n

1− q3n
cos 3nθ.

(2.25)

The analytic continuations, periodicity properties and location of poles follow right away from the
definition of these functions and Theorem 2.21.

2.4 The cubic theta functions

The cubic theta functions are defined by

a′(q, z) =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+n2
zn, (2.26)

a(q, z) =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+n2
zm−n, (2.27)

b(q, z) =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+n2
ωm−nzn, (2.28)

c(q, z) =
∞∑

m=−∞

∞∑
n=−∞

q(m+ 1
3 )2+(m+ 1

3 )(n+ 1
3 )+(n+ 1

3 )2zm−n, (2.29)

where ω = exp(2πi/3) and |q| < 1. When z = 1, we will denote the functions a′(q, 1) = a(q, 1)
simply by a(q). Similarly, we will abbreviate b(q, 1) and c(q, 1) to b(q) and c(q), respectively. The
functions a′(q, z), a(q, z), b(q, z) and c(q, z) were introduced1 by Hirschhorn et. al. (12). They
showed (12, (1.22), (1.23)) that

b(q, z) = (q; q)∞(q3; q3)∞
(qz; q)∞(qz−1; q)∞

(q3z; q3)∞(q3z−1; q3)∞
(2.30)

c(q, z) = q
1
3 (q; q)∞(q3; q3)∞(1 + z + z−1)

(q3z3; q3)∞(q3z−3; q3)∞
(qz; q)∞(qz−1; q)∞

.

(2.31)

1The function c(q, z) in (12) differs from the one defined here by a factor of q
1
3 .
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We also record, for future reference, the properties

a(q) =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+n2
(2.32)

= 1 + 6
∞∑

n=1

(
q3n−2

1− q3n−2
− q3n−1

1− q3n−1

)
(2.33)

= 1 + 6
∞∑

n=1

qn

1 + qn + q2n
, (2.34)

b(q) =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+n2
ωm−n (2.35)

=
(q; q)3∞

(q3; q3)∞
, (2.36)

c(q) =
∞∑

m=−∞

∞∑
n=−∞

q(m+ 1
3 )2+(m+ 1

3 )(n+ 1
3 )+(n+ 1

3 )2 (2.37)

= 3q
1
3
(q3; q3)3∞
(q; q)∞

, (2.38)

a(q)3 = b(q)3 + c(q)3. (2.39)

Equations (2.32), (2.35) and (2.37) follow from (2.26) – (2.29), by definition. Equations (2.33) and
(2.34) are proved in (6, (2.21), (2.25)), and (2.36) and (2.38) follow from (2.30) and (2.31). Proofs
of equation (2.39) are given in (5), (6) and (15).

3 Laurent series expansions

Theorem 3.1. Define the cubic Bernoulli numbers sn by

1
2

sinh θ
2

sinh 3θ
2

=
∞∑

n=0

sn

n!
θn.

Let q = e−2πt, where Re t > 0. For n = 1, 2, 3, · · · , let

E2n(q) = −B2n

4n
+

∞∑
k=1

k2n−1qk

1− qk
, n = 1, 2, 3, · · · , (3.2)

S0(q) =
1
6

+
∞∑

k=1

qk

1 + qk + q2k
, (3.3)

S2n(q) =
∞∑

k=1

k2nqk

1 + qk + q2k
, n = 1, 2, 3, · · · , (3.4)

E2n(χ3; q) = s2n +
∞∑

k=1

k2nχ3(k)qk

1− qk
, n = 0, 1, 2, · · · , (3.5)

E
(1)
2n (q) = E2n(q)− E2n(q3), n = 1, 2, 3, · · · , (3.6)

E
(2)
2n (q) = E2n(q)− 32nE2n(q3), n = 1, 2, 3, · · · . (3.7)

Then

S0(q) = E0(χ3; q) =
a(q)
6
,
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and

φ(θ; e−2πt) =
1
2θ

+
∞∑

n=1

(−1)n−1

(2n− 1)!
E2n(q)θ2n−1,

g1(θ; q) =
∞∑

n=0

(−1)n

(2n)!
S2n(q)θ2n,

g2(θ; q) =
∞∑

n=0

(−1)n

(2n)!
E2n(χ3; q)θ2n,

h1(θ; e−2πt) =
∞∑

n=0

(−1)n

(2n)!
E

(1)
2n+2(q)θ

2n,

h2(θ; e−2πt) =
∞∑

n=0

(−1)n

(2n)!
E

(2)
2n+2(q)θ

2n.

The series expansion for φ is valid for 0 < |θ| < min{2π, |2πit+ 2πk|, k ∈ Z}, and the others for
|θ| < min{2π, |2πit+ 2πk|, k ∈ Z}.
Proof
The first result is a restatement of (2.33) and (2.34). The expansion for φ follows by expanding
(1.1) in powers of θ, with the help of the expansion

1
2

cot
θ

2
=

1
θ

+
∞∑

n=1

B2n(−1)n

(2n)!
θ2n−1.

The expansions for g1 and g2 follow by expanding the Fourier series (2.14) and (2.16) in powers
of θ. The expansions for h1 and h2 follow from the expansion for φ by using the definitions (2.24)
and (2.25).

Remark 3.8. We shall call the numbers s0, s1, s2, · · · , the cubic Bernoulli numbers. These num-
bers were introduced by Liu (15, eqs. (1.11), (1.13)), who expressed them in terms of derivatives
of the cotangent function evaluated at π/3. From the definition, it is clear that s2n+1 = 0. The
first few values of s2n are:

s0 = 1
6 , s2 = − 1

9 , s4 = 1
3

s6 = − 7
3 , s8 = 809

27 , s10 = − 1847
3 ,

s12 = 55601
3 , s14 = − 6921461

3 , s16 = 126235201
3 .

In Section 5, we will show that (−1)ns2n > 0. Observe also that

1
2

sin θ
2

sin 3θ
2

=
∞∑

n=0

(−1)ns2n

(2n)!
θ2n.

For future reference, we make the definitions

P (q) = −24E2(q) = 1− 24
∞∑

n=1

nqn

1− qn
, (3.9)

Q(q) = 240E2(q) = 1 + 240
∞∑

n=1

n3qn

1− qn
, (3.10)

R(q) = −504E2(q) = 1− 504
∞∑

n=1

n5qn

1− qn
. (3.11)
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4 The modular transformation

4.1 The modular transformation for cubic theta functions

Theorem 4.1. Suppose Re t > 0. Then

a′(e−2πt, eiθ) =
1
t
√

3
exp

(
−θ2

6πt

)
a
(
e−

2π
3t , e

θ
3t

)
,

a(e−2πt, eiθ) =
1
t
√

3
exp

(
−θ2

2πt

)
a′
(
e−

2π
3t , e

θ
t

)
,

b(e−2πt, eiθ) =
1
t
√

3
exp

(
−θ2

6πt

)
c
(
e−

2π
3t , e

θ
3t

)
,

c(e−2πt, eiθ) =
1
t
√

3
exp

(
−θ2

2πt

)
b
(
e−

2π
3t , e

θ
t

)
.

Proof
See (11, Theorem 5.12).

Corollary 4.2. Suppose Re t > 0. Then

a(e−2πt) =
1
t
√

3
a
(
e−

2π
3t

)
,

b(e−2πt) =
1
t
√

3
c
(
e−

2π
3t

)
,

c(e−2πt) =
1
t
√

3
b
(
e−

2π
3t

)
.

Proof
Let θ = 0 in Theorem 4.1. Also see (5, (2.2)) or (11, Corollary 5.19).

4.2 The modular transformation for g1 and g2

Theorem 4.3.

g1(θ; e−2πt) =
1
t
√

3
g2

(
iθ

3t
; e−

2π
3t

)
g2(θ; e−2πt) =

1
t
√

3
g1

(
iθ

t
; e−

2π
3t

)
.

