Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Synthetic Studies towards Griseusin A

A thesis presented in partial fulfilment

of the requirements

for the degree of

Doctor of Philosophy

in Chemistry at Massey University

Michael Royce Naim

Spring 1995

ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisor Dr. Margaret Brimble (University of Sydney) for the expertise and assistance she provided during the course of this work. The last few years in many ways have been the most challenging for us, both personally and professionally, and I am indebted to her perseverance during this time. Thanks also must go to my co-supervisor Dr. Eric Ainscough (Massey University) for his administrative and negotiating skills in the procurement of time and resources.

I gratefully acknowledge the University Vice Chancellors Committee for the award of a postgraduate scholarship which allowed me to undertake much of this research, and additionally the Department of Chemistry and Biochemistry at Massey University for their generous support by way of stipends and conference travel during my initial time there. I would like also to express my sincere thanks to the Chemistry Department of the University of Auckland for the granting of a Teaching Fellowship, which gave me bench space and facilities, a living allowance, and invaluable experience working at another university. Floor three students deserve mention here for welcoming a stranger into their midst.

I am obliged to the many people I have been fortunate to work with for their skills, friendship and humour, including Geoff Williams (making life in the laboratory bearable all those years ago), Russell Clark (providing both insightful discussions and hard-to-get journal articles from Auckland), and especially Aaron Dobbs (health camp entrepreneur and UN humanitarian ambassador - currently posted in France!). My appreciation is extended to the 1995 occupants of A4-18 (Department of Chemistry and Biochemistry, Massey University), notably Michael Edmonds and David Reid, who have allowed me to monopolize a computer these past months.

Special thanks to Peter and Paula Gatenby-Garnham for their many years of friendship and kindness, and allowing me to share the milestones of their lives. I was truly fortunate to meet you that cold night in August '87. I am furthermore beholden to Jacqueline Tanner for continuing to flat with me and ask how I am.

Lastly I acknowledge my family (who are still not quite sure what I do) during the (extended) tenure of this thesis, the completion of which unfortunately came too late for my grandmothers Marion Dorothy Barnes and Helen Nairn, and my very good friend Christina M Young.

ABSTRACT

This thesis presents the synthesis and attempted functionalization of the unsaturated ring system of the naturally occurring pyranonaphthoquinone antibiotic griseusin A **88**. Unsaturated spiroketals **333,334** were constructed *via* the addition of 2-trimethylsilyloxyfuran **189** to quinone **328**. Initial work using acetylenic quinone **321** afforded a pentacyclic product **323**, wherein an unanticipated third Michael reaction occurred due to the phenolic hydroxyl group cyclizing onto the α , β -unsaturated ketone moiety. Altering the reaction conditions gave trimethylsilyl analogue **325**, where the final Michael reaction abstracted not a proton (**323**) but a trimethylsilyl cation liberated from **189**. Naphthoquinone **328**, bearing a 2-alkenyl side chain rather than an acetylene, was synthesized using similar methodology to **321** and subsequently converted to furonaphthofuran adduct **330**. Ceric ammonium nitrate oxidative rearrangement of **330** produced diol **332**, which was then cyclized to spiroketals **333,334** under a variety of conditions. The isomer ratio **333:334** resulting from these conditions was determined by high field ¹H nmr spectroscopy.

With the two spiroketals 333,334 in hand, efforts were directed towards the functionalization of the C3'-C4' double bond. Osmium tetraoxide catalytic dihydroxylation of model olefin 345 gave diol 353, where approach of the reagent was from the opposite face to that required for griseusin A 88. Selective acetylation of the less hindered hydroxyl group was however achieved, giving 354.

The Woodward-Prevost reaction of olefin 345 formed the iodoacetates 367-369. Attempts to displace the iodine from the major diaxial iodoacetate 368 gave a complex mixture. Iodoacetate 387 was then prepared wherein the iodine and acetate positions were reversed, treatment of which with silver acetate afforded the fragmentation products 401 and 402. The minor diequatorial iodoacetate 367 gave, like its stereoisomer 368, a complex mixture when subjected to displacement conditions. Only iodoacetate 410, formed from 367, produced spiroketal hydroxyacetates as hoped for, however both of these had the opposite stereochemistry at C-4 and C-5 to that desired. One of these two hydroxyacetates (354) had also been isolated from the selective acetylation of diol 353.

