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ABSTRACT 

This thesis presents the synthesis and attempted functionalization of the 

unsaturated ring system of the naturally occurring pyranonaphthoquinone antibiotic 

griseusin A 88. Unsaturated spiroketals 333,334 were constructed via the addition of 2-

trimethylsilyloxyfuran 189 to quinone 328. Initial work using acetylenic quinone 321 

afforded a pentacyclic product 323, wherein an unanticipated third Michael reaction 

occurred due to the phenolic hydroxyl group cyclizing onto the <x,�-unsaturated ketone 

moiety. Altering the reaction conditions gave trimethylsilyl analogue 325, where the final 

Michael reaction abstracted not a proton (323) but a trimethylsilyl cation liberated from 

189. Naphthoquinone 328, bearing a 2-alkenyl side chain rather than an acetylene, was 

synthesized using similar methodology to 321 and subsequently converted to 

furonaphthofuran adduct 330. Ceric ammonium nitrate oxidative rearrangement of 330 

produced diol 332, which was then cyclized to spiroketals 333,334 under a variety of 

conditions. The isomer ratio 333:334 resulting from these conditions was determined by 

high field IH nmr spectroscopy. 

With the two spiroketals 333,334 in hand, efforts were directed towards the 

functionalization of the C3' -C4' double bond. -Osmium tetraoxide catalytic 

dihydroxylation of model olefin 345 gave diol 353, where approach of the reagent was 

from the opposite face to that required for griseusin A 88. Selective acetylation of the 

less hindered hydroxyl group was however achieved, giving 354. 

The Woodward-Prevost reaction of olefin 345 formed the iodoacetates 367-369. 

Attempts to displace the iodine from the major diaxial iodoacetate 368 gave a complex 

mixture. Iodoacetate 387 was then prepared wherein the iodine and acetate positions 

were reversed, treatment of which with silver acetate afforded the fragmentation products 

401 and 402. The minor diequatorial iodoacetate 367 gave, like its stereoisomer 368, a 

complex mixture when subjected to displacement conditions. Only iodoacetate 410, 

formed from 367, produced spiroketal hydroxyacetates as hoped for, however both of 

these had the opposite stereochemistry at C-4 and C-5 to that desired. One of these two 

hydroxyacetates (354) had also been isolated from the selective acetylation of dio1 353. 

Several attempts using a variety of reaction conditions were made in an effort to 

force 333,334 to react with osmium tetraoxide. It was found that the functional groups 

present in 333, 334, 336, 330 and 323 were incompatible with this reagent. Ketone 327 

was the only compound that successfully underwent syn-hydroxylation, affording diols 

419 and 420. Use of cetyltrimethylammonium permanganate as an hydroxylation reagent 

for 333,334 afforded 423 and 421 rather than 343 and 344, where reaction had occurred 

at the C5a-C l la double bond. 
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The difficulty in introducing the oxygenated substituents onto the 0 1 '  -C6' 

spiroketal ring was proposed to be overcome by synthesizing naphthoquinone 430. The 

protected hydroxyl groups at C-2' and C-3' in this compound would possess the correct 

stereochemistry for elaboration to the hydroxyl and acetate groups at C-3' and C-4' 

respectively in griseusin A 88. 

Towards this end, the synthesis of the required naphthalene precursor (432) was 

undertaken via an enantioselective aldol condensation of imide 435 with (R)-aldehyde 

437.435 was formed from (R)-phenylalanine and 2-(benzyloxy)acetyl chloride 439 and 

reacted with 437 using stannous triflate and tetramethylethylenediamine. The major 

product 452, possessing the desired 2',3' -anti stereochemistry, was protected and the 

auxiliary reductively removed to give alcohol 459. Oxidation of 459 using tetra-n

propylammonium perruthenate gave aldehyde 434, ready to be coupled to the Grignard 

reagent (498) of trimethoxybromide 433. 

Trials using heptanal and various organometallic reagents found n-butyllithium to 

be the reagent of choice for generating the anion (in this case the lithiate, 500) of 433. 

With the optimum time determined, the coupling of 500 with 434 was undertaken but 

yielded only the debrominated compound 499. The basicity of 500 and the hindrance at 

the carbonyl group of 434 were cited as possible reasons for this result, and attempts 

were made to "soften" the anion. Unfortunately both magnesium bromide and ceric 

chloride failed to produce the desired products 503,504. 
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