Proof

Observe that by Theorem 2.20, the functions g1(θ; e−2πt) and
1
t
√

3
g2

(
iθ

3t
; e−

2π
3t

)
both have simple

poles at θ = 2πm+ 2πint, m, n ∈ Z, n 6≡ 0 (mod 3), and no other singularities. Furthermore, the
residue of each function at each pole is 1

2iχ3(n). Therefore the difference

g1(θ; e−2πt)− 1
t
√

3
g2

(
iθ

3t
; e−

2π
3t

)
is entire. Again by Theorem 2.20, the difference is doubly periodic, and therefore by Liouville’s
theorem, it is a constant. The value of the constant can be found by plugging in a value for θ, for
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example θ = 0:

g1(θ; e−2πt)− 1
t
√

3
g2

(
iθ

3t
; e−

2π
3t

)
= g1(0; e−2πt)− 1

t
√

3
g2

(
0; e−

2π
3t

)
=

1
6

(
a(e−2πt)− 1

t
√

3
a
(
e−

2π
3t

))
= 0, (4.4)

by Lemma (4.2). This proves the first part of the theorem.
The second part follows from the first part by replacing t with 1/3t, then replacing θ with iθ/t,
rearranging and using the fact that g1 and g2 are even functions of θ.

4.3 The modular transformation for φ, h1 and h2

The transformation properties for the functions h1 and h2 are obtained from the corresponding
transformation formula for φ.

Lemma 4.5. Let Re t > 0. Then

φ(θ; e−2πt) =
i

t
φ

(
iθ

t
; e−

2π
t

)
− θ

4πt
.

Proof
See (11, (4.7)) or (19, pp. 32–35).

Theorem 4.6. Suppose Re t > 0. Then

h1(θ; e−2πt) =
1

9t2
h2

(
iθ

3t
; e−

2π
3t

)
− 1

6πt
,

h2(θ; e−2πt) =
1
t2
h1

(
iθ

t
; e−

2π
3t

)
+

1
2πt

.

Proof
Differentiating the result in Lemma 4.5 with respect to θ gives

φ′(θ; e−2πt) = − 1
t2
φ′
(
iθ

t
; e−

2π
t

)
− 1

4πt
.

Replacing t with 3t in Lemma 4.5 and then differentiating with respect to θ gives

φ′(θ; e−6πt) = − 1
9t2

φ′
(
iθ

3t
; e−

2π
3t

)
− 1

12πt
.

Therefore, on writing q = e−2πt and p = e−2π/3t, we have

h1(θ; q) = φ′(θ; q)− φ′(θ; q3)

= − 1
t2
φ′
(
iθ

t
; p3

)
− 1

4πt
+

1
9t2

φ′
(
iθ

3t
; p
)

+
1

12πt

=
1

9t2

(
φ′
(
iθ

3t
; p
)
− 9φ′

(
iθ

t
; p3

))
− 1

6πt

=
1

9t2
h2

(
iθ

3t
; p
)
− 1

6πt
.

This proves the first part of the theorem. The second part follows from the first by replacing t
with 1/3t, and then replacing θ with θ/it.



34 S. Cooper

4.4 Transformation of Eisenstein series

Corollary 4.7. Suppose Re t > 0 and let q = e−2πt, p = e−
2π
3t . Then, for m ≥ 0,

S2m(q) =
(−1)m

√
3

(3t)2m+1
E2m(χ3; p),

E2m(χ3; q) =
(−1)m

t2m+1
√

3
S2m(p).

Proof
These follow by expanding the equations in Theorem 4.3 in powers of θ using Theorem 3.1, and
equating coefficients of θ2m.

Remark 4.8. A different proof of Corollary 4.7 was given by Chan and Liu (7). Another proof of
this result (for m ≥ 1) will be given in the next section.

Corollary 4.9. Suppose Re t > 0 and let q = e−2πt, p = e−2π/3t. Then

E2(q) = − 1
t2
E2(p3)− 1

4t
, (4.10)

E
(1)
2 (q) =

1
9t2

E
(2)
2 (p)− 1

6πt
, (4.11)

E
(2)
2 (q) =

1
t2
E

(1)
2 (p) +

1
2πt

, (4.12)

and for n = 2, 3, 4, · · · , we have

E2m(q) =
(−1)m

t2m
E2m(p3), (4.13)

E
(1)
2m(q) =

(−1)(m−1)

32mt2m
E

(2)
2m(p), (4.14)

E
(2)
2m(q) =

(−1)(m−1)

t2m
E

(1)
2m(p). (4.15)

Proof
Substitute the series expansions from Lemma 3.1 into Lemma 4.5 and Theorem 4.6.

5 More on Eisenstein series

The Bernoulli numbers {Bn} are defined by

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
,

and it is well known (for example, see (1, p. 12)), that for each positive integer n,

∞∑
k=1

1
k2n

=
(−1)n+122n−1

(2n)!
B2nπ

2n.

The analogous result for the cubic Bernoulli numbers is
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Theorem 5.1. Let the cubic Bernoulli numbers {sn} be defined by

1
2

sinh x
2

sinh 3x
2

=
∞∑

n=0

sn
xn

n!
,

or equivalently by
1
2

sin x
2

sin 3x
2

=
∞∑

n=0

(−1)nsn
xn

n!
.

Then

1. For all complex numbers τ ,
∞∑

k=−∞

χ3(k)
τ + k

=
2π√

3

sin πτ
3

sinπτ
. (5.2)

The series on the left converges for all complex values of τ (except for integer values of the
form 3k±1, where there are simple poles), but not absolutely. An absolutely convergent series
is given by

∞∑
k=−∞

χ3(k)
(

1
τ + k

− 1
k

)
=

2π√
3

sin πτ
3

sinπτ
. (5.3)

2. For each non-negative integer n,

∞∑
k=1

χ3(k)
k2n+1

=
(−1)n22n+1

32n+ 1
2 (2n)!

s2nπ
2n+1.

3. (−1)ns2n > 0.

Proof
Starting with the partial fractions expansion of the cotangent (1, p. 11)

π cotπx =
1
x

+
∞∑

n=1

(
1

x+ n
+

1
x− n

)
,

we obtain

π

3

(
cot

π

3
(τ + 1)− cot

π

3
(τ − 1)

)
=

1
τ + 1

+
(

1
τ + 4

+
1

τ − 2

)
+
(

1
τ + 7

+
1

τ − 5

)
+ · · ·

− 1
τ − 1

−
(

1
τ + 2

+
1

τ − 4

)
−
(

1
τ + 5

+
1

τ − 7

)
+ · · ·

=
∞∑

k=−∞

χ3(k)
τ + k

. (5.4)

Next, using

cot(x+ y)− cot(x− y) =
2 sin 2y

cos 2x− cos 2y

and
1

1 + 2 cos 2x
=

sinx
sin 3x

,
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we get

π

3

(
cot

π

3
(τ + 1)− cot

π

3
(τ − 1)

)
=

2π/
√

3
1 + 2 cos 2πτ

3

=
2π√

3

sin πτ
3

sinπτ
. (5.5)

Equating (5.4) and (5.5) proves (5.2).
The series on the left hand side of (5.2) can be seen to be convergent by considering the real
and imaginary parts of the terms. It is clear that the series is not absolutely convergent, since∣∣∣χ3(k)

τ+k

∣∣∣ = O
(

1
k

)
. The series (5.2) and (5.3) converge to the same value because

χ3(k)
k

= −χ3(−k)
−k

,

and the series in (5.3) converges absolutely because
∣∣∣χ3(k)

(
1

τ+k −
1
k

)∣∣∣ = O
(

1
k2

)
. This completes

the proof of the first part of the Theorem.
Expanding the left hand side of (5.2) in powers of τ gives

∞∑
k=−∞

χ3(k)
τ + k

= 2
∞∑

k=1

kχ3(k)
k2 − τ2

= 2
∞∑

k=1

χ3(k)
k

1(
1− τ2

k2

)
= 2

∞∑
k=1

χ3(k)
k

∞∑
n=0

τ2n

k2n

= 2
∞∑

n=0

( ∞∑
k=1

χ3(k)
k2n+1

)
τ2n, (5.6)

valid for |τ | < 1. Expanding the right hand side of (5.2) in powers of τ gives

2π√
3

sin πτ
3

sinπτ
=

4π√
3

∞∑
n=0

(−1)ns2n

(2n)!

(
2πτ
3

)2n

. (5.7)

Equating coefficients of τ2n in (5.6) and (5.7) completes the proof of the second part of the Theorem.
The third part of the Theorem follows immediately from the second part, since the sum of the
series is positive.

Lemma 5.8. Suppose Im τ > 0. Then

∞∑
k=−∞

1
(τ + k)n+1

=
(−2πi)n+1

n!

∞∑
k=1

kne2πiτk, if n ≥ 1, (5.9)

∞∑
k=−∞

χ3(k)
(τ + k)n+1

=
2π
n!
√

3

(
−2πi

3

)n ∞∑
k=1

χ3(k)kne2πiτk/3, if n ≥ 0.