Several attempts using a variety of reaction conditions were made in an effort to force 333,334 to react with osmium tetraoxide. It was found that the functional groups present in 333, 334, 336, 330 and 323 were incompatible with this reagent. Ketone 327 was the only compound that successfully underwent *syn*-hydroxylation, affording diols 419 and 420. Use of cetyltrimethylammonium permanganate as an hydroxylation reagent for 333,334 afforded 423 and 421 rather than 343 and 344, where reaction had occurred at the C5a-C11a double bond.

iii

The difficulty in introducing the oxygenated substituents onto the O1'-C6' spiroketal ring was proposed to be overcome by synthesizing naphthoquinone **430**. The protected hydroxyl groups at C-2' and C-3' in this compound would possess the correct stereochemistry for elaboration to the hydroxyl and acetate groups at C-3' and C-4' respectively in griseusin A **88**.

Towards this end, the synthesis of the required naphthalene precursor (432) was undertaken via an enantioselective aldol condensation of imide 435 with (R)-aldehyde 437. 435 was formed from (R)-phenylalanine and 2-(benzyloxy)acetyl chloride 439 and reacted with 437 using stannous triflate and tetramethylethylenediamine. The major product 452, possessing the desired 2',3'-anti stereochemistry, was protected and the auxiliary reductively removed to give alcohol 459. Oxidation of 459 using tetra-npropylammonium perruthenate gave aldehyde 434, ready to be coupled to the Grignard reagent (498) of trimethoxybromide 433.

Trials using heptanal and various organometallic reagents found *n*-butyllithium to be the reagent of choice for generating the anion (in this case the lithiate, 500) of 433. With the optimum time determined, the coupling of 500 with 434 was undertaken but yielded only the debrominated compound 499. The basicity of 500 and the hindrance at the carbonyl group of 434 were cited as possible reasons for this result, and attempts were made to "soften" the anion. Unfortunately both magnesium bromide and ceric chloride failed to produce the desired products 503,504.

CONTENTS

			Page
ACKNOWLED	GE	MEN	rs ii
ABSTRACT			iii
ABBREVIATIO	NS		x
CHAPTER 1	Introduction 1		
	1.1	Pyrai	nonaphthoquinone Antibiotics - Isolation,
		Struc	ture and Biological Activity1
		1.1.1	Simple and Fusarium Derived Quinones
		1.1.2	Monomeric Quinones11
		1.1.3	Dimeric Quinones27
	1.2	Pyran	onaphthoquinone Biosynthesis43
		1.2.1	Simple Monomers44
		1.2.2	Carbohydrate Modified Monomers48
		1.2.3	Dimers
	1.3	Relate	ed Syntheses of Pyranonaphthoquinones
		1.3.1	Conjugate Addition to Quinones62
		1.3.2	1,7-Dioxaspiro[5.5] undecane Conformations72
		1.3.3	Cyclization of 3-(2-hydroxyalkyl)naphthalenes73
CHAPTER 2	Syn	thesis	of Pyranonaphthoquinone Spiroketals
	333	and 3	834 80
:	2.1	Conju	gate Addition of Enol Ethers to α , β -Unsaturated
		Carbo	nyl Compounds
		2.1.1	Quinones as Michael Acceptors
		2.1.2	The Michael Reaction81

	2.1.3	Silyl Enol Ethers as the Nucleophilic	
		Component	81
	2.1.4	Silyl Ketene Acetals as the Nucleophilic	
		Component	83
	2.15	1-Silyloxybutadienes as the Nucleophilic	
		Component	85
	2.1.6	Other Cyclic and Acyclic Acetals as the	
		Nucleophilic Component	87
2.2	Furof	uran Annulation: a Mechanistic Discussion	87
	2.2.1	Via Michael Addition	87
	2.2.2	Via Diels-Alder Fragmentation	92
2.3	The u	se of Ceric Ammonium Nitrate in the	
	Form	ation of Quinones	99
	rorma		
2.4	Synth	esis of Unsaturated Spiroketals 333,334	101
2.4	Synth 2.4.1	esis of Unsaturated Spiroketals 333,334 Retrosynthetic Analysis	101 101
2.4	Synth 2.4.1 2.4.2	esis of Unsaturated Spiroketals 333,334 Retrosynthetic Analysis Synthesis of Pentacycle 323	101 101 101
2.4	Synth 2.4.1 2.4.2 2.4.3	esis of Unsaturated Spiroketals 333,334 Retrosynthetic Analysis Synthesis of Pentacycle 323 Synthesis of Furofuran Adduct 330	101 101 101 106
2.4	Synth 2.4.1 2.4.2 2.4.3 2.4.4	esis of Unsaturated Spiroketals 333,334 Retrosynthetic Analysis Synthesis of Pentacycle 323 Synthesis of Furofuran Adduct 330 Synthesis of Naphthopyran Diol 332	101 101 101 106 109
2.4	Synth 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	esis of Unsaturated Spiroketals 333,334 Retrosynthetic Analysis Synthesis of Pentacycle 323 Synthesis of Furofuran Adduct 330 Synthesis of Naphthopyran Diol 332 Synthesis of the Spiroketal Ring System of	101 101 101 106 109
2.4	Synth 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	esis of Unsaturated Spiroketals 333,334 Retrosynthetic Analysis Synthesis of Pentacycle 323 Synthesis of Furofuran Adduct 330 Synthesis of Naphthopyran Diol 332 Synthesis of the Spiroketal Ring System of 333,334	101 101 101 106 109 110

