Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

MULTIVARIATE RANKING AND SELECTION PROCEDURES WITH AN APPLICATION TO OVERSEAS TRADE

A thesis presented in partial fulfillment

of the requirements for the degree

of

MASTER OF ARTS .

in

STATISTICS

at

MASSEY UNIVERSITY

Name: MARY SHARMILA MENDIS Year: 1983 To my husband Rohan, our son Ruvan and

the memory of our son Gerard

ą

ABSTRACT

An overview of some recent work in the field of Ranking and Selection with emphasis on aspects important to experimenters confronted with Multivariate Ranking and Selection problems is presented. Ranking and Selection procedures fall into two basic categories. They are:

- 1) Indifference Zone Approach
- 2) Subset Selection Approach.

In these approaches, the multivariate parameters are converted to univariate parameters. Various procedures using these real valued functions are given for both the Indifference Zone Approach and the Subset Selection Approach.

A new formulation that has recently been developed which selects the best multivariate population without reducing populations to univariate quantities is also described. This method is a Multivariate Solution to the Multivariate Ranking and Selection problem.

Finally a real life problem pertaining to New Zealand's overseas trade is discussed in the context of Multivariate Ranking.

ACKNOWLEDGEMENTS

I wish to thank my supervisor Dr. Howard Edwards for his interest and guidance in the preparation of this thesis. Thanks also to Mrs. S. Carlyle for her excellent typing of the manuscript. Finally, I wish to thank my husband Rohan for his help, encouragement and support.

TABLE OF CONTENTS

		Page
Abstract		iii
Acknowledgements		iv
List of Ta	ables	ix
List of Co	omputer Printouts	х
<u>Chapter 1</u>		
1.	Introduction	1
Chapter 2		
2.	Ranking and Selection	2
2.1	Possible Goals for Ranking and Selection Procedures	2
2.2	Approaches to Ranking and Selection Procedures	3
2.3	The Philosophy of the Indifference Zone Approach	3
2.3.1	Graphical Representation	5
2.4	The Philosophy of the Subset Selection Approach	6
2.5	Comparison of the Indifference Zone and the Subset	7
	Selection Approaches	
<u>Chapter 3</u>		

3	Multivariate Distributions	9
3.1	Definition of a Multivariate Distribution	9
3.2	Notation used in Multivariate Ranking and Selection	10
3.3	Multivariate Ranking and Selection	11

Chapter 4

4.	The Indifference Zone Approach to Ranking and Select-	14
	ion of Several Multivariate Normal Populations	
4.1	Selection in terms of the Mahalanobis Distance	14
4.1.1	Procedures studied by K. Alam and M.H. Rizvi (1966)	14
4.1.1.1	Case 1 _{Zi} known	16
4.1.1.2	Case 2 _{zi} unknown	17

		Page
		ruge
4.1.2	Procedures studied by M.S. Srivastava and	18
	V.S. Taneja (1972)	
4.1.2.1	Non Truncated Sequential Procedure	19
4.1.2.2	Truncated Sequential Procedure	21
4.2	Selection in terms of the Euclidean Distance	24
4.2.1	Procedures studied by M.S. Srivastava and	24
	V.S. Taneja (1972)	
4.2.1.1	Case 1 🗵 known	25
4.2.1.2	Case 2 🗵 unknown	26
4.3	Selection in terms of Multiple Correlation Coefficients	27
4.3.1	Procedure investigated by M.H. Rizvi and H. Solomon	29
	(1973)	
4.3.2	Procedure investigated by K. Alam, M.H. Rizvi and	31
	H. Solomon (1975)	
4.4	Selection in terms of the Sum of the Bivariate	33
	Product - Moment Correlations	
4.4.1	Procedure studied by Z. Govindarajulu and A.P. Gore	34
	(1971)	
4.5	Selection in terms of the Coefficient of Alienation	35
4.5.1	Procedure proposed by R.M. Frischtak (1973)	36

Chapter 5

5.	The Subset Selection Approach to Ranking and Select-	38
	ion of Several Multivariate Normal Populations	
5.1	Selection in terms of the Mahalanobis Distance	38
5.1.1	Rules proposed by S.S. Gupta (1966)	39
5.1.1.1	Selection of a Subset containing the population with	39
	the largest θ_i , $\Sigma_1 = \Sigma_2 = \dots = \Sigma_k = \Sigma$ known	
5.1.1.2	Selection of a Subset containing the population with	40
	the smallest θ_i , $\Sigma_1 = \Sigma_2 = \dots = \Sigma_k = \Sigma$ known	
5.1.2	Procedures studied by S.S. Gupta and W.J. Studden (1970)	42
5.1.2.1	Selection of a Subset containing the population with	42
	the largest θ_i , Σ_i not necessarily equal but known	
5.1.2.2	Selection of a Subset containing the population with	43
	the smallest θ_i , Σ_i not necessarily equal but known	
5.1.2.3	Selection of a Subset containing the population with	43
	the largest θ_i , Σ_i are different and unknown	