(5.10)

Proof
The first of these is a standard result, for example, see (13, p. 226, eq. (8.9)) or (14, p. 65, Th.
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4). We shall prove the second part. By Theorem 5.1 we have, on writing u = e2πiτ/3,

∞∑
k=−∞

χ3(k)
τ + k

=
2π√

3

sin πτ
3

sinπτ

=
2π√

3
(u1/2 − u−1/2)
(u3/2 − u−3/2)

=
2π√

3
u(1− u)
1− u3

=
2π√

3

∞∑
k=1

χ3(k)uk

=
2π√

3

∞∑
k=1

χ3(k)e2πiτk/3.

This proves the k = 0 case of the Lemma. The general case follows from this by first rewriting the
left hand side as an absolutely convergent series using (5.3):

∞∑
k=−∞

χ3(k)
(

1
τ + k

− 1
k

)
=

2π√
3

∞∑
k=1

χ3(k)e2πiτ/3,

and then differentiating n times with respect to τ .

Theorem 5.11. Suppose Re t > 0, let τ = it, q = e−2πt = e2πiτ . Then

∑ ∑
(m,n) 6=(0,0)

1
(m+ nτ)2j

= 2
(2πi)2j

(2j − 1)!
E2j(q) (5.12)

∞∑
m=−∞

∑
n 6≡0 (mod 3)

1
(m+ nτ)2j

= 2
(2πi)2j

(2j − 1)!
E

(1)
2j (q) (5.13)

∑
m6≡0 (mod 3)

∞∑
n=−∞

1
(m+ nτ)2j

=
−2

(2j − 1)!

(
2πi
3

)2j

E
(2)
2j (q

1
3 ) (5.14)

∞∑
m=−∞

∞∑
n=−∞

χ3(n)
(m+ nτ)2j+1

= −2
(2πi)2j+1

(2j)!
S2j(q) (5.15)

∞∑
m=−∞

∞∑
n=−∞

χ3(m)
(m+ nτ)2j+1

=
−2i

√
3

(2j)!

(
2πi
3

)2j+1

E2j(χ3; q
1
3 ).

(5.16)

Equations (5.12)–(5.14) hold for j ≥ 2, and (5.15)–(5.16) hold for j ≥ 1.

Proof
The first of these is a standard result, for example, see (13, p. 226, eq. (8.10)). The second and
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third results follow from the first. For example

∞∑
m=−∞

∑
n 6≡0 (mod 3)

1
(m+ nτ)2j

=

∑ ∑
(m,n) 6=(0,0)

1
(m+ nτ)2j

−
∑ ∑

(m,n) 6=(0,0)

1
(m+ 3nτ)2j

= 2
(2πi)2j

(2j − 1)!
E2j(q)− 2

(2πi)2j

(2j − 1)!
E2j(q3)

= 2
(2πi)2j

(2j − 1)!
E

(1)
2j (q),

and this is (5.13). Equation (5.14) is obtained similarly.
Next, by Lemma 5.8,

∞∑
m=−∞

∞∑
n=−∞

χ3(n)
(m+ nτ)2j+1

= 2
∞∑

n=1

χ3(n)
∞∑

m=−∞

1
(m+ nτ)2j+1

= 2
∞∑

n=1

χ3(n)
∞∑

k=1

(−2πi)2j+1

(2j)!
k2jqnk

= −2
(2πi)2j+1

(2j)!

∞∑
k=1

k2j
∞∑

n=1

χ3(n)qnk

= −2
(2πi)2j+1

(2j)!

∞∑
k=1

k2j q
k − q2k

1− q3k

= −2
(2πi)2j+1

(2j)!
S2j(q).

This proves (5.15). Finally, by Theorem 5.1 and Lemma 5.8,

∞∑
m=−∞

∞∑
n=−∞

χ3(m)
(m+ nτ)2j+1

=
∑
m6=0

χ3(m)
m2j+1

+
∞∑

m=−∞

∑
n 6=0

χ3(m)
(m+ nτ)2j+1

= 2
∞∑

m=1

χ3(m)
m2j+1

+ 2
∞∑

n=1

( ∞∑
m=−∞

χ3(m)
(m+ nτ)2j+1

)

= 2
∞∑

m=1

χ3(m)
m2j+1

+
4π

(2j)!
√

3

(
−2πi

3

)2j ∞∑
n=1

∞∑
m=1

χ3(m)m2je2πimnτ/3

=
(−1)j22j+2π2j+1

32j+ 1
2 (2j)!

s2j +
(−1)j22j+2π2j+1

32j+ 1
2 (2j)!

∞∑
m=1

χ3(m)m2jq
m
3

1− q
m
3

=
(−1)j22j+2π2j+1

32j+ 1
2 (2j)!

E2j(χ3; q
1
3 ),

which proves (5.16).

Remark 5.17. Corollary 4.7 in the case m ≥ 1, and Corollary 4.9 in the case m ≥ 2 follow
immediately from Theorem 5.11. The cases m = 0 of Corollary 4.7 and m = 1 of Corollary 4.9
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do not follow from Theorem 5.11, because the double series on the left hand sides do not converge
absolutely.

Corollary 5.18. Let Ωmn = 2πm+ 2πint and Ω∗mn = 2πm
3 + 2πint. Then

g1(θ; q) = g1(0; q) +
1
2i

∞∑
m=−∞

∞∑
n=−∞

χ3(n)
[

1
θ − Ωmn

+
θ

(Ωmn)2
+

1
Ωmn

]
,

g2(θ; q) = g2(0; q)− 1
2
√

3

∞∑
m=−∞

∞∑
n=−∞

χ3(m)
[

1
θ − Ω∗mn

+
θ

(Ω∗mn)2
+

1
Ω∗mn

]
.

Proof

The functions g′′1 (θ; q) and
1
i

∞∑
m=−∞

∞∑
n=−∞

χ3(n)
(θ − Ωmn)3

are both doubly periodic with periods 2π and

6πit. Furthermore, they both have poles at θ = Ωmn, n 6≡ 0 (mod 3), and no other singularities,
and the singular parts of both functions at each pole are identical. Consequently their difference
is an entire, doubly periodic function, which is therefore constant, i.e.,

g′′1 (θ; q) =
1
i

∞∑
m=−∞

∞∑
n=−∞

χ3(n)
(θ − Ωmn)3

+ c.

The value of c may be found by plugging in a value for θ, for example θ = 0. Using Theorems 3.1
and 5.11, we obtain c = 0.
Applying

∫ θ

0
dθ to both sides and using the fact that g′1(0; q) = 0, we get

g′1(θ; q) = − 1
2i

∞∑
m=−∞

∞∑
n=−∞

χ3(n)
[

1
(θ − Ωmn)2

− 1
(Ωmn)2

]
.

Applying
∫ θ

0
dθ again we complete the proof of the first part of the theorem.

The second part may be proved similarly, or obtained from the first part using the modular
transformation.

6 Connection between cubic elliptic functions and cubic theta functions

The cubic elliptic functions g1(θ; q), g2(θ; q) are related to the cubic theta functions b(q, z), c(q, z)
as follows.

Theorem 6.1.

g1(θ; q) =
1
4

(q; q)2∞(q3; q3)2∞
(q2; q2)∞(q6; q6)∞

b(q,−eiθ)
b(q, eiθ)

− 1
12
b(q)2

b(q2)
(6.2)

g2(θ; q) =
1
2
q

1
2

(q; q)2∞(q3; q3)2∞
(q

1
2 ; q

1
2 )∞(q

3
2 ; q

3
2 )∞

eiθ c(q, q
1
2 eiθ)

c(q, eiθ)
− 1

6
c(q)2

c(q
1
2 )
. (6.3)

Proof
As usual, let q = e−2πt, Re t > 0. Let us put

B(θ; q) =
b(q,−eiθ)
b(q, eiθ)

.