CHAPTER 3 Hydroxylation of 1,7-Dioxaspiro[5.5]undec

-4-enes

118

3.1	syn-Hydroxylation of Spiroketal 345 using Osmium				
	Tetra	oxide11	8		
	3.1.1	Choice of Model System11	8		
	3.1.2	Osmium Tetraoxide11	9		
	3.1.3	Formation of Diol 353 and Acetates 354 and 355			
		using Osmium Tetraoxide12	1		
	3.1.4	Kishi's Allylic Oxidation Rule12	4		
	3.15	Summary	8		

	3.2	syn-H	lydroxylation of Spiroketal 345 using Iodine	
		and S	ilver Acetate in Aqueous Acetic Acid	129
		3.2.1	The Woodward-Prevost Reaction	129
		3.2.2	Preparation of Iodoacetates 367, 368	
			and 369	130
		3.2.3	Addition of Electrophiles to Related	
			Compounds	137
		3.2.4	Attempted Acetoxonium Ion Formation	
			from 368	138
		3.2.5	Synthesis of Iodoacetate 387	141
		3.2.6	Attempted Displacement of Iodine from	
			Iodoacetate 387	146
		3.2.7	Synthesis and Reaction of Iodoacetate 410:	
			Production of Hydroxyacetates 354 and 356	151
		3.2.8	Summary	155
	2 2		udrovulation Attempts with Naphthalana and	
	5.5	Syn-n	yoroxylation Attempts with Naphthalene and	157
		2 2 1	Attempts to Hudropulate Sunthetic	137
		5.5.1	Allempis to Hydroxytate Synthetic	157
		227	Prononaprinoquinones	137
		5.5.2	and 420	150
		222	Use of MnO -: Synthesis of Spiroketal Diels	139
		5.5.5	421 and 423	162
		331		167
		5.5.4	Summary	107
CHAPTER 4	Ste	reosel	ective Aldol Approach to Naphthalene	
	432	2	1	168
	4.1	Nor	Staaten and Detacanthesis	160
	4.1	New S	Strategy and Retrosynthesis	168
		4.1.1	Previous Work	168
		4.1.2	Alternative Retrosynthesis based on an Aldol	1 (0
			Condensation	108
	4.2	Synth	esis of Reactants for the Aldol	
		Cond	ensation	171
		4.2.1	Synthesis of Imide 435	171
		4.2.2	Stannous Trifluoromethanesulphonate	173

	4.2.3	<i>Aldehyde</i> 437 173
4.3	The A	Aldol Coupling
	4.3.1	Formation of the Three Aldol Diastereomers
		451.452.453
	4.3.2	Structure Elucidation of the Major Aldol
		<i>Product</i> 452
	4.3.3	Structural Assignment of 451 and 453181
4.4	The C	Dutcome of the Sn(II)/TMEDA Mediated
	Aldol	Reaction
	4.4.1	Origin of the Anti Aldol Reaction Employed in
		the Synthesis of 452182
	4.4.2	The Aldol Reaction - an Overview
	4.4.3	(Z)-Enolate Anti Aldol Transition States 185
	4.4.4	The Anti Aldol Reaction of 435 with 437 using
		Sn(OTf) ₂ /TMEDA190
4.5	Form	ation of Highly Functionalized
	Aldeh	yde 434193
	4.5.1	Choice of an Hydroxyl Protecting Group
		for 452
	4.5.2	Reductive Removal of the Chiral Auxiliary 194
	4.5.3	Oxidation Methods Forming 434195
	4.5.4	Mosher Ester Analysis of Aldehyde 434 196
4.6	The G	rignard Addition of Aldehyde 434 and
	Brom	ide 433197
	4.6.1	Formation of 433
	4.6.2	Developing Grignard Methodology using
		Heptanal198
	4.6.3	Attempted Coupling of Aldehyde 434 and
		Bromide 433
4.7	Futur	e Work
	4.7.1	Transmetallation with Differing Metals204
	4.7.2	Alternatives to Aldehyde 434
	4.7.3	Asymmetric Dihydroxylation
	4.7.4	Protecting Group Changes