		Page
5.1.2.4	Selection of a Subset containing the population with	45
	the smallest θ_i , Σ_i are different and unknown	
5.1.3	Procedures considered by K. Alam and M.H. Rizvi (1966)	46
5.1.3.1	Selection of a Subset containing the population with	46
	the largest $ heta_i$, $ heta_i$ not necessarily equal but known	
5.1.4	Unsolved Procedures	47
5.1.4.1	Selection of a Subset containing the population with	47
	the largest θ_i , $\Sigma_1 = \Sigma_2 = \dots = \Sigma_k = \Sigma$ known	
5.2	Selection in terms of the Generalized Variances	48
5.2.1	Rule proposed by M. Gnanadesikan and S.S. Gupta (1970)	48
5.2.1.1	Selection of a Subset containing the population with the	48
	smallest $ \Sigma_i $ based on the sample covariance matrices	
	S _i , i = 1,, k	
5.2.1.2	Approximations to the distribution of Y_i when $p > 2$	49
5.2.2	Alternatives to Procedure R proposed by M.H. Regier (1976)	51
5.2.2.1	Procedure based on the Geometric Mean	51
5.2.2.2	Procedure based on the Arithmetic Mean	52
5.2.3	A comparison of the three procedures R, R_1 and R_2	53
5.3	Selection in terms of the Multiple Correlation	54
	Coefficients	
5.3.1	Procedures investigated by S.S. Gupta and S. Panchapak-	55
	esan (1969)	
5.3.1.1	Selection of $\theta_{[k]} = \rho_{[k]}$	55
5.3.1.2	Selection of $\theta_{[1]} = \rho_{[1]}$	56
5.4	Selection in terms of Measures of Association between	57
	two Subclasses of Variates	
5.4.1	Procedure considered by S.S. Gupta and S. Panchapakesan	59
	(1969)	
5.4.2	Procedure considered by R.M. Frischtak (1973)	59
Chapter 6		
unup cer 0		

6.	The	Multivariate Solution to the Multivariate Ranking	61
	and	Selection Problem	
6.1	The	Multivariate Preference Selection Procedure R _{mvp}	62

6.1.1	Selecting the best when $\Sigma_1 = \Sigma_2 = \dots = \Sigma_k = \sigma^2 I$ with σ^2 known	62
6.1.2	Selecting the best when $\Sigma_1 = \Sigma_2 = \dots = \Sigma_k = \Sigma$, Σ known	65
6.1.3	Selecting the best when $\Sigma_1, \ldots, \Sigma_k$ known	67
6.1.4	Selecting the best when $\Sigma_1, \ldots, \Sigma_k$, unknown, unequal	69

Chapter 7

7.	The Complete Ranking of Multivariate Populations	72
7.1	The Properties of the Multivariate Normal Distribution	72
7.1.1	Presentation of sample data consisting of n observat-	74
	ions for each of the k populations each having p	
	components	
7.2	The Complete Ranking of k population means	75
7.2.1	Ranking of k normal populations according to their means	75
	when the common variance is known	
7.2.2	Two stage procedure to rank k normal population means	77
	when the common variance is unknown	
7.3	Ranking of Countries on their trade performance with	78
	New Zealand - An Application	
7.4	Comments on the Application	85
Chapter 8		
8.	Conclusions	106

Bibliography

107

Page

LIST OF TABLES

T 4.1	Values of t for $\lambda = 0$	20
T 4.2	Values of t	23
T 7.1	The probability of a correct complete ordering of τ k normal populations with respect to means for given values of τ	87
T 7.2	Values of h to determine the common sample size in the second stage for attaining P* = .95 for a correct complete ordering of k normal populations with respect to means when n is the common size of the first stage sample	89

LIST OF COMPUTER PRINTOUTS

		Page
C 7.3.1	Results using Direct Data	90
C 7.3.2	Results when Data was transformed using Inverse Sine Conversion	94
C 7.3.3	Results when Data was transformed using Logit Conversion	98
C 7.3.4	Results when Data was transformed using Probit Conversion	102

CHAPTER 1

1. INTRODUCTION

In the mid nineteen fifties attention began to be drawn to a new type of problem which does not fit into the framework of testing hypotheses and for which no proper statistical approach has been developed. In this type of problem it is not necessary to refute a null hypothesis which is clearly false but rather answer a different type of question which deals with selecting the best or with the ranking of alternatives. This field of study is called RANKING AND SELECTION THEORY.

A statistical Selection procedure uses a random sample from each population to select the best population. The same sample of data is used to order the populations in statistical Ranking procedures. In these procedures it can be asserted with a specified level of confidence that the Selection or Ranking made is correct.

Procedures for Selection and Ranking problems were pioneered by R. E. Bechhofer in 1954 using normality and equal known variance. In the ensuing years such procedures have been developed for more complex problems and in more realistic settings.

This thesis presents an overview of some recent work in this field with emphasis on aspects important to experimenters confronted with Multivariate Ranking and Selection problems. An example pertaining to overseas trade using Multivariate Ranking is also discussed.

1