40 S. Cooper

Clearly B(θ; q) is periodic with period 2π. Next, from (2.28) or (2.30) we find (12, (1.17)) that

b(q, z) = z2q3b(q, zq3),

and therefore B(θ; q) is periodic with period 6πit.
From (2.30), we see that B(θ; q) has simple poles at θ = 2πm+ 2πint, m, n ∈ Z, n 6≡ 0 (mod 3),
and no other singularities. We calculate the residue at 2πit:

Res(B(θ; q); θ = 2πit)

= lim
θ→2πit

(θ − 2πit)
b(e−2πt,−eiθ)
b(e−2πt, eiθ)

= lim
θ→2πit

(θ − 2πit)
(1− e−2πt−iθ)

(−qeiθ; q)∞(−qe−iθ; q)∞
(−q3eiθ; q3)∞(−q3e−iθ; q3)∞

(q3eiθ; q3)∞(q3e−iθ; q3)∞
(qeiθ; q)∞(q2e−iθ; q)∞

= −i (−q2; q)∞(−1; q)∞
(−q4; q3)∞(−q2; q3)∞

(q4; q3)∞(q2; q3)∞
(q2; q)∞(q; q)∞

= −2i
(q2; q2)∞(q6; q6)∞
(q; q)2∞(q3; q3)2∞

,

after simplification. Similarly,

Res(B(θ; q); θ = 4πit) = 2i
(q2; q2)∞(q6; q6)∞
(q; q)2∞(q3; q3)2∞

,

and by the periodicity properties of B, we obtain

Res(B(θ; q); θ = 2πm+ 2πint) =
2
i
χ3(n)

(q2; q2)∞(q6; q6)∞
(q; q)2∞(q3; q3)2∞

.

By Theorem 2.20, it follows that

g1(θ; q)−
1
4

(q; q)2∞(q3; q3)2∞
(q2; q2)∞(q6; q6)∞

b(q,−eiθ)
b(q, eiθ)

is doubly periodic and entire. Therefore by Liouville’s theorem it is constant. Letting θ = 0 we
find that the value of the constant is given by

g1(0; q)− 1
4

(q; q)2∞(q3; q3)2∞
(q2; q2)∞(q6; q6)∞

b(q,−1)
b(q, 1)

=
1
6
a(q)− 1

4
(q; q)2∞(q3; q3)2∞

(q2; q2)∞(q6; q6)∞
(−q; q)2∞

(−q3; q3)2∞
(q3; q3)2∞
(q; q)2∞

=
1
6
a(q)− 1

4
(q3; q3)6∞
(q; q)2∞

(q2; q2)∞
(q6; q6)3∞

=
1
6
a(q)− 1

12
c(q)2

c(q2)

= − 1
12
b(q)2

b(q2)
.

The last step follows by (12, (1.29)). This completes the proof of the first part of the Theorem.
The second part may be proved similarly. Alternatively, it can be deduced from the first part by
applying the modular transformation and using Theorems 4.1 and 4.3.

Remark 6.4. Equation (6.2) was proved by Berndt et. al. (4, Lemma 8.2). The proof we have
given here is simpler.
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7 Connection between cubic elliptic functions and the Weierstrass ℘
function

In this section, we establish connections between the cubic elliptic functions g1, g2 and the Weier-
strass ℘ function. The results in this section will be used in Section 12 to obtain differential
equations for g1 and g2, and also in Section 13 to prove recurrence relations for the Eisenstein
series S2n(q) and E2n(χ3; q).

Theorem 7.1.

(g1(θ; q)− g1(0; q))
(
φ′(θ; q3)− φ′(2πit; q3)

)
=

S2(q)
4

,

(g2(θ; q)− g2(0; q))
(
φ′(θ; q)− φ′

(
2π
3

; q
))

=
E2(χ3; q)

4
.

Proof
Let

α(θ) = g1(θ; q)− g1(0; q),
β(θ) = φ′(θ; q3)− φ′(2πit; q3).

By Theorems 2.20 and 3.1,

• α is periodic with periods 2π and 6πit;

• α has simple poles at θ = 2πm+ 2πint, n 6≡ 0 (mod 3), and no other singularities;

• α has zeros of order 2 at θ = 2πm+ 6πint, and no other zeros.

Similarly, by Theorem 2.21, and the fact that φ′ is an even function, we have that

• β is periodic with periods 2π and 6πit;

• β has simple zeros at θ = 2πm+ 2πint, n 6≡ 0 (mod 3), and no other zeros;

• β has poles of order 2 at θ = 2πm+ 6πint, and no other singularities.

It follows that the product α(θ)β(θ) is a doubly periodic function with no zeros or poles, and
therefore is a constant. Letting θ → 0 and using the expansions in Theorem 3.1, we find that the
value of the constant is S2(q)/4. This proves the first part of the theorem.
The second part may either be proved similarly, or obtained from the first part using the transfor-
mation t→ 1/3t.

The Weierstrass ℘ function with periods ω1 and ω2 is defined by

℘(θ;ω1, ω2) =
1
θ2

+

∑ ∑
(m,n) 6=(0,0)

(
1

(θ −mω1 − nω2)2
− 1

(mω1 + nω2)2

)
.

It can be shown that (9), (10)

℘(θ; 2π, 2πit) = −2φ′(θ; q)− P (q)
12

, (7.2)

where q = e−2πt. Using this in Theorem 7.1, we obtain
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Theorem 7.3.

g1(θ; q)− g1(0; q) =
S2(q)

2 (℘(2πit; 2π, 6πit)− ℘(θ; 2π, 6πit))
,

g2(θ; q)− g2(0; q) =
E2(χ3; q)

2
(
℘( 2π

3 ; 2π, 2πit)− ℘(θ; 2π, 2πit)
) .

A slightly different formulation of Theorem 7.3 will be given in Section 12.
We conclude this Section by observing that addition formulas for g1 and g2 which express g1(α+β)
(resp. g2(α+ β)) in terms of g1(α), g1(β), g′1(α) and g′1(β), (resp. g2(α), g2(β), g′2(α) and g′2(β))
can be obtained from Theorem 7.3 and the addition formula for the Weierstrass ℘ function:

℘(α+ β) + ℘(α) + ℘(β) =
1
4

(
℘′(α)− ℘′(β)
℘(α)− ℘(β)

)2

.

8 Infinite product representations

The functions g1 and g2 may be expressed as differences of infinite products.

Theorem 8.1.

g1(θ; q) =
(q; q)3∞

(q3; q3)∞

(
sin( θ

2 + π
3 )

sin θ
2

∞∏
n=1

1− 2qn cos(θ + 2π
3 ) + q2n

1− 2qn cos θ + q2n

−
sin( θ

2 −
π
3 )

sin θ
2

∞∏
n=1

1− 2qn cos(θ − 2π
3 ) + q2n

1− 2qn cos θ + q2n

)
(8.2)

g2(θ; q) =
3(q3; q3)3∞

(q; q)∞

(
e−iθ (q2e3iθ, qe−3iθ; q3)∞

(q3e3iθ, e−3iθ; q3)∞

−eiθ (qe3iθ, q2e−3iθ; q3)∞
(e3iθ, q3e−3iθ; q3)∞

)
. (8.3)

Proof
Equation (8.2) follows from (2.1), (2.7) and (2.12), and some simplification. Equation (8.3) is
obtained from (2.1) and (2.19). Alternatively, (8.3) can be proved by applying the modular trans-
formation t→ 1

3t to (8.2).

The derivatives g′1 and g′2 can both be written as single infinite products.

Theorem 8.4.

d

dθ
g1(θ; q) = −q(q; q)∞(q3; q3)3∞ sin θ

(q3e2iθ, q3e−2iθ; q3)∞(q3eiθ, q3e−iθ; q3)2∞
(qeiθ, qe−iθ; q)2∞

d

dθ
g2(θ; q) = (q; q)3∞(q3; q3)∞ sin θ(qe2iθ, qe−2iθ; q)∞

×
sin2 θ

2

sin2 3θ
2

(qeiθ, qe−iθ; q)2∞
(q3e3iθ, q3e−3iθ; q3)2∞

.
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Proof

dg1
dθ

= −
∞∑

n=1

nqn sinnθ
1 + qn + q2n

= − 1
2i

∞∑
n=1

n(qn − q2n)(einθ − e−inθ)
1− q3n

= − 1
2i

∞∑
n=1

(
nqneinθ

1− q3n
− nqne−inθ

1− q3n
− nq2neinθ

1− q3n
+
nq2ne−inθ

1− q3n

)
. (8.5)

Observe that
∞∑

n=1

nqneinθ

1− q3n
=

∞∑
n=1

n(qn − q4n + q4n)einθ

1− q3n

=
∞∑

n=1

nqneinθ +
∞∑

n=1

nq4neinθ

1− q3n

=
qeiθ

(1− qeiθ)2
+

∞∑
n=1

nq4neinθ

1− q3n

= −1
4

csc2 θ + 2πit
2

+
∞∑

n=1

nq4neinθ

1− q3n
,

and similarly
∞∑

n=1

nq2neinθ

1− q3n
= −1

4
csc2 θ + 4πit

2
+

∞∑
n=1

nq5neinθ

1− q3n
.