	4.7.5 Making the Michael Addition
	Enantioselective207
CHAPTER 5	Experimental 208
	5.1 General Details
	5.2 Compound Data
	Quinone Work (chapter 2)211
	Bicyclic Work (chapter 3)225
	Aldol Work (chapter 4)242
	5.2 Compound Data Quinone Work (chapter 2)

REFERENCES

256

ABBREVIATIONS

2D	=	two dimensional
aq.	=	aqueous
amu	=	atomic mass units
av	=	average
ax	=	axial
BINAP	=	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
b.p.	=	boiling point
<i>n</i> -Bu, Bu ⁿ	=	<i>n</i> -butyl
Bu ^t	=	<i>tert</i> -butyl
Bz	=	benzyl
CAN	=	ceric ammonium nitrate
cat.	=	catalytic
CD	=	circular dichroism
cm ³	=	cubic centimetres (ml)
CoA	=	coenzyme A
conc.	=	concentrated
COSY	=	correlation spectroscopy
CSA	=	camphor sulphonic acid
CTAP	=	cetyltrimethylammonium permanganate
D	=	deuterium
DBN	=	1,5-diazabicyclo[4.3.0]non-5-ene
DBU	=	1,8-diazabicyclo[5.4.0]undec-7-ene
decomp.	=	decomposed
deg	=	degree
DEPT	=	distortionless enhancement by polarization
		transfer
DIBAL	=	diisobutylaluminium hydride
dil.	=	dilute
DMAP	=	4-dimethylaminopyridine
DME	=	dimethoxyethane/ethylene glycol dimethyl
		ether
DMF	=	N,N-dimethylformamide
DMSO	=	dimethyl sulphoxide
ds	=	diastereoselection
ee	=	enantiomeric excess

18C6	=	1,4,7,10,13,16-hexaoxacyclooctadecane (18-
		crown-6 ether)
eq	=	equatorial
equiv.	=	equivalents
FAB	=	fast atom bombardment
h	=	hour
[H]	=	reduction
HETCOR	=	heteronuclear correlation spectroscopy
hplc	=	high pressure liquid chromatography
hrms	=	high resolution mass spectrometry
imid	=	imidazole
IR	=	infra-red
J	=	nmr coupling constant (hertz)
LDA	=	lithium diisopropylamide
MCPBA	=	meta-chloroperbenzoic acid
mg	=	milligrams
min	=	minutes
mm ³	=	cubic millimetres (µl)
mmol	=	millimoles
mol	=	moles
МОМ	=	methoxymethyl
m.p.	=	melting point
ms	=	mass spectrometry
NADH	=	reduced nicotinamide adenine dinucleotide
NADPH	=	reduced nicotinamide adenine dinucleotide
		phosphate
NBA	=	N-bromoacetamide
NMO	=	4-methylmorpholine N-oxide
nmr	=	nuclear magnetic resonance
NOE	=	nuclear Overhauser effect
[O]	=	oxidation
OAc	=	acetate
ORD	=	optical rotatory dispersion
PCC	=	pyridinium chlorochromate
PDC	=	pyridinium dichromate
PMB	=	<i>p</i> -methoxybenzyl
PPTS	=	pyridinium <i>p</i> -toluenesulphonate
Pr ⁱ	=	isopropyl

PTC	=	phase transfer catalyst
ру	=	pyridine
R _f	=	distance travelled by compound+distance
		travelled by solvent on TLC plate
RT	=	room temperature
S	=	seconds
t	=	time
TBAF	=	tetrabutylammonium fluoride
TBDMS	=	tert-butyldimethylsilyl
TES	=	triethylsilyl
Tf	=	trifluoromethanesulphonyl
TFA	=	trifluoroacetic acid
THF	=	tetrahydrofuran
THP	=	tetrahydropyranyl
TLC	=	thin layer chromatography
TMEDA	=	N, N, N', N'-tetramethylethylenediamine
TMS	=	trimethylsilyl
TPAP	=	tetra-n-propylammonium perruthenate
Tr	=	trityl (Ph ₃ C)
TsOH	=	<i>p</i> -toluene sulphonic acid (tosic acid)
UV	=	ultra-violet
var.	=	variety
wt.	=	weight