Substituting these into (8.5) and using (1.1) we get

dg1
dθ

= − 1
2i

(
−1

4
csc2 θ + 2πit

2
+ 2

∞∑
n=1

nq3n

1− q3n
cosn(θ + 2πit)

)

+
1
2i

(
−1

4
csc2 θ + 4πit

2
+ 2

∞∑
n=1

nq3n

1− q3n
cosn(θ + 4πit)

)
= i

(
φ′(θ + 2πit; e−6πt)− φ′(θ + 4πit; e−6πt)

)
.

Finally, using (1.6) and (2.1), this becomes

dg1
dθ

=
i

2
F (eiθ−4πt, eiθ−2πt; e−6πt)F (e−iθ+4πt, eiθ−2πt; e−6πt)

=
i

2
(q3e2iθ, e−2iθ, q−1, q4, q3, q3, q3, q3; q3)∞

(q2eiθ, qe−iθ, qeiθ, q2e−iθ, q−2e−iθ, q5eiθ, qeiθ, q2e−iθ; q3)∞

=
i

2
(1− e−2iθ)

(1− q−1)
(1− q)

(1− q2eiθ)
(1− q−2e−iθ)

× (q3e2iθ, q3e−2iθ; q3)∞(q; q)∞(q3; q3)3∞
(qeiθ, q2eiθ, qe−iθ, q2e−iθ; q3)2∞

= −q(q; q)∞(q3; q3)3∞ sin θ
(q3e2iθ, q3e−2iθ; q3)∞(q3eiθ, q3e−iθ; q3)2∞

(qeiθ, qe−iθ; q)2∞
.

This proves the first part of the theorem.
The second part may be proved similarly, or by using the modular transformation t→ 1/3t.
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Remark 8.6. The first part of Theorem 8.4 was proved by Berndt et. al. (4, Lemma 8.5), using
the 6ψ6 summation formula. The proof we have given here is simpler.

9 A multiplicative identity for G

In this section, we give a multiplicative identity for G, which is analogous to Venkatachaliengar’s
identity (1.5) for F . We begin with some preparatory lemmas.

Lemma 9.1.
F (x, y; q) + F (x, ωy; q) + F (x, ω2y; q) = 3F (x, y3; q3).

ρ(x; q) + ρ(ωx; q) + ρ(ω2x; q) = 3ρ(x3; q3),

Proof
The first of these follows immediately from the series representation (2.5). The second follows from
(1.3).

Lemma 9.2. Let

f(x) =
∞∑

n=−∞
cnx

n,

in some annulus r1 < |x| < r2. Let

sift(f(x);x,m, k) =
∞∑

n=−∞
cmn+kx

mn+k.

Then

sift(ρ(x; q);x, 3, 0) = ρ(x3; q3),
sift(ρ(x; q);x, 3, 1) = xF (x3, q; q3),
sift(ρ(x; q);x, 3, 2) = x2F (x3, q2; q3),

sift(F (x, y; q); y, 3, 0) = F (x, y3; q3),
sift(F (x, y; q); y, 3, 1) = yF (qx, y3; q3),
sift(F (x, y; q); y, 3, 2) = y2F (q2x, y3; q3).

Proof
These all follow directly from the series representations (2.5) and (1.3).

Lemma 9.3. Suppose the series
∑∞

n=−∞ anx
n and

∑∞
n=−∞ bnx

n both converge in the annulus
r1 < |x| < r2. Then in this annulus,

∞∑
n=−∞

anx
n

∞∑
n=−∞

bnx
n +

∑
n

anω
2nxn

∑
n

ωnbnx
n +

∑
n

anω
nxn

∑
n

ω2nbnx
n

= 3

[∑
n

a3nx
3n
∑

n

b3nx
3n +

∑
n

a3n+1x
3n+1

∑
n

b3n+1x
3n+1

+
∑

n

a3n+2x
3n+2

∑
n

b3n+2x
3n+2

]
.
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Proof
Write ∑

anx
n =

∑
a3nx

3n +
∑

a3n+1x
3n+1 +

∑
a3n+2x

3n+2

and sift each of the other series
∑
anω

nxn,
∑
anω

2nxn,
∑
bnx

n,
∑
bnω

nxn and
∑
bnω

2nxn sim-
ilarly. The result follows by expanding and simplifying.

Theorem 9.4.

G(x, y; q)G(x, z; q)

= x
∂

∂x

(
F (x, yz; q)− F (x, y3z3; q3)

)
+
(
F (x, yz; q)− F (x, y3z3; q3)

) (
ρ(y3; q3) + ρ(z3; q3)

)
−yzF (qx, y3z3; q3)

(
yF (q, y3; q3) + zF (q, z3; q3)

)
−y2z2F (q2x, y3z3; q3)

(
y2F (q2, y3; q3) + z2F (q2, z3; q3)

)
.

Proof
Using the definition (2.7) and the multiplicative identity (1.5), we obtain

G(x, y; q)G(x, z; q)

= −1
3
(
F (x, ωy; q)− F (x, ω2y; q)

) (
F (x, ωz; q)− F (x, ω2z; q)

)
= −1

3
(
F (x, ωy; q)F (x, ωz; q) + F (x, ω2y; q)F (x, ω2z; q)

−F (x, ω2y; q)F (x, ωz; q)− F (x, ωy; q)F (x, ω2z; q)
)

= −1
3
x
∂

∂x

(
F (x, ωyz; q) + F (x, ω2yz; q)− 2F (x, yz; q)

)
−1

3
F (x, ω2yz; q)(ρ(ωy; q) + ρ(ωz; q))

−1
3
F (x, ωyz; q)(ρ(ω2y; q) + ρ(ω2z; q))

−1
3
F (x, yz; q)(ρ(ωy; q) + ρ(ω2y; q) + ρ(ωz; q) + ρ(ω2z; q)).

Applying Lemmas 9.1, 9.2 and 9.3 to this gives

G(x, y; q)G(x, z; q)

= x
∂

∂x

(
F (x, yz; q)− F (x, y3z3; q3)

)
+

1
3
F (x, yz; q) (ρ(y; q) + ρ(z; q))

−F (x, y3z3; q3)
(
ρ(y3; q3) + ρ(z3; y3)

)
−yzF (qx, y3z3; q3)

(
yF (q, y3; q3) + zF (q, z3; q3)

)
−y2z2F (q2x, y3z3; q3)

(
y2F (q2, y3; q3) + z2F (q2, z3; q3)

)
+

1
3
F (x, yz; q)

(
3ρ(y3; q3)− ρ(y; q) + 3ρ(z3; q3)− ρ(z; q)

)
.

Simplifying, we complete the proof.
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10 Squares

An important special case of Theorem 9.4 is the limiting case y → 1/z. We begin by proving a
number of preliminary lemmas which will be useful in computing this limit. Let

Ω(x; q) = x
d

dx
ρ(x; q)

=
∞∑

n=−∞
n6=0

nxn

1− qn
, if |q| < |x| < 1,

=
x

(1− x)2
+

∞∑
n=1

nqn(xn + x−n)
1− qn

, if |q| < |x| < |q|−1, (10.1)

Λ(x; q) = x
d

dx
F (q, x; q3)

=
∞∑

n=−∞
n6=0

nxn

1− q3n+1
, if |q3| < |x| < 1,

=
x

(1− x)2
+

∞∑
n=1

(
nq3n+1xn

1− q3n+1
+
nq3n−1x−n

1− q3n−1

)
, if |q|3 < |x| < |q|−3.

(10.2)

Observe that, from (1.1), (2.24) and (2.25), we have

Ω(eiθ; q) = 2φ′(θ; q), (10.3)
Ω(eiθ; q)− Ω(eiθ; q3) = 2h1(θ; q), (10.4)

Ω(eiα; q)− 9Ω(e3iα; q3) = 2h2(α; q). (10.5)

Lemma 10.6.
lim

y→1/z
x
∂

∂x
F (x, yz; q) = Ω(x; q),

lim
y→1/z

x
∂

∂x
F (x, y3z3; q3) = Ω(x; q3).

Proof
The first of these follows by expanding F in powers of x using (2.5), computing the partial derivative
and then evaluating the limit. The second part follows from the first part, by replacing y, z and q
by their cubes.

Lemma 10.7.

lim
t→1

(1− t)F (x, t; q) = 1,

lim
y→1/z

(1− y3z3)F (x, yz; q) = 3,

lim
y→1/z

(1− y3z3)F (x, y3z3; q) = 1.

Proof
The first part follows from the definition (2.1). The second and third parts follow using 1−y3z3 =
(1− yz)(1 + yz + y2z2) and simple changes of variable.
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Lemma 10.8.

lim
y→1/z

ρ(y3; q3) + ρ(z3; q3)
1− y3z3

= −Ω(z3; q3),

lim
y→1/z

F (q, z3; q3)− F (q, y−3; q3)
1− y3z3

= −Λ(z3; q).

Proof
From (1.4), we obtain ρ(t; q) = −ρ(t−1; q). Therefore, putting w = y−1 we get

lim
y→1/z

ρ(y3; q3) + ρ(z3; q3)
1− y3z3

= − lim
w→z

w3 ρ(z
3; q3)− ρ(w3; q3)
z3 − w3

= −z3 d

dt
ρ(t; q3)

∣∣∣∣
t=z3

= −Ω(z3; q3).

Similarly,

lim
y→1/z

F (q, z3; q3)− F (q, y−3; q3)
1− y3z3

= lim
w→z

−w3F (q, z3; q3)− F (q, w3; q3)
z3 − w3

= −z3 d

dt
F (q, t; q3)

∣∣∣∣
t=z3

= −Λ(z3; q).

Lemma 10.9.

lim
y→1/z

yz2F (qx, y3z3; q3)F (q, z3; q3) + y4z2F (q2x, y3z3; q3)F (q2, y3; q3)

= −zΛ(z3; q) + zF (q, z3; q3)
(
G(x, 1; q)− 1

3

)
,

lim
y→1/z

y2zF (qx, y3z3; q3)F (q, y3; q3) + y2z4F (q2x, y3z3; q3)F (q2, z3; q3)

= −z−1Λ(z−3; q) + z−1F (q, z−3; q3)
(
G(x, 1; q)− 1

3

)
.

Proof
First, using (2.3) and (2.4), we have

F (q2, y3; q3) = −y−3F (q, y−3; q3).
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Using this, together with Lemma 10.8, we obtain

lim
y→1/z

yz2F (qx, y3z3; q3)F (q, z3; q3) + y4z2F (q2x, y3z3; q3)F (q2, y3; q3)

= lim
y→1/z

yz2
(
F (qx, y3z3; q3)F (q, z3; q3)− F (q2x, y3z3; q3)F (q, y−3; q3)

)
= z lim

y→1/z
F (qx, y3z3; q3)(1− y3z3)

(
F (q, z3; q3)− F (q, y−3; q3)

1− y3z3

)
+z lim

y→1/z
F (q, y−3; q3)

(
F (qx, y3z3; q3)− F (q2x, y3z3; q3)

)
= −zΛ(z3; q) + zF (q, z3; q3)

∑
n 6=0

(
qnxn

1− q3n
− q2nxn

1− q3n

)
= −zΛ(z3; q) + zF (q, z3; q3)

∑
n 6=0

xnqn

1 + qn + q2n

= −zΛ(z3; q) + zF (q, z3; q3)
(
G(x, 1; q)− 1

3

)
.

This proves the first part. The second part follows from this by change of variable.

Lemma 10.10.
zF (q, z3; q3) + z−1F (q, z−3; q3) = G(1, z; q),

zΛ(z3; q) + z−1Λ(z−3; q) =
1
3
Ω(z; q)− Ω(z3; q3)− 1

3
G(1, z; q).

Proof
The first of these follows from (2.11), using (2.2). The second is proved by series manipulations.
From (10.1) and (10.2), we have

1
3
Ω(z; q)− Ω(z3; q3)− zΛ(z3; q)− z−1Λ(z−3; q)

=
1
3

z

(1− z)2
+

1
3

∞∑
n=1

nqn

1− qn
(zn + z−n)

− z3

(1− z3)2
−

∞∑
n=1

nq3n

1− q3n
(z3n + z−3n)

− z4

(1− z3)2
−

∞∑
n=1

(
nq3n+1z3n+1

1− q3n+1
+
nq3n−1z−3n+1

1− q3n−1

)

− z−4

(1− z−3)2
−

∞∑
n=1

(
nq3n+1z−3n−1

1− q3n+1
+
nq3n−1z3n−1

1− q3n−1

)
=

1
3

z

(1− z)2
− z3

(1− z3)2
− z4

(1− z3)2
− z−4

(1− z−3)2

+
1
3

∞∑
n=1

(3n− 2)q3n−2

1− q3n−2
(z3n−2 + z−(3n−2))

+
1
3

∞∑
n=1

(3n− 1)q3n−1

1− q3n−1
(z3n−1 + z−(3n−1))

−
∞∑

n=0

nq3n+1

1− q3n+1
(z3n+1 + z−(3n+1))−

∞∑
n=1

nq3n−1

1− q3n−1
(z3n−1 + z−(3n−1)).
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Simplifying, we obtain

1
3
Ω(z; q)− Ω(z3; q3)− zΛ(z3; q)− z−1Λ(z−3; q)

=
z

3(1 + z + z2)
+

1
3

∞∑
n=1

q3n−2

1− q3n−2
(z3n−2 + z−(3n−2))

−1
3

∞∑
n=1

q3n−1

1− q3n−1
(z3n−1 + z−(3n−1))

=
z

3(1 + z + z2)
+

1
3

∞∑
n=1

χ3(n)qn

1− qn
(zn + z−n)

=
1
3
G(1, z; q),

by (2.10).

Theorem 10.11.

G(eiθ, eiα; q)G(eiθ, e−iα; q) + 4g1(θ; q)g2(α; q) = 2h1(θ; q) +
2
3
h2(α; q).

Proof
First rewrite Theorem 9.4 in the form

G(x, y; q)G(x, z; q)

= x
∂

∂x

(
F (x, yz; q)− F (x, y3z3; q3)

)
+
(
F (x, yz; q)− F (x, y3z3; q3)

) (
ρ(y3; q3) + ρ(z3; q3)

)
−
(
y2zF (qx, y3z3; q3)F (q, y3; q3) + y2z4F (q2x, y3z3; q3)F (q2, z3; q3)

)
−
(
yz2F (qx, y3z3; q3)F (q, z3; q3) + y4z2F (q2x, y3z3; q3)F (q2, y3; q3)

)
.

Now take the limit as y → 1/z, using Lemmas 10.6 – 10.9, to get

G(x, z; q)G(x, z−1; q)
= Ω(x; q)− Ω(x; q3)− 2Ω(z3; q3)

+zΛ(z3; q)− zF (q, z3; q3)
(
G(x, 1; q)− 1

3

)
+z−1Λ(z−3; q)− z−1F (q, z−3; q3)

(
G(x, 1; q)− 1

3

)
.

Apply Lemma 10.10 to this, and simplify to get

G(x, z; q)G(x, z−1; q)

= Ω(x; q)− Ω(x; q3) +
1
3
Ω(z; q)− 3Ω(z3; q3)−G(x, 1; q)G(1, z; q).

Setting x = eiθ, z = eiα, and using the definitions (2.12), (2.13), (10.4) and (10.5), we complete
the proof.

Theorem 10.11 immediately implies the following results of Liu (15, Theorems 5 and 7):
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Corollary 10.12. (
g1(θ; q) +

a(q)
12

)2

=
h1(θ)

2
+

9P (q3)− P (q)
144

+
a(q)2

144
,(

g2(θ; q) +
a(q)
12

)2

=
h2(θ)

6
+
P (q3)− P (q)

48
+
a(q)2

144
.

Proof
Take α = 0 and θ = 0 in Theorem 10.11, respectively, use (2.24) and (2.25) and complete the
square.

Corollary 10.13.

a(q)2 =
3
2
P (q3)− 1

2
P (q),

E
(1)
4 (q) = 6S0(q)S2(q),

E
(2)
4 (q) = 18E0(χ3; q)E2(χ3; q).

Proof
Letting θ = 0 in either part of Corollary 10.12, and using (2.24) (or (2.25)), we get

a(q)2

16
=

9P (q3)− P (q)
144

+
P (q3)− P (q)

48
+
a(q)2

144
.

Simplifying, we get the first part.
The second and third parts follow by equating coefficients of θ2 in Corollary 10.12.

Remark 10.14. Corollary 10.13 was given by Ramanujan (16, eq. (19)). He obtained it by
putting θ = 2π/3 in his identity (1.2). A more general result than Corollary 10.13 can be obtained
by equating coefficients of θ2n. This will be given in Section 13.

Corollary 10.15.

G(eiθ, eiα; e−2πt)G(eiθ, e−iα; e−2πt) =
1

3t2
G(e

α
t , e

θ
3t ; e−

2π
3t )G(e

α
t , e−

θ
3t ; e−

2π
3t ).

Proof
By Theorem 10.11, followed by Theorems 4.3 and 4.6, and then Theorem 10.11 again, we obtain

G(eiθ, eiα; e−2πt)G(eiθ, e−iα; e−2πt)

= 2h1(θ; e−2πt) +
2
3
h2(α; e−2πt)− 4g1(θ; e−2πt)g2(α; e−2πt)

= 2
(

1
9t2

h2

(
iθ

3t
; e−

2π
3t

)
− 1

6πt

)
+

2
3

(
1
t2
h1

(
iα

t
; e−

2π
3t

)
+

1
2πt

)
− 4

3t2
g2

(
iθ

3t
; e−

2π
3t

)
g1

(
iα

t
; e−

2π
3t

)
=

1
3t2

(
2h1

(
iα

t
; e−

2π
3t

)
+

2
3
h2

(
iθ

3t
; e−

2π
3t

)
− 4g1

(
iα

t
; e−

2π
3t

)
g2

(
iθ

3t
; e−

2π
3t

))
=

1
3t2

G(e
α
t , e

θ
3t ; e−

2π
3t )G(e

α
t , e−

θ
3t ; e−

2π
3t ).



Cubic elliptic functions 51

11 The transcendentals Z and X

Definition 11.1. Let

Z = Z(q) = a(q),

X = X(q) =
c(q)3

a(q)3
.

The main result of the section is Theorem 11.11, which expresses various Eisenstein series in terms
of Z and X. We begin with some lemmas.

Lemma 11.2.

1−X(q) =
b(q)3

a(q)3
,

Z(e−2πt) =
1
t
√

3
Z
(
e−

2π
3t

)
,

X(e−2πt) = 1−X
(
e−

2π
3t

)
.

Proof
The first part follows from equation (2.39), and the other two parts follow from Lemma 4.2.

Lemma 11.3. (
1
8

cot2
θ

2
+

1
12

+
∞∑

n=1

nqn

1− qn
(1− cosnθ)

)2

=
(

1
8

cot2
θ

2
+

1
12

)2

+
1
12

∞∑
n=1

n3qn

1− qn
(5 + cosnθ).

Proof
This was given by Ramanujan (18, eq. (18)). It is equivalent to the differential equation satisfied
by the Weierstrass ℘ function:

℘′′(z) = 6℘2(z)− g2/2.

Lemma 11.4.

a
(a2, qa−2; q)∞(q; q)6∞

(a, qa−1; q)4∞

=
a(1 + a)
(1− a)3

+
∞∑

m=1

m2qm

1− qm
(am − a−m).

Proof
Multiply both sides of (1.6) by eiα/(eiθ − eiα), take the limit as θ → α, and finally put a = eiα.
This is equivalent to (20, p. 459, ex. 24).

Lemma 11.5.

b(q)3 = −9E2(χ3; q), (11.6)
c(q)3 = 27S2(q), (11.7)

a(q)4 =
1
10
(
Q(q) + 9Q(q3)

)
. (11.8)
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Proof
Let a = e2πi/3 in Lemma 11.4 and simplify to obtain (11.6). Replace q with q3 in Lemma 11.4, let
a = q and simplify to obtain (11.7). Take θ = 2π/3 in Lemma 11.3 and simplify to get(

3
2
P (q3)− 1

2
P (q)

)2

=
1
10

(Q(q) + 9Q(q3)).

Now apply Corollary 10.13 on the left to complete the proof of (11.8).

Remark 11.9. Equation (11.7) was given by Ramanujan; see (4, Theorem 8.7). Equation (11.8)
was given by Berndt et. al. (4, Corollary 4.6). Equations (11.6) and (11.7) were given without
proof by J. M. and P. B. Borwein (5, Remark 2.4 (iii)). All of (11.6)–(11.8) were given by Liu
(15, eqs. (1.15), (1.16) and (1.19)). The proof of Lemma 11.5 that we have outlined above is
substantially the same as Liu’s.

Theorem 11.10.

q(q; q)24∞ =
1
27
Z12X(1−X)3, (11.11)

q3(q3; q3)24∞ =
1
39
Z12X3(1−X), (11.12)

q
dX

dq
= Z2X(1−X), (11.13)

3
2
P (q3)− 1

2
P (q) = Z2, (11.14)

P (q) = Z2(1− 4X) + 12ZX(1−X)
dZ

dX
, (11.15)

P (q3) = Z2(1− 4
3
X) + 4ZX(1−X)

dZ

dX
, (11.16)

Q(q) = Z4(1 + 8X), (11.17)

Q(q3) = Z4(1− 8
9
X), (11.18)

R(q) = Z6(1− 20X − 8X2), (11.19)

R(q3) = Z6(1− 4
3
X +

8
27
X2). (11.20)

Proof
Equations (11.11) and (11.12) follow from Definition 11.1, Lemma 11.2 and the infinite product
formulas (2.36) and (2.38).

Taking the logarithm of (11.11) and applying q
d

dq
gives

1− 24
∞∑

n=1

nqn

1− qn
= q

d

dq
log
(

1
27
Z12X(1−X)3

)
,

which is equivalent to

P (q) = q
dX

dq

(
12
Z

dZ

dX
+

1
X
− 3

1−X

)
. (11.21)

Applying the same procedure to (11.12) leads to

3P (q3) = q
dX

dq

(
12
Z

dZ

dX
+

3
X
− 1

1−X

)
. (11.22)



Cubic elliptic functions 53

Subtracting (11.21) from (11.22) and dividing by 2 gives

1
2
(
3P (q3)− P (q)

)
= q

dX

dq

(
1
X

+
1

1−X

)
.

Simplifying using Corollary 10.13 we obtain

q
dX

dq
= Z2X(1−X).

This proves (11.13).
Equation (11.14) is just a restatement of the first part of Corollary 10.13. Equations (11.15) and
(11.16) are obtained by substituting (11.13) into (11.21) and (11.22).
By (3.3), (3.5), Corollary 10.13 and Lemma 11.5, we have

E
(1)
4 (q) =

1
27
a(q)c(q)3,

E
(2)
4 (q) = −1

3
a(a)b(q)3.

Expressing E(1)
4 and E(2)

4 in terms of Q(q) and Q(q3) using (3.6), (3.7) and (3.10), and expressing
a(q), b(q), c(q) in terms of X and Z using Definition 11.1 and Lemma 11.2, we get

Q(q)−Q(q3) =
80
9
Z4X,

81Q(q3)−Q(q) = 80Z4(1−X).

Solving for Q(q) and Q(q3) we obtain (11.17) and (11.18).
Next, using Jacobi’s discriminant

Q(q)3 −R(q)2 = 1728q(q; q)24∞,

(see (18, p. 144) for a simple proof), and making use of (11.11) and (11.17), we obtain

R(q)2 = Q(q)3 − 1728q(q; q)24∞

= Z12(1 + 8X)3 − 1728
27

Z12X(1−X)3

= Z12(1− 20X − 8X2)2.

Taking square roots and comparing the coefficients of q0 to determine the sign, we obtain (11.19).
Equation (11.20) is obtained in the same way, using (11.12) and (11.18).

12 Differential equations

Lemma 12.1. Let ℘(θ) = ℘(θ; 2π, 2πit) and q = e−2πt. Then

℘′(θ)2 = 4℘(θ)− g̃2℘(θ)− g̃3,

where2

g̃2 = 60
∑

(m,n) 6=(0,0)

1
(2πn+ 2πimt)4

=
Q(q)
12

,

g̃3 = 140
∑

(m,n) 6=(0,0)

1
(2πn+ 2πimt)6

=
R(q)
216

.

2The Weierstrassian parameters g̃2 and g̃3 should not be confused with our functions g1 and g2.
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Proof
This is a statement of the differential equation satisfied by the Weierstrass ℘ function. See, for
example, (8, Ch. 3 and 6) or (19).

Theorem 12.2. Writing g1 = g1(θ; q) and g2 = g2(θ; q), we have(
dg1
dθ

)2

= − 2
27

(
g1 −

Z

6

)(
54g3

1 + 27Zg2
1 − Z3(1−X)

)
,(

dg2
dθ

)2

= −2
9

(
g2 −

Z

6

)(
54g3

2 + 27Zg2
2 − Z3X

)
.

Proof
Using Lemma 13.5 and the table after Theorem 13.11, observe that Theorem 7.3 may be written
in the form

g1 −
Z

6
=

−Z3X

54(℘+ Z2/12)
. (12.3)

Differentiating and squaring we get

(g′1)
2 =

Z6X2

542

(℘′)2

(℘+ Z2/12)4
.

Using Lemma 12.1 and (12.3), this becomes

(g′1)
2 =

542

Z6X2

(
g1 −

Z

6

)4(
4℘3 − Q(q3)

12
℘− R(q3)

216

)
.

Using (11.18) and (11.20) and rearranging, we get

(g′1)
2 =

542

Z6X2

(
g1 −

Z

6

)4(
4℘3 − Z4(9− 8X)

108
℘−

Z6(1− 4
3X + 8

27X
2)

216

)
=

542

Z6X2

(
g1 −

Z

6

)4
(

4
(
℘+

Z2

12

)3

− Z2

(
℘+

Z2

12

)2

+
2XZ4

27

(
℘+

Z2

12

)
− X2Z6

272

)
.

Using (12.3) again, this simplifies to

(g′1)
2 = −4

(
g1 −

Z

6

)(
g3
1 +

Z

2
g2
1 +

Z3(X − 1)
54

)
.

Rearranging, we complete the proof of the first part of the Theorem.
The second part follows from the first by the modular transformation, using Theorem 4.3 and
Lemma 11.2.

Remark 12.4. The first part of Theorem 12.2 was first proved by Berndt et. al. (4, p. 4209, eq.
(8.32)). The proof we have given here has also been found independently by Chan and Liu (7). It
would be useful to have proof of Theorem 12.2 in the style of Venkatachaliengar (19, pp. 11–13).
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13 Recurrences for the Eisenstein series S2n(q) and E2n(χ3; q)

Expanding the results in Corollary 10.12 in powers of θ using the series expansions in Theorem
3.1, we obtain the following results of Liu (15, Theorems 6 and 8):

Theorem 13.1.

1
3
E2(q)− E2(q3) =

1
4
E

(1)
2 (q) +

1
12
E

(2)
2 (q) = S0(q)2 = E0(χ3; q)2,

and, for n ≥ 1,
1
2
E

(1)
2n+2(q) = 3S0(q)S2n(q) +

n−1∑
k=1

(
2n
2k

)
S2k(q)S2n−2k(q), (13.2)

1
6
E

(2)
2n+2(q) = 3E0(χ3; q)E2n(χ3; q) +

n−1∑
k=1

(
2n
2k

)
E2k(χ3; q)E2n−2k(χ3; q). (13.3)

Remark 13.4. Equation (13.3) can be deduced from (13.2) (and vice versa) by the modular trans-
formation, using Corollaries 4.7 and 4.9.

Lemma 13.5. Let q = e−2πt. Then

φ′(2πit; q3) =
1
2
(
E2(q)− E2(q3)

)
,

℘(2πit; 2π, 6πit) = −Z
2

12
,

φ′(θ; q3)− φ′(2πit; q3) = − 1
2θ2

− 3
2
S0(q)2 +

∞∑
n=1

(−1)n

(2n)!
E2n+2(q3)θ2n.

Proof
From (1.1),

φ′(θ; q) = −1
8

csc2 θ

2
+

∞∑
n=1

nqn

1− qn
cosnθ.

Therefore

φ′(2πit; q3) =
q

2(1− q)2
+

1
2

∞∑
n=1

nq3n(qn + q−n)
1− q3n

=
q

2(1− q)2
− 1

2

∞∑
n=1

nqn +
1
2

∞∑
n=1

n(qn + q2n)
1− q3n

=
1
2

∞∑
n=1

n(qn + q2n + q3n)
1− q3n

− 1
2

∞∑
n=1

nq3n

1− q3n

=
1
2

∞∑
n=1

nqn

1− qn
− 1

2

∞∑
n=1

nq3n

1− q3n

=
1
2
(E2(q)− E2(q3)).

This proves the first part.
The second part follows from the first part, using (7.2) and (11.14).
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Next, using Theorem 3.1 and the first part of the lemma, we get

φ′(θ; q3)− φ(2πit; q3)

= − 1
2θ2

+
∞∑

n=1

(−1)n−1

(2n− 2)!
E2n(q3)θ2n−2 − 1

2
(E2(q)− E2(q3))

= − 1
2θ2

+
(

3
2
E2(q3)−

1
2
E2(q)

)
+

∞∑
n=1

(−1)n

(2n)!
E2n+2(q3)θ2n.

Applying Theorem 13.1 we complete the proof.

Theorem 13.6. For n = 1, 2, 3, · · · ,

S2n+2(q) = 3(2n+ 1)(2n+ 2)S0(q)2S2n(q)

−2(2n+ 1)(2n+ 2)
n−1∑
j=1

(
2n
2j

)
S2j(q)E2n+2−2j(q3),

E2n+2(χ3; q) = −9(2n+ 1)(2n+ 2)E0(χ3; q)2E2n(χ3; q)

−2(2n+ 1)(2n+ 2)
n−1∑
j=1

(
2n
2j

)
E2j(χ3; q)E2n+2−2j(q).

Proof
Expand both sides of Theorem (7.1) in powers of θ using Theorem 3.1 and Lemma 13.5, and equate
coefficients of θ2n. This proves the first part. The second part follows from the first, using the
transformation t→ 1/3t.

Remark 13.7. Chan and Liu (7) have obtained a formula for S2n purely in terms of S2k, with
k < n, by differentiating the first result in Theorem 12.2.

Lemma 13.8. For n = 2, 3, 4, · · · ,

E2n(q) =
∑

2j+3k=n

Kj,kQ(q)jR(q)k, (13.9)

E2n(q3) = Z2npn(X), (13.10)

where Kj,k are rational numbers, and pn(X) is a polynomial in X with rational coefficients and
degree b2n/3c.

Proof
A proof of (13.9) has been given by Ramanujan (18, p. 141). Equation (13.10) follows from (13.9)
by induction and making use of (11.18) and (11.20).

Theorem 13.11. S0(q) = E0(χ3; q) = Z
6 , and for n = 1, 2, 3, · · · ,

S2n(q) = Z2n+1Pn(X), (13.12)
E2n(χ3; q) = 3nZ2n+1Pn(1−X), (13.13)

where Pn is a polynomial with rational coefficients and degree ≤ b(2n+ 1)/3c.
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Proof
Equation (13.12) follows by induction from Theorem 13.6, using Lemma 13.8. The bound on the
degree of Pn follows because

b2j
3
c+ b2n+ 1− 2j

3
c ≤ b2n+ 1

3
c.

Equation (13.13) follows from (13.12) using Corollary 4.7 and Lemma 11.2.

The first few instances of Theorem 13.11 are as follows:

S0 =
1
6
Z

S2 =
1
27
Z3X

S4 =
1
27
Z5X

S6 =
1
27
Z7X

(
1 +

4
3
X

)
S8 =

1
27
Z9X

(
1 + 8X +

80
81
X2

)
S10 =

1
27
Z11X

(
1 + 36X +

848
27

X2

)
S12 =

1
27
Z13X

(
1 +

448
3
X +

12448
27

X2 +
6080
81

X3

)
S14 =

1
27
Z15X

(
1 + 604X +

422432
81

X2 +
289792

81
X3 +

70400
729

X4

)

E0(χ3, q) =
1
6
Z

E2(χ3, q) =
1
9
Z3(1−X)

E4(χ3, q) =
1
3
Z5(1−X)

E6(χ3, q) = Z7(1−X)
(

1 +
4
3
(1−X)

)
E8(χ3, q) = 3Z9(1−X)

(
1 + 8(1−X) +

80
81

(1−X)2
)

E10(χ3, q) = 9Z11(1−X)
(

1 + 36(1−X) +
848
27

(1−X)2
)

E12(χ3, q) = 27Z13(1−X)
(

1 +
448
3

(1−X) +
12448

27
(1−X)2

+
6080
81

(1−X)3
)

E14(χ3, q) = 81Z15(1−X)
(

1 + 604(1−X) +
422432

81
(1−X)2

+
289792

81
(1−X)3 +

70400
729

(1−X)4
)
